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Methods to extract vessel networks in medical images have been in high
demand for its applications to health risk predictions. For example, vessel
enhancement of retinal images has shown promises in diagnosing diabetes. Within
the existing literature, multiscale vessel enhancement stands out as one of the best
for its accuracy, speed, and simplicity. But like many vessel extraction techniques,
the efficacy of the method is greatly hindered in the presence of noise, lighting
variations, and decreased resolution. This deficiency is presents itself in retinal
images and are particularly pronounced in digital photographs of human placenta.

Retinal images have a been popular data set of testing vessel extraction
methods because of its simplicity in anatomical structure yet high hopes in
diagnosing conditions such as diabetic retinopathy and glaucoma. Thus, the thesis
will focus on the application of vessel extraction methods on retinal images.
Specifically, we focus on the DRIVE and STARE database.

Also, recent placental pathology evidence has contributed to current
understanding of causes of low birth weight and preterm birth, each has been
linked to increased risk of later neurodevelopmental disorders. Among various

factors that cause such disorders, the vessel network on the placenta has been



hypothesized to offer the most clue in bridging that connection. Herein lies the
most essential step of the blood vessel extraction, which has only been done
manually through a laborious process.

Motivated by its ability to handle curvilinear structures, we propose the use
of directional filter banks to further enhance the results obtained from the
multiscale method. Validating experiments will be performed on a private
database that is made available by the Placental Analytics, LLC.

It will be shown that for retinal images, the directional filter bank approach
significantly improves the performance over the well-known multiscale vessel
enhancement method. However, the directional filter bank approach are

comparable to multiscale vessel enhancement on placentas.
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CHAPTER 1
INTRODUCTION

The breakthroughs in imaging technology such as MRIs, sonograms, and
even digital cameras have created a wealth of data for the medical field. With such
data, there have been a motivation to use such tools for diagnosis. Currently, the
paradigm for medical imaging is focused on improving the technology so that
medical personnel can more accurately diagnose a patient. However, this paradigm
is limited by time and expenses which motivates the automation of some of the
diagnosis process. Such motivation has partially fueled the growth of the image
processing field. Its goal is to process the images so that there is a higher
medically relevant quality so that a medical technician may diagnose more
accurately. Specifically, this involves the reduction of noise of an image, removing
irrelevant features, and highlighting relevant features. One such relevant feature
this thesis will focus on are the veins and arteries of a two-dimensional image.
Together, they are called vessels and the process of visually locating such vessels is
called vessel extraction. Finding the location of vessels provides a measurement for
shape, coloration, size, and spatial distribution of vessels. Such statistical features
are useful in the medical diagnosis process.

There is an enormous amount of literature on methods of extracting vessels.
They include matched filter response [1], gradient vector fields [2], ridge based
methods [3], and hybrid methods [4]. We refer to [5] for a survey of vessel
extraction methods. One of the popular methods is multiscale vessel enhancement

[6], which will be discussed in chapter 2. The focus of this thesis will be the



directional filter bank modification of multiscale vessel enhancement method [7],
called decimation-free directional filter bank (DDFB) vessel enhancement.

To compare the different vessel extraction methods, retinal image databases
STARE [1] and DRIVE (3] are used. A placenta data set provided by Placental
Analytics LLC is also tested on. This is to test whether directional filter banks is
generally better than multiscale vessel enhancement or just on retinal images.
Section 1.2 will discuss the retinal image databases in detail and section 1.3 will
discuss the placental image databases in detail.

A brief introduction to image processing techniques is provided in section
1.1. For the remainder of chapter 1, we will mention the prepocessing steps that
are performed on the mentioned database images. With the exception of
homomorphic filtering, these preprocessing steps will only be briefly mentioned
and a reference will be provided for those interested in them.

Chapter 2 will explore the necessary parts of differential geometry to lay
the necessary groundwork for directional filter banks in chapter 3. Its highlight
will be a popular method of vessel extraction called multiscale vessel enhancement
[6], with application to retinal images. To evaluate its performance, an accuracy
measure will be introduced.

Chapter 3 will focus on the theory of directional filter banks as it pertains
to vessel enhancement. Along the way, concepts from signal processing with
regards to filtering will be explained. The chapter will conclude with the
application of directional filter banks on retinal images and placentas. Metrics for
comparing results between multiscale vessel enhancement and directional filter

banks will also be introduced.



An Introduction to Image Processing Techniques

An m x n dimensional grayscale image of dimension can mathematically be
represented as a function I : {1,2,..., M} x {1,2,..., N} = R. I is can be extended
using the discrete symmetric extension I :72 — R where
I(n1,m9) = I(s(ny; M), s(ny; N)) and

(s N = n—[FIN if [%] is even 1)
N+1-(n—[2]N) if [%]isodd
For notational convenience, we will implicitly refer to an image I : Z* — R, whose
domain is Z?, to be the discrete symmetric extension of
I:{1,2,...,M}x{1,2,...,N} - R, whose domain is {1,2,..., M} x {1,2,..., N}.

For a color image, the digital representation involves the three color
channels red, green, and blue. The mathematical representation is then a function
I =(R,G,B):7Z* — R3 where R : Z* — R is the red channel, G : Z2 — R is the
green channel, and B : Z? — R is the blue channel. And similarly, R, G, and B
are discrete symmetric extensions of a corresponing function with domain
{1,2,...M} x{1,2,..,N}.

A square bracket and curly bracket will be used for operators such as
differential operators (L[I]) and Fourier transform (§{f}). The composition of f
and g is denoted by f o g. The inner product of x and y is defined (x,y) = xTy
along with its respective norm ||x||2 = (x,x).

Convolution for functions f,g : R — R is defined as

(f *g)(t) = / £()g(t — 5)ds

while functions with two-dimensional domains f, g : R? — R is defined as

(f*9)(z,y) = // f(u,v)9(z — u,y — v)dvdu.



For integer-domain functions f,g: {1,..., N} = R and
fr9:{1,...., M} x{1,..,N} — R, (discrete symmetric) convolution is, instead,
defined as
M N
Yg(n —t) and (f * 9)(4, ) =ZZ (4, 7)g(m —i,n — j),

i=1 j=1

(fxg)(n) =

uMz

respectively, where f , g are the discrete symmetric extension of f,g.
Finally, the process of thresholding will be used throughout this thesis.
Suppose we have I : Z* — R. Then a thresholding of I by ¢ is a function

T : Z* — {0, 1} such that

() = 1 if I(z) >t (1.2)

0 otherwise.

Retinal Image Database

As mentioned in [3], the use of retinal images has contributed to diagnostics
of diabetic retinopathy (8], retinal vein occlusion [9], hypertension [10], and
glaucoma [11]. One of the important features in retinal images is the vessel. The
DRIVE and STARE databases are popular data sets to test on. Their popularity
is due to their containing mainly visible vessels and clinically shown diagnostics
potential.

The DRIVE database [3] contains 40 retinal images evenly divided into the
training and test data sets. It is also called the Utrecht database since it is
collected at University Medical Center Utrecht, The Netherlands. For each of the
training images, there is a corresponding hand trace ground truth image to test
the accuracy of the vessel extraction. And for each of the testing images, there are
two corresponding hand traces to test the accuracy of the vessel extraction.

Because the retinal images are taken with a background which is not relevant to



the extraction result, the background can be removed with a mask that is also
provided in the database.

The STARE database [1] contains 20 retinal images and for each image,
there are two corresponding hand traces, drawn by Hoover (which will be denoted
as AH) and Kouznetsova (which will be denoted as VK). The VK hand traces are
more detailed then the AH hand trace, creating an extra challenge for vessel
extraction. The STARE database is also called Hoover database for its association
with Adam Hoover. The retinal images were collected from the Shiley Eye Center
at University of California, San Diego, and Veterans Administration Medical
Center in San Diego. Table 1 shows the retinal image numbers for the STARE
image and a corresponding indices later used in bar graphs.

A mask is not provided in the data set; however, it can be manually created
by picking a good threshold in the red channel because in the red channel, the
background is dark compared to the retina. Precisely, M : Z2 — {0,1} is a mask

such that
1 if R(z,y) > threshold

M(z,y) = (1.3)
0 otherwise
where R(z,y) is the red channel of a color image. Table 1 shows the specified
thresholds. We mention that some of the STARE images have different threshold
values because they may have been captured under different lighting conditions,

causing some images to be slightly brighter or dark than others. Hence, different

threshold values are chosen.



TABLE 1. Thresholds for Creating Masks in STARE

STARE index 1 2 3 4 5 6 7 8 9 | 10
Retinal image 1 2 3 4 5 |44 | 77 | 81 | 82 | 139
Threshold 50 | 40 | 60 | 33 | 50 | 70 | 50 | 50 | 50 | 50

STARE number | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
Retinal image | 162 | 163 | 235 | 236 | 239 | 240 | 255 | 291 | 319 | 324
Threshold 50 | 50 | 50 | 50 | 50 | 40 | 50 | 50 | 50 | 50

Placental Image Database

We will see that the directional filter bank approach works well on retinal
images. It is then natural to ask if it will work on general vessel images. To
attempt an answer, we will also test on placenta photographs provided by Placenta
Analytics, LLC. The placenta is an organ that regulates nutrient uptake, waste
elimination, and gas exchange between the fetus and the mother. In theory, the
health of the placenta is then correlated with the health of the fetus. Thus,
researchers at Placenta Analytics study the potential of using the placenta to
predict the health of the fetus after birth.

To test the researchers’ theory, they organized a set of approximately 3200
placental images is obtained by photographing washed placentas for study. Out of
those, 330 has a trace of the boundary of the placenta plate and a simple hand
trace is drawn to identify the location of the vessels by a trained pathologist. Of
the 330, we choose 16 to test the directional filter bank approach. Table 2 shows

the list of placentas and the corresponding indices later used in bar graphs:



TABLE 2. Placental Images Used in This Study

Placental index | 1 2 3 4 5 6 7 8
Placental image | 1973 | 2041 | 2095 | 2141 | 4561 | 2666 | 2743 | 2744

Placental index 9 10 11 12 13 14 15 16
Placental image | 2753 | 2772 | 2774 | 2777 | 2946 | 3321 | 3340 | 3355

The placentas have regions with discolorations and each placenta has a’
distinct color profile causing simple extraction methods such as thresholding to
fail. Also, the placenta has a lot of vessels with large vessels and small vessels
many times overlapping with each other. Even with the best vessel extraction
method, this causes an enormous problem in accuracy. However, the possibility of
having a prediction for the health of a fetus encourages further research.

At the present, the only journal-published work on the vessel extraction of
such data set has been from [12]. They have shown that the vessels are difficult
due to the discoloration on the surface of the placenta. They provide a neural
network approach using 5 features: the gradient magnitude, gradient angle,
wide-line detector [13], Steger detector [14], and their own modified road detector.
They report some success in vessel extraction.

Another notable work comes from [15]. It shows that for placental images,
a ridgelet filter applied on the multiscale vessel enhancement thresholded result
produces a significant performance compared to just the multiscale vessel
enhancement and neural network. However, [15] is still a work in progress so no

conclusion can yet be drawn.



Preprocessing

The placental images require preprocessing before the vessel extraction
method to be performed. Figure 1 shows the steps in cropping the placental
images starting with a raw placental image (Figure 1a). The green channel is
isolated (Figure 1b) and the brightness of the green channel is scaled to highlight
the brightest and darkest parts of the image (Figure 1c). A threshold is performed
with the average brightness intensity as the ¢ value in equation (1.3) (Figure 1d).
From the threshold, the placenta is isolated (Figure le). Using the process of
filling in and morphological erosion, the mask is constructed (Figure 1f). From the
mask, the placenta can be isolated by cropping (Figure 1g). Finally, deglaring is
performed to remove bright spots on the placenta surface (Figure 1h). Deglaring is
performed in the manner of [12], which is a simplified version of [16]. This involves
a combination of thresholding, top-hat filtering, and dilation performed to identify
the glare region. The region is then replaced using Laplace’s equation.

The vessel enhancement methods discussed in this thesis will use the large
change in brightness intensity in an image. The boundary between the black
background and the foreground causes a sudden change which will be interpreted
as a vessel when the vessel extraction algorithms are performed on the images. For
placental images, such effect can be ignored using the mask but for retinal images,
the actual vessels can be negatively identified if they are too close to such
boundary. To negate this for retinal images, the sudden change from foreground to
background will be removed by foreground diffusion using the heat equation; the
foreground color on the boundary is diffused through the background. The masks
for each of the images are usually a few pixels off of the actual boundary between
the foreground and background so a few (specifically five pixels) of the boundary

are removed from the foreground and relabeled as the background before the
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(a) Placental image (c) Scaled green

(d) Average threshold (e) Largest object (f) Mask

(g) Cropped (h) Glare removal

FIGURE 1. Placental image preprocessing.



diffusion is applied. Figure 2 shows an example of diffusion on a retinal image

from the DRIVE database.

(a) Image 34 of DRIVE database (b) Diffused version of image 34

FIGURE 2. An example of diffusion using the heat equation.

Homomorphic Filtering

Images, especially medical images, may suffer from uneven lighting. To deal
with this, homomorphic filtering is an option to fix the lighting of such image.

In the simple image formation model [17], a light source is shined on a
surface with intensity (x,y) : Z? — [0,00) and the light source is reflected into a
light capturing device, for example a camera, which captures a portion of
reflection, r(z,y) : Z> — [0,1], of the light. Hence, the image can be modeled as
the product

I(z,y) = i(z,y)r(z,y). (1.4)

In this model, illumination has slow variations so it has low frequency, that

is |§{i}(w)| is small for large |w| and |F{i}(w)| is large for small |w|. And reflection

has much of the variations present in the image itself so it has a high frequency if
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the image has high frequency, that is |F{r}(w)| is small for small |w| and |F{r}(w)|
is large for large |w|.

The purpose of homomorphic filtering is to scale the illumination so that it
is approximately constant. Typically, the illumination and reflection functions are
not known, hence equation (1.4) can only serve as a model. However, the fact that
illumination and reflection have opposing frequency information for the image
provides a way to scale the illumination.

To perform the scaling, the Fourier transform on the log of the image is

performed:
§{log I} = F{logi} + F{logr}.

Given a filter H(w) : R? — C, we can scale the Fourier transform with
T(w) == H(w)§{log I}(w) = H(w)F{logi}(w) + H(w)F{logr}(w).
The resulting image is obtained by a log and inverse Fourier transform:
I' = exp(3H{T)).

The filter H(w) is called a homomorphic filter function. Its purpose is to
scale the illumination while preserving reflection. An example of H looks like the
curve in Figure 3. Notice that H(w) is small for low |w| and approximately
constant for large. When multiplied with §{log:}(w), the low frequency will be
dampened so the illumination term of the new image I’ is approximately constant.
When multiplied with §F{logr}(w), the high frequency will approximately be the
same so the reflection term of the new image I’ is approximately the same as the
original image I. Thus, in theory, homomorphic fixes the illumination to a

constant and remove the uneven lighting.
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TABLE 3. A List of Commonly Used High-Pass Filters

Ideal Butterworth Gaussian
i <
B = 0 if lw|| < Do h(w) = ——1 . | h(w) = 1 — e"WIB/CDY)
1 if |w|| > Do 1+{ D3/l

Without going into too much detail, we only mention that the desired

homomorphic filter is constructed by
H(w) = (aH — aL)h(w) + aj,

where h is often one of three high-pass filters given in table 3 for some constants
Dy > 0,n € Z. We refer to [17] for the details.

Figure 4 shows two examples of the effect of homomorphic filtering using
parameters: Butterworth, Dy = 50, o = 0.1,y = 1.0. Notice the removal of the
different brightness of the vessel background and the bright spot in the middel,
also called an occlusion. The use of homomorphic filtering will be mainly used to
remove lighting so that the transition from a bright spot to a dark spot (as seen in
Figure 4c with a bright center and darker region around it) is not falsely identified

as a vessel.

[

FIGURE 3. An example of a homomorphic filter function.
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(a) The (diffused) DRIVE image 23 (b) Homomorphic filtering images of (a)

(c) The (diffused) DRIVE image 34 (d) Homomorphic filtering images of (c)

FIGURE 4. Example images filtered by the homomorphic filter.
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CHAPTER 2
MULTISCALE VESSEL ENHANCEMENT

Much success in vessel extraction has come from multiscale vessel
enhancement [6]. By representing an image as a 2D function and solely studying
the eigenvalues of its Hessian, multiscale vessel enhancement’s efficiency,
simplicity, and accuracy has allowed it to still be considered as one of the best
vessel extraction methods. Here, an introduction to multiscale differentiation will
be provided. The Hessian is then defined from the multiscale differential operators.
From such Hessian, multiscale vessel enhancement from [6] is defined and a
demonstration of its accuracy on retinal images will be presented. The chapter will
conclude with a brief discussion on the limitations of multiscale vessel

enhancement.

Multiscale Differential Operators

We start with a look at the one-dimensional signal S : Z — R to introduce
multiscale differentiation. The signal contains features that may be studied from
differential properties. For example, a relatively flat region may be identified as a
region with a relatively small derivative and a parabolic region may be identified
by a change of sign in the first derivative and a uniformly positive/negative second
derivative. However, numerical methods such as finite difference schemes for
differential operators are highly susceptible to noise which are present in typical

signals.
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e TR AT RE e TR T TR Y s
(a) The original signal (b) The noisy signal

FIGURE 5. A 1D signal and its noisy counterpart.

As an example, consider a signal

eI if |z] < a

Y(z) = ¢2(z) — ¥1(x) + 8t1/2(x) where h,(z) = (2.1)

0 otherwise

and a noisy signal

S(z) = Y (@) + () (2:2)
where 7 is Gaussian white noise with signal-to-noise ratio of 10 and sampled at a
rate of h = 0.03 units (z € 0.03Z). Figure 5a shows the function Y (z) and 5(b)

shows the noisy signal.

Using finite differences for derivatives, we get

o)~ St h)2—hS(a: ) and ()~ SEEH = 25};(:) +S@—h)

Figure 6 shows that obtaining the first and second derivatives this way will

poorly represent the true derivatives in the presence of noise.

To remedy this issue, the signal is first convolved with the Gaussian kernel:

So(-) = G7 % S() (2.3)

15
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FIGURE 6. The impact of noise on finite difference.

x||?

where G(x) = se 202 is the Gaussian kernel and where D is the dimension

2mwo?

of z. D =1 for signals and D = 2 for images.

Figure 7 shows the signal in Figure 5b that is denoised using such
convolution process with different o values. Notice that o = 16 smooths the signal
well enough to sufficiently recover the original signal (the smoothed signal is
approximately a scalar multiple of the original signal). Also, as o increases, the
small scale details are increasingly smoothed over. Hence, a small o removes some
level of noise and large o removes much of the noise along with the small scale
structures. This allows the separate processing of small scale and large scale

structures. This effect can be seen in Figures 7c-e. Notice the large o removes the
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small concavity changes, allowing for easier study of the larger interval with
consistent concavity.

Figure 8 shows an example on a section of a retinal image and the varying
o-values of smoothing. Notice as ¢ increases, the image gets blurrier. For example,
o = 2 smooths the image so a more appealing image occurs. A ¢ = 4 removes most
of the noise while keeping most of the important vessel features. For o = 8, only
the large scale vessels are noticeable, allowing the processing of only large scale
vessels. And for o = 16, much of the features are too blurry for comprehension.

It is now possible to compute the derivatives of the signal using, for
example, finite difference on the convolved signal. However, the derivatives can be

calculated using the property

" o e

Thus, the multiscale version of differential operators on a signal may be
defined as the convolution of the signal with the differential operator applied on
the Gaussian kernel with a specified o. For notational convenience, we define the

first and second convolution derivatives to be
S'=0"GI xS (2.4)
and
S"=0"GY, * S, (2.5)

for some fixed scale o, where * is the convolution operator and the derivative
normalization vy introduced by Lindeberg [18]. « is used to scale the response of
differential operators at multiple scales 0. A detailed treatment of the use of 7 is

found in Lindeberg [18]. To be consistent with [6], 7 is fixed to 0 for multiscale
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(a) Noisy retinal image

(d)o=28 (e) o =16

FIGURE 8. Retinal Image Smoothed using Varying o-valued Gaussian Functions.
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vessel enhancement and to be consistent with [7], v is fixed to 1 for decimation-free
directional filter bank vessel enhancement.

Vessel Extraction with the Hessian

Consider an image I : Z?> — R (i.e. grayscale image) and denote any
x = (z,y) € Z? as a pixel. For multiscale analysis of images, we define the 2D

versions of the Gaussian kernel and the associated multiscale derivatives as follows.

22 4y2
G (,y) = ghze”

original:

2702
22442 o2442
: : . o =z o — -
first derivatives: Gi(z,y) = —5ae” 2%, Gy(z,y) = —52ze" %

2,.2 2
. . 2__.2 _z+ 2__2 _z°+
second derivatives: GZ, (z,y) = S %€ = Gy, (z,y) = L %e 207

2mo®

mixed derivatives: G7,(z,y) = —2%%6_122_3‘
Consequently, we have the derivatives for images
I, =0"GS x I, Loy =0"GY, % 1, Iy = a"Ggy x 1
I, =0"Gy*1, Iy = 0"Gg, * 1, Ly =0"Gy, x I
In general, for a differential operator L, L[I] = 0YL[G°] x I. The
convolution Hessian is similarly defined as

Ho | | (2.6)
Iyz Iy

The Hessian provides the curvature information for an image. Suppose a
pixel xg is in a vessel of an image /. Then there is a direction with almost zero
curvature, Hx =~ 0 for some x, and the orthogonal direction has a relatively large
curvature. x (or its orthogonal direction) is then the minimization of Hx (or
maximization for the orthogonal direction). Theorem 2.1 shows that x is the
eigenvector of the Hessian matrix and its eigenvalue is the amount of curvature
since the Hessian is symmetric.

Figure 9 shows a pictorial example of this concept. It shows a vessel in blue

with its blood-flow direction v; and the orthogonal direction vs. Along v, there
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is no curvature (Hv; = 0) and along v, there is maximum curvature. v; and vz
are the eigenvectors of the Hessian H at the start of the arrow in the Figure 9.
Also, the corresponding eigenvalue A; of vy is equal to 0 and the corresponding
eigenvalue Ay of vy is equal to the maximum curvature.

Theorem 2.1. Let A be an m X n matriz and C" = {x € R" : ||x|l2 = 1}. Then

V1 = min || Ax||s, u; = argmin || Ax|;
XEC"’ XEC"

v/ M2 = max | Ax]|2, uy = argmax || Ax||
XEC" XEC"’

where p;, u; are the eigenvalues and eigenvectors, respectively, of matrix
ATA.

Also, if A is symmetric, then

|A1| = min ||Ax|]2,  vi = argmin ||Ax||
XGC" XGC"

|A2| = max ||Ax]|2, vy = argmax ||Ax]|,
xecn xeCn

where A;, vi are the eigenvalues and eigenvectors, respectively, of matriz A.

Proof. The maximizer/minimizer x of || Ax||, is a critical point of the function
f(xv N) = (4x, AX> - /‘((xvx) - 1)

where (x,y) = xTy and p is a Lagrange multiplier.

Calculating the partial derivative of f,
0 = 3f(x,u) = (BixT)AT Ax + xT AT A(0;x) — u(0ixT)x — uxT (9;x)
= z;el (ATAx — ux) + (xTATA — pxT)z;e;

= 2,67 (ATAx — px) + z; [l (AT Ax — px)]”
where x = (21, T3, ..., Z,). So ATAx — ux = 0. And
0=38uf(x,p) = (x,%x) — 1= |Ix]3 ~ 1
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so ||x||2 = 1. Hence, u and x is an eigenvalue and eigenvector pair of AT A. From

the definition of the | - ||z norm,

|Ax||Z = (Ax, Ax) =xTATAx

pxx = pllzll = p.
So
Vi = min [[Ax(lz, vk = max||Ax];

for some eigenvalues u1, ug of ATA.
For the case where A is symmetric, A?x — ux = 0. If A\ and v is an
eigenvalue and eigenvector pair of A, then A%v = A\%v. So A\? = y; and v; = u; for

some eigenvalues ); and eigenvectors v; for matrix A. Thus,
Ml = min [|Ax]ls,  [As] = max [ Ax]],

for some eigenvalues A1, Ay of A.

O
Ordering the two eigenvalues so that |A\;| < |Az], we define the ratio
A
R=— :
X @)

as the blobness measure. On a vessel location, A\; = 0 and A, is large in
magnitude. Thus, the smaller R is, the more likely the pixel x is a part of a vessel.
But background pixels tend to be noisy so the eigenvalues of the Hessian
for such pixels are small. For example, if A\; = 0.001, A\ = 0.010 then R = 0.1 so
because R is small, we may identify the pixel with such Hessian eigenvalues to be a
part of a vessel. However, the eigenvalues are small so the pixel neighborhood is

locally flat. Thus, the pixel is not a part of a vessel. To account for this
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(a) Artificial vessel viewed from the (b) Artificial vessel viewed from the
top with the direction with least and side with the direction with least and

most curvature most curvature

FIGURE 9. An example of a vessel with its eigenvectors.

discrepancy, the second order structureness measure is used:

S =/ + A (2.8)

S is small when the image is flat (low contrast) in the neighborhood of a specified
pixel. Otherwise, the image has high contrast features. Thus, for a pixel to be
considered as part of a vessel, R should be small and S should be large.

Rather than having two separate measures, the vesselness measure is

_R? 52
f”:e 282 [ ] — e 22

where the parameters 5 and c are the scaling parameters for R? and S?,

defined to be

respectively. Notice that to account for both a small R and large S, f? is large for

small R and large S. Also, notice that f? is also dependent on the parameter o

because the multiscale version of the partial derivatives on the image depends on o.
Because images tend to have either dark vessels with light background

contrast (dark-on-light vessels) or light vessels with dark background contrast
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(light-on-dark vessels), the sign of the curvature (which is also the sign of the
second eigenvalue) must be taken into account. So instead, we define the

vesselness measure as

_R2 s2
e 282 (1 —e—?> if Ay <0

v(x;0) = (2.9)
0 otherwise
for light-on-dark vessel images and
_R? 52
em(l—e"'ﬂ) if >0
v(x;0) = (2.10)
0 otherwise
for dark-on-light vessel images.
Finally, the vessel enhancement result is
v(x) = maxv(x;0). (2.11)

a>0

It is not complete without mentioning that a 3-D version of multiscale

vessel enhancement is also available and detailed in [6].

Results on Retinal Images

With multiscale vessel enhancement defined, we are ready to look at its
result on retinal images. An example of multiscale vessel enhancement on the
STARE and DRIVE database can be seen in Figures 10 and 11, respectively.
Figures 10(a) and 11(a) show a color image of the STARE and DRIVE sample.
Typical features of a retinal image include a dark center due to low illumination of
the back of the eye when the image is taken, a vessel center where the vessels
branch out, and a bright circle around the vessel center called an occlusion.

Figures 10b and 11b shows the green channel of the color image. For
multiscale vessel to be used, a grayscale image I : Z? — R is needed as input. But

color images are functions C = (R, G, B) : Z? — R3 where R is the red channel, G
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is the green channel, and B is the blue channel. This situation can be solved by
converting it into a grayscale by using a linear combination I := a1 R + a;G + agB
or selecting a single channel. The red channel is usually too saturated due to
retinal images being mostly red in color. Vessels tend to have low intensity in the
green channel while nonvessels tend to have higher intensity. And the blue channel
tend to be too low in contrast be useful. Thus, the green channel is the best
channel for multiscale vessel enhancement to be applied on and a linear
combination will not work well.

The definition of the vessel enhancement v(x) evaluates v(x; o) for all
positive values of 0. However, it is not practical to do so and there is a bias for
identifying large vessels over small vessels when using large o values. Thus, a small
set of values for o is chosen instead. We choose the optimal case of o € {1, 3,5}
along with 8 = 0.75 and v = 15. The choice of o comes from the size of the vessels
which varies about 1 to 5 pixels while # and v are chosen from frequently used
values for them.

Figure 10 and 11 shows the result of multiscale vessel enhancement. Figure
10a and 11a show the color retinal image. Figure 10b and 11b shows the green
channel. Figures 10c shows the AH hand trace, 10d shows the VK hand trace and
11c show a human tracing of the vessels for comparison. Figure 10e and 11d shows
the multiscale vessel enhancement result. The vessels are identified well using
multiscale vessel enhancement but some of the small vessels are not identified.

Note that the enhancement result does not directly identify vessels. To

identify and extract the vessels, a threshold ¢ must be chosen in some way:
x is defined to be a vessel location if v(x) > t. (2.12)
Too low of a threshold will result in too many nonvessels being identified as vessels

25



(a) The color image (b) The green channel of (a)

(c) AH hand trace (d) VK hand trace (e) The result of MVE

FIGURE 10. Multiscale vessel enhancement (MVE) on STARE retinal image 291.
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(a) The color image (b) The green channel of (a)

(c) Hand trace by a human (d) The result of MVE

observer

FIGURE 11. Multiscale vessel enhancement (MVE) on DRIVE retinal image 10.
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(high false positive) and too high of a threshold will result in many vessels being
identified as nonvessels (low true negative).

One way to choose an appropriate threshold is to perform multiscale vessel
enhancement on a set of vessel images and find the best threshold that maximizes

the accuracy of vessel identification. Here, accuracy is measured by

True Positive + True Negative

Number of pixels (2.13)

Accuracy =

Note that true positive and true negative dependents on the threshold value so
accuracy can be thought of as a function of the threshold.

Figure 12 has a bar plot of all the maximum accuracies, as measured by
equation (2.13), for each of the images for the DRIVE and STARE databases. It
shows that for the DRIVE database and STARE database compared to the AH
hand trace, multiscale vessel enhancement does a good job when the threshold is
properly chosen. Since the VK hand traces are more detailed in that it the small
vessels are more prominent, the accuracy is lower due to the background noise
interfering with the identification of such small vessels.

Limitations of Multiscale Vessel Enhancement

Although Gaussian smoothing allows the use of differential operators on
noisy images, the calculation of the Hessian is still highly affected by noise because
the Hessian is a second-order differential operator. To minimize the noise, o can
be increased so the amount of smoothing is increased. However, the details, such
as small vessels, are then lost as seen in Figure 8. Also, even with a large o, the
noise may still have negative effect on the smoothed image. For example, Figure
13 shows that the noise causes slight changes in the intensity value on the circle.

The slight change, in turn greatly effects the eigenvalues of the Hessian.
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(a) Noisy Image

(c)o=3

FIGURE 13. The noisy image smoothed with different o’s.
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CHAPTER 3
DIRECTIONAL FILTER BANK VESSEL ENHANCEMENT

As shown in section 2.4, the background noise causes the Hessian, when the
scale o is small, to be inaccurate and hence, small scale vessels are less accurately
identified. To decrease such limitation, Truc et al. [7] proposes a decimation-free
directional filter bank (DDFB) method which they claimed to be less impacted by
noise when calculating the Hessian. They report an average of 5.83% increase in
accuracy compared to multiscale vessel enhancement on the DRIVE database of
retinal images.

Directional filter bank (DFB) was first proposed by Bamberger and Smith
[19]. The theory of directional filter bank is to decompose an image into multiple
direction images, each of which contains direction-specific features. Later, Park et
al. [20, 21] designed its modern version of directional filter bank to fix the visual
distortion present in the original directional filter bank (DFB).

Directional filter bank (DFB) was first applied to image and video
compression [22]. Compression was motivated by the theory that in an image,
direction-specific information contained much of the information needed to
represent an image. The sum of the dimensions of each of the directional images
must be less than or equal to the dimension of the original image. Truc et al. [7],
instead, uses a decimation-free directional filter bank (DDFB) in that each of the
directional images is of the same dimension as the original image. Although this
increases the amount of memory used to store the directional images, it can be

individually processed and combined for vessel enhancement.
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We start with the principle idea of Decimation-free Directional Filter Bank
(DDFB) vessel enhancement. In order to perform such enhancement, wedge filters
must be constructed. Section 3.2, shows the construction of the wedge filters. But
before the filter construction, the discrete-time Fourier transform is first defined
along with the discrete convolution theorem. Section 3.3 explains the theory of
why it works using the spatial and frequency domain perspective of filter
construction. Fron the theory, the diamond filter is the first filter constructed in
section 3.4. This allows the wedge filters to be constructed in section 3.5.

With the wedge filter constructed, the decimation-free directional filter
bank (DDFB) vessel enhancement is then defined in section 3.6. Finally, section
3.7 shows the result of DDFB vessel enhancement compared with multiscale vessel
enhancement (MVE) for retinal images. Section 3.8 will conclude this chapter with
the application vessel extraction methods on placental images. A detailed
comparison of MVE, DDFB and DDFB with homomorphic filtering is performed
on the retinal images. Also, a comparison with some of the contemporary vessel
extraction methods is provided for retinal images. For placental images, a
comparison is also made with a neural networks based vessel extraction [12].

Decimation-Free Directional Filter Bank (DDFB)

Given an image I, the decimation-free directional filter bank (DDFB)
method of vessel enhancement involves splitting such image into multiple direction
images I;, each of which contains only features that are oriented to a specific
direction. Figure 14 shows an example; the portion of the circle of the same
direction as # is enhanced so that in such portion, is uniformly the same in
intensity. Specifically, Figure 14a is the noisy circle image. Figure 14b has the
noise now face upward, causing the top and bottom of the circle to be blurry but

the left and right to be clearly shown. Figure 14c has a clear portion of the circle
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(a) Noisy Image (b) =% (c) 6 = %_12;

(d) g =12 () 6 =L (f) 6= 2z

FIGURE 14. The Noisy image enhanced in specified directions.

in the top-right and bottom-left of the circle while being blurry on the other
portions. Figures 14c-f similarly have clear regions and opposing blurry regions
whose location is dependent of the angle ¢. Notice that when compared to
Gaussian smoothing seen in Figure 13, the circle does not increase in width.
These direction-specific feature images can be constructed by convolving

with a set of filters, called wedge filters, {F;}*, where F; : Z? — R is a set of

_ (@-Ir

filters with direction 6; o

A directional image is defined to be:

The directional images are then individually vessel enhanced and the maximum
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response is the directional filter bank vessel enhancement result:

v(x) = max v;(x)

where v;(x) are the later discussed individual vessel enhancements. Figure 15

shows a diagram of this process.

Constructing the Filters

The set of filters {F;}?_, used to obtain the directional images /; can be
obtained through the discrete convolution theorem:

Theorem 3.1. Let x,y : {1,2,.., M} x {1,2,..., N} > R, then
x+y =F [F{x} Fy}

where the discrete-time Fourier transform (§ or DTFT) is defined as

N M e
Ck, 1) =1}k, ) = Y 3 I(m,n)e (3 +¥)

n=1 m=1

and the inverse discrete Fourier transform (§*) is

1 N M (km | In
I(m,n) = F {C}(m,n) = WN Z Z Ok, ) (5 +%),
I=1 k=1

The directional image, I;, has features oriented in a specific direction 6; so
its DTFT will contain high intensity in a wedge-shaped section of the transform,
seen in Figure 16a-b.

Using appropriate angled wedge filter multiplied with the DTFT of the line
image, the line features can be separately studied. Figure 16c-d shows an example
of this. Here, the line image has a DTFT of dots lined up in two directions. Using
two wedge filters angled in the direction as the two dotted lines, we can isolate
each of the stripes. To do so, the DTFT is multiplied with the appropriate wedge

filter and the inverse DTFT is applied. Similarly, the discrete convolution theorem
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FIGURE 15. A diagram of directional filter bank vessel enhancement.

35



(a) Artificial image (b) DTFT of image

¢) Product of the DTFT and 5 wedge filter. The inverse DTFT of such product.

(d) Product of the DTFT and 17” wedge filter. The inverse DTFT of such product.

FIGURE 16. A demonstration of wedge filter multiplication.



states that the result can be obtained by convolving the image in Figure 16a with
the inverse DTFT of the wedge filters.

One of the methods to construct the wedge filters comes from initially
constructing a filter whose DTFT is a diamond filter D. Section 3.4 will show a
construction of the diamond filter and section 3.5 will complete the construction of
the wedge filters.

Before we can proceed to construct these filters, the theory behind the
directional filter banks construction will be covered in section 3.3.

Spatial and Frequency domain

Two domains are artificially labeled: the vessel image and filters are
considered to belong in the spatial domain while their respective discrete-time
Fourier transform (DTFT) are considered to belong in the frequency domain. The
transforms § and F~! can be considered as a linear mapping between these two
domains. Here, we will establish some of the properties between these two domains
that will be necessary for the wedge filter construction.

The spatial domain in the discrete case has the domain Z? while the
frequency domain has the domain R? (or an equally-spaced subset of it for the
discrete case). For images, the domain is {1,2,..., M} x {1,2,..., N} but a function
extension can be performed on the image so that its domain is Z2. This extension

can be done by either assigning zero to the domain outside of

{1,2,...,M} x {1,2,..., N}, by cycling the image
N S R . .
I(z,])—I(z M[MJ,] N[NJ) for all (i,j) € Z
or by reflection

I(,5) = I(s(3; M), 5(j; N)) for all (i, ) € Z*
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where s(n; N) was defined in equation (1.1). To be consistent with signal
processing literature, the reflection extension is used.

Functions in the frequency domain are of period 27 so the functions can be
completely studied in the domain [, 7]2. The spatial domain functions are
real-valued in this thesis because the functions of interest are images and filters,
the frequency domain functions in general are complex-valued. Hence, most of the
figures involving the frequency domain functions seen in this thesis are the
modulus of such functions.

Definition 3.1. Let f : R? - C s.t. f(wy,wq) = F{I Hwi,ws). z-azis modulation
of [ is defined as f(wy + 7,ws), y-azis modulation of f is defined as f(wy,ws + ),
and zy-azis modulation of f is defined as f(w; + m,ws + ).

Definition 3.2. Let A, : Z2 — 72 s.t. Ay(ny,n) = (—1)™ = e ™™, Ay : 72 — 72
s.t. Ax(ny,mg) = (—1)"2 =e ™2, and Ayp: 22 — 72 s.t.

Apa(ny,ng) = (=1)M+m2 = e7mi(m+n2) A, Ay and Ay, is defined as the
alternating functions.

Lemma 3.2. Modulation in the frequency domain is equivalent to multiplication

by the appropriate alternating function in the spatial domasin.

Proof.

S{AuTHwr,wn) = Z Al(”lvnz)f(nl,nz)e"'("l‘*’ﬁ"z‘*’z)

(n1 ,n2)622

— ](nl nz)e—i(nlwl—i—nng)—winl
E ’

(n1,n2)€Z2

= Z I(nl,ng)e'i(nl(“’””)’“"z""?) = f(wy + 7, wy).
(n1,n2)€Z2
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Similarly F{A27} (w1, ws) = f(w1,ws + ), and

F{Awl}(w,we) = Z Ara(ny,m2)1(ny, ng)e ™ (miwrtnzen)

(n1,n2)€Z2
— § : I(nl, nz)e—z‘(nlwl+n2w2)——7ri(n1+n2)

(n1,m2)€Z?

(nl,n2)€Z2

O

Theorem 3.3. Let M € Z>*? be a nonsingular matriz of integers M : 72 — 7.2,

also called a resampling matriz. Then the DTFT of the composition I o M is
F{I o M}(w) = f((M™!)w)det(M™)
Proof. Let n = (ny,n2),w = (wy,w2). Then

S{IoM}(wy,ws) = Z To M (ny,ng)e (mwitnaws) — Z ToM(n)e~™“. (3.1)

(n1,n2)€Z? nez?

Recall the multivariate change of variable theorem [23],

/ g(v)dv = / g © ¢(u)| det(Dg)(u)|du.
#(U) U

where U C R" is an open set, ¢ : U — R" injective differentiable function with
continuous partial derivatives and nonzero Jacobian on U, D¢ is the Jacobian
matrix containing the partial derivatives of ¢, and f is a continuous real-valued,
compactly supported function with its support contained in ¢(U).

A discrete version of mentioned theorem can be derived:

Y~ g(n) = go¢(n)|det(Dg(n))|.

nep(Z2) nez?
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Using the linear transform ¢(n) = M~'n on expression (3.1),

FIoMyw) = Y Im)e ™™ ™4 det(M™)| = Y I(n)e ™ ™| det(M?)]

nez? n€ez?
= 3 I(n)e @O det(M 1) = Y I(n)e ™MD det(M 1))
nez? nez?

= f((M7})"w)| det(M~)].

d

Definition 3.3. For a resampling matriz M € Z?*%, downsampling is defined as
Iy (n) =I(Mn), (3.2)

and upsampling is defined as

) I(M~'n) if n e M[Z? 63)

0 otherwise

Lemma 3.4. Downsampling in the spatial domain corresponds to upsampling in

the frequency domain and vice versa.

Proof. It can be easily proven from 3.3. For downsampling,

Flimpw) = F{IoM}w) = f((M) w)|det(M )]
F((MT) 7 w)| det(M )] = | det(M )] - S (w)

and for upsampling,

FIMw) = F{Io M} w) = f(M'w)| det(M)|

= |det(M)| - fyr(w)

40



Because F{I o M}(w) = f((M~1)Tw)|det(M~1)|, downsampling in the
spatial domain corresponds to upsampling in the frequency domain and vice versa.

Table 4 sums up these properties.

TABLE 4. The Spatial-Frequency Duality

Spatial Domain Frequency Domain
I(nq,ns9) f(wr,ws)
Convolution Theorem (I x I)(nq, n2) fi(wr,ws) - fo(wr,ws)
Modulation in z-axis (=)™ I(ny,ng) flwy + m,ws)
Modulation in y-axis (—1)"2 I(nq,m2) flwy, ws + )
Modulation in zy-axis || (—1)™*"2[(n,ns) flwy + 7wy + )
Linear Transform I o M(ny,ny) F((MHTw)|det(M~1)))
Resampling Ing(ny, ny) | det(M )| - fM" (wy, wy)
]M("lvnz) | det(M)| - far (w1, wa)

In this thesis, three resampling matrices will be used. The quincunx matrix!

1 -1
Q= ,
1 1
and skew matrices
1 0 11
Rl = and R2 =
-1 1 01

!'We may have used Q = [_11 ﬂ for the quincunx matrix.
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(b) Io (c) In, = 1% (d) In, = IR

(e) I® (f) Iz = I (g) Ipy = 1™

FIGURE 17. A (phantom) image with different samplings.

Notice that for the quincunx matrix, (Q1)7 = 1Q, det(Q) = 2, and

det(Q') = 3. Thus,
§llo}w) = 5/((@7) ) = 5/ (),

and
F{I°}Hw) = 2f(Q"w) = 2fqr ().

For the skewing matrices, (R;")? = Ry, (B;")T = Ry, (RT)™)T = RY and
((RE)™)T = RE. Thus, §{In}@) = ¥ @), %} () = fr,(w),

FIarhw) = FR(w), and F{I }w) = frr ().

Figure 17 shows the effects of upsampling and downsampling on an image.
Notice that the quincunx downsampling is a 45° counterclockwise rotation and a
25% decrease in size while quincunx upsampling is a —45° rotation and a 25%
increase in size. The skewing matrices function as their name imply; it shifts the
image in the direction of one of the axis. In this case, R; and RY skew the image

in the z-axis and y-axis.
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Finite Impulse Filter

There are multiple ways to construct the wedge filters. The simplest
method involves the binary function b : R — {0, 1} so that b(z) = 1 if  is in the
wedge and b(z) = 0 if = is outside the wedge. The wedge filter function would then
be the inverse DTFT of b. However, because such wedge filter will not have a
compact support and computer systems work well with discrete functions with
compact support, such construction is ill-posed. Hence, having compact support is
preferred.

In terms of signal processing, a function has finite impulse response (FIR) if
it has compact support. Otherwise, the function has infinite impulse response
(IIR). Because our construction of the wedges requires convolution, modulation,
and resampling, it is necessary to have FIR (or IIR) filters remain FIR (or IIR)

after such operation. Fortunately, using the definition of DTFT, it is trivial to

prove that
Property 1: If f and g are FIR (or IIR) then f * g is FIR (or IIR),

Property 2: if f is FIR (or IIR) then the (spatial domain equivalent of)
modulation of f is FIR (or IIR), and

Property 3: if f is FIR (or IIR) then the downsampling and upsampling of f is
FIR (or IIR).

We are now ready to construct filter functions.
Diamond Filter
The diamond construction starts with a one-dimensional filter f : Z — R

constructed from [24]2. The function f is specifically designed so it is FIR and

2The one-dimensional filter is implemented in MATLAB’s firl function.
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FIGURE 18. The signal f : Z — R used to construct the diamond filter.

that the modulus of its DTFT (|§~{f}|) approximates X[—n/2,r/2) Where x4 is the
indicator function of subset A. Figure 18 shows the signal with its DTFT. Notice
that Figure 18b approximates X(_r/2,r/2) Well. The background detail about filter f
is beyond the scope of this thesis. We refer to [24] and [25] for more details.

The square filter is then constructed: S, : Z2 — R such that

S,(3,7) = f(2) - f(j). We can see why the magnitude of the DTFT of the filter is

square-shaped from the fact that
I§{Sa} @, w2)| = IF{F()F O Hewr,wa)l = [F{FHw) - 1F{FHwa)|
~ X[-3,21(W1)X[- 2,51 (W2) = X[-3,312(w1, w2)

A corner filter is then constructed by zy-axis modulation C : Z2 — R such
that C(i,j) = (—1)"*75,(i, §).
So if Az : R? — R such that A;2(7,5) = (—1)*7, then from the modulation

in zy-axis property,
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[F{CHwr, wa)| = [§{Arz - SgHwi,wa)| = F{SgH w1 + 7, wy + )|

~ X[-5,5/ (@)X 7.2(wW2) = X(-1,-50iz.2 (W1, w2)

Combined, with the square filter, the checkerboard filter is created by

defining
C, : Z* — R such that C,.(i,5) = S,(i,7) + C(s, 7).

Finally, the diamond filter can be constructed by quincunx downsampling

(which is upsampling in the frequency domain):
D:7Z* - Rst. D(i,j)=C, | Q Z =C,(i — j,i + j).
J

Figure 19 shows each of these filters in progression. Notice that we start
with an FIR filter function f to form a square filter function Sy, which is then also
FIR. Then through modulation performed by multiplying with an alternating
function, another FIR filter function, C, is defined. Another FIR filter function C,
is defined from the summation of two FIR filter functions. Finally, the diamond
filter is formed from a downsampling. From lemma 3.4 and property 3, the
diamond filter is then an FIR filter function.

Constructing the Wedge Filters

The wedge filters are constructed from a diamond filter D(wy,w2). Figure
20 shows the first few steps of the construction. It starts with the previously
constructed diamond filter. T'wo hourglass filters are constructed by modulatibn:
Hy(3,7) := (=1)!D(i, j) and H;(3,5) := (—1)?D(4, j). The two hourglass filters
form the first level of filters F; = {Hy, H1}. The second level of wedge filters are

formed by quincunx upsampling the hourglass filters and convolving with the
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(a) Square filter (b) Corner filter

(c) Checkerboard filter (d) Diamond filter

FIGURE 19. The magnitude of the DTFT, |§{-}|, of each of the filters.
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FIGURE 20. The diagram of the constructing of wedge filters up to 2 levels.

hourglass filters. For notational convenience, fg will mean composition f o g. The

second level of wedge filters consist of the collection
Fo = {Ho * H1Q, Hy * H1Q, Hy * HyQ, Ho * HyQ}.

The third level of wedge filters is formed by convolving the elements of Fy

with filters of the form H;R;Q and H;R]Q where i € {0,1} and j € {1,2}. The
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third level of wedge filters are then

Fs; = {Ho * H1Q x HoR1Q, Ho x H1Q x H1 R, Q,
Hl X HlQ X HQR’{'Q, H1 X HlQ % HIR:IQ,
Hy + HyQ *x Hi R,Q, Hy *» HyQ x HyR,Q,

Hy * HyQ * HleTQ, Hoy x HoQ * HoRgQ}-

The fourth level of wedge filters is formed by convolving the elements of F3
with filters of the form H;R;QR,Q( and transpose versions of R;, Ry where
i €{0,1} and 7,k € {1, 2}.

Fs = {Hox H1Q » HoR1Q x HiR;QR1QQ,  Ho* H:1Q * HoR\Q * HyR; QR:QQ,
Ho x HiQ x HHR1QH,R; QR1QQ, Hox H\Q * HiR,Q * HHR1QR,QQ,
Hy » H1Q * HoR{Q x HiR, QR{QQ, Hy* HiQ » HoR Q * HoR; QR{ QQ,
Hy x HiQ x HiR{Q x HoRi\QRTQQ,  Hy* HiQ + HiR{Q x HLRiQR{ QQ,
Hy x HyoQ * HiR,Q + HORTQR,QQ,  Hy * HoQ * HR,Q * HiRT QR,QQ,
H, x HyQ * HyR,QH, R,QR,QQ, H, x HyQ * HyRyQ * HyR,Q R2QQ,
Ho* HoQ x HoRIQ x HoRTQRIQQ, Ho* HoQ * HiR]Q * HiR{ QR QQ,

Hy x HyQ x HyRTQ * Hi RyQRYQQ, Hy* HyQ * HyRYQ * HyR,QRIQQ}.

Higher levels can be defined similarily; however, levels that are higher than
four levels do not improve accuracy performance by much while requiring much
more computational time [7]. For the construction of higher level wedge filters, we
refer interested readers to [26] for details.

As seen from Figure 20 and Figure 21, the wedges in each level are
subsections of the previous wedges. Figure 20a shows one of the hourglass filter

function shown as a surface plot. Notice because it is FIR, the nonzero values are
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(b) A filter from (c) A filter from F3 (d) A filter from
F: 2 F, 4

(e) DTFT of filter (f) DTFT of filter (g) DTFT of filter (h) DTFT of fil-
Hy, (b) (c) ter (d)
FIGURE 21. A sample of the different wedge filters and its DTFT.

self-contained in the center of the plot. Figure 21e shows the DTF'T of such
hourglass filter. Similarly, some of its subsections are shown along with its DTFT.
Notice that as the wedge becomes thinner in the frequency domain, its support

elongates.

DDFB-based Vessel Enhancement

With the wedge filters, the directional images can now be obtained as
I; := f; * I, where f; are the unique filters in Fy. Each [; contains sections of
vessels oriented in a direction #;. The next step for DDFB vessel enhancement is
to individually vessel enhance each of the I;’s. Hence, the eigenvalues of the
Hessian is needed similar to multiscale vessel enhancement. Truc et al. [7] reports
that if these directional images are aligned so that the vessels are instead oriented

in the z-axis direction, the Hessian is more accurate because pixels are arranged
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on a grid and such grid has an z-axis and y-axis bias when performing differential

operations.

To align the vessels to the z-axis, we start with the Hessian

&L %L
H(:c y) _ E,,-_?L(x,y) azay(xay) (3 4)
1 I - 27 o7 .
Zo(z,y) FH(zy)
and use the substitution
z cosf;, —sinb;| |z’
Yy sinf; cos#; Y
(2',y') is then the coordinate with the vessels aligned to the z-axis for
directional image I;. The (z’,y’) coordinate Hessian is then
s &L L
11 M2 ; o
H;: = = 82 ’ f’wjy (3.5)
- T ,
. 27, .
| cos f; —sinb; %_2121 %—é’; cosf; —sinb; (3.6)
sinf; coséb; gg—% %%I% sinf; cosb;
z z’ ox’ oz
Equation (3.6) is true since if =A , then = AT and
y y oy’ 9y
{83:' 8y'] = [ax ay] A. Hence,
ox' T
le’yl = 817/ ay/ = A Hz’yA.
ay

With the help of the double-angle formulas: sin 26 = 2sin  cos § and
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c0s20 = 2cos’f — 1 = 1 — 25sin? @, we can simplify the individual h;;’s to

oor, L L, & 821,
= Lt 6. * sin 26; * sin? 0, .
h11 57 = a2 cos” 6; + 820y sin 26; + By sin® 6;, (3.7
rI, 8 ., &I L,
hoy = o = 57z Sib 6; — 520y sin 26; + o cos®0;, and (3.8)
P 18%I; | I, 10%;
hig = hoyy = 500y ~5 552 Sib 20; + 320y cos 26; + §B—y2 sin26;. (3.9)

Because the new coordinate aligns the vessel in the directional image along
the z’-axis, the z’-axis direction has the smallest curvature and the y'-axis has the
largest curvature for pixels in a vessel. So the eigenvalues of H;, A\; and Ay, are the
diagonals of H.. That is hy; = A; and hgy = Ay, if the vessel is angled in the §;
direction. Similar to multiscale vessel enhancement, we define R = %;’2- and
S = \/ﬁm . From here, we can obtain the vesselness measure v(¥)(x, o) of
equation (2.9) or (2.10) for each directional image /;. Finally, the vessel
enhancement response is

- (@)
v(x) = max 19;161) (x,0). (3.10)

We must mention that Truc et al. [7] uses the maximum instead of the summation:

- (O]
v(x) max max v (x,0), (3.11)

hence, the parameter values chosen in this thesis (table 5) are different from [7].
We choose summation instead because the performance is less impacted by
deviations in parameter choice. This is important in the case of placental images
in that finding an optimal parameter will be difficult if a slight change in a
parameter value will produce completely different results. With the exception of
standard deviation later shown in section 3.7, the use of summation rather than

maximum does not significantly impact the performance for retinal images.
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Truc et al. [7] also proposes the use of homomorphic filtering in between
the directional filter bank step and the vessel enhancement step. That is, define I}

to be the homomorphic filtered result of /;, the Hessian from (3.4) is instead,
a%I, %I
77 (TY) 5 (T, Y)

821! 82!
(@) FE(@Y)

H;(z,y) = , (3.12)

and v(x, o) is defined from the eigenvalues of such Hessian.

Truc et al. [7], claims that DDFB-based vessel enhancement less effected by
noise than multiscale vessel enhancement, resulting in better performancé and
when the optional homomorphic filtering step is included, the performance
improves even further. Based on their tests, they report an increase in accuracy for
detection of vessels compared to the multiscale vessel enhancement (MVE) on the
DRIVE database. We attempt to reproduce such result in section 3.7 along with a
test on the STARE database.

Results on Retinal Images

To compare the three methods, multiscale vessel enhancement (MVE),
decimation-free directional filter bank (DDFB) vessel enhancement, and DDFB

with homomorphic filtering, the parameters used presented in table 5.

TABLE 5. The Parameters Used for Comparing Results

Method Parameters
MVE: v=0;0=1,3,5; 8 =0.75; c = 15.
DDFB: y=1,0=2,3,4,5,6; 8 =0.75; c = 15.

Homomorphic Filter: | Butterworth filter with oy = 0.10, ag = 1.0,
Dy =300, n = 2.
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The performance can be visually assessed on three DRIVE images and two
STARE images. The chosen retinal images DRIVE image 23, DRIVE image 31,
DRIVE image 34, STARE image 2, and STARE image 240 respectively have a
cloudy background, a large occlusion, discoloration, bright spots, and bad lighting.
These flaws can be used to to assess the limitations of the three vessel
enhancement methods. Figures 22-26a show these retinal images along with the
green channel in Figures 22-26b, and the hand traces in Figures 22-26¢ to test.
Visually, the vessels on an image can be located from the output of the different
methods as seen in Figures 22d-f, 23d-f, 24d-f, 25d-f, and 26d-f. We mention that
DDFB with homomorphic filtering (DDFBH) may look as if it performs worst
then just DDFB but this is only because of the color scales. A simple fix can be
performed by using histogram equalization. Because histogram equalization is not
performed in this thesis, we refer to [17] for the details.

From section 2.3, one way to assess the performance of a method comes
from comparing the maximum accuracy measured by expression (2.13). But
curiously, the maximum accuracy are exactly the same, seen in Figure 27. Thus,
the use of accuracy as a way to compare between methods is not appropriate. A
further study is warranted for why they are equal.

Even with the accuracy results being inconclusive, we can still visually
employ it for comparison. Recall that to calculate such maximum accuracy, a
threshold, as in expression (2.12), is sought so that the accuracy is maximized.

Another way to compare the results is by looking at the threshold function:

() = 1 if v(X) > tmax

0 otherwise

where tpax is the threshold for the maximum accuracy. Figures 22g-i, 23g-i, 24g-i,
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25g-1, and 26g-i shows the surface plot threshold function ¢ where 0 is in blue and
1is in red. We can see that for MVE, the best performance for MVE is when
almost none of the locations in the image is identified as a nonvessel. That is, its
performance is close to a method that incorrectly identifies concludes the image
has no vessels. DDFB does identify vessels and DDFB with homomorphic filtering
having the most vessels identified compared with the other two methods. Hence,
DDFB and DDFB with homomorphic filtering produces a more informative
threshold function.

A popular alternative is to use the receiver operating characteristic (ROC)
curve. The ROC curve is generated by plotting the true positive rate (fraction of
true positives out of the positives) vs. false positive rate (the fraction of false
positives out of the negatives). Details can be found in [27]. Figures 22j, 23j, 24j,
25j, and 26j show examples of the ROC curves from MVE vs. DDFB for various
retinal images.

A method with high overall accuracy is one that has an ROC curve that is
the closest to the constant function = 1. That is, the method that has the largest
area under the curve (AUC) defined as fol f(z)dz where f(x) is the ROC curve.

Using DRIVE image 23 of Figure 22 as an example, the AUCs are 0.8729
for MVE, 0.9114 for DDFB, and 0.9276 for DDFB with homomorphic filtering.
This shows that DDFB vessel enhancement (both with and without the
homomorphic filtering) performs very well over MVE. DRIVE image 31 of Figure
23 as an example, the AUCs are 0.8979 for MVE, 0.9323 for DDFB, and 0.9427
for DDFB with homomorphic filter. Thus, even with a large occlusion, DDFB’s
performance is still high. However, DRIVE image 34 of Figure 24 has AUC
0.8575 for MVE, 0.9003 for DDFB, and 0.8906 for DDFB with homomorphic

filter. Hence, vessels in a discolored image is difficult to extract, yet DDFB still
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outperforms MVE. However, homomorphic filtering will not generally improve the
accuracy performance and that a method to improve lighting may not decrease
discoloration.

In the case of STARE image 2, the AUCs are 0.8941 for MVE, 0.9060 for
DDFB, and 0.9357 for DDFB with homomorphic filter. We see that for bright
spots, the use of only DDFB will not go far but homomorphic filtering creates a
large contribution in accuracy. For STARE image 240, the AUCs are 0.9427 for
MVE, 0.9413 for DDFB, and 0.9554 for DDFB with homomorphic filter. This
shows that lighting has almost no effect on the accuracy of the three methods.

For an overview the results, Figure 28 shows the AUC for each of the
retinal images in the DRIVE and STARE databases. We see that for retinal
images, DDFB and DDFB with homomophic filtering significantly has a better
performance and MVE. Also only STARE retinal images 240 (index 16) and 324
(index 20) compared to hand trace AH has MVE performing better than DDFB.
And DDFB with homomorphic filtering consistently outperforms MVE on retinal
images. Finally, when comparing Figure 28 with [7]’s table of results, they almost
overlap (with the unknown exception of DRIVE image 34). Hence, even though we
chose to replace maximum (equation (3.11)) with summation (equation (3.11))
and chose different parameters, the results are essentially the same (with the
unknown exception of DRIVE image 34).

From the five sampled image and the Figure 28 we can sum up the
performance of DDFB compared with MVE. In general, DDFB outperforms MVE
and the homomorphic filtering adds to DDFB’s performance. Specifically, DDFB
is better when there is a cloudy background, large occlusion and general

discoloration. However, when there are bright spots on the image, DDFB alone
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will not improve much and when the only problem is lighting, MVE performs well
enough that DDFB does not significantly outperform MVE.

Homomorphic filtering, generally contributes to the increased performance.
It increased performance for cloudy background, for large occlusion, for bad
lighting, and significantly for bright spots. But negatively effects the discolored
retinal images. From the Figure 28, we can see that homomorphic filtering rarely
significantly increases DDFB’s performance and can even negatively decrease
performance. Thus, we can conclude that in the use of DDFB vessel enhancement,
the vessel images should first be checked for bad lighting, discolorations, etc. to
determine whether or not to consider the use of homomorphic filtering.

Table 6 shows the mean and standard deviation of each the methods for the
DRIVE and STARE databases. Decimation-free directional filter bank (DDFB)
has a higher AUC than multiscale vessel enhancement. With the use of the
homomorphic filter, the AUC can be higher than DDFB without it. In the test of
the DRIVE database, there is a 4.6% increase in accuracy. Truc et al. [7] was able
to optimize the method enough to obtain a 5.2% to 5.3% improvement and a small
standard deviation of 0.0060 compared to our 0.0150. This may be due to the use
of maximum (equation (3.11)) instead of summation (equation (3.10)). DDFB
compares well with contemporary methods such as Staal et al. [3], M. Niemeijer et
al. [28], and X. Jiang et al. [29] which has mean AUCs 0.9520, 0.9294, and 0.9114,
respectively.

For the STARE database, the use of DDFB and homomorphic filtering is
also an improvement. We can also see that the hand traces will also suffer from
accuracy. This is why the results for the hand trace of Dr. Adam Hoover (AH) is
higher than Dr. Valentina Kouznetsova (VK). Hence, the quality of the hand trace

will effect the test itself. The STARE database is not used as much as the DRIVE
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(a) DRIVE image 23 (b) Green channel (c) Hand trace

(d) MVE (e) DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH
:mwwmi
04 /

(j) The ROC curve
FIGURE 22. DRIVE image 23 tested using MVE and DDFB.
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(a) DRIVE image 31 (b) Green channel (c) Hand trace

(d) MVE (e) DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (1) Threshold DDFBH

(j) The ROC curve

FIGURE 23. DRIVE image 31 tested using MVE and DDFB.



(a) DRIVE image 34 (b) Green channel (c) Hand trace

(d) MVE (e) DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH
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(j) The ROC curve

FIGURE 24. DRIVE image 34 tested using MVE and DDFB.
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(a) STARE image 2 (b) Green channel (c) Hand trace AH

(d) MVE () DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH
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(j) The ROC curve

FIGURE 25. STARE image 2 tested using MVE and DDFB.
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(a) STARE image 240 (b) Green channel (c) Hand trace AH

(d) MVE (e) DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH
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(j) The ROC curve

FIGURE 26. STARE image 240 tested using MVE and DDFB.
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(a) Maximum accuracy for the DRIVE database
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(c) Maximum accuracy for database STARE

compared with hand trace VK

FIGURE 27. The maximum accuracy for each of DRIVE and STARE images.
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FIGURE 28. The AUC for each of the images in the DRIVE and STARE databases.
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DRIVE mean std deviation
MVE: p=09117 | o =0.0172
DDFB: uw=09416 | o =0.0150
DDFB with homomorphic: | x = 0.9455 o =0.0151
STARE with AH trace mean std deviation
MVE: p=09419 | o =0.0187
DDFB: w=0.9579 o =0.0212
DDFB with homomorphic: | x = 0.9658 o =0.0151
STARE with VK trace mean std deviation
MVE: p=0.9053 | o =0.0203
DDFB: w=0.9266| o =0.0205
DDFB with homomorphic: | x = 0.9348 o = 0.0165

TABLE 6. Mean and Standard Deviation of the Methods on Retinal Databases
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database due to it being focused on retinal abnormalities so it is less appealing to
be tested on. It is only natural that we compare DDFB with Hoover et al. [1].
However, the evaluation of [1] does not use true positive/false positive accuracy
nor area under the curve (AUC) so it cannot be directly measured. The
interpretation of accuracy is then interpreted by their example images compared
with DDFB’s. From it, we conclude that DDFB likely outperforms [1] and

potentially, so does MVE.

Results on Placental Images

The comparison of the three methods can similarly performed on placental
images. However, because there are many more nonvessels than vessels, the AUC
of the ROC curve is biased towards rating the performance negatively [30]. The

Matthews correlation coefficient (MCC) is used instead:

MCC — TP x TN — FP x FN (3.13)
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP = true positive, TN = true negative, FP = false positive, and FN =
false negative. Because TP, TN, TP and FN are dependent on thresholding, MCC
is a function of the threshold value. Hence, such function produces a curve called
the MCC curve. The area under the curve (AUC) for the MCC curve can be
similarly defined. To be consistent with [12], the MCC will be the primary
performance metric for placental images.

During the testing of the three methods on placental images, we find that
the use of DDFB and DDFB with homomorphic filtering does not significantly
improve on MVE. To show this, a simple experiment is proposed. First, placental
image 2141, seen in Figure 29, is chosen for the experiment in order to be
consistent with [12] and [15]. From it, an optimal (approximate) set of parameters

similar to table 5 is sought. There are too many combination of parameter values
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(a) Placenta 2041 (b) Hand Trace

FIGURE 29. Placenta 2141 along with its hand-trace.

to sample through for an optimal set of parameters. Instead, the parameters are
picked using simulated annealing [31, 32]. Simulated annealing allows the ability
to pick set of parameters with a high AUC for the MCC curve for placenta 2141.
Hence, the criterion for simulated annealing is based on maximizing the AUC of
the MCC. Then such AUC for each of the methods is compared to each other on
each of the 16 placental images. Because an optimal parameter is chosen with
minimal human intervention, the comparison is minimally biased towards one of
the three methods. So if all three methods perform similarly well with the
parameters from simulated annealing, we can say with some level of confidence
that DDFB and DDFB with homomorphic filtering have a comparable
performance to MVE. Hence, their higher performance over MVE cannot be
generalized to placental images.

From simulated annealing, an optimal set of parameters for the three

methods is shown in table 7.
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(a) The AUC of the ROC curve (b) The AUC of the MCC curve
FIGURE 30. The AUC for the 16 placenta images.

TABLE 7. The Parameters Used for Comparing Results on Placental Images

Method Parameters
MVE: v=0;0=239,6.2; 8=26;c=2375
DDFB: vy=1,0=37=04;¢c=179

v=1;,0=13; 8 =414; c = 35;
DDFB with
Butterworth filter with ay = 0.5; ag = 1.9;

Homomorphic Filter:
Dy =2288;n=2

Figure 30 shows both the ROC and MCC curves’ area under the curve
(AUC). We can see that out of the three methods, none of them consistently
outperforms its competitors. To see when one method may outperform another,
we look at six placental images with specific characteristics: placenta 2041 is more
reddish than the others, placenta 2666 have transitioning color background,

placenta 2743 has thin vessels, placenta 2777 is darker than the other placentas,
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placenta 2946 has thin vessels with low contrast against its background, and
placenta 3355 has high contrast between vessels and its background. Figures 31,
32, 33, 34, 35, and 36 show the results for the three methods along with its ROC
and MCC curves. Notice that one method is considered quantitatively better than
another if it has a higher AUC than the other method. That is, the MCC curve
(or ROC curve) of the preferred method is above the other methods’ MCC curve
(or ROC curve).

From Figure 30, we can conclude some information about what methods
may be appropriate to which placental images. As expected, the results on
placental images with thin vessels (image 2743, 2946) against placental images
(image 2041, 2777, 3355) shows that DDFB work better on small vessels. MVE, on
the other hand, are works better on large vessels. For high contrast images such as
image 3355, MVE already performs well but DDFB has a better performance on
low contrast images such as image 2946. For placental images with transitioning
colors such as image 2666, homomorphic filtering gives DDFB a better
performance than MVE.

Figures 31, 32, 33, 34, 35, and 36 show that although MVE will in general
outperform DDFB quantitatively using the AUC as a measure of accuracy, the
enhancement from DDFB tend to be better than MVE. This can be seen from
parts c-e of the above figures. However, this may be due to DDFB assigning v =1
and MVE assigning v = 0, values which can effect the enhancement result. In
terms of homomorphic filtering, it produces a low quality enhancement result. The
vessels are less visible compared to the other two methods. Also, there are bright
circles on the resulting image likely due the sharp transitions from light to dark
that are present on the placental image. For example, on the boundary between

the placenta and the dark background, the DDFB with homomorphic filtering
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FIGURE 31. Various enhancement results for placenta 2041.

69



(a) Placenta 2666 (b) Hand Trace
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FIGURE 32. Various enhancement results for placenta 2666.
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(b) Hand Trace
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FIGURE 33. Various enhancement results for placenta 2743.
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FIGURE 34. Various enhancement results for placenta 2777.

72
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FIGURE 35. Various enhancement results for placenta 2946.
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(d) DDFB
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FIGURE 36. Various enhancement results for placenta 3355.
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produces artificial vessels. One can solve this problem using difussion on the
boundary as mentioned in preprocessing. Here, we choose not to perform it for

placental images so that we may fairly compare it with the only existing work on
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FIGURE 37. Box plot result of neural network vessel extraction.

We note that because [12] requires finding the approximate minimum of a
hard-to-minimize performance function using a random number generator, the
outcome of [12] will very each time it is performed. To evaluate its performance,
the method from [12] is run 400 times. Each of the run provides an enhancement
for each of the 16 placental images. From each of those enhancements, an AUC of
the MCC curve may evaluate its performance. Hence, for each of the 16 placental
images, there is an associated set of 400 AUC values from the 400 runs. Then the
mean, median, and standard deviation of these 400 AUCs for each of the placentas
may be computed, shown as a box plot in Figure 37. From them, a comparison
with MVE, DDFB, and DDFB with homomorphic filtering may be performed.
Compared with Figure 30, [12] is shown not to perform well compared with MVE,

DDFB, and DDFB with homomorphic filtering. We also look at Chang et al. [15]
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for comparison. Chang et al. [15] shows that a match-filtering of MVE has the
potential to outperform MVE, DDFB, DDFB with homomorphic filtering, and

[12]. As of writing, [15] is still a work in progress so the comparison is limited.
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CHAPTER 4
CONCLUSION

We have presented the theory behind multiscale vessel enhancement (MVE)
and decimation-free directional filter bank vessel enhancement (DDFB), along
with homomorphic filtering, used for vessel extraction. To quantitatively evaluate
their performance, we introduced the accuracy measure, the ROC curve along with
its AUC, and the MCC curve along with its AUC. Moreover, we have tested them
on retinal images and placental images. Along the way, we introduce the image
processing (and some signal processing) concepts necessary for understanding this
thesis.

In the process of testing, we find that DDFB is well suited for retinal
images. But when compared with placental images, the likely reason why retinal
images are great for DDFB would its the high contrast between vessels and
nonvessels for retinal images, the relatively consistent lighting, and consistent
vessel size for retinal images. Also, homomorphic filtering contributes well to
DDFB for retinal images for its ability to remove lighting issues. However, when
there is a large amount of discoloration in the image, specifically placental images,
homomorphic filtering negatively contributes to the performance of DDFB. Thus,
the type of vessel image will determine whether homomorphic filtering should be
used.

The success of retinal images can be seen by the high AUC value of DDFB

with homomorphic filtering along with its contemporaries such as [3]. Also, the

7



thresholding results of Figures 22i, 23i, 24i, 25i and 26i show that vessel extraction
is sufficiently useful for further study such as statistical study.

As for placental images, section 3.8 shows that they are currently very
difficult to extract vessel from. At the present, the only journal-published vessel
extraction for placental images [12] has a low performance rate compared to an
older method [6] and that a relatively new method [7] does not provide a higher
performance. This can be attributed to placental images having discolorations,
changing colors on vessels, over-saturation of redness, and low contrast. Thus,

much more work must still be done for placental images.
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APPENDIX: MATLAB CODES
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The MATLAB code requires the signal processing toolbox (for firl.m) and
the image processing toolbox (for bwmorph.m, bwdist.m, imfilter.m).
Furthermore, code from Dirk-Jan Kroon’s “Hessian based Frangi Vesselness filter”
and from David Young’s “Fast 2-D convolution” are needed and can be found in
MATLAB central, file exchange. The scripts need the STARE, DRIVE, and
Placental Analytics database of vessel images.

Preprocessing

function [ OutImage ] = BasicHeatInpaint ( Image, interior )
This function performs dissipation of intensity values from
the boundary to the exterior. The image must be grayscale.
This function requires the image processing toolbox
(specifically, bwdist.m).
INPUT:

Image — grayscale image.

interior — a binary marking the location of the interior to

dissipate from.

o oP

© ® N O s W N -
o0 o0 o° o

o° o

-
(=)

% find the distance from the interior.
dst = bwdist (interior, 'cityblock');

= e
W N e

% Sort the distance to index from.
[sorted,ind] = sort(dst(:));
ind = ind(sorted > 0);

g
N O o s

[I,J] = ind2sub(size (Image),ind);

=
© o

OutImage = Image;

NN
= O

% Dissipate

for i = 1 : numel (ind)
X = max(l,I(i)—1):min(size (OutImage,l),I(i)+1);
y max(1l,J(i)—1):min(size (OutImage,2),J(i)+1);
mark = double (interior(x,y));

[ I I CE VR
S a R & N
1

N
S

OutImage(I(i),Jd(i)) =
sum (sum (OutImage (x,y) . *mark)) /sum(mark (:));

[
00

29 interior(I(i),Jd(i)) = 1;

30 end

31

32 end

1 function [ homoI ] = homofilter( I,option )

2 % This function calculates the accuracies from the
3 % soft—thresholds S and T is the truth.

4 % INPUT:
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I — The grayscale image.
option — options for the homomorphic filter.
OUTPUT:
homoI — The result of homomorphic filter
EXAMPLE:
im = double (imread('tun.jpg'));
option = struct ('method’', 'Butterworth','DO',1,'n',2, ...
'alphal', .0999, 'alphaH',1.01);

o o° o° o° o° o oP

oe

% The distance from the center
[X,Y] = ndgrid(l—size(I,l)/2:size(I,1)/2,1—size(I1,2)/2:size(I,2)/2);
abs_omega = sqrt(X."2+Y.72);

% Setup the options if needed
if —exist ('option','var') || isempty (option)
option = struct ('method', 'Butterworth’', 'n',2, ...
'DO', 80, 'alphal',0.25, 'alphaH', 2);
end

% Construct the high—pass filter
if strcmp(option.method, 'Ideal’)
H = double (abs_omega > option.DO0);
elseif strcmp (option.method, 'Butterworth’)
H=1./(14(option.DO0 ./ abs_omega).” (2xoption.n));
elseif strcmp (option.method, 'Gaussian')
H =1 — exp(—abs-omega.”2 / (2xoption.D072));
else
error (['Unknown method: ' option.method]);
end

% The homomorphic filter function
H = (option.alphaH—option.alphal) .xH+option.alphalL;

% Apply the homomorphic filter process
freql = fftshift (fft2(log2(1+I)));
homoI = exp(abs(ifft2 (ifftshift (H.*xfreql))));

end

Decimation-Free Directional Filter Bank

® N O Utos W N =

function [ diamond ] = diamond2D( N )
% This function creates the diamond filter. Studied from
% Truc et. al.'s code.
INPUT:

N — The order of the diamond filter.
OUTPUT:

diamond — the diamond filter output.

o° d° oe

o
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% 1-D step (freqg domain) function
= firl(N-1, .5);

9]

% 2D step function
s2D = s'*s;

% Checkerboard (freq domain) function
[X,Y] = ndgrid(1:N,1:N);
checker = (1 + (—=1).7(X+Y)) .*s2D;

% Downsample in spatial is upsample in frequency
diamond = downsample2D([1l —1; 1 1],checker);

end

© 0 N O A W N

W W W W WN NN NN N NN NN [

function [ HO,Hl1 ] = hourglass2D( N,version )
This function creates the two hourglass filters. Studied from
Truc et. al.'s code.
INPUT:
N — The order of the diamond filter.
version — The version of hourglass. OPTIONAL.
vl,vlT,v190,v1-90;v2,v2T,v290,v2-90.
This determines the way the hourglass is
constructed from the diamond filter.

oe

oe

o° % o° o° oP

o

if —-exist ('version', 'var')
version = 'v1T';
end

%% Construct diamond
D = diamond2D (N);

oe

% Shift the frequency domain to produce the hourglass from
% the diamond filter.

o

if strcmp(version(1l:2),'vl")
HO = repmat((—-1)."(0:N-1),N,1) .*D;
if strcmp(version(3:end),'T'")
H1 = HO';
elseif strcmp(version(3:end), '90")
if rem(N,2) ==
Hl = rot90([ [HO zeros(N,1)]; zeros(1l,N+1)],1);
Hl = H1(1:N,1:N);
else
H1
end
elseif strcmp(version(3:end), '—90")
if rem(N,2) ==
Hl = rot90([ [HO zeros(N,1l)]; zeros(l,N+1)],-1);

rot90 (HO,1);
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H1 = H1(1:N,1:N);
else
H1 = rot90(HO,1);
end
else
error (['Unrecognized version 1 option: ' version(3:end)

L1
end
elseif strcmp(version(l:2),'v2")
Hl1 = repmat(((—1)."(0:N-1))"',1,N).xD;
if strcmp(version(3:end),'T')

HO = H1';
elseif strcmp(version(3:end), '90")
if rem(N,2) == 0

HO = rot90([ [Hl1 zeros(N,1)]; zeros(l,N+1)],1);
HO HO(1:N,1:N);
else
HO
end
elseif strcmp(version(3:end), '—90")
if rem(N,2) == 0
HO = rot90([ [H1 zeros(N,1)]; zeros(l,N+1)],-1);

rot90 (H1,1);

HO = HO(1:N,1:N);
else
HO = rot90(H1,1);
end
else
error (['Unrecognized version 2 option: ' version(3:end)
L1
end
else
error ('Unrecognized version.');
end
end

o .o

© W N U A W N

[ e e
w N = O

function [ Y ] = downsample2D (M, X)
This function downsamples by matrix M on grayscale image X.
INPUT:
M — The downsample matrix.
X — The grayscale image.
OUTPUT:
Y — The downsampled image.

o o0 oo

o0 o

ol

Get the center of the image.
center = floor(size(X)/2)+1;

o

% Grid the image X with (0,0) being the center.
[i, 3] = ndgrid(l—center(l):size(X,1l)—center(1l),...
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l—center (2) :size (X, 2)—center(2));
i = reshape(i,1,[1); J = reshape(j,1,1[1);

% Rotate the grid.
sample = Mx[i; 3j];
x = sample(l,:);
y = sample(2,:);

% Find the half indices with zeros.

boolean = rem(x,1) == 0 & rem(y,1) == 0 ...
& x > 1 — center(l) & Xx size (X, 1l)—center (1)
& y >1 — center(2) & y size (X, 2)—center (2);

<
<

% Only keep the integer indices.
= sub2ind(size (X),1i(boolean) + center(l), j(boolean) + center(2));
sub2ind(size (X),x (boolean) + center(l),y(boolean) + center(2));

o

Substitute using reindexing.
= zeros(size(X));

(I) = X(J);

end

[

© 0 N A W N =
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function [ Y ] = upsample2D (M, X, pad)
This function downsamples by matrix M on grayscale image X.

o°

% INPUT:

% M — The downsample matrix.

% X — The grayscale image.

% pad — Whether or not to pad the unknown. OPTIONAL.
% OUTPUT:

Y — The downsampled image.

o°

% Get the center of the image.
center = floor(size(X)/2)+1;

% Grid the image X with (0,0) being the center.
[1,J] = ndgrid(l—center(l):size(X,1)—center (1), .

l—center (2) :size (X, 2)—center(2));
i = reshape(i,1,[1); J = reshape(j,1,I[]);

% Rotate the grid.
sample = Mx[i; Jjl;
x = sample(1l,:);

y = sample(2,:);

if isempty(pad) || -pad
% Find the half indices with zeros.
boolean = rem(x,1) == 0 & rem(y,1l) == 0

& x > 1 — center(l) & X < size(X,1l)—center(l) ...
& y > 1 — center(2) & y < size(X,2)—center(2);
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o

Only keep the integer indices.
= sub2ind(size (X),1i(boolean) + center(l),...
: j(boolean) + center(2));
J = sub2ind(size (X),x(boolean) + center(l),...
y (boolean) + center(2));

H

% Substitute using reindexing.
Y = zeros(size(X));
Y(J) = X(I);
else
% Find the half indices with zeros.
boolean = rem(x,1) == 0 & rem(y,1l) == 0;

minx min(x(:)); maxx max (x(:));
miny min(y(:)); maxy max(y(:));
m = min (minx,miny); M = max(maxx,maxy);

1]
1

Y = zeros(M — m + 1);

% Only keep the integer indices.

I = sub2ind(size (X),1i(boolean) + center(l),...
j (boolean) + center(2));

J = sub2ind(size(Y),x(boolean) — m + 1,...

52 y (boolean) — m + 1);

53

54 % Substitute using reindexing.

55 Y(J) = X(I);

56 end

57

58 end

1 function [ Filter ] = CreateDirectionalFilters( N,sz,version )

© 0w 9 O o N

10
11

12
13
14

Q

% This function creates the Decimation—free directional filter
bank filters

used in paper: Truc et. al., Vessel enhancement filter using
directional filter bank.

o

% INPUT:
% N — The diamond filter order.
% sz [m n] — The size of the wedge filters. OPTIONAL.
% version — The version of hourglass. OPTIONAL.
% vl,v1lT,v190,v1-90;v2,v2T,v290,v2-90.
% OUTPUT:
% Filters — an m—by—n-by—16 dimensional matrix with the third
% dimension indexed for each of the wedge—shaped
% filters.
if N<O

error ('N must be a positive integer');
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end

if —exist('sz','var') || isempty(sz)
sz = 8x(N—1); % nonzero Filter window is 8(N—1), with +8

extra padded zeros.
end

if —-exist ('version', 'var')
version = 'v1T';
end

% Quincunx
[1-1; 1 11;

©
I

% Sheer matrices
Rl = [1 0; —1 1]1; RI1T R1';
R2 = [1 1; 0 1]; R2T = R2';

$% Create Level 1 (Hourglass) Filters
[ hO,hl ] = hourglass2D( N,version );

range = floor([sz sz]/2) + 1 — floor ([N N1/2)
: floor([sz szl/2) + ceil ([N N]/2);

HO = zeros(sz);
HO (range, range) = hO;

H1 = zeros(sz);

H1 (range, range) = hl;
% [ HO,H1 1 = hourglass2D( N );

%% Create Level 2 Filters
HOQ = upsample2D (Q,HO, false);
H1Q = upsample2D (Q,H1, false);

%% Create the 4 Wedges

Filter2 = cat(3,...
conv2 (HO,HOQ, 'same'), ...
conv2 (HO,H1Q, 'same'), ...
conv2 (H1,H1Q, 'same'), ...
conv2 (H1,HOQ, 'same'));

%% Create Level 3 Filters
HOR1QQ = upsample2D (R2*QxQ, HO, false);
H1R1QQ = upsample2D (R2xQx*Q,H1, false);

HOR1TQQ upsample2D (R2T*Q*Q, HO, false);
H1R1TQQ = upsample2D (R2T*Q*Q,H1, false);

HOR2QQ = upsample2D (R1+QxQ, HO, false);
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H1R2QQ = upsample2D (R1xQ*Q,H1l, false);

HOR2TQQ = upsample2D (R1T*Q*Q,HO0, false);
H1R2TQQ = upsample2D (R1T*Q*Q,H1, false);

%% Create the 8 Wedges

Filter3 = cat(3,...
conv2 (Filter2(:,:,1),HOR1QQ, 'same'), .
conv2 (Filter2(:,:,1),H1R1QQ, 'same'), ...
conv2 (Filter2(:,:,2),H1R2TQQ, 'same'), ...
conv2 (Filter2(:, :,2),HOR2TQQ, 'same"'), .

Filter2(:,:,3),H1R2QQ, 'same'), ...
Filter2(:,:,3),HOR2QQ, 'same'), ..

Filter2(:,:,4),HOR1TQQ, 'same'), ...
Filter2(:,:,4),H1R1TQQ, 'same'));

conv2
conv2
conv2
conv2

%% Create Level 4 Filters
HORIQR1QQ = upsample2D (R2xQxR2xQ*Q,HO0, false);
H1RI1QR1QQ = upsample2D (R2xQxR2xQ*Q,H1, false);

HOR1QR2TQQ
H1R1QR2TQQ

upsample2D (R2«Q*R1T+Q*Q, HO, false);
upsample2D (R2xQxR1T+Q*Q, H1, false);

[)

% —

HOR2QR2QQ = upsample2D (R1xQ*R1xQ*Q,HO0, false);

H1R2QR2QQ = upsample2D (R1xQ*xR1%xQxQ,H1, false);

HOR2QRITQQ = upsample2D (R1xQ*R2T*Q*Q,HO, false);
H1R2QRITQQ = upsample2D (R1*Q*R2T*QxQ, H1, false);
HORITQR1QQ = upsample2D (R2T*Q*R2*QxQ,HO, false);
H1R1TQR1QQ = upsample2D (R2T*Q*R2xQxQ,H1, false);

HOR1TQR2TQQ = upsample2D (R2T*QxR1T*Q*Q,HO0, false);
H1R1TQR2TQQ = upsample2D (R2T*Q*xR1T*QxQ, H1, false);
96——

HOR2TQR2QQ = upsample2D (R1TxQ*xR1%xQxQ, HO, false);
H1R2TQR2QQ upsample2D (R1IT*Q*R1xQ*Q, H1, false);

HOR2TQR1TQQ = upsample2D (R1T+*Q«R2T+Q*Q,HO, false);
H1R2TQR1TQQ = upsample2D (R1IT*xQ*R2T*QxQ,H1, false);

%% Create the 16 Wedges
Filterd4 = cat(3,...

conv2 (Filter3(:, :,2),HORIQR2TQQ, 'same'), ...
conv2 (Filter3(:,:,2),HIRIQR2TQQ, 'same'), ...
conv2 (Filter3(:, :,1),HIRIQR1QQ, 'same’'), ...
conv2 (Filter3(:, :,1),HOR1IQR1QQ, 'same'), ...
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117 conv2 (Filter3(:,:,8),HORITQR2TQQ, 'same'), ...

118 conv2 (Filter3(:,:,8) ,HIRITQR2TQQ, 'same"'), ..
119 conv2 (Filter3(:,:,7),H1IRITQR1QQ, 'same'), ...
120 conv2 (Filter3(:,:,7),HOR1TQR1QQ, 'same'), ...
121 .« e

122 conv2 (Filter3(:,:,6),H1IR2QR1TQQ, 'same'), ..

123 conv2 (Filter3(:,:,6),HOR2QR1TQQ, 'same'), ...
124 conv2 (Filter3(:,:,5),HOR2QR2QQ, 'same"'), ...

125 conv2 (Filter3(:,:,5),H1IR2QR2QQ, 'same'), ...

126 e

127 conv2 (Filter3(:,:,4),HIR2TQRITQQ, 'same'), .

128 conv2 (Filter3(:, :,4),HOR2TQR1ITQQ, 'same"'), ..
129 conv2 (Filter3(:, :,3),HOR2TQR2QQ, 'same'), ...
130 conv2 (Filter3(:,:,3),HIR2TQR2QQ, 'same"')) ;.

131
132 Filter = Filter4;
133

134 end

function [Dxx,Dxy,Dyy] = Hessian2Dmod (I,sigma,gamma,tol)

This function Hessian2 Filters the image with 2nd derivatives
of a Gaussian with parameter Sigma. Modified from D.Kroon
University of Twente (June 2009).

o° o

o

o

[Dxx,Dxy,Dyy] = Hessian2Dmod (I, Sigma);

© W N U R W N e
o\ o

% INPUT:
% I — The image, class preferable double or single
10 % sigma — The sigma of the gaussian kernel used
1 %
12 % OUTPUT:
13 % Dxx, Dxy, Dyy — The 2nd derivatives.

=
[S

if nargin < 2
sigma = 1;
gamma = 1;
tol = 10°-3;

elseif nargin == 2
gamma = 1;
tol = 10"-3;

elseif nargin == 3
tol = 10"-3;

end

NN NN NN B e R e
(S I N I R I S )

% Make kernel coordinates
[X,Y] = ndgrid(—round(4xsigma) :round(4+sigma));

NN N
o I o

% Build the gaussian 2nd derivatives filters

N
©
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DGaussxx = — sigma“gamma * (sigma”2 — ...

X."2)/ (2+xpixsigma”6) .xexp(—(X. 2+Y."2) /(2xsigma”2));
DGaussyy = — sigma“gamma * (sigma”2 — ...

Y. 2)/(2+xpi*sigma”6) .*exp(—(X. " 2+Y."2)/(2+xsigma”2));
DGaussxy = sigma“gamma =*

((X.*Y/ (2+xpixsigma”6)) .+xexp(— (X."2+Y."2)/ (2+«sigma”2)));

% Find the components of the Hessian using SVD,
% which is faster.

Dxx = convolve2 (I,DGaussxx, 'same',tol);

Dxy = convolve2(I,DGaussxy, 'same’',tol);

38 Dyy = convolve?2(I,DGaussyy, 'same',tol);

39

40 end

1 function [ directEnhance ] = DirectionalEnhance (

© 0 N O o W N

W W W W N NN NN N NN =

directImg, option )
This function enhances each of the directional vessel images.

% INPUT:

% directImg — The cell of directional vessels images.

% option — Options for the DDFB vessel enhancement.

% .N — the order of the diamond.

% .sigma — the vector containing the scales.

% .beta — the beta value for vessel enhancement.
% .C — the ¢ value for vessel enhancement.
% .LightonDark — whether the vessels are

% lighter than its background.
% OUTPUT:

% directEnhance — a #—#-16 matrix of vessel enhancement on
% each of the directional images.

% Number of directional filters

n = size(directImg, 3);

% angle of the filters.
theta = pi/(2*n) : pi/n : (2xn—1)*pi/ (2*n);

temp = cell(n,1);

if option.LightonDark
for i =1 :n
% Directional vessel enhance on light vessels.
temp{i} = DirectionalEnhancelightonDark(...
directImg(:,:,1),option,theta(i));
end
else
for i =1 :n
% Directional vessel enhance on dark vessels.
temp{i} = DirectionalEnhanceDarkonLight (...
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directImg(:, :,1i),option,theta(i));
end
end

% Combine the directional vessel enhancements.
directEnhance = cat (3,temp{:});

end

function [outImg] = DirectionalEnhancelightonDark (Img,option,angle)
% This function performs the light-on—dark enhancement version.

outImg = zeros(size(Img));
for sigma = option.sigma
[Dxx,Dxy,Dyy] = Hessian2Dmod (Img, sigma) ;
h1ll = Dxx*cos (angle) "2+Dxy*sin(2xangle) +Dyy*sin (angle) "2;
h22 = Dxx*sin(angle) "2—Dxyxsin(2xangle) +Dyy+cos (angle) "“2;
S = sqgrt (hll."2+h22.72);
R = hll./h22;
temp = double (h22 < 0).x(exp(—R."2/(2xoption.beta”2))...
.+ (l—exp(—S."2/(2xoption.c”2))));
outImg = double(temp > outImg) .* (temp — outImg) + outlImg;
end

end

function [outImg] = DirectionalEnhanceDarkonLight (Img, option,angle)
%$ This function performs the dark—on—-light enhancement version.

outImg = zeros(size(Img));
for sigma = option.sigma
[Dxx,Dxy,Dyy] = Hessian2Dmod (Img,sigma);
hll = Dxxxcos (angle) "2+Dxyx*sin(2xangle)+Dyy*sin (angle) "2;
h22 = Dxx*sin(angle) "2—-Dxyx*sin(2xangle) +Dyy*cos (angle) "2;
S = sqgrt (hll."2+h22.72);
R = hll./h22;
temp = double (h22 > 0).x(exp(—(R."2/(2+xoption.beta”2))) ...
.*(l—exp(—S."2/ (2xoption.c"2))));
outImg = double(temp > outImg).x* (temp — outImg) + outlImg;
end

end

function [ enhance ] = DFBMultiscaleEnhance (
I,DDFBoption,midOption )

% This function calculates the accuracies from the

% soft—thresholds S and T is the truth.
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o°

INPUT:

% I — Grayscale image.

% DDFBoption — Options for the DDFB vessel enhancement.

% .N — the order of the diamond.

% .sigma — the vector containing the scales.

% .beta — the beta value for vessel

% enhancement.

% .C — the c value for vessel enhancement.

.LightonDark — whether the vessels are
lighter than its background.
midOption — Middle step between DDFB filtering and vessel
enhancement options. Optional.
.func — The function applied to each of the
directional images.
— Other parameters used by .func

o® o° o° o° o° o

o°

o

OUTPUT:
enhance — The enhancement output.

o

oe

% Setup DDFB options if not provided
if —exist ('DDFBoption','var') || isempty (DDFBoption)
DDFBoption = struct('N',3,'sigma', 2 : 1 : 6,...
'beta', 0.75,'c', 15,...
'LightonDark', false);
end

if —-isfield(DDFBoption, 'N')
DDFBoption.N = 3;
end

if -isfield(DDFBoption, 'sigma')
DDFBoption.sigma = 2 : 1 : 6;
end

if —isfield (DDFBoption, 'beta')
DDFBoption.beta = 0.75;
end

if —-isfield (DDFBoption, 'c’)
DDFBoption.c = 15;
end

if —isfield(DDFBoption, 'LightonDark"')
DDFBoption.LightonDark = false;
end

%% Directionally filter the image
Filter = CreateDirectionalFilters (DDFBoption.N);

DirlL = zeros(size(I,1l),size(I,2),16);

for k =1 : 16
DirL(:,:,k) = convolve2(I,Filter(:,:,k),'same',0.01);
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55 end

56

57 %% mid—step filter

58 1if exist ('midOption', 'var') && —isempty (midOption)
59 for k =1 : 16

60 DirL(:,:,k) = midOption.func(DirL(:, :,k),midOption);
61 end

62 end

63

64 %% Vessel Enhance

65 DirEnhance = DirectionalEnhance (DirL, DDFBoption);
66

67 %% Combine the enhancement

68 % enhance = max(DirEnhance, []1,3);

69 enhance = mean(DirEnhance, 3);

70

71 end

Metrics

1 function [ Accy,t ] = SoftAccuracy( S,T )
2 % This function calculates the accuracies from the
soft—thresholds S and T

3 % is the truth.

4 % INPUT:

5 % S — The soft threshold. It must be nonnegative.
6 % T — The truth (true or false).

7 % OUTPUT:

8 % Accy — The vector of accuracies.

9 % t — The corresponding threshold values.

10 % EXAMPLE:

1 % N = 1000;

12 % S = floor(300xrand(1,N));

T rand(1,N) > 0.5;
Accy = SoftAccuracy( S,T );

oe

13
14

o

o

15
16
17
18
19
20
21
22 N
23

24 [SS,I] = sort(S—min(S)+1); TT = T(I);
25

26 t = [ 0; unique(SS) 1;

27

28 [b,m,—~] = unique (sort (SS.x*TT));

[-1 unique(S)]1)...
/length (S);
max (abs (Accy — Temp))

o° oe

oe

S(:); T = double(T(:));

2]
It

length(S);
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b = [0; bl; m = [0; m];
TP = FillIn(t,b,N-m);
FN = sum(double(T)) — TP;

o

[b,m,~] = unique (sort (SS.*-TT));

m= [0; m~—m(l)x(b(l) == 0) 1; b = [0; b];
TN = FillIn(t,b,m);

% FP = sum(double (=T)) — TN;

Accy = (TP + TN)/N;

t =t + min(S) — 1;

end

function [ filled ] = FillIn( long, short,filler )
% Fills non—matching elements.

filled = long;

j = length(short);
for i = length(long) : -1 : 1
filled(i) = filler(j);

if long(i) == short (j)
j=3-L
end
end

end

© O NG A W N =

e O S - T = Sy
® N OO O A W N = O

function [ MCC,t ] = MCCeff( S,T )

% This function calculates the Matthews correlation coefficient
% (MCC) from the soft—thresholds S and T is the truth.

% INPUT:

% S — The soft threshold. It must be nonnegative.
% T — The truth (true or false).

% OUTPUT:

% MCC — the vector MCC values.

% t — the corresponding threshold values.

S = S(:); T = double(T(:));

N = length(S);

[SS,I] = sort(S—min(S)+1); TT = T(I);

t = [ 0; unique(SS) 1;
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[b,m,—~] = unique (sort (SS.xTT));
b = [0; bl; m = [0; m];

TP = FilllIn(t,b,N-m);

FN = sum(double(T)) — TP;

[b,m,—~] = unique(sort (SS.*—TT));
m= [0; m—m(1)x(b(l) == 0) 1;
TN = FillIn(t,b,m);

FP = sum(double (—T)) — TIN;

b = [0; bl;

MCC = ((TP.*TN) — (FP.+FN))...
./sqrt ( (TP+FN) . * (TP+FP) . * (TN+FP) . x (IN+FN) ) ;

t =t + min(S) — 1;
end

function [ filled ] = FillIn( long, short,filler )
% Fills non—matching elements.

filled = long;
j = length(short);

for i = length(long) : -1 : 1
filled (i) = filler(3);

45 if long (i) == short (j)
46 =31

47 end

48 end

49

50 end

Script

L= R N N

<

10
11
12
13

RetinalEnhanceScript.m

oe

o° P oP

oe

Table 5,
change part G to call std() instead of mean().

o°

%% A. Setup the parameters

MVEoption = struct ('FrangiScaleRange', [1 6], 'FrangiScaleRatio', 2, ..
'FrangiBetaOne',0.75, 'FrangiBetaTwo', 15, ...
'BlackWhite', true, 'verbose', false);
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Run this script to see bar graph in Figure 28 of thesis

and the mean of Table 5. To see bar graph in Figure 27,
change AUC (including variable name AUCplot) to accy

for part F of this script. To see the standard deviation of
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DDFBoption = struct('N',3,'sigma’',2 : 1 : 6,...
'beta',0.75, 'gamma', 15, ...
'LightonDark', false);

midOption = struct('func',@(I,opt) homofilter (I,opt),...
'method', 'Butterworth', ...

'n',2,'D0',300, 'alphal',0.1, 'alphaHl',1);

$% B. DRIVE Vessel extraction database
DRIVE.db = cell(40,1);
for i =1 : 9
DRIVE.db{i} = struct('I',imread(['DRIVE\test\images\0'
num2str (i) '-test.tif'l),...
'mask', imread ([ 'DRIVE\test\mask\0'
num2str (i) '-test_mask.gif']),...
'trace',imread ([ 'DRIVE\test\lst_manual\0'
num2str (i) '-manuall.gif']));

end

for i = 10 : 20
DRIVE.db{i} = struct ('I",imread(['DRIVE\test\images\"'
num2str (i) '-test.tif'l),...
'mask', imread ([ 'DRIVE\test\mask\"'
num2str (i) '-test_mask.gif']),...
'trace',imread ([ 'DRIVE\test\lst-manuall\’'
num2str (i) '-manuall.gif'l));

end

for 1 = 21 : 40
DRIVE.db{i} = struct('I',imread(['DRIVE\training\images\"
num2str (i) '-training.tif']l),...
"mask',imread ([ 'DRIVE\training\mask\"
num2str (i) '-training-mask.gif']l),...

"trace',imread ([ 'DRIVE\training\lstmanual\'

num2str (i) '-manuall.gif'l));
end

%% C. STARE Vessel extraction database

names = {'imOOOl','imOOOZ','im0003','im0004','imOOOS',...
'im0044', 'im0077', 'im0081"', 'im0082"', 'im0139"', ...
'im0162','im0163', 'im0235"', 'im0236"', 'im0239"', ...
'im0240','im0255','im029l','im0319','im0324'};

STARE_db = cell (length (names),1l);

for i = 1 : length(names)
STARE_db{i} = struct ('I',imread(['STARE\Images\' names{i}
' |
.ppm'l), ...

'traceAH', imread (['STARE\ah-trace\'
names{i} '.ah.ppm'l),...
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"traceVK', imread ([ 'STARE\vk-trace\'
names{i} '.vk.ppm'l));
end

T = [50 40 60 33 50 70 50*ones(1,9) 40 50*ones(1,4)1;
for i = 1 : length(names)

STARE.db{i}.mask = 255*uint8 (STARE.db{i}.I(:,:,1) > T(i));
end

%% D. Enhance DRIVE database

parfor j =1 : 40
disp(['Scanning image ' num2str(j)]);

$ The marking used to identify binary regions
mark = max (DRIVE.db{j}.trace(:));

% Shrink the marked region to accommodate the incorrect mask

provided
interior = (DRIVE.db{j}.mask == mark);
for i =1 :5
interior = interior—bwmorph (interior, 'remove');

end

% Smooth the boundary to prevent false identification of
boundary as vessel

DRIVE.db{j}.diffuse = BasicHeatInpaint (
double (DRIVE.db{j}.I(:,:,2)),interior );

$%% 1. MVE
Temp = struct();

% Use the Multiscale enhancement
Temp.MVEoption = MVEoption;

[enhance,~, ~] = FrangiFilter2D (DRIVE.db{j}.diffuse,
Temp.MVEoption) ;
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (DRIVE.db{j}.trace (DRIVE.db{j}.mask
== mark), ...
enhance (DRIVE.db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (DRIVE_db{j}.mask == mark),...
DRIVE.db{j}.trace (DRIVE.db{j}.mask == mark));
[accy,i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);
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DRIVE.db{j}.MVE = Temp;

%$%% 2. DDFB
Temp = struct();

Temp.DDFBoption = DDFBoption;

enhance =
DFBMultiscaleEnhance (DRIVE.db{j}.diffuse, Temp.DDFBoption) ;
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (DRIVE.db{j}.trace (DRIVE_db{j}.mask ...
== mark),...
enhance (DRIVE.db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (DRIVE.db{j}.mask == mark),...
DRIVE_db{j}.trace (DRIVE_db{j}.mask == mark));
[accy,1i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

DRIVE.db{j} = setfield(DRIVE.db{j},...
['DDFB' num2str (Temp.DDFBoption.N)], ...

Temp) ;

%%% 3. DDFB homomorphic mid
Temp = struct();

Temp.DDFBoption = DDFBoption;
Temp.midOption = midOption;

enhance = DFBMultiscaleEnhance (DRIVE_db{j}.diffuse, ...
Temp .DDFBoption, Temp.midOption) ;

Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (DRIVE.db{j}.trace (DRIVE.db{j}.mask
== mark),...
enhance (DRIVE.db{j}.mask ==
mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;

Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (DRIVE.db{j}.mask == mark),...
DRIVE.db{j}.trace (DRIVE_.db{j}.mask == mark));

[accy,i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);
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setfield (DRIVE.db{j}, ...

DRIVE.db{j} =
['DDFB' num2str (Temp.DDFBoption.N) 'MidHomo'],Temp);

end
%% E. Enhance STARE database

% AH
parfor j =1 : 20
disp(['Scanning image ' num2str(3j)1);

% The marking used to identify binary regions
mark = max (STARE_db{j}.traceAH(:));

% Shrink the marked region to accommodate the incorrect mask ...

provided
interior = (STARE.db{j}.mask == mark);
for i =1 : 5

interior = interior—bwmorph (interior, 'remove');
end

% Smooth the boundary to prevent false identification of
boundary as vessel

STARE.db{j}.diffuse = BasicHeatInpaint (

double (STARE.db{j}.I(:,:,2)),interior );

Temp = struct();

% Use the Multiscale enhancement
Temp.MVEoption = MVEoption;

[enhance,—,—] = FrangiFilter2D (STARE.db{j}.diffuse,
Temp .MVEoption) ;
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{7j}.traceAH (STARE_db{j}.mask

== mark),...
enhance (STARE.db{j}.mask == mark),mark);

Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (STARE_db{j}.mask == mark),...
STARE.db{j}.traceAH (STARE.db{j}.mask == mark));
[accy,i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

STARE.db{j}.MVE_AH = Temp;
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end

%$%% 2. DDFB
Temp = struct();

Temp.DDFBoption = DDFBoption;

enhance =
DFBMultiscaleEnhance (STARE.db{j}.diffuse, Temp.DDFBoption) ;
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{j}.traceAH (STARE.db{j}.mask ...
== mark),...
enhance (STARE.db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (STARE.db{j}.mask == mark), ...
STARE.db{j}.traceAH (STARE.db{j}.mask == mark));
[accy,1i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

STARE.db{j} = setfield(STARE.db{j}, .
['DDFB' num2str (Temp.DDFBoption.N) '_AH'],Temp);

$%% 3. DDFB homomorphic mid
Temp = struct ();

Temp.DDFBoption = DDFBoption;

Temp.midOption = midOption;

enhance = DFBMultiscaleEnhance (STARE_db{j}.diffuse, ...
Temp.DDFBoption, Temp.midOption) ;

Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{j}.traceAH (STARE.db{j}.mask ...

== mark),..
enhance (STARE.-db{3j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;
[Accy,t] = SoftAccuracy (enhance (STARE.db{j}.mask == mark), ...
STARE_db{j}.traceAH (STARE.db{j}.mask == mark));
[accy,1i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

STARE.db{j} = setfield(STARE.db{j}, ..
['DDFB' num2str (Temp.DDFBoption.N) 'MidHomo.AH'],Temp);
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%

VK

parfor j =1 : 20

disp(['Scanning image ' num2str(j)1);

% The marking used to identify binary regions
mark = max (STARE.db{j}.traceVK(:));

% Shrink the marked region to accommodate the incorrect mask
provided

interior = (STARE.db{j}.mask == mark);

for i =1 :5
interior = interior—-bwmorph (interior, 'remove');

end

% Smooth the boundary to prevent false identification of
boundary as vessel

STARE.db{j}.diffuse = BasicHeatInpaint (
double (STARE.db{j}.I(:,:,2)),interior );

$%% 1. MVE
Temp = struct();

% Use the Multiscale enhancement
Temp.MVEoption = MVEoption;

[enhance,—, ] = FrangiFilter2D(STARE._db{j}.diffuse,
Temp.MVEoption);
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{j}.traceVK(STARE_.db{j}.mask ...
== mark),..
enhance (STARE.db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy(enhance(STARE_db{j}.mask == mark), ..
STARE_db{j}.traceVK (STARE.db{j}.mask == mark));
[accy,1i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);
STARE_.db{j}.MVE_VK = Temp;

%$%% 2. DDFB
Temp = struct();

Temp.DDFBoption = DDFBoption;
enhance =

DFBMultiscaleEnhance(STARE_db{j}.diffuse,Temp.DDFBoption);
Temp.enhance = enhance;
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end

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{j}.traceVK(STARE.db{j}.mask

== mark), ...
enhance (STARE_.db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;
[Accy,t] = SoftAccuracy (enhance (STARE.db{j}.mask == mark),...

STARE.db{j}.traceVK (STARE.db{j}.mask == mark));
[accy,1i] = max(Accy);
Temp.accy = accy; Temp.thresh = t(i);

STARE._db{j} = setfield(STARE.db{j},...

['DDFB' num2str (Temp.DDFBoption.N) '_VK'],Temp);
%$%% 3. DDFB homomorphic mid

Temp = struct();

Temp.DDFBoption = DDFBoption;
Temp.midOption = midOption;

enhance = DFBMultiscaleEnhance (STARE.db{j}.diffuse,...
Temp .DDFBoption, Temp.midOption) ;
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = perfcurve (STARE.db{j}.traceVK (STARE_db{j}.mask
== mark), ...
enhance(STARE_db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

[Accy,t] = SoftAccuracy (enhance (STARE.db{j}.mask == mark),...
STARE.db{j}.traceVK (STARE.db{j}.mask == mark));

[accy, 1] max (Accy) ;

Temp.accy = accy; Temp.thresh = t(i);

I

STARE.db{j} = setfield(STARE.db{j},...
['DDFB' num2str (Temp.DDFBoption.N) 'MidHomo.VK'], Temp) ;

%% F. Bar graph of the ROC AUC
% DRIVE
AUCplt = [arrayfun(@(i) DRIVE.db{i}.MVE.AUC,1:40);

arrayfun (@ (i) DRIVE_db{i}.DDFB3.AUC,1:40);
arrayfun (@ (i) DRIVE_db{i}.DDFB3MidHomo.AUC,1:40)]"';

figure('color', 'white'),
bar (AUCplt, 'grouped', 'BaseValue',0.80);
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334 title ('DRIVE AUC', 'fontsize',20);

335 legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic filter');

336

337 % STARE AH

338 AUCplt = [arrayfun(@ (i) STARE.db{i}.MVE_AH.AUC,1:20); ...
339 arrayfun (@ (i) STARE.db{i}.DDFB3_AH.AUC,1:20);
340 arrayfun (@ (i) STARE.db{i}.DDFB3MidHomo_AH.AUC,1:20)]1"';
341

342 figure('color', 'white'),

343 bar (AUCplt, 'grouped', 'BaseValue',0.80);

344 title ('STARE AH AUC', 'fontsize',b20);

345 legend('MVE', 'DDFB', 'DDFB w/ Homomorphic filter');

346

347

348 % STARE VK

349 AUCplt = [arrayfun(@ (i) STARE.db{i}.MVE_VK.AUC,1:20);

350 arrayfun (@ (i) STARE.db{i}.DDFB3.VK.AUC,1:20);
351 arrayfun (@ (i) STARE.db{i}.DDFB3MidHomo.VK.AUC,1:20)1"';
352

353 figure('color', 'white'),

354 bar (AUCplt, 'grouped', 'BaseValue',0.80);

355 title ('STARE VK AUC', 'fontsize',20);

356 legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic filter');

357

358 %% G. Calculate the mean and standard deviation

359 mnMVE = mean (arrayfun(Q (i) DRIVE.db{i}.MVE.AUC,1:40));

30 mnDDFB = mean (arrayfun (@ (i) DRIVE_db{i}.DDFB3.AUC,1:40));
361 mnDDFB3MidHomo = mean (arrayfun (@ (i)
DRIVE._db{i}.DDFB3MidHomo.AUC,1:40));

SpecificRetinalScript.m

o

Run script Retinal EnhanceScript.m before this script!
"i" is the retinal image index. For STARE images, change
DRIVE_.db to STARE.db, corresponding traceAH/traceVK and
corresponding MVE_AH/MVE_VK, etc.

= 34;

o°

o

oe

© O N o s W N e
(= o°

% A. Generate the result as seen in Figure 2 and Figure 24

o

—
o

figure('color', 'white', 'name’', ...
['Retinal Image ' num2str(i)l,...
'NumberTitle', 'off'),

e e e
s W N =

subplot (3,3,1),

imagesc (DRIVE.db{i}.I);

axis off

subplot (3, 3,2),

imagesc (DRIVE.db{i}.diffuse);

e
® N9 o »

-
©
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56

axis off

subplot (3, 3,3),

imagesc (DRIVE.db{i}.trace);
axis off

subplot (3, 3,4),

imagesc (DRIVE_db{i}.MVE.enhance) ;

axis off

subplot (3,3,5),

imagesc (DRIVE_.db{i}.DDFB3.enhance) ;

axis off

subplot (3,3, 6),
imagesc(DRIVE_db{i}.DDFB3MidHomo.enhance);
axis off

subplot (3,3,7),

imagesc (DRIVE.db{i}.MVE.enhance > DRIVE_db{i}.MVE.thresh);

axis off

subplot (3, 3,8),

imagesc (DRIVE_db{i}.DDFB3.enhance > DRIVE.db{i}.DDFB3.thresh);

axis off

subplot (3, 3,9),

imagesc (DRIVE_db{i}.DDFB3MidHomo.enhance >
DRIVE.db{i}.DDFB3MidHomo.thresh) ;

axis off

%% B. Generate ROC curve seen in Figure 24
figure('color', 'white', 'name', ...
['Retinal Image ' num2str(i) ' ROC'], ...
'NumberTitle', 'off'),

hold on,

plot (DRIVE.db{i}.MVE.X,DRIVE.db{i}.MVE.Y, 'g");

plot (DRIVE_db{i}.DDFB3.X,DRIVE.db{i}.DDFB3.Y,'r");

plot (DRIVE_db{i}.DDFB3MidHomo.X, DRIVE_db{i}.DDFB3MidHomo.Y, 'b');
hold off

legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic');

© 0N R W N

-
o

% PlacentalEnhanceScript.m

%% Load the placenta images, its masks and its hand traces

sel = [1973;2041;2095;2141;2561;2666;2743;2744; ..
2753;2772;2774;2777;2946;3321;3340;3355];

Placenta.db = cell(size(sel));

for j = 1 : length(sel)
Placenta = imread(['CD.' num2str(sel(j)) '-FR-FS2.bmp']);
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18
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23
24
25
26
27
28
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34
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50
51
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53

54
55
56

end

o
%%

MVE

DDF

DDF

mid

par

imread ([num2str(sel (j)) 'Traced.png'],'png');
double (T > 0);

imread ([ 'mask_-T' num2str(sel(j)) '-FR-FS2.bmp']);
double (M > 0);

T RAHAHA
I

Placenta-db{j} = ...
struct ('I',double (Placenta), 'trace',T, 'mask’',M);

Enahance Placenta

option = struct('FrangiScaleRange', [3.9 6.2], ...
'FrangiScaleRatio', 2.3, 'FrangiBetaOne', 2.6,
'FrangiBetaTwo', 37.5,...
'verbose', false, 'BlackWhite',true);

Boption = struct('N’',3,'sigma',3.7,...
'beta',0.4,'c',7.9,...
'LightonDark', false);

BHoption = struct('N',3,'sigma',1.3,...
'beta',41.4,'c',35,...
'LightonDark', false);

Option = struct('func',@(I,opt) homofilter (I,opt),...
'method', 'Butterworth’', ...
'n',2,'D0',228.8, 'alphal',0.5, 'alphaH',1.9);

for j = 1 : numel(sel)
disp(['Scanning image ' num2str(j)1);

% The marking used to identify binary regions
mark = max (Placenta-db{j}.trace(:));

%$%% 1. MVE
Temp = struct();

% Use the Multiscale enhancement
Temp.MVEoption = MVEoption;

[enhance,—,~] = FrangiFilter2D (Placenta-db{j}.I(:,:,2),
Temp.MVEoption);

Temp.enhance = enhance;

% Get the ROC curve
[

X,Y,T,AUC] =
perfcurve (Placenta-db{j}.trace (Placenta.db{j}.mask == ...
mark), ...
enhance (Placenta-db{j}.mask == mark),mark);

Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;
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58
59
60
61
62
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64
65
66
67
68
69
70
71
72
73
74
75
76
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78
79
80
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82
83
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86
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88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

% Get the maximum accuracy
[

Accy,t] = SoftAccuracy (enhance (Placenta.db{j}.mask == mark),...
Placenta.db{j}.trace (Placenta-db{j}.mask == mark));
[accy,1] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

% Get the MCC curve

[ MCC,t ] = MCCeff (enhance (Placenta-db{j}.mask == mark),...
Placenta.db{j}.trace (Placenta-db{j}.mask == mark));

Temp.MCC = MCC(2:end—1); Temp.MCCthresh = t(2:end-1);

Temp .MCCAUC = trapz(t(2:end—1),MCC(2:end-1));

Placenta-db{j}.MVE = Temp;

o

%% 2. DDFB
Temp = struct();

Temp.DDFBoption = DDFBoption;

enhance =
DFBMultiscaleEnhance (Placenta-db{j}.I(:,:,2), Temp.DDFBoption)
Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = .
perfcurve (Placenta.db{j}.trace(Placenta_db{j}.mask ==
mark), ...
enhance(Placenta_db{j}.mask == mark) ,mark) ;

Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp.AUC = AUC;

% Get the maximum accuracy
[

Accy,t] = SoftAccuracy(enhance(Placenta_db{j}.mask == mark), ...
Placenta.db{j}.trace (Placenta-db{j}.mask == mark));
[accy,i] = max (Accy);

Temp.accy = accy; Temp.thresh = t(i);

% Get the MCC curve

[ MCC,t ] = MCCeff (enhance (Placenta-db{j}.mask == mark),...
Placenta.db{j}.trace (Placenta-db{j}.mask == mark));

Temp.MCC = MCC(2:end—1); Temp.MCCthresh = t(2:end-1);

Temp .MCCAUC = trapz(t(2:end-1),MCC(2:end-1));

Placenta.db{j} = setfield(Placenta.db{j}, ...
['DDFB' num2str (Temp.DDFBoption.N) ], Temp);

%%% 3. DDFB homomorphic mid
Temp = struct();

Temp.DDFBoption = DDFBHoption;
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138
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142
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144
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147

148
149
150
151
152

Temp.midOption = midOption;

enhance = DFBMultiscaleEnhance (Placenta-db{j}.I(:,:,2),...
Temp.DDFBoption, Temp.midOption);

Temp.enhance = enhance;

% Get the ROC curve
[X,Y,T,AUC] = .
perfcurve (Placenta-db{j}.trace (Placenta.db{j}.mask ==
mark), .
enhance (Placenta_db{j}.mask == mark),mark);
Temp.X = X; Temp.Y = Y; Temp.T = T;
Temp .AUC = AUC;

% Get the maximum accuracy
[

Accy,t] = SoftAccuracy(enhance(Placenta_db{j}.mask == mark), ...
Placenta.db{j}.trace (Placenta.db{j}.mask == mark));
[accy,i] = max(Accy);

Temp.accy = accy; Temp.thresh = t(i);

% Get the MCC curve

[ MCC,t ] = MCCeff (enhance (Placenta_db{j}.mask == mark),...
Placenta.db{j}.trace (Placenta.db{j}.mask == mark));

Temp.MCC = MCC(2:end—1); Temp.MCCthresh = t(2:end-1);

Temp.MCCAUC = trapz(t(2:end-1),MCC(2:end-1));

Placenta.db{j} = setfield(Placenta_db{j},...
['DDFB' num2str (Temp.DDFBoption.N) 'MidHomo'], Temp);

end

% B. Generate ROC curve seen in Figure 30

o°

AUCplt = [arrayfun (@ (i) Placenta.db{i}.MVE.AUC,1:16);
arrayfun (@ (i) Placenta-db{i}.DDFB3.AUC,1:16);
arrayfun (@ (i) Placenta-db{i}.DDFB3MidHomo.AUC,1:16)]"';

figure('color', 'white'),

bar (AUCplt, 'grouped', 'BaseValue',0.50);
title('Placenta ROC AUC', 'fontsize',20);

legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic filter');

MCCAUCplt = [arrayfun(@Q(i) Placenta.db{i}.MVE.MCCAUC,1:16);
arrayfun (@ (i) Placenta.db{i}.DDFB3.MCCAUC,1:16);
arrayfun (@ (i)

Placenta.db{i}.DDFB3MidHomo.MCCAUC,1:16)]1";

figure('color', 'white'),

bar (MCCAUCplt, 'grouped', 'BasevValue',0);

title ('Placenta MCC AUC', 'fontsize',20);

legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic filter');
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%% C. Generate ROC curve seen in Figure 31
i = 2;

figure('color', 'white', 'name’, .
['Retinal Image ' num2str(i)],..
'NumberTitle', 'off'),

subplot (3,3,1),

imagesc (uint8 (Placenta-db{i}.I));
axis off

subplot (3,3,2),

imagesc (Placenta.-db{i}.trace);
axis off

subplot (3,3,4),

imagesc (Placenta-db{i}.MVE.enhance);

axis off

subplot (3,3,5),
imagesc(Placenta-db{i}.DDFB3.enhance);

axis off

subplot (3, 3, 6),

imagesc (Placenta.-db{i}.DDFB3MidHomo.enhance) ;
axis off

subplot (3,3,7),

imagesc (Placenta.db{i}.MVE.enhance > Placenta.db{i}.MVE.thresh);

axis off

subplot (3,3,8),

imagesc (Placenta.db{i}.DDFB3.enhance > Placenta.db{i}.DDFB3.thresh);

axis off

subplot (3,3,9),

imagesc (Placenta-db{i}.DDFB3MidHomo.enhance >
Placenta_db{i}.DDFB3MidHomo.thresh) ;

axis off

figure('color', 'white', 'name’', ...
['Placetal Image ' num2str(sel(i)) ' ROC'],...
'NumberTitle', 'off'),

hold on,

plot (Placenta.db{i}.MVE.X,Placenta.db{i}.MVE.Y, 'g");

plot (Placenta.db{i}.DDFB3.X,Placenta_db{i}.DDFB3.Y,'r");

plot (Placenta-db{i}.DDFB3MidHomo.X, . ..
Placenta._db{i}.DDFB3MidHomo.Y, 'b");

hold off
legend ('MVE', 'DDFB', 'DDFB w/ Homomorphic');

figure('color', 'white', 'name’, ...

['Placetal Image ' num2str(sel(i)) ' MCC'],...
'NumberTitle', 'off'),
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203
204
205
206
207
208
209

hold on,

plot (Placenta.db{i}.

plot (Placenta-db{i}.

plot (Placenta-db{i}.
Placenta.-db{i}.

hold off

legend ('MVE', 'DDFB',

MVE.MCCthresh, Placenta.db{i}.MVE.MCC, 'g');
DDFB3.MCCthresh,Placenta-db{i}.DDFB3.MCC, 'r');
DDFB3MidHomo .MCCthresh, ...
DDFB3MidHomo .MCC, 'b"') ;

'"DDFB w/ Homomorphic');

108




BIBLIOGRAPHY

109



BIBLIOGRAPHY

[1] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal
images by piecewise threshold probing of a matched filter response,” IEEE
Transactions on Medical Imaging, vol. 19, no. 3, pp. 203-210, 2000.

[2] C. Bauer and H. Bischof, “A novel approach for detection of tubular objects and
its application to medical image analysis,” in Proceedings of the 30th DAGM
Symposium on Pattern Recognition, pp. 163-172, Springer-Verlag, 2008.

[3] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. Ginneken,
“Ridge-based vessel segmentation in color images of the retina,” IEEE
Transactions on Medical Imaging, vol. 23, no. 4, pp. 501-509, 2004.

[4] Y. Yang, S. Huang, and N. Rao, “An automatic hybrid method for retinal blood
vessel extraction,” International Journal of Applied Mathematical Computer
Science, vol. 18, no. 3, pp. 399-407, 2008.

[5] C. Kirbas and F. Quek, “Vessel extraction techniques and algorithms: A survey,”

in Third IEEE Symposium on Bioinformatics and Bioengineering Proceedings,
pp. 238-245, 2003.

[6] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale vessel
enhancement filtering,” in Medical Image Computing and Computer-Assisted
Interventation, pp. 130137, Springer-Verlag, 1998.

[7] P. Truc, M. Khan, Y.-K. Lee, S. Lee, and T.-S. Kim, “Vessel enhancement filter
using directional filter bank,” Computer Vision Image Understand, vol. 113,
no. 1, pp. 101-112, 2009.

[8] A. Cavallerano, J. Cavallerano, P. Katalinic, A. M. Tolson, P. Aiello, L. Aiello,
et al., “Use of joslin vision network digital-video nonmydriatic retinal imaging
to assess diabetic retinopathy in a clinical program,” Retina, vol. 23, no. 2,
pp. 215-223, 2003.

[9] F. Zana and J. Klein, “A multimodal registration algorithm of eye fundus images
using vessels detection and hough transform,” IEEE Transactions on Medical
Imaging, vol. 18, no. 5, pp. 419-428, 1999.

[10] E. Grisan, M. Foracchia, and A. Ruggeri, “A novel method for the automatic
grading of retinal vessel tortuosity,” IEEE Transactions on Medical Imaging,
vol. 27, no. 3, pp. 310-319, 2008.

110



[11] A. Youssif, A. Ghalwash, and A. Ghoneim, “Optic disc detection from normalized
digital fundus images by means of a vessels’ direction matched filter,” IEEFE
Transactions on Medical Imaging, vol. 27, no. 1, pp. 11-18, 2008.

[12] N. Almoussa, B. Dutra, B. Lampe, P. Getreuer, T. Wittman, C. Salafia, and
L. Vese, “Automated vasculature extraction from placenta images,”
Proceedings of SPIE, Medical Imaging 2011: Image Processing, vol. 7962,
2011.

[13] L. Liu, D. Zhang, and J. You, “Detecting wide lines using isotropic nonlinear
filtering,” IEEE Transactions on Image Processing, vol. 16, no. 6,
pp. 1584-1595, 2007.

[14] C. Steger, “An unbiased detector of curvilinear structures,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp. 113-125,
1998.

[15] J.-M. Chang, N. Huynh, M. Vazquez, and C. Salafia, “Vessel enhancement with
multiscale and curvilinear filter matching for placenta images.” Submitted
2013.

[16] H. Lange, “Automatic glare removal in reflectance imagery of the uterine cervix,”
Proceedings of SPIE, vol. 5747, pp. 2183-2192, 2005.

[17] R. Gonzalez and R. Woods, Digital Image Processing. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2nd ed., 1992.

[18] T. Lindeberg, Scale-Space Theory in Computer Vision. Kluwer Academic
Publishers, 1994.

[19] R. Bamberger and M. Smith, “A filter bank for the directional decomposition of
images: theory and design,” IEEE Transactions on Signal Processing, vol. 40,
no. 4, pp. 882-893, 1992.

[20] S.-I. Park, M. Smith, and R. Mersereau, “A new directional filter bank for image
analysis and classification,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing Proceedings, vol. 3, pp. 1417-1420, 1999.

[21] S.-I. Park, M. Smith, and R. Mersereau, “Improved structures of maximally
decimated directional filter banks for spatial image analysis,” IEEFE
Transactions on Image Processing, vol. 13, no. 11, pp. 1424-1431, 2004.

[22] R. Bamberger, “New subband decompositions and coders for image and video
compression,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing Proceedings, vol. 3, pp. 217-220, 1992.

111



[23] W. Rudin, Real and complez analysis. New York, NY, USA: McGraw-Hill, Inc.,
3rd ed., 1987. Theorem 7.26.

[24] IEEE Acoustics and Speech and Signal Processing Society, Programs for digital
signal processing. IEEE, 1979. Algorithm 5.2.

[25] W.-K. Chen, Passive, active, and digital filters. Boca Raton, FL, USA: CRC
Press, Inc., 3rd ed., 2009.

[26] S.-1. Park, New directional filter banks and their applications in image processing,
Ph.d. thesis. School of Electrical and Computer Engineering, Georgia
Institute of Technology, 1999.

[27] Wikipedia, “Receiver operating characteristic — Wikipedia, the free
encyclopedia,” 2013. [Online; accessed 14-2-2013].

[28] M. Niemeijer, J. Staal, B. Ginneken, M. Loog, and M. Abramoff, “Comparative
study of retinal vessel segmentation methods on a new publicly available
database,” Proceedings of SPIE, vol. 5370, no. 1, pp. 648-656, 2004.

[29] X. Jiang and D. Mojon, “Adaptive local thresholding by verification-based
multithreshold probing with application to vessel detection in retinal images,’
IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 1, pp. 131-137, 2003.

i

[30] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen, “Assessing the
accuracy of prediction algorithms for classification: An overview,”
Bioinformatics, vol. 16, no. 5, pp. 412-424, 2000.

[31] V. Cerny, “Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm,” Journal of Optimization Theory and
Applications, vol. 45, pp. 41-51, 1985.

[32] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,”
Journal of Statistical Physics, vol. 34, pp. 975-986, 1984.

112






