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Methods to extract vessel networks in medical images have been in high 

demand for its applications to health risk predictions. For example, vessel 

enhancement of retinal images has shown promises in diagnosing diabetes. Within 

the existing literature, multiscale vessel enhancement stands out as one of the best 

for its accuracy, speed, and simplicity. But like many vessel extraction techniques, 

the efficacy of the method is greatly hindered in the presence of noise, lighting 

variations, and decreased resolution. This deficiency is presents itself in retinal 

images and are particularly pronounced in digital photographs of human placenta.

Retinal images have a been popular data set of testing vessel extraction 

methods because of its simplicity in anatomical structure yet high hopes in 

diagnosing conditions such as diabetic retinopathy and glaucoma. Thus, the thesis 

will focus on the application of vessel extraction methods on retinal images. 

Specifically, we focus on the DRIVE and STARE database.

Also, recent placental pathology evidence has contributed to current 

understanding of causes of low birth weight and preterm birth, each has been 

linked to increased risk of later neurodevelopmental disorders. Among various 

factors that cause such disorders, the vessel network on the placenta has been
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hypothesized to offer the most clue in bridging that connection. Herein lies the 

most essential step of the blood vessel extraction, which has only been done 

manually through a laborious process.

Motivated by its ability to handle curvilinear structures, we propose the use 

of directional filter banks to further enhance the results obtained from the 

multiscale method. Validating experiments will be performed on a private 

database that is made available by the Placental Analytics, LLC.

It will be shown that for retinal images, the directional filter bank approach 

significantly improves the performance over the well-known multiscale vessel 

enhancement method. However, the directional filter bank approach are 

comparable to multiscale vessel enhancement on placentas.
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CHAPTER 1 

INTRODUCTION 

The breakthroughs in imaging technology such as MRIs, sonograms, and 

even digital cameras have created a wealth of data for the medical field. With such 

data, there have been a motivation to use such tools for diagnosis. Currently, the 

paradigm for medical imaging is focused on improving the technology so that 

medical personnel can more accurately diagnose a patient. However, this paradigm 

is limited by time and expenses which motivates the automation of some of the 

diagnosis process. Such motivation has partially fueled the growth of the image 

processing field. Its goal is to process the images so that there is a higher 

medically relevant quality so that a medical technician may diagnose more 

accurately. Specifically, this involves the reduction of noise of an image, removing 

irrelevant features, and highlighting relevant features. One such relevant feature 

this thesis will focus on are the veins and arteries of a two-dimensional image. 

Together, they are called vessels and the process of visually locating such vessels is 

called vessel extraction. Finding the location of vessels provides a measurement for 

shape, coloration, size, and spatial distribution of vessels. Such statistical features 

are useful in the medical diagnosis process.

There is an enormous amount of literature on methods of extracting vessels. 

They include matched filter response [1], gradient vector fields [2], ridge based 

methods [3], and hybrid methods [4]. We refer to [5] for a survey of vessel 

extraction methods. One of the popular methods is multiscale vessel enhancement 

[6 ], which will be discussed in chapter 2. The focus of this thesis will be the
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directional filter bank modification of multiscale vessel enhancement method [7], 

called decimation-free directional filter bank (DDFB) vessel enhancement.

To compare the different vessel extraction methods, retinal image databases 

STARE [1] and DRIVE [3] are used. A placenta data set provided by Placental 

Analytics LLC is also tested on. This is to test whether directional filter banks is 

generally better than multiscale vessel enhancement or just on retinal images. 

Section 1.2 will discuss the retinal image databases in detail and section 1.3 will 

discuss the placental image databases in detail.

A brief introduction to image processing techniques is provided in section 

1.1. For the remainder of chapter 1, we will mention the prepocessing steps that 

are performed on the mentioned database images. With the exception of 

homomorphic filtering, these preprocessing steps will only be briefly mentioned 

and a reference will be provided for those interested in them.

Chapter 2 will explore the necessary parts of differential geometry to lay 

the necessary groundwork for directional filter banks in chapter 3. Its highlight 

will be a popular method of vessel extraction called multiscale vessel enhancement 

[6 ], with application to retinal images. To evaluate its performance, an accuracy 

measure will be introduced.

Chapter 3 will focus on the theory of directional filter banks as it pertains 

to vessel enhancement. Along the way, concepts from signal processing with 

regards to filtering will be explained. The chapter will conclude with the 

application of directional filter banks on retinal images and placentas. Metrics for 

comparing results between multiscale vessel enhancement and directional filter 

banks will also be introduced.
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An Introduction to Image Processing Techniques 

An m  x n dimensional grayscale image of dimension can mathematically be 

represented as a function I : { 1 , 2 , M} x ( 1 , 2 , N} —)■ R. I  is can be extended

For notational convenience, we will implicitly refer to an image I  : Z2 —>• R, whose 

domain is Z2, to be the discrete symmetric extension of

For a color image, the digital representation involves the three color 

channels red, green, and blue. The mathematical representation is then a function 

/  =  (R , G, B) : Z2 —¥ R3 where R  : Z2 —>• R is the red channel, G : Z2 —> R is the 

green channel, and B  : Z2 —> R is the blue channel. And similarly, R, G, and B  

are discrete symmetric extensions of a corresponing function with domain

A square bracket and curly bracket will be used for operators such as 

differential operators (L[I]) and Fourier transform (${/})■ The composition of /  

and g is denoted by f o g .  The inner product of x and y is defined (x, y) =  xTy  

along with its respective norm ||x||2 =  (x, x).

Convolution for functions / ,  g : R —> R is defined as

while functions with two-dimensional domains / ,  g : R2 —> R is defined as

using the discrete symmetric extension I : Z2 —» R where 

I(P'l> n2) =  f(s(ni; M),  s(n2; N))  and

if rv l is even

N  + 1 -  ( n -  \ §]N)  if fwl is odd
(1.1)

I : {1 ,2,..., M}  x {1 , 2,..., N} —> R, whose domain is {1 ,2,..., M}  x {1 , 2 ,..., N}.

{ l,2 ,... ,M } x { l,2 ,...,A } .
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For integer-domain functions / ,  g : {1 , TV} —»• M and

x {1 , N}  —> R, (discrete symmetric) convolution is, instead,

defined as
N  M  N

( /  * f f) (n)  =  /(*)^(n -  0  and ( /  * 9 ) ( h  j )  =  ^  -  *»n -  •?)>
2=1 2=1 j=l

respectively, where / ,  g are the discrete symmetric extension of / ,  g.

Finally, the process of thresholding will be used throughout this thesis. 

Suppose we have /  : Z2 —> R. Then a thresholding of I  by t is a function 

T  : Z2 —¥ (0,1} such that

T(x) =
1 if I(x) > t

(1.2)
0  otherwise.

Retinal Image Database 

As mentioned in [3], the use of retinal images has contributed to diagnostics 

of diabetic retinopathy [8], retinal vein occlusion [9], hypertension [10], and 

glaucoma [11]. One of the important features in retinal images is the vessel. The 

DRIVE and STARE databases are popular data sets to test on. Their popularity 

is due to their containing mainly visible vessels and clinically shown diagnostics 

potential.

The DRIVE database [3] contains 40 retinal images evenly divided into the 

training and test data sets. It is also called the Utrecht database since it is 

collected at University Medical Center Utrecht, The Netherlands. For each of the 

training images, there is a corresponding hand trace ground truth image to test 

the accuracy of the vessel extraction. And for each of the testing images, there are 

two corresponding hand traces to test the accuracy of the vessel extraction. 

Because the retinal images are taken with a background which is not relevant to
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the extraction result, the background can be removed with a mask that is also 

provided in the database.

The STARE database [1] contains 20 retinal images and for each image, 

there are two corresponding hand traces, drawn by Hoover (which will be denoted 

as AH) and Kouznetsova (which will be denoted as VK). The VK hand traces are 

more detailed then the AH hand trace, creating an extra challenge for vessel 

extraction. The STARE database is also called Hoover database for its association 

with Adam Hoover. The retinal images were collected from the Shiley Eye Center 

at University of California, San Diego, and Veterans Administration Medical 

Center in San Diego. Table 1 shows the retinal image numbers for the STARE 

image and a corresponding indices later used in bar graphs.

A mask is not provided in the data set; however, it can be manually created 

by picking a good threshold in the red channel because in the red channel, the 

background is dark compared to the retina. Precisely, M  : Z2 —»• {0,1} is a mask 

such that

thresholds. We mention that some of the STARE images have different threshold 

values because they may have been captured under different lighting conditions, 

causing some images to be slightly brighter or dark than others. Hence, different 

threshold values are chosen.

0  otherwise

1 if R(x, y) > threshold
(1.3)

where R(x, y) is the red channel of a color image. Table 1 shows the specified
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TABLE 1. Thresholds for Creating Masks in STARE

STARE index 1 2 3 4 5 6 7 8 9 10

Retinal image 1 2 3 4 5 44 77 81 82 139

Threshold 50 40 60 33 50 70 50 50 50 50

STARE number 11 12 13 14 15 16 17 18 19 20

Retinal image 162 163 235 236 239 240 255 291 319 324

Threshold 50 50 50 50 50 40 50 50 50 50

Placental Image Database 

We will see that the directional filter bank approach works well on retinal 

images. It is then natural to ask if it will work on general vessel images. To 

attempt an answer, we will also test on placenta photographs provided by Placenta 

Analytics, LLC. The placenta is an organ that regulates nutrient uptake, waste 

elimination, and gas exchange between the fetus and the mother. In theory, the 

health of the placenta is then correlated with the health of the fetus. Thus, 

researchers at Placenta Analytics study the potential of using the placenta to 

predict the health of the fetus after birth.

To test the researchers’ theory, they organized a set of approximately 3200 

placental images is obtained by photographing washed placentas for study. Out of 

those, 330 has a trace of the boundary of the placenta plate and a simple hand 

trace is drawn to identify the location of the vessels by a trained pathologist. Of 

the 330, we choose 16 to test the directional filter bank approach. Table 2 shows 

the list of placentas and the corresponding indices later used in bar graphs.
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TABLE 2. Placental Images Used in This Study

Placental index 1 2 3 4 5 6 7 8

Placental image 1973 2041 2095 2141 4561 2666 2743 2744

Placental index 9 10 11 12 13 14 15 16

Placental image 2753 2772 2774 2777 2946 3321 3340 3355

The placentas have regions with discolorations and each placenta has a 

distinct color profile causing simple extraction methods such as thresholding to 

fail. Also, the placenta has a lot of vessels with large vessels and small vessels 

many times overlapping with each other. Even with the best vessel extraction 

method, this causes an enormous problem in accuracy. However, the possibility of 

having a prediction for the health of a fetus encourages further research.

At the present, the only journal-published work on the vessel extraction of 

such data set has been from [12]. They have shown that the vessels are difficult 

due to the discoloration on the surface of the placenta. They provide a neural 

network approach using 5 features: the gradient magnitude, gradient angle, 

wide-line detector [13], Steger detector [14], and their own modified road detector. 

They report some success in vessel extraction.

Another notable work comes from [15]. It shows that for placental images, 

a ridgelet filter applied on the multiscale vessel enhancement thresholded result 

produces a significant performance compared to just the multiscale vessel 

enhancement and neural network. However, [15] is still a work in progress so no 

conclusion can yet be drawn.
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Preprocessing

The placental images require preprocessing before the vessel extraction 

method to be performed. Figure 1 shows the steps in cropping the placental 

images starting with a raw placental image (Figure la). The green channel is 

isolated (Figure lb) and the brightness of the green channel is scaled to highlight 

the brightest and darkest parts of the image (Figure lc). A threshold is performed 

with the average brightness intensity as the t value in equation (1.3) (Figure Id). 

From the threshold, the placenta is isolated (Figure le). Using the process of 

filling in and morphological erosion, the mask is constructed (Figure If). From the 

mask, the placenta can be isolated by cropping (Figure lg). Finally, deglaring is 

performed to remove bright spots on the placenta surface (Figure lh). Deglaring is 

performed in the manner of [12], which is a simplified version of [16]. This involves 

a combination of thresholding, top-hat filtering, and dilation performed to identify 

the glare region. The region is then replaced using Laplace’s equation.

The vessel enhancement methods discussed in this thesis will use the large 

change in brightness intensity in an image. The boundary between the black 

background and the foreground causes a sudden change which will be interpreted 

as a vessel when the vessel extraction algorithms are performed on the images. For 

placental images, such effect can be ignored using the mask but for retinal images, 

the actual vessels can be negatively identified if they are too close to such 

boundary. To negate this for retinal images, the sudden change from foreground to 

background will be removed by foreground diffusion using the heat equation; the 

foreground color on the boundary is diffused through the background. The masks 

for each of the images are usually a few pixels off of the actual boundary between 

the foreground and background so a few (specifically five pixels) of the boundary 

are removed from the foreground and relabeled as the background before the
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(a) Placental image (b) Green channel (c) Scaled green

(d) Average threshold (e) Largest object (f) Mask

(g) Cropped (h) Glare removal

FIGURE 1. Placental image preprocessing.



diffusion is applied. Figure 2 shows an example of diffusion on a retinal image 

from the DRIVE database.

(a) Image 34 of DRIVE database (b) Diffused version of image 34

FIGURE 2. An example of diffusion using the heat equation.

Homomorphic Filtering

Images, especially medical images, may suffer from uneven lighting. To deal 

with this, homomorphic filtering is an option to fix the lighting of such image.

In the simple image formation model [17], a light source is shined on a 

surface with intensity i(x,y) : Z2 —¥ [0 , oo) and the light source is reflected into a 

light capturing device, for example a camera, which captures a portion of 

reflection, r(x, y) : Z2 —> [0,1], of the light. Hence, the image can be modeled as 

the product

I{x, y) =  i(x, y)r(x,y).  (1.4)

In this model, illumination has slow variations so it has low frequency, that 

is |3r{'i}(u;)l small for large |w| and |#{*}(w)l is large for small |w|. And reflection 

has much of the variations present in the image itself so it has a high frequency if
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the image has high frequency, that is |3 '{r Ku;)l is small for small |o;| and |5 '{r}(w)| 

is large for large |w|.

The purpose of homomorphic filtering is to scale the illumination so that it 

is approximately constant. Typically, the illumination and reflection functions are 

not known, hence equation (1.4) can only serve as a model. However, the fact that 

illumination and reflection have opposing frequency information for the image 

provides a way to scale the illumination.

To perform the scaling, the Fourier transform on the log of the image is 

performed:

£{log/} =  S{log*} +  #{logr}.

Given a filter H{oj) : R2 —> C, we can scale the Fourier transform with

T ( uj) := H(u)${[og =  H(u)${log i } ( u )  + H(u)${logr}(u>).

The resulting image is obtained by a log and inverse Fourier transform:

The filter H(oS) is called a homomorphic filter function. Its purpose is to 

scale the illumination while preserving reflection. An example of H  looks like the 

curve in Figure 3. Notice that H(u>) is small for low |u;| and approximately 

constant for large. When multiplied with ^{log i}(w), the low frequency will be 

dampened so the illumination term of the new image V is approximately constant. 

When multiplied with J{logr}(oj), the high frequency will approximately be the 

same so the reflection term of the new image I' is approximately the same as the 

original image I. Thus, in theory, homomorphic fixes the illumination to a 

constant and remove the uneven lighting.
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TABLE 3. A List of Commonly Used High-Pass Filters

Ideal Butterworth Gaussian

--'S/'"II 0  if ||u;|| < D0

1_if ||u/|| > D0 
k__

~  i+[.D2/|M|]2n'
h(u) = 1 -  e-IMH/(2Dg)

Without going into too much detail, we only mention that the desired 

homomorphic filter is constructed by

H(u) = (aH -  a L)h(uj) +  aL

where h is often one of three high-pass filters given in table 3 for some constants 

Do > 0, n G Z. We refer to [17] for the details.

Figure 4 shows two examples of the effect of homomorphic filtering using 

parameters: Butterworth, Do =  50, =  0.1, a #  =  1.0. Notice the removal of the

different brightness of the vessel background and the bright spot in the middel, 

also called an occlusion. The use of homomorphic filtering will be mainly used to 

remove lighting so that the transition from a bright spot to a dark spot (as seen in 

Figure 4c with a bright center and darker region around it) is not falsely identified 

as a vessel.

H

FIGURE 3. An example of a homomorphic filter function.
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(a) The (diffused) DRIVE image 23 (b) Homomorphic filtering images of (a)

(c) The (diffused) DRIVE image 34 (d) Homomorphic filtering images of (c)

FIGURE 4. Example images filtered by the homomorphic filter.
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CHAPTER 2 

MULTISCALE VESSEL ENHANCEMENT 

Much success in vessel extraction has come from multiscale vessel 

enhancement [6 ]. By representing an image as a 2D function and solely studying 

the eigenvalues of its Hessian, multiscale vessel enhancement’s efficiency, 

simplicity, and accuracy has allowed it to still be considered as one of the best 

vessel extraction methods. Here, an introduction to multiscale differentiation will 

be provided. The Hessian is then defined from the multiscale differential operators. 

From such Hessian, multiscale vessel enhancement from [6 ] is defined and a 

demonstration of its accuracy on retinal images will be presented. The chapter will 

conclude with a brief discussion on the limitations of multiscale vessel 

enhancement.

Multiscale Differential Operators 

We start with a look at the one-dimensional signal S  : Z —» M to introduce 

multiscale differentiation. The signal contains features that may be studied from 

differential properties. For example, a relatively flat region may be identified as a 

region with a relatively small derivative and a parabolic region may be identified 

by a change of sign in the first derivative and a uniformly positive/negative second 

derivative. However, numerical methods such as finite difference schemes for 

differential operators are highly susceptible to noise which are present in typical 

signals.
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(a) The original signal (b) The noisy signal

FIGURE 5 . A ID signal and its noisy counterpart.

As an example, consider a signal

Y ( x ) =  ip2(x) -  ''Pi(x) + Si>i/2(x) where i>a{x) =  ̂ ^  (2 .1)
0 otherwise

and a noisy signal

S{x) = Y ( x )  + r}(x) (2.2)

where rj is Gaussian white noise with signal-to-noise ratio of 10 and sampled at a 

rate of h — 0.03 units (x E 0.03Z). Figure 5a shows the function Y(x)  and 5(b) 

shows the noisy signal.

Using finite differences for derivatives, we get

^  S(x + h ) - S ( x - h ) ^  s „ ^  _  S ( x + h ) - 2 S ( x )  + S ( x - h ) '

Figure 6 shows that obtaining the first and second derivatives this way will 

poorly represent the true derivatives in the presence of noise.

To remedy this issue, the signal is first convolved with the Gaussian kernel:

Sa(•) =  Ga * S(-) (2.3)
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(a) actual first derivative of signal (b) actual second derivative of signal

3000

20

-2000

0

-3000,
-3 O

(c) finite difference first derivative (d) finite difference second derivative

FIGURE 6 . The impact of noise on finite difference.

where GCT(x) =  , -- is the Gaussian kernel and where D is the dimension

of x. D = 1 for signals and D = 2 for images.

Figure 7 shows the signal in Figure 5b that is denoised using such 

convolution process with different a values. Notice that a = 16 smooths the signal 

well enough to sufficiently recover the original signal (the smoothed signal is 

approximately a scalar multiple of the original signal). Also, as a increases, the 

small scale details are increasingly smoothed over. Hence, a small a removes some 

level of noise and large a removes much of the noise along with the small scale 

structures. This allows the separate processing of small scale and large scale 

structures. This effect can be seen in Figures 7c-e. Notice the large a removes the



small concavity changes, allowing for easier study of the larger interval with 

consistent concavity.

Figure 8  shows an example on a section of a retinal image and the varying 

cr-values of smoothing. Notice as a increases, the image gets blurrier. For example, 

cr =  2 smooths the image so a more appealing image occurs. A a — 4 removes most 

of the noise while keeping most of the important vessel features. For a =  8 , only 

the large scale vessels are noticeable, allowing the processing of only large scale 

vessels. And for cr = 16, much of the features are too blurry for comprehension.

It is now possible to compute the derivatives of the signal using, for 

example, finite difference on the convolved signal. However, the derivatives can be 

calculated using the property

Thus, the multiscale version of differential operators on a signal may be 

defined as the convolution of the signal with the differential operator applied on 

the Gaussian kernel with a specified a. For notational convenience, we define the 

first and second convolution derivatives to be

for some fixed scale a, where * is the convolution operator and the derivative 

normalization 7  introduced by Lindeberg [18]. 7  is used to scale the response of 

differential operators at multiple scales a. A detailed treatment of the use of 7  is 

found in Lindeberg [18]. To be consistent with [6 ], 7  is fixed to 0 for multiscale

S' = o1G°x * S (2.4)

and

(2.5)
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(a) Original signal (b) Noisy signal
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FIGURE 7. Noisy signal convolved with varying cr-valued Gaussian functions.



(a) Noisy retinal image (b) cr =  2 (c) a  =  4

(d) cr =  8 (e) a =  16

FIGURE 8 . Retinal Image Smoothed using Varying cr-valued Gaussian Functions.
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vessel enhancement and to be consistent with [7], 7  is fixed to 1 for decimation-free 

directional filter bank vessel enhancement.

Consider an image /  : Z2 -» R (i.e. grayscale image) and denote any 

x =  (x, y) G Z2 as a pixel. For multiscale analysis of images, we define the 2D 

versions of the Gaussian kernel and the associated multiscale derivatives as follows.o o

The Hessian provides the curvature information for an image. Suppose a 

pixel Xo is in a vessel of an image I. Then there is a direction with almost zero 

curvature, H x 0 for some x, and the orthogonal direction has a relatively large 

curvature, x (or its orthogonal direction) is then the minimization of H x (or 

maximization for the orthogonal direction). Theorem 2.1 shows that x is the 

eigenvector of the Hessian matrix and its eigenvalue is the amount of curvature 

since the Hessian is symmetric.

Figure 9 shows a pictorial example of this concept. It shows a vessel in blue 

with its blood-flow direction Vi and the orthogonal direction V2 . Along v 1? there

Vessel Extraction with the Hessian

second derivatives:

mixed derivatives: G^y(x, y) =  5^ 6e
Consequently, we have the derivatives for images

first derivatives:

original:

Iy = aJGy * I, Ixy =  a^Gly * /, Iyy = ^  G ^  * I

In general, for a differential operator L, L[I] = a1 L[Ga] * I. The 

convolution Hessian is similarly defined as

(2.6)
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is no curvature (H vx =  0) and along V2 , there is maximum curvature. v x and v 2 

are the eigenvectors of the Hessian H  at the start of the arrow in the Figure 9. 

Also, the corresponding eigenvalue Ai of Vi is equal to 0 and the corresponding 

eigenvalue A2 of v2 is equal to the maximum curvature.

Theorem  2.1. Let A be an m  x n matrix and Cn =  {x 6  I "  : Ilx ll2 =  1}- Then 

J p {  =  min ||Ax||2, u x =  argmin ||Ax | |2
x € C n x g C "

sfjri =  max ||Ax||2, u 2 =  argmax ||Ax ||2
x € C "  x g C n

where pi, iq are the eigenvalues and eigenvectors, respectively, of matrix

AT A.

Also, if  A is symmetric, then

I Ai | =  min ||Ax||2, v x =  argmin ||Ax | |2
x € C "  x € C "

|A21 =  max || Ax||2, v 2 = argmax ||Ax | |2
X6 C n x € C n

where A*, Vi are the eigenvalues and eigenvectors, respectively, of matrix A.

Proof The maximizer/minimizer x of ||Ax | |2 is a critical point of the function

/(x,/x) =  (Ax, Ax) - p ( ( x , x )  -  1)

where (x, y) =  xTy and p. is a Lagrange multiplier.

Calculating the partial derivative of / ,

0 =  dif(x, p) =  (diXT) A t A x  + x TATA(dix) — p(diXT)x — p xT(diX)

=  Xi e f  ( A t A x  — px) +  (x t At A — p x r )xiei

= Xief (ATAx — px) + Xi [ef (ATA x — /xx)]T

where x =  (aq, x2, ..., xn). So ATAx — p x  =  0 . And

0 =  ^ /(x ,/x )  =  (x,x) -  1 =  ||x ||| -  1
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so ||x||2 = 1. Hence, fi and x is an eigenvalue and eigenvector pair of ATA. Prom 

the definition of the || • H2 norm,

\\Ax\\l = ( A x ,A x ) = x TATA x  

=  /xxrx =  fi\\x\\l =  (1 .

So

= min IIv4x||2, -v/A*2 =  max II Ax||2
v x e c n x € C "

for some eigenvalues /^i, p 2 of ATA.

For the case where A is symmetric, A2x  — /xx =  0. If A and v  is an

eigenvalue and eigenvector pair of A, then A2\  = A2v. So A2 =  p* and Vj =  u* for

some eigenvalues A* and eigenvectors Vj for matrix A. Thus,

l*il =  min ||Ax||2, |A2| =  max \\Ax\\2
x € C n xG C n

for some eigenvalues Ai, A2 of A.

□
Ordering the two eigenvalues so that |Ai| < |A2|, we define the ratio

R =  Y  (2.7)
a 2

as the blobness measure. On a vessel location, Ai «  0 and A2 is large in 

magnitude. Thus, the smaller R  is, the more likely the pixel x is a part of a vessel.

But background pixels tend to be noisy so the eigenvalues of the Hessian 

for such pixels are small. For example, if Ai =  0.001, A2 =  0.010 then R = 0.1 so 

because R is small, we may identify the pixel with such Hessian eigenvalues to be a 

part of a vessel. However, the eigenvalues are small so the pixel neighborhood is 

locally flat. Thus, the pixel is not a part of a vessel. To account for this
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(a) Artificial vessel viewed from the (b) Artificial vessel viewed from the

top with the direction with least and side with the direction with least and

most curvature most curvature

FIGURE 9. An example of a vessel with its eigenvectors.

discrepancy, the second order structureness measure is used:

(2.8)

S  is small when the image is flat (low contrast) in the neighborhood of a specified 

pixel. Otherwise, the image has high contrast features. Thus, for a pixel to be 

considered as part of a vessel, R  should be small and S  should be large.

Rather than having two separate measures, the vesselness measure is 

defined to be

where the parameters /3 and c are the scaling parameters for R2 and S 2, 

respectively. Notice that to account for both a small R  and large S, f a is large for 

small R  and large S. Also, notice that f a is also dependent on the parameter a 

because the multiscale version of the partial derivatives on the image depends on a.

Because images tend to have either dark vessels with light background 

contrast (dark-on-light vessels) or light vessels with dark background contrast
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(light-on-dark vessels), the sign of the curvature (which is also the sign of the 

second eigenvalue) must be taken into account. So instead, we define the 

vesselness measure as

It is not complete without mentioning that a 3-D version of multiscale 

vessel enhancement is also available and detailed in [6].

With multiscale vessel enhancement defined, we are ready to look at its 

result on retinal images. An example of multiscale vessel enhancement on the 

STARE and DRIVE database can be seen in Figures 10 and 11, respectively. 

Figures 10(a) and 11(a) show a color image of the STARE and DRIVE sample. 

Typical features of a retinal image include a dark center due to low illumination of 

the back of the eye when the image is taken, a vessel center where the vessels 

branch out, and a bright circle around the vessel center called an occlusion.

Figures 10b and l ib  shows the green channel of the color image. For 

multiscale vessel to be used, a grayscale image /  : 1? —» R is needed as input. But 

color images are functions C  =  (R , G, B) : 1? —¥ 1R3 where R  is the red channel, G

otherwise
(2.9)

for light-on-dark vessel images and

otherwise
(2 .10)

for dark-on-light vessel images.

Finally, the vessel enhancement result is

u(x) =  maxt)(x; a).
v '  cr>o

(2 .11)

Results on Retinal Images



is the green channel, and B  is the blue channel. This situation can be solved by 

converting it into a grayscale by using a linear combination I  := a^R +  a2G +  a3B 

or selecting a single channel. The red channel is usually too saturated due to 

retinal images being mostly red in color. Vessels tend to have low intensity in the 

green channel while nonvessels tend to have higher intensity. And the blue channel 

tend to be too low in contrast be useful. Thus, the green channel is the best 

channel for multiscale vessel enhancement to be applied on and a linear 

combination will not work well.

The definition of the vessel enhancement v(x) evaluates v(x; a ) for all 

positive values of a. However, it is not practical to do so and there is a bias for 

identifying large vessels over small vessels when using large cr values. Thus, a small 

set of values for a is chosen instead. We choose the optimal case of uG  {1,3,5} 

along with /3 =  0.75 and 7  =  15. The choice of o comes from the size of the vessels 

which varies about 1 to 5 pixels while /? and 7  are chosen from frequently used 

values for them.

Figure 10 and 11 shows the result of multiscale vessel enhancement. Figure 

10a and 11a show the color retinal image. Figure 10b and l ib  shows the green 

channel. Figures 10c shows the AH hand trace, lOd shows the VK hand trace and 

11c show a human tracing of the vessels for comparison. Figure lOe and l id  shows 

the multiscale vessel enhancement result. The vessels are identified well using 

multiscale vessel enhancement but some of the small vessels are not identified.

Note that the enhancement result does not directly identify vessels. To 

identify and extract the vessels, a threshold t must be chosen in some way:

x is defined to be a vessel location if v(x) > t. (2 -1 2 )

Too low of a threshold will result in too many nonvessels being identified as vessels
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(b) The green channel of (a)(a) The color image

(c) AH hand trace (d) VK hand trace .(e) The result of MVE

FIGURE 10. Multiscale vessel enhancement (MVE) on STARE retinal image 291.
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(a) The color image (b) The green channel of (a)

(c) Hand trace by a human (d) The result of MVE 

observer

FIGURE 1 1 . Multiscale vessel enhancement (MVE) on DRIVE retinal image 10.

27



(high false positive) and too high of a threshold will result in many vessels being 

identified as nonvessels (low true negative).

One way to choose an appropriate threshold is to perform multiscale vessel 

enhancement on a set of vessel images and find the best threshold that maximizes 

the accuracy of vessel identification. Here, accuracy is measured by

a „  _  True Positive +  True Negative /ri 1 oX
Accuracy — ~  ■ -  ; z . (^.lo)

Number of pixels

Note that true positive and true negative dependents on the threshold value so 

accuracy can be thought of as a function of the threshold.

Figure 12 has a bar plot of all the maximum accuracies, as measured by 

equation (2.13), for each of the images for the DRIVE and STARE databases. It 

shows that for the DRIVE database and STARE database compared to the AH 

hand trace, multiscale vessel enhancement does a good job when the threshold is 

properly chosen. Since the VK hand traces are more detailed in that it the small 

vessels are more prominent, the accuracy is lower due to the background noise 

interfering with the identification of such small vessels.

Limitations of Multiscale Vessel Enhancement 

Although Gaussian smoothing allows the use of differential operators on 

noisy images, the calculation of the Hessian is still highly affected by noise because 

the Hessian is a second-order differential operator. To minimize the noise, a can 

be increased so the amount of smoothing is increased. However, the details, such 

as small vessels, are then lost as seen in Figure 8 . Also, even with a large cr, the 

noise may still have negative effect on the smoothed image. For example, Figure 

13 shows that the noise causes slight changes in the intensity value on the circle. 

The slight change, in turn greatly effects the eigenvalues of the Hessian.
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(a) 40 retinal images in the DRIVE database

(b) 20 retinal images in the STARE 

database as compared to AH hand 

trace

16 ' ' iS

(c) 20 retinal images in the STARE 

database as compared to VK hand 

trace

FIGURE 1 2 . The maximum accuracy of retinal images.

29



—— ! ■ ! 111

I® V * '■* v : *•* *•**>*■ i~* -i" jp »v ♦ - » , : ® '* o '  fX «* * ^ * 4 * *. ^ V ' . & « *J«> * B=~ x  ̂̂  4  ̂'4 ■*%. * ’I ̂

- #
l i i i i i

■ i l i i i l i P ™ r ; ^ ; l

MMBBrt
|li:!:i^|il||lll
■ M M E

■ ■
Hht

'  ' ‘*̂ *1 : ^ .  /t**^'*.'J‘»*

■liiiii mmm
(a) Noisy Image

% m

■ H P
(b) <7 = 1

m tm m a a m
Ib MBIbBIi

1

(d) a =  5(c) a — 3

FIGURE 13. The noisy image smoothed with different cr’s.

30



CHAPTER 3

DIRECTIONAL FILTER BANK VESSEL ENHANCEMENT

As shown in section 2.4, the background noise causes the Hessian, when the 

scale cr is small, to be inaccurate and hence, small scale vessels are less accurately 

identified. To decrease such limitation, True et al. [7] proposes a decimation-free 

directional filter bank (DDFB) method which they claimed to be less impacted by 

noise when calculating the Hessian. They report an average of 5.83% increase in 

accuracy compared to multiscale vessel enhancement on the DRIVE database of 

retinal images.

Directional filter bank (DFB) was first proposed by Bamberger and Smith 

[19]. The theory of directional filter bank is to decompose an image into multiple 

direction images, each of which contains direction-specific features. Later, Park et 

al. [2 0 , 2 1 ] designed its modern version of directional filter bank to fix the visual 

distortion present in the original directional filter bank (DFB).

Directional filter bank (DFB) was first applied to image and video 

compression [22]. Compression was motivated by the theory that in an image, 

direction-specific information contained much of the information needed to 

represent an image. The sum of the dimensions of each of the directional images 

must be less than or equal to the dimension of the original image. True et al. [7], 

instead, uses a decimation-free directional filter bank (DDFB) in that each of the 

directional images is of the same dimension as the original image. Although this 

increases the amount of memory used to store the directional images, it can be 

individually processed and combined for vessel enhancement.
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We start with the principle idea of Decimation-free Directional Filter Bank 

(DDFB) vessel enhancement. In order to perform such enhancement, wedge filters 

must be constructed. Section 3.2, shows the construction of the wedge filters. But 

before the filter construction, the discrete-time Fourier transform is first defined 

along with the discrete convolution theorem. Section 3.3 explains the theory of 

why it works using the spatial and frequency domain perspective of filter 

construction. Fron the theory, the diamond filter is the first filter constructed in 

section 3.4. This allows the wedge filters to be constructed in section 3.5.

With the wedge filter constructed, the decimation-free directional filter 

bank (DDFB) vessel enhancement is then defined in section 3.6. Finally, section 

3.7 shows the result of DDFB vessel enhancement compared with multiscale vessel 

enhancement (MVE) for retinal images. Section 3.8 will conclude this chapter with 

the application vessel extraction methods on placental images. A detailed 

comparison of MVE, DDFB and DDFB with homomorphic filtering is performed 

on the retinal images. Also, a comparison with some of the contemporary vessel 

extraction methods is provided for retinal images. For placental images, a 

comparison is also made with a neural networks based vessel extraction [12].

Decimation-Free Directional Filter Bank (DDFB)

Given an image I, the decimation-free directional filter bank (DDFB) 

method of vessel enhancement involves splitting such image into multiple direction 

images A, each of which contains only features that are oriented to a specific 

direction. Figure 14 shows an example; the portion of the circle of the same 

direction as 6 is enhanced so that in such portion, is uniformly the same in 

intensity. Specifically, Figure 14a is the noisy circle image. Figure 14b has the 

noise now face upward, causing the top and bottom of the circle to be blurry but 

the left and right to be clearly shown. Figure 14c has a clear portion of the circle
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FIGURE 14. The Noisy image enhanced in specified directions.

in the top-right and bottom-left of the circle while being blurry on the other 

portions. Figures 14c-f similarly have clear regions and opposing blurry regions 

whose location is dependent of the angle 4>. Notice that when compared to 

Gaussian smoothing seen in Figure 13, the circle does not increase in width.

These direction-specific feature images can be constructed by convolving 

with a set of filters, called wedge filters, {Fj} ”=1 where Ft : Z2 —>■ M is a set of 

filters with direction 0, =  •

A directional image is defined to be:

Ii = F i* I .

The directional images are then individually vessel enhanced and the maximum
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response is the directional filter bank vessel enhancement result:

v(x) = max vJx)
v '  1 <i<n v ’

where v,(x) are the later discussed individual vessel enhancements. Figure 15 

shows a diagram of this process.

Constructing the Filters

The set of filters {F4}”=1 used to obtain the directional images f  can be 

obtained through the discrete convolution theorem:

Theorem 3.1. Let x, y : {1,2,..., M }  x {1 ,2 ,..., N}  —>• R, then

x * y  = 5'_1[5r{x} -5{y}] 

where the discrete-time Fourier transform or DTFT) is defined as

N  M

C(k,l) := $ { I} (kJ )  =
71— 1 771=1

and the inverse discrete Fourier transform ($~l) is

1 N  M

/(m , n) =  y _1{C}(m, n) = C l)e2m^ +^ .
i=i fc=i

The directional image, /», has features oriented in a specific direction 0* so 

its DTFT will contain high intensity in a wedge-shaped section of the transform, 

seen in Figure 16a-b.

Using appropriate angled wedge filter multiplied with the DTFT of the line 

image, the line features can be separately studied. Figure 16c-d shows an example 

of this. Here, the line image has a DTFT of dots lined up in two directions. Using 

two wedge filters angled in the direction as the two dotted lines, we can isolate 

each of the stripes. To do so, the DTFT is multiplied with the appropriate wedge 

filter and the inverse DTFT is applied. Similarly, the discrete convolution theorem

34



Directicrial Filter

I4 =  f 4 | i  i l = F 8 * i  i ,2 =  f i2| i

ComBine

FIGURE 15. A diagram of directional filter bank vessel enhancement.
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(a) Artificial image (b) DTFT of image

(c) Product of the DTFT and | |  wedge filter. The inverse DTFT of such product

(d) Product of the DTFT and wedge filter. The inverse DTFT of such product. 

FIGURE 16. A demonstration of wedge filter multiplication.



states that the result can be obtained by convolving the image in Figure 16a with 

the inverse DTFT of the wedge filters.

One of the methods to construct the wedge filters comes from initially 

constructing a filter whose DTFT is a diamond filter D. Section 3.4 will show a 

construction of the diamond filter and section 3.5 will complete the construction of 

the wedge filters.

Before we can proceed to construct these filters, the theory behind the 

directional filter banks construction will be covered in section 3.3.

Spatial and Frequency domain

Two domains are artificially labeled: the vessel image and filters are 

considered to belong in the spatial domain while their respective discrete-time 

Fourier transform (DTFT) are considered to belong in the frequency domain. The 

transforms #  and # -1  can be considered as a linear mapping between these two 

domains. Here, we will establish some of the properties between these two domains 

that will be necessary for the wedge filter construction.

The spatial domain in the discrete case has the domain Z2 while the 

frequency domain has the domain R2 (or an equally-spaced subset of it for the 

discrete case). For images, the domain is {1,2,..., M} x {1,2,..., TV} but a function 

extension can be performed on the image so that its domain is Z2. This extension 

can be done by either assigning zero to the domain outside of 

{1,2,..., M} x {1 ,2,..., N}, by cycling the image

I( i , j)  = l ( i -  M -  J V ^ j)  for all ( i j )  e z 2 

or by reflection

= I(s(i; M ) ,s ( j ;N )) for all ( i j )  € Z2
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where s(n; N) was defined in equation (1.1). To be consistent with signal 

processing literature, the reflection extension is used.

Functions in the frequency domain are of period 2 tt s o  the functions can be 

completely studied in the domain [—7r, 7t]2. The spatial domain functions are 

real-valued in this thesis because the functions of interest are images and filters, 

the frequency domain functions in general are complex-valued. Hence, most of the 

figures involving the frequency domain functions seen in this thesis are the 

modulus of such functions.

Definition 3.1. Let f  : R2 —> C s.t. /(u>i,a>2) = x-axis modulation

of f  is defined as f(u>i +  7r,u j 2 ) ,  y-axis modulation of f  is defined as f(oJi,uj2 +  tt), 

and xy-axis modulation of f  is defined as f ( u  1 + tt,ui2 + ir).

Definition 3.2. Let A\ : Z2 —> Z2 s.t. A i(n i ,n 2) = (—l)ni =  e~mni, A2 : Z2 —>• Z2 

s.t. A2(n,i,n2) =  (—l ) " 2 =  e~mn2, and A i2 : Z2 —> Z2 s.t.

A i 2( n i , n 2) =  ( —l ) ni+ n2 =  e - ir*(«i+n2) j [2> an(}  a 12 is defined as the

alternating functions.

Lemma 3.2. Modulation in the frequency domain is equivalent to multiplication 

by the appropriate alternating function in the spatial domain.

Proof.

^ { A J } { oju oj2) =  Y ,  Ai(ni, n2)I (ni, n2)e~i(niWl+n2W2̂
(ni,ri2)€Z2

Y  / (n 1,n 2)e"i(nia,1+n2U,2)_,rini
(ni,n2)GZ2

Y  /(«!, n2)e-*(ni(Wl+,r)+"2a'2> =  / ( Wl +  ir,ui2).
(ni,n2)GZ2
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Similarly ${A 2I}(u)i,uj2) =  uj2 +  tt), and 

$ {A 12I}(uJi,u>2) = Y  A i2 {ni,n2)I{n1,n2)e ' i{ni0J1+n2Ul2)
(m,n2)GZ2

—  r l2 ) e - * ( » i w i + n 2 « 2 ) - 7 r i ( n i + n 2 )

(n i,r i2 )G Z 2

/(«!, n2)e-i(»i(«-i+»)+^(^+»)) =  f ( Ul +  7T, CJ2 +  7r).
( n i ,n 2 ) € Z 2

□
Theorem 3.3. Let M E Z2x2 be a nonsingular matrix of integers M  : Z2 —> Z2, 

also called a resampling matrix. Then the DTFT of the composition I  o M is

$ { I  o M}(oo) = / ( (M _1)r u;) de^M ”1)

Proof Let n =  (nj, n2),uj = (u>i,ui2). Then

$ { Io M } (u l ,oo2) =  Y  Io M (n u n2)e-i{niUl+n2U2) = Y J oM(n)e~inu. (3.1)
( n i ,n 2 ) € Z 2 n € Z 2

Recall the multivariate change of variable theorem [23],

f  g(v)dv=  [  g o 0(u)| det(D<^)(u)|du.
J<t>{U) Ju

where U C R" is an open set, <f>: U —> K” injective differentiable function with 

continuous partial derivatives and nonzero Jacobian on U, D<j> is the Jacobian 

matrix containing the partial derivatives of 0 , and /  is a continuous real-valued, 

compactly supported function with its support contained in 4>{U).

A discrete version of mentioned theorem can be derived:

Y  9(.n) = Y  9 ° M  |det(D ^(n))|.
n e<MZ2) nez2
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Using the linear transform 0(n) = M  'n o n  expression (3.1),

£ { / o M}(w) =  Y  ^(n )e_i(M_ln) w| det(M "1)| =  Y  /(n )e - i(M_ln)T"| det(M -1)|
n € Z 2 n S Z 2

= Y  /(n )e - i(n)T[(M_1)Tw]| det(M “1)| = Y  7 (n)e-in'[(M~1)Tw]| det(M “1)|
n € Z 2 n € Z 2

= /( (M - 1)r cj)| det(M _1)|.

□
Definition 3.3. For a resampling matrix M  € Z2x2, downsampling is defined as

IM(n )= I(M n ), (3.2)

and upsampling is defined as
/

I(M - 1n) if n € M[Z2]
I (n) = (3.3)

0 otherwise

Lem m a 3.4. Downsampling in the spatial domain corresponds to upsampling in 

the frequency domain and vice versa.

Proof. It can be easily proven from 3.3. For downsampling,

${Im }(u ) = d { Io M } (u )  = f ( ( M - 1)Tu ) \d e t(M -1)\

=  /((M T)-V )| det(M -1)| =  | det(M -1)| • f M T (uj)

and for upsampling,

3 { /m}(o/) =  # { / o M - 1}(o;) =  f ( M Tu)\ det(M)|

=  \d e t(M )\- fMr(uj)
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Because $ {I  o M}(uj) =  f ( (M ~ 1)Tu) \ det(M _1)|, downsampling in the 

spatial domain corresponds to upsampling in the frequency domain and vice versa. 

Table 4 sums up these properties.

TABLE 4. The Spatial-Frequency Duality

Spatial Domain Frequency Domain

I(n i ,n 2) J(uJi ,uj2)

Convolution Theorem ( h *  I2)(n1,n2) / i ( wi>k>2) •

Modulation in x-axis (—l)niI(ni, n2) f(u> i +  n,co2)

Modulation in y-axis ( - l ) n2/(n ! ,n 2) f ( u i , u 2 +  tt)

Modulation in xy-axis (_ l)n 1+n2/(n in 2 ) /(wi +TT,LU2 +7T)

Linear Transform I  o M (n i ,n2) f ( ( M ~ 1)Tuj)\ det(M _1)|)

Resampling lM(ni,n2) | det(M -1)| • f MT(u>i,u>2)

I M(nu n2) |det(M )| • /m t (wi>w2)

In this thesis, three resampling matrices will be used. The quincunx matrix1

<5 =

l - l  

l l

and skew matrices
1 0 1 1

R i = and R2 =
-1  1 0 1

1We may have used Q = ' 1 1'
-1  1 for the quincunx matrix.
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(e) I Q (f) Irt =  I R> (g) Irt =

FIGURE 17. A (phantom) image with different samplings.

Notice that for the quincunx matrix, (Q~l)T =  \ Q 1 det(Q) =  2 , and 

det(<3-1) =  Thus,

W Q } ^ )  = \ f m Tr 1“ ) = \ s QTi“ ),

and

${lQ}(u;)  =  2 f ( Q Tu) =  2 f QT(uJ).

For the skewing matrices, ( 1)T = R2 , (R^ 1)T = Ri, ((-Rf)_1)T =  R% and 

((i?D_1)T =  RTi • Thus, ${IRi}(u) = f RT(uj), d { I* } (u )  = faiuj),

S { % I H  =  / ^ M ,  and $ { I rT}(uj) = f Rj(uj).

Figure 17 shows the effects of upsampling and downsampling on an image. 

Notice that the quincunx downsampling is a 45° counterclockwise rotation and a 

25% decrease in size while quincunx upsampling is a —45° rotation and a 25% 

increase in size. The skewing matrices function as their name imply; it shifts the 

image in the direction of one of the axis. In this case, Ri and R f  skew the image 

in the x-axis and y-axis.
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Finite Impulse Filter

There are multiple ways to construct the wedge filters. The simplest 

method involves the binary function b : ]R2 —> {0 , 1} so that b(x) = 1 if x  is in the 

wedge and b(x) = 0 if x  is outside the wedge. The wedge filter function would then 

be the inverse DTFT of 6. However, because such wedge filter will not have a 

compact support and computer systems work well with discrete functions with 

compact support, such construction is ill-posed. Hence, having compact support is 

preferred.

In terms of signal processing, a function has finite impulse response (FIR) if 

it has compact support. Otherwise, the function has infinite impulse response 

(HR). Because our construction of the wedges requires convolution, modulation, 

and resampling, it is necessary to have FIR (or HR) filters remain FIR (or HR) 

after such operation. Fortunately, using the definition of DTFT, it is trivial to 

prove that

Property 1: If /  and g are FIR (or HR) then f  * g is FIR (or HR),

Property 2: if /  is FIR (or HR) then the (spatial domain equivalent of) 

modulation of /  is FIR (or HR), and

Property 3: if /  is FIR (or HR) then the downsampling and upsampling of /  is 

FIR (or HR).

We are now ready to construct filter functions.

Diamond Filter

The diamond construction starts with a one-dimensional filter /  : Z —» M 

constructed from [24]2. The function /  is specifically designed so it is FIR and

2The one-dimensional filter is implemented in MATLAB’s firl function.
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(a) The signal (in spatial domain) (b) The modulus of the DTFT of the signal

(frequency domain)

FIGURE 18. The signal /  : Z R used to construct the diamond filter.

that the modulus of its DTFT (|^—1{/}|) approximates X[-*-/2,7r/2] where xa  is the 

indicator function of subset A. Figure 18 shows the signal with its DTFT. Notice 

that Figure 18b approximates X[—7r/2,7r/2] well. The background detail about filter /  

is beyond the scope of this thesis. We refer to [24] and [25] for more details.

The square filter is then constructed: Sq : Z2 —> K such that 

Sq( i , j ) =  f (i )  • f (j ) .  We can see why the magnitude of the DTFT of the filter is 

square-shaped from the fact that

|5'{«S'q}(^l>^2)| =  |S{/(-)/(-)}(Wl>W2)| =  W D M  '

~  X [ - f , f ] ( ^ l ) X [ - f , f ] ( w 2 ) =  X [ - f , f ] 2 ( ^ l > w 2 )

A corner filter is then constructed by rry-axis modulation C : Z2 —> R such 

that C(i,j )  =  ( - 1  )i+iSq(i,j).

So if A \2 : M2 —>■ R such that A\2(i,j) = ( —1 )*+-', then from the modulation 

in xy-axis property,



|ff{C}(a;i,W2)| =  • S'gH^'i,^)! — 5r{>S'«}(<̂ i +  7r,a;2 +  7r)|

~  X[-f,f](^l)X[-f,f](w2) =  X([-l, - f ] U [ f , l ] ) 2 ( W l , W 2 )

Combined, with the square filter, the checkerboard filter is created by 

defining

Cr : Z2 —> R such that Cr(i,j) = Sq(i,j) +  C(i,j).

Finally, the diamond filter can be constructed by quincunx downsampling 

(which is upsampling in the frequency domain):

\
D : 'Ei' —̂ R s.t. D(iy j') — Cr Q

t
= Cr(i — j , i  + j )

3 )

Figure 19 shows each of these filters in progression. Notice that we start 

with an FIR filter function /  to form a square filter function Sq, which is then also 

FIR. Then through modulation performed by multiplying with an alternating 

function, another FIR filter function, C, is defined. Another FIR filter function Cr 

is defined from the summation of two FIR filter functions. Finally, the diamond 

filter is formed from a downsampling. From lemma 3.4 and property 3, the 

diamond filter is then an FIR filter function.

Constructing the Wedge Filters 

The wedge filters are constructed from a diamond filter D(coi,oj2). Figure 

20 shows the first few steps of the construction. It starts with the previously 

constructed diamond filter. Two hourglass filters are constructed by modulation: 

Ho(hj) := (— and Hi(i. j)  := (—l)JD(i,j).  The two hourglass filters 

form the first level of filters Fi =  {Hq, Hi}. The second level of wedge filters are 

formed by quincunx upsampling the hourglass filters and convolving with the
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(b) Corner filter(a) Square filter

(c) Checkerboard filter (d) Diamond filter

F I G U R E  1 9 . T h e  m a g n i t u d e  o f  t h e  D T F T ,  o f  e a c h  o f  t h e  f i lte r s .

46



Left/Ri h t 

M odulation

w
Ho O Q

Hao Q

Down 

Modulation
Ho O Q

S6HiOQ

FIGURE 20. The diagram of the constructing of wedge filters up to 2 levels.

hourglass filters. For notational convenience, fg  will mean composition f o g .  The 

second level of wedge filters consist of the collection

F2 -  {H0 * HiQ, Hx * HXQ , Hx * H0Q, H0 * H0Q}.

The third level of wedge filters is formed by convolving the elements of F2 

with filters of the form HiRjQ and HiRjQ  where i 6  {0,1} and j  G {1, 2}. The
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third level of wedge filters are then

F 3  =  {H0 *  H XQ *  H0 RiQ, H0 *  HXQ *  H1R1Q,

Hx * HXQ * HoRlQ, Hx * HXQ * HxRjQ,

H x >1= H0Q * H xR 2Q, H x *  HqQ *  H0R 2Q,

Hq * HqQ * HXR^Q, Ho * HqQ * HoR^Q}-

The fourth level of wedge filters is formed by convolving the elements of F3 

with filters of the form HiRjQRkQQ  and transpose versions of Rj, Rk  where 

i G {0,1} and j, k G {1,2}.

F4 =  {H0 * HXQ * H0R XQ * HXF%QRXQQ, H0 * HXQ * H0R XQ * H0R%QRXQQ,

H0 * HXQ * HxR xQH0R l Q R xQQ, H0 * HXQ * HXR XQ * HXR XQRXQQ,

Hx * HXQ * HoR^Q * HxR%QRiQQ, Hx * HXQ * H0R^Q  * HoR^QR^QQ,  

Hx * HXQ * HXR \Q  * H0RXQRXQQ, Hx * HXQ * HXR*Q * HXRXQR*QQ,

Hx * H0Q * HxR2Q * H0R IQ R 2QQ , Hx * HqQ * HXR2Q * HxR jQ R 2QQ ,

Hx * H0Q * H0R2QHxR2QR2QQ, Hx * H0Q * H0R2Q * H0R2QR2QQ,

Ho*H oQ * H oR%Q*HoRTQR%QQ, h 0 * h 0q  * h xr£ q  * h xr t q r %q q , 

H0 * H0Q * H0R%Q * HxR2QR%QQ, H0 * H0Q * H0R%Q * H0R2QR%QQ}.

Higher levels can be defined similarily; however, levels that are higher than 

four levels do not improve accuracy performance by much while requiring much 

more computational time [7]. For the construction of higher level wedge filters, we 

refer interested readers to [26] for details.

As seen from Figure 20 and Figure 2 1 , the wedges in each level are 

subsections of the previous wedges. Figure 20a shows one of the hourglass filter 

function shown as a surface plot. Notice because it is FIR, the nonzero values are
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(a) H q (b) A filter from (c) A filter from F3 (d) A filter from 

F2 F4

(f) DTFT of filter (g) DTFT of filter (h) DTFT of fil-(e) DTFT of filter

H0 (b) (c) ter (d)

FIGURE 21. A sample of the different wedge filters and its DTFT.

self-contained in the center of the plot. Figure 21e shows the DTFT of such 

hourglass filter. Similarly, some of its subsections are shown along with its DTFT. 

Notice that as the wedge becomes thinner in the frequency domain, its support 

elongates.

DDFB-based Vessel Enhancement 

With the wedge filters, the directional images can now be obtained as 

/j := /j * I, where /* are the unique filters in F4 . Each /* contains sections of 

vessels oriented in a direction #*. The next step for DDFB vessel enhancement is 

to individually vessel enhance each of the /j’s. Hence, the eigenvalues of the 

Hessian is needed similar to multiscale vessel enhancement. True et al. [7] reports 

that if these directional images are aligned so that the vessels are instead oriented 

in the £-axis direction, the Hessian is more accurate because pixels are arranged
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on a grid and such grid has an x-axis and y-axis bias when performing differential 

operations.

To align the vessels to the .x-axis, we start with the Hessian

H i(x, y) = (3.4)

and use the substitution
- -

X

y

/
X

/

y

cos $i — sin Oi 

sin $i cos &i

(x', y') is then the coordinate with the vessels aligned to the x-axis for 

directional image /j. The (x', y') coordinate Hessian is then

H* : =
hn hi2 a21,

dx'2
d2U

dx'dy'

h“2\ 1
CMCM d2Ii

dx'dy'
d2 Ii 
dy'2 _

n r
cos Oi — sin Oi 

sin Oi cos Oi

d2u
dx2

d2L
dxdy

d2Ij d2u 
dxdy dy2

cos Oi — sin Oi 

sin Oi cos Oi

(3.5)

(3.6)

Equation (3.6) is true since if
X x' dx'

= AT
dx

= A , then
y y' dy' dy

and

dx' dy1 dx dy A.  Hence,

H  x',y'
dx'

dy'
dx' dy' = A t H XiVA.

With the help of the double-angle formulas: sin 20 =  2 sin 0 cos 0 and
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cos 29 = 2  cos2 9 — 1 =  1 — 2 sin2 9, we can simplify the individual htj ’s to

sin 20*. (3.9)

(3.7)

(3.8)

Because the new coordinate aligns the vessel in the directional image along 

the a:'-axis, the x'-axis direction has the smallest curvature and the y'-axis has the 

largest curvature for pixels in a vessel. So the eigenvalues of H*, and A2 , are the 

diagonals of H '. That is hn  = Xi and h22 =  X2, if the vessel is angled in the 0* 

direction. Similar to multiscale vessel enhancement, we define R  =  and

+ /i22- From here, we can obtain the vesselness measure v^(x , a) of 

equation (2.9) or (2.10) for each directional image /*. Finally, the vessel 

enhancement response is

We must mention that True et al. [7] uses the maximum instead of the summation:

We choose summation instead because the performance is less impacted by 

deviations in parameter choice. This is important in the case of placental images 

in that finding an optimal parameter will be difficult if a slight change in a

standard deviation later shown in section 3.7, the use of summation rather than 

maximum does not significantly impact the performance for retinal images.

v(x) =  maxV ' (T>0
(3.10)

i<;<i6

t>(x) =  max max v
c r> 0  l < i < 1 6

(3.11)

hence, the parameter values chosen in this thesis (table 5) are different from [7].

parameter value will produce completely different results. With the exception of
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True et al. [7] also proposes the use of homomorphic filtering in between 

the directional filter bank step and the vessel enhancement step. That is, define / ' 

to be the homomorphic filtered result of /j, the Hessian from (3.4) is instead,

(3.12)

and v(x, a) is defined from the eigenvalues of such Hessian.

True et al. [7], claims that DDFB-based vessel enhancement less effected by 

noise than multiscale vessel enhancement, resulting in better performance and 

when the optional homomorphic filtering step is included, the performance 

improves even further. Based on their tests, they report an increase in accuracy for 

detection of vessels compared to the multiscale vessel enhancement (MVE) on the 

DRIVE database. We attempt to reproduce such result in section 3.7 along with a 

test on the STARE database.

To compare the three methods, multiscale vessel enhancement (MVE), 

decimation-free directional filter bank (DDFB) vessel enhancement, and DDFB 

with homomorphic filtering, the parameters used presented in table 5.

TABLE 5. The Parameters Used for Comparing Results

Results on Retinal Images

Method Parameters

DDFB:

MVE: 7  =  0; <r =  1,3,5; /3 =  0.75; c =  15.

7  = 1 ; cr =  2 ,3 ,4 ,5 ,6 ; /3 =  0.75; c =  15.

Homomorphic Filter: Butterworth filter with a L =  0.10, aH =  1.0,

D0 =  300, n =  2 .
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The performance can be visually assessed on three DRIVE images and two 

STARE images. The chosen retinal images DRIVE image 23, DRIVE image 31, 

DRIVE image 34, STARE image 2 , and STARE image 240 respectively have a 

cloudy background, a large occlusion, discoloration, bright spots, and bad lighting. 

These flaws can be used to to assess the limitations of the three vessel 

enhancement methods. Figures 22-26a show these retinal images along with the 

green channel in Figures 22-26b, and the hand traces in Figures 22-26c to test. 

Visually, the vessels on an image can be located from the output of the different 

methods as seen in Figures 22d-f, 23d-f, 24d-f, 25d-f, and 26d-f. We mention that 

DDFB with homomorphic filtering (DDFBH) may look as if it performs worst 

then just DDFB but this is only because of the color scales. A simple fix can be 

performed by using histogram equalization. Because histogram equalization is not 

performed in this thesis, we refer to [17] for the details.

From section 2.3, one way to assess the performance of a method comes 

from comparing the maximum accuracy measured by expression (2.13). But 

curiously, the maximum accuracy are exactly the same, seen in Figure 27. Thus, 

the use of accuracy as a way to compare between methods is not appropriate. A 

further study is warranted for why they are equal.

Even with the accuracy results being inconclusive, we can still visually 

employ it for comparison. Recall that to calculate such maximum accuracy, a 

threshold, as in expression (2 .1 2 ), is sought so that the accuracy is maximized. 

Another way to compare the results is by looking at the threshold function:

where tmax is the threshold for the maximum accuracy. Figures 22g-i, 23g-i, 24g-i,

0  otherwise

1 if u(x) > t,max
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25g-i, and 26g-i shows the surface plot threshold function £ where 0 is in blue and 

1 is in red. We can see that for MVE, the best performance for MVE is when 

almost none of the locations in the image is identified as a nonvessel. That is, its 

performance is close to a method that incorrectly identifies concludes the image 

has no vessels. DDFB does identify vessels and DDFB with homomorphic filtering 

having the most vessels identified compared with the other two methods. Hence, 

DDFB and DDFB with homomorphic filtering produces a more informative 

threshold function.

A popular alternative is to use the receiver operating characteristic (ROC) 

curve. The ROC curve is generated by plotting the true positive rate (fraction of 

true positives out of the positives) vs. false positive rate (the fraction of false 

positives out of the negatives). Details can be found in [27]. Figures 22 j, 23j, 24j, 

25j, and 26j show examples of the ROC curves from MVE vs. DDFB for various 

retinal images.

A method with high overall accuracy is one that has an ROC curve that is 

the closest to the constant function =  1. That is, the method that has the largest 

area under the curve (AUC) defined as f(x)dx  where f (x)  is the ROC curve.

Using DRIVE image 23 of Figure 22 as an example, the AUCs are 0.8729 

for MVE, 0.9114 for DDFB, and 0.9276 for DDFB with homomorphic filtering. 

This shows that DDFB vessel enhancement (both with and without the 

homomorphic filtering) performs very well over MVE. DRIVE image 31 of Figure 

23 as an example, the AUCs are 0.8979 for MVE, 0.9323 for DDFB, and 0.9427 

for DDFB with homomorphic filter. Thus, even with a large occlusion, DDFB’s 

performance is still high. However, DRIVE image 34 of Figure 24 has AUC 

0.8575 for MVE, 0.9003 for DDFB, and 0.8906 for DDFB with homomorphic 

filter. Hence, vessels in a discolored image is difficult to extract, yet DDFB still
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outperforms MVE. However, homomorphic filtering will not generally improve the 

accuracy performance and that a method to improve lighting may not decrease 

discoloration.

In the case of STARE image 2, the AUCs are 0.8941 for MVE, 0.9060 for 

DDFB, and 0.9357 for DDFB with homomorphic filter. We see that for bright 

spots, the use of only DDFB will not go far but homomorphic filtering creates a 

large contribution in accuracy. For STARE image 240, the AUCs are 0.9427 for 

MVE, 0.9413 for DDFB, and 0.9554 for DDFB with homomorphic filter. This 

shows that lighting has almost no effect on the accuracy of the three methods.

For an overview the results, Figure 28 shows the AUC for each of the 

retinal images in the DRIVE and STARE databases. We see that for retinal 

images, DDFB and DDFB with homomophic filtering significantly has a better 

performance and MVE. Also only STARE retinal images 240 (index 16) and 324 

(index 20) compared to hand trace AH has MVE performing better than DDFB. 

And DDFB with homomorphic filtering consistently outperforms MVE on retinal 

images. Finally, when comparing Figure 28 with [7]’s table of results, they almost 

overlap (with the unknown exception of DRIVE image 34). Hence, even though we 

chose to replace maximum (equation (3.11)) with summation (equation (3.11)) 

and chose different parameters, the results are essentially the same (with the 

unknown exception of DRIVE image 34).

From the five sampled image and the Figure 28 we can sum up the 

performance of DDFB compared with MVE. In general, DDFB outperforms MVE 

and the homomorphic filtering adds to DDFB’s performance. Specifically, DDFB 

is better when there is a cloudy background, large occlusion and general 

discoloration. However, when there are bright spots on the image, DDFB alone
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will not improve much and when the only problem is lighting, MVE performs well 

enough that DDFB does not significantly outperform MVE.

Homomorphic filtering, generally contributes to the increased performance. 

It increased performance for cloudy background, for large occlusion, for bad 

lighting, and significantly for bright spots. But negatively effects the discolored 

retinal images. From the Figure 28, we can see that homomorphic filtering rarely 

significantly increases DDFB’s performance and can even negatively decrease 

performance. Thus, we can conclude that in the use of DDFB vessel enhancement, 

the vessel images should first be checked for bad lighting, discolorations, etc. to 

determine whether or not to consider the use of homomorphic filtering.

Table 6  shows the mean and standard deviation of each the methods for the 

DRIVE and STARE databases. Decimation-free directional filter bank (DDFB) 

has a higher AUC than multiscale vessel enhancement. With the use of the 

homomorphic filter, the AUC can be higher than DDFB without it. In the test of 

the DRIVE database, there is a 4.6% increase in accuracy. True et al. [7] was able 

to optimize the method enough to obtain a 5.2% to 5.3% improvement and a small 

standard deviation of 0.0060 compared to our 0.0150. This may be due to the use 

of maximum (equation (3.11)) instead of summation (equation (3.10)). DDFB 

compares well with contemporary methods such as Staal et al. [3], M. Niemeijer et 

al. [28], and X. Jiang et al. [29] which has mean AUCs 0.9520, 0.9294, and 0.9114, 

respectively.

For the STARE database, the use of DDFB and homomorphic filtering is 

also an improvement. We can also see that the hand traces will also suffer from 

accuracy. This is why the results for the hand trace of Dr. Adam Hoover (AH) is 

higher than Dr. Valentina Kouznetsova (VK). Hence, the quality of the hand trace 

will effect the test itself. The STARE database is not used as much as the DRIVE
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(a) DRIVE image 23 (b) Green channel

(e) DDFB

(g) Threshold MVE ■(h) Threshold DDFB

(c) Hand trace

(£) DDFBH

(i) Threshold DDFBH

(j) The ROC curve

FIGURE 22. DRIVE image 23 tested using MVE and DDFB.
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(a) DRIVE image 31

(d) MVE (e) DDFB

H

(b) Green channel (c) Hand trace

(f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH

(j) The ROC curve

FIGURE 23. DRIVE image 31 tested using MVE and DDFB.
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(a) DRIVE image 34
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(d) MVE

(b) Green channel

(e) DDFB

(c) Hand trace

(f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH

(j) The ROC curve

FIGURE 24. DRIVE image 34 tested using MVE and DDFB.
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(j) The ROC curve

FIGURE 25. STARE image 2 tested using MVE and DDFB.
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(c) Hand trace AH(b) Green channel(a) STARE image 240

(d) MVE (e) DDFB (f) DDFBH

(g) Threshold MVE (h) Threshold DDFB (i) Threshold DDFBH

(j) The ROC curve

FIGURE 26. STARE image 240 tested using MVE and DDFB.
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FIGURE 27. The maximum accuracy for each of DRIVE and STARE images.
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FIGURE 28. The AUC for each of the images in the DRIVE and STARE databases.
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D R IV E m ean std deviation

MVE: V- = 0.9117 a =  0.0172

DDFB: =  0.9416 a = 0.0150

DDFB with homomorphic: =  0.9455 a =  0.0151

STARE w ith  AH trace m ean s td  deviation

MVE: H =  0.9419 a =  0.0187

DDFB: H =  0.9579 a = 0 .0 2 1 2

DDFB with homomorphic: /i =  0.9658 <7 =  0.0151

STA RE w ith  V K  trace m ean std  deviation

MVE: fj, =  0.9053 <7 =  0.0203

DDFB: H - 0.9266 <7 =  0.0205

DDFB with homomorphic: H =  0.9348 <7 = 0.0165

TABLE 6 . Mean and Standard Deviation of the Methods on Retinal Databases



database due to it being focused on retinal abnormalities so it is less appealing to 

be tested on. It is only natural that we compare DDFB with Hoover et al. [1]. 

However, the evaluation of [1] does not use true positive/false positive accuracy 

nor area under the curve (AUC) so it cannot be directly measured. The 

interpretation of accuracy is then interpreted by their example images compared

with DDFB’s. From it, we conclude that DDFB likely outperforms [1] and

potentially, so does MVE.

Results on Placental Images 

The comparison of the three methods can similarly performed on placental 

images. However, because there are many more nonvessels than vessels, the AUC 

of the ROC curve is biased towards rating the performance negatively [30]. The 

Matthews correlation coefficient (MCC) is used instead:

MCC =  TP x TN -  FP x FN
V(TP +  FP)(TP +  FN)(TN +  FP)(TN +  FN)

where TP =  true positive, TN =  true negative, FP =  false positive, and FN = 

false negative. Because TP, TN, TP and FN are dependent on thresholding, MCC 

is a function of the threshold value. Hence, such function produces a curve called 

the MCC curve. The area under the curve (AUC) for the MCC curve can be 

similarly defined. To be consistent with [12], the MCC will be the primary 

performance metric for placental images.

During the testing of the three methods on placental images, we find that 

the use of DDFB and DDFB with homomorphic filtering does not significantly 

improve on MVE. To show this, a simple experiment is proposed. First, placental 

image 2141, seen in Figure 29, is chosen for the experiment in order to be 

consistent with [12] and [15]. From it, an optimal (approximate) set of parameters 

similar to table 5 is sought. There are too many combination of parameter values
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(a) Placenta 2041 (b) Hand Trace

FIGURE 29. Placenta 2141 along with its hand-trace.

to sample through for an optimal set of parameters. Instead, the parameters are 

picked using simulated annealing [31, 32]. Simulated annealing allows the ability 

to pick set of parameters with a high AUC for the MCC curve for placenta 2141. 

Hence, the criterion for simulated annealing is based on maximizing the AUC of 

the MCC. Then such AUC for each of the methods is compared to each other on 

each of the 16 placental images. Because an optimal parameter is chosen with 

minimal human intervention, the comparison is minimally biased towards one of 

the three methods. So if all three methods perform similarly well with the 

parameters from simulated annealing, we can say with some level of confidence 

that DDFB and DDFB with homomorphic filtering have a comparable 

performance to MVE. Hence, their higher performance over MVE cannot be 

generalized to placental images.

From simulated annealing, an optimal set of parameters for the three 

methods is shown in table 7.
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DDfB Homomorphic fiftef.00*8 vti Homwnorptec Me?

(a) The AUC of the ROC curve (b) The AUC of the MCC curve

FIGURE 30. The AUC for the 16 placenta images.

TABLE 7. The Parameters Used for Comparing Results on Placental Images

M ethod Parameters

MVE:

DDFB:

DDFB with 

Homomorphic Filter:

7  =  0; o- =  3.9,6.2; f3 = 2.6; c =  37.5 

7  =  1 ; a = 3.7; 0 =  0.4; c =  7.9

7  =  1 ; a  = 1.3; (3 = 41.4; c =  35; 

Butterworth filter with =  0.5; an  = 1-9; 

D0 -  228.8; n = 2

Figure 30 shows both the ROC and MCC curves’ area under the curve 

(AUC). We can see that out of the three methods, none of them consistently 

outperforms its competitors. To see when one method may outperform another, 

we look at six placental images with specific characteristics: placenta 2041 is more 

reddish than the others, placenta 2666 have transitioning color background, 

placenta 2743 has thin vessels, placenta 2777 is darker than the other placentas,



placenta 2946 has thin vessels with low contrast against its background, and 

placenta 3355 has high contrast between vessels and its background. Figures 31, 

32, 33, 34, 35, and 36 show the results for the three methods along with its ROC 

and MCC curves. Notice that one method is considered quantitatively better than 

another if it has a higher AUC than the other method. That is, the MCC curve 

(or ROC curve) of the preferred method is above the other methods’ MCC curve 

(or ROC curve).

From Figure 30, we can conclude some information about what methods 

may be appropriate to which placental images. As expected, the results on 

placental images with thin vessels (image 2743, 2946) against placental images 

(image 2041, 2777, 3355) shows that DDFB work better on small vessels. MVE, on 

the other hand, are works better on large vessels. For high contrast images such as 

image 3355, MVE already performs well but DDFB has a better performance on 

low contrast images such as image 2946. For placental images with transitioning 

colors such as image 2666, homomorphic filtering gives DDFB a better 

performance than MVE.

Figures 31, 32, 33, 34, 35, and 36 show that although MVE will in general 

outperform DDFB quantitatively using the AUC as a measure of accuracy, the 

enhancement from DDFB tend to be better than MVE. This can be seen from 

parts c-e of the above figures. However, this may be due to DDFB assigning 7  =  1 

and MVE assigning 7  = 0, values which can effect the enhancement result. In 

terms of homomorphic filtering, it produces a low quality enhancement result. The 

vessels are less visible compared to the other two methods. Also, there are bright 

circles on the resulting image likely due the sharp transitions from light to dark 

that are present on the placental image. For example, on the boundary between 

the placenta and the dark background, the DDFB with homomorphic filtering
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(a) Placenta 2041 (b) Hand Trace

(c) MVE
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FIGURE 31. Various enhancement results for placenta 2041.
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(a) Placenta 2666 (b) Hand Trace
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FIGURE 32. Various enhancement results for placenta 2666.
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(a) Placenta 2743 (b) Hand Trace
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FIGURE 33. Various enhancement results for placenta 2743.
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(a) Placenta 2777 (b) Hand Trace
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FIGURE 34. Various enhancement results for placenta 2777.
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(a) Placenta 2946 (b) Hand Trace
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FIGURE 35. Various enhancement results for placenta 2946.
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(a) Placenta 3355 (b) Hand Trace
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produces artificial vessels. One can solve this problem using difussion on the 

boundary as mentioned in preprocessing. Here, we choose not to perform it for 

placental images so that we may fairly compare it with the only existing work on 

vessel extraction from placental images [12].

0.3
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02

0.15

0.1

0.05

0

•0 05

FIGURE 37. Box plot result of neural network vessel extraction.

We note that because [12] requires finding the approximate minimum of a 

hard-to-minimize performance function using a random number generator, the 

outcome of [12] will very each time it is performed. To evaluate its performance, 

the method from [12] is run 400 times. Each of the run provides an enhancement 

for each of the 16 placental images. From each of those enhancements, an AUC of 

the MCC curve may evaluate its performance. Hence, for each of the 16 placental 

images, there is an associated set of 400 AUC values from the 400 runs. Then the 

mean, median, and standard deviation of these 400 AUCs for each of the placentas 

may be computed, shown as a box plot in Figure 37. From them, a comparison 

with MVE, DDFB, and DDFB with homomorphic filtering may be performed. 

Compared with Figure 30, [12] is shown not to perform well compared with MVE, 

DDFB, and DDFB with homomorphic filtering. We also look at Chang et al. [15]
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for comparison. Chang et al. [15] shows that a match-filtering of MVE has the 

potential to outperform MVE, DDFB, DDFB with homomorphic filtering, and 

[12]. As of writing, [15] is still a work in progress so the comparison is limited.
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CHAPTER 4 

CONCLUSION

We have presented the theory behind multiscale vessel enhancement (MVE) 

and decimation-free directional filter bank vessel enhancement (DDFB), along 

with homomorphic filtering, used for vessel extraction. To quantitatively evaluate 

their performance, we introduced the accuracy measure, the ROC curve along with 

its AUC, and the MCC curve along with its AUC. Moreover, we have tested them 

on retinal images and placental images. Along the way, we introduce the image 

processing (and some signal processing) concepts necessary for understanding this 

thesis.

In the process of testing, we find that DDFB is well suited for retinal 

images. But when compared with placental images, the likely reason why retinal 

images are great for DDFB would its the high contrast between vessels and 

nonvessels for retinal images, the relatively consistent lighting, and consistent 

vessel size for retinal images. Also, homomorphic filtering contributes well to 

DDFB for retinal images for its ability to remove lighting issues. However, when 

there is a large amount of discoloration in the image, specifically placental images, 

homomorphic filtering negatively contributes to the performance of DDFB. Thus, 

the type of vessel image will determine whether homomorphic filtering should be 

used.

The success of retinal images can be seen by the high AUC value of DDFB 

with homomorphic filtering along with its contemporaries such as [3]. Also, the
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thresholding results of Figures 22i, 23i, 24i, 25i and 26i show that vessel extraction 

is sufficiently useful for further study such as statistical study.

As for placental images, section 3.8 shows that they are currently very 

difficult to extract vessel from. At the present, the only journal-published vessel 

extraction for placental images [12] has a low performance rate compared to an 

older method [6] and that a relatively new method [7] does not provide a higher 

performance. This can be attributed to placental images having discolorations, 

changing colors on vessels, over-saturation of redness, and low contrast. Thus, 

much more work must still be done for placental images.
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APPENDIX: MATLAB CODES
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The MATLAB code requires the signal processing toolbox (for firl.m) and 
the image processing toolbox (for bwmorph.m, bwdist.m, imfilter.m).
Furthermore, code from Dirk-Jan Kroon’s “Hessian based Frangi Vesselness filter” 
and from David Young’s “Fast 2-D convolution” are needed and can be found in 
MATLAB central, file exchange. The scripts need the STARE, DRIVE, and 
Placental Analytics database of vessel images.

Preprocessing

1 f u n c t i o n  [ O u t l m a g e  ] =  B a s i c H e a t I n p a i n t  ( I m a g e , i n t e r i o r  )

2 % T h i s  f u n c t i o n  p e r f o r m s  d i s s i p a t i o n  o f  i n t e n s i t y  v a l u e s  f r o m

3 % t h e  b o u n d a r y  t o  t h e  e x t e r i o r .  T h e  i m a g e  m u s t  b e  g r a y s c a l e .

4 % T h i s  f u n c t i o n  r e q u i r e s  t h e  i m a g e  p r o c e s s i n g  t o o l b o x

5 % ( s p e c i f i c a l l y ,  b w d i s t . m ) .

e % I N P U T :

7 % I m a g e  — g r a y s c a l e  i m a g e .

8 % i n t e r i o r  — a  b i n a r y  m a r k i n g  t h e  l o c a t i o n  o f  t h e  i n t e r i o r  t o

9 % d i s s i p a t e  f r o m .

10

n  % f i n d  t h e  d i s t a n c e  f r o m  t h e  i n t e r i o r .

12 d s t  =  b w d i s t ( i n t e r i o r , 1 c i t y b l o c k ’ ) ;

13

14 % S o r t  t h e  d i s t a n c e  t o  i n d e x  f r o m .

15 [ s o r t e d ,  i n d ]  =  s o r t  ( d s t  ( : ) )  ;

16 i n d  =  i n d ( s o r t e d  >  0 ) ;

17

i s  [ I , J ]  =  i n d 2 s u b  ( s i z e  ( I m a g e )  ,  i n d )  ;

19

20 O u t l m a g e  =  I m a g e ;

21

22 % D i s s i p a t e

23 f o r  i  =  1  : n u m e l ( i n d )

24 x  =  m a x ( 1 , I ( i ) — 1 ) : m i n ( s i z e ( O u t l m a g e , 1 ) , I ( i ) + 1 ) ;

25 y  =  m a x  ( 1 ,  J ( i ) — 1 )  : m i n  ( s i z e  ( O u t l m a g e ,  2) ,  J ( i ) + 1 )  ;

26 m a r k  =  d o u b l e ( i n t e r i o r ( x ,  y ) ) ;

27

28 O u t l m a g e  ( I  ( i )  ,  J  ( i )  ) =  . . .

s u m ( s u m ( O u t l m a g e ( x , y ) . * m a r k ) ) / s u m ( m a r k ( : ) ) ;

29 i n t e r i o r  ( I  ( i )  ,  J  ( i )  ) =  1 ;

30 e n d

31

32  e n d

1 f u n c t i o n  [ h o m o l  J =  h o m o f i l t e r ( I , o p t i o n  )

2 % T h i s  f u n c t i o n  c a l c u l a t e s  t h e  a c c u r a c i e s  f r o m  t h e

3 % s o f t —t h r e s h o l d s  S  a n d  T i s  t h e  t r u t h .

4 % I N P U T :
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5 % I — The g r a y s c a l e  i m a g e .
6 % o p t i o n  — o p t i o n s  f o r  t h e  h o m o m o r p h i c  f i l t e r .
7 % O U T P U T :

8 % h o m o l  — The r e s u l t  o f  h o m o m o r p h i c  f i l t e r
9 % EXAMPLE:

10 % im = d o u b l e ( i m r e a d ( ' t u n . j p g ' ) ) ;
11 % o p t i o n  = s t r u c t ( ' m e t h o d 1 , 1B u t t e r w o r t h *, ’ DO 1, 1 ,  ' n ' , 2 ,  . . .
12 % ' a l p h a L  1 , . 0 9 9 9 ,  ' a l p h a H 1 , 1 .  01 )  ;
13
14 % The d i s t a n c e  f r o m  t h e  c e n t e r
15 [X,Y]  = n d g r i d (1—s i z e ( 1 , 1 ) / 2 : s i z e ( 1 , 1 ) / 2 , 1—s i z e ( I , 2 ) / 2 : s i z e ( I , 2 ) / 2 ) ;
16 a b s . o m e g a  = s q r t  ( X . " 2+Y . "2)  ;
17
is % S e t u p  t h e  o p t i o n s  i f  n e e d e d
19 i f  - l e x i s t  ( ' o p t i o n  1, 1 v a r  ' ) | |  i s e m p t y  ( o p t i o n )
20 o p t i o n  = s t r u c t ( ' m e t h o d * , 1B u t t e r w o r t h 1, ' n ' , 2 , . . .
21 ' D O ' , 8 0 , ' a l p h a L ' , 0 . 2 5 , ' a l p h a H ' , 2 ) ;
22 end
23
24 % C o n s t r u c t  t h e  h i g h —p a s s  f i l t e r
25 i f  s t r c m p ( o p t i o n . m e t h o d , ' I d e a l ' )
26 H = d o u b l e  ( a b s . o m e g a  >  o p t i o n . D O ) ;
27 e l s e i f  s t r c m p ( o p t i o n . m e t h o d , ' B u t t e r w o r t h ' )
28 H = 1 . / ( 1 + ( o p t i o n . D O  . /  a b s . o m e g a ) ( 2 * o p t i o n . n ) ) ;
29 e l s e i f  s t r c m p ( o p t i o n . m e t h o d , ' G a u s s i a n ' )
30 H = 1 — e x p  (—a b s . o m e g a  . "2 /  ( 2 * o p t i o n . D 0 ~ 2 )  ) ;
31 e l s e
32 e r r o r ( [ ' Unknown m e t h o d :  ' o p t i o n . m e t h o d ] ) ;
33 e n d

34
35 % The h o m o m o r p h i c  f i l t e r  f u n c t i o n
36 H = ( o p t i o n . a l p h a H —o p t i o n . a l p h a L ) . * H + o p t i o n . a l p h a L ;
37
38 % A p p l y  t h e  h o m o m o r p h i c  f i l t e r  p r o c e s s
39 f r e q l  = f f t s h i f t  ( f f t 2  ( l o g 2  (1 + 1) ) ) ;
40 h o m o l  = e x p ( a b s ( i f f t 2 ( i f f t s h i f t ( H . * f r e q l ) ) ) ) ;
41
42 end

Decimation-Free Directional Filter Bank

1 f u n c t i o n  [ diamond ] = diamond2D( N )
2 % T h i s  f u n c t i o n  c r e a t e s  t h e  d i a m o n d  f i l t e r .  S t u d i e d  f r o m

3 % T r u e  e t . a l . ' s  c o d e .

4 % I N P U T :

5 % N  — T h e  o r d e r  o f  t h e  d i a m o n d  f i l t e r .

6 % O U T P U T :

7 % d i a m o n d  — t h e  d i a m o n d  f i l t e r  o u t p u t .

8
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9

10

11

12

13

14

15

16

17

18

19

20
21

22

1
2
3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22
23

24

25

26

27

28

29

30

31

32

33

34

% 1—D s t e p  ( f r e q  d o m a i n )  f u n c t i o n  
s  = f  i r l  (N—1, . 5)  ;

% 2D s t e p  f u n c t i o n  
s2D  = s ' * s ;

% C h e c k e r b o a r d  ( f r e q  d o m a i n )  f u n c t i o n
[X ,Y]  = n d g r i d ( 1 : N , 1 : N ) ;
c h e c k e r  = (1 + ( - 1 ) . * (X + Y ) ) . * s 2 D ;

% D o w n s a m p l e  i n  s p a t i a l  i s  u p s a m p l e  i n  f r e q u e n c y  
d i a m o n d  = d o w n s a m p l e 2 D ( [ 1  —1; 1 1 ] , c h e c k e r ) ;

e n d

f u n c t i o n  [ HO, HI ] = h o u r g l a s s 2 D ( N , v e r s i o n  )
% T h i s  f u n c t i o n  c r e a t e s  t h e  t w o  h o u r g l a s s  f i l t e r s .  S t u d i e d  f r o m  
% T r u e  e t . a l . 1s  c o d e .
% INPUT:
% N — The  o r d e r  o f  t h e  d i a m o n d  f i l t e r .
% v e r s i o n  — The  v e r s i o n  o f  h o u r g l a s s .  OPTIONAL.
% v l , v l T , v l 9 0 , v l  — 9 0 ; v 2 , v 2 T , v 2  9 0 , v 2  — 90 .
% T h i s  d e t e r m i n e s  t h e  way  t h e  h o u r g l a s s  i s
% c o n s t r u c t e d  f r o m  t h e  d i a m o n d  f i l t e r .

i f  - i e x i s t  ( '  v e r s i o n  1, ' v a r  1 ) 
v e r s i o n  = ' v l T 1;

e n d

%% C o n s t r u c t  d i a m o n d  
D = d i a m o n d 2 D ( N ) ;

%% S h i f t  t h e  f r e q u e n c y  d o m a i n  t o  p r o d u c e  t h e  h o u r g l a s s  f r o m  
%% t h e  d i a m o n d  f i l t e r .

i f  s t r c m p ( v e r s i o n ( 1 : 2 ) , ' v l 1)
HO = r e p m a t ( ( - 1 ) . * ( 0 :N—1 ) , N , 1 ) . *D;  
i f  s t r c m p ( v e r s i o n ( 3 : e n d )  , ' T ' )

HI = H 0 f ; 
e l s e i f  s t r c m p ( v e r s i o n ( 3 : e n d )  , 19 0 ' )  

i f  r e m ( N , 2)  = = 0
HI = r o t 9 0 ( [  [HO z e r o s ( N , 1 ) ] ;  z e r o s ( 1 , N + l ) ] , 1 ) ;
HI = H I ( 1 : N , 1 : N ) ;

e l s e
HI = r o t 9 0 (HO,1 ) ;

e n d
e l s e i f  s t r c m p ( v e r s i o n ( 3 : e n d )  , 1 — 9 0 1) 

i f  r e m ( N , 2 )  == 0
HI = r o t 9 0 ( [  [HO z e r o s ( N , l ) ] ;  z e r o s ( 1 , N + l ) ] , —1 ) ;
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35

36

37

38

39

40
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42

43
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57
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59

60

61

62

63

64

65

66
67

1
2
3

4

5

6
7

8
9

10
11
12
13

HI = HI(1:N,1:N);
e l s e

HI = r o t 9 0 (HO,1 ) ;
e n d

e l s e
e r r o r ( [ 1 U n r e c o g n i z e d  v e r s i o n  1 o p t i o n :  1 v e r s i o n ( 3 : e n d )  . . .

e n d
e l s e i f  s t r c m p ( v e r s i o n ( 1 : 2 ) ,  ' v 2 1 )

HI = r e p m a t ( ( ( —1 ) . ~ ( 0 :N—1 ) ) ’ , 1 ,  N ) . *D;  
i f  s t r c m p ( v e r s i o n ( 3 : e n d )  , f T ’ )

HO = H I 1 ; 
e l s e i f  s t r c m p ( v e r s i o n ( 3 : e n d )  , ' 9 0 ' )  

i f  r e m ( N , 2) = = 0
HO = r o t 9 0 ( [  [HI z e r o s ( N , 1 ) ] ;  z e r o s ( 1 , N + l ) ] , 1 ) ;
HO = HO ( 1 : N , 1 : N ) ;

e l s e
HO = r o t 9 0 ( H I , 1 ) ;

e n d
e l s e i f  s t r c m p ( v e r s i o n ( 3 : e n d ) , f—9 0 f ) 

i f  r e m ( N , 2 )  == 0
HO = r o t 9 0 ( [  [HI z e r o s ( N , 1 ) ] ;  z e r o s ( 1 , N + l ) ] , —1 ) ;
HO = HO( 1 : N , 1 : N ) ;

e l s e
HO = r o t 9 0 ( H I , 1 ) ;

e n d
e l s e

e r r o r ( [ '  U n r e c o g n i z e d  v e r s i o n  2 o p t i o n :  1 v e r s i o n ( 3 : e n d )  . . .

' . ' ] ) ;
e n d

e l s e
e r r o r ( 1 U n r e c o g n i z e d  v e r s i o n . 1) ;

e n d

e n d

f u n c t i o n  [ Y  ] =  d o w n s a m p l e 2 D ( M , X )

% T h i s  f u n c t i o n  d o w n s a m p l e s  b y  m a t r i x  M o n  g r a y s c a l e  i m a g e  X .  

% I N P U T :

% M — T h e  d o w n s a m p l e  m a t r i x .

% X  — T h e  g r a y s c a l e  i m a g e .

% OUTPUT:
% Y — T h e  d o w n s a m p l e d  i m a g e .

% G e t  t h e  c e n t e r  o f  t h e  i m a g e ,

c e n t e r  =  f l o o r ( s i z e ( X ) 1 2 )  + 1 ;

% G r i d  t h e  i m a g e  X  w i t h  ( 0 , 0 )  b e i n g  t h e  c e n t e r .

[ i , j ]  =  n d g r i d ( l — c e n t e r ( 1 )  : s i z e ( X , 1 ) — c e n t e r  ( 1 ) , . .  .
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

1
2
3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

1—c e n t e r  (2)  : s i z e ( X , 2 ) —c e n t e r ( 2 ) ) ;  
i  = r e s h a p e ( i , 1 , [ ] ) ;  j = r e s h a p e ( j , 1 ,  [ ] ) ;

% R o t a t e  t h e  g r i d ,  
s a m p l e  = M * [ i ;  j ] ;  
x  = s a m p l e ( 1 , : ) ;  
y  = s a m p l e ( 2 , : ) ;

% F i n d  t h e  h a l f  i n d i c e s  w i t h  z e r o s ,  
b o o l e a n  = r e m ( x , l )  == 0 & r e m ( y , l )  = = 0  . . .

& x > 1 — c e n t e r  (1 )  & x  < s i z e  ( X , 1 ) —c e n t e r  (1 )  . . .
& y  > 1 — c e n t e r (2)  & y  < s i z e ( X , 2 ) - c e n t e r  ( 2 ) ;

% O n l y  k e e p  t h e  i n t e g e r  i n d i c e s .
I  = s u b 2 i n d ( s i z e ( X ) , i ( b o o l e a n )  + c e n t e r  ( 1 ) , j ( b o o l e a n )  + c e n t e r  ( 2 ) ) ;  
J  = s u b 2 i n d ( s i z e ( X ) , x ( b o o l e a n )  + c e n t e r  ( 1 ) , y ( b o o l e a n )  + c e n t e r  ( 2 ) ) ;

% S u b s t i t u t e  u s i n g  r e i n d e x i n g .
Y = z e r o s ( s i z e ( X ) ) ;
Y ( I ) = X (J)  ; 
e n d

f u n c t i o n  [ Y ] = u p s a m p l e 2 D ( M , X , p a d )
% T h i s  f u n c t i o n  d o w n s a m p l e s  b y  m a t r i x  M on  g r a y s c a l e  i m a g e  X.  
% INPUT:
% M — The d o w n s a m p l e  m a t r i x .
% X — The  g r a y s c a l e  i m a g e .
% p a d  — W h e t h e r  o r  n o t  t o  p a d  t h e  u n k n o w n .  OPTIONAL.
% OUTPUT:
% Y — The d o w n s a m p l e d  i m a g e .

% G et  t h e  c e n t e r  o f  t h e  i m a g e ,  
c e n t e r  = f l o o r  ( s i z e ( X ) / 2 ) + 1 ;

% G r i d  t h e  i m a g e  X w i t h  ( 0 , 0 )  b e i n g  t h e  c e n t e r .
[ i , j ]  = n d g r i d ( l —c e n t e r (1)  : s i z e  ( X , 1 ) —c e n t e r ( 1 ) , . . .

1—c e n t e r (2)  : s i z e  ( X , 2 ) —c e n t e r ( 2 ) ) ;
i  = r e s h a p e ( i ,  1 ,  [ ] ) ;  j  = r e s h a p e ( j , 1 , [ ] ) ;

% R o t a t e  t h e  g r i d ,
s a m p l e  = M * [ i ;  j ] ;  
x  = s a m p l e ( 1 ,  : )  ; 
y  = s a m p l e ( 2 ,  : )  ;

i f  i s e m p t y ( p a d )  | |  - p a d
% F i n d  t h e  h a l f  i n d i c e s  w i t h  z e r o s ,  
b o o l e a n  = r e m ( x , l )  == 0 & r e m ( y , l )  = = 0  . . .

& x  > 1 — c e n t e r  (1)  & x  < s i z e ( X , 1 ) —c e n t e r (1 )  . . .
& y  > 1 — c e n t e r  (2)  & y  < s i z e ( X , 2 ) —c e n t e r ( 2 ) ;
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28

29 % O n l y  k e e p  t h e  i n t e g e r  i n d i c e s .
30 I = s u b 2 i n d ( s i z e ( X ) , i ( b o o l e a n )  + c e n t e r  ( 1 ) , . . .
31 j  ( b o o l e a n )  + c e n t e r  ( 2 ) ) ;
32 J  = s u b 2 i n d ( s i z e ( X ) , x ( b o o l e a n )  + c e n t e r ( 1 ) , . . .
33 y  ( b o o l e a n )  + c e n t e r  ( 2 ) ) ;
34

35 % S u b s t i t u t e  u s i n g  r e i n d e x i n g .
36 Y = z e r o s ( s i z e ( X ) ) ;
37 Y (J)  = X ( I ) ;
38 e l s e
39 % F i n d  t h e  h a l f  i n d i c e s  w i t h  z e r o s .
40 b o o l e a n  = r e m ( x , l )  == 0 & r e m ( y , l )  == 0;
41

42 m i n x  = m i n  (x  ( : )  ) ; maxx  = m a x ( x ( : ) ) ;
43 m i n y  = m i n  (y  ( : )  ) ; maxy  = m a x ( y ( : ) ) ;
44 m = m i n ( m i n x , m i n y ) ; M = m a x ( m a x x , m a x y ) ;
45

46 Y = z e r o s  (M — m + 1 ) ;
47

48 % O n l y  k e e p  t h e  i n t e g e r  i n d i c e s .
49 I = s u b 2 i n d ( s i z e ( X ) , i ( b o o l e a n )  + c e n t e r  ( 1 ) , . . .
50 j  ( b o o l e a n )  + c e n t e r  ( 2 ) ) ;
51 J  = s u b 2 i n d  ( s i z e  (Y) , x  ( b o o l e a n )  — m + 1 , . . .
52 y  ( b o o l e a n )  — m + 1 ) ;
53

54 % S u b s t i t u t e  u s i n g  r e i n d e x i n g .
55 Y ( J )  =  X ( I ) ;

56 e n d
57

58 e n d

1 f u n c t i o n  [ F i l t e r  ] = C r e a t e D i r e c t i o n a l F i l t e r s ( N , s z , v e r s i o n  )
2 % T h i s  f u n c t i o n  c r e a t e s  t h e  D e c i m a t i o n —f r e e  d i r e c t i o n a l  f i l t e r  . . .

b a n k  f i l t e r s
3 % u s e d  i n  p a p e r :  T r u e  e t . a l . ,  V e s s e l  e n h a n c e m e n t  f i l t e r  u s i n g  . . .

d i r e c t i o n a l  f i l t e r  b a n k .
4 o."0 INPUT:
5 % N — The d i a m o n d  f i l t e r  o r d e r .
6 o"o s z  [m n] — The s i z e  o f  t h e  w e d g e  f i l t e r s .  OPTIONAL.
7 % v e r s i o n — The v e r s i o n  o f  h o u r g l a s s .  OPTIONAL.
8 % v l , v l T ,  v l 9 0 ,  v l  —9 0 ; v 2 , v 2 T ,  v 2  9 0 , v 2  —90 .
9 o.o OUTPUT:

10 % F i l t e r s  --  an  m—b y —n—b y —16 d i m e n s i o n a l  m a t r i x  w i t h  t h e  t h i r d
11 % d i m e n s i o n  i n d e x e d  f o r  e a c h  o f  t h e  w e d g e - s h a p e d  . .

g,"o f i l t e r s .
12

13 i f

OV55

14 e r r o r ( 1N m u s t b e  a p o s i t i v e  i n t e g e r 1) ;
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15 e n d

16
17 i f  - " e x i s t  ( '  s z  ' ,  ' v a r 1 ) | |  i s e m p t y ( s z )
is s z  = 8 * ( N - 1 ) ;  % n o n z e r o  F i l t e r  w in d o w  i s  8 ( N - l )  , w i t h  +8

e x t r a  p a d d e d  z e r o s .
19 end
20
21 i f  - ’e x i s t  ( ' v e r s i o n ' , 1 v a r ' )
22 v e r s i o n  = f v l T ' ;
23 e n d

24
25 % Q u i n c u n x
26 Q = [1 - 1 ;  1 1 ] ;
27
28 % S h e e r  m a t r i c e s
29 R1 = [1 0;  - 1  1 ] ;  R1T = R 1 1;
so R2 = [1 1;  0 1]  ; R2T = R2 ' ;
31
32 %% C r e a t e  L e v e l  1 ( H o u r g l a s s )  F i l t e r s
33 [ h O , h i  ] = h o u r g l a s s 2 D  ( N , v e r s i o n  ) ;
34
35 r a n g e  = f l o o r  ( [ s z  s z ] / 2 )  + 1 — f l o o r ( [N N ] / 2 )  .. .
36 : f l o o r  ( [ s z  s z ] / 2 )  + c e i l  ( [N N ] / 2 ) ;
37
38 HO = z e r o s  ( s z )  ;
39 HO ( r a n g e ,  r a n g e )  = hO;
40
41 HI = z e r o s  ( s z ) ;
42 HI ( r a n g e ,  r a n g e )  = h i ;
43
44 % [ HO, HI ] = h o u r g l a s s 2 D (  N ) ;
45
46 %% C r e a t e  L e v e l  2 F i l t e r s
47 HOQ = u p s a m p l e 2 D ( Q , H O , f a l s e ) ;
48 H1Q = u p s a m p l e 2 D ( Q , H i , f a l s e ) ;
49
50 %% C r e a t e  t h e  4 W e d g e s
51 F i l t e r 2  = c a t  ( 3 , . . .
52 c o n v 2  (HO, HOQ, 1 same  ' ) , . . .
53 c o n v 2  (HO, H1Q, 1 same  ' ) , . . .
54 c o n v 2  ( H I , H1Q, ' same  1 ) , . . .
55 c o n v 2  ( H I , HOQ, 1 sam e  ’ ) ) ;
56
57 %% C r e a t e  L e v e l  3 F i l t e r s
58 H0R1QQ = u p s a m p l e 2 D ( R 2 * Q * Q , H O , f a l s e ) ;
59 H1R1QQ = u p s a m p l e 2 D ( R 2 * Q * Q , H I , f a l s e )  ;
60
61 H0R1TQQ = u p s a m p l e 2 D ( R 2 T * Q * Q , H O , f a l s e ) ;
62 H1R1TQQ = u p s a m p l e 2 D ( R 2 T * Q * Q , H I , f a l s e ) ;
63
64 H0R2QQ = u p s a m p l e 2 D ( R 1 * Q * Q , H O , f a l s e ) ;
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65 H1R2QQ = u p s a m p l e 2 D ( R 1 * Q * Q , H I , f a l s e )  ;
66
67 H0R2TQQ = u p s a m p l e 2 D ( R 1 T * Q * Q ,  HO, f a l s e )  ;
68 H1R2TQQ = u p s a m p l e 2 D ( R 1 T * Q * Q , H I , f a l s e ) ;
69
70 %% C r e a t e  t h e  8 We dg es
71 F i l t e r 3  = c a t  ( 3 ,  . . .
72 c o n v 2  ( F i l t e r 2  ( : ,  : ,  1)  , H0R1QQ, ' sam e  1 ) , . .
73 c o n v 2  ( F i l t e r 2  (: , : ,  1)  , H1R1QQ, ' sam e
74 c o n v 2  ( F i l t e r 2  (: , : ,  2)  , H1R2TQQ, 1 sam e  ’ ) , .
75 c o n v 2  ( F i l t e r 2  ( : ,  : ,  2)  , H0R2TQQ, 1 sam e  1 ) , .
76 . . .
77 c o n v 2 ( F i l t e r 2 ( : ,  : , 3 )  , H1R2QQ, 1 s a m e ' ) ,  . .
78 c o n v 2  ( F i l t e r 2  ( : ,  : ,  3)  , H0R2QQ, f sam e  1 ) , . .
79 c o n v 2  ( F i l t e r 2  ( : ,  : ,  4)  , H0R1TQQ, 1 sa m e  ’ ) , .
so c o n v 2 ( F i l t e r 2 ( : ,  : , 4 ) , H1R1TQQ, ' sa m e  1) ) ;
81
82 %% C r e a t e  L e v e l  4 F i l t e r s
83 H0R1QR1QQ = u p s a m p le 2 D ( R 2 * Q * R 2 * Q * Q ,  HO, f a l s e ) ;
84 H1R1QR1QQ = u p s a m p l e 2 D ( R 2 * Q * R 2 * Q * Q , H I , f a l s e ) ;
85
86 H0R1QR2TQQ = u p sa m p le 2 D (R 2 * Q * R 1 T * Q * Q ,  HO, f a l s e ) ;
87 H1R1QR2TQQ = u p sa m p le 2 D (R 2 * Q * R 1 T * Q * Q ,  H I , f a l s e ) ;

90 H0R2QR2QQ = u p s a m p l e 2 D ( R 1 * Q * R 1 * Q * Q , H O , f a l s e ) ;
91 H1R2QR2QQ = u p s a m p l e 2 D ( R 1 * Q * R 1 * Q * Q , H I , f a l s e ) ;
92

93 H0R2QR1TQQ = u p sa m p le 2 D (R 1 * Q * R 2 T * Q * Q ,  HO, f a l s e ) ;
94 H1R2QR1TQQ = u p sa m p le 2 D (R 1 * Q * R 2 T * Q * Q ,  HI ,  f a l s e ) ;
95

96 % ------

97 H0R1TQR1QQ = u p sa m p le 2 D (R 2 T * Q * R 2 * Q * Q ,  HO, f a l s e ) ;
98 H1R1TQR1QQ = u p sa m p le 2 D (R 2 T * Q * R 2 * Q * Q ,  H I ,  f a l s e ) ;
99

100 H0R1TQR2TQQ = u p s a m p l e 2 D ( R 2 T * Q * R 1 T * Q * Q , H O , f a l s e ) ;
101 H1R1TQR2TQQ = u p s a m p l e 2 D ( R 2 T * Q * R 1 T * Q * Q , H I , f a l s e ) ;
102
103 % ------

104 H0R2TQR2QQ = u p s a m p l e 2 D  (R1T*Q*R1*Q*Q,  HO, f a l s e )  ;
105 H1R2TQR2QQ = u p s a m p l e 2 D ( R 1 T * Q * R 1 * Q * Q , H I , f a l s e ) ;
106

107 H0R2TQR1TQQ = u p s a m p l e 2 D ( R 1 T * Q * R 2 T * Q * Q , H O , f a l s e ) ; 
los H1R2TQR1TQQ = u p s a m p l e 2 D ( R 1 T * Q * R 2 T * Q * Q , H I , f a l s e ) ;
109

no %% C r e a t e  t h e  16 We dg es  
i n  F i l t e r 4  = c a t ( 3 , . . .
112 c o n v 2  ( F i l t e r 3  ( : ,  : , 2)  , H0R1QR2TQQ, * sam e  1 )
113 c o n v 2  ( F i l t e r 3  ( : ,  : ,  2)  , H1R1QR2TQQ, 1 sam e  ' )
U4 c o n v 2 ( F i l t e r 3 ( : ,  : , 1 ) , H1R1QR1QQ, 1 s a m e ’ ) ,
u s  c o n v 2 ( F i l t e r 3 ( : ,  : , 1 ) , H0R1QR1QQ, * sam e  1 ) ,
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116 . . .

117 c o n v 2 ( F i l t e r 3 ( : , : , 8 ) , H 0 R 1 T Q R 2 T Q Q , ' s a m e ' ) ,
118 c o n v 2 ( F i l t e r 3 ( : , : , 8 ) , H1R1TQR2TQQ,1 sa m e  1) ,
119 c o n v 2 ( F i l t e r 3 ( : , i , l ) , H1R1TQR1QQ, ' s a m e ' ) , .
120 c o n v 2 ( F i l t e r 3 ( : , : , 1 ) , H0R1TQR1QQ, ' s a m e ' ) , .
121 . . .

122 c o n v 2 ( F i l t e r 3 ( : , : , 6 ) , H1R2QR1TQQ, 1 sa m e  1 ) ,  .
123 c o n v 2 ( F i l t e r 3 ( : , : , 6 ) , H0R2QR1TQQ, 1 sa m e  1 ) ,  .
124 c o n v 2 ( F i l t e r 3 ( : , : , 5 ) , H0R2QR2QQ, ’ s a m e ' ) , . .
125 c o n v 2 ( F i l t e r 3 ( : , : , 5 ) , H 1 R 2 Q R 2 Q Q , ' s a m e ' ) , . .
126

127 c o n v 2 ( F i l t e r 3 ( : , : , 4 ) , H1R2TQR1TQQ,’ s a m e ' ) ,
128 c o n v 2 ( F i l t e r 3 ( : , : , 4 ) , H0R2TQR1TQQ, * s a m e ' ) ,
129 c o n v 2 ( F i l t e r 3 ( : , i , 3 ) , H0R2TQR2QQ, f sa m e  ? ) ,  .
130 c o n v 2 ( F i l t e r 3 ( : , : , 3 ) , H 1 R 2 T Q R 2 Q Q , ' s a m e ' ) ) ;
131

132 F i l t e r = F i l t e r 4 ;
133

134 e n d

1 f u n c t i o n  [ D x x , D x y , D y y ] = H e s s i a n 2 D m o d ( I , s i g m a , g a m m a , t o l )
2 % T h i s  f u n c t i o n  H e s s i a n 2  F i l t e r s  t h e  i m a g e  w i t h  2 n d  d e r i v a t i v e s
3 % o f  a G a u s s i a n  w i t h  p a r a m e t e r  S i g m a .  M o d i f i e d  f r o m  D . K r o o n
4 % U n i v e r s i t y  o f  T w e n t e  ( J u n e  2 0 0 9 ) .
5 %

6 % [ D x x , D x y , D y y ]  = H e s s i a n 2 D m o d ( I , S i g m a ) ;
7 %

s % INPUT:
9 % I -  The  i m a g e ,  c l a s s  p r e f e r a b l e  d o u b l e  o r  s i n g l e

10 % s i g m a  — The  s i g m a  o f  t h e  g a u s s i a n  k e r n e l  u s e d
n  %

12 % OUTPUT:
13 % D x x ,  D xy ,  Dyy — The  2 n d  d e r i v a t i v e s .
14

15 i f  n a r g in  <  2
16 s i g m a  = 1;
17 gamma = 1;
18 t o l  = 1 0 " —3
19 e l s e i f  n a r g i n  = :
20 gamma = 1;
21 t o l  = 1 0 " —3
22 e l s e i f  n a r g i n  = :
23 t o l  = 1 0 " —3
24 e n d
25

26 % Make k e r n e l  c o o r d i n a t e s
27 [X ,Y]  = n d g r i d ( —r o u n d ( 4 * s i g m a ) : r o u n d ( 4 * s i g m a ) ) ;
28

29 % B u i l d  t h e  g a u s s i a n  2 n d  d e r i v a t i v e s  f i l t e r s
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30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

D G a u s s x x  = — s i g m a " g a m m a  * ( s i g m a " 2  — . . .
X . " 2 ) / ( 2 * p i * s i g m a ~ 6) . * e x p (— (X . " 2 + Y . " 2 ) / ( 2 ★ s i g m a " 2 ) ) ;  

D G a u s s y y  = — s i g m a " g a m m a  ★ ( s i g m a " 2 — . . .
Y . " 2 ) / ( 2 * p i * s i g m a " 6 )  . * e x p (— ( X . " 2 + Y . " 2 ) / ( 2 ★ s i g m a " 2 ) ) ;  

D G a u s s x y  = s i g m a " g a m m a  ★ . . .
( ( X . * Y / ( 2 * p i * s i g m a " 6 ) ) . ★ e x p (—(X. " 2+ Y . " 2 ) / ( 2 ★ s i g m a " 2 ) ) ) ;

% F i n d  t h e  c o m p o n e n t s  o f  t h e  H e s s i a n  u s i n g  SVD,
% w h i c h  i s  f a s t e r .
Dxx = c o n v o l v e 2 ( I , D G a u s s x x ,  ' sam e  1, t o l ) ;
Dxy = c o n v o l v e 2 ( I , D G a u s s x y , ' sam e  ' , t o l ) ;
Dyy = c o n v o l v e 2 ( I , D G a u s s y y ,  1 s a m e f , t o l ) ;

e n d

f u n c t i o n  [ d i r e c t E n h a n c e  ] = D i r e c t i o n a l E n h a n c e ( . . .
d i r e c t l m g , o p t i o n  )

% T h i s  f u n c t i o n  e n h a n c e s  e a c h  o f  t h e  d i r e c t i o n a l  v e s s e l  i m a g e s .
% I N P U T :

% d i r e c t l m g  — The  c e l l  o f  d i r e c t i o n a l  v e s s e l s  i m a g e s .
% o p t i o n  — O p t i o n s  f o r  t h e  DDFB v e s s e l  e n h a n c e m e n t .
% .N — t h e  o r d e r  o f  t h e  d i a m o n d .
% . s i g m a  — t h e  v e c t o r  c o n t a i n i n g  t h e  s c a l e s .
% . b e t a  — t h e  b e t a  v a l u e  f o r  v e s s e l  e n h a n c e m e n t .
% . c  — t h e  c  v a l u e  f o r  v e s s e l  e n h a n c e m e n t .
% . L i g h t o n D a r k  — w h e t h e r  t h e  v e s s e l s  a r e

l i g h t e r  t h a n  i t s  b a c k g r o u n d .
% O U T P U T :

% d i r e c t E n h a n c e  — a #—#—16 m a t r i x  o f  v e s s e l  e n h a n c e m e n t  on  
% e a c h  o f  t h e  d i r e c t i o n a l  i m a g e s .

% Number  o f  d i r e c t i o n a l  f i l t e r s  
n = s i z e ( d i r e c t l m g , 3 ) ;

% a n g l e  o f  t h e  f i l t e r s .
t h e t a  = p i / ( 2 * n )  : p i / n  : ( 2 ^ n - l ) * p i / ( 2 ^ n )  ;

t e m p  = c e l l ( n , l ) ;

i f  o p t i o n . L i g h t o n D a r k  
f o r  i  = 1 : n

% D i r e c t i o n a l  v e s s e l  e n h a n c e  on  l i g h t  v e s s e l s .  
t e m p { i }  = D i r e c t i o n a l E n h a n c e L i g h t o n D a r k ( . . .

d i r e c t l m g ( : ,  : , i ) , o p t i o n , t h e t a  ( i ) ) ;
e n d

e l s e
f o r  i  = 1 : n

% D i r e c t i o n a l  v e s s e l  e n h a n c e  on  d a r k  v e s s e l s .  
t e m p { i }  = D i r e c t i o n a l E n h a n c e D a r k o n L i g h t ( . . .
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34 d i r e c t l m g  ( : ,  : ,  i )  , o p t i o n ,  t h e t a  ( i )  ) ;
35 e n d

36 e n d
37

38 % C o m b in e  t h e  d i r e c t i o n a l  v e s s e l  e n h a n c e m e n t s .
39 d i r e c t E n h a n c e  = c a t ( 3 , t e m p { : } ) ;
40

41 end
42

43

44 f u n c t i o n  [ o u t l m g ]  = D i r e c t i o n a l E n h a n c e L i g h t o n D a r k ( I m g , o p t i o n , a n g l e )
45 % T h i s  f u n c t i o n  p e r f o r m s  t h e  l i g h t - o n - d a r k  e n h a n c e m e n t  v e r s i o n .
46

47 o u t l m g  = z e r o s ( s i z e ( I m g ) ) ;
48 f o r  s i g m a  = o p t i o n ,  s i g m a
49 [ D x x , D x y , D y y ]  = H e s s i a n 2 D m o d ( I m g , s i g m a ) ;
50 h l l  = D x x * c o s  ( a n g l e )  <S2 + D x y * s i n  ( 2 * a n g l e )  + D y y * s i n  ( a n g l e )  "2;
51 h 2 2  = D x x * s i n  ( a n g l e ) "2—D x y * s i n ( 2 * a n g l e ) + D y y * c o s ( a n g l e ) "2/
52 S = s q r t  ( h l l . " 2+h 22  . ~ 2 ) ;
53 R = h l l . / h 2 2 ;
54 t e m p  = d o u b l e ( h 2 2  <  0 ) . * ( e x p (—R . " 2 / ( 2 * o p t i o n . b e t a ~ 2 ) ) . . .
55 . * ( 1—e x p  (—S . " 2 /  ( 2 * o p t i o n  . c " 2 ) ) ) ) ;
56 o u t l m g  = d o u b l e ( t e m p  >  o u t l m g ) . * ( t e m p  — o u t l m g )  + o u t l m g ;
57 e n d
58

59 e n d
60 

61

62 f u n c t i o n  [ o u t l m g ]  = D i r e c t i o n a l E n h a n c e D a r k o n L i g h t ( I m g , o p t i o n , a n g l e )
63 % T h i s  f u n c t i o n  p e r f o r m s  t h e  d a r k —o n —l i g h t  e n h a n c e m e n t  v e r s i o n .
64

65 o u t l m g  = z e r o s  ( s i z e  ( Img) ) ;
66 f o r  s i g m a  = o p t i o n ,  s i g m a
67 [ D x x , D x y , D y y ]  = H e s s i a n 2 D m o d ( I m g , s i g m a ) ;
68 h l l  = D x x * c o s  ( a n g l e ) ~ 2 + D x y * s i n ( 2 * a n g l e ) + D y y * s i n ( a n g l e ) "2;
69 h 2 2  = D x x * s i n  ( a n g l e ) "2—D x y * s i n ( 2 * a n g l e ) + D y y * c o s ( a n g l e ) "2;
70 S = s q r t  ( h l l . " 2+ h 22  . "2) ;
71 R =  h l l . / h 2 2 ;

72 t e m p  = d o u b l e ( h 2 2  >  0 )  . * ( e x p (—( R . " 2 / ( 2 * o p t i o n . b e t a ~ 2 ) ) )  . . .
73 . * ( 1—e x p  (—S . "2 /  ( 2 * o p t i o n  . c ~ 2 ) ) ) ) ;
74 o u t l m g  = d o u b l e ( t e m p  >  o u t I m g ) . * ( t e m p  — o u t l m g )  + o u t l m g ;
75 e n d
76

77 e n d

1 f u n c t i o n  [ e n h a n c e  ] = D F B M u l t i s c a l e E n h a n c e ( . . .
I , D D F B o p t i o n , m i d O p t i o n  )

2 % T h i s  f u n c t i o n  c a l c u l a t e s  t h e  a c c u r a c i e s  f r o m  t h e
3 % s o f t —t h r e s h o l d s  S a n d  T i s  t h e  t r u t h .
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G r a y s c a l e  i m a g e .
O p t i o n s  f o r  t h e  DDFB v e s s e l  e n h a n c e m e n t .

.N — t h e  o r d e r  o f  t h e  d i a m o n d .

. s i g m a  -  t h e  v e c t o r  c o n t a i n i n g  t h e  s c a l e s ,

. b e t a  — t h e  b e t a  v a l u e  f o r  v e s s e l
e n h a n c e m e n t .

. c  — t h e  c  v a l u e  f o r  v e s s e l  e n h a n c e m e n t .

. L i g h t o n D a r k  -  w h e t h e r  t h e  v e s s e l s  a r e
l i g h t e r  t h a n  i t s  b a c k g r o u n d .  

M i d d l e  s t e p  b e t w e e n  DDFB f i l t e r i n g  a n d  v e s s e l  
e n h a n c e m e n t  o p t i o n s .  O p t i o n a l .

. f u n c  — The  f u n c t i o n  a p p l i e d  t o  e a c h  o f  t h e  
d i r e c t i o n a l  i m a g e s .

. . .  — O t h e r  p a r a m e t e r s  u s e d  b y  . f u n c
19 % OUTPUT:
20 % e n h a n c e  — The  e n h a n c e m e n t  o u t p u t .
21
22 %% S e t u p  DDFB o p t i o n s  i f  n o t  p r o v i d e d
23 i f  - ' e x i s t  ( ' D D F B o p t i o n  1 , ' v a r  * ) | |  i s e m p t y  ( D D F B o p t i o n )
24 D D F B o p t i o n  = s t r u c t ( ' N ' ,  3 ,  1 s i g m a ' ,  2 : 1 : 6 , . . .
25 ’b e t a ' ,  0 . 7 5 ,  ' c f , 1 5 , . . .
26 1 L i g h t o n D a r k  1, f a l s e )  ;
27 e n d
28
29 i f  - d s f i e l d  ( D D F B o p t i o n ,  'N'  )
30 D D F B o p t i o n . N  = 3;
31 end
32
33 i f  - d s f i e l d  ( D D F B o p t i o n ,  1 s i g m a  ' )
34 D D F B o p t i o n . s i g m a  = 2 : 1 : 6 ;
35 e n d

36
37 i f  - d s f i e l d ( D D F B o p t i o n ,  ’b e t a  1 )
38 D D F B o p t i o n  . b e t a  = 0 . 7 5 ;
39 e n d

40
41 i f  - d s f i e l d  ( D D F B o p t i o n ,  ' c  ' )
42 D D F B o p t i o n .  c  = 15 ;
43 e n d
44
45 i f  - d s f i e l d ( D D F B o p t i o n , ' L i g h t o n D a r k ' )
46 D D F B o p t i o n . L i g h t o n D a r k  = f a l s e ;
47 e n d
48
49 %% D i r e c t i o n a l l y  f i l t e r  t h e  i m a g e
so F i l t e r  = C r e a t e D i r e c t i o n a l F i l t e r s ( D D F B o p t i o n . N ) ;
51
52 D i r L  = z e r o s ( s i z e ( I , 1 ) , s i z e ( I , 2 ) , 1 6 ) ;
53 f o r  k = 1 : 16
54 D i r L ( : , : , k )  = c o n v o l v e 2 ( I , F i l t e r ( : , : , k ) , ’ s a m e ’ , 0 . 0 1 ) ;

5
0.0 I -

6 0,"0 D D F B o p t i o n  —
7 0.

8 %

9 o.0

10 %

11 0.

12 0.o

13
0.

14 % m i d O p t i o n  —
15 %

16
o."0

17
o.

18 "0
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55 e n d

56

57 %% m i d —s t e p  f i l t e r
58 i f  e x i s t ( ' m i d O p t i o n 1, ' v a r 1) && - d s e m p t y ( m i d O p t i o n )
59 f o r  k = 1 : 16
60 D i r L ( : , : , k )  = m i d O p t i o n . f u n c ( D i r L ( : , : , k ) , m i d O p t i o n ) ;
61 e n d
62 e n d
63

64 %% V e s s e l  E n h a n c e
65 D i r E n h a n c e  = D i r e c t i o n a l E n h a n c e ( D i r L , D D F B o p t i o n ) ;
66

67 %% C om b in e  t h e  e n h a n c e m e n t
68 % e n h a n c e  = m a x ( D i r E n h a n c e ,  [ ] , 3 ) ;
69 e n h a n c e  = m e a n ( D i r E n h a n c e , 3 ) ;
70

71 e n d

Metrics

1 f u n c t i o n  [ A c c y , t  ] = S o f t A c c u r a c y ( S , T  )
2 % T h i s  f u n c t i o n  c a l c u l a t e s  t h e  a c c u r a c i e s  f r o m  t h e  . . .

s o f t —t h r e s h o l d s  S a n d  T
3 % i s  t h e  t r u t h .
4 % INPUT:
5 % S — The s o f t  t h r e s h o l d .  I t  m u s t  b e  n o n n e g a t i v e .
6 % T — The t r u t h  ( t r u e  o r  f a l s e ) .
7 % OUTPUT:
8 % A c c y  -  The v e c t o r  o f  a c c u r a c i e s .
9 % t  — The c o r r e s p o n d i n g  t h r e s h o l d  v a l u e s .

10 % EXAMPLE:
u  % N = 1 0 0 0 ;
12 % S = f  l o o r  ( 3 0 0 * r a n d  ( 1 ,  N) ) ;
13 % T = r a n d ( l , N )  >  0 . 5 ;
14 % A c c y  = S o f t A c c u r a c y  ( S , T  ) ;
15 % Temp = a r r a y f u n  (@ ( t ) s u m ( ( S > t ) . *T) + sum ( ( S < t ) . *->T) , . . .
16 % [ - 1  u n i q u e  (S) ] ) . .  .
17 % / l e n g t h  ( S ) ;
is % max ( a b s  ( A c c y  — Temp) )
19

20 S = S (: ) ; T = d o u b l e  (T ( : ) )  ;
21

22 N = length (S);
23

24 [ S S ,  I ] = s o r t  ( S - m i n  ( S ) +1 )  ; TT = T ( I ) ;
25

26 t  = [ 0;  u n i q u e  (SS)  ] ;
27

28 [b , m ,  ->] = u n i q u e  ( s o r t  (SS . *TT) ) ;
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29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

b  = [ 0 ;  b ]  ; m = [0 ;  m] ;
TP = F i l l l n ( t , b , N - m ) ;
% FN = s u m ( d o u b l e ( T ) ) — TP;

[ b ,m ,  ->] = u n i q u e  ( s o r t  (SS . *-<TT) ) ; 
m = [ 0 ;  m -  m ( l ) * ( b ( l )  == 0) ] ;  b = [0 ;  b ]  ;
TN = F i l l l n ( t , b , m ) ;
% FP = sum ( d o u b l e  (-^T) ) -  TN;

A c c y  = (TP + T N ) /N ;

t  = t  + m i n ( S )  — 1;

e n d

f u n c t i o n  [ f i l l e d  ] = F i l l l n ( l o n g , s h o r t , f i l l e r  ) 
% F i l l s  n o n —m a t c h i n g  e l e m e n t s .

f i l l e d  = l o n g ;

j = l e n g t h ( s h o r t ) ;  
f o r  i  = l e n g t h ( l o n g )  : —1 : 1 

f i l l e d ( i )  = f i l l e r  ( j ) ;

i f  l o n g ( i )  ==  s h o r t ( j )
j = j - i ;

e n d
e n d

e n d

f u n c t i o n  [ MCC, t  ] = M C C e f f ( S , T  )
% T h i s  f u n c t i o n  c a l c u l a t e s  t h e  M a t t h e w s  c o r r e l a t i o n  c o e f f i c i e n t  
% (MCC) f r o m  t h e  s o f t —t h r e s h o l d s  S a n d  T i s  t h e  t r u t h .
% INPUT:
% S -  The  s o f t  t h r e s h o l d .  I t  m u s t  b e  n o n n e g a t i v e .
% T — The  t r u t h  ( t r u e  o r  f a l s e )  .
% OUTPUT:
% MCC — t h e  v e c t o r  MCC v a l u e s .
% t  — t h e  c o r r e s p o n d i n g  t h r e s h o l d  v a l u e s .

S = S (:  ) ; T = d o u b l e ( T ( : ) ) ;

N = l e n g t h ( S ) ;

[ S S , I ] = s o r t ( S - m i n ( S ) + 1 ) ;  TT = T ( I ) ;  

t  = [ 0 ;  u n i q u e ( S S )  ] ;
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19 [b,m,-'] = u n i q u e ( s o r t ( S S .* T T ) );
20 b = [0; b] ; m  = [0; m] ;
21 TP = F i l l l n  (t,b,N-m) ;
22 F N  = su m  (double (T) ) —  TP;
23
24 [b,m, -i] = u n i q u e  (sort (SS . ★-iTT) ) ;
25 m  = [0; m  -  m(l) * ( b ( l )  == 0) ]; b = [0; b] ;
26 TN = F i l l l n  (t, b, m) ;
27 FP = su m  (double (->T) ) —  TN;
28
29 M C C  = ( (TP . *TN) -  (FP . *FN) ) . . .
so ./s q r t ( (TP+FN) .* (TP+FP) . * (TN+FP) . * ( T N + F N ) );
31
32 t = t + min(S) —  1;
33
34  e n d

35
36 f u n c t i o n  [ f i l l e d  ] = F i l l l n  ( l o n g , s h o r t , f i l l e r  )
37 % F i l l s  n o n - m a t c h i n g  elements.
38
39 f i l l e d  = long;
40
41 j = l e n g t h  ( s h o r t ) ;
42 for i = l e n g t h  (long) : — 1 : 1
43 filled(i) = f i l l e r  (j);
44

45 if long(i) == short (j)
46 j = j— 1;
47 e n d
48 e n d
49

50 e n d

Script

1 % R e t i n a l E n h a n c e S c r i p t . m
2

3 % Run t h i s  s c r i p t  t o  s e e  b a r  g r a p h  i n  F i g u r e  28  o f  t h e s i s
4 % a n d  t h e  mean o f  T a b l e  5 .  To s e e  b a r  g r a p h  i n  F i g u r e  2 7 ,
5 % c h a n g e  AUC ( i n c l u d i n g  v a r i a b l e  name A U C p l o t )  t o  a c c y
6 % f o r  p a r t  F o f  t h i s  s c r i p t .  To s e e  t h e  s t a n d a r d  d e v i a t i o n  o f  . . .

T a b l e  5 ,
7 % c h a n g e  p a r t  G t o  c a l l  s t d ( )  i n s t e a d  o f  m e a n ( ) .
8

9 %% A.  S e t u p  t h e  p a r a m e t e r s
10

n  M V E o p t i o n  = s t r u c t ( 1F r a n g i S c a l e R a n g e 1, [ 1  6 ] , 1F r a n g i S c a l e R a t i o 1, 2 , . . .
12 1F r a n g i B e t a O n e ' , 0 . 7 5 , 1F r a n g i B e t a T w o ' , 1 5 , . . .
13 f B l a c k W h i t e ' , t r u e ,  1 v e r b o s e  1, f a l s e ) ;

94



14
15 D D F B o p t i o n  = s t r u c t ( 1N 1, 3 ,  ' s i g m a ' , 2  : 1 : 6 , . . .
16 f b e t a  1, 0 . 7 5 ,  1 gamma1 , 1 5 ,  . . .
17 1 L i g h t o n D a r k ' , f a l s e )  ;
18
19 m i d O p t i o n  = s t r u c t ( 1f u n c 1, @ ( I , o p t ) h o m o f i l t e r ( I , o p t ) , . .  .
20 ' m e t h o d 1, 1 B u t t e r w o r t h 1 , . . .
21 ' n '  , 2 ,  'DO' , 3 0 0 ,  ' a l p h a L  1, 0 . 1 ,  ' a l p h a H ' , 1 ) ;
22
23 %% B.  DRIVE V e s s e l  e x t r a c t i o n  d a t a b a s e
24 DRIVE.db  = c e l l  ( 4 0 , 1 ) ;
25 f o r  i  = 1 : 9
26 D R I V E _ d b { i }  = s t r u c t  ( ' I ' , i m r e a d ( [ 1D R I V E \ t e s t \ i m a g e s \ 0  f . . .

n u m 2 s t r ( i )  1 - t e s t . t i f  1 ] ) ,  . . .
27 ' m a s k ' , i m r e a d ( [ 1D R I V E \ t e s t \ m a s k \ 0 1 . . .

n u m 2 s t r  ( i )  ' . t e s t . m a s k  . g i f  1 ] ) , . . .
28 ' t r a c e ' , i m r e a d ( [ ' D R I V E \ t e s t \ l s t _ m a n u a l \ 0  ' . .

n u m 2 s t r ( i )  ' _ m a n u a l l . g i f ' ] ) ) ;
29 e n d
30
31 f o r  i  = 10 : 20
32 D R I V E _ d b { i }  = s t r u c t  ( '  I i m r e a d  ( [ ' D R I V E \ t e s t \  i m a g e s  \  ' . . .

n u m 2 s t r ( i )  ' _ t e s t . t i f ' ] ) , . . .
33 ' m a s k ' , i m r e a d ( [ ' D R I V E \ t e s t \ m a s k \ ' . . .

n u m 2 s t r ( i )  ' . t e s t . m a s k . g i f .
34 ' t r a c e ' , i m r e a d ( [ ' D R I V E \ t e s t \ l s t _ m a n u a l \ ' . . .

n u m 2 s t r ( i )  ' _ m a n u a l l . g i f ' ] ) ) ;
35 e n d
36
37 f o r  i  = 21  : 40
38 D R I V E _ d b { i }  = s t r u c t ( ' I ' , i m r e a d ( [ ' D R I V E \ t r a i n i n g \ i m a g e s \ ' . . .

n u m 2 s t r ( i )  ' _ t r a i n i n g . t i f '  ] ) , . . .
39 ' m a s k ' , i m r e a d ( [ ' D R I V E \ t r a i n i n g \ m a s k \ ' . . .

n u m 2 s t r ( i )  ' _ t r a i n i n g _ m a s k . g i f ' ] ) , . . .
40 ' t r a c e ' , i m r e a d ( [ ' D R I V E \ t r a i n i n g \ l s t _ m a n u a l \ '

n u m 2 s t r ( i )  ' _ m a n u a l l . g i f ' ] ) ) ;
41 e n d
42
43 %% C. STARE V e s s e l  e x t r a c t i o n  d a t a b a s e
44 n a m e s  = { ' imOOOl ' , ' i m 0 0 0 2 ' , ' i m 0 0 0 3 ' , ' i m 0 0 0 4 ' , ' i m 0 0 0 5 ' , . . .
45 ' i m 0 0 4 4 ' , ' i m 0 0 7 7 ' , ' i m 0 0 8 1 ' , ' i m 0 0 8 2 ' , ' i m 0 1 3 9 ' , . . .
46 ' i m 0 1 6 2 ' , ' i m O l 6 3 ' , ' i m 0 2 3 5 ' , ' i m 0 2 3 6 ' , ' i m 0 2 3 9 ' , . . .
47 ' i m 0 2 4 0  ' ,  1 i m 0 2 5 5  ' ,  ' i m 0 2 9 1 \  ' i m 0 3 1 9 ' ,  ' i m 0 3 2 4 ' } ;
48
49 STARE.db = c e l l  ( l e n g t h  ( n a m e s ) ,  1) ;
50
51 f o r  i  = 1 : l e n g t h  (n a m e s )
52 S T A R E _ d b { i }  = s t r u c t ( ' I ' , i m r e a d ( [ ' S T A R E \ l m a g e s \ ' n a m e s { i }  . . .

' . p p m ' ] ) , . . .
53 ' t r a c e A H ' ,  i m r e a d  ( [ '  S T AR E \a h _t  r a c e \ ' . . .

n a m e s { i }  ' . a h . p p m ' ] ) , . . .
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54 ’ t r a c e V K ' , i m r e a d  ( [ ’ S T A R E \ v k _ t r a c e \  1 . . .
n a m e s { i }  1 . v k . p p m ' ] ) ) ;

55 e n d

56

57 T = [5 0  40  60 33  50 70 5 0 * o n e s ( l ,  9) 40 5 0 * o n e s  ( 1 , 4 )  ] ;
58

59 f o r  i  = 1  : l e n g t h  (n am es )
eo S T A R E . d b { i } . m a s k  = 2 5 5 * u i n t 8 ( S T A R E _ d b { i } . I ( : , : , 1 )  >  T ( i ) ) ;
61 e n d

62

63 %% D. E n h a n c e  DRIVE d a t a b a s e
64

65 p a r f o r  j  = 1 : 40
66 d i s p ( [ 1 S c a n n i n g  i m a g e  1 n u m 2 s t r ( j ) ] ) ;
67

68 % The m a r k i n g  u s e d  t o  i d e n t i f y  b i n a r y  r e g i o n s
69 mark  = max (DRIVE_db{  j } .  t r a c e  ( : ) )  ;
70

71 % S h r i n k  t h e  m a r k e d  r e g i o n  t o  a c c o m m o d a t e  t h e  i n c o r r e c t  mas k  . . .
p r o v i d e d

72 i n t e r i o r  = (DRIVE_db{  j } .m a s k  == m a r k ) ;
73 f o r  i  =  1 : 5
74 i n t e r i o r  = i n t e r i o r - b w m o r p h ( i n t e r i o r , 1 r e m o v e  1) ;
75 e n d
76

77 % S m o o t h  t h e  b o u n d a r y  t o  p r e v e n t  f a l s e  i d e n t i f i c a t i o n  o f  . . .
b o u n d a r y  a s  v e s s e l

78 D R I V E _ d b { j } . d i f f u s e  = B a s i c H e a t I n p a i n t ( . . .
d o u b l e ( D R I V E _ d b { j } . I ( : , : , 2 ) ) , i n t e r i o r  ) ;

79

80 %%% 1 .  MVE
81 Temp = s t r u c t  ( ) ;
82

83 % U s e  t h e  M u l t i s c a l e  e n h a n c e m e n t
84 T e m p . M V E o p t i o n  = M V E o p t io n ;
85

86 [ e n h a n c e , -!,-■] = F r a n g i F i l t e r 2 D  (DRIVE_db{ j } .  d i f f u s e ,  . . .
T e m p . M V E o p t i o n ) ;

87 T e m p . e n h a n c e  = e n h a n c e ;
88

89 % G e t  t h e  ROC c u r v e
90 [ X ,Y ,T , A U C ]  = p e r f c u r v e  ( D R I V E _ d b { j }  . t r a c e  ( D R I V E _ d b { j }  .m a s k  . . .

== m a r k ) , . . .
91 e n h a n c e ( D R I V E . d b { j } . m a s k  == m a r k ) , m a r k ) ;
92 Tem p.X  = X; Temp.Y  = Y; Temp.T  = T;
93 Temp.AUC = AUC;
94

95 [ A c c y , t ]  = S o f t A c c u r a c y ( e n h a n c e ( D R I V E _ d b { j } . m a s k  ==  m a r k ) , . . .
96 D R I V E . d b { j } . t r a c e ( D R I V E . d b f j } . m a s k  ==  m a r k ) ) ;

97 [ a c c y , i ]  = m a x ( A c c y ) ;
98 T e m p . a c c y  = a c c y ;  T e m p . t h r e s h  = t ( i ) ;
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99

100 D R I V E _ d b {  j }  . M V E  =  T e m p ;

101

102 %%% 2 .  D D F B

103 T e m p  =  s t r u c t  ( ) ;

104

105 T e m p  . D D F B o p t i o n  =  D D F B o p t i o n ;

106

107 e n h a n c e  =  . . .

D F B M u l t i s c a l e E n h a n c e ( D R I V E _ d b { j } . d i f f u s e , T e m p . D D F B o p t i o n ) ;

108 T e m p ,  e n h a n c e  =  e n h a n c e ;

109

n o  % G e t  t h e  R O C  c u r v e

i n  [ X , Y , T , A U C ]  =  p e r f c u r v e ( D R I V E _ d b { j } . t r a c e ( D R I V E _ d b { j } . m a s k  . . .

= =  m a r k ) , . . .

n 2 e n h a n c e ( D R I V E _ d b { j } . m a s k  = =  m a r k ) , m a r k ) ;

U 3 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

114 T e m p . A U C  =  A U C ;

115
l i e  [ A c c y ,  t  ] =  S o f t A c c u r a c y  ( e n h a n c e  ( D R I V E _ d b { j }  . m a s k  = =  m a r k ) , . . .

n r  D R I V E _ d b { j } . t r a c e ( D R I V E _ d b { j } . m a s k  = =  m a r k ) ) ;

u s  [ a c c y ,  i ]  =  m a x ( A c c y )  ;

119 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

120

121 D R I V E _ d b {  j  }  =  s e t  f i e l d  ( D R I V E _ d b {  j } ,  . . .

122 [ ' D D F B '  n u m 2 s t r  ( T e m p . D D F B o p t i o n  . N )  ] ,  . . .

123 T e m p )  ;

124

125 %%% 3 .  D D F B  h o m o m o r p h i c  m i d

126 T e m p  =  s t r u c t  ( ) ;

127

128 T e m p . D D F B o p t i o n  =  D D F B o p t i o n ;

129

130 T e m p  . m i d O p t i o n  =  m i d O p t i o n ;

131

132 e n h a n c e  =  D F B M u l t i s c a l e E n h a n c e  ( D R I V E _ d b {  j } .  d i f f u s e ,  . . .

133 T e m p . D D F B o p t i o n ,  T e m p . m i d O p t i o n )  ;

134 T e m p ,  e n h a n c e  =  e n h a n c e ;

135

136 % G e t  t h e  R O C  c u r v e

137 [ X ,  Y ,  T ,  A U C  ] =  p e r f c u r v e  ( D R I V E _ d b { j }  . t r a c e  ( D R I V E _ d b { j }  . m a s k  . . .

= =  m a r k ) , . . .

138 e n h a n c e  ( D R I V E _ d b {  j  }  . m a s k  = =  . . .

m a r k ) , m a r k ) ;

139 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

140 T e m p . A U C  =  A U C ;

141
142 [ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( D R I V E _ d b { j } . m a s k  = =  m a r k ) , . . .

143 D R I V E _ d b { j }  . t r a c e  ( D R I V E _ d b { j }  . m a s k  = =  m a r k )  ) ;

144 [ a c c y , i ]  =  m a x  ( A c c y ) ;

145 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;
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146

147 DRIVE.db{ j} = setfield(DRIVE_db{ j}, . . .
148 ['DDFB' num2str(Temp.DDFBoption.N) 'MidHomo'],Temp);
149

150 e n d

151

152 %% E. E n h a n c e  STARE d a t a b a s e
153

154 % AH
155 parfor j = 1 : 20
156 d i s p  ( [  1 S c a n n i n g  i m a g e  ' n u m 2 s t r  ( j ) ] ) ;

157

158 % T h e  m a r k i n g  u s e d  t o  i d e n t i f y  b i n a r y  r e g i o n s

159 m a r k  =  m a x ( S T A R E _ d b { j } . t r a c e A H ( : ) ) ;

160
161 % S h r i n k  t h e  m a r k e d  r e g i o n  t o  a c c o m m o d a t e  t h e  i n c o r r e c t  m a s k  . . .

p r o v i d e d

162 i n t e r i o r  =  ( S T A R E _ d b {  j }  . m a s k  = =  m a r k )  ;

163 f o r  i  =  1  : 5

164 i n t e r i o r  =  i n t e r i o r - b w m o r p h  ( i n t e r i o r ,  f r e m o v e  1 ) ;

165 e n d

166

167 % S m o o t h  t h e  b o u n d a r y  t o  p r e v e n t  f a l s e  i d e n t i f i c a t i o n  o f  . . .

b o u n d a r y  a s  v e s s e l

168 S T A R E _ d b { j }  . d i f f u s e  =  B a s i c H e a t l n p a i n t  ( . . .

d o u b l e ( S T A R E . d b { j } . I  ( : ,  : , 2 ) ) , i n t e r i o r  ) ;

169

170 %%% 1 .  M V E

171 T e m p  =  s t r u c t  ( ) ;

172

173 % U s e  t h e  M u l t i s c a l e  e n h a n c e m e n t

174 T e m p  . M V E o p t  i o n  =  M V E o p t  i o n ;

175
176 [ e n h a n c e , ^ - i ]  =  F r a n g i F i l t e r 2 D ( S T A R E . d b { j } . d i f f u s e ,  . . .

T e m p . M V E o p t i o n ) ;

177 T e m p ,  e n h a n c e  =  e n h a n c e ;

178

179 % G e t  t h e  R O C  c u r v e

i s o  [ X , Y , T , A U C ]  =  p e r f c u r v e ( S T A R E . d b { j } . t r a c e A H ( S T A R E . d b { j } . m a s k  . . .

= =  m a r k ) , . . .

181 e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , m a r k ) ;

182 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

183 T e m p . A U C  =  A U C ;

184

185 [ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( S T A R E _ d b { j } . m a s k  = =  m a r k ) , . . .

186 S T A R E . d b { j }  . t r a c e A H  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) ) ;

187 [ a c c y , i ]  =  m a x  ( A c c y ) ;

188 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

189

190 S T A R E _ d b {  j }  . M V E _ A H  =  T e m p ;

191
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192 % % %  2. D D F B
193 T e m p  =  s t r u c t  ();
194
195 T e m p  . D D F B o p t i o n  = D D F B o p t i o n ;
196
197 e n h a n c e  =  ...

D F B M u l t i s c a l e E n h a n c e ( S T A R E - d b { j } . d i f f u s e , T e m p . D D F B o p t i o n ) ;
198 T e m p ,  e n h a n c e  = e n h a n c e ;
199
200 % G e t  t h e  R O C  c u r v e
201 [ X , Y , T , A U C ] =  p e r f c u r v e ( S T A R E . d b { j } . t r a c e A H ( S T A R E _ d b { j } . m a s k  ...

= =  m a r k ) ,...
202 e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , m a r k ) ;
203 T e m p . X  =  X; T e m p . Y  = Y; T e m p . T  = T;
204 T e m p . A U C  = A U C ;
205
206 [Accy, t ] = S o f t A c c u r a c y  ( e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , . . .
207 S T A R E . d b { j }  . t r a c e A H  ( S T A R E _ d b { j }  . m a s k  = =  m a r k )  ) ;
208 [ a c c y , i ]  = m a x  (Accy);
209 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  = t ( i ) ;
210
211 S T A R E _ d b {  j } = s e t f  i e l d  ( S T A R E _ d b {  j } , . . .
212 [ ’D D F B *  n u m 2 s t r  (Temp. D D F B o p t i o n .  N) ' _ A H  1 ] , T e mp) ;
213
214 % % %  3. D D F B  h o m o m o r p h i c  m i d
215 T e m p  =  s t r u c t  ();
216
217 T e m p  . D D F B o p t i o n  = D D F B o p t i o n ;
218
219 T e m p  . m i d O p t i o n  = m i d O p t i o n ;
220
221 e n h a n c e  = D F B M u l t i s c a l e E n h a n c e (S T A R E _ d b { j } . d i f f u s e , ...
222 T e m p . D D F B o p t i o n ,  T e m p . m i d O p t i o n )  ;
223 T e m p ,  e n h a n c e  = e n h a n c e ;
224
225 % G e t  t h e  R O C  c u r v e
226 [X, Y, T, A U C  ] = p e r f c u r v e  ( S T A R E _ d b { j }  . t r a c e A H  ( S T A R E _ d b { j }  . m a s k  ...

= =  m a r k ) ,...
227 e n h a n c e  ( S T A R E _ d b {  j} . m a s k  = =  m a r k ) , m a r k ) ;
228 T e m p . X  =  X; T e m p . Y  = Y; T e m p . T  = T;
229 T e m p . A U C  = A U C ;
230
231 [Accy, t ] = S o f t A c c u r a c y  ( e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , . . .
232 S T A R E _ d b { j }  . t r a c e A H  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) ) ;
233 [ a c c y , i ]  = m a x  (Accy) ;
234 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  = t ( i ) ;
235
236 S T A R E _ d b {  j } = s e t  f i e l d  (S T A R E _ d b {  j },.. .
237 [ 1 D D F B  f n u m 2 s t r  ( T e m p . D D F B o p t i o n  . N) ' M i d H o m o - A H '  ] , T e m p )  ;
238 e n d
239
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240
241
242
243
244
245
246
247

248
249
250
251
252
253

254

255
256
257
258
259
260 
261 
262

263
264
265
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280 
281 
282
283

284

% V K

p a r f o r  j  =  1  : 2 0

d i s p ( [ 1 S c a n n i n g  i m a g e  * n u m 2 s t r ( j ) ] ) ;

% T h e  m a r k i n g  u s e d  t o  i d e n t i f y  b i n a r y  r e g i o n s  

m a r k  =  m a x ( S T A R E _ d b { j } . t r a c e V K ( : ) ) ;

% S h r i n k  t h e  m a r k e d  r e g i o n  t o  a c c o m m o d a t e  t h e  i n c o r r e c t  m a s k  . 

p r o v i d e d

i n t e r i o r  =  ( S T A R E _ d b { j } . m a s k  = =  m a r k ) ; 

f o r  i  =  1  : 5

i n t e r i o r  =  i n t e r i o r - b w m o r p h ( i n t e r i o r ,  1 r e m o v e  1 ) ;

e n d

% S m o o t h  t h e  b o u n d a r y  t o  p r e v e n t  f a l s e  i d e n t i f i c a t i o n  o f  . . .

b o u n d a r y  a s  v e s s e l  

S T A R E . d b { j } . d i f f u s e  =  B a s i c H e a t I n p a i n t  ( . . .

d o u b l e ( S T A R E _ d b { j } . I ( : , : , 2 ) ) , i n t e r i o r  ) ;

%%% 1 .  M V E  

T e m p  =  s t r u c t ( ) ;

% U s e  t h e  M u l t i s c a l e  e n h a n c e m e n t  

T e m p . M V E o p t i o n  =  M V E o p t i o n ;

[ e n h a n c e , - ' , - ' ]  =  F r a n g i F i l t e r 2 D ( S T A R E . d b { j } . d i f f u s e ,  . . .

T e m p . M V E o p t i o n ) ;

T e m p . e n h a n c e  =  e n h a n c e ;

% G e t  t h e  R O C  c u r v e

[ X , Y , T , A U C ]  =  p e r f c u r v e ( S T A R E _ d b { j } . t r a c e V K ( S T A R E _ d b { j } . m a s k  . 

= =  m a r k ) , . . .

e n h a n c e ( S T A R E _ d b { j } . m a s k  = =  m a r k ) , m a r k )  

T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

T e m p . A U C  =  A U C ;

[ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( S T A R E _ d b { j } . m a s k  = =  m a r k ) , . . .

S T A R E _ d b {  j }  . t r a c e V K  ( S T A R E _ d b {  j }  . m a s k  = =  m a r k ) )  

[ a c c y , i ]  =  m a x ( A c c y ) ;

T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

S T A R E _ d b {  j }  . M V E J V K  =  T e m p ;

%%% 2 .  D D F B  

T e m p  =  s t r u c t ( ) ;

T e m p . D D F B o p t i o n  =  D D F B o p t i o n ;

e n h a n c e  =  . . .

D F B M u l t i s c a l e E n h a n c e ( S T A R E _ d b { j } . d i f f u s e , T e m p . D D F B o p t i o n ) ; 

T e m p . e n h a n c e  =  e n h a n c e ;
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285

286 % G e t  t h e  R O C  c u r v e

287 [ X , Y , T , A U C ]  =  p e r f c u r v e  ( S T A R E _ d b { j }  . t r a c e V K  ( S T A R E _ d b {  j }  . m a s k  . . .

= =  m a r k ) ,  . . .

288 e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , m a r k ) ;

289 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

290 T e m p . A U C  =  A U C ;

291
292 [ A c c y ,  t  ] =  S o f t A c c u r a c y  ( e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) , . . .

293 S T A R E _ d b {  j }  . t r a c e V K  ( S T A R E _ d b { j }  . m a s k  = =  m a r k )  ) ;

294 [ a c c y , i ]  =  m a x ( A c c y ) ;

295 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

296

297 S T A R E _ d b {  j }  =  s e t f  i e l d  ( S T A R E _ d b {  j }  ,  . . .

298 [ ' D D F B '  n u m 2 s t r  ( T e m p . D D F B o p t i o n . N )  ' _ V K  1 ] , T e m p )  ;

299

300 %%% 3 .  D D F B  h o m o m o r p h i c  m i d

301 T e m p  =  s t r u c t  ( ) ;

302

303 T e m p  . D D F B o p t i o n  =  D D F B o p t i o n ;

304

305 T e m p  . m i d O p t i o n  =  m i d O p t i o n ;

306

307 e n h a n c e  =  D F B M u l t i s c a l e E n h a n c e ( S T A R E _ d b { j } . d i f f u s e , . . .

308 T e m p . D D F B o p t i o n ,  T e m p . m i d O p t i o n )  ;

309 T e m p ,  e n h a n c e  =  e n h a n c e ;

310

311 % G e t  t h e  R O C  c u r v e

312 [ X ,  Y ,  T ,  A U C  ] =  p e r f c u r v e  ( S T A R E _ d b {  j }  . t r a c e V K  ( S T A R E _ d b {  j }  . m a s k  . . .

= =  m a r k ) , . . .

313 e n h a n c e  ( S T A R E _ d b { j }  . m a s k  = =  m a r k ) ,  m a r k ) ;

314 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

315 T e m p . A U C  =  A U C ;

316

317 [ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( S T A R E _ d b { j } . m a s k  = =  m a r k ) , . . .

3 18 S T A R E _ d b {  j }  . t r a c e V K  ( S T A R E . d b j j }  . m a s k  = =  m a r k )  ) ;

319 [ a c c y , i ]  =  m a x  ( A c c y ) ;

320 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

321

322 S T A R E _ d b { j }  =  s e t f  i e l d  ( S T A R E _ d b {  j } , . .  .

323 [ ' D D F B 1 n u m 2 s t r  ( T e m p  . D D F B o p t i o n  .N) ' M i d H o r n o . V K '  ] ,  T e m p )  ;

324 e n d

325

326 %% F.  B a r  g r a p h  o f  t h e  R O C  A U C

327 % DRIVE
328 A U C p l t  =  [ a r r a y  f u n  (@ ( i )  D R I V E _ d b { i }  . M V E . A U C ,  1 :  4 0 )  ; . . .

329 a r r a y f u n  (@ ( i )  D R I V E . d b { i } - D D F B 3  . A U C ,  1 :  4 0 )  ;

330 a r r a y f u n ( @ ( i )  D R I V E . d b { i } • D D F B 3 M i d H ° m ° . A U C , 1 : 4 0 ) ] ' ;

331

332 f  i g u r e  ( 1 c o l o r  1 , '  w h i t e  ' )  ,

333 b a r  ( A U C p l t ,  ' g r o u p e d ' ,  ' B a s e V a l u e  ' , 0 . 8 0 ) ;
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334 t i t l e  ( ' D R I V E  A U C  ' ,  ' f o n t s i z e  1 ,  2 0 )  ;

335 l e g e n d ( ' M V E D D F B D D F B  w /  H o m o m o r p h i c  f i l t e r ' ) ;

336

337 % S T A R E  A H

338 A U C p l t  =  [ a r r a y f u n  (@ ( i )  S T A R E _ d b { i }  . M V E . A H  . A U C ,  1 :  2 0 )  ;  . . .

339 a r r a y f u n  (@ ( i )  S T A R E . d b j i }  . D D F B 3 - A H . A U C ,  1 : 2 0 )  ;

340 a r r a y f u n ( @ ( i ) S T A R E _ d b { i } . D D F B 3 M i d H o m o _ A H . A U C , 1 : 2 0 ) ] ' ;

341

342 f i g u r e  ( '  c o l o r  ' ,  ' w h i t e  ' ) ,

343 b a r  ( A U C p l t ,  ' g r o u p e d 1 ,  ' B a s e V a l u e  1 ,  0  . 8 0 )  ;

344 t i t l e  ( ' S T A R E  A H  A U C  ' , '  f o n t s i z e  ' ,  2 0 )  ;

345 l e g e n d ( ' M V E ' , ' D D F B ' , ' D D F B  w /  H o m o m o r p h i c  f i l t e r ' ) ;

346

347

348 % S T A R E  V K

349 A U C p l t  =  [ a r r a y f u n  ( @ ( i )  S T A R E _ d b { i }  . M V E . V K .  A U C ,  1 :  2 0 )  ; . . .

350 a r r a y f u n  ( 0  ( i )  S T A R E . d b { i }  . D D F B 3 . V K . A U C ,  1 : 2 0 )  ;

351 a r r a y f u n  (@ ( i )  S T A R E _ d b { i }  . D D F B 3 M i d H o m o _ V K . A U C ,  1 : 2 0 ) ] ' ;

352

353 f i g u r e  ( '  c o l o r  ' ,  ' w h i t e  ' ) ,

354 b a r  ( A U C p l t ,  ' g r o u p e d ' ,  ' B a s e V a l u e  ' , 0 . 8 0 ) ;

355 t i t l e  ( ' S T A R E  V K  A U C ' , ' f o n t s i z e ' ,  2 0 )  ;

356 l e g e n d ( ' M V E ' , ' D D F B ' , ' D D F B  w /  H o m o m o r p h i c  f i l t e r ' ) ;

357

358 %% G .  C a l c u l a t e  t h e  m e a n  a n d  s t a n d a r d  d e v i a t i o n

359 m n M V E  =  m e a n  ( a r r a y f u n  ( 0  ( i ) D R I V E _ d b { i }  . M V E . A U C ,  1 :  4 0 )  ) ;

360 m n D D F B  =  m e a n  ( a r r a y f u n  ( 0  ( i )  D R I V E _ d b { i }  . D D F B 3  . A U C ,  1 :  4 0 )  ) ;

361 m n D D F B 3 M i d H o m o  =  m e a n  ( a r r a y f u n  ( 0  ( i ) . . .

D R I V E _ d b { i } . D D F B 3 M i d H o m o . A U C , 1 : 4 0 ) ) ;

1 % S p e c i f i c R e t i n a l S c r i p t . m

2

3 % R u n  s c r i p t  R e t i n a l  E n h a n c e S c r i p t . m  b e f o r e  t h i s  s c r i p t !

4 % " i "  i s  t h e  r e t i n a l  i m a g e  i n d e x .  F o r  S T A R E  i m a g e s ,  c h a n g e

5 % D R I V E _ d b  t o  S T A R E _ d b ,  c o r r e s p o n d i n g  t r a c e A H / t r a c e V K  a n d

6 % c o r r e s p o n d i n g  M V E _ A H / M V E _ V K ,  e t c .

7 i  =  3 4 ;

8

9 %% A .  G e n e r a t e  t h e  r e s u l t  a s  s e e n  i n  F i g u r e  2 a n d  F i g u r e  24  
10

n  f i g u r e ( ' c o l o r ' , ' w h i t e ' , ' n a m e ' , . . .

12 [ ' R e t i n a l  I m a g e  ' n u m 2 s t r ( i ) ] ,  . . .

13 ' N u m b e r T i t l e  ' ,  ' o f f ' )  ,

14

15 s u b p l o t  ( 3 , 3 , 1 ) ,

16 i m a g e s c  ( D R I V E _ d b { i }  . I ) ;

17 a x i s  o f f

i s  s u b p l o t  ( 3 , 3 , 2 )  ,

19 i m a g e s c  ( D R I V E _ d b { i }  . d i f f u s e )  ;
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1

2

3

4

5

6

7

8

9

10

a x i s  o f f  
s u b p l o t  ( 3 , 3 , 3 ) ,  
i m a g e s c ( D R I V E _ d b { i } . t r a c e ) ; 
a x i s  o f f

s u b p l o t  ( 3 , 3 / 4 ) ,
i m a g e s c ( D R I V E _ d b { i } . M V E . e n h a n c e ) ; 
a x i s  o f f  
s u b p l o t  ( 3 , 3 , 5 ) ,
i m a g e s c ( D R I V E _ d b { i } . DDFB3 . e n h a n c e ) ; 
a x i s  o f f  
s u b p l o t  ( 3 / 3 , 6 )  /
i m a g e s c ( D R I V E _ d b { i } . DDFB3MidHomo. e n h a n c e ) ; 
a x i s  o f f

s u b p l o t ( 3 / 3 / 7 )  /
i m a g e s c ( D R I V E _ d b { i } . M V E . e n h a n c e  >  D R I V E _ d b { i } . M V E . t h r e s h ) ; 
a x i s  o f f  
s u b p l o t ( 3 / 3 / 8 ) /
i m a g e s c ( D R I V E _ d b { i } . DDFB3 . e n h a n c e  >  D R I V E _ d b { i } . DDFB3 . t h r e s h ) ; 
a x i s  o f f  
s u b p l o t ( 3 / 3 / 9 ) /
i m a g e s c ( D R I V E _ d b { i } . DDFB3MidHomo. e n h a n c e  >  . . .

D R I V E _ d b { i } . D D F B 3 M i d H o m o . t h r e s h ) ; 
a x i s  o f f

%% B.  G e n e r a t e  ROC c u r v e  s e e n  i n  F i g u r e  24  
f i g u r e ( 1 c o l o r 1 , ' w h i t e  1, * n a m e ' ,  . . .

[ ' R e t i n a l  I m a ge  ' n u m 2 s t r ( i )  ' ROC1] / . . .
1 N u m b e r T i t l e  1, 1 o f f 1) ,

h o l d  o n ,
p l o t  ( D R I V E - d b { i )  .MVE.X,  D R I V E - d b { i }  .MVE. Y, ' g ' ) ; 
p l o t ( D R I V E . d b { i } . D D F B 3 . X ,  D R I V E _ d b { i } - D D F B 3 . Y ,  ' r 1) ;  
p l o t ( D R I V E - d b { i } . D D F B 3 M i d H o m o . X , D R I V E _ d b { i } . DDFB3MidHomo. Y , ' b ' ) ;  
h o l d  o f f

l e g e n d ( ' M V E D D F B D D F B  w/  H o m o m o r p h i c ' ) ;

% P l a c e n t a l E n h a n c e S c r i p t . m

%% L o a d  t h e  p l a c e n t a  i m a g e s ,  i t s  m a s k s  a n d  i t s  h a n d  t r a c e s  
s e l  = [ 1 9 7 3 ; 2 0 4 1 ; 2 0 9 5 ; 2 1 4 1 ; 2 5 6 1 ; 2 6 6 6 ; 2 7 4 3 ; 2 7 4 4 ; . . .

2 7 5 3 ; 2 7 7 2 ; 2 7 7 4 ; 2 7 7 7 ; 2 9 4 6 ;  3 3 2 1 ;  3 3 4  0;  3 3 5 5 ]  ;

P l a c e n t a . d b  = c e l l  ( s i z e ( s e l ) ) ;

f o r  j  = 1 : l e n g t h ( s e l )
P l a c e n t a  = i m r e a d ( [ 1CD_1 n u m 2 s t r ( s e l ( j ) )  FR—F S 2 . b m p f ] ) ;

103



11 T  =  i m r e a d ( [ n u m 2 s t r ( s e l ( j ) ) 1 T r a c e d . p n g ' ] ,  ' p n g * ) ;

12 T  =  d o u b l e  ( T  >  0 )  ;

13 M =  i m r e a d  ( [ ' m a s k . T  ' n u m 2 s t r ( s e l ( j ) )  ' —F R - F S 2 . b m p ' ] ) ;

14 M =  d o u b l e  ( M >  0 ) ;

15

16 P l a c e n t a _ d b {  j }  =  . . .

s t r u c t ( 1 1 1 , d o u b l e ( P l a c e n t a ) ,  ' t r a c e ' , T ,  ' m a s k ' , M ) ;

17 e n d

18

19 %% E n a h a n c e  P l a c e n t a

20

21 M V E o p t i o n  =  s t r u c t ( ' F r a n g i S c a l e R a n g e ' ,  [ 3 . 9  6 . 2 ] , . . .

22 ' F r a n g i S c a l e R a t i o ' ,  2 . 3 ,  ' F r a n g i B e t a O n e ' ,  2 . 6 ,  . . .

' F r a n g i B e t a T w o ' ,  3 7 . 5 , . . .

23 ' v e r b o s e ' , f a l s e , ' B l a c k W h i t e ' , t r u e ) ;

24

25 D D F B o p t i o n  =  s t r u c t  ( '  N  ' ,  3 ,  ' s i g m a  ' ,  3  . 7 ,  . . .

26 ' b e t a '  ,  0  . 4 ,  ' c  ' ,  7  . 9 ,  . . .

27 ' L i g h t o n D a r k  ' ,  f a l s e )  ;

28

29 D D F B H o p t i o n  =  s t r u c t ( ' N ' , 3 , ' s i g m a ' , 1 . 3 , . . .

30 ' b e t a '  , 4 1 . 4 ,  ' c ' ,  3 5 ,  . . .

31 ' L i g h t o n D a r k ' , f a l s e ) ;

32

33 m i d O p t i o n  =  s t r u c t ( ' f u n c ' , 0 ( I , o p t )  h o m o f i l t e r ( I , o p t ) , . . .

34 1 m e t h o d ' ,  ' B u t t e r w o r t h  ' ,  . . .

35 ' n ' , 2 , ' D O ' , 2 2 8 . 8 , ' a l p h a L ' , 0 . 5 , ' a l p h a H ' , 1 . 9 ) ;

36

37 p a r f o r  j  =  1  : n u m e l ( s e l )

38 d i s p ( [ ' S c a n n i n g  i m a g e  ' n u m 2 s t r ( j ) ] ) ;

39

40 % T h e  m a r k i n g  u s e d  t o  i d e n t i f y  b i n a r y  r e g i o n s

41 m a r k  =  m a x ( P l a c e n t a _ d b { j } . t r a c e  ( : ) ) ;

42

43 %%% 1 .  MV E

44 T e m p  =  s t r u c t  ( ) ;

45

46 % U s e  t h e  M u l t i s c a l e  e n h a n c e m e n t

47 T e m p . M V E o p t i o n  =  M V E o p t i o n ;

48
49 [ e n h a n c e , ^ , - * ]  =  F r a n g i F i l t e r 2 D  ( P l a c e n t a _ d b {  j  }  . I  ( : ,  : ,  2 )  ,  . . .

T e m p . M V E o p t i o n ) ; 

so T e m p ,  e n h a n c e  =  e n h a n c e ;

51

52 % G e t  t h e  R O C  c u r v e

53 [ X ,  Y ,  T ,  A U C ]  =  . . .

p e r f c u r v e ( P l a c e n t a _ d b { j } . t r a c e ( P l a c e n t a _ d b { j } . m a s k  = =  . . .  

m a r k ) , . . .

54 e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  = =  m a r k ) , m a r k ) ;

55 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

56 T e m p . A U C  =  A U C ;
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57

58 % G e t  t h e  m a x i m u m  a c c u r a c y

59 [ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  = =  m a r k ) , . . .

eo P l a c e n t a _ d b {  j }  . t r a c e  ( P l a c e n t a _ d b { j }  . m a s k  = =  m a r k )  ) ;

e i  [ a c c y ,  i ]  =  m a x ( A c c y ) ;

62 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

63

64 % G e t  t h e  MC C  c u r v e

65 [ M C C , t  ] =  M C C e f f ( e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  = =  m a r k ) , . . .

ee P l a c e n t a _ d b {  j }  . t r a c e  ( P l a c e n t a _ d b {  j }  . m a s k  = =  m a r k )  ) ;

67 T e m p . M C C  =  M C C  ( 2  : e n d - 1 )  ; T e m p  . M C C t h r e s h  =  t  ( 2 :  e n d - 1 ) ;

68 T e m p  . M C C A U C  =  t r a p z ( t ( 2 : e n d - 1 ) , M C C ( 2 : e n d - 1 ) ) ;

69

70 P l a c e n t a _ d b {  j }  . M V E  =  T e m p ;

71

72 %%% 2 .  D D F B

73 T e m p  =  s t r u c t  ( ) ;

74

75 T e m p . D D F B o p t i o n  =  D D F B o p t i o n ;

76

77 e n h a n c e  =  . . .

D F B M u l t i s c a l e E n h a n c e ( P l a c e n t a . d b { j } . I ( : ,  : , 2 ) , T e m p . D D F B o p t i o n )

78 T e m p ,  e n h a n c e  =  e n h a n c e ;

79

so % G e t  t h e  R O C  c u r v e

s i  [ X ,  Y , T , A U C ]  =  . . .
p e r  f  c u r v e  ( P  l a c e n t a _ d b {  j  } .  t r a c e  ( P  l a c e n t a _ d b {  j  } .  m a s k  = =  . . .

m a r k ) , . . .

82 e n h a n c e ( P l a c e n t a . d b { j } . m a s k  = =  m a r k ) , m a r k ) ;

83 T e m p . X  =  X ;  T e m p . Y  =  Y ;  T e m p . T  =  T ;

84 T e m p . A U C  =  A U C ;

85

86 % G e t  t h e  m a x i m u m  a c c u r a c y

87 [ A c c y , t ] =  S o f t A c c u r a c y ( e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  = =  m a r k ) , . . .

88 P l a c e n t a _ d b {  j }  . t r a c e  ( P l a c e n t a _ d b {  j }  . m a s k  = =  m a r k )  ) ;

89 [ a c c y , i ]  =  m a x  ( A c c y ) ;

90 T e m p . a c c y  =  a c c y ;  T e m p . t h r e s h  =  t ( i ) ;

91

92 % G e t  t h e  MC C  c u r v e

93 [ M C C , t  ] =  M C C e f f ( e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  = =  m a r k ) , . . .

94 P l a c e n t a _ d b {  j }  . t r a c e  ( P l a c e n t a _ d b {  j }  . m a s k  = =  m a r k )  ) ;

95 T e m p . M C C  =  M C C ( 2 : e n d - 1 ) ; T e m p . M C C t h r e s h  =  t ( 2 : e n d - 1 ) ;

96 T e m p  . MC C  A U C  =  t r a p z  ( t  ( 2  : e n d - 1 )  ,  MC C  ( 2  : e n d - 1 )  ) ;

97

98 P l a c e n t a _ d b { j }  =  s e t f i e l d ( P l a c e n t a _ d b { j } .

99 [ ' D D F B '  n u r a 2 s t r ( T e m p . D D F B o p t i o n . N ) ] , T e m p ) ;

100

101 %%% 3 .  D D F B  h o m o m o r p h i c  m i d

102 T e m p  =  s t r u c t  ( ) ;

103

104 T e m p  . D D F B o p t i o n  =  D D F B H o p t i o n ;
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105

106

107

108

109

110 

111 

112 

113

114

115

116

117

118

119

120 

121 

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

T e m p . m i d O p t i o n  = m i d O p t i o n ;

e n h a n c e  = D F B M u l t i s c a l e E n h a n c e ( P l a c e n t a . d b { j } . I , 2 .
T e m p. D D F B o p t i o n , T e m p . m i d O p t i o n ) ;

T e m p . e n h a n c e  = e n h a n c e ;

% G e t  t h e  ROC c u r v e  
[ X , Y , T ,A U C ]  = . . .

p e r f c u r v e ( P l a c e n t a _ d b { j } . t r a c e ( P l a c e n t a _ d b { j } . m a s k  == . . .

m a r k ) , . . .
e n h a n c e ( P l a c e n t  a _ d b { j } . m a s k  == m a r k ) , m a r k ) ; 

Temp.X  = X; Temp.Y = Y; Temp.T  = T;
Temp.AUC = AUC;

% G e t  t h e  maximum a c c u r a c y
[ A c c y , t ] = S o f t A c c u r a c y ( e n h a n c e ( P l a c e n t a _ d b { j } . m a s k  == m a r k ) , . . .

P l a c e n t a _ d b {  j }  . t r a c e  ( P l a c e n t a _ d b {  j } . m a s k  == mark)  ) ; 
[ a c c y , i ]  = m a x ( A c c y ) ;
T e m p . a c c y  = a c c y ;  T e m p . t h r e s h  = t ( i ) ;

% G e t  t h e  MCC c u r v e
[ MCC, t  ] = M C C e f f ( e n h a n c e ( P l a c e n t a . d b { j } . m a s k  == m a r k ) , . . .

P l a c e n t a _ d b { j } . t r a c e ( P l a c e n t a _ d b { j } . m a s k  == m a r k ) ) ;  
Temp.MCC = MCC( 2 : e n d - 1 ) ; T e m p . M C C t h r e s h  = t ( 2 : e n d —1 ) ;
Temp.MCCAUC = t r a p z ( t ( 2 : e n d - 1 ) , MCC( 2 : e n d - 1 ) ) ;

P l a c e n t a _ d b { j } = s e t f i e l d ( P l a c e n t a _ d b { j } , . . .
[ 'DDFB1 n u m 2 s t r ( T e m p . D D F B o p t i o n . N )  ' M i d H o m o ' ] , T e m p ) ;

e n d

%% B.  G e n e r a t e  ROC c u r v e  s e e n  i n  F i g u r e  30

A U C p l t  = [ a r r a y f u n ( @ ( i )  P l a c e n t a _ d b { i } . M V E . A U C , 1 : 1 6 ) ;  . . .
a r r a y f u n  (@ ( i )  P l a c e n t a _ d b { i } . D D F B 3 . A U C ,1 : 1 6 ) ;  
a r r a y f u n ( @ ( i )  P l a c e n t a _ d b { i } . DDFB3MidHomo.AUC,1 : 1 6 ) ] ' ;

f i g u r e ( ' c o l o r ' ,  ' w h i t e  1) ,
b a r ( A U C p l t , ' g r o u p e d ' , ' B a s e V a l u e ' , 0 . 5 0 ) ;
t i t l e ( ' P l a c e n t a  ROC AUC' , ' f o n t s i z e ' , 2 0 ) ;
l e g e n d ( 'MVE', 'D D F B ' , 'DDFB w /  H om om o rp h ic  f i l t e r ' ) ;

MCCAUCplt = [ a r r a y f u n ( @ ( i )  P l a c e n t a _ d b { i } . M V E . M C C A U C , 1 : 1 6 ) ;  . . .
a r r a y f u n ( @ ( i )  P l a c e n t a . d b { i } . DDFB3.MCCAUC,1 : 1 6 ) ;  
a r r a y f u n ( 0 ( i ) . . .

P l a c e n t a . d b { i } . DDFB3MidHomo. MCCAUC,1 : 1 6 ) ] ' ;

f i g u r e ( ' c o l o r ' , ' w h i t e ' ) ,
b a r ( M C C A U C p l t , ' g r o u p e d ' ,  ' B a s e V a l u e ' ,  0 ) ;
t i t l e ( ' P l a c e n t a  MCC AUC' , ' f o n t s i z e ' , 2 0 ) ;
l e g e n d ( 'MVE', ' D D F B ' , 'DDFB w /  H om om o rp h ic  f i l t e r ' ) ;
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153

154

155

156

157

158

159

160 

161 

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180 

181 

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200 

201 

202

%% C. G e n e r a t e  ROC c u r v e  s e e n  i n  F i g u r e  31  
i  = 2;

f i g u r e ( '  c o l o r 1 , ' w h i t e  1, ' name 1 , . . .
[ ' R e t i n a l  I m a g e  ' n u m 2 s t r ( i ) ] ,  . . .
1 N u m b e r T i t l e 1 ,  ' o f f 1 ) ,

s u b p l o t ( 3 , 3 , 1 ) ,
i m a g e s c ( u i n t 8 ( P l a c e n t a _ d b { i }  . I ) ) ; 
a x i s  o f f  
s u b p l o t ( 3 , 3 , 2 )  ,
i m a g e s c ( P l a c e n t a _ d b { i  
a x i s  o f f

s u b p l o t ( 3 , 3 , 4 ) ,  
i m a g e s c ( P l a c e n t a _ d b { i  
a x i s  o f f  
s u b p l o t ( 3 , 3 , 5 )  , 
i m a g e s c ( P l a c e n t a _ d b { i  
a x i s  o f f  
s u b p l o t  ( 3 , 3 , 6 ) ,  
i m a g e s c ( P l a c e n t a _ d b { i  
a x i s  o f f

s u b p l o t ( 3 , 3 , 7 ) ,  
i m a g e s c ( P l a c e n t a _ d b {  i  
a x i s  o f f  
s u b p l o t ( 3 , 3 , 8 )  , 
i m a g e s c ( P l a c e n t a _ d b {  i  
a x i s  o f f  
s u b p l o t  ( 3 , 3 , 9 ) ,  
i m a g e s c ( P l a c e n t a _ d b { i

P l a c e n t a _ d b { i } . DDFB3MidHomo. t h r e s h )  
a x i s  o f f

. t r a c e ) ;

.MVE. e n h a n c e )  ;

. DDFB3 . e n h a n c e ) ;

. D D F B 3 M id H o m o . e n h a n c e )  ;

. M V E . e n h a n c e  >  P l a c e n t a _ d b { i } . M V E . t h r e s h ) ; 

. D D F B 3 . e n h a n c e  >  P l a c e n t a _ d b { i } . DDFB3 . t h r e s h ) ; 

. DDFB3MidHomo. e n h a n c e  >  . . .

f i g u r e  ( 1 c o l o r  1, 1 w h i t e  1, ' n a m e ' ,  . . .
[ ' P l a c e t a l  I m ag e  ' n u m 2 s t r ( s e l ( i ) ) ' ROC1] , . . .
' N u m b e r T i t l e ' ,  ' o f f ' ) ,

h o l d  o n ,
p l o t  ( P l a c e n t a _ d b { i }  .MVE.X,  P l a c e n t a _ d b { i }  .MVE. Y, ' g '  ) ; 
p l o t  ( P l a c e n t a _ d b { i }  .D D F B 3 . X ,  P l a c e n t  a _ d b { i }  .D D F B 3 . Y ,  ' r ' )  ; 
p l o t ( P l a c e n t a _ d b { i } . DDFB3MidHomo. X , . . .

P l a c e n t a _ d b { i } . DDFB3MidHomo. Y , ' b '  ) ; 
h o l d  o f f
l e g e n d ( 'MVE' , ' D D F B ' , 'DDFB w /  H o m o m o r p h i c ' ) ;

f i g u r e ( ' c o l o r ' , ' w h i t e ' , ' n a m e ' , . . .
[ ' P l a c e t a l  Im a g e  ' n u m 2 s t r ( s e l ( i ) ) ' M C C ' ] , . . .
' N u m b e r T i t l e ' , ' o f f ' ) ,
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203 hold o n ,

204 p l o t  ( P l a c e n t a _ d b { i }  .M VE. MC Ct hr esh ,  P l a c e n t a _ d b { i }  .MVE.MCC, f g f ) ;
205 p l o t ( P l a c e n t a _ d b { i } •DDFB3 . M C C t h r e s h , P l a c e n t a . d b { i } .DDFB3.MCC, ' r ');
206 plot(Placenta-db{i}.DDFB3MidHomo.MCCthresh,...
207 Placenta-dbji} .DDFB3MidHomo .MCC, 'b');
208 hold off
209 l e g e n d  ( f MVE' , 1 DDFB r , f DDFB w /  H o m o m o r p h i c 1 ) ;
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