
IMPLEMENTATION OF AN IMPROVED EMBEDDED SQL FOR JAVA

by

Louis M Bradley

A Thesis Submitted to the Faculty of

The College of Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

December, 2012

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1522078

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1522078

iii

ACKNOWLEGDMENTS

I would like thank my advisor, Dr Martin K. Solomon, for putting up with me

during the design, development and testing of the SQLJE pre-compiler. His guidance,

knowledge and suggested improvements were greatly appreciated. I would also like to

thank Dr Ionut Cardei and Dr Robert Cooper for serving on my thesis committee and

providing their valuable insights and to Jose Luis Hurtado for his thesis, upon which this

project was based.

iv

ABSTRACT

Author: Louis M. Bradley

Title: Implementation of an Improved Embedded SQL for Java

Institution: Florida Atlantic University

Thesis Advisor: Dr. Martin K. Solomon

Degree: Master of Science

Year: 2012

The Java Development Environment defines SQLJ as a standard way of embedding the

relational database language SQL in the object-oriented programming language Java. Oracle

Corporation provides an extension of SQLJ that supports dynamic SQL constructs for the

processing of SQL commands that are not completely known at compile time. Unfortunately,

these constructs are not sufficient to handle all dynamic situations, so that the programmer has to

depend on other SQL embeddings, such as JDBC, in addition to Oracle’s SQLJ.

In this thesis we implement several extensions to Oracle’s SQLJ so that all dynamic

situations can be programmed in SQLJ, without resorting to other SQL embeddings. We also add

a sub-query based for loop facility, similar to the one provided in Oracle’s database programming

language PL/SQL, as an improvement over the iterator constructs that SQLJ provides.

This thesis discusses the design, development and implementation of these SQLJ

extensions, and provides applications that show the utility of these extensions in terms of clarity

and power.

v

IMPLEMENTATION OF AN IMPROVED EMBEDDED SQL FOR JAVA

1. INTRODUCTION...1

2. HISTORY ...3

3. PROJECT OVERVIEW ...7

3.1 Jose Luis Hurtado’s Thesis ..7

3.2 Dynamic Host Expressions ..7

3.3 Dynamic sub-query based for loop...9

3.4 Metadata support ...11

3.5 Ability to process a dynamic SQL command..12

4. IMPLEMENTATION..13

4.1 Coding Requirements...13

4.2 Integrating New Functionality..15

4.3 Tool Selection..16

4.4 Development and Testing...17

5. USING THE EXTENDED SQLJ STATEMENTS...21

5.1 Extended SQLJ Dynamic Host Expressions ...21

5.2 Select Statement Processing with SQLJE For Statements.....................................25

5.3 Using the Insert statement with SQLJE ..29

5.4 Using the Update statement with SQLJE..30

5.5 Using the Delete statement with SQLJE...30

vi

5.6 Calling a Stored Procedure with SQLJE...30

5.7 Calling a Function using SQLJE ..32

5.8 Using a Dynamic Host Expression for SQL Statement Where Nothing is Known 32

6. COMPARISON PROGRAMS...35

6.1 Two-Level Hierarchy...35

6.2 General Retrieval Utility ..37

6.3 General Load Utility ..42

6.4 Process Any Statement...46

APPENDIX A – S-P-J DATABASE..52

APPENDIX B - SOURCE CODE..54

BIBLIOGRAPHY ...84

1

1. INTRODUCTION

The ability to intuitively and efficiently access Relational Database Management

Systems (RDMS) from systems development platforms has been a topic over which

many papers and systems proposals have been based (see [1] for references). The

inability to seamlessly marry the two technologies was named the “impedance mismatch”

problem by Copeland and Maier in their proposal to add database commands to the

SmallTalk language [2].

Since then, two suppliers of development environments and RDMSs have

emerged as leaders in the industry, Microsoft with its Dot Net suite of programming

languages coupled with its SQL Server RDMS, and Oracle with its Java development

platform and Oracle RDMS. Both suppliers have added “extensions” to their languages

to try and reduce the impedance mismatch, but neither has completely integrated

Standard Query Language (SQL) statements directly into their programming languages

[4, 7].

In his 2012 thesis [1], Jose Luis Hurdato discussed the limitations found in the

current interface between programming languages and RDMSs including surveying the

current abilities provided by Microsoft and Oracle. In that thesis he detailed the different

approaches to providing access to RDMS data used by different platforms and concluded

that the best approach available to date was the Standard Query Language for Java

(SQLJ) pre-compiler used by the Java language for Oracle connectivity. There he also

2

pointed out that SQLJ lacked several features that many times required the use of both

SQLJ and direct Java Database Connectivy (JDBC) calls to compensate.

He then recommended several additions to the SQLJ command set to both reduce

the need to use JDBC calls and to make the programs easier to read. These

recommendations included a new Dynamic Host Expression, a dynamic sub-query based

for loop and a new SQLJ command used to retrieve metadata. These recommendations

were implemented by this author in a pre-compiler to SQLJ written in Java. This thesis

discusses the design, development and implementation of this pre-compiler and presents

comparisons between the standard SQLJ and the enhanced commands now available.

3

2. HISTORY

When the electronic processing of data was at its infancy, the options and abilities

for data storage were limited. At the start of the computer generation, punched card

media combined with magnetic tape storage was the norm. Using this media required the

data stored in these early systems to be of a fixed length and sequential nature. The

access and manipulation of the data in these systems was a simple task requiring only a

few basic I/O statements (Read and Write) coupled with exact data definitions within the

language. To facilitate this access, each computer manufacturer supplied development

languages such as COBOL or FORTRAN that included these basic I/O commands [6].

With the introduction of disk-based processing came the ability to individually

access a specific record on the disk, and the option to update that record or remove it

from the file. Such direct access file systems added new I/O commands and abilities, and

the hardware manufacturers added these commands to their base programming

languages. A similar approach was followed when early hierarchical proprietary

database systems were developed [6].

As the use of computers to process more and different types of data increased, the

“all in one” approach where the computer manufacturer supplied the hardware, operating

systems, database management system and programming languages began to be split with

many “third party” companies emerging to compete for database management and

software development systems. This divergence of hardware, development software and

4

database management systems became even more prevalent with the introduction of

personal computers and client/server processing. Now, one vendor supplied the

hardware, another the operating system for that hardware, a third the computer language

used for software development and a fourth the database management routines [6].

Although each component that made up a development environment was superior

to the all-in-one approach taken during the mainframe days, we were now faced with how

to best integrate a programming language and a database system that were most of the

times developed by separate companies. In addition, each programming language

requires access to each of the RDMSs, and, although the different SQL “languages” are

similar, there are subtle differences in syntax that must be taken into consideration in the

interface. Initially these interfaces were implemented using embedded SQL and a pre-

compiler as was done with IBM’s System R and Ingres. These interfaces later changed to

application programmer interfaces (API) that basically passed strings with encoded SQL

statements from the program to the DBMS. Such interfaces include ODBC (Open

Database Connectivity) and OLEDB (Object Linking and Embedding Interface) from

Microsoft and JDBC (Java Database Connectivity) from Java [4,6,7].

These “string” type interfaces became the norm for integrating database access

into programs, but still left a lot to be desired due to the hidden nature of the actual SQL

commands within these strings. Programmers were faced with one way of accessing the

database through external tools using the base SQL commands, or the more advanced

procedural commands supplied by the RDMS, and a second way within their programs

where similar commands were first assigned to string variables, and those variables then

passed into the database management routines.

5

As one solution, a pre-compiler for the C and C++ languages was developed

named Pro*C. The Pro*C pre-compiler reads files of type “PC” that include SQL

commands embedded within a C program. The embedding includes the ability to define

a set of variables that are accessible both by the host program and the SQL commands

being interpreted, and a structure where by SQL statements can be written that closely

match the same statement that would be entered into a query tool outside of the C

environment. [8]

As mentioned previously, the separation of database management, software

development and hardware pushed the specialization that caused the impedance

mismatch issue where the interface between host languages and database management

were no longer seamless as they had been when one entity developed all components.

What is ironic is that today, the two largest suppliers of database management systems,

Microsoft and Oracle, now are also the suppliers of the major development environments

with Microsoft supplying the Visual Studio Dot Net suite of development tools and

Oracle acquiring the Java development platform from Sun Systems. Now one would

think that since we have both database management and program development are back

in the hands of single suppliers that they would modify their development environments

so that more direct access to at least their own database management systems would be

available. Unfortunately, that is not the case. Although each supplier has added

structures to their development languages, the additions are far from true integration

between their System Development Environments (SDKs) and DBMS. [4,7]

On the Microsoft side, they developed an interface called LINQ to SQL. LINQ

makes use of an object relational mapping facility along with its own set of “query

6

expressions”. These expressions are similar but not the same as standard SQL, with their

semantics and syntax being quite different. A programmer familiar with normal SQL

query will have to relearn how to do even simple queries with LINQ. [7]

On the Oracle side, their improved interface is called SQLJ and is a Java pre-

compiler that takes specifically marked statements and converts them into JDBC calls

with minimal change in the syntax of the SQL statement. This approach is similar to

what was introduced in Pro*C and SQLJ statements closely follow the same syntax and

semantics as SQL statements processed by the host DMBS. In addition, the Java

development environment and the SQLJ pre-compiler allow for syntax checking and

column validation at compile time. Although a version of SQLJ introduced with Oracle

9i was touted as able to handle any dynamic SQL by the lead developer ([4] preface), the

pre-compiler cannot handle true dynamic SQL statements and does not have a facility to

expose metadata to the programmer, still causing the programmer to revert to JDBC to

accomplish those tasks [4,5].

These various approaches to connectivity between development environments and

database management systems were covered in Hurtado’s thesis in which he suggests that

the SQLJ interface, even with its limitations, was the best implementation of an interface

between an SDK and an RDMS. His paper suggestes several enhancements to the SQLJ

interface that would provide for dynamic SQL statement processing, metadata support,

and an improved method of retrieving data from Select statements [1].

7

3. PROJECT OVERVIEW

3.1 Jose Luis Hurtado’s Thesis

This project is a follow-on to Jose Luis Hurtado’s July 2012 thesis, and

implements the recommendations he made for enhancements to the SQLJ Java to Oracle

interface. Based on his findings, this interface already provides a great deal of control to

the application programmer while fairly closely aligning itself with similar syntax and

structure as regular SQL statements. The main issues with the current SQLJ

implementation dealt with limitations requiring the possible use of both SQLJ and JDBC

within the same program, and the awkwardness of the way that Select statements are

processed [1].

This thesis project will add four new features to the SQLJ command set that

should make the source code more readable while eliminating the need of using both

JDBC and SQLJ within the same program. The four features include: Dynamic Host

Expressions, a Dynamic sub-query based for loop, metadata support and the ability to

process SQL commands when nothing is known about the command.

3.2 Dynamic Host Expressions

Currently SQLJ supports two variable types that allow SQLJ to share information

between Oracle and Java, Host Expressions and Meta Bind Variables. A Host

Expression allows a programmer to pass a Java variable into SQLJ as a parameter, but the

exact type of the Host Expression is needed, and each host expression must be

8

individually declared in the statement. A Meta Bind Variable allows the programmer to

replace part of an SQLJ statement with a string built within the Java code.

The new Dynamic Host Expression will allow programmers to define an array of

type Object, and programmatically fill the array with values. This allows statements that

rely on repetitive parameters or values to dynamically determine the number of

parameters at run time. Dynamic Host Expressions can be used in the Values clause of

an Insert statement, in the parameter list of a function or procedure call, or can be used in

other commands when associated with the new verb Applying;

An example usage of the Dynamic Host Expression in an Insert statement could be:

1 #sqlje {insert into :{tablename} values (:[tablevalues])};

In the above example, the table into which one is inserting will be determined by

the value of the host express tablename which could change based on the processing of

the program. The tablevalues array would be instantiated and filled with the correct

number of values that match the table into which the values are to be inserted.

Other examples that could use the Dynamic Host Expression include:

1 #sqlje {call :{procedure_name} (:[procedure_params])};

2 #sqlje function_result = {values :{function_Name}(:[function_input])};

3 #sqlje {update :{tablename} set Field1 = ?, Field2 = ?

4 where Field3 = ? APPLYING :[update_Values]};

9

3.3 Dynamic sub-query based for loop

SQLJ’s current set-up for processing Select statements relies on the use of an

Iterator class that is pre-defined with Select statement information before processing.

Then the Iterator class is used to traverse the result-set returned from the Select

statement. For SQLJE, we will eliminate the need for an Iterator class and instead allow

the programmer to both instantiate a class to hold result-set information and pass the

Select statement to that class in a single statement followed by a processing loop in which

the data from the result-set is processed.

For example, in normal SQLJ, the following steps would be used to set up a query

of data from a table (See Appendix A for table definition):

1 #sql iterator SIterator (String snum, String sname, int status, String city);

2 SIterator sx;

3 #sql sx = {SELECT s# snum, sname, status, city FROM s ORDER BY snum};

4 while(sx.next()) {

5 System.out.println(sx.snum()+" "+ sx.sname()+" "+ sx.status()+" "+sx.city());

6 }

With the new sub-query based For loop, this code can be replaced by:

3 #sqlje {for sx (String snum, String sname, int status, String city) in

(select s#, sName, status, city from s order by s#)};

{

System.out.println(sx.snum+ " " + sx.sname + " " + sx.status + " " + sx.city);

}

10

In addition we will also allow the programmer to completely eliminate the static

declaration of internal variables and automatically generate these variables as an array

within the result-set class that can then be accessed by ordinal number or by name. The

following statements use this approach to retrieve the same data as above:

1 #sqlje {for sx in (select s#, sName, status, city from s order by s#)};

2 {System.out.println(sx.Column(“s#”)+ " " + sx.Column(“sname”) + " " +

3 sx.Column(“status”) + " " + sx.Column(“city”));}

The dynamic ability of the new result-set class lets us take this one step further,

allowing for our pre-compiler to handle a Select statement entirely encoded in a string

and nothing else is known about the statement.

1 String sSelect = “Select s#, sName, status, city from s order by s#”;

2 #sqlje {for sx in (:{sSelect})};

3 {

4 System.out.println(sx.Column(“s#”)+ " " + sx.Column(“sname”) + " " +

5 sx.Column(“status”) + " " + sx.Column(“city”));

6 }

11

3.4 Metadata support

Metadata for a database object provides structural information about that object.

Metadata for a Select statement provides information about the result-set of that Select

statement which includes the name of each column of the result-set, the type of data, the

maximum length of the data, whether or not the data can be null and, for numeric data, its

precision. There is not a structure in the normal SQLJ implementation that provides this

information requiring programmers to make use of JDBC calls to get this information.

In Hurtado’s thesis he suggests the use of a “Declare” statement to both set up the

result-set class for a Select statement, and to acquire metadata information from that

Select. In our implementation we chose to instead remove the need for the Declare

statement for our dynamic sub-query based for loop and to include a new command,

Describe to specifically acquire meta-data information. The verb Describe seemed to be

more conducive to the action that was taking place. An example usage could be:

1 Describe dbTableDef = new Describe();

2 #sqlje {Describe into dbTableDef (Select * from S)};

In addition, when a dynamic Select statement is processed (one without the

explicit list of fields), the result-set class created also contains basic metadata that

includes the number of columns in the result-set and the names for each column. This is

how the dynamic Select statement can return values based on column name.

12

3.5 Ability to process a dynamic SQL command

Many times what needs to be modified in a database requires the program to

dynamically create SQL statements that could change which table is being modified,

which fields within the table and under which conditions. The original JDBC easily

handled this situation since all of the commands used in the JDBC interface were really

just the value of strings being passed through to the Oracle RDMS. SQLJ does not have

this ability.

To provide a way to process dynamic non-Select SQL commands, a new verb was

added to SQLJE, Execute, which will allow a programmer to code the entire SQL

command and then pass it through the SQLJE pre-compiler. The feature can be used

with or without a Dynamic Host Expression identified by the Applying command. An

example using the S-P-J database structure (Appendix A) could look as follows:

1 String sSQL = “UPDATE P SET pname = ? WHERE p# = ?”;

2 Object pData = new Object[2];

3 pData[0] = “Marty”;

4 pData[1] = “P1”;

5 #sqlje {EXECUTE :{sSQL} APPLYING pData};

13

4. IMPLEMENTATION

The implementation of the enhancements described in Chapter Three required a

four step process to design and code the program that converted the new SQLJE

statements into JDBC commands understandable by the Java compiler. The first step was

to see how the SQLJ preprocessor handled existing commands, and what differences

could be identified based on the SQLJ statements processed. The next step was to

determine how to integrate the enhancements into the existing SQLJ framework. The

third step was to determine the best tool in which to parse the statements and code the

commands. Finally the program itself was coded and then subjected to a series of tests to

ensure it was operating correctly.

4.1 Coding Requirements

For this author to be able to code the enhancements required, a more in-depth

“behind the scenes” look at the way SQLJ processes different types of SQL statements

was needed. To accomplish this, the author used the Oracle Jdeveloper SDK platform to

code each different type of SQLJ command, and then analyzed the output to determine

how the final command was constructed and what internal database management routines

were used to process the statement.

14

This analysis resulted in breaking the SQLJ commands into three different

categories,

1. Comma Separated Immediate Commands: This category of commands

include the INSERT, Procedure Call and Function Call statements. In all

three cases the commands include a block where either a variable list or a

parameter list is included within parenthesis separate by commas.

2. Non-Comma Separated Immediate Commands: This category of commands

include the Update and Delete statements. In these cases both the parameter

list and (in the case of the Update command) the SET list use a Variable =

Value structure.

3. Iterators and SQLJ Select statements: This category of commands include

both the construction of the Iterator class itself, how that class makes itself

available to the main Java program and the construction of the SQL Select

statement passed to the class to create a result-set. This category is also where

the most extensive changes to the SQLJ logic would be performed since the

concept of the Iterator would be replaced.

To ensure compatibility with the usage of SQLJ in Java servlets, a separate set of

statements were processed that made use of JDBC default contexts instead of SQLJ

connections to the database. The resulting use of different internal method calls and

DBMS routines were documented.

15

4.2 Integrating New Functionality

The next step was to develop sample Java programs for each category of

statement that would implement the new enhancements using the structures and internal

JDBC function calls discovered in the previous step. For the Immediate Command

categories, this involved determining how the Dynamic Host Expression would be

integrated into the SQL statement generation logic both when used in comma separated

commands and when used in conjunction with the Applying statement. A small sample

program for each command type was developed that would be used in the development

and testing step as the template for that command.

A similar process was followed for the For -> Select statements, but with separate

results depending upon whether or not the For->Select was static or dynamic. In both

cases, a new class is created, but the actual working of the class is completely different.

Sample classes and in-line replacement code for both the static and dynamic case were

created and tested.

For the new Describe command, a new Java class (called Describe) was

developed that formed the backbone for exposing metadata to the program. The class can

be instantiated in multiple places within a Java program with different Select statements.

A small “Test Describe” program was written to act as the template for the conversion of

the command to actual Java/JDBC code.

Based on the findings from the immediate commands, a template was developed

that could handle any non-Select SQL statement when nothing was known about the

16

statement at compile time. A sample program and template was developed to be used

when this feature was coded.

It was decided that the SQLJE pre-compiler would not check for variable

existence and provide for in-line error checking, although this feature may be added in a

subsequent version. So, the pre-compile will directly pass through any of the three

variable/expression types through without determining if the variables behind those

expressions exist.

4.3 Tool Selection

Once the sample programs and templates were complete, the way that the SQLJE

statements would be converted to Java/JDBC code needed to be determined. What was

needed was a tool that could read a program, find the SQLJE statements and parse the

statements. The tool would then need to create the required output to replace the

statement with the correct calls to JDBC routines while passing all other lines in the

program directly through. The tool would also have to create new classes for the For-

Select statements and be able to distinguish different structures based on the syntax of the

command.

Two different approaches were reviewed. The first was to make use of a

lexical/syntax analysis tools such as Flex and Bison to scan and parse the various SQLJE

commands and then provide the parsed lines to a Java program. The second approach

eliminated the use of the lexical/syntax analysis tools and instead used regular

expressions coded directly within a Java program to scan and parse the input. After

reviewing the two approaches, the option using only a Java program and regular

17

expressions was selected. Using this approach would concentrate all development effort

in one place allowing for changes and additions to be more easily coded. It also reduced

the learning curve required to make use of the lexical tool and incorporate its output into

the Java program.

4.4 Development and Testing

An incremental prototyping methodology was used in the development of the

SQLJE pre-compiler. The first command implemented was the INSERT command using

a Dynamic Host Expression. This command required the potential parsing of both a

variable list and a parameter list and provided several methods that were used in

subsequent command conversions. It also required the ability to recognize and process

the Dynamic Host Expression which provided a base method to be used by other

commands in a Applying clause or within a function or store procedure call.

The Update and Delete commands were coded next and were perhaps the easiest

to convert due to their fairly rigid structure. The methods developed for decoding the

different host expressions were refactored and reused by these commands.

The next command to be implemented was the For->Select statement that used a

variable list. This Select command required that the parser generate both a class to

process result-set data at the same time that the in-line conversion of the command was

being performed. To handle this, a separate buffer was created to hold the code

generated for the result-set class. The buffer was then appended to the end of the pre-

compiled code once all in-line code was completed for all commands in the program

being pre-compiled.

18

The generated result-set classes were then enhanced to be able to process a

dynamic For-Select statement. Instead of specific fields being named in the class, an

array of objects was used that would receive the data from the result-set row by row. At

the initial implementation, only ordinal value assignments were going to be allowed, but

this seemed to be very restrictive. To improve upon the ordinal only assignment so that

column named value assignments could be implemented, the metadata for the Select

statement was retrieved and used to generate an overloaded method so that either column

name or ordinal position could be used.

The ability to extract metadata information was then coded. This task involved

coding a general purpose Describe class with the basic components required for metadata

extraction and exposure along with the code to convert the Descibe command into code

that would access that class so that the data would be populated.

A basic Procedure Call was the next command to be implemented. The initial

version allowed only “IN” type parameters and closely followed the code written for the

Insert statement.

Function Calls using the Values command were then coded. Although initially it

was thought that the same methods for parameter parsing could be used that were

developed for the Insert and Procedure Call, because of the unique way that the Function

returned a result, these routines needed to be enhanced so that parameter tags (“:1”)

instead of question marks (“?”) could be used so that the result could be registered as a

out parameter. These changes were required both to the static parsing of the functions

parameters, and when a Dynamic Host Expression was used.

19

The final command to be implemented was the Execute command that would

take any non-Select SQL command stored in a Meta Bind Expression and process it with

or without a Applying. The same routine that processed the Update and Delete

commands was used to compile the Execute.

Once all the initial commands were coded and tested, several of the repetitive

tasks in the program were refactored so that the code was placed in general purpose

methods, and the commands retested to ensure they continued to work correctly.

The next step involved the ability to handle comments and strings within

programs and to be able to correctly know when a command was a true SQLJE

command. To accomplish this several regular expressions were developed that would

identity comments and pass these directly to the output until the comment was completed.

Other regular expressions were used to find strings both with double and single quotes.

To keep the integrity of the strings while enabling the processing of the commands, each

string was replaced with a coded literal. The command was then parsed and converted as

needed, and then the coded literals were replaced with their string counterparts. This

enabled the command parser to operate without having to be concerned if it was dealing

with a string or a literal pushing those decisions to the front end string scanner and the

routine that writes the line of code to the output file.

After the initial commands, comment scanner and string scanner were completed,

several other changes were added to the program as new ideas were explored or features

missed in the initial implementation were discovered. These changes included the

addition of ability to use a “Default Context” database connection so that the SQLJE pre-

20

compiler can be used for Java Servlet development and the addition of Out parameters to

the Store Procedure function call.

Small programs were used through-out the development life cycle to test the

functionality of the pre-compiler. As each command was completed, that command was

used in several different ways to determine that the generated code worked correctly.

Once all commands were completed, several mini-programs as described in Chapter 6

were written, passed through the pre-compiler and run to both test the usability of the pre-

compiler and to demonstrate the differences between the SQLJE commands and similar

programs written in SQLJ and JDBC.

21

5. USING THE EXTENDED SQLJ STATEMENTS

As discussed previously, our extensions to Oracle’s SQLJ database access

statements (#SQLJE) provide dynamic SQL capabilities to access data from an Oracle

database without directly using the JDBC statements. These features should allow a

programmer to use only the SQLJ and SQLJE statements and to no longer have to switch

between SQLJ and JDBC, as must be done with the normal Java SQLJ in many dynamic

SQL situations.

In addition, we provide a facility for processing Select statement output that we

believe is superior to the standard SQLJ iterator facility.

5.1 Extended SQLJ Dynamic Host Expressions

Before going through the syntax for each new or updated extended SQLJ

statement, we will first discuss how Java expressions can appear within these statements.

There are three different Java “expression types” that are available in SQLJE

statements:

Expressions of the form :{Expression} represent “Meta Bind Expressions”.

Expressions of the form :(Expression) represent “Standard Host Expressions”.

and

Expressions of the form :[Expression] represent “Dynamic Host Expressions”

22

Meta Bind Expressions are implemented in SQLJE in a similar manner as SQLJ.

The value of the expression will replace the bind expression during the execution of the

statement:

For example, let’s assume that we have three Java String variables as follows:

1 String sTableName1 = “Employee”;

2 String sTableName2 = “Discount”;

3 String sFields = “Emp_No, Discount_Percent”;

and that we use these Java variables in a SQLJE statement as follows:

1 #SQLJE {Insert into :{sTableName1 + “_” + sTableName2}

2 (:{sFields}) Values (10,34.5)};

When parsing is completed for this statement, the resulting SQL statement would then

read:

1 sSQL = “Insert Into “ + sTableName1 + “_” + sTableName

2 +”(“ + sFields + “) Values (10,34.5)”;

When the program actually processes, the values from sTableName1, sTableName2 and

sFields will replace the variables so that the resulting SQL statement would be:

1 “Insert Into Employee_Discount (Emp_No, Discount_Percent) Values (10,34.5)”

23

Standard Host Expresssions are also implemented in a similar fashion in SQLJE

as they are in SQLJ. Each Standard Host Expression represents a single value that can be

used in the Where Clause or Select-List of a SQL statement. Expanding on the above

example, we will add two new variables to our Java program:

1 Int nEmpNo = 101;

2 Float nDiscountPercent = 6.5;

And our SQL statement would be changed to:

1 #SQLJE {Insert into :{sTableName1 + “_” + sTableName2

2 (:{sFields}) Values (:nEmpNo, :nDiscountPercent);

At run time after the above is parsed and the values of the variables are used, our SQL

statement will be converted to the following:

1 “Insert Into Employee_Discount (Emp_No, Discount_Percent) Values (?,?)

In addition the parser will add statements that will use the Standard Host

Expressions in SetObject statements to introduce the variables as the resolution of

parameters for the SQL statement:

1 “sSql.SetObject(1,nEmpNo);”

2 “sSql.SetObejct(2,nDiscountPercent);”

24

The prepared statement would then be sent to the Oracle Database Management

System for execution.

A Dynamic Host Expression is a new host expression type recognized only by

SQLJE dynamic SQL statements. The Dynamic Host Expression must have as its value

an Array of type Object and can hold multiple values used in a single SQL statement.

Continuing with the example above, one would first define an Object Array, and then set

each element of the array to the value needed for the SQL statement:

1 Object[] oEmpData = new Object[2];

2 oEmpData[0] = 123;

3 oEmpData[1] = 6.5;

One could then change the Insert statement we have been using as follows:

1 #SQLJE {Insert into :{sTableName1 + “_” + sTableName2}

2 (:{sFields}) Values (:[oEmpData])};

When the parser encounters this notation, the SQL statement is rewritten at run

time in the same way as when Standard Host Expressions were used:

1 “Insert Into Employee_Discount (Emp_No, Discount_Percent) Values (?,?)

The number of “?s” added to the statement will match the number of elements of

the array. The parser will additionally add the SetObject statements to the program, one

for each element in the Array.

25

Dynamic Host Expressions can be used in three different contexts. In an Insert

(as above) the Dynamic Host Expression replaces the contents of a Values clause. For a

Procedure or Function call, it replaces the list of parameters being passed to the

Procedure or Function. For all other statements, the Dynamic Host Expression must be

used in conjunction with the verb “Applying”. Please see how these Dynamic Host

expressions can be used in each type of statement below.

5.2 Select Statement Processing with SQLJE For Statements

In standard SQLJ, an object called an Iterator is used to provide access to the rows

returned in a Select statement. In the SLQJ implementation an Iterator is in reality a class

generated by the SQLJ parser where the actual retrieval of data and assignment to java

variables is accomplished. Although this structure does provide for data access, the use

of the separate Iterator feels awkward to programmers.

In our SQLJE enhanced Select statements, we continue to make use of a separate

class to do the actual work of retrieving records and assigning database information to

Java variables, but instead of using a separate Iterator declaration, we use a “For” syntax

which provides for more convenient processing as in Oracle PL/SQL and ANSI SQL-

1999 SQL/PSM.

The SQLJE implementation of Select statements supports both a static and a

dynamic version. In the static version, all information needed to correctly process the

Select is incorporated into the SQLJE statement. An example query could be:

1 #SQLJE {for Discounts (int nEmpNo, float nDiscount)

2 in (select * from Employee_Discount)};

26

3 {

4 System.out.println “The discount for Employee “ + Discounts.nEmpNo

5 + “ is “ + Discounts.nDiscount;

6 }

In this case, the SQLJE parser will create a new class and then assign the name

“Discounts” to it. The new class will be specifically coded with only the field names

mentioned in the field list of the “for Discounts” clause, so even though the Select clause

said to pull all fields from the table, only the two fields mentioned in the field list will be

included in the class.

The statement would then be parsed and passed to the “Discounts” class. The

instructions after the SQLJE statement would be converted to:

1 while (Discounts.Next() == true){

2 System.out.println “The discount for Employee “ + Discounts.nEmpNo

3 “ is “ + Discounts.nDiscount;

4 }

In the dynamic implementation of a Select statement, the field list is removed and

replaced by special code added to the class doing the data retrieval. For example, the

above Select statement could be coded as follows:

1 #SQLJE {FOR Discounts IN

2 (SELECT Emp_No, Discount_Percent from Employee_Discount)};

27

Since no field list is included, the Query Class must use result-set metadata

returned from the query to set up the column values for each row in the query. This

allows for the processing statements associated with the SQLJE statement to provide for

two different ways to access the data, by ordinal value or by column name.

An example processing block for the above statement could be:

1 {

2 System.out.println “The discount for Employee “ + Discounts.Column(1) +

3 + “ is “ + Discounts.Column(“Discount_Percent”));

4 }

In this example, both ways of accessing data from the query are shown,

Discounts.Column(1) will return the data in the first column as specific in the Select

clause which in this case would be “Emp_No”. The

Discounts.Column(“Discount_Percent”) entry would return the value of the column

named “Discount_Percent”). (Please note, the indexes into the columns is “one” based to

match the standard used by Oracle.)

The Select statement syntax for SQLJE allows Dynamic Host Expressions,

Standard Host Expressions and Meta Bind Expressions to be used as described at the

beginning of this chapter. For example, the following Statement could be a valid SQLJE

for Select statement:

1 #SQLJE {for Discounts (int nEmpNo, float nDiscount)

2 in (select * from :{sTableName1 + “_” + sTableName2}

28

3 Where Emp_No = ? and Discount_Percent = ? and Emp_No > :nEmpNo)

4 Using :[oEmpData]};

5 {

6 System.out.println “The discount for Employee “ + Discounts.nEmpNo

7 + “ is “ + Discounts.nDiscount;

8 }

In the above example, the parser will replace the “:{sTableName1 + “_” +

sTableName2}” with the values found in those two variables concatenated together with

an underscore. It would then prepare the statement with three parameter place holders,

assign the values from the oEmpData array to the first two parameters, and assign the

value of nEmpNo to the third parameter. The statement would then be passed to Oracle

for processing.

At the most flexible, the entire statement can be loaded into a Meta Bind Variable

resulting in an SQLJE statement like the following:

1 String sSelectDiscount = “Select * From Employee_Discount”;

2 #SQLJE {for Discounts in (:{sSelectDiscount})};

3 {

4 System.out.println “The discount for Employee “ +

5 Discounts.Column(“EmpNo”)

6 + “ is “ + Discounts.Column(“Discount_Percent”);

7 }

29

5.3 Using the Insert statement with SQLJE

The major enhancement included in the SQLJE extensions for the Insert statement

involves the use of Dynamic Host Expressions. For an Insert statement, these

expressions can be directly included within a Values statement, or appear as part of a

Using directive in either an Insert…Values or Insert…Select statement.

Here are several examples using the data definitions from above showing how

Dynamic Host Expressions can be used:

1 #sqlje {Insert Into :{sTableName1 + “_” + sTableName2

2 (:{sFields})

3 Values (:[oEmpData])};

1 #sqlje {Insert Into :{sTableName1 + “_” + sTableName2}

2 (Emp_No, Discount_Percent)

3 Values (?,?) Using :[oEmpData]};

1 String sUpdateFields = “Emp_No + 1, Discount_Percent * .9”;

2 #sqlje {Insert Into Employee_Discount (:{sFields})

3 Select :{ sUpdateFields } from Employee_Discount

4 Where Emp_No = ? and Discount_Percent = ? Using (:[oEmpData])};

30

5.4 Using the Update statement with SQLJE

The SQLJE Update statement can use Dynamic Host Expression arrays to assign

values to variables for either in the Set clause or the Where clause of the command. An

example Update command using the Employee Discount table include:

1 Object[] oDiscountData = new Object[2];

2 oDiscountData[0] = .20;

3 oDiscountdata[1] = 231;

4 #sqlje {Update Employee_Discount

5 Set Discount_Percent = ? Where Employee_ID = ?

6 Using :[oDiscountData]};

5.5 Using the Delete statement with SQLJE

The SQLJE Delete statement can use Dynamic Host Expressions arrays to supply values

to the Where clause of the command. An example Delete command could be:

1 #sqlje {Delete from :{sTableName1 + “_” + sTableName2}

2 Where Employee_Number = ? and Discount_Percent = ?

3 Using :[oEmpData]};

5.6 Calling a Stored Procedure with SQLJE

The call to a stored procedure can use Dynamic Host Expression arrays to supply

parameter value to the procedure. The call to the stored procedure will be modified based

on the number of element in the Dynamic Host Expression.

31

Suppose our Employee Discount system includes a stored procedure name

“BumpDiscount” that accepts an Employee_Number and a percent increase/decrease to

the Discount Percent, the SQLJE statement to call that store procedure could be coded as

follows:

1 #sqlje {call BumpDiscount (:[oEmpdata])};

The resulting SQL statement would be generated with “?”s in the parameter field with the

number of “?” equal to the size of the oEmpdata array. The program would generate

setObject statements iterating through oEmpData array.

1 Call BumpDiscount (?, ?)

A procedure call may contain parameters that are input only, output only or

in/out. The verb “Via” has been included into the SQLJE syntax to help handle this

situation. “Via” will be the tag to indicate that the next token is another Dynamic Host

Expression with the same number of items as in the Dynamic Host Expression used in the

parameter list. This Dynamic Host Expression will be an array of integers. If the value

of an array item is zero, the corresponding parameter enter will be considered an input

parameter. If it is a one, the parameter will be an output parameter, and if it is a two, the

parameter will be in/out. The SQLJE pre-compiler will then create the appropriate

parameter registration entries to handle the In and Out type parameters. For example,

assume we have set up an array name oParmType with a 0 in both elements:

1 #sqlje {call BumpDiscount (:[oEmpdata]) VIA :[oParmType]};

32

5.7 Calling a Function using SQLJE

Function calls are implemented in SQLJ and SQLJE through the use of the

VALUES statements. Let’s assume that we have an Oracle Function as part of our

Employee Disocunt System named “DoubleDiscount” that when passed an Employee_ID

and a Check_Percent will check to see if the Check_Percent > 2 * Discount_Percent of

that employee. If it is, the function will return the Check_Percent otherwise it will return

t2 * the Discount_Percent for that employee.

The syntax for returning a value from a function call with our SQLJE Extensions

would be:

1 float nDDiscount;

2 #sqlje nDDiscount = {VALUES DoubleDiscount(:[oEmpData])};

The parser would check to see how many entries are in the oEmpData array, and

set up that many parameters for the call. It would then convert the statement to a PL/SQL

statement that calls the function, provides the values in the oEmpData array as “IN”

parameters and sets up the nDDiscount as the “Out” parameter for the call.

5.8 Using a Dynamic Host Expression for SQL Statement Where Nothing is Known

A new command has been added to the SQLJE syntax called Execute that allows

the programmer to pass a Meta Bind Expression

1 String sSQL = “UPDATE P SET pname = ? WHERE p# = ?”

2 Object pData = new Object[2];

3 pData[0] = “Marty”;

33

4 pData[1] = “P1”;

5 #sqlje {EXECUTE :{sSQL} APPLYING :[pData]};

5.9 Acquiring Metadata with the SQLJE Describe command

One missing ability of the standard SQLJ instruction set is the absence of a way to

easily retrieve metadata such as column name, column type and column length. To gain

access to this information required the programmer to include direct JDBC calls in Java

to load this data.

This ability was included in our SQLJE by adding a new Describe command in

association with a Describe class included in a separate JAR file.

The basic syntax for using the Describe statement is:

1 Describe dbTableData = new Describe();

2 #sqlje {Describe into dbTableData (Select Statement)};

The dbTableData instance of the Describe class includes the following;

 nColumns – The number of columns returned by the Select statement

 sError – An error message if the processing of the Select statement caused an

exception

 sColumnName[i] – The column name of the ith column. (Columns are “1” based)

 sColumnType[i] – The type of the ith column.

 nColumnLength[i] – The length of the ith column.

34

 nPrecision[i] – For float type columns, the digits maintained to the right of the

decimal for the ith column.

 nIsNullable[i] – 1 indicates that the ith column is nullable, 0 that it is not

The Select Statement included in the Describe command can follow any of the

formatting discussed above for an SQLJE Select Statement from being hard-coded in the

statement:

1 #sqlje {Describe into dbTableData (Select * from Employee_Discount)};

to being completely dynamic

1 #sqlje {Describe into dbTableData (:{sSelectDiscount})};

35

6. COMPARISON PROGRAMS

To demonstrate the differences between standard SQLJ and the new SQLJE

command, four different mini-programs using the S-P-J database (see Appendix A) were

coded.

6.1 Two-Level Hierarchy

The first mini-program retrieves the Suppliers from our S-P-J database, and

beneath each Supplier lists the Parts for which that the Supplier currently has orders. The

Iterator class must be first declared for the SQLJ version, and then referenced within the

body of the program.

1 /* SQLJ version of TwoLevel.java from jdbc.doc */
2 /* declare named iterator classes */
3 #sql iterator SIterator
4 (String snum, String sname, int status, String city);
5 #sql iterator PIterator
6 (String pnum, String pname, int weight, String color, String city);
7

8 public class TwoLevelsqlj
9 { public static void main(String[]args) throws SQLException

10 {
11 /* connect to Oracle with the thin JDBC driver*/
12 Oracle.connect
13 ("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g",
14 "scott", "tiger");
15

16 /* declare iterator objects */
17 SIterator sx;
18 PIterator px;
19

20 /* populate iterator object for s */

36

21 #sql sx =
22 {SELECT s# snum, sname, status, city FROM S ORDER BY snum};
23

24 /* for each supplier record */
25 while(sx.next())
26 {
27 /* print the supplier record */
28 System.out.println(sx.snum()+" "+ sx.sname()+" "+
29 sx.status()+" "+sx.city());
30

31 /* populate iterator object for p */
32 #sql px =
33 {SELECT DISTINCT p.p# pnum, p.pname, p.weight, p.color, p.city
34 FROM P, SPJ
35 WHERE spj.s# = :(sx.snum()) and p.p# = spj.p#
36 ORDER BY pnum};
37

38 /* for each part record supplied by the current supplier */
39 while(px.next())
40 {
41 /* print the part record */
42 System.out.println(" "+ px.pnum()+" " +
43 px.pname()+" "+ px.weight()+
44 " " +px.color()+" "+px.city());
45 }
46 px.close();
47 }
48

49 /* close the SIterator and the connection */
50 sx.close();
51 Oracle.close();
52 }
53 }

A comparable program that does the same function using SQLJE could be the following.

Note how no Iterator class is required and the syntax more closely follows PL/SQL

conventions. Also note that the variables returned to the program are defined as fields in

the S and P result-sets instead of methods of the Iterator.

37

1 public class TwoLevel {
2 public static void main(String[]args) throws
3 SQLException, IOException, ClassNotFoundException {
4

5 // Connect to Oracle
6 Oracle.connect("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g","lbradle6", "oracle");
7

8

9 #sqlje {for s (String snum, String sname, int status, String city) in
10 (select s#, sName, status, city from s order by s#)};
11 {
12 String sNum = s.snum;
13 System.out.println(s.snum+ " " + s.sname + " " + s.status + " " + s.city);
14

15 #sqlje {for p (String pnum, String pname, String color, int weight, String city) in
16 (select distinct p.p#, pname, color, weight, city from spj, p
17 where spj.p# = p.p# and spj.s# = :sNum order by p.p#)};
18 {
19 System.out.println(" "+p.pnum+ " " + p.pname + " " + p.color + " " +
20 p.weight + " " + p.city);
21

22 }
23 }
24 Oracle.close();
25 }
26 }

6.2 General Retrieval Utility

The next mini-program allows a user to enter a table name a field name. The

program then retrieves metadata for that table and field, and if all checks out asks the user

for a value for the field. Once the user enters the field value, the program generates a

Select statement to retrieve all records where the entered field matches the value of that

field in the database. Here is the SQLJ version of the program:

1 /* SQLJ version of gret.java from jdbc3.doc */
2 public class gretsqlj
3 { public static void main(String[]args) throws

38

4 SQLException, IOException
5 {
6 /* create a BufferedReader object for standard input (this allows
7 us to read from standard input a line at a time) */
8 BufferedReader input =
9 new BufferedReader(new InputStreamReader(System.in));

10

11 /* connect to Oracle with the thin JDBC driver*/
12 /* have to get the DefaultContext object that wraps the Connection
13 object, so that we can obtain the Connection object, which is
14 required by the JDBC metadata stuff, from it. */
15 DefaultContext dc =
16 Oracle.connect
17 ("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g",
18 "scott", "tiger");
19 Connection conn = dc.getConnection();
20

21 /* input from user the table name and field name for the query */
22 System.out.println
23 ("Please enter table name and field name for query in upper case");
24 String line = input.readLine();
25 StringTokenizer tk = new StringTokenizer(line);
26 String tablename = tk.nextToken();
27 String fieldname = tk.nextToken();
28

29 /* Get field info for specified field in specified table. We do
30 this so that we can check that the table has such a field, and so
31 that we can get the type name of that field. */
32 DatabaseMetaData d = conn.getMetaData();
33 Result-set rm = d.getColumns(null, null, tablename, fieldname);
34

35 /* no records in result-set means specified field is not in
36 specified table */
37 if (!rm.next())
38 {
39 System.err.println
40 ("bad table name or bad field name, retrieve terminated");
41 System.exit(1);
42 }
43

44 /* get type name of field from the result-set, for later use */

39

45 String typename = rm.getString(6);
46

47 /* input field value for query from user */
48 System.out.println("please enter field value for query");
49 line = input.readLine();
50 tk = new StringTokenizer(line);
51 String fieldvalue = tk.nextToken();
52

53 /* Set parameter in query to the input field value. We assume
54 field is either varchar, float, or integer. Note that the Oracle
55 type name for integer is NUMBER */
56 if (typename.equals("VARCHAR2")) fieldvalue = "'"+fieldvalue+"'";
57

58 /* execute query into Result-setIterator object */
59 /* SQLJ dynamic SQL is based on meta bind expressions, which can
60 appear in only certain clauses of certain SQL statements. Please
61 see sqldynamicsql.doc on Blackboard for more details. */
62 Result-setIterator ri;
63 #sql ri =
64 {select * from :{tablename} where :{fieldname} = :{fieldvalue}};
65

66 /* get Result-set from Result-setIterator object */
67 Result-set r = ri.getResult-set();
68

69 /* get number of fields in field list of query */
70 Result-setMetaData rmd = r.getMetaData();
71 int nfields = rmd.getColumnCount();
72

73 /* print output from query */
74 while (r.next())
75 {
76

77 /* note that field numbers in result-set record
78 start with 1, not 0 */
79 for (int i = 1; i <= nfields; i++)
80 {
81 /* since we are only getting the fields to print them,
82 we can get them as strings */
83 System.out.print(" " + r.getString(i));
84 }
85 System.out.println();

40

86 System.out.println();
87 }
88

89 /* close stuff */
90 r.close();
91 rm.close();
92 ri.close();
93 Oracle.close();
94 System.out.println("retrieve complete");
95 }
96 }

Here is the same mini-program using SQLJE. Note the absence of the iterator

class since these have been replaced by the dbTab class in the For statement. The

Describe class and command are used to retrieve the metadata for the table, and can be

called without adding a default context to the Oracle connection and using JDBC

commands. Also note that the SQLJ For->Select can accept a Standard Host Expression

in a Where clause. The SQLJ version can only accept Meta Bind Variables there

requiring the program to place single quote marks around the field.

1 public class GRET
2 { public static void main(String[]args) throws
3 SQLException, IOException, ClassNotFoundException
4 {
5 /* create a BufferedReader object for standard input (this allows
6 us to read from standard input a line at a time) */
7 BufferedReader input =
8 new BufferedReader(new InputStreamReader(System.in));
9

10 /* connect to Oracle with the thin JDBC driver*/

11

Oracle.connect("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g","lbradle6",
"oracle");

12

13 /* input from user the table name and field name for the query */
14 System.out.println
15 ("Please enter table name and field name for query in upper case");

41

16 String line = input.readLine();
17 StringTokenizer tk = new StringTokenizer(line);
18 String tablename = tk.nextToken();
19 String fieldname = tk.nextToken();
20

21 Describe dbTable = new Describe();
22 String sSQL = "Select * from " + tablename;
23 #sqlje {DESCRIBE INTO dbTable (:{sSQL})};
24 if (dbTable.nColumns == 0){
25 System.err.println
26 ("bad table name or bad field name, retrieve terminated");
27 System.exit(1);
28 }
29 Boolean bFound = false;
30 for (int i=1;i<=dbTable.nColumns;i++){
31 if (fieldname.compareTo(dbTable.sColumnName[i])== 0) bFound = true;
32 }
33 if (bFound == false) {
34 System.err.println
35 ("bad field name, retrieve terminated");
36 System.exit(1);
37 }
38 /* input field value for query from user */
39 System.out.println("please enter field value for query");
40 line = input.readLine();
41 tk = new StringTokenizer(line);
42 String fieldvalue = tk.nextToken();
43

44 #sqlje {for dbTab in (select * from :{tablename} where :{fieldname} = :fieldvalue)};
45 {
46 for (int i=1;i<=dbTab.nColumns;i++) System.out.print(" " + dbTab.Column(i));
47 System.out.println();
48 }
49 System.out.println();
50 /* close stuff */
51 Oracle.close();
52 System.out.println("retrieve complete");
53 }
54 }

42

6.3 General Load Utility

The General Load Utility mini-program asks the user for a table into which s/he

would like to insert records and the number of records to insert. The program then goes

and retrieves metadata for that table and informs the user of the fields and types that need

to be entered. The user enters the fields and the program verifies the input and inserts the

new records into the table.

Because the General Load Utility can be used to insert values into any table, the

number of columns and type of columns are not know at compile time. Consequently,

the current version of SQLJ cannot be used to code this fairly simple program. The

comparison example program then is one written using JDBC.

1 public class LoadUtil {
2 public static void main(String[]args) throws
3 SQLException, IOException, ClassNotFoundException {
4 BufferedReader ioInput =
5 new BufferedReader(new InputStreamReader(System.in));
6

7 /* load jdbc drivers and
8 connect to Oracle with the thin JDBC driver*/
9 Class.forName("oracle.jdbc.OracleDriver");

10 Connection dbConnection =
11 DriverManager.getConnection
12 ("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g",
13 "scott", "tiger");
14

15 /* input from user the table name into which they want to insert */
16 System.out.println
17 ("Please enter table name into which you would like to insert new records a space and

then the number of records to insert");
18 String sLine = ioInput.readLine();
19 StringTokenizer tk = new StringTokenizer(sLine);
20 String sTable = tk.nextToken().toUpperCase();
21 int nRecords = 0;
22 try
23 { nRecords = Integer.parseInt(tk.nextToken());}

43

24 catch(Exception e)
25 {System.out.println(sTable + " Invalid Input " + e.toString() + " Insert Aborted");
26 System.exit(1);}
27

28 if (nRecords == 0){
29 System.out.println(sTable + " Number of Records Can't Be Zero");
30 System.exit(1);}
31

32 //Go see if this is a good table and if it is, get the column names and definitions and store
them in an ArrayList

33 DatabaseMetaData dbTableColumns = dbConnection.getMetaData();
34 Result-set dbTableResults = dbTableColumns.getColumns(null, null, sTable,null);
35 ArrayList<TableDefinition> arColumns = new ArrayList<TableDefinition>();
36 while (dbTableResults.next())
37 {
38 TableDefinition oTable;
39 oTable = new

TableDefinition(dbTableResults.getString(4),dbTableResults.getString(6));
40 arColumns.add(oTable);
41 System.out.println(dbTableResults.getString(4)+" " +

dbTableResults.getString(6));
42 }
43 if (arColumns.size() == 0){
44 System.out.println(sTable + " Table Not Found - Insert Aborted");
45 System.exit(1);
46 }
47 // Create the Insert Statement
48 String sInsert = "";
49 String sValues = "";
50 String sEnter = "";
51 for (TableDefinition ele:arColumns) {
52 if (sInsert != "") sInsert = sInsert + "," ;
53 sInsert = sInsert + ele.GetName();
54 if (sValues != "") sValues = sValues + "," ;
55 sValues = sValues + "?";
56 sEnter = sEnter + ele.GetName()+ " ";
57 }
58 sInsert = "INSERT INTO " + sTable + "(" + sInsert + ") VALUES (" + sValues + ")";
59 System.out.println(sInsert);
60

61 // Print out what is in the table now
62 PrintTable(dbConnection, sTable);
63 // Prepare The Statement
64 PreparedStatement dbInsert = dbConnection.prepareStatement(sInsert);

44

65

66 // Let's go insert the records
67 for (int i = 1; i <= nRecords; i++){
68 boolean bContinue = true;
69 System.out.println("Enter Record " + i + " of " + nRecords + " " + sEnter);
70 sLine = ioInput.readLine();
71 tk = new StringTokenizer(sLine);
72 int nCol = 0;
73 // Look through the columns and update the entries based on the column type
74 for (TableDefinition ele:arColumns) {
75 nCol = nCol + 1;
76 try{
77 String sFieldValue = tk.nextToken();
78 if (ele.GetType().equals("VARCHAR2"))

dbInsert.setString(nCol,sFieldValue);
79 else if (ele.GetType().equals("FLOAT"))

dbInsert.setFloat(nCol,Float.parseFloat(sFieldValue));
80 else dbInsert.setInt(nCol,Integer.parseInt(sFieldValue));
81 }
82 catch (Exception e){
83 System.out.println("!!!Input Incorrect - This Record Skipped!!! " +

e.toString());
84 bContinue= false;
85 }
86 }
87 if (bContinue){
88 try{
89 int nInsertOK = dbInsert.executeUpdate();
90 if (nInsertOK == 1) System.out.println("+++Insert Successful+++");
91 else System.out.println("!!!Insert Failed!!!");
92 }
93 catch (Exception e){
94 System.out.println("!!!Insert Failed!!! " + e.toString());
95 }
96 }
97 }
98 System.out.println("End of Program");
99 System.exit(0);

100 }
101 // Class to hold a structure for table definitions
102 public class TableDefinition
103 {
104 private String sColumnName;
105 private String sColumnType;

45

106 public TableDefinition (String psColumnName, String psColumnType)
107 {
108 sColumnName = psColumnName;
109 sColumnType = psColumnType;
110 }
111 public String GetName(){
112 return sColumnName;
113 }
114 public String GetType(){
115 return sColumnType;
116 }
117 }
118 }

The SQLJE version of the General Load Utility makes used of the Describe class

and command to acquire the metadata information needed for the table. Once that is

available, the program just needs to iterate through the list of columns in the table and

create the information for the user. The user can then enter the information which is split

into the oData array, and the single command

1 #sqlje {INSERT INTO :{sTable} (:{sColumns}) Values (:[oData])};

is used to generate the code necessary to create the actual insert statement and set the parameter

entries. Here is the SQLJE version of the program:

1 public class GeneralLoad {
2 public static void main(String[] args)throws IOException,
3 SQLException,ClassNotFoundException {
4 Oracle.connect("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g","scott", "tiger");
5 InputStreamReader isr = new InputStreamReader(System.in);
6 BufferedReader br = new BufferedReader(isr);
7 System.out.println("Into What Table Would You Like To Insert?");
8 String sTable = br.readLine();
9 System.out.println("How Many Records do you Want To Insert?");

10 String sCount = br.readLine();

46

11 int nCount = 0;
12 try {
13 nCount = Integer.valueOf(sCount).intValue();
14 } catch (NumberFormatException nfe) {
15 System.out.println("Incorrect Number of Records!");
16 System.exit(1);
17 }
18

19

20 Describe dbTable = new Describe();
21 String sSelect = "Select * from " + sTable;
22 String sColumns = "";
23 #sqlje {DESCRIBE INTO dbTable (:{sSelect})};
24

25 System.out.println("Enter data separated by commas");
26 for (int i = 1;i <= dbTable.nColumns;i++){

27

System.out.print(dbTable.sColumnName[i] + "(" + dbTable.sColumnType[i] + ")
");

28 if (sColumns.compareTo("")==0) sColumns = dbTable.sColumnName[i];
29 else sColumns = sColumns + "," + dbTable.sColumnName[i];
30 }
31 Object [] oData;
32 for (int i = 0;i<nCount;i++){
33 String sLine = br.readLine();
34 oData = sLine.split(",");
35 if (oData.length != dbTable.nColumns){
36 System.out.println ("Incorrect number of data fields " + sLine);
37 }
38 else {
39 #sqlje {INSERT INTO :{sTable} (:{sColumns}) Values (:[oData])};
40 }
41 }
42 }
43 }

6.4 Process Any Statement

The final mini-program we are going to compare is one where the use can enter

any standard SQL statement. The program then checks to see whether or not the

47

statement is a Select statement (requiring a result-set class) or not (an immediate

command). Based on this information, the program generates the correct call to the

Oracle RDMS using SQLJE, and executes the command.

This is another program that cannot be coded in the current version of SQLJ since

there is no mechanism to pass a completely unknown command through to SQLJ and

have it execute it.

Here is an example program written in JDBC that implements the Any Statement

min-program:

1 public class AnyJDBC {
2

3

4

public static void main(String[] args) throws SQLException, IOException,
ClassNotFoundException {

5 /* create a BufferedReader object for standard input
6 (this allows us to read from standard input
7 a line at a time) */
8 BufferedReader ioInput = new BufferedReader(new InputStreamReader(System.in));
9

10 /* load jdbc drivers and
11 connect to Oracle with the thin JDBC driver*/
12 Class.forName("oracle.jdbc.OracleDriver");
13 Connection dbConnection =
14 DriverManager.getConnection("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g", "scott", "tiger");
15 /* input from user the table name into which they want to insert */
16 System.out.println("Please enter the SQL Statement you would like to process");
17 String sSQL = ioInput.readLine();
18 if (sSQL.toUpperCase().substring(0, 6).compareTo("SELECT") == 0) {
19 try {
20 Statement dbTableStatement = dbConnection.createStatement();
21 ResultSet dbTableResult = dbTableStatement.executeQuery(sSQL);
22 ResultSetMetaData dbTableDef = dbTableResult.getMetaData();
23 int nFields = dbTableDef.getColumnCount();
24 for (int i = 1; i <= nFields; i++) {
25 System.out.print(" " + dbTableDef.getColumnName(i));

48

26 }
27 System.out.println();
28 // Print out the data for the table
29 while (dbTableResult.next()) {
30 for (int i = 1; i <= nFields; i++) {
31 System.out.print(" " + dbTableResult.getString(i));
32 }
33 System.out.println();
34 }
35 } catch (SQLException ex) {
36 System.out.println("Error in SQL statement " + ex.getMessage());
37 }
38 }
39 else {
40 try {
41 PreparedStatement dbInsert = dbConnection.prepareStatement(sSQL);
42 int nRowsAffected = dbInsert.executeUpdate();
43 System.out.println("Command completed sucessfully");
44 } catch (SQLException ex) {
45 System.out.println("Error in SQL statement " + ex.getMessage());
46 }
47 }
48 System.out.println("End of Program");
49 System.exit(0);
50

51 }
52 }

Here is the same program written using our new SQLJE. The program is very

similar except the SQLJE version uses our new Describe command to retrieve the

metadata from the column names.

1 public class AnyStatement {
2 public static void main(String[]args) throws
3 SQLException, IOException, ClassNotFoundException
4 {
5 BufferedReader input =
6 new BufferedReader(new InputStreamReader(System.in));
7

49

8 Oracle.connect("jdbc:oracle:thin:@db11.eng.fau.edu:1521:R11g","scott", "tiger");
9

10

11 /* input from user the SQL Statement to process*/
12 System.out.println
13 ("Please enter the SQL Statement you would like to process");
14 String sSQL = input.readLine();
15 if (sSQL.toUpperCase().substring(0,6).compareTo("SELECT")==0){
16 try {
17 Describe dbTable = new Describe();
18 #sqlje {DESCRIBE INTO dbTable (:{sSelect})};
19 for (int i = 1;i <= dbTable.nColumns;i++){
20 System.out.print(dbTable.sColumnName[i]);}
21 #sqlje {for dbTable in (:{sSQL})};
22 {for (int i = 1;i<=dbTable.nColumns;i++){
23 System.out.print(dbTable.Column(i)+" ");
24 }
25 System.out.println();
26 }
27 }
28 catch (SQLException ex){
29 System.out.println("Error in SQL statement " + ex.getMessage());
30 }
31 }
32 else{
33 try {
34 #sqlje {execute :{sSQL}};
35 System.out.println("Command completed sucessfully");
36 }
37 catch (SQLException ex){
38 System.out.println("Error in SQL statement " + ex.getMessage());
39 }
40 }
41 }
42 }

50

7. SUMMARY AND CONCLUSION

This thesis documents a development project that implemented of an extended

SQLJ embedded database interface with new commands and structures. In Chapter Two

we briefly reviewed the history of interfaces between relational database management

systems and systems development environments and introduced improvements suggested

in Hurdato’s Summer 2012 thesis. In Chapter Three we defined the overall project and

specified the four major changes we planned on adding to the SQLJ syntax: Dynamic

Host Expressions, Select For Statements, a Describe facility and a new command,

Execute, that provides the ability to process a SQL statement unknown at compile time.

Chapter four detailed the design, development and testing that resulted in a pre-compiler

to SQLJ implementing the changes. Chapter Five documented how the new features can

be used with examples for each command type. Finally in Chapter Six we compared

source code written using SQLJ and JDBC with the code that performed the same

functions with the SQLJE extensions.

The main intent of making the additions to SQLJ was to eliminate the need to use

JDBC with SQLJ in the same program while improving the clarity and brevity of the

source code. As shown in the sample mini-programs these goals were achieved with the

use of Dynamic Host Expressions, the Describe command and the Execute command.

We also wanted to replace the result-set iterator used by SQLJ with something

that was closer to the way other embedded database interfaces traversed a result-set. This

51

was accomplished using the For->Select command. In addition, we changed the return

type of static field names so that they were no longer methods but instead fields from the

class, and we added the ability to reference result-set columns for the dynamic case with

indexes that match the column names.

Although these changes resulted in the accomplishment of the goals of the
project, the pre-compiler that adds these new features is fairly straightforward and
was written over a four month period by one developer. This implies that adding
these features directly to the real SQLJ pre-compiler or even directly to the Java
language itself may not be that large a task, and something that we would
recommend to the Oracle Corporation to review.

52

APPENDIX A – S-P-J DATABASE

The S-P-J Database is a set of tables used in C.J. Date’s “An Introduction to

Database Systems” textbook that is used for many of the examples in this thesis. The

database represents a classic supplier, project, part relationship and is made up of four

tables as follows:

S – Table that holds information about a specific supplier:

s# - The unique identifier for a Supplier (Varchar (5))

sname – The name of the supplier (Varchar(20))

status – The status of the supplier (integer)

city – The city where the supplier is based (Varchar(10)

P – Table that holds information about a specific part:

p# - The unique identifier for a Part (Varchar(5))

pname – The name of the Part (Varchar (20))

color – The color of the Part (Varchar (10))

weight – The weight of the Part (integer)

city – The city where the Part is located (Varchar(10))

J – Table the holds information about a specific Job/Project

j# - The unique identier for a Job (Varchar(5))

53

jname – The name of the Job (Varchar(20))

city – The city where the Job is being worked (Varchar(10))

SPJ – Table that holds all orders for Parts by Supplier and Job

s# - Key to the Supplier (S) table (Varchar(5))

j# - Key to the Job/Project (J) table (Varchar(5))

p# - Pointer to the Parts (P) table (Varchar(5))

qty – The number of Parts supplied to this Job by this Supplier

54

APPENDIX B - SOURCE CODE

1 //SQLJE.JAVA – Main Program SQLJE Pre-Compiler
2 // Program that adds new features to the SQLJ Oracle DMS Commands
3 // Includes the addition of Dynamic Host Expressions
4 // Select For Processing without Iterators - Both static and dynumic
5 // Support for a Describe Command
6 // Suppoer for an Execute Command
7 public class SQLJE {
8 static Pattern compiledRegex;
9 static Matcher regexMatcher;

10 static BufferedWriter writer;
11 static int mnClassCount = 0; // Holds the current number of select command classes.
12 static int mnCommandCount = -1; // Holds the current number of commands. Used for tag name
13 static String msSelectClass = ""; // Holds the clases created for the Select statement
14 static String msParams = ""; // Holds the param entries needed for "?"
15 static String msTagName = "";
16 static String msContext = null;

17

static List msLiterals = new ArrayList(); // Holds comments and literals removed the each line
and the put back by AppendLine

18

19 public SQLJE() {
20 }
21

22 public static void main(String[] args) {
23 SQLJE parseSQLJ = new SQLJE();
24

25 String sInFile = args[0] + ".sqlje";
26 String sOutFile = args[1] + ".sqlj";
27

28

29 File inFile = new File(sInFile); // File to read from.
30 File outFile = new File(sOutFile); // File to write to
31 try {
32 parseFile(inFile, outFile);
33

34 } catch (IOException e) {

55

35 System.err.println(e);
36 System.exit(1);
37 }
38 }
39

40 public static void parseFile(File fromFile, File toFile) throws IOException {
41 // This is the main loop for the SQLJE pre-compile. The method reads
42 // each line of input, and replaces literals with special strings
43 // so they are not processed. It then checkes for comments and passes those
44 // directly through to the output file. Finally, it checks to see if the
45 // sqlje# tag is present, and if it is pulls together the entire sqlje statement
46 // and passes it for processing.
47 BufferedReader reader = new BufferedReader(new FileReader(fromFile));
48 writer = new BufferedWriter(new FileWriter(toFile));
49

50 String sLine = null; // The line being scanned
51 String sCommand = null;
52 String sComments = "(?:/*(?:[^*]|(?:*+[^*/]))**+/)|(?://.*)"; //Regex for a comment
53 String sDoubleLit = "\"([^\"\\\\]|\\\\.)*\""; //Regex for a literal in double quotes
54 String sSingleLit = "\'([^\"\\\\]|\\\\.)*\'"; //Regex for a literal in single quotes

55

boolean bGotOne = false; //Boolean to mark that the line has an sqlje
command

56 boolean bInComment = false; //Boolean to indicate currently in a comment
57 int nComment;
58

59 while ((sLine = reader.readLine()) != null) {
60 // If we are in a comment, copy over until we get the end comment sentinel
61 if (bInComment == true) {
62 nComment = sLine.indexOf("*/");

63

if (nComment > -1) { // We're going to split the line so that the comment has ended and
the command is on a new lin

64 AppendLine(sLine.substring(0, nComment + 2));
65 sLine = sLine.substring(nComment + 2);
66 bInComment = false; // we need to process what is to the right of the
67 } else { // we just need to write this line out and move on
68 AppendLine(sLine);
69 }
70 }
71 if (bInComment == false) {
72 //Step one - remove all quote literals from the line just read in
73 sLine = RemoveLiterals(sLine, sDoubleLit);
74 sLine = RemoveLiterals(sLine, sSingleLit);

56

75 // Step two - Remove any comments from the line just read in
76 // First - see if there are end of line comments (//)
77 nComment = sLine.indexOf("//");
78 if (nComment > -1) {
79 msLiterals.add(sLine.substring(nComment));
80 sLine = sLine.substring(0, nComment) + "!%&" + msLiterals.size() + "&%!";
81 }
82

83 // Remove any complete comments (/* to */) in the line just read
84 sLine = RemoveLiterals(sLine, sComments);
85

86 // See if there is just a start of a comment. If there is set the InComments switch
87 nComment = sLine.indexOf("/*");
88 if (nComment > -1) {
89 msLiterals.add(sLine.substring(nComment));
90 sLine = sLine.substring(0, nComment) + "!%&" + msLiterals.size() + "&%!";
91 bInComment = true;
92 }
93

94

95 if (sLine.toUpperCase().indexOf("#SQLJE") > -1) {
96 bGotOne = true;
97 sCommand = sLine;
98 AppendLine("//*************************************");
99

100 } else {
101 if (bGotOne == true)
102 sCommand = sCommand + " " + sLine;
103 }
104

105 if (bGotOne == true)
106 sLine = "//" + sLine;
107 AppendLine(sLine);
108 if (bGotOne == true) {
109 if (sLine.indexOf(";") > 0) {
110 DecodeCommand(sCommand, writer);
111 AppendLine("//*************************************");
112 bGotOne = false;
113 msLiterals.clear();
114 }
115 }

57

116 }
117 }
118 msLiterals.clear();
119

120 String SelClass[] = msSelectClass.split("\n");
121 for (int i = 0; i < SelClass.length; i++) {
122 AppendLine(SelClass[i]);
123 }
124

125 reader.close();
126 writer.close();
127 }
128

129

public static void DecodeCommand(String psCommand, BufferedWriter writer) throws
IOException, StringIndexOutOfBoundsException {

130 // This method determines which type of command is within the SQLJE statements.
131 // It also ensures correct formating of the statement with curly brackets and semicolon

132

// and determines if an alternate database context is to be used instead of the normal SQLJ
connection

133 try {
134 msContext = null;
135 String sInCommand = psCommand.trim();
136

137

138 int nPosition = sInCommand.indexOf("{");
139 if (nPosition == -1) {
140 AppendLine("//Missing Starting Curly Bracket - Statement Not Processed\n");
141 return;
142 }
143

144 //Check for alternate database context
145 int nLBracket = sInCommand.indexOf("[");
146 if ((nLBracket > -1) && (nLBracket < nPosition)){
147 int nBracket = sInCommand.indexOf("]");
148 if (nBracket > -1) {
149 msContext = sInCommand.substring(nLBracket + 1, nBracket);

150

sInCommand = sInCommand.substring(0, nLBracket) +
sInCommand.substring(nBracket + 1);

151 nPosition = sInCommand.indexOf("{");
152 } else {
153 AppendLine("//Cannot decypher command\n");
154 return;
155 }

58

156 }
157

158 // Remove the #sqlje and (if included) database context from the command
159 String sRight = sInCommand.substring(nPosition + 1).trim();
160 nPosition = sRight.indexOf(" ");
161 if (nPosition == -1) {
162 AppendLine("//Cannot decypher command\n");
163 return;
164 }
165 String sCommand = sRight.substring(0, nPosition);
166

167 //Get rid of any spaces in Host Variables so they won't be split later
168 String sHostVariable = ":\\{.*?\\}";
169 String sTempSQL = "";
170 compiledRegex = Pattern.compile(sHostVariable);
171 try {
172 Boolean bContinue = true;
173 while (bContinue == true) {
174 regexMatcher = compiledRegex.matcher(sRight);
175 if (regexMatcher.find() == true) {
176 String sHost = regexMatcher.group();
177 sHost = sHost.replaceAll(" ", "");
178 // sRight = regexMatcher.replaceFirst("%&!\\{" + sHost + "\\}");
179 int nEnd = regexMatcher.end();
180 sRight = regexMatcher.replaceFirst(sHost);
181 sTempSQL = sTempSQL + " " + sRight.substring(0, nEnd);
182 sRight = sRight.substring(nEnd);
183

184 } else
185 bContinue = false;
186 }
187 } catch (IllegalStateException ex) {
188 System.out.println(ex.getMessage());
189 }
190 sTempSQL = sTempSQL + " " + sRight;
191 sRight = sTempSQL;
192

193 String sUpper = sCommand.toUpperCase();
194 if (sCommand.toUpperCase().compareTo("INSERT") == 0)
195 DecodeInsert(sRight, writer);
196 else if (sCommand.toUpperCase().compareTo("FOR") == 0)

59

197 DecodeSelectFor(sRight, writer);
198 else if (sCommand.toUpperCase().compareTo("UPDATE") == 0)
199 DecodeUpdateDelete(sRight, writer);
200 else if (sCommand.toUpperCase().compareTo("DELETE") == 0)
201 DecodeUpdateDelete(sRight, writer);
202 else if (sCommand.toUpperCase().compareTo("CALL") == 0)
203 DecodeProcedure(sRight, writer);
204 else if (sCommand.toUpperCase().compareTo("EXECUTE") == 0)
205 DecodeUpdateDelete(sRight, writer);
206 else if (sCommand.toUpperCase().compareTo("DESCRIBE") == 0)
207 DecodeDescribe(sRight, writer);
208 else if (sCommand.toUpperCase().indexOf("VALUES") == 0)
209 DecodeFunction(sInCommand, writer);
210 else {
211 AppendLine("//Command incorrect or not implemented\n");
212 return;
213 }
214 } catch (IOException ex) {
215 System.out.println("Error in Command" + psCommand);
216 } catch (StringIndexOutOfBoundsException oob) {
217 System.out.println("Error in Command" + psCommand);
218

219 }
220 }
221

222

private static void DecodeInsert(String psCommand, BufferedWriter writer) throws IOException
{

223 //OK - we have an insert statement
224 // declare the variables needed to access Oracle
225 AppendLine("{");
226 SetOracleContext();
227

228

// First see if there is a VALUES clause and split the command. While I'm at it, find out if
there is a SELECT

229 // which means no VALUES, and if there is a APPLYING
230 int nValues = psCommand.toUpperCase().indexOf("VALUES");
231 int nSelect = psCommand.toUpperCase().indexOf("SELECT");
232 int nUsing = psCommand.toUpperCase().indexOf("APPLYING");
233 if ((nValues == 0) && (nSelect == 0)) {

234

AppendLine("//Command incorrect or not implemented no VALUES or SELECT clause " +
psCommand + "\n");

235 return;
236 }

60

237 String sLeft;
238 String sValue;
239 if (nValues >= 0) { //Splitting on VALUES
240 sLeft = psCommand.substring(0, nValues);
241 sValue = psCommand.substring(nValues + 6).trim();
242 } else { //Splitting on SELECT
243 sLeft = psCommand.substring(0, nSelect);
244 sValue = psCommand.substring(nSelect).trim();
245 }
246

247

248 //Check for the INTO and then get the table name. This could be a host variable.
249 int nPosition;
250 nPosition = sLeft.toUpperCase().indexOf("INTO");
251 if (nPosition == 0) {

252

AppendLine("//Command incorrect or not implemented - Missing INTO " + psCommand +
"n");

253 return;
254 }
255 sLeft = sLeft.substring(nPosition + 4);
256 String sVariables = "";
257 String sTable = "";
258 compiledRegex = Pattern.compile("\\(.*\\)");
259 try {
260 regexMatcher = compiledRegex.matcher(sLeft);
261 if (regexMatcher.find()) {
262 sVariables = regexMatcher.group();
263 sLeft = regexMatcher.replaceFirst("").trim();
264 }
265 } catch (IllegalStateException ex) {
266 System.out.println(ex.getMessage());
267 return;
268 }
269 sTable = sLeft.trim();
270

271 // See what we have as the table name. A Host Variable or a table name
272

273 DetermineTableorProcedure(sTable, "INSERT INTO ");
274

275 // OK - We Have "INSERT INTO TABLENAME". Next, is there a field list??
276 if (sVariables.indexOf("(") == 0) {
277 sVariables = sVariables.substring(1, sVariables.length() - 1);

61

278 String[] sEachVariable = sVariables.split(",");
279 ProcessInsertParen(sEachVariable, "V");
280 }
281 //This is a VALUES statement - process it and return to the main routine
282 if (nValues >= 0) {
283 AppendLine(" __fau_ssql = __fau_ssql + \" VALUES \";");
284

285 //See if we have a APPLYING - If yes, grab the Dynamic Host Expression there
286 String[] sGetUsing = sValue.split("APPLYING");
287 String sUsing = "";
288 if (sGetUsing.length == 2) {
289 sUsing = sGetUsing[1];
290 sValue = sGetUsing[0];
291 }
292

293 //We have the left side ready to go. See if the right side has a Dynamic Host Expression
294 // Get just what is inbetween the parenthesis
295 compiledRegex = Pattern.compile("\\(.*\\)");
296 try {
297 regexMatcher = compiledRegex.matcher(sValue);
298 if (regexMatcher.find()) {
299 sValue = regexMatcher.group();
300 sValue = sValue.substring(1, sValue.length() - 1);
301 }
302 } catch (IllegalStateException ex) {
303 System.out.println(ex.getMessage());
304 AppendLine("Values Clause Poorly Formated");
305 return;
306 }
307 String[] sEachValue = sValue.split(",");
308 msParams = "";
309 ProcessInsertParen(sEachValue, "?");
310 SetParamInsertProc(sEachValue);
311

312

313 // If we have a Using, stick this at the end to set any other parameters
314 if (sUsing.compareTo("") != 0) {
315 sUsing = sUsing.replace(";", "");
316 sUsing = sUsing.replace("}", "").trim();
317 SetUsing(sUsing);
318 if (msParams.trim().compareTo("") != 0) {

62

319 String SelParam[] = msParams.split("\n");
320 for (int i = 0; i < SelParam.length; i++) {
321 AppendLine(SelParam[i]);
322 }
323 }
324 }
325 AppendLine(" __fau_ec.oracleExecuteBatchableUpdate();");
326 AppendLine("}");
327 return;
328 }
329 //This is a SELECT statement instead of Values. Run it through the ClauseReplace
330 if (nSelect >= 0) {
331 if (nUsing != 0) {
332 String[] sGetUsing = sValue.split("APPLYING");
333 String sUsing = "";
334 if (sGetUsing.length == 2) {
335 sUsing = sGetUsing[1];
336 sValue = sGetUsing[0];
337 }
338 sValue = sValue.replace(";", "");
339 AppendLine("__fau_ssql = __fau_ssql + = " + ClauseReplace(sValue) + ";");
340 sUsing = sUsing.replace(";", "");
341 sUsing = sUsing.replace("}", "").trim();
342 SetUsing(sUsing);
343 } else {
344 AppendLine("__fau_ssql = __fau_ssql + = " + ClauseReplace(sValue) + ";");
345 }
346 mnCommandCount = mnCommandCount + 1;

347

AppendLine(" String __fau_tag = \"" + mnCommandCount + msTagName + ":\" +
__fau_ssql;");

348

AppendLine(" __fau_st =
__fau_ec.prepareOracleBatchableStatement(__fau_cc,__fau_tag,__fau_ssql);");

349

350 if (msParams != "") {
351 String SelParam[] = msParams.split("\n");
352 for (int i = 0; i < SelParam.length; i++) {
353 AppendLine(SelParam[i]);
354 }
355 }
356 AppendLine(" __fau_ec.oracleExecuteBatchableUpdate();");
357 return;
358 }

63

359 // If we made it here (although we should not have, we didn't have either a Values or a Select.

360

AppendLine("//Command incorrect or not implemented no VALUES or SELECT clause " +
psCommand + "\n");

361 return;
362

363 }
364

365

static void ProcessInsertParen(String[] psEachValue, String psQuesorName) throws
IOException {

366 // The method accepts an array of strings representing either a variable list or a Values list.

367

// The psQuerorName parameter is used to determine if question marks should be placed into
the statement

368 // or if the actual variable name should be used.
369

370 boolean nFirst = true;
371 String sNext = "";
372

373 // Is this a single host variable for the variable list. If yes, process and get out
374 sNext = psEachValue[0].trim();

375

if ((psEachValue.length == 1) && (psQuesorName.compareTo("V") == 0) &&
(psEachValue[0].trim().substring(0, 2).compareTo(":{")) == 0) {

376 sNext = psEachValue[0].substring(2);
377 sNext = sNext.replace("}", "");
378 AppendLine(" __fau_ssql = __fau_ssql + \"(\" + " + sNext + " + \")\";");
379 return;
380 }
381

382 // For each string in the variable list, determine the type and add it to the overall command
383 int nParam = 0;
384 if (psQuesorName.compareTo("F") == 0) nParam = 1;
385 for (String sOneValue : psEachValue) {
386 sOneValue = sOneValue.trim();
387 if (sOneValue.substring(0, 1).compareTo(":") == 0) // This is a variable
388 {
389 if (sOneValue.substring(1, 2).compareTo("[") == 0) // And it is an Array
390 {
391 String sArray = sOneValue.substring(2, sOneValue.length() - 1);
392 sArray = sArray.replace("]", "");
393 AppendLine(" String sArrayAdd=null;");
394 AppendLine(" for (int __faui = 0;__faui<" + sArray + ".length;__faui++) ");
395 if (psQuesorName.compareTo("?") == 0)

396

AppendLine(" {if (sArrayAdd==null) sArrayAdd = \"?\"; else sArrayAdd =
sArrayAdd + \",?\";}");

397 else if (psQuesorName.compareTo("F") == 0)

64

398

AppendLine(" {if (sArrayAdd==null) sArrayAdd = \":\" + (__faui+2); else
sArrayAdd = sArrayAdd + \",:\" + (__faui+2);}");

399 else

400

AppendLine(" {if (sArrayAdd==null) sArrayAdd = sArray[__faui]; else
sArrayAdd = sArrayAdd + \",\" + sArray[__faui];}");

401 if (nFirst) {
402 AppendLine(" __fau_ssql = __fau_ssql + \"(\" + sArrayAdd; ");
403 nFirst = false;
404 } else {
405 AppendLine(" __fau_ssql = __fau_ssql + \",\" + sArrayAdd;");
406 }
407 } else {
408 String sArray = sOneValue.substring(1);
409 if (nFirst) {
410 if (psQuesorName.compareTo("?") == 0)
411 AppendLine(" __fau_ssql = __fau_ssql +\"(" + "?" + "\";");
412 else if (psQuesorName.compareTo("F") == 0){
413 nParam = nParam + 1;
414 AppendLine(" __fau_ssql = __fau_ssql +\"(" + ":" + nParam + "\";");
415 }
416 else
417 AppendLine(" __fau_ssql = __fau_ssql + \"(\" + " + sArray + ";");
418 nFirst = false;
419 } else {
420 if (psQuesorName.compareTo("?") == 0)
421 AppendLine(" __fau_ssql = __fau_ssql + \"," + "?" + "\";");
422 else if (psQuesorName.compareTo("F") == 0){
423 nParam = nParam + 1;
424 AppendLine(" __fau_ssql = __fau_ssql + \"," + ":" + nParam + "\";");
425 }
426 else
427 AppendLine(" __fau_ssql = __fau_ssql + \",\" + " + sArray + ";");
428 }
429 }
430 } else if (nFirst) {
431 sOneValue = sOneValue.replace(")", "").trim();
432 AppendLine(" __fau_ssql = __fau_ssql +\"(" + sOneValue + "\";");
433 nFirst = false;
434 }
435

436 else {
437 sOneValue = sOneValue.replace(")", "").trim();

65

438 AppendLine(" __fau_ssql = __fau_ssql + \"," + sOneValue + "\";");
439 }
440 }
441 AppendLine(" __fau_ssql = __fau_ssql + \")\";");
442

443 }
444

445

446

private static void DetermineTableorProcedure(String psTable, String psType) throws
IOException {

447

// This method is used by the Insert and Procesure call to set up the SQL command for
processing

448 String sTable = psTable;

449

if (sTable.substring(0, 1).compareTo(":") == 0) { // This is a host variable - not a table
name/proceudue name

450 sTable = sTable.substring(1).trim();
451 String sFirst = sTable.substring(0, 1);
452 String sLast = sTable.substring(sTable.length() - 1, sTable.length());
453 if ((sFirst.compareTo("{") != 0) || (sLast.compareTo("}") != 0)) {

454

AppendLine("//Command incorrect or not implemented - Bad Table / Procedure Name " +
sTable);

455 return;
456 }
457 sTable = sTable.substring(1, sTable.length() - 1);
458 AppendLine(" String __fau_ssql = \"" + psType + "\";");
459 AppendLine(" __fau_ssql = __fau_ssql + " + sTable + ";");
460 } else {
461 AppendLine(" String __fau_ssql = \"" + psType + "\";");
462 AppendLine(" __fau_ssql = __fau_ssql + \"" + sTable + "\";");
463 }
464 }
465 private static void SetParamInsertProc(String[] psEachVariable) throws IOException {
466 // This method is used by Insert, Function Call and Procedure Call
467 // It goes through the list of Values or Parameter Call Variables and creates
468 // Param entries for each one
469 String[] sEachVariable = psEachVariable;
470 AppendLine(" int __fau_param = 0;");
471 msParams = " ";
472 String sNext = "";
473 mnCommandCount = mnCommandCount + 1;

474

AppendLine(" String __fau_tag = \"" + mnCommandCount + msTagName + ":\" +
__fau_ssql;");

475

AppendLine(" __fau_st =
__fau_ec.prepareOracleBatchableStatement(__fau_cc,__fau_tag,__fau_ssql);");

66

476

477 for (String sOneValue : sEachVariable) {
478 if (sOneValue.substring(0, 1).compareTo(":") == 0) // This is a variable
479 {
480 if (sOneValue.substring(1, 2).compareTo("[") == 0) // And it is an Array
481 {
482 String sArray = sOneValue.substring(2, sOneValue.length() - 1);
483 sArray = sArray.replace("]", "");
484 AppendLine(" for (int __faui = 0;__faui<" + sArray + ".length;__faui++) { ");
485 AppendLine(" __fau_param = __fau_param + 1;");
486 AppendLine(" __fau_st.setObject(__fau_param ," + sArray + "[__faui]);}");
487

488 } else {
489 AppendLine(" __fau_param = __fau_param + 1;");
490 AppendLine(" __fau_st.setObject(__fau_param ," + sOneValue.substring(1) + ");");
491 }
492

493 } else
494 sNext = sOneValue;
495 }
496

497 }
498

499

private static void DecodeUpdateDelete(String psCommand, BufferedWriter writer) throws
IOException {

500

// Method used to scan all Update or Delete commands and reformat them so they can be
processed.

501 AppendLine("{");
502 SetOracleContext();
503 String sCommand = psCommand.trim();
504 if (sCommand.length() >= 7) {
505 if (sCommand.toUpperCase().substring(0, 7).compareTo("EXECUTE") == 0) {
506 sCommand = sCommand.substring(7);
507 }
508 }
509

510 msParams = "";
511 boolean bHasUsing = false;
512 int nPosition = sCommand.toUpperCase().indexOf("APPLYING");
513 if (nPosition > 0)
514 bHasUsing = true;
515 if (bHasUsing) {

67

516 String[] sParts = sCommand.split("APPLYING");
517 sParts[0] = sParts[0].trim();
518 AppendLine("String __fau_ssql = " + ClauseReplace(sParts[0]) + ";");
519 sParts[1] = sParts[1].replace(";", "");
520 sParts[1] = sParts[1].replace("}", "").trim();
521 SetUsing(sParts[1]);
522 } else {
523 AppendLine("String __fau_ssql = " + ClauseReplace(sCommand) + ";");
524 }
525 mnCommandCount = mnCommandCount + 1;

526

AppendLine(" String __fau_tag = \"" + mnCommandCount + msTagName + ":\" +
__fau_ssql;");

527

AppendLine(" __fau_st = __fau_ec.prepareOracleBatchableStatement(__fau_cc, __fau_tag,
__fau_ssql);");

528 if (msParams != "") {
529 String SelParam[] = msParams.split("\n");
530 for (int i = 0; i < SelParam.length; i++) {
531 AppendLine(SelParam[i]);
532 }
533 }
534

535 AppendLine(" __fau_ec.oracleExecuteBatchableUpdate();");
536 AppendLine("}");
537

538 }
539

540

private static void DecodeDescribe(String psCommand, BufferedWriter writer) throws
IOException {

541 // This method is used to process the DESCRIBE command that passes a Select clause into the
542 // the Describe class to get metadata information
543 String sCommand = psCommand;
544 int nSide = 0;
545 // Remove the FOR
546 sCommand = sCommand.substring(3).trim();
547 int nIn = sCommand.toUpperCase().indexOf("INTO");
548 if (nIn == 0) {
549 AppendLine("// Poorly Formated Describe Command ");
550 return;
551 }
552

553 //Get rid of in INTO - Trim it and get the class name
554 sCommand = sCommand.substring(nIn + 4).trim();
555 int nLeft = sCommand.indexOf("(");

68

556

557 String sClass;
558 if (nIn > nLeft) {
559 sClass = sCommand.substring(0, nLeft).trim();
560 sCommand = sCommand.substring(nLeft);
561 } else {
562 sClass = sCommand.substring(0, nIn).trim();
563 sCommand = sCommand.substring(nIn + 2).trim();
564 }
565

566 msParams = "";
567 String sRightSide = sCommand;
568 sRightSide = sRightSide.replace("(", "");
569 sRightSide = sRightSide.replace("}", "");
570 sRightSide = sRightSide.replace(")", "");
571 sRightSide = sRightSide.replace(";", "");
572

573 if (sRightSide.toUpperCase().indexOf("APPLYING") > 0) {
574 String[] sParts = sRightSide.split("APPLYING");
575 sRightSide = sParts[0];
576 sParts[1] = sParts[1].replace(";", "");
577 sParts[1] = sParts[1].replace("}", "").trim();
578 SetUsing(sParts[1]);
579 }
580

581 AppendLine("{");
582 AppendLine("String __fauSel = " + ClauseReplace(sRightSide) + ";");
583

584 if (msParams.compareTo("") != 0) {
585 String SelParam[] = msParams.split("\n");
586 for (int i = 0; i < SelParam.length; i++) {
587 AppendLine(SelParam[i]);
588 }
589 }
590 if (msContext != null)
591 AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc = " + msContext + ";");
592 else

593

AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc =
sqlj.runtime.ref.DefaultContext.getDefaultContext();");

594

AppendLine("if (__fau_cc==null)
sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();");

595 AppendLine(" " + sClass + ".LoadDescription(__fauSel,__fau_cc);");

69

596 AppendLine("}");
597 }
598

599

private static void DecodeProcedure(String psCommand, BufferedWriter writer) throws
IOException {

600 // This method handles calling a stored procedure.
601 String sCommand = psCommand;
602 int nPosition;
603 nPosition = sCommand.toUpperCase().indexOf("CALL"); // Get rid of the call statement
604 sCommand = sCommand.substring(nPosition + 4).trim();
605

606 AppendLine("{");
607 SetOracleContext();
608

609

610 // Get the parameter list and the procedure name
611 String sVariables = "";
612 String sProcedure = "";
613 compiledRegex = Pattern.compile("\\(.*\\)");
614 try {
615 regexMatcher = compiledRegex.matcher(sCommand);
616 if (regexMatcher.find()) {
617 sVariables = regexMatcher.group();
618 sCommand = regexMatcher.replaceFirst("").trim();
619 }
620 } catch (IllegalStateException ex) {
621 System.out.println(ex.getMessage());
622 return;
623 }
624 sProcedure = sCommand.replace(";", "").trim();
625

626 DetermineTableorProcedure(sProcedure, "CALL ");
627

628

629

// Go through and set the PARAMs. For regular variables, just stick them in but for Arrays will
need to iterate

630 String[] sEachVariable = null;
631 ;
632 if (sVariables.indexOf("(") == 0) {
633 sVariables = sVariables.substring(1, sVariables.length() - 1);
634 sEachVariable = sVariables.split(",");
635 ProcessInsertParen(sEachVariable, "?");

70

636 }
637 SetParamInsertProc(sEachVariable);
638

639 AppendLine(" __fau_ec.oracleExecuteBatchableUpdate();");
640 AppendLine("}");
641

642 return;
643 }

644

private static void DecodeFunction(String psCommand, BufferedWriter writer) throws
IOException {

645 // This method parses out the information for an Oracle Function call. It has special logic
646 // to handle the Out Param
647 String sCommand = psCommand;
648

649 // Get rid of the first part
650 int nPosition;
651 nPosition = sCommand.toUpperCase().indexOf("#SQLJE");
652 sCommand = sCommand.substring(nPosition + 6).trim();
653 String[] sEachSide;
654 sEachSide = sCommand.split("=");
655 if (sEachSide.length != 2) {
656 System.out.println("Poorly Formed Function Call" + psCommand + "\n");
657 return;
658 }

659

String sVariable = sEachSide[0].trim(); // This is the java variable that will receive the output
from the function call

660

661 // Remove Values and trim
662 nPosition = sEachSide[1].toUpperCase().indexOf("VALUES");
663 sCommand = sEachSide[1].substring(nPosition + 6).trim();
664 if (sCommand.substring(0, 1).compareTo("(") != 0) {
665 System.out.println("Poorly Formed Function Call" + psCommand + "\n");
666 return;
667 }
668 // Get rid of the left paren and we should be good to go
669 sCommand = sCommand.substring(1).trim();
670

671 AppendLine("{");
672 AppendLine("oracle.jdbc.OracleCallableStatement __fau_st = null;");
673 if (msContext != null)
674 AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc = " + msContext + ";");
675 else

71

676

AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc =
sqlj.runtime.ref.DefaultContext.getDefaultContext();");

677

AppendLine("if (__fau_cc==null)
sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();");

678

AppendLine("sqlj.runtime.ExecutionContext.OracleContext __fau_ec =
((__fau_cc.getExecutionContext()==null) ? sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
__fau_cc.getExecutionContext().getOracleContext());");

679

680

681 // Get the parameter list and the function name
682 String sParams = "";
683 String sFunction = "";
684

685 compiledRegex = Pattern.compile("\\(.*\\)");
686 try {
687 regexMatcher = compiledRegex.matcher(sCommand);
688 if (regexMatcher.find()) {
689 sParams = regexMatcher.group();
690 sCommand = regexMatcher.replaceFirst("").trim();
691 }
692 } catch (IllegalStateException ex) {
693 System.out.println(ex.getMessage());
694 return;
695 }
696 sFunction = sCommand.replace(";", "").trim();
697 sFunction = sFunction.replace("}", "");
698

699

if (sFunction.substring(0, 1).compareTo(":") == 0) { // This is a host variable - not a table
name/proceudue name

700 sFunction = sFunction.substring(1).trim();
701 String sFirst = sFunction.substring(0, 1);
702 String sLast = sFunction.substring(sFunction.length() - 1, sFunction.length());
703 if ((sFirst.compareTo("{") != 0) || (sLast.compareTo("}") != 0)) {
704 AppendLine("//Command incorrect or not implemented - Function Name " + sFunction);
705 return;
706 }
707 sFunction = sFunction.substring(1, sFunction.length() - 1);
708 AppendLine(" String __fau_ssql = \" BEGIN :1 := \";");
709 AppendLine(" __fau_ssql = __fau_ssql + " + sFunction + ";");
710 } else {
711 AppendLine(" String __fau_ssql = \" BEGIN :1 := \";");
712 AppendLine(" __fau_ssql = __fau_ssql + \"" + sFunction + "\";");
713 }
714

72

715

716

// Go through and set the PARAMs. For regular variables, just stick them in but for Arrays will
need to iterate

717 String[] sEachVariable = null;
718

719 if (sParams.indexOf("(") == 0) {
720 sParams = sParams.substring(1, sParams.length() - 1);
721 sEachVariable = sParams.split(",");
722 ProcessInsertParen(sEachVariable, "F");
723 }
724

725 AppendLine(" __fau_ssql = __fau_ssql + \"\\n; END;\";");
726 AppendLine(" int __fau_param = 1;");
727 msParams = " ";
728 String sNext = "";
729 mnCommandCount = mnCommandCount + 1;

730

AppendLine(" String __fau_tag = \"" + mnCommandCount + msTagName + ":\" +
__fau_ssql;");

731 AppendLine(" __fau_st = __fau_ec.prepareOracleCall(__fau_cc,__fau_tag,__fau_ssql);");
732

733 for (String sOneValue : sEachVariable) {
734 sOneValue = sOneValue.replace(")","").trim();
735 if (sOneValue.substring(0, 1).compareTo(":") == 0) // This is a variable
736 {
737 if (sOneValue.substring(1, 2).compareTo("[") == 0) // And it is an Array
738 {
739 String sArray = sOneValue.substring(2, sOneValue.length() - 1);
740 sArray = sArray.replace("]", "");
741 AppendLine(" for (int __faui = 0;__faui<" + sArray + ".length;__faui++) { ");
742 AppendLine(" __fau_param = __fau_param + 1;");
743 AppendLine(" __fau_st.setObject(__fau_param ," + sArray + "[__faui]);}");
744

745 } else {
746 AppendLine(" __fau_param = __fau_param + 1;");
747 AppendLine(" __fau_st.setObject(__fau_param ," + sOneValue.substring(1) + ");");
748 }
749

750 } else
751 sNext = sOneValue;
752 }
753

754

73

755 AppendLine(" __fau_st.registerOutParameter(1,oracle.jdbc.OracleTypes.VARCHAR);");
756 AppendLine(" __fau_ec.oracleExecuteUpdate();");

757

AppendLine(" " + sVariable + " = __fau_st.getObject(1); if (__fau_st.wasNull()) throw new
sqlj.runtime.SQLNullException();");

758 AppendLine("}");
759

760 return;
761

762 }
763

764

765

766

private static void DecodeSelectFor(String psCommand, BufferedWriter writer) throws
IOException {

767 //The following method handles parsing and conversion for the For->Select clause including
768 //creating the result set classes for both the regular and default context oracle connections
769 String sCommand;
770 int nSide = 0;
771 mnClassCount = mnClassCount + 1;
772 sCommand = psCommand.trim();
773 // Remove the FOR
774 sCommand = sCommand.substring(3).trim();
775 int nLeft = sCommand.indexOf("(");
776 int nIn = sCommand.toUpperCase().indexOf("IN");
777 if (nLeft == 0) {
778 AppendLine("// Poorly Formated For Command ");
779 return;
780 }
781 String sIterator;
782 if (nIn > nLeft) {
783 sIterator = sCommand.substring(0, nLeft).trim();
784 sCommand = sCommand.substring(nLeft);
785 } else {
786 sIterator = sCommand.substring(0, nIn).trim();
787 sCommand = sCommand.substring(nIn + 2).trim();
788 }
789

790 //Split the command on the IN. To the left would be a possible variable list
791 //and to the right the select statement to be processed
792 String[] sEachSide = sCommand.split(" in | IN | In | iN ");
793 String[] sVariables = null;
794

74

795 //Begin creating the result set class.
796 AppendBuff("class __fauRead" + mnClassCount + "{");
797 if (sEachSide.length == 2) {
798 nSide = 1;
799 String sLeft = sEachSide[0];
800 sLeft = sLeft.replace(")", "");
801 sLeft = sLeft.replace("(", "");
802 sVariables = sLeft.split(",");
803 for (int i = 0; i < sVariables.length; i++) {
804 String sVariable = sVariables[i].trim();
805 String[] sVarName = sVariable.split(" ");
806 AppendBuff(" public " + sVarName[0].trim() + " " + sVarName[1].trim() + ";");
807 }
808 }
809 AppendBuff(" ResultSet dbTableResult;");
810

811 // If there was nothing to the left of IN, then this is a dynamic Select statement
812 // Set up all of the variables to hold meta data and create the methods to return information
813 if (sVariables == null) {
814 AppendBuff(" private Object[] dbColumn;");
815 AppendBuff(" private String[] dbColumnName;");
816 AppendBuff(" int nColumns=0;");
817 AppendBuff(" public Object Column(int pnColumn){");

818

AppendBuff(" if((pnColumn > 0) && (pnColumn <= nColumns)) return
dbColumn[pnColumn];");

819 AppendBuff(" else return null;}");
820 AppendBuff(" public Object Column(String psColumn){");
821 AppendBuff(" for (int nCol= 1;nCol <= nColumns;nCol++){");

822

AppendBuff(" if (psColumn.toUpperCase().compareTo(dbColumnName[nCol])==0)
return dbColumn[nCol];}");

823 AppendBuff(" return null;}");
824

825 }

826

AppendBuff(" public __fauRead" + mnClassCount + "(PreparedStatement pdbStatement,
Connection pdbConnection)");

827 AppendBuff(" throws SQLException, ClassNotFoundException { ");
828 AppendBuff(" dbTableResult = pdbStatement.executeQuery();");
829

830 // If this was a dynamic Select statements, set up the metadata from the resultset
831 if (sVariables == null) {
832 AppendBuff(" ResultSetMetaData dbRsmd = dbTableResult.getMetaData();");
833 AppendBuff(" nColumns = dbRsmd.getColumnCount();");
834 AppendBuff(" dbColumn = new Object[nColumns+1];");

75

835 AppendBuff(" dbColumnName = new String[nColumns+1];");
836 AppendBuff(" for (int nCol = 1;nCol <= nColumns; nCol++){ ");

837

AppendBuff(" dbColumnName[nCol] =
dbRsmd.getColumnName(nCol).toUpperCase();}");

838 AppendBuff(" return;");
839 }
840 AppendBuff(" }");
841

842 // Second method for default connections. Repeat everything above, but with an overloaded
843 // method with the different objects needed.

844

AppendBuff(" public __fauRead" + mnClassCount + "(oracle.jdbc.OraclePreparedStatement
pdbStatement, sqlj.runtime.ExecutionContext.OracleContext pdbConnection)");

845 AppendBuff(" throws SQLException, ClassNotFoundException { ");
846 AppendBuff(" dbTableResult = pdbStatement.executeQuery();");
847 if (sVariables == null) {
848 AppendBuff(" ResultSetMetaData dbRsmd = dbTableResult.getMetaData();");
849 AppendBuff(" nColumns = dbRsmd.getColumnCount();");
850 AppendBuff(" dbColumn = new Object[nColumns+1];");
851 AppendBuff(" dbColumnName = new String[nColumns+1];");
852 AppendBuff(" for (int nCol = 1;nCol <= nColumns; nCol++){ ");

853

AppendBuff(" dbColumnName[nCol] =
dbRsmd.getColumnName(nCol).toUpperCase();}");

854 AppendBuff(" return;");
855 }
856 AppendBuff(" }");
857

858

// Create the Next method that is used to actualy move the data from Oracle to the Java
variables

859

AppendBuff("public boolean Next() throws java.sql.SQLException,
ClassNotFoundException{");

860 AppendBuff(" if (dbTableResult.next()) {");
861 // If this is not the Dynamic version, assign each variable it's Oracle value
862 if (sVariables != null) {
863 for (int i = 0; i < sVariables.length; i++) {
864 String sVariable = sVariables[i].trim();
865 String[] sVarName = sVariable.split(" ");
866 String sGet = "";
867 if (sVarName[0].compareTo("String") == 0)
868 sGet = "getString";
869 if (sVarName[0].compareTo("int") == 0)
870 sGet = "getInt";
871 if (sVarName[0].compareTo("Date") == 0)
872 sGet = "getDate";
873 if (sVarName[0].compareTo("Float") == 0)

76

874 sGet = "getFloat";
875

876 //AppendBuff("db" + sVarName[1] + " = dbTableResult." + sGet + "(" + (i + 1) + ");");
877 AppendBuff(sVarName[1] + " = dbTableResult." + sGet + "(" + (i + 1) + ");");
878 }
879 // If this is a Dynamic version, then assign the data to the Column array
880 } else {
881 AppendBuff(" for (int __faui=1;__faui<=nColumns;__faui++){");
882 ;
883 AppendBuff(" dbColumn[__faui] = dbTableResult.getObject(__faui);");
884 AppendBuff(" }");
885

886 }
887

888 AppendBuff(" return true;");
889 AppendBuff("} else {");
890 AppendBuff(" dbTableResult.close();");
891 AppendBuff(" return false;");
892 AppendBuff("}");
893 AppendBuff("}");
894 AppendBuff("}");
895

896

897 msParams = "";
898 String sRightSide = sEachSide[nSide];
899 sRightSide = sRightSide.replace("(", "");
900 sRightSide = sRightSide.replace("}", "");
901 sRightSide = sRightSide.replace(")", "");
902 sRightSide = sRightSide.replace(";", "");
903

904 if (sRightSide.toUpperCase().indexOf("APPLYING") > 0) {
905 String[] sParts = sRightSide.split("APPLYING");
906 sRightSide = sParts[0];
907 sParts[1] = sParts[1].replace(";", "");
908 sParts[1] = sParts[1].replace("}", "").trim();
909 SetUsing(sParts[1]);
910 }
911

912 AppendLine("__fauRead" + mnClassCount + " " + sIterator + ";");
913 AppendLine("{");
914 AppendLine("String __fauSel = " + ClauseReplace(sRightSide) + ";");

77

915

916 if (msContext != null)
917 {
918 AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc = " + msContext + ";");

919

AppendLine("sqlj.runtime.ExecutionContext.OracleContext __fau_ec =
((__fau_cc.getExecutionContext()==null) ? sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
__fau_cc.getExecutionContext().getOracleContext());");

920

AppendLine("oracle.jdbc.OraclePreparedStatement __fau_st =
__fau_ec.prepareOracleStatement(__fau_cc,\"fauRead\",__fauSel);");

921 }
922 else
923 {

924

AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc =
sqlj.runtime.ref.DefaultContext.getDefaultContext();");

925

AppendLine("if (__fau_cc==null)
sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();");

926

AppendLine(" Connection __fauConnection =
__fau_cc.getDefaultContext().getConnection();");

927

AppendLine("PreparedStatement __fau_st =
__fauConnection.prepareStatement(__fauSel);");

928 }
929

930 if (msParams.compareTo("") != 0) {
931 String SelParam[] = msParams.split("\n");
932 for (int i = 0; i < SelParam.length; i++) {
933 AppendLine(SelParam[i]);
934 }
935 }
936

937 if (msContext != null){
938 AppendLine(sIterator + " = new __fauRead" + mnClassCount + "(__fau_st ,__fau_ec);");
939 AppendLine("__fau_ec.oracleCloseQuery();");
940 }
941 else

942

AppendLine(sIterator + " = new __fauRead" + mnClassCount + "(__fau_st
,__fauConnection);");

943

944 AppendLine("}");
945 AppendLine("while (" + sIterator + ".Next() == true)");
946 }
947

948

949 private static String ClauseReplace(String psIn)throws IOException {
950 // This methos scans a
951 String sIn = psIn;

78

952 String sOut = "\"\"";
953 String[] sWord = sIn.split(" ");
954 boolean bComma = false;
955

956 for (int i = 0; i < sWord.length; i++) {
957 bComma = false;
958 if (sWord[i].indexOf(",") > 0) {
959 bComma = true;
960 sWord[i] = sWord[i].replace(",", "");
961 }
962 sWord[i] = sWord[i].replace("}", "");
963 sWord[i] = sWord[i].replace(";", "");
964 if (sWord[i].length() > 0) {
965 if (sWord[i].substring(0, 1).compareTo(":") == 0) {
966 if (sWord[i].substring(1, 2).compareTo("{") == 0) {
967 String sNext = sWord[i].substring(1);
968 sNext = sNext.replace("{", "");
969 sOut = sOut + " + " + sNext + " + \" \"";
970 } else if (sWord[i].substring(1, 2).compareTo("[") == 0) {
971 AppendLine(" A Dynamic Host Expression should not be included in this stream");
972 sOut = "";
973 return sOut;
974 } else {
975 sOut = sOut + " + \"? \"";
976 if (sWord[i].indexOf(")") > 0)
977 sOut = sOut + " + \") \"";
978 if (msParams == "")
979 msParams = " int __fau_param = 0;\n";
980 msParams = msParams + " __fau_param = __fau_param + 1;\n";

981

msParams = msParams + " __fau_st.setObject(__fau_param ," +
sWord[i].replace(")", "").substring(1) + ");\n";

982 }
983 } else
984 sOut = sOut + " + \"" + sWord[i] + " \"";
985 if (bComma) {
986 sOut = sOut + " + \"" + "," + " \"";
987 }
988 }
989 }
990 return sOut;
991 }
992 private static void SetOracleContext() throws IOException {

79

993 // This method sets the appropriate Oracle context
994 AppendLine("oracle.jdbc.OraclePreparedStatement __fau_st = null;");
995 if (msContext != null)
996 AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc = " + msContext + ";");
997 else

998

AppendLine("sqlj.runtime.ref.DefaultContext __fau_cc =
sqlj.runtime.ref.DefaultContext.getDefaultContext();");

999

AppendLine("if (__fau_cc==null)
sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();");

1000

AppendLine("sqlj.runtime.ExecutionContext.OracleContext __fau_ec =
((__fau_cc.getExecutionContext()==null) ? sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
__fau_cc.getExecutionContext().getOracleContext());");

1001 }
1002 private static void SetUsing(String psIn) {
1003 // This method accepts a "Dynamic Field Variable" and generates an iteration
1004 // through the array to set parameter values. The code assums that some parameters
1005 // may have already been set by other fields in the command
1006 String sIn = psIn;
1007 sIn = sIn.replace("[", "");
1008 sIn = sIn.replace("]", "");
1009 sIn = sIn.replace(":", "").trim();
1010 if (msParams == "")
1011 msParams = " int __fau_param = 0;\n";
1012 msParams = msParams + " for (int __faui = 0;__faui<" + sIn + ".length;__faui++){ \n";
1013 msParams = msParams + " __fau_param = __fau_param + 1;\n";
1014 msParams = msParams + " __fau_st.setObject(__fau_param ," + sIn + "[__faui]" + ");}\n";
1015 return;
1016 }
1017

1018 private static String RemoveLiterals(String psLine, String psPattern) {
1019 // This method scans for literals and certain comments
1020 // When found, the text is saved in the msLiteral ArrayList
1021 // and the text replaced with !%&N&%!
1022 // This allows literals to be ignored by all other routines
1023 // The AppendLine routine replaces these literals back when each line if written
1024 String sLine = psLine;
1025 boolean bContinue = true;
1026

1027 while (bContinue) {
1028 compiledRegex = Pattern.compile(psPattern);
1029 try {
1030 regexMatcher = compiledRegex.matcher(sLine);
1031 if (regexMatcher.find()) {

80

1032

1033 msLiterals.add(regexMatcher.group());
1034 sLine = regexMatcher.replaceFirst("!%&" + msLiterals.size() + "&%!");
1035 } else
1036 bContinue = false;
1037 } catch (IllegalStateException ex) {
1038 System.out.println(ex.getMessage());
1039 return psLine;
1040 }
1041 }
1042 return sLine;
1043 }
1044

1045 static void AppendLine(String psLine) throws IOException {
1046 // This methos writes lines to the output file
1047 String sLine = psLine;
1048 String sValue = "";
1049 compiledRegex = Pattern.compile("!%&\\d+&%!");
1050 try {
1051 boolean bContinue = true;
1052 while (bContinue == true) {
1053 regexMatcher = compiledRegex.matcher(sLine);
1054 if (regexMatcher.find()) {
1055 sValue = regexMatcher.group();
1056 sValue = sValue.substring(3, sValue.length() - 1);
1057 sValue = sValue.substring(0, sValue.length() - 2);
1058 int iReplace = Integer.parseInt(sValue) - 1;
1059 String msReplace = msLiterals.get(iReplace).toString();
1060 sLine = regexMatcher.replaceFirst(msLiterals.get(iReplace).toString());
1061 } else {
1062 bContinue = false;
1063 }
1064 }
1065

1066

1067 } catch (IllegalStateException ex) {
1068 System.out.println(ex.getMessage());
1069 AppendLine("Error in ParseSQLJ - " + ex.getMessage());
1070 return;
1071 }
1072

81

1073 writer.write(sLine);
1074 writer.newLine();
1075

1076 }
1077

1078 static void AppendBuff(String psLine) {
1079 // This method adds lines to the Class Buffer
1080 msSelectClass = msSelectClass + psLine + "\n";
1081

1082 }
1083 }

82

1 // Describe Class – Compiled into JAR file and included in any sqlje program
2 // wishing to use the Describe command
3 public class Describe {
4 public String[] sColumnName;
5 public String[] sColumnType;
6 public String sError;
7 public int[] nColumnLength;
8 public int[] nPrecision;
9 public int[] nIsNullable;

10

11 private ResultSet rm = null;
12 private PreparedStatement s = null;
13 Connection conn = null;
14 int nColumns = 0;
15

16 public Describe() {
17 }
18

19

public void LoadDescription(String psStatement, sqlj.runtime.ref.DefaultContext __fau_cc)
throws SQLException, ClassNotFoundException {

20 try {
21 Connection dbConnection = __fau_cc.getDefaultContext().getConnection();
22 Statement stmt = dbConnection.createStatement();
23 ResultSet rs = stmt.executeQuery(psStatement);
24 ResultSetMetaData dbRsmd = rs.getMetaData();
25 nColumns = dbRsmd.getColumnCount();
26 //test = new Object[nColumns];
27 sColumnName = new String[nColumns + 1];
28 sColumnType = new String[nColumns + 1];
29 nColumnLength = new int[nColumns + 1];
30 nPrecision = new int[nColumns + 1];
31 nIsNullable = new int[nColumns + 1];
32 sColumnName[0] = "";
33 sColumnType[0] = "";
34 nColumnLength[0] = 0;
35 nPrecision[0] = 0;
36 nIsNullable[0]=0;
37

38

39 for (int nCol = 1; nCol <= nColumns; nCol++) {
40 sColumnName[nCol] = dbRsmd.getColumnName(nCol);

83

41 sColumnType[nCol] = dbRsmd.getColumnTypeName(nCol);
42 nColumnLength[nCol] = dbRsmd.getColumnDisplaySize(nCol);
43 nPrecision[nCol] = dbRsmd.getPrecision(nCol);
44 nIsNullable[nCol] = dbRsmd.isNullable(nCol);
45 }
46 }
47 catch (SQLException ex){
48 sError = ex.getMessage();
49 }
50 }
51

52 }

84

BIBLIOGRAPHY

[1] Jose Luis Hurtado. Reducing Impedance Mismatch in SQL Embeddings for Object-
Oriented Programming Languages. Florida Atlantic University, College of
Electrical Engineering and Computer Science, Summer 2012.

[2] George Copeland and David Maier. Making Smalltalk a Database System. SIG-
MOD Rec., 14(2):316-523, June 1984

[3] Jason Price. Java Programming with Oracle SQLJ. O’Reilly & Associates Inc.,
August 2001, ISBN 8173663807

[4] Nirva Morisseau-Leroy, Martin K Solomon and Gerald Momplaisir. Oracle91
SQLJ Programming. Oracle Press, 2001. ISBN 0072190930

[5] C.J.Date. An Introduction to Database Systems, Eighth Edition. Addison-Wesley,
August 2003. ISBN 0321197844

[6] Gary B. Shelly, Thomas J. Cashman. Introduction to Computers and Data
Processing. Anaheim Publishing Company, 1980. ISBN 0882361155

[7] Andrew Troelsen. Pro C# 2010 and the .Net 4 Platfor, Fifth Edition. Apress, 2010.
ISBN 1430225492

[8] Syed Mujeeb Ahmed, Jack Melnick, Neelam Singh, Tim Smith. Pro*C/C++
Precompiler Programmer’s Guide, Release 9.2, Oracle Corporation, March 2002

[9] John Levine. flex & bison. O’Reilly Media, 2009. ISBN 0596155972

[10] Mehran Habibi. Java Regular Expressions: Taming the java.util.regex Engine.
Apress, 2004. ISBN 1590591070

