

Texture Representations for Image Retrieval

by Scott A. Shafer

B.Sc. in Mathematics and Computer Science, January 2002, McGill University

A Thesis submitted to

The Faculty of

The School of Engineering and Applied Science

of The George Washington University

in partial satisfaction of the requirements

for the degree of Master of Science

May 20, 2012

Thesis directed by

Kie B. Eom

Professor of Engineering and Applied Science

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1510228

Copyright 2012 by ProQuest LLC.

UMI Number: 1510228

 ii

Acknowledgements

I would like to acknowledge and thank my thesis advisor, Professor Kie B. Eom, for

his encouragement throughout the course of this research. I also thank the members of

my thesis committee, Professors Milos Doroslovacki and H. Howie Huang, for their

guidance and suggestions. I appreciate the hard work of the employees in the GW

Veteran Services Office and the university’s participation in the Yellow Ribbon Program,

which helped fund this degree. I give a very special thanks to my wife, Jennifer, who

encouraged me through the long hours and late nights in completing this degree.

 iii

Abstract of Thesis

Texture Representations for Image Retrieval

Image databases are used in medical research, hospitals, in scientific research, in

museums to catalogue content, in security and biometrics and many other fields. The

entire World Wide Web can be considered an image database from the point of view of a

search engine. Image retrieval involves searching and retrieving specific or similar

images from a database given a query image or textual descriptor. Content-based image

retrieval uses low-level visual features, such as color, shape and texture, in digital images

to search and retrieve content from an image database.

Texture plays a major role in the human visual system for image understanding and

object recognition and is found, to some degree, in all natural images. The thesis

explores texture representation in general and texture feature extraction methods for

image retrieval. Three texture representations in the spatial, spatial-frequency and sparse

domains are discussed and implemented to extract feature vectors from texture images.

Sparse representations are invaluable to many signal processing and computer vision

algorithms. Sparse coding and dictionary learning algorithms are discussed and

implemented with the goal of evaluating the merit of sparse representation for image

retrieval.

To compare the performance of these three texture feature methods a small texture

image database is implemented using images from USC’s SIPI and MIT’s VisTex texture

databases. Three measures are used to compare retrieval performance of the extraction

methods. The results show that the sparse image retrieval method performed favorably

but has room for improvement in both performance and complexity.

 iv

Table of Contents

Acknowledgements ... ii

Abstract of Thesis .. iii

List of Figures ... vi

List of Tables .. viii

Chapter 1: Introduction ... 1

1.1 Texture in Content Based Image Retrieval ... 2

1.2 Applications of Texture Representation ... 3

1.3 Thesis Objective .. 4

1.4 Thesis Outline ... 5

Chapter 2: Review of Research in Texture Representation...6

2.1 The Co-occurrence Matrix .. 6

2.2 Causal Auto-Regressive Model .. 8

2.3 Markov Random Field .. 10

Chapter 3: Texture Features for Image Retrieval..13

3.1 Edge Histogram .. 13

3.2 Gabor Filter Bank ... 18

3.3 Sparse Texture Representation ... 21

3.3.1 Sparse Coding .. 22

3.3.2 Pursuits Algorithms ... 24

3.3.3 Dictionary Learning ... 26

3.3.4 Sparse Texture Descriptor .. 31

 v

Chapter 4: Implementation...32

4.1 Texture Database .. 32

4.2 Edge Histogram Descriptor Implementation .. 35

4.3 Homogeneous Texture Descriptor Implementation .. 39

4.3 Sparse Texture Descriptor Implementation .. 43

Chapter 5: Results ... 48

Chapter 6: Conclusion .. 53

References .. 55

 vi

List of Figures

Figure 2-1 Example of non-symmetric half plane (NSHP)..10

Figure 2-2 Pixel groupings defining commonly used neighborhoods with respect to

the center...11

Figure 2-3 Example of a Markov chain Markov random field (MRF).............................12

Figure 3-1 Five directional Sobel masks used to create edge maps.................................15

Figure 3-2 Example of Edge Histogram Descriptor partition of an image into 16

sub-images..16

Figure 3-3 MPEG 7 edge detection masks...17

Figure 3-4 Partition of the spatial frequency plane into 30 channels for the

Homogeneous Texture Descriptor..20

Figure 4-1 Texture database of 75 images cropped from USC SIPI and MIT VisTex

collections...33

Figure 4-2 Example of Edge Histogram Descriptor partition of an image into 16

sub-images..35

Figure 4-3 Flow diagram of the Edge Histogram Descriptor implementation.................37

Figure 4-4 Example of the Edge Histogram Descriptor implementation with MIT

VisTex “Food.0000” as the input image...38

Figure 4-5 Flow diagram of the Homogeneous Texture Descriptor implementation.......41

Figure 4-6 Example of feature extraction using the Homogeneous Texture Descriptor..42

Figure 4-7 Image of the separable 2D-DCT dictionary used to initialize the K-SVD

algorithm...45

 vii

Figure 4-8 Image of the learned dictionary implemented in the Sparse Texture

Descriptor...46

Figure 4-9 Flow diagram of the Sparse Texture Descriptor implementation...................47

 viii

List of Tables

Table 4-1 List of database and query images tested in chapter 5.....................................34

Table 4-2 Gabor filter bank parameters in the radial direction...40

Table 4-3 Gabor filter bank parameters in the angular direction......................................40

Table 5-1 Retrieval results of the three texture feature extraction methods based on

25 queries..51

 1

Chapter 1: Introduction

Image retrieval has been a popular computer vision research area for the past two

decades [21, 26, 31, 20]. This research has been contributed from different fields, to

include, image understanding, machine learning, and data mining, with the collective

goal of providing a more accurate image retrieval system [6]. An image retrieval system

is one that, given an input image, can search and retrieve one or more images from a

database that are relevant to the input by some measure of similarity.

Describing similarity between images can be difficult to quantify, as perception may

change from one viewer to another [32]. Further adding to the difficulty are differences

in illumination, scale, rotation, occlusion and others. Early image retrieval systems,

including many in use today, use textual descriptors to retrieve content and are similar to

conventional information retrieval systems [33]. Textual descriptors require tagging each

image or video with keyword metadata, which, in general, cannot be automated, and is

therefore very time consuming. Further, textual descriptors cannot sufficiently

characterize an image with a limited number of keywords. A more promising retrieval

paradigm is content-based image retrieval (CBIR), which uses low-level visual data such

as color, texture, and shape in place of text. Finding reliable and efficient methods to

extract these low level features has been the focus of image retrieval, within the computer

vision realm, for many years. In order to standardize CBIR feature extraction and meta-

data organization the international standard MPEG-7 was created in 2001 [21, 25].

Given a query image, the goal of CBIR is to search the image database and provide a

short list of ordered results which best match the input based on comparison of some

feature vector(s) and a distance measure between the input and set of database vectors.

 2

An obvious drawback is that many images in a database may be similar in low-level

content to the query image, but may look completely different to a human observer. For

example, two images might share a grass-like texture with strong enough similarity for a

match. However, one of the images may be a close up of a long grain fabric and the

other a natural landscape scene. Despite such shortcomings, MPEG-7, which employs

CBIR, has a proven track record [21].

1.1 Texture in Content Based Image Retrieval

This thesis focuses on one low level feature, namely texture, and describes various

mathematical models used in its description for the purpose of image retrieval. All

natural images exhibit some notion of texture. Texture plays an important role in human

perception regarding surface properties such as roughness and can help determine surface

orientation. It has also been shown that texture analysis by the human visual system is an

initial step in object identification [30]. On this basis, texture descriptors may provide

powerful tools for image comparison and matching for the purpose of image retrieval.

While no definitive definition of texture exists, in the context of computer vision we

may define texture as displaying some aspect of a pattern or arrangement of texels, or

texture elements, and can therefore be approached statistically or structurally [13].

Natural textures display some amount of regularity and randomness. We may further

define texture as an ordered collection of patterns forming a texture spectrum. The

texture spectrum ranges from deterministic, tile-like, patterns on one end, to random

noise on the other and are classified as: regular, near-regular, irregular, near-stochastic,

 3

and stochastic. This spectrum is a commonly used notion in the field of texture synthesis

[17].

Texture models can generally be categorized as statistical, structural or spectral [13].

A texture model seeks a simple, efficient and reliable approximation of the information in

the texture region of the image. Many mathematical models have been applied to

represent texture in the computer vision literature and some of the popular methods are

discussed in the following chapter. MPEG-7 uses two texture descriptors, the

homogeneous texture descriptor (HTD) and the non-homogeneous texture descriptor, also

known as the edge histogram descriptor (EHD). The MPEG-7 texture descriptors can be

applied individually or together. Homogeneity and object boundaries used together or

individually can express many classes of texture. The MPEG-7 HTD uses a 30-channel

Gabor filter bank of different scales and orientations to achieve a scale and rotation

invariant descriptor [21]. The EHD partitions the image into 16 non-overlapping sub-

images and the occurrences of edges, quantized to 5 orientations, are tabulated for each

sub-image. Further details of the two texture descriptors can be found in [21], and

chapter 3.

1.2 Applications of Texture Representation

Two very popular applications of texture representation are segmentation and

synthesis. Texture segmentation involves the partitioning of an image into a set of

disjoint texture regions. It is believed that object boundary detection and segmentation of

different objects play a major role in image understanding and motion analysis in the

human visual system [23]. Being able to identify the boundary between differing textures

 4

is important in many applications. Everything from neural networks [22], and Markov

random fields [14], to wavelets [38] have been applied to texture segmentation and can

find application in remote sensing, quality control, biomedical image classification and

many others. Texture segmentation, and segmentation techniques in general, can also be

applied to image retrieval [33].

Texture synthesis is the process of creating digital textures of any size that are free of

visual repetition. The primary use of texture synthesis is in computer graphics found in

video games, image and video editing, and data visualization. Texture synthesis is

generally obtained either by replicating a small texture image patch or generated by some

process [17]. In general, the higher the quality of a texture synthesis technique for a

particular class of texture, the more the technique lends itself to an analysis of the texture.

1.3 Thesis Objective

The objective of this thesis is to explore the performance of key texture feature

extraction methods as well as to investigate the applicability of sparse representation for

texture image retrieval. The MPEG-7 texture descriptors will be studied and their

retrieval performance on a small texture database will be compared to that of the sparse

texture model. The field of sparse representation, to include dictionary learning, has

found many applications in image processing that provide better results than previous

leading scale-frequency methods [9]. A compact representation, accompanied with

impressive results in other applications could make the sparse model a candidate for high

performance in image retrieval.

 5

1.4 Thesis Outline

This thesis is organized as follows. Chapter two explores three classic texture

representations that are still popular in many applications, namely, the Gray Level Co-

occurrence Matrix and associated measures, the two dimensional causal auto-regressive

model, and Markov Random Fields. Chapter three explores in more detail the three

texture feature extraction methods used for image retrieval performance comparisons

found in chapter 4. These methods include MPEG-7’s edge histogram descriptor (EHD)

and the homogeneous texture descriptor (HTD), and the sparse texture descriptor (STD).

Chapter four describes the set up of the texture image database and specific details about

how the three feature extraction methods are implemented. Chapter five presents and

analyzes the obtained results. Lastly, chapter six concludes the thesis and explores

possible future research.

 6

Chapter 2:

Review of Research in Texture Representation

2.1 The Co-occurrence Matrix

A gray level image histogram is a discrete function that tabulates the number of pixels

Nk, for each intensity value k, over the entire image. The histogram is often displayed in

in a bar graph format and stored as a vector for further calculations. The image

histogram is one of the most widely used features in image processing and computer

vision [21]. Image histograms are easy to calculate and are invariant to image rotation.

Moreover, a normalized histogram approximates the intensity distribution, thus enabling

the calculation of useful image statistics. The major drawback to image histograms is

that they do not convey any spatial information, which is a crucial property in texture

representation due to the high correlation between adjacent pixels.

The gray-level co-occurrence matrix (GLCM) incorporates the relative positions of

pixels and the distribution of pixel intensities. A GLCM can be considered a second

order image histogram. The GLCM, denoted by Pij d,() , is defined as a matrix of

relative frequencies in which a pair of neighboring pixels, separated by distance d and

along orientation , have gray levels i and j, respectively. For example, suppose d is one

pixel, and = 0 , then the entries in this GLCM are determined by,

Pij (d = 1, = 0) = #{[(k,l),(m,n)], k m = 0,

 l n = 1, I(k,l) = i, I(m,n) = j},

where # denotes the cardinality of the set and I(k,l) is the gray level intensity of the

pixel at position (k,l) in the image. For this example, the relative frequency of intensity

pairs is calculated by observing a pixel’s intensity and that of its rightmost neighbor, one

 7

pixel away. The values of i and j range over all possible gray levels, thus for a N-bit

image, the GLCM has dimension 2
N

by 2
N
. In [15], Haralick, who first proposed this

matrix, introduces a set of GLCMs, where = 0,45,90,135{ } , all using the same

distance along the various orientations. With this set of matrices various texture features

can be computed.

A GLCM for natural images is sparse with most non-zero entries clustered along the

main diagonal. However, it is not symmetric since Pij (d,) is not necessarily equal to

Pji (d,) . In order to make use of the statistics of the GLCM it is advantageous to

normalize the matrix by the number of non-zero entries, N, and make it symmetric. The

GLCM can be added to its own transpose, creating a symmetric matrix. Once the

symmetric GLCM is normalized, the entries can be thought of as probabilities. For

example, the sum of the diagonal entries gives the probability of constant intensity

regions of the image.

Statistics obtained from GLCMs of different textures can be used to measure the

differences between such textures. The GLCM is not rotation invariant, a particularly

useful characteristic for content-based image retrieval (CBIR). However, averaging

Pij (d,) along the different orientations of can increase rotational invariance. An

additional drawback for CBIR is that the texture element’s shape, commonly referred to

as a texel, is lost in computing the GLCM. Haralick defined 14 texture features to be

used in texture classification [15]. These include:

Uniformity pij
2

j=1

K

i=1

K

 8

Contrast i j()
2

j=1

K

i=1

K

pij

Correlation
i mr() j mc() pij

r cj=1

K

i=1

K

 (2.1)

Entropy pij
j=1

K

i=1

K

log2 pij

Homogeneity
pij

1+ i jj=1

K

i=1

K

,

where K is the number of intensity levels, pij =
Pij
N

, for co-occurrence matrix P and

normalizing constant N, means mr = ipij
i, j

K

, and mc = jpij
i, j

K

, and variances

r
2
= i mr()

2

i, j

K

pij , and c
2
= j m

c()
2

i, j

K

pij . Uniformity is maximized when an image

has only one intensity level and therefore is a measure of how few intensity levels are

distributed in the image. Contrast measures the difference in intensity between a pixel

and its neighbor. Correlation measures how correlated a pixel is to its neighbor. Entropy

measures the randomness of the entries in the GLCM and is 0 for a constant image.

Lastly, homogeneity measures the spatial closeness of entries in the GLCM to the main

diagonal.

2.2 Causal Auto-Regressive Model

The autoregressive (AR) process is a mathematical model based on the correlation of

a signal’s current value to some number of previous values. AR modeling assumes that

the next value in a signal or time series is a linear combination of the past p output

 9

values. Thus, AR can be used to predict the behavior of a process and provides a simple

way to model spectral characteristics of signals. The number of past values, p, used in the

regression is known as the model order. The weights, or coefficients, can be estimated

and then the AR process can be used as an analysis or synthesis filter.

The autoregressive model is used extensively in one-dimensional signal processing of

natural phenomena. For example, in speech processing, linear predictive coding (LPC) is

based on the AR model. The autoregressive process can be stated more compactly by,

 AR(p) : Y (n) = aiY (n i)
i=1

p

+w(n)+ c (2.2)

where Y is the previous output, ai are the filter coefficients to be estimated, w is white

noise and c is a constant (often omitted). Any estimation technique can be used to

determine the filter coefficients ai in equation (2.2), such as constructing the Yule-

Walker linear system of equations and solving it using the Levinson-Durbin algorithm

[16].

This model assumes that the signal is wide sense stationary (WSS) and causal. While

a natural image is not WSS it can be modeled as such in small neighborhoods, however,

the notion of causality can be cumbersome in two dimensions. Some artificial directed

lattice convention must be assumed to enforce causality. One popular convention is the

non-symmetric half plane (NSHP). Figure 2-1 gives a simple description of the NSHP,

where time moves in a raster scan order. In Figure 2-1, the grey circles represent past

pixel values, the black circle represents the pixel value currently being predicted, and the

white circles denote future pixels. An equation for the two dimensional AR process is

defined in equation (2.3),

 10

 AR(p) :Y (n,m) = aijY (n i,m j)
(i, j) S

p

+w(n,m), (2.3)

where S is the support of the prediction filter.

Figure 2-1: Example of non-symmetric half plane (NSHP).
In the figure above the grey pixels represent past values, black represents the value currently
being predicted, and white represent future values.

Several methods exist to determine the best choice in model order, but the most

commonly used is known as Akaike’s Information Criterion (AIC). AIC is a statistical

measure of goodness of fit of the AR(p) model to the given signal and is a function of the

variance of the residual sequence. It is given by,

 AIC(p) = N log 2
+ 2p (2.4)

where p is the model order, N is the number of values and is the variance of the AR

residual or error term (in this case we assume the error is normally distributed).

2.3 Markov Random Field

A pixel’s intensity is generally dependent upon all neighboring pixels. The restriction

of causality in the autoregressive (AR) model imposes an unnatural and anisotropic

dependency. The Markov random field (MRF) model drops causality to promote an

isotropic pixel dependency. This is accomplished by defining pixel neighborhoods and

cliques and treats the image as a set of lattice points S. The basic definition of a MRF is a

 11

set of random variables with Markov property described by an undirected lattice [2].

Two common conventions for neighborhoods are the 4-point and 8-point neighborhoods

as shown in Figure 2-2. The neighborhood of s is denoted by

Ns = r : r is a neighbor of s{ } .

Figure 2-2: Pixel groupings defining commonly used neighborhoods with respect to the center.
(Left) 4-point neighborhood. (Right) 8-point neighborhood.

We call

N = Ns s S{ } a neighborhood system if s S we have the following

two properties: s Ns , that is, s cannot be a neighbor with itself, and neighborhoods

must be symmetric, that is, s Nr r Ns . Another useful definition is that of a clique

C S . A clique is a set of points C that are all neighbors with each other, that is

 a,b C, a Nb .

A simple example of a MRF is the 1D Markov chain shown in Figure 2-3. The lattice

point s with value xs has neighborhood Ns = {s 1, s +1} . We say that a random object X

on lattice S is a MRF with neighborhood system N if for all s S we have

p xs | xi , i S and i s() = p xs | xi , i Ns() . For the Markov chain example in

Figure 2-3 we get: s S , p xs | xi , i Ns() = p xs | xs 1, xs+1() . In general, estimating

parameters and calculating density functions for a 2D lattice can be difficult. However,

 12

MRFs have been applied to texture synthesis [35], segmentation [14], restoration and

many other image processing applications.

Figure 2-3: Example of a Markov chain Markov random field (MRF).

 13

Chapter 3:

Texture Features for Image Retrieval

3.1 Edge Histogram

Edges play a critical role in distinguishing the boundaries between different objects

and illumination conditions. Sudden changes in intensity can be described by step edges

and more slowly varying intensity is described by ramp edges. In image processing, edge

detection is often a crucial step in segmentation. In general, traditional edge detectors

come in two flavors, one based on the gradient or first derivative approximation, and the

other on the Laplacian operator or second derivative [13].

The gradient vector points in the direction of the greatest rate of change and is given

in equation (3.1),

 f =

f

x
f

y

=

Gx

Gy

. (3.1)

The magnitude of the gradient,

 mag(f) = Gx
2
+Gy

2 (3.2)

and its orientation,

 = arctan
Gy

Gx

, (3.3)

can be computed to determine the greatest rate of change in intensity over an image

patch. The direction of the edge is perpendicular to the direction of the gradient. The

Laplacian operator, defined by equation (3.4),

 14

2 f (x, y) =

2 f

x2
+

2 f

y2
, (3.4)

is given by the divergence of the gradient and measures the flux density of a vector field.

These two classes of edge detectors translate into approximating the first or second

derivatives, respectively. The first derivative can be numerically approximated by a first

difference equation such as

f

x
f (x +1, y) f (x, y), (3.5)

and similarly in the y direction. In general, a first derivative digital approximation must

be 0 over constant intensity, be non-zero at the onset of a ramp edge, as well as non-zero

along the ramp. In two dimensions, the digital derivative is best applied by convolving a

spatial filter or mask, whose entries comply with the previously stated derivate rules. A

popular and successful edge detector based on the gradient of a Gaussian mask is the

Canny edge detector [13]. A much simpler, though less robust, edge detector comes from

applying the Sobel masks shown in Figure 3-1.

A benefit of the Sobel masks is that they are separable, that is, for example, the mask

in Figure 3-1 (a) can be computed by first convolving the image with 1 2 1
T

,

followed by 1 0 1 . Another way of stating this is that the mask in Figure 3-1 (a)

is the outer product of the two vectors respectively. This method of filtering is equivalent

to two-dimensional convolution and is possible due the associative nature of convolution.

This separability can significantly increase the computational advantage depending on the

size of the mask. If the dimensions of the mask are P by Q, then the computational

advantage is given by PQ / (P +Q) . In the case of a Sobel mask, this provides a

 15

PQ / (P +Q) = 9 / 6 =1.5 times faster convolution. The larger the mask used in the

convolution, the greater the gain over applying a two dimensional mask. The Sobel

masks also make use of the [1 2 1] vector that provides spatial smoothing to the image,

which helps suppress noise.

Figure 3-1: Five directional Sobel masks used to create edge maps.
When convolved with an image they produce edge maps which are images with edges as
principal features in the directions described in a) through e).

When these traditional edge detectors are applied to the less structured types of

texture they treat the textured region as noise. However, boundaries between objects or

texels may be successfully determined. Counting the number of edges, quantized to

specific orientations, which are found within a small image patch, are uniquely

identifying features and can be used for image retrieval purposes. This is the idea behind

 16

the Non-Homogeneous Texture Descriptor, also known as the edge histogram descriptor

(EHD), used in MPEG-7. The EHD is scale invariant and provides a compact

representation [21].

The edge histogram, as described by [21], quantizes edges into 5 directions: vertical,

horizontal, 45 , 135 , and non-directional using the masks shown in Figure 3-3. The

feature extraction is carried out by partitioning the image into 16 contiguous, square, sub-

images of equal size on which each of the five masks are convolved. The sub-images are

ordered left to right, top to bottom, (0,0) through (3,3) as shown in Figure 3-2, and a

histogram of 80 bins is constructed. Each bin therefore describes the frequency of

specific edge types contained in a particular sub-image. The sub-images themselves are

further divided into a fixed number of blocks. Each block is then tested for all 5 edge-

orientations and the one with the greatest magnitude, above a cutoff threshold, is chosen

and the associated bin is updated. Each bin is normalized by dividing it with the number

of image-blocks that had edge magnitudes above the cutoff threshold. The bin value is

then non-uniformly quantized from [0,1] to a 3-bit value using the Lloyd-Max algorithm.

This gives a 240-bit representation of the edge histogram for a particular image.

Figure 3-2: Example of Edge Histogram Descriptor partition of an image into 16 sub-images.

 17

While the number of image blocks is kept constant, due to different sizes of available

images in any given database, the size of the individual image-blocks adapts according

to,

 x =
(Image width) (Image height)

Fixed # of image blocks
, block size =

x

2
2. (3.6)

However, all images tested in chapter 4 of this thesis are of the same size, so this was not

a factor.

Figure 3-3: MPEG 7 edge detection masks.

Many variants to the MPEG-7 edge histogram have been proposed to improve

retrieval rate including using both local and global edge histograms [26] and applying the

edge histogram method in the discrete cosine transform (DCT) domain or discrete

wavelet transform (DWT) domain for JPEG and JPEG2000 images respectively [10],

[11]. The method proposed by [26] argues that since the MPEG-7 EHD only takes into

account edge distribution locally in individual sub-images, the global feature information

is lost. Their method applied both local edge histograms as well as edge histograms of

 18

overlapping sub-images, which increases the total bin count to 150. Using 3-bits per bin

they achieve an Average Normalized Modified Retrieval Rank (ANMRR), defined in

chapter 5 equation (5.8), of 0.296, or 0.04 better than using local edge detection alone. In

order to apply feature extraction methods for CBIR directly on JPEG or JPEG2000

encoded images [10] and [11] propose methods that calculates the EHD directly on the

DCT and DWT coefficients, respectively. The two methods give a slight ANMRR

improvement over the proposed MPEG-7 EHD but computationally boast many hundreds

of times faster for multiplications and several times faster for additions.

3.2 Gabor Filter Bank

The Gabor filter is named after Denis Gabor, the Nobel Prize winning

physicist/electrical engineer. In the spatial domain this filter is represented by a complex

sinusoid modulated by a Gaussian envelope, with impulse response given in one

dimension by,

 he(x) =
1

2 2
e

x2

2 2
cos(2 u0x),

 ho(x) =
1

2 2
e

x2

2 2
sin(2 u0x), (3.7)

 h(x) = he(x)+ jho(x) =
1

2 2
e

x2

2 2
e j (2 0x).

In [7], Daugman extends the Gabor filter to two dimensions and shows the 2D filter to

provide optimal Heisenberg joint resolution in space and spatial-frequency and that these

filters conform well to mammalian visual receptive field profile. In two dimensions we

get,

 19

 he(x, y) =
1

2 x y

e

1
2

x2

x
2 +

y2

y
2

cos(2 u0x + 2 v0y), (3.8)

and a similar equation for the odd/sine term. In this equation, (uo,vo) defines the center

frequency and x , y defines the spread of the Gaussian. The Gabor filter is a bandpass

filter allowing the location, spread, and orientation of the Gaussian to be tuned to a

particular frequency band. It has been speculated that the human visual system

decomposes visual spectra into bands in spatial frequency in a similar manner [7]. This

concept is particularly useful in extracting textures features that can be modeled as

homogeneous patches of a specific narrow frequency band.

Many applications have made use of the tunable, multi-scale, bandpass nature of the

Gabor filter including texture segmentation [39], handwriting identification [3], and iris

recognition [18]. Applying Gabor filters to texture feature extraction for CBIR has also

been a popular research area and its proven effectiveness in this area has caused it to be

included in MPEG-7. The Homogeneous Texture Descriptor (HTD), as described in [21,

31], is one of MPEG-7’s visual descriptors and utilizes a 30 channel Gabor filter bank to

extract texture features. The HTD provides texture-to-texture similarity matching by

comparing the feature vectors composed of means and standard deviations of the energy

from the 30-channel Gabor filter bank outputs and is both rotation and scale invariant.

 20

Figure 3-4: Partition of the spatial frequency plane into 30 channels for the Homogeneous
Texture Descriptor.

The HTD 30-channel filter bank is constructed with equal divisions in the angular

direction and octave divisions radially spanning the normalized spatial frequency half-

plane. The 30 feature channels consist of 6 angular bands, with 30 bandwidth, and 5

radial octaves as shown in Figure 3-4. The radial octaves are calculated starting with the

highest center frequency at 0 =
3

4
 and the others by s = 0 2

s
 with s {0,1, 2,3, 4} .

As the Gabor functions form a complete but non-orthogonal basis there is redundancy or

overlap between these channels. In [20] a strategy of selecting the filter parameters is

explained that ensures the adjacent channels touch at their half-peak magnitude, thus

reducing overlap. Using this filter bank, the energy mean and energy deviation are

computed for each channel. A 62-component feature vector is constructed comprised of

the mean and standard deviation of image intensity, as well as the 30 energy mean and 30

energy deviation components. The feature vectors are then used for similarity matching

and retrieval.

 21

3.3 Sparse Texture Representation

A sparse representation of a signal is one that uses a small number of coefficients in

its description. This is one of the main attractive features of transforms such as the DCT

in that it allows faster and simpler processing and less storage space of the same signal.

A sparse representation can also reveal the underlying structure of a signal, which can

provide insight into developing signal processing techniques such as wavelet denoising.

Many such transforms exist that can decompose a signal into a linear combination of

elementary waveforms called atoms. A family of such atoms is called a dictionary.

However, no single dictionary can provide maximal sparsity to all classes of signals, so

adaptive techniques are necessary for dealing with the set of signals for a particular

application [1]. One option is to learn the dictionary on a training set that well represents

the signals of interest.

In the last ten years the area of sparse signal representation has become very popular

[1, 9, 28, 36, 40]. Many new algorithms have been developed which make this model

attractive for many image-processing applications. Sparse representation can be

generalized into two major areas, sparse coding and dictionary learning, which will be

defined in the following sections. The idea of sparse texture representation for image

retrieval applies sparse coding and dictionary learning to a texture image database in

order to search and perform similarity matching with the sparse approximation of the

texture images. This method is dubbed the Sparse Texture Descriptor (STD) in this

thesis. The following sections explain some key ideas in sparse approximation as well as

the algorithms employed in this thesis.

 22

3.3.1 Sparse Coding

The main objective in sparse coding is, given a signal, we would like to find a sparse

representation or approximation which is a linear combination of a few atoms of an

overcomplete dictionary. An overcomplete dictionary is one such that the number of

atoms exceeds the dimensions of the signal space. This means that any signal in this

space can be represented by more than one linear combination of atoms.

Suppose we have the following linear system Da = x , with DN K ,aK 1 and xN 1 ,

where x is the signal of interest, D is an overcomplete dictionary and a is the sparse

representation of our signal x . If K > N, then this system is underdetermined and there

exist infinitely many solutions. In this context, however, we want to find the sparsest

solution. Intuitively, we could order the solution space by some measure of sparsity and

choose the sparsest solution. This is accomplished through regularization by a sparsity

inducing cost function J as shown in equation (3.9),

 â = argmin
a

J(a) s.t. Da = x . (3.9)

In order to admit only sparse solutions we should have J(a) = a
p
, where p = 0 or 1.

There are advantages and drawbacks for either choice of p. While
 0 leads to greater

sparsity,
 1 is convex.

If we consider the

p norm in place of J in equation (3.9), it can be shown that as p

goes to zero, the solutions to (3.9) get sparser [9]. This leads us to the
 0 quasi-norm,

which measures the sparsity of a signal by counting the nonzero entries. Our goal in

sparse representation is to approximate our given signal by one that has as few non-zero

entries as possible.

 23

The two fundamental problems in sparse coding are as follows:

 â = argmin
a

a
0

0
 s.t. Da = x (3.10)

 â = argmin
a

a
0

0
 s.t. Da x

2
. (3.11)

The first is known as the exact sparse coding problem and the second as the

approximation. Another useful problem statement found in many applications is,

 S Sparse â = argmin
a

Da x
2

2
 subject to a

0
S (3.12)

where S is a known and user defined constant. Equation (3.12) expresses that we wish to

minimize the squared Euclidean distance between a and â , while using a maximum of S

non-zero coefficients to form the approximation signal â .

Equations (3.10) through (3.12) are deceivingly complex. This is due to the discrete,

discontinuous, and non-convex nature of
 0 . An exhaustive search solution of equation

(3.10) is not computationally feasible. For example, assume D is of size 256x1024 and

suppose we know the sparsest solution has only 10 non-zero entries. An exhaustive

combinatorial search will be on the order of
1024

10
=
1024!

10!1014!
1 1030 sec, or about

3x10
22

 years assuming each calculation takes 1x10
-6

 sec. Equation (3.10) and its variants,

(3.11) and (3.12), have been proven to be NP-Hard [27]. Although an exhaustive search

is impossible, there exist sub-optimal algorithms that can approximate the solution in a

reasonable amount of time, even with large data sets such as images.

 24

3.3.2 Pursuits Algorithms

In the previous section it was demonstrated that a brute force method for solving

equation (3.10) or its variants is hopeless. However, many algorithms have been

developed in the last two decades that can give sub-optimal solutions to these problems.

The two main avenues of success are greedy algorithms and convex relaxation of

equation (3.10). Many algorithms are available today for solving large systems such as in

image processing problems, however, we must consider a tradeoff of runtime versus

approximation error. In general, greedy algorithms run faster, but have inferior

approximation error as compared to convex relaxation avenue, which use linear

programming algorithms. The next two sections give some detail on the greedy

algorithm named orthogonal matching pursuit (OMP) [36], and briefly mention the Basis

Pursuit (BP) algorithm [4], respectively.

3.3.2.1 Greedy Algorithms

From equation (3.10) we observe that the unknown vector a is composed of the

support of the solution and the non-zero values over this support. If we can find the

support, the non-zero values can be calculated one at a time by least squares. The support

is discrete so attacking equation (3.10) in this fashion leads us to a greedy algorithm.

Matching pursuit (MP) and its many variants are greedy algorithms that have been

successfully applied to approximating problems such equation (3.10). The basic idea of

matching pursuit is that it finds the one atom in D which best matches our given signal x ,

then, using the atoms found in previous iterations, it finds the best atom for the current

residual. The algorithm halts when Da x
2
 is below a given threshold. An improved

 25

variant of MP, known as OMP [36], evaluates the coefficients of a each iteration via

least squares.

OMP Algorithm

PURPOSE: To approximate the solution of Equation (3.11).

INPUT: dictionary D, signal x , threshold 0

INITIALIZE: k = 0

• Initial solution a0 = 0

• Initial residual r0 = x

• Initial solution support S0 =

MAIN LOOP:
k = k +1

Sweep: For each column d j in D, compute errors (j) = min
z j

d jz j r k 1 2

2
 using the

optimal zj
*
= d j

T r k 1 / d j 2

2
.

Update support: Find a minimizer, j0 of (j) : j Sk 1, (j0) (j) and update

Sk = Sk 1 { j0}.

Least Squares: Find ak = min
a

Da x s.t. supp{a}=Sk .

Update Residual: Set rk = x Dak.

Stop: If rk 2
< 0 stop, otherwise next iteration.

3.3.2.2 Convex Relaxation

As mentioned earlier, we can relax equation (3.10) by replacing
 0 with

 1 . The
 1

norm is smooth and, moreover, convex, which makes this a linear programming problem.

In the sparse approximation domain, the algorithm used to solve such a problem is known

as Basis Pursuit (BP) [4]. It is well known that existing linear programming algorithms

do not have strong polynomially bounded runtimes. Thus, compared to OMP, the BP

 26

algorithm runs much slower, but is known to give stronger guarantees with respect to

error. Until the last few years BP has mostly been used in the compressive sampling

domain due to the low error guarantee and not in image processing since it is restrictively

slow for large data sets. For this reason it is not implemented in this thesis.

It should be mentioned that recent greedy algorithms such as Regularized OMP

(ROMP) [28] have bridged the error gap and are also being investigated for compressive

sampling.

3.3.3 Dictionary Learning

In applying OMP to equation (3.10), or its variants, it has been assumed so far that

the dictionary D is given. This section focuses on how to obtain the dictionary. A

dictionary can be predesigned; for example, the homogeneous texture descriptor (HTD)

in section 3.2 could be described and constructed as a Gabor wavelet dictionary. Another

example is the bi-orthogonal wavelet dictionary used in JPEG2000 [13]. Such

dictionaries are designed to work well on any type of image and at great computational

savings, as the discrete wavelet transform (DWT) transform is on the order O(N) [9].

However, such designed dictionaries do not provide the sparsest representation since they

are not adapted to a specific image or set of images [9].

A dictionary with more basis vectors than the dimensionality of the signal space is

called overcomplete and allows for a richer set of building blocks with which to represent

the signal. In general an overcomplete dictionary that is learned on a specific set of

signals can better represent each signal, with respect to sparsity, than a predesigned

orthogonal dictionary [9]. How to extract atoms from the signal training set and which

ones to choose is the main idea behind dictionary learning algorithms.

 27

We consider the problem where we are given T training signals X = xi{ }i=1
T

, and we

want to find the dictionary DN K that represents each signal in this set with a S-sparse

vector ai (i.e. with at most S non-zero entries). The vectors ai form the representation

matrix A. We can state this as a matrix factorization problem with a sparseness

constraint,

 min
D, A

X DA
F

2
 subject to i, ai 0

S, (3.13)

where A
F

 denotes the Frobenius norm of the matrix A.

Many techniques have been developed to tackle the dictionary learning problem

including probabilistic methods such as maximum likelihood and maximum a-posteriori

[9]. Several years ago an iterative algorithm was proposed that uses sparse coding to

build a dictionary using a signal training set. This algorithm is called K-SVD and has

been successfully applied to many image processing inverse problems such as de-noising,

de-blurring, and in-painting with better results than previously proposed methods [1].

K-SVD is a generalization of K-Means clustering algorithm and there is a clear

relationship between clustering and sparse representation. In clustering we have, say, K

clusters of N data points and we wish to be able to decide which data belong to which

cluster. Very generally, the K-Means algorithm solves the clustering problem by

alternating between two steps. First, it guesses the center of a cluster, then for each data

point K-Means determines the center a particular datum is closest to in
 2 . Second, a

new center is calculated based on the new set of data members; then rinse and repeat.

Once K-Means completes we can approximate any data point by its associated cluster

mean or centroid; this is known as vector quantization (VC). We can consider the cluster

 28

mean as the one-element sparse approximation for all the members of the cluster. On the

other hand, sparse coding represents a signal as a linear combination of k dictionary

atoms analogous to the cluster centroids, and is therefore a generalization of K-Means.

The K-SVD algorithm generalizes K-Means by iteratively applying and updating two

steps:

• Sparse coding stage: The dictionary is fixed and we find the sparse A in equation

(3.13), column by column. This is analogous to using fixed cluster centers and

finding the data points belonging to them.

• Dictionary update stage: All dictionary columns are fixed with the exception of

the k
th

 which is updated along with the corresponding coefficients that multiply it

in A. The new column and corresponding coefficients in A are found such that

the mean square error (MSE) is minimized. Minimizing the mean square error

one column at a time is accomplished using singular value decomposition (SVD).

This is analogous to updating the cluster centroid in K-Means.

The sparse coding stage is rather straight forward as equation (3.13) can be decoupled

into T distinct problems of the type in equation (3.12), where any pursuit algorithm may

be employed.

In the dictionary update stage, assume that D and A are fixed and we consider a

particular column in D, dk , and the coefficients in the corresponding row of A, denoted

aT
k

. The penalty function in (3.13) can be expanded as,

 X DA
F

2
= X d j aT

j

j=1

K

F

2

= (X d j aT
j

j k

) dk aT
k

F

2

= Ek dk aT
k

F

2
 (3.14)

where XN T , DN K and AK T .

 29

In equation (3.14) we have decomposed DA into the sum of K rank-1 matrices, where

K 1 are fixed and we update the remaining one. At this point we would like to

decompose the k
th

 error term, Ek, using SVD in order to minimize the MSE, that is

Ek =U VT
 and set dk = u1 and aT

k
= (1,1)v1 , where u1,v1 are the first columns of U and V

and (1,1) denotes the first entry of . We assume that the singular values in are

ordered with the largest value in the 1,1()
th

 entry. However, we need to construct a

masking matrix to use on the penalty function so as to only involve the non-zero entries

in A, otherwise we risk losing the sparsity gained in the sparse coding stage.

To prevent this problem a set of indices i is constructed that indicates which

training signals xi use the column dk , that is, the training signals for which aT
k 0 .

More precisely, k = {i |1 i K, aT
k (i) 0} . We further define the masking matrix k ,

of size T k , where k denotes cardinality of the set, constructed with ‘ones’ in the

k (i),i() entries and zeros elsewhere, where k is a vector formed with the elements of

the set k and k (i) denotes the i
th

 entry. Thus, multiplying aT
k

k shrinks the row

vector aT
k

 by discarding any zero entries and multiplying X k creates a matrix of size

N k that includes the training signals that use dk . For example, suppose T = 4 , and

aT
k
= 0,a2,0,a4[] , then k = 2,4{ } , k = 2,4[] , and k is of size 4 2 and has ones in

the 2,1() and 4,2() entries. Thus, k =

0 0
1 0
0 0
0 1

, and aT
k

k = a2,a4[] . Post-multiply

the masking matrix k with the right hand side of equation (3.14) gives,

 30

 Ek k dk aT
k

k F

2
= Ek

R dk aR
k

F

2
 (3.15)

Using equation (3.15) it is now possible to properly decompose Ek
R
=U VT

 and set

dk = u1 and aR

k
= (1,1)v1 (3.16)

which minimizes the penalty function by approximating Ek
R

 with its closest rank-1

matrix.

K-SVD Algorithm

PURPOSE: Learn an overcomplete dictionary D given a training set of T signals.

INPUT: Training set X = xi{ }i=1
T

, initial dictionary D
(0) N K

, stopping criteria (0 or a

maximum of M iterations) and desired sparsity S.

INITIALIZE:

• Normalize columns of D(0)

• Set J = 1 (for D(J))

MAIN LOOP:

Sparse Coding Stage: Use any pursuit algorithm to compute the representation vectors

ai in A(J 1) for all training vectors xi by approximating the solution of

 âi = argmin
a

xi D(J 1)ai 2

2
 subject to ai 0

S, for i = 1,...,T .

The vectors âi form the matrix A(J) .

Dictionary Update Stage: Update all of the columns of the dictionary to obtain D(J)
 by

the following: for each column dk of D(J 1) where k = 1,...,K

• Define the index set of training vectors that use column dk by,

 k = i |1 i T , aT
k (i) 0{ } ,

 where aT
k (i) is the i

th
 entry in the k

th
 row of matrix A(J) .

• Construct the mask k as previously described.

• Compute the residual matrix by Ek = X di aT
i

i k

, for i = 1,...,K ,

where aT
i

 is the i
th

 row of A(J) .

 31

• Post-multiply the mask k such that Ek k dk aT
k

k = Ek
R dk aR

k
.

• Decompose Ek
R
=U VT

 by SVD.

• Update dk = u1 and aR
k
= (1,1)v1 .

• With the updated columns dk form D(J)
 and rows aR

k
 update A(J) .

Stop: If X D(J)A(J)
2

2
< 0 (or if maximum iteration halting criteria is used, stop when

J = M)

Otherwise J = J +1 .

3.3.4 Sparse Texture Descriptor

With the knowledge from the previous sections in hand the sparse texture descriptor

(STD) can be constructed. The K-SVD algorithm can be applied to learn a single

dictionary on a set of texture images. With this dictionary and the OMP algorithm the

sparse approximation of the texture images can be found. These sparse approximation

images can then be used to perform similarity matching where similarity is based on

proximity of the sparse images. The details are found in section 4.3.

 32

Chapter 4: Implementation

4.1 Texture Database

In order to assess and compare the texture feature extraction methods described in

chapter three a small image database is constructed. The database consists of textures

from two collections: USC’s Signal and Image Processing Institute (SIPI) image database

[34], which includes some Brodatz images, as well as MIT’s Media Lab VisTex database

[29]. In all, 25 8-bit images were cropped into quadrants forming 100, 64 by 64 pixel,

non-overlapping sub-images. The majority of the original images were of size 128 by

128, and the few images that were not, were scaled down in order to be cropped into 64

by 64 pixel quadrants. Out of the 100 images, 75 comprise the texture database and 25

are query images. The texture database was constructed with the idea that the images

should span the texture spectrum (regular, near regular, irregular, near stochastic and

stochastic) with about 80% or 60/75 images falling into the near regular, irregular and

near stochastic range. The image database is shown in Figure 4-1 and the list of images

and collections from which they were obtained is shown in Table 4-1.

The edge histogram descriptor (EHD), as well as the homogeneous texture descriptor

(HTD) and the sparse texture descriptor (STD), were implemented in Matlab ver. 7.10,

on a MacBook Pro with a 2.53 GHz Intel Core 2 Duo processor. The details of their

implementation are found in the following sections.

 33

Figure 4-1: Texture database of 75 images cropped from USC SIPI and MIT VisTex collections.

 34

Table 4-1: List of database and query images tested in chapter 5.

Database and Query List Images

DB: 1-3/Query: 1 SIPI USC Aerial San Diego (North Island NAS)

DB: 4-6/Query: 2 MIT VisTex Bark.0003

DB: 7-9/Query: 3 MIT VisTex Bark.0009

DB: 10-12/Query: 4 MIT VisTex Brick.0000

DB: 13-15/Query: 5 MIT VisTex Clouds.0000

DB: 16-18/Query: 6 MIT VisTex Fabric.0011

DB: 19-21/Query: 7 MIT VisTex Fabric.0014

DB: 22-24/Query: 8 MIT VisTex Flowers.0002

DB: 25-27/Query: 9 MIT VisTex Flowers.0004

DB: 28-30/Query: 10 MIT VisTex Food.0000

DB: 31-33/Query: 11 MIT VisTex Grass.0001

DB: 34-36/Query: 12 MIT VisTex Leaves.0000

DB: 37-39/Query: 13 MIT VisTex Metal.0004

DB: 40-42/Query: 14 MIT VisTex Sand.0002

DB: 43-45/Query: 15 MIT VisTex Terrain.0000

DB: 46-48/Query: 16 MIT VisTex Terrain.0003

DB: 49-51/Query: 17 MIT VisTex Tile.0004

DB: 52-54/Query: 18 MIT VisTex Water.0000

DB: 55-57/Query: 19 MIT VisTex Water.0002

DB: 58-60/Query: 20 MIT VisTex Food.0010

DB: 61-63/Query: 21 SIPI USC Texture 1.5.02 Hexagonal hole array

DB: 64-66/Query: 22
SIPI USC Texture 1.1.13 Brodatz Plastic bubbles

(D112)

DB: 67-69/Query: 23 SIPI USC Texture 1.4.01 Brick wall

DB: 70-72/Query: 24 SIPI USC Texture 1.1.07 Brodatz Beach sand (D29)

DB: 73-75/Query: 25 SIPI USC Texture 1.2.10 Brodatz Raffia (D84 H.E.)

 35

4.2 Edge Histogram Descriptor Implementation

The edge histogram descriptor (EHD), as described in [21] and section 3.1, partitions

an image into 16 contiguous sub-images, shown in Figure 4-2. All images used in the

implementation of the texture database as well as query images are of size 64 by 64

pixels, therefore, each of the 16 sub-images is of size 16 by 16 pixels.

Figure 4-2: Example of Edge Histogram Descriptor partition of an image into 16 sub-images.

The specific details in implementing the EDH are as follows:

1. Create 5 copies of the image and perform convolution with the 5 Sobel masks

from Figure 3-1 to produce 5 edge maps.

2. Calculate the maximum intensity value for each pixel given the 5 edge maps.

Form an index matrix called MaxIndex as the index for the maximum of the 5

edge maps for all pixels, i.e. MaxIndex is a 64 by 64 matrix with integer values

in the range [1,5] indicating which edge map had the maximum value for each

pixel.

 36

3. Partition the MaxIndex per Figure 4-2 and calculate a 5-element histogram for

each sub-image.

4. Create the 80-element EHD feature vector by concatenating the 16, 5-element

histograms into one vector.

The preceding can be more compactly described in Figure 4-3, which is followed by an

example of the process in Figure 4-4.

The EHD algorithm implementation was nearly identical to that described in [21] and

section 3.1, with two notable exceptions. The edge detectors implemented are Sobel

masks in Figure 3-1, not the four element masks implemented in MPEG-7 and shown in

Figure 3-3. As described in chapter 3, the Sobel masks have many desirable properties

and are easier to implement than 4 element masks. The second change was not

quantizing the values in the 80-element feature vector. As mentioned in section 3.1, the

MPEG-7 implementation of the EHD quantizes the values in the 80-element feature

vector to 3 bits each. Since memory considerations are not an issue for such a small

image database, quantization was considered unnecessary. However, not quantizing

could lead to slightly better performance than the MPEG-7 implementation. Similarity

matching of the feature vectors is then accomplished using a Euclidean K-Nearest

Neighbor (K-NN) search.

 37

Figure 4-3: Flow diagram of the Edge Histogram Descriptor implementation.

The input image is filtered with the 5 Sobel masks from Figure 3-1 producing 5 edge maps. For
each pixel across the 5 edge maps, the maximum value is obtained and the index is stored in
MaxIndex (i.e. which of the 5 filters the maximum value belongs to). The MaxIndex image is then
partitioned into 16 sub-images described by Figure 4-2 and a 5-element histogram is calculated
for each. The 80-element feature vector is then formed.

 38

Figure 4-4: Example of the Edge Histogram Descriptor implementation with MIT VisTex
“Food.0000” as the input image.

The figure shows the 5 edge maps created by filtering the input with the Sobel masks and the
structure of the feature vector.

 39

4.3 Homogeneous Texture Descriptor Implementation

The homogeneous texture descriptor (HTD) was implemented as described in [31,

20]. The implementation given in [31, 20] describes a 2D Gabor filter in polar

coordinates in the spatial frequency plane given by equation (4.1),

 GPs,r
(,) = exp

(s)
2

2
s

2 exp
(r)

2

2
r

2 , (4.1)

where GPs,r
(,) is the Gabor filter at the s

th
 radial and r

th
 angular index. The standard

deviation, or spread, in the radial and angular directions is given by
s
and

r

respectively. With equation (4.1) in mind, the spatial frequency plane is partitioned into

30 channels comprised of 6 angular and 5 radial bands. Each angular band has 30

bandwidth. The radial bands are calculated starting with the highest center frequency at

0 =
3

4
, followed by s = 0 2

s
 with s {0,1, 2,3, 4} . An example of this partition with

one channel shaded is shown in Figure 3-4. As there is overlap between adjacent filters it

is necessary to devise a method to reduce this redundancy. The strategy implemented is

found in [31] and partitions the normalized spatial frequency plane into 30 channels, such

that the overlap of adjacent filters occurs at the one half maximum magnitude in both

radial and angular directions. The results of the partitioning given as the polar coordinate

centers, bandwidths, and standard deviations for each of the 30 channels are found in

Tables 4-2 and 4-3.

 40

Table 4-2: Gabor filter bank parameters in the radial direction.

Radial

Index (s)
0 1 2 3 4

Center

Frequency

(s)
3/64 3/32 3/16 3/8 3/4

Spatial

bandwidth
1/32 1/16 1/8 1/4 1/2

s

1

64 2 ln2

1

32 2 ln2

1

16 2 ln2

1

8 2 ln2

1

4 2 ln2

Table 4-3: Gabor filter bank parameters in the angular direction.

Angular

Index (r)
0 1 2 3 4 5

Center

Frequency

(r)
 0 30 60 90 120 150

Angular

bandwidth 30 30 30 30 30 30

r

30

2 2 ln2

30

2 2 ln2

30

2 2 ln2

30

2 2 ln2

30

2 2 ln2

30

2 2 ln2

Using the parameters found in Tables 4-2 and 4-3 and equation (4-1), the Gabor filter

bank can be implemented. The feature vector is then extracted from a given texture

image as follows:

1. Calculate the intensity mean and variance of the input image.

2. Take the 2D DFT of the input image using an FFT algorithm.

3. Multiply the Fourier transformed input image with each of the 30 Gabor filters to

produce the filtered output.

4. Calculate the mean and variance of each of the 30 filtered outputs.

5. Form the 62-element feature vector comprised of: the intensity mean and

variance, followed by the 30 energy means and 30 energy variances.

 41

This procedure is shown in Figure 4-5 along with an example shown in Figure 4-6. As

with the EHD, the HTD feature vector values are not quantized and similarity matching is

accomplished using a Euclidean K-NN search.

Figure 4-5: Flow diagram of the Homogeneous Texture Descriptor implementation.
The 2D Fourier transformed input image is filtered with each of the 30 Gabor filters and the mean
and variance is extracted from each filtered output. The input image intensity mean and variance
along with the 30 energy means and 30 energy variances form the HTD feature vector.

 42

Figure 4-6: Example of feature extraction using the Homogeneous Texture Descriptor.
This figure shows the input image MIT VisTex Food.0000 and two of 30 Gabor filters in the spatial
frequency domain. Next, the filtered outputs are displayed (in the spatial domain) and the
extraction of values to form the feature vector.

 43

4.3 Sparse Texture Descriptor Implementation

The sparse texture descriptor (STD) is implemented according to the Sparseland

Model [9] that assumes that an overcomplete dictionary exists in which an atom is a

learned image element and that a patch of an image can be approximated as a linear

combination of a few atoms. In this implementation, an atom is an 8 by 8 pixel image

learned by sampling all possible 8 by 8 sub-images of the entire texture database

comprised of the 75 images found in Figure 4-1. In order to speed up the runtime, only

1/10
th

 of all possible 298,289-8 by 8 sub-images are considered to create each atom (the

entire texture database as a single image is of size 320x960, therefore the total number of

8x8 overlapping sub-images is (320 8 +1)(960 8 +1) = 298289). This is carried out

using the K-SVD algorithm described in section 3.3.3. The K-SVD algorithm is

initialized using an overcomplete 2D separable discrete cosine transform (DCT)

dictionary of size 64 by 256 shown in Figure 4-7. While there are many options for

initializing the dictionary in K-SVD, the 2D DCT is simple and fast to construct as well

as provides a very low initial mean square error (MSE) [9]. This allows for a small

number of iterations of the K-SVD algorithm to run in order to reach the desired

tolerance. The pursuit algorithm implemented is orthogonal matching pursuit (OMP) due

to its simplicity and speed. The K-SVD algorithm was run for 20 iterations, taking 19.8

minutes to build the dictionary.

The image training set consists of the 75 database images, shown in Figure 4-1. The

K-SVD algorithm is run on this set to produce the database dictionary shown in Figure 4-

8. Using this dictionary and the OMP algorithm, the sparse approximations for each

database and query image are calculated and consist of at most 8 atoms (each 8 by 8

 44

pixels) or 512 pixels. The space spanned by the sparse database images is searched to

find the closest neighbor to a given query image. The fact that at most 8 atoms are used

in OMP to create the sparse images implies that up to 512 pixels (8 atoms x 64 pixels

each) of 4096, or 12.5% of the pixels are used to approximate each image.

Due to implementation problems with Matlab it was not possible to directly apply a

Euclidean K-NN search when conducting a query, since these variables were stored as

sparse structures. In order to circumvent this issue, while still searching with the sparse

data, the matrices are made ‘full’, from 8 atom-sparse structures into 256x64 matrices in

which only 512 entries are non-zero. The 64-singular values of these full matrices are

obtained and form the vectors used to represent the database and query images. Using

these 64-singular value vectors, Euclidean K-NN is then applied when performing a

query. This procedure is more compactly described in Figure 4-9.

 45

Figure 4-7: Image of the separable 2D-DCT dictionary used to initialize the K-SVD algorithm.
The dictionary is displayed as 16x16 atoms, each one 8x8 pixels. In fact, the matrix is
implemented and stored with dimensions 64x256. The 256 columns or atoms are formed into
square patches for display only.

 46

Figure 4-8: Image of the learned dictionary implemented in the Sparse Texture Descriptor.
The dictionary is obtained by applying the K-SVD algorithm on the 75 texture database images.
The dictionary is displayed as 16x16 atoms, each one 8x8 pixels. In fact, the matrix is
implemented and stored with dimensions 64x256. The 256 columns or atoms are formed into
square patches for display only.

 47

Figure 4-9: Flow diagram of the Sparse Texture Descriptor implementation.
(Top) Description of how to obtain the dictionary used in the pursuit algorithm. (Middle)
Description of the implementation used to obtain the sparse representation of an image through
the use of the orthogonal matching pursuit algorithm. (Bottom) The vector used for similarity
matching in the Sparse Texture Descriptor.

 48

Chapter 5: Results

To test each of the three feature extraction methods, 25 of the same queries were

performed on each method. The testing followed the query by example paradigm for

evaluating and comparing the performance of each method. In query by example, feature

vectors are extracted for each image in the database as well as the set of test images with

which queries are made. The query feature vector is then matched to its closest vectors in

the database feature space. Often the similarity measure of choice is the l1 or l2 norm but

specifically designed statistical measures may be used and can result in higher

performance. The results obtained in this thesis use a Euclidean K-nearest neighbor

search (K-NN).

A ground truth (GT) set must be established for each query image for comparisons to

remain objective. Each of the 25 query images has 3 corresponding database images all

of which were cropped from the same larger image. These three images comprise the GT

set for a particular query. Slight variations exist among the images in the GT set and

between GT and query due to non-uniform illumination, the image not being flat, or

simply differences due to where the sub-images were cropped. To a human observer this

type of matching would be simple but it is non-trivial for a computer. In order to find

and rank the most similar images to the query, a search is conducted of the closest feature

vectors to that of the query and the results are ranked using l2 distance.

The results in this thesis are obtained primarily to assess whether or not a sparse

model is applicable for the purpose of image retrieval, since the MPEG-7 homogeneous

texture descriptor (HTD) and edge histogram descriptor (EHD) are well documented [8,

10, 20, 21, 26, 31]. In order to compare the sparse texture descriptor (STD) with EHD

 49

and HTD and assess how well each performs in image retrieval a few metrics are

developed. The first metric, called Top 6, simply counts a successful retrieval as having

at least one GT match in the top six nearest neighbor results. This is tallied for each

query and normalized by the total number of queries. Top N can be useful metric when

one is quickly browsing the results of a query and does not wish to look any further than

the first page of results.

The second metric, called retrieval rate (RR), is very popular and defined by,

 RR(q) =
NF(,q)

GT (q)
, (5.1)

where NF is the number of GT images found within the first = N GT (q) results for

query q, and N > 0 (and in most cases an integer) [21]. The factor determines the

tolerance of the metric. Retrieval rate takes on values between 0 and 1, where a 0

indicates the query found no GT images in the first results and 1 indicates that all GT

images were obtained in results. Retrieval rate can be averaged over the number of all

queries (NQ) giving the average retrieval rate (ARR) defined by,

 ARR =
1

NQ
RR(q)

q=1

NQ

. (5.2)

One disadvantage of ARR is that when implementing large image databases the size of

the ground truth set will most likely not be the same value for every query. According to

[21], varying GT(q) introduces a bias for certain queries. However, in the image retrieval

experiments in this thesis, the GT is fixed at 3 for all queries.

The metric used by the MPEG group to evaluate the visual descriptors in MPEG-7 is

called the average normalized modified retrieval rank (ANMRR). First, a rank function

is defined which penalizes missing members of the GT set from a query and is given by,

 50

 Rank*(k) =
Rank(k), if Rank(k) K(q)

1.25K, if Rank(k) > K(q)
 (5.3)

where Rank(k) is the position in which image k is retrieved according to, in this case,

Euclidean K-NN search. The number K(q) acts as a tolerance similar to in RR and is

given by,

 K(q) = min{4 GT (q), 2 max[GT (q), q]}. (5.4)

With this we define average rank (AVR) by,

 AVR(q) =
1

GT (q)
Rank*(k)

k=1

GT (q)

. (5.5)

Then to minimize the influence of varying GT(q) (not an issue in this thesis), the modified

retrieval rank (MRR) is defined by,

 MRR(q) = AVR(q) 0.5[1+GT (q)]. (5.6)

This is then normalized with respect to GT(q) giving us the normalized modified retrieval

rank (NMRR),

 NMRR(q) =
MRR(q)

1.25K 0.5[1+GT (q)]
. (5.7)

Finally, this is averaged over all queries giving us the average normalized modified

retrieval rank (ANMRR) expressed by,

 ANMRR =
1

NQ
NMRR(q).

q=1

NQ

 (5.8)

NMRR takes on values between 0 and 1, where 0 indicates that all GT images, for a

particular query, have been retrieved with rank less than K, and a 1 indicates all GT

images have retrieval rank greater than K.

 51

Table 5-1 displays the performance of each feature extraction method under the three

metrics Top 6, ARR and ANMRR. Keep in mind that Top 6 has retrieval rate values

between 0 and 1, where 1 implies all queries have at least one GT image in the top six

ranked results. Thus, a value closer to 1 indicates better performance, similarly with

ARR. Conversely, with ANMRR, a value closer to 0 indicates better performance.

Table 5-1: Retrieval results of the three texture feature extraction methods based on 25 queries.

Texture Descriptor Top 6 ARR ANMRR

EHD 0.760 0.533 0.541

HTD 1.000 0.853 0.159

STD 0.960 0.720 0.277

The results for ARR were obtained using a tolerance of = 2 GT (q) = 6 . Similarly,

for ANMRR the tolerance value chosen isK(q) = 6 q . The results in table 3 clearly

indicate, in all three metrics, that the HTD performs best, followed closely by STD and

then EHD. While the data set in this experiment is on the small side it is doubtful that

EHD would surpass STD or either surpass HTD in performance should a much larger

data set be used. The results reported in [21] were 0.77 (ARR) for HTD and 0.34

(ANMRR) for EHD. The database used in [21] had 10000 images for both descriptors

and the authors used the normalized
 1 norm for similarity matching. An

 1 norm was

also tested in this thesis but the results were nearly identical to those in Table 5-1.

An analysis of the results was performed but no definitive conclusions could be made

as to why EHD or STD showed poor performance on certain textures. Out of the 25

queries, EHD had 8 in which no GT images were found in Top 6. An attempt was made

to pre-filter the images with a Gaussian mask to smooth the less dominant edges with the

 52

idea that the stronger edges would be extracted and make for better results. However, the

EHD performance actually decreased.

The query images for which STD failed to provide a single GT in Top 6 do not seem

to have anything apparent in common. All such images would appear to be from the

irregular to the stochastic end of the texture spectrum. However just as many near

stochastic query images found all 3 GT images in the top 6 results.

 53

Chapter 6: Conclusion

This thesis presented texture analysis and specifically feature extraction methods for

content-based image retrieval (CBIR). The texture feature extraction methods included

in MPEG-7 as well as an application of sparse representation to image retrieval were

explored. The three methods, edge histogram descriptor (EHD), homogeneous texture

descriptor (HTD), and the sparse texture descriptor (STD) were implemented in Matlab

and their performance was analyzed with a set of metrics.

As was stated previously, a major motivation for this thesis is to attempt to answer

whether or not sparse representation could be used in image retrieval and how well it

performed as compared to the well-established MPEG-7 texture descriptors. To do this, a

dictionary is learned on the database images that are then sparse coded using a pursuit

algorithm and said dictionary. A query image is likewise sparse coded and the space of

sparse images is searched and ranked using a distance measure. The results in chapter 5

show that, at least on the small set of images used in this experiment, the STD works

relatively well in comparison to the MPEG-7 texture descriptors. The fact that HTD

outperformed STD should not be unexpected as the MPEG group of experts worked for

many years on texture feature extraction and Gabor wavelets culminating in the HTD.

That being said, this thesis should prove, at the minimum, that image retrieval in the

sparse representation domain deserves a closer look.

An issue not touched on by this thesis, with respect to sparse image retrieval, is the

computational requirement of learning the dictionary on very large data sets. For the

small database and small images (grayscale, 64 by 64 pixels) used in this thesis, building

the dictionary, searching the database, and storing the sparse vectors presented no

 54

computational or storage issues. However, for image databases of any practical size, the

dictionary would need to be learned initially, which could take a considerable amount of

time. Then, as images are added to the database, the dictionary would need to be

periodically updated to reflect these changes, otherwise the bounds guaranteeing sparsity

using a pursuit algorithm would no longer hold. Also, modifying K-SVD or any other

dictionary learning algorithm would be necessary to allow for images of varying size.

The dictionary itself could become unreasonably large to store as a single structure.

Thus, some balance of error and dictionary management would need to be investigated to

make this feasible.

Many more issues may come to light with further research in sparse image retrieval.

The computational issues described could prohibit a practical implementation. However,

the recent application of sparse representation to inverse image processing problems and

the field of compressed sensing would not have been computationally feasible even a

decade ago. It should also be mentioned that while this thesis presented sparse image

retrieval for textures the same implementation could be used for retrieval of natural

images with no modifications. In future work it would be interesting to compare the

retrieval performance of the STD against groups of features, such as color and texture

descriptors, on natural images.

 55

References

[1] Aharon, M., Elad, M. and Bruckstein, A., “K-SVD : An Algorithm for Designing of

Overcomplete Dictionaries for Sparse Representation.” Signals 54, pp. 4311-4322 (2006).

[2] Bouman, C.A., “Markov Random Fields and Stochastic Image Models.” IEEE

International Conference on Image Processing, October 95, Washington, D.C., (1995).

[3] Chen, J., Cao, H., Prasad, R., Bhardwaj, A. and Natarajan, P., “Gabor features for

offline Arabic handwriting recognition.” Proceedings of the 8th IAPR International

Workshop on Document Analysis Systems DAS 10, pp. 53-58 (2010).

[4] Chen, S.S., Donoho, D.L. and Saunders, M.A., “Atomic Decomposition by Basis

Pursuit.” SIAM Journal on Scientific Computing 20, pp. 33-61 (1998).

[5] Cross, G.R. and Jain, A.K., “Markov random field texture models.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 5, pp. 25-39 (1983).

[6] Datta, R., Joshi, D., Li, J. and Wang, J.Z., “Image retrieval: Ideas, Influences, and

Trends of the New Age.” ACM Computing Surveys 40, pp. 1-60 (2008).

[7] Daugman, J.G., “Uncertainty relation for resolution in space, spatial frequency, and

orientation optimized by two-dimensional visual cortical filters.” Journal of the Optical

Society of America A Optics and image science 2, pp. 1160-1169 (1985).

[8] Deselaers, T., Keysers, D. and Ney, H., “Features for image retrieval: an experimental

comparison.” Information Retrieval 11, pp. 77-107 (2007).

[9] Elad, M., Sparse and Redundant Representations: From Theory to Applications in

Signal and Image Processing, 1st Edition, Springer, New York, NY, (2010).

[10] Eom, M. and Choe, Y., “Fast Extraction of Edge Histogram in DCT Domain based

on MPEG7.” Engineering and Technology 9, pp. 209-212 (2005).

[11] Eom, M. and Choe, Y., “Edge Histogram Descriptor in Wavelet Domain Based on

JPEG2000.” IEICE Transactions on Communications E90-B, pp. 3745-3747 (2007).

[12] Field, D.J., “Relations between the statistics of natural images and the response

properties of cortical cells.” Journal of the Optical Society of America A Optics and

image science 4, pp. 2379-2394 (1987).

[13] Gonzalez, R.C. and Woods, R.E., Digital Image Processing, 3rd Edition, Prentice

Hall, Upper Saddle River, N.J., (2008).

 56

[14] Haindl, M. “Texture segmentation using recursive Markov random field parameter

estimation.” Proceedings of the 11th Scandinavian Conference on Image Analysis, (1999).

[15] Haralick, R.M., Dinstein, I. and Shanmugam, K., “Textural features for image

classification.” IEEE Transactions On Systems Man And Cybernetics 3, pp. 610-621

(1973).

[16] Haykin, S, Adaptive Filter Theory, 4th Edition, Prentice Hall, Upper Saddle River,

N.J., 2002, pp. 213-229.

[17] Liu, Y., Lin, W.C. and Hays, J.H., “Near Regular Texture Analysis and

Manipulation.” Proceedings of SIGGRAPH 04 (2004).

[18] Ma, L., Wang, Y. and Tan, T., “Iris Recognition Based on Multichannel Gabor

Filtering.” ACCV2002: The 5th Asian Conference on Computer Vision, 23-25 January,

Melbourne, Australia, pp. 1-5 (2002).

[19] Mallat, S. and Zhang, Z., “Matching pursuit with time-frequency dictionaries.” IEEE

Transactions on Signal Processing 41, pp. 3397-3415 (1993).

[20] Manjunath, B.S. and Ma, W.Y., “Texture features for browsing and retrieval of

image data.” IEEE Transactions on Pattern Analysis and Machine Intelligence 18, pp.

837-842 (1996).

[21] Manjunath, B.S., Ohm, J.R., Vasudevan, V.V. and Yamada, A., “Color and texture

descriptors.” IEEE Transactions on Circuits and Systems for Video Technology 11, pp.

703-715 (2001).

[22] Martins, A.D.M., Torres, W. and Filho, D.A., “A new method for multi-texture

segmentation using neural networks.” Neuron 1, (2002).

[23] Mishra, A., Aloimonos, Y. and Fah, C.L., “Active Segmentation with Fixation.”

Computer 06, pp. 468-475 (2009).

[24] Moore, A.W., “K-means and Hierarchical Clustering.” Science 8, pp. 1-24 (2004).

[25] The Moving Picture Experts Group (MPEG), 2012, http://mpeg.chiariglione.org/,

“site accessed on 5 January 2012”.

[26] Park, D.K., Jeon, Y.S. and Won, C.S., “Efficient use of local edge histogram

descriptor.” Proceedings of the 2000 ACM workshops on Multimedia MULTIMEDIA 00

pp. 51-54 (2000).

[27] Natarajan, B.K., “Sparse Approximate Solutions to Linear Systems.” SIAM Journal

on Computing 24, pp. 227 (1995).

 57

[28] Needell, D. and Vershynin, R., “Signal Recovery From Incomplete and Inaccurate

Measurements Via Regularized Orthogonal Matching Pursuit.” IEEE Journal of Selected

Topics in Signal Processing 4, pp. 310-316 (2010).

[29] Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., and Campbell, L.,

Vision Texture Database (Vis Tex), MIT Media Lab, Massachusetts Institute of

Technology, http://vismod.media.mit.edu/vismod/imagery/VisionTexture/, 2002, “site

accessed on 12 November 2011”.

[30] Renninger, L.W. and Malik, J., “When is scene identification just texture

recognition?” Vision Research 44, pp. 2301-2311 (2004).

[31] Ro, Y.M.R., Kim, M.K., Kang, H.K.K., Manjunath, B.S.M. and Kim, J.K., “MPEG-

7 Homogeneous Texture Descriptor.” ETRI Journal 23, pp. 41-51 (2001).

[32] Rogowitz, B.E., Frese, T., Smith, J.R., Bouman, C.A., and Kalin, E., “Perceptual

image similarity experiments.” Proceedings of SPIE 3299, pp. 576-590 (1998).

[33] Rui, Y., Huang, T.S. and Chang, S.F., “Image Retrieval: Current Techniques,

Promising Directions, and Open Issues.” Journal of Visual Communication and Image

Representation 10, pp. 39-62 (1999).

[34] The USC-SIPI Image Database, Signal and Image Processing Institute (SIPI),

University of Southern California, http://sipi.usc.edu/database/database.php, “site

accessed on 12 November 2011”.

[35] Taponecco, F. and Alexa, M., “Vector Field Visualization using Markov Random

Field Texture Synthesis.” Proceedings of the Joint Eurographics IEEE TCVG Symposium

on Visualization VisSym 03, pp. 195-202 (2003).

[36] Tropp, J.A., “Greed is Good: Algorithmic Results for Sparse Approximation.” IEEE

Transactions on Information Theory 50, pp. 2231-2242 (2004).

[37] Tropp, J.A. & Gilbert, A.C., “Signal Recovery From Random Measurements Via

Orthogonal Matching Pursuit.” IEEE Transactions on Information Theory 53, pp. 4655-

4666 (2007).

[38] Unser, M., “Texture classification and segmentation using wavelet frames.” IEEE

Transactions on Image Processing 4, pp. 1549-1560 (1995).

[39] Weldon, T., Higgins, W. and Dunn, D., “Efficient Gabor-Filter design for Texture

Segmentation.” Pattern Recognition 29, pp. 2005-2006 (1996).

[40] Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., and Yan, S., “Sparse

Representation for Computer Vision and Pattern Recognition.” Proceedings of the IEEE

98, pp. 1031-1044 (2010).

