
RSA-BASED KEY COMPROMISED RESISTANT PROTOCOL (KCR) FOR LARGE

DATABASES

A Thesis

Presented to

The Faculty of the Department of Computer Science

California State University, Los Angeles

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

By

Fatemah Mordhi Alharbi

December 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1553319

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1553319

ii

© 2013

Fatemah Mordhi Alharbi

ALL RIGHTS RESERVED

iii

The thesis of Fatemah Mordhi Alharbi is approved.

Chengyu Sun

Huiping Guo, Committee Chair

Raj S. Pamula, Department Chair

California State University, Los Angeles

December 2013

iv

ABSTRACT

RSA-based Key Compromised Resistant Protocol (KCR) for Large Databases

By

Fatemah Mordhi Alharbi

 Data communication and networking are essential in our daily lives. Companies

rely on computer networks and internetworks to exchange information, that is normally

stored in large databases, with their customers. Nonetheless, it is not guaranteed that all

networks are reliable; therefore, database content should be protected against any

unauthorized access. One of the most powerful strategies that has been used in existing

database security systems to protect databases is database encryption. Few of these

systems are practical to be used with large databases since one important issue is not

satisfactorily addressed which is concerning key management. It may take days to

encrypt the huge databases. Imagine how the situation will be when a key is

compromised! Straightforward solutions to address this problem demand that the keys

used in database encryption to be replaced with new keys. Consequently, a database re-

encryption process has to be executed. In this thesis, I propose "RSA-based Key

Compromised Resistant Protocol (KCR)" to effectively address this problem.

Experimental results show that the proposed protocol is sound.

v

ACKNOWLEDGMENTS

 The most important contribution to the development of my project and thesis

comes from Dr. Huiping Guo, my thesis advisor. I cannot express my appreciation in

words for her magnificent cooperation along the way. Special thanks go to the staff and

faculty of the department of Computer Science who gave me help whenever I needed it.

 I have the honor to gratefully thank the Saudi Arabian government for granting

me a scholarship to pursue my graduate studies in the United States of America. I thank

the sincere employees of the Saudi Arabian Cultural Mission (SACM) who assisted me

during my stay academically and socially.

 I also would like to thank my beloved family for their encouragement and

believing in their daughter. My final thanks go to my husband, Azzam, for his love and

patience. He makes me believe that nothing is impossible if you are brave enough to face

all obstacles.

vi

TABLE OF CONTENTS

Abstract .. iv

Acknowledgments ... v

List of Tables ... viii

List of Figures .. ix

Chapter

 1. Introduction ... 1

 2. Overview of Cryptography and Databases ... 5

 Cryptography ... 5

 Symmetric-Key Encipherment .. 5

 Asymmetric-Key Encipherment .. 7

 Cryptographic Hash Functions .. 9

 Key Management .. 9

 Databases ... 10

 3. KCR Protocol .. 12

 General Description .. 12

 KCR Encryption and Decryption ... 13

 Keys Generation ... 13

 Encryption .. 14

 Decryption ... 14

 Proof of KCR ... 14

 Design ... 16

 Components ... 16

 Scenarios .. 18

vii

 Further Discussion .. 30

 4. Implementation .. 32

 Platform .. 32

 Implementation Details .. 33

 Database Schemas ... 33

 Keys Generation .. 36

 Scenario 1 - Public Key Distribution ... 40

 Scenario 2 - Private Key distribution in Normal Case 40

 Scenario 3 - Join Group ... 41

 Scenario 4 - Private Key Distribution in Case a Key is Compromised .. 42

 Scenario 5 - Access Database .. 43

 Data Transmission ... 44

 Secure Communication .. 44

 5. Conclusion .. 45

References ... 46

viii

LIST OF TABLES

Table

I. Notations used in KCR encryption and decryption ... 15

II. Notations used in scenario 1 .. 19

III. Notations used in scenario 2 .. 22

IV. Notations used in scenario 3 ... 24

V. Notations used in scenario 4 ... 27

VI. Notations used in scenario 5 ... 29

ix

LIST OF FIGURES

Figure

2.1. The schematic diagram of symmetric-key cipher ... 6

2.2. The schematic diagram of asymmetric-key cipher ... 8

3.1. KCR protocol: Scenario 1 - Public key distribution .. 19

3.2. KCR protocol: Scenario 2 - Private key distribution in normal case................. 21

3.3. KCR protocol: Scenario 3 - Join group ... 23

3.4. KCR protocol: Scenario 4 - Private key distribution in case a key is

compromised .. 26

3.5 KCR protocol: Scenario 5 - Database access with group ID choice 28

3.6 KCR protocol: Scenario 5 - Database access with hash value choice 29

4.1 JDBC Architecture ... 33

4.2 An example of "keypairs" table .. 34

4.3 An example of "groups" table .. 34

4.4 An example of "members" table ... 35

4.5 An example of "animals" table ... 36

4.6 An example of "animals_" table ... 36

4.7 An example of "keyinfo" table ... 36

4.8 "keypairs" table before any key is granted ... 39

4.9 Table "keypairs" after granting five key pairs to five groups 40

4.10 Table "groups" after granting key pairs to five groups 41

4.11 Table "keyinfo" after granting key pairs to five groups..................................... 41

x

4.12 Table "members" after creating an account for a client. the client joined group

"group00001" .. 42

4.13 Table "keypairs" after granting a new key pair to group "group00001" when the

group's key has been compromised .. 43

1

CHAPTER 1

Introduction

In the past, people had to exchange information physically back and forth, but

nowadays we live in electronically connected world age. The invention of the Internet

connects computer networks to serve people all over the world. The enormous amount of

information resources available and ease of communication have made the Internet the

most valuable tool in various settings of a person's life. However, the Internet is not

considered a trustworthy network and the transmitted information is vulnerable to attacks

which brings up the important issues of information security. Information security is the

practice of protecting information and information systems against unauthorized access

or alteration of information. It is a combination of data security and network security.

Regarding data security, three security goals need to be achieved: confidentiality (hide

data from attackers), integrity (keep data safe from unauthorized modifications), and

availability (give authorized users access to their data) [1]. Along with these goals, there

are five security services related to networking security: confidentiality, integrity,

authentication, nonrepudiation, and authentication. Some of these services are for entities

and messages sent or received by those entities [2]. An optimal security application

should efficiently implement these goals and services.

Other than information security, facilitating the access to information resources is

a fundamental subject to make people's life much easier. Databases are used as storages

to gather information and to effectively store a large number of records. While data

should be available to legitimate users, database administrators are responsible to restrict

the access privileges for protection against any kind of attacks. According to [3] and [4],

2

such approach is one of the strategies of database security. Other strategies and methods

have been studied for some time. Early work [5], [6] considers physical security,

operating system security, Database Management System (DBMS) security and data

encryption as the major strategies that support database security. Regarding physical

security, this strategy excludes any remote access without legal permission to the

database. Although making physical contact with database contents is an expensive

measure, it partially ensures data integrity [5],[7]. On the subject of operating system

security, according to [8], any operating system protection model is consisted of three

elements: objects within the system, entities who access these objects, and regulations

that manage how entities access objects. However, it is difficult to govern entities from

disclosing these regulations to unwanted parties; this type of attack is called client

colluding attack. The third strategy concerns DBMS security. Available DBMS security

solutions assume the database grants the appropriate privileges to legitimate users and

this obviously is not guaranteed against Trojan horse attacks [9]. All of these strategies

by themselves do not completely satisfy the requirements of database security [5], [6].

The forth strategy that uses encryption as a technology is the practical solution to

dominate database security [5], [6], [7], [8]. Many systems have been developed and

evaluated to support database encryption. For example, the scheme in [10] proposes an

encryption mechanism to provide security and improve query processing efficiency.

Many other schemes have been studied to improve some encryption algorithms for

various purposes. For example, privacy protection using the Chinese Remainder Theorem

[11] has been examined (e.g. [5], [6]). The studies are mainly based on encryption and

anonymizing. Regarding key management for encipherment systems, strategies such as

3

key division ciphers and commutative ciphers (e.g. [12], [13], [14], [15], [16], [17]) have

been implemented.

Although these techniques and methods can improve the encryption and

decryption procedures, none of them provides a key management system that prevents

the re-encryption process of large databases when a key is compromised. Let me give an

example to illustrate the problem. Consider a massive organization - industrial,

government, or military - where all employees (referred to as users) are granted the

appropriate privileges to access the organization's database that contains thousands of

records. We assume that a modern Public Key Infrastructure (PKI) is available and all

users are capable to perform their requests by applying the appropriate encryption

techniques. Now suppose that a key pair (public key and private key) is generated and

that the public key is used to encrypt the huge database and the private key, which is

shared among all users in the organization, is used for decryption. Presume that an

unauthorized user breaks the organization's security firewall and gains access to the

decryption key. All database contents would be disclosed. One possible approach is to

periodically change the database encryption and decryption keys, but this strategy

addresses two main drawbacks. First, the overhead caused by frequently changing the

keys is overkill. The second drawback is the re-encryption process of large databases that

requires time and a lot of resources. To the best of my knowledge, there is no efficient

and practical solution to such a problem.

In this thesis, I propose a novel key management protocol called "RSA-based Key

Compromised Resistant protocol", referred to as KCR. The primary objective of this

protocol is to effectively reduce the possibility re-encrypting large databases in case their

4

keys have been compromised. KCR protocol consists of a set of strategies where the

protocol operates practically. The protocol has been implemented and some experiments

have been conducted for the purposes of evaluation. Simulation results show that my

proposed protocol is works well.

The remainder of this thesis is organized as follows. Chapter 2 reviews some

security cryptosystems and some details about databases. I describe KCR protocol in

chapter 3, its implementation in chapter 4. I make concluding remarks in chapter 5.

5

CHAPTER 2

Overview of Cryptography and Databases

This chapter presents a brief description on the science of cryptography and some

background about databases. By explaining these terminologies, the reader is prepared

for the next few chapters, which discuss the KCR Protocol and its implementation.

Cryptography

Cryptography is the art of science of modifying information secretly in order to

keep it hidden from attackers. Any cryptographic algorithm is based on mathematics to

encrypt and decrypt data. In the old ages, algorithms rely on the secrecy of the encryption

algorithm itself, yet their security needs are not adequate for real-world needs. For this

reason, all modern algorithms move their security interests toward encryption and

decryption keys; an encrypted message is decrypted if and only if the decryption key is

mathematically related to the encryption key. These encipherment systems are classified

into two categories: symmetric-key (secret-key) cryptography and asymmetric-key

(public-key) cryptography. Asymmetric-key cryptography involves many mathematical

computations for encryption and decryption; thus, it is slower than symmetric-key

cryptography, and it is recommended to encipher small messages. However, to encrypt

large messages, symmetric-key cryptography is preferable [2].

Symmetric-Key Encipherment

The general idea behind symmetric-key encipherment is that the same key is used

for both the encryption and decryption processes. In the sender side, a plaintext is

enciphered with a key (along with a set of functions and rules) and be sent as a ciphertext

to the receiver. Upon receiving the ciphertext, the receiver deciphers it using the same

6

key used for encrypting. Figure 2.1 shows the general architecture of symmetric-key

cipher.

Figure 2.1 The schematic diagram of symmetric-key cipher.

Symmetric-key ciphers can be divided into two categories: traditional ciphers and

modern ciphers [2]. There are two types of traditional symmetric-key ciphers:

substitution ciphers, where each symbol in the plaintext is replaced by another symbol to

generate the ciphertext, and transportation ciphers, where symbols in the plaintext

exchange their values with each other to form the ciphertext. This type of cipher assumes

that we always encrypt texts. With the advent of modern symmetric-key ciphers , other

forms of data; such as videos, audios, images, can be fragmented into streams or blocks.

Stream ciphers operate on a single bit at a time and the key and algorithm are applied to

each bit in the data stream. Data is converted to bits and this simplifies the process of

sending and receiving both the plaintext and ciphertext. But this cryptosystem is not as

commonly used in modern cryptography as block ciphers. A symmetric-key modern

block cipher divides the plaintext into n-bit blocks in which the key and algorithm are

Encrypt

Secret key

P
la

in
tex

t

C
ip

h
er

tex
t

Sender

Decrypt

Secret key

C
ip

h
er

tex
t

P
la

in
tex

t

Receiver

Send

7

applied to these blocks rather than individual bits in the stream; detailed specifications

can be found in [23].

One of the most commonly used algorithms that fall under symmetric-key

cryptography is Data Encryption Standard (DES) [18], which was designed by IBM in

responding of a request from the National Institute for Standards and Technology (NIST)

to invent a national symmetric-key cryptosystem that was published in the 1970s [2].

DES is a symmetric-key block cipher that uses a 56-bit key length and a 64-bit block

size. It is composed of complex set of encryption functions and transformations.

DES encryption process relies on the idea of permutations and rounds. Each 64-

bit of the plaintext is permuted twice -initial and final permutations- according to a

predefined rule. The permutations are used to change the order of plaintext symbols. DES

operates 16 rounds for each block. Each round uses a different 48-bit key each of which

is generated from a 56-bit cipher key. When the 64-bit input is initially permuted, it is

processed separately in each round using the correspondent round key. After the 16
th

round, the 64-bit output is subjected to the inverse initial permutation. DES decryption is

the reverse approach of the encryption process.

Asymmetric-Key Encipherment

In asymmetric-key encipherment, a key pair of public key and private key is used.

Mathematical calculations are done to bound the two keys in a certain relation. Any of

the keys can be used for either encryption or decryption and the other is used for the

reverse operation. For example, the public key is used to encrypt a message that can be

decrypted only by the correspondent private key and vise-versa (see Figure 2.2). The

advantage of this kind of cryptography is that even though the two keys are

8

mathematically linked, it is not easy to calculate one of the keys with the knowledge of

the other key.

Figure 2.2 The schematic diagram of asymmetric-key cipher

In this cryptography, any involved party should have a key pair. The public key

can be published to all parties whom the keys owner wants to share the key with. The

private key is designed to be kept secretly for only the keys owner and not be distributed

widely. If an outside party wants to send a message to the keys owner, she/he encrypts

the message using the keys owner's public key. When receiving the ciphertext, the keys

owner uses her/his private key to decrypt the message. In the opposite direction, if the

keys owner wants to send an encrypted message to the outside party, she/he encrypts the

message using her/his private key. The outside party decrypts the message using the

owner's public key. The most known public-key cryptography algorithm is RSA [19][20],

named after its inventors (Rivest, Shamir, and Adleman). Its security is based on the

intractability of the integer factorization problem. RSA does not require complicated

mathematical calculations, as is the case with DES. However, the strength of RSA

Encrypt

Public key

(or private key)

P
la

in
tex

t

C
ip

h
er

tex
t

Sender

Decrypt

Private key

(or public key)

C
ip

h
er

tex
t

P
la

in
tex

t

Receiver

Send

9

cryptosystem comes from the difficulty of dealing with large numbers and in finding the

prime factors of those large numbers.

Cryptographic Hash Functions

A cryptographic hash function is a one-way function that is used to convert a

variable-length message to a fixed-length message which is called message digest [21].

Hashing functions support many applications and mainly used for authentication

purposes. In addition, they can be used with databases to guarantee that information is not

duplicate. Extensive studies have been dedicated to build unbreakable hash functions that

are based on the compression concept. Message Digest (MD) and Secure Hash Algorithm

(SHA) are two of the algorithms that prove their competitive performance. The

standardized development of MD presented many versions including MD5. MD5 was

designed by Ron Rivest in 1991 which is a compression function that divides a message

into 512-bit blocks, padding is added as necessary to make the block length divisible by

512, and generates a 128-bit output.

Key Management

The principle problems with symmetric-key encipherment are key distribution

and scalability. If Alice distributes her secret key among Bob, David and John and each

one of them sends a decrypted message to Alice, there is no way that Alice could

determine who is the sender; in other words, the message cannot be authenticated. To

solve this problem, Alice needs a different key with each one of the three parties. But

what if there are one thousand parties? Does Alice need to have one thousand keys? How

would Alice maintain the distribution of this number of keys?

10

An efficient practical method to distribute keys is to use a third trusted party

called Key Distribution Center (KDC) [2]. KDC allows each user to own one shared

secret key with the KDC. If Bob wants to send a confidential message to Alice, he sends

a request to KDC that he needs a shared secret key between him and Alice. The KDC

asks Alice for permission. If Alice agrees, the KDC establishes the secret key and sends it

to them.

In the previous sections, we discussed some cryptographic principles that are

mainly used in the proposed protocol. The next section focuses on the subject of

databases.

Databases

A database is an organized data structure used to store information. Databases are

intended to operate large amounts of data. It allocates scattered information in one place

so a user can easily access all of the information. The benefits of using databases includes

shared access, minimal redundancy, data consistency, data integrity, and controlled

access [3] [6]. A Database Management System (DBMS) is a software application to

support all operations needed for databases. These operations include creating schemas,

altering tables, modifying records, retrieving information and administrating a database.

There are many DBMSs such as PostgreSQL, SQLite, Oracle and MySQL. MySQL was

classified as one of the most widely used open-source Relational Database Management

System (RDBMS) [22]. It provides a set of tools and commands to ease the interaction

between users and data. It enables users to implement a database with tables, records and

indexes. Moreover, it updates the indexes automatically as well as interprets SQL queries

11

and establishes relations between tables. What makes MySQL competitive is its speed

and ease of use. It is a powerful free open-source that is capable to handle large data sets.

The ultimate goal of the KCR protocol is using cryptography to secure large

databases. All of the previously mentioned principles are used together to build the

architecture of the proposed protocol. In the following chapter, I present in detail the

KCR protocol.

12

CHAPTER 3

KCR Protocol

Efforts have been made to address the problem of compromised keys for large

databases. However, a desirable protocol that has a powerful control over keys should be

capable of simultaneously protecting the huge databases and minimizing the chance of re-

encrypting such databases in case their keys have been attacked. In this chapter, I propose

a protocol that achieves this objective.

General Description

In this study, I basically focus on key management for database encryption. The

essential objective of KCR protocol is to solve the problem of re-encrypting a large

database when its decryption key is compromised. Before I demonstrate the design

details of KCR and how this protocol works, there are some assumptions and general

explanations that should be taken into account:

 KCR protocol uses one key for encryption and a set of keys for decryption. When

any of the decryption keys is compromised, it is discarded and replaced with

another decryption key without the need of re-encrypting the large database.

 Clients are grouped. Each group is granted a decryption key that is going to be used

by all clients in the group. When a key is compromised, any of the group members

contacts the responsible agency then gets a new decryption key for her/his group.

The protocol assumes that the groups are predefined and the number of groups is

less than the number of decryption keys.

 Distribute control in the context of decryption keys among different parties is

proposed as a solution to strengthen the security measures of large database

13

contents. The primary cryptographic algorithm of KCR protocol is RSA which

demands two keys: public key and private key. The public key is used for database

encryption while the private key is used for database decryption. The private key is

divided into a set of key pairs in which the product of the two entries of each key

pair equals the original private key; in other words, the entries represent factors of

the original private key. These entries are distributed between the database server

and the groups.

 To decrypt a database object, the workload of the decryption process is distributed

between the client who wants to access the object and the database server.

 The protocol provides secure communications between involved parties.

KCR Encryption and Decryption

Essentially, KCR protocol is based on RSA cryptosystem which consists of three

processes: keys generation, encryption, and decryption. The proposed protocol adds more

features to these processes.

Keys Generation

The public and private keys are generated as follows. First, a server selects two

large primes, P and Q. Then, it computes N = PQ and the totient function of N which is

ø(N) = (P-1) (Q-1). The server selects randomly an integer number E such that the

greatest common devisor of D and ø(N) equals 1. An integer number D is calculated as

follows: D = E
-1

 mod ø(N). Now, the keys are ready to be used, the public key is (E, N)

and the private key is (D, N). The server computes the factors of D: F1, F2, F3, ..., Fn.

Then, it generates a set of key pairs {(D1, D1'), (D2, D2'), (D3, D3'), ..., (Dn, Dn')} in which

D = D1D1' = D2D2' = D3D3' = ... = DnDn'.

14

i

i i'

i'

i'

i i'

i

j j'

Encryption

A plaintext P is encrypted to generate a ciphertext C using the public key (E, N)

as follows: C = P
E
 mod N.

Decryption

To get the original plaintext P, partial decryption is done on the ciphertext C

using the key pair (Di, Di') and the modulus N: C' = C
D
 mod N, P = (C')

D
 mod N. In

case the key pair (Di, Di') is compromised, it must be discarded and replaced by a new

key pair (Dj, Dj'). To get P using the new key pair, the partial decryption process is as

follows: C' = C
D
 mod N, P = (C')

D
 mod N.

Proof of KCR

The following proves that encryption and decryption are inverses of each other:

We want to prove that: P = C
D
 mod N where D = DiDi'

P = (C')
D
 mod N

 = (C
D

)
D
 mod N // C' = C

D
 mod N

 = (C)
D

D

 mod N // ((X)
y
)

z
 = (X)

yz

 = C
D
 mod N // D = DiDi'

A summary of all notations used in KCR encryption and decryption procedures is

shown in Table I.

15

TABLE I

NOTATIONS USED IN KCR ENCRYPTION AND DECRYPTION

P, Q Two large primes

N

Modulus

(E, N) Public key

(D, N) Private key

Fi The i
th

 private key factor

(Di, Di') The i
th

 private key pair

Di The first entry of the i
th

 key pair

Di' The second entry of the i
th
 key pair

P Plaintext

C Fully decrypted ciphertext

C' Partially decrypted ciphertext

16

Design

The design architecture of KCR protocol comprises four components: Keys

server, KDC server, Database server, and Client.

Components

The basic idea that explains the tasks of each component is as follows:

1) Keys server: Keys server is responsible of KCR keys generation process. It

calculates the RSA public key (E, N) and private key (D, N) . When this process is

accomplished, the server sends the public key (E, N) to the Database server. In

addition, it stores the private key pairs {(D1, D1'), (D2, D2'), (D3, D3'), ..., (Dn, Dn')}

in its database, and it maintains all information regarding these pairs. An important

information that Keys server should store in its database is key pairs status Kstatus.

The initial value of key pairs status is "inactive". When a key is granted, the status

value is changed to "active". When a key is compromised, the status is replaced

with the value "compromised". In addition to these tasks, Keys server is primarily

responsible of the key distribution process. When a key pair first entry Di is granted

to a group Gi , Keys server forwards the key pair second entry Di' to the Database

server along with information about the group which owns the key.

2) KDC server: KDC forms groups, which are predefined, for clients then it distributes

those clients (as members) among the different groups according to predefined

rules. The server contains a database to store information of the groups (G1,

G2,G3,...,Gn). The following example illustrates this approach. In a dentists clinic,

suppose there are d dentists, a dentist assistants, and p patients. So, the groups are

dentist, dentist assistant and patient, and the total number of clients is d+a+p in

17

which each one of the clients is a member of her/his correspondent group. Other

than forming groups, KDC is needed to manage the interaction between groups

members and the Keys server. It acts as a trusted agency to send confidential

messages from members to Keys server and vise versa. Also, this server is used to

associate each group with a key. It establishes a connection with the Keys server to

obtain the first entry of key pairs (D1, D2, D3, ... , Dn) and grants each group a key.

3) Client: When a client wants to process a query to access a database object, she/he

needs to join a group in the first place. She/he contacts the KDC server to join a

group Gi. Then, the KDC sends a member ID Mi_ID and the key Di to the client. I

assume that the group IDs are published. To process a query Qi , the client sends the

ID of group Gi and Qi to the Database server. After receiving the partially decrypted

object from the Database server, the client finishes the decryption process by using

her/his group's key Di. Moreover, the client is responsible to inform KDC when the

key is compromised. Consequently, KDC contacts Keys server, then the latter

server updates the information stored in its database regarding the compromised

key. After that, Keys server gives a new decryption key ,if available, to the group.

Accordingly, Keys server forwards these updates to the Database server.

4) Database server: This server contains the main database that we need to encrypt.

The encipherment is done using the RSA public key received from Keys server. In

addition to this task, the server plays an important role in the decryption process.

When a client sends a query Qi to Database server along with other information to

identify the group she/he belongs to, the server uses the appropriate key received

from Keys server Di' and partially decrypts the object and sends the result to the

18

client. Then, the client completes the decryption process by decrypting the received

result using her/his key Di.

Scenarios

As aforementioned, KCR protocol is based on the interaction between four

essential components: Keys server, KDC server, Database server and Client. These

interactions define five important scenarios: Public key distribution scenario, private key

distribution in normal case scenario, join group scenario, private key distribution in case

a key is compromised scenario, access database scenario. The following presents details

of each scenario (Hint: M, M', E(), D(), and Hash() denotes to transmitted message,

encrypted message, encryption function, decryption function, and hash function,

respectively).

Scenario 1 - Public key distribution. After generating the key pairs (public and

private key), Keys server sends a message that includes the public key to Database server.

The message, M = (E, N), is encrypted using a secret session key KL between Keys server

and Database server: M' = E(M, KL). Upon receiving the encrypted message, Database

server decrypts it with KL: M = D(M', KL) to get the public key and encrypts the database

according to the KCR encryption process discussed earlier. The design architecture of

this scenario is shown in Figure 3.1. Table II shows the notations used in the scenario.

19

Figure 3.1. KCR protocol: Scenario 1 - Public key distribution

TABLE II

NOTATIONS USED IN SCENARIO 1

KL

 Encrypted with Keys-Database secret key

(E, N) Public key for database encryption

Scenario 2 - Private key distribution in normal case. This scenario consists of

three steps:

1) To grant a decryption key to a group Gi, the KDC creates a message that contains

the group ID Gi_ID and the key status, M = (Gi_ID, Kstatus). The key status is

"inactive" to indicate that group Gi is a new group and does not own a key yet. The

message is sent to Keys server. The message is encrypted using a secret session key

KM between KDC server and Keys server: M' = E(M, KM).

20

2) When Keys server receives the encrypted message M', it decrypts it: M = D(M', KM)

to get Gi_ID and Kstatus. Since Kstatus = "inactive", Keys server scans its database to

extract a key pair (Di, Di') then grants this key pair to the group Gi . Keys server

updates the value of the key pair status which is stored in its database from

"inactive" to "active". The server then replies to KDC by sending a message that

contains the first entry of the private key pair (N is part of the private key); M =(Di,

N). For confidentiality, the message is encrypted using the secret session key KM as

follows: M' = E(M, KM).

3) Keys server forwards a message to Database server. The message includes the

second entry of the private key pair, Gi_ID, and the hash value of the first entry of

the private key; M = ((Di', N), Gi_ID, Hash(Di)). The message is encrypted with a

secret session key KL shared between Keys server and Database server. The format

of the message is as follows: M' = E(M, KL).

Figure 3.2 shows the scenario steps. Table III summarizes the notations used in

the scenario.

21

Figure 3.2. KCR protocol: Scenario 2 - Private key distribution in normal case

22

TABLE III

NOTATIONS USED IN SCENARIO 2

KL

 Encrypted with Keys-Database secret key

KM

Encrypted with KDC-Keys secret key

Gi The i
th

 group

Gi_ID The ID of group Gi

Kstatus Key status (active, inactive, compromised)

(Di, N) The i
th

 first entry of the i
th

private key pair

(Di', N) The i
th

 second entry of the i
th

private key pair

Hash(Di) Hash value of Di

Scenario 3 - Join group. The following steps explain how a client joins a group:

1) A client sends a short message that is encrypted by a secret session key KN between

her/him and the KDC server. The message contains the group ID Gi_ID of the

group Gi that she/he wants to join, and it is encrypted as follows: M' = E(Gi_ID ,

KN).

2) KDC server decrypts the message as follows: M = D(M', KN) to get Gi_ID. Then, it

adds the client as a member Mi to group Gi and responds by sending the member ID

Mi_ID and the group's key; M =(Mi_ID,(Di, N)). The message is sent as an

23

encrypted message: M' = E(M, KN).Then the client decrypts the message: M =

D(M', KN).

The steps are shown in Figure 3.3. The notations used in the scenario are

summarized in Table IV.

Figure 3.3. KCR protocol: Scenario 3 - Join group

24

 TABLE IV

NOTATIONS USED IN SCENARIO 3

KN

 Encrypted with Client-KDC secret key

Gi The i
th

 group

Gi_ID The ID of group Gi

(Di, N) The i
th

 first entry of the i
th

private key pair

Mi The i
th

 member of group Gi

Mi_ID The ID of member Mi

(Di, N) The i
th

 first entry of the i
th

private key pair

Scenario 4 - Private key distribution in case a key is compromised. The heart

of the KCR protocol is handling the situation when a large database decryption key is

compromised. This scenario presents the steps that explain the interaction between the

involved components:

1) When a private key pair (Di, Di') of a group Gi has been attacked, group members

are responsible of informing the KDC about the situation. A client, a group

member, sends a message to the KDC server that contains Gi_ID and Kstatus =

"compromised" : M = (Gi_ID, Kstatus). The message is encrypted using a secret

session key KN between the client and KDC server: M' = E(M, KN).

2) When KDC receives the encrypted message M, it decrypts it: M = D(M', KN) to get

Gi_ID and Kstatus. Since Kstatus = "compromised", KDC forwards the message to

25

Keys server to get a new key for group Gi. The message is encrypted with KM, a

secret key shared between KDC and Keys servers: M' = E(M, KM).

3) Then, Keys server decrypts message M': M = D(M', KM) and updates its database

that contains information about group Gi and its key pair (Di, Di'; it changes the

value of the key pair status from "active" to "compromised". The server then grants

another key pair (Dj, Dj') to group Gi. It sends a message containing the first entry

Dj of the new key pair as a private key (M = (Dj, N)) to KDC after encrypting it

using KM : M' = E(M, KM).

4) After receiving the message from Keys server, KDC decrypts it: M = D(M', KM) to

get the key (Dj, N) then grants the new decryption key to group Gi. Next, the server

sends an enciphered message using KN to the client. The message includes the new

key Dj: M' = E(M, KN).

5) Keys server sends the second entry Dj' to Database server. The message (M = (Dj,,

N), Gi_ID , Hash(Dj))) is encrypted by KL: M' = E(M, KL).Consequently, Database

server discards the old key of group Gi and exchanges it with the new one.

The steps of this scenario are shown in Figure 3.4. the notations used are

summarized in Table V.

26

Figure 3.4. KCR protocol: Scenario 4 - Private key distribution in case a key is

compromised

27

TABLE V

NOTATIONS USED IN SCENARIO 4

KL

 Encrypted with Keys-Database secret key

KM

Encrypted with KDC-Keys secret key

KN

 Encrypted with Client-KDC secret key

Gi The i
th

 group

Gi_ID The ID of group Gi

Kstatus Key status (active, inactive, compromised)

(Dj, N) The j
th

 first entry of the j
th

private key pair

(Dj', N) The j
th

 second entry of the j
th

private key pair

Hash(Dj) Hash value of Dj

Scenario 5 - Access database. The scenario steps are explained as follows:

1) To process a query Qi, a client contacts the Database server and sends a message

that contains Qi along with an additional information that helps the Database server

indicate which key to use. This information is either the group ID Gi_ID or the hash

value of the group's key first entry Di. If the client chooses Gi_ID, the message

content is M = (Qi, Gi_ID). If she/he forgets her/his group ID, she/he can still

access the database using the hash value of her/his key. In this case, the message

28

i

i'

content is M = (Qi, Hash(Di)). A secret session key KO is used to encrypt the

transmitted message: M' = E(M, KO).

2) Upon receiving the query, Database server decrypts the message: M = D(M', KO),

processes the query Qi, and extracts the second entry Di' of the private key pair.

Then, it decrypts the encrypted query result CRi to generate a partially decrypted

ciphertext: C' = (CRi)
D
 mod N. Database server sends an encrypted message to the

client using KO. The message includes the partially decrypted result C': M' = E(C',

KO). When the client receives the message, she/he decrypts it: M = D(M', KO) to get

C' then completes the decryption process to get the original Result Ri:

Ri = (C')
D
 mod N.

Figure 3.5 shows the steps of database access scenario with Gi_ID choice. Figure

3.6 shows the steps of the scenario with hash value choice. Table VI summarizes the

notations used in this scenario.

Figure 3.5. KCR protocol: Scenario 5 - Database access with group ID choice

29

Figure 3.6. KCR protocol: Scenario 5 - Database access with hash value choice

TABLE VI

NOTATIONS USED IN SCENARIO 5

KO

Encrypted with client-Database secret key

Gi The i
th

 group

Qi The i
th

 client requested query

(Di, N) The i
th

 first entry of the i
th

private key pair

(Di', N) The i
th

 second entry of the i
th

private key pair

Hash(Di) Hash value of Di

CRi The i
th

encrypted result of query Qi

Ri The i
th

result of query Qi after decryption

C' The partially decrypted cipher text

30

Further Discussion

Two issues are worth more discussion. The first is that, in practice, the decryption

key pairs that are derived from the original private key are limited in number. This

limitation may cause the protocol not to accommodate a high volume of clients. The

following example explains this problem. Suppose there are X decryption key pairs and Y

clients where X < Y. By granting each client a key pair, the number of clients who own a

decryption key pair would be X while Y-X would remain with no key pairs and would not

be able to access the database objects. This approach is not practical. The proposed

solution assumes that the number of key pairs is greater than the number of clients.

Besides this assumption, clients are distributed into groups in which each group is

granted a different key pair. When a client needs to access a database object, she/he uses

the key of the group that she/he is a member of. In the event that a key is compromised,

all servers in KCR protocol must be informed by any member of the group who owns the

key about this case. Accordingly, the component that is responsible of private key pairs

generation and distribution, Keys server, gives a new key pair to the group, and the old

key pair would be discarded.

The second is that, in KCR protocol, each group must have a decryption key pair.

When a key pair of a group is compromised and the Keys server is out of key pairs, the

group will not be granted a new key pair. Since this situation is not acceptable in real life,

the databases needs to be re-encrypted. Therefore, new public and private keys must be

generated. In addition, all existing key pairs that are derived from the old private key

should be discarded and be replaced by a new set of key pairs that are derived from the

new private key.

31

To summarize this chapter, I discussed in detail the architecture of KCR protocol.

I also defined the basic operations which are keys generation, encryption and decryption.

I further presented the five scenarios and their design architecture. Some issues have been

discussed to add more details to KCR protocol. The protocol is implemented to test its

efficiency in a real environment. The implementation details are discussed in next

chapter.

32

CHAPTER 4

Implementation

In the previous chapter, I have defined the design of KCR Protocol. I also

explained in detail how the components are communicated with each other and the

format of transmitted messages. This chapter presents detailed implementation of the

proposed protocol. It explores other issues related to the implementation stage. The

implementation is not complicated; it simply demonstrates the basic idea of KCR

protocol. Although the protocol is proposed to solve the problem of compromised key in

large databases, the size of the database used is very small.

Platform

The hardware used to implement the project has the following characteristics:

1) Laptop: Sony VAIO VPCEA.

2) Processor: Intel(R) Core(TM) i5 CPU, M 460, 2.53GHz.

3) Memory (RAM): 6.00 GB.

4) System type: 64-bit Operating System.

5) Operating System: Windows 7 Home Premium.

The project uses a set of third-party libraries a long with software programs and

applications to support the runtime environment:

1) Programming language: Java.

2) Java Runtime Environment version 7.0.

3) DBMS: MySQL

4) MySQL client software: Workbench 6.0.

33

5) Integrated Device Electronics (IDE): Eclipse Java EE IDE for Web Developers

version 2.0.1.20130919-0803.

6) Driver for MySQL: Java Database Connectivity (JDBC) that is a technology to

address the interaction between users and databases. It is used as an API for the

Java programming language. See Figure 4.1.

Figure 4.1 JDBC architecture

Implementation Details

The implementation analyzes the details described in the design architecture of

KCR protocol. It presents the database schemas used in the protocol and demonstrates

how the scenarios are integrated together.

Database Schemas

As aforementioned, there are four components involved in KCR protocol: Keys

server, KDC server, Database server and Client. Each one of the first three components

has a database to store certain information. The following describes the database schemas

of each component:

 Keys server database schema: The database schema, named "keysserver", of Keys

server stores information regarding the private key pairs. It contains only one table

named "keypairs". Each record in the table includes information about a single

private key pair. The record consists of six columns: key pair ID (key_id), key pair

JDBC

Driver JDBC API

Application Database

34

group id(group_id), key pair status(status), key pair first entry(k_a), key pair second

entry(k_b), and key pair first entry hash value(hash_value). When a key pair is

generated, the first entry is hashed using MD5 hash function. Figure 4.2 shows an

example of "keypairs" table.

Figure 4.2 An example of "keypairs" table

 KDC server database schema: The database schema is "kdc" which has two tables.

The first is called "groups" that holds information of five groups. Each group has an

ID, name, key and key status. The two latter represent information relating to the

first entry of the key pair that the group owns. Figure 4.3 shows an example of this

table. The second table in the database schema is named "members" which

represents information about members of groups. The columns are member ID,

group ID, member name, and password. Figure 4.4 shows an example of

"members" table.

35

Figure 4.3 An example of "groups" table

Figure 4.4 An example of "members" table

 Database server database schema: In the implementation, I use a small database that

contains information about a zoo. The schema is named "zoo", and it has three

tables: "animals", "animals_", and "keyinfo". Data about animals are stored in

"animals" table. It divides animals according to their category. Each category has an

ID, a name, and a total number of animals. Figure 4.5 shows an example of

"animals" table. The basic unit of information in a database is the record. Thus, the

encryption procedure of "animals" table should be record oriented. To effectively

encrypt a record, all of its fields should be encrypted individually forming a

sequence of encrypted fields. The encrypted records are stored in the table

"animals_" with the same columns names of "animals" table. An example of

"animals_" table is shown in Figure 4.6. The last table is named "keyinfo". It is used

to store information regarding the second entries of decryption key pairs that are

granted to groups. The columns are key ID, group ID, key status, key pair second

entry, hash value of key pair first entry. Figure 4.7 shows an example of this table.

36

Figure 4.5 An example of "animals" table

Figure 4.6 An example of "animals_" table

Figure 4.7 An example of "keyinfo" table

Keys Generation

The first task of Keys server is keys generation. When public and private keys are

generated using RSA algorithm, they are stored in separate files with file extension ".rsa".

They can be kept secretly in either external hard disk or Keys server local machine. Next,

37

private key pairs need to be derived from the original private key. First we need to find

factors of the original private key. To accomplish this process, I use an open-source code

[24] that can find up to 30-digit factors of numbers up to 1000 digit long. After

computing the factors, they are stored in a file with file extension ".rsa". The next step is

calculating the private key pairs. As aforementioned, the product of the two entries of a

key pair should be equal to the original private key. The pseudocode of private key pairs

generation is as follows:

1) Select an array A to store private key pairs.

2) For a key pair (Di, Di'), select K1 and K2 to represent the first entry and second

entry, respectively.

3) For each factor Fi (i = 1,2,3, ..., n where n is the number of factors), do the

following:

a. Let K1 = Fi and K2 = 1.

b. For each factor Fj (j = 1,2,3,...,n where i ≠ j), multiply Fj by K2.

The multiplication process is done n-1 times.

c. Select a variable number M where M = max(K1, K2) (where max is

a function that returns the highest value of two numbers).

d. Select another variable number T such that T = D%M (where D is

the original private key).

e. If T = 0, generate a key pair KP = (K1, K2).

f. Scan array A to check if it contains a key pair with same value as

KP. If it contains the same key pair, skip and go to step (g);

otherwise, add KP to the array.

38

g. For each factor Fk (k = 1,2,3, ..., n where n is the number of

factors), do the following:

i. Multiply Fk by K1, and let K2 = 1.

ii. For each factor Fu (where u = k+1) multiply Fu by K2.

iii. Select a variable number P = K1K2.

iv. Select a variable number W such that W = D%P.

v. If W = 0, generate a key pair KR = (K1, K2).

vi. Scan array A to check if it contains a key pair with

same value as KR. If it contains the same key pair,

skip; otherwise, add KR to the array.

4) Scan array A to check that for each key pair (Di, Di') there exist a key pair

(Di', Di); otherwise, generate a key pair (Di', Di) and add it to the array.

Now that all possible private key pairs are generated, we need to store them in the

Keys server database; particularly in "keypairs" table. All key pairs statuses should be set

to "inactive" since no key is granted to a group yet. Figure 4.8 shows an example of

"keypairs" table with 38 key pairs.

39

Figure 4.8 "keypairs" table before any key is granted

40

After we have seen how the keys generation process is processed, let us now see

how the scenarios discussed earlier in chapter 3 are implemented.

Scenario 1 - Public Key Distribution

The implementation of this scenario is straightforward. Once a public key is

generated, it is sent to the Database server and stored in a file with file extension ".rsa".

To protect the key from any attacks, this file is either kept safe in an external hard disk or

stored in the Database server local machine. The public key is used to encrypt the table

"animals" in the database schema "zoo". The encrypted records are stored in table

"animals_".

Scenario 2 - Private Key Distribution in Normal Case

KDC server creates groups and stores their information in its database. Then, it

contacts Keys server to grant a key pair for each group. Since there are five predefined

groups, the first five key pairs are granted sequentially (See Figure 4.9, Figure 4.10, and

Figure 4.11).

Figure 4.9 Table "keypairs" after granting five key pairs to the five groups

41

Figure 4.10 Table "groups" after granting key pairs to the five group

Figure 4.11 Table "keyinfo" after granting key pairs to the five groups

Scenario 3 - Join Group

When a client wants to join a group, she/he needs to sign up for KDC server.

She/he sends the group ID, a username, and a password. Then, KDC creates an account

for the client and adds her/him as a member to the specified group (See Figure 4.12).

KDC returns the client's member ID to the client. When a client needs to get a decryption

key, she/he sends her/his member ID, group ID, username, password, and "active" as the

key's status to KDC server. After that, KDC verifies client's information. If she/he is an

authorized client, KDC replies to her/him by sending the group's key. After receiving the

key, the client stores it in a file (the file extension is ".rsa").

42

Figure 4.12 Table "members" after creating an account for a client. The client

joined group "group00001"

Scenario 4 - Private Key Distribution in Case a Key is Compromised

When a group's key is compromised, any of its members notifies KDC about this

matter. A member (a client) sends her/his member ID, group ID, username, password,

and "compromised" as the key's status to KDC server. After that, KDC verifies client's

information. If she/he is an authorized client, KDC notifies Keys server about this issue.

Consequently, Keys server updates its database and gives a new key pair to the specified

group (See Figure 4.13), sends the first entry of the key pair to KDC, and forwards a

message to Database server stating that the key of that group has been compromised and

a new key pair has been granted. Database server discards the old key and replaces it with

the new key received from Keys server. After receiving the key from Keys server, KDC

updates its database then replies to the member by sending the group's key. After

receiving the key, the client stores it in a file (the file extension is ".rsa").

43

Figure 4.13 Table "keypairs" after granting a new key pair to group "group00001"

when the group's key has been compromised

Scenario 5 - Access Database Scenario

Accessing an object in the database server requires a client to send a query and a

piece of information to identify the group that they belong to. This information is

required so the server knows which key to use for decryption. As aforementioned, the

client could send the hash value of her/his key; however, I implement the case when the

client sends the ID of the group that she/he belongs to (the implementation of sending the

key hash value as a group identifier is kept for future work). When receiving the message

from the client, Database server checks if the group has a key. If so, it gets the key and

decrypts the query result then sends the result to the client.

The previous sections presented the implementation details of the database

schemas and the scenarios of KCR protocol. Now, let us see how information is passed

44

between components and how to keep the communications between these components

secret.

Data Transmission

The implemented project uses Java TCP sockets. TCP stands for Transmission

Control Protocol and is a protocol data transmission. A server and a client are required to

establish a TCP session. A given port is set up between the client and server. The client

connects to the port, and the server listens to that port for any coming packets from the

client. This means that a Socket object is initiated for both of them; detailed

specifications can be found in [25], [26].

Secret Communication

DES cryptosystem is used to encrypt packets sent between components.

Component A initiates a connection with component B creating a secret session key then

sends it to component B. The two components follow the steps of DES algorithm to

encrypt and decrypt packets.

45

CHAPTER 5

Conclusion

Plenty of research has been conducted to improve the performance of encryption

strategies used to secure large databases. However, the adoption of such research is

hindered by the difficulty in providing a good key management system that prevents the

workload of the re-encryption process in case a key is compromised in such databases. In

this work, I propose a novel key management system named "Key Compromised

Resistant protocol", referred to as KCR, that is intended to address this issue. I implement

the proposed protocol and the implementation results show that KCR protocol works

well.

Some features could be added to make the implemented project more efficient.

Besides the tasks that KDC server is responsible for, KDC could manage adding and

deleting groups. In this case, it is not necessary that groups be predefined. The same

could be applied to members. Another feature might be generating public and private

keys automatically in case Keys server is out of key pairs. Accordingly, all groups

members are notified by email that their keys are compromised so they need to contact

KDC to get their new keys.

46

REFERENCES

[1] B. A. Forouzan, Data communications and networking. New York: The McGraw-

Hill Companies, 2007.

[2] B. Forouzan, Cryptography and network security. New York: The McGraw-Hill

Companies, 2008.

[3] M. C. Murray, "Database security: What students need to know," Journal of

Information Technology Education: Innovations in Practice, vol. 9, 2010,

http://www.jite.org/documents/Vol9/JITEv9IIPp061-077Murray804.pdf.

[4] H. Kayarkar, Classification of various security techniques in databases and their

comparative analysis, ACTA Technica Corviniensis-Bulltin of Angineering,

Report ISSN 2067-3809, April-June, 2012, http://acta.fih.upt.ro/pdf/2012-2/ACTA-

2012-2-25.pdf.

[5] G. I. Davida, D. L. Wells and J. B. Kam. "A Database encryption system with

subkeys," Journal of ACM Transactions on Database Systems (TODS), vol. 6, no.

2, pp. 312-328, June 1981.

[6] M.-S. Hwang and W.-P. Yang. " Multilevel secure database encryption with

subkeys," Data & Knowledge Engineering, vol. 22, pp 117-131, April 1997.

[7] J. A. Cooper, Computer and communications security: Strategies for the 1990s.

New York: McGraw-Hill, 1989.

[8] G.S. Graham and P.J. Denning, "Protection-principles and practice," Joint

Computer Conference , vol. 40, pp. 417-429, 1972.

47

[9] P. A. Dwyer, G. D. Jelatis, and B. M. Thuraisingham. "Multilevel security in

database management systems." In Computers and Security, vol. 6, no. 3, pp. 252,

June 1987.

[10] W. Zhao, D. - F. Zhao, F. Gao, and G. - H. Liu. "A Cryptography index technology

and method to measure information disclosure in the DAS model," Journal of

WSEAS Transactions on Information Science and Applications, vol. 6, no. 9, pp.

1443-1452, Sept. 2009.

[11] J. Grosschadl. "The Chinese reminder theorem and its application in a high-speed

RSA crypto chip," in Proceedings of the 16th Annual Computer Security

Application Conference, 2000, pp. 384-393.

[12] S. Chen, S. Chen, H. Guo, B. Shen, and S. Jadjodia, "Efficient proxy-based Internet

media distribution control and privacy protection infrastructure," in Proceedings of

the 14th IEEE International Workshop on Quality of Service, New Haven, CT,

2006, pp. 209-218.

[13] M. Malkin, T. Wu, and D. Boneh, "Experimenting with shared generation of RSA

keys," in Proceedings of the Internet Society's 1999 Symposium on Networking and

Distributed System Security (NDSS), 1999, pp. 43-56.

[14] D. Boneh, X. Ding, G. Tsudik, and C. M. Wong, "A Method for Fast revocation of

public key certificates and security capabilities," in Proceedings of USENIX

Security, Washington, D.C., 2001.

[15] N. Gilboa, "Two party RSA key generation," in Proceedings of CRYPPTO, 1999,

pp. 116-129.

48

[16] W. Stallings, "Cryptography and network security: Principles and practice," in

Prentice Hall, 1988.

[17] W. Diffie and M. Hellman, "New directions in cryptography," in IEEE

Transactions on Information Theory, November 1976, vol. 22, no. 6, pp. 644-654.

[18] E. Biham and A. Shamir. "Differential cryptanalysis of DES-like cryptosystems,"

Journal of Cryptography, vol. 4, pp. 3-72, Jan. 1991.

[19] M. Bellare and P. Rogaway. "Optimal asymmetric encryption - How to encrypt

with RSA," in Proceedings of the Advances in Cryptology - Eurocrypt '94, 1994,

pp. 92-111.

[20] R. L. Rivest, S. Shamir, and L. Adleman. " A method for obtaining digital signature

and public-key cryptosystems," Commun. ACM 21, pp. 120-126, 1978.

[21] I. Mironov. (2012, Nov. 12). Hash functions: Theory, attacks, and applications

[online]. Available: http://131.107.65.14/en-us/people/mironov/hash_survey.pdf .

[22] R. Young "DBA and developer guide to MySQL 5.6." Internet:

http://dev.mysql.com/tech-resources/articles/mysql-5.6.html, 2013 [Nov. 13, 2013].

[23] G. J. Simmons. "Symmetric and asymmetric encryption," ACM Comput. Surv. vol.

11, no. 4, pp. 305-330, 1979.

[24] D.A. Alpern. " Factorization using the Elliptic Curve Method." Internet:

http://www.alpertron.com.ar/ECM.HTM, July 2, 2013 [Nov. 30, 2013].

[25] A. Myles. "Java TCP Sockets and Swing Tutorial." Internet:

http://ashishmyles.com/tutorials/tcpchat/, April 4, 2001 [Dec. 1, 2013].

49

[26] Q.H. Mahmoud. "Sockets programming in Java: A tutorial." Internet:

http://www.javaworld.com/jw-12-1996/jw-12-sockets.html?page=1, Dec. 11, 1996

[Dec. 1, 2013]

