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ABSTRACT

Multiagent systems are increasingly being used to solve a wide variety of

problems in a range of applications such as distributed sensing, information retrieval,

workflow and business process management, air traffic control and spacecraft control,

amongst others. Each of these systems has to be designed at two levels: the micro-

architecture level, which involves the design of the individual agents and the macro-

architecture level which involves the design of the agents’ organizational structure.

In this research, we are primarily concerned with the agents’ macro-architecture.

At the macro-architecture level, the multiagent designer is concerned with

issues such as the number of agents needed to solve the problem, the assignment

of tasks to the agents and the coordination mechanisms being used. The design

of the agents’ macro-architecture is complicated by the fact that there is no best

way to organize and all ways of organizing are not equally effective. Instead the

optimal organizational structure depends on the problem at hand and the environ-

mental conditions under which the problem needs to be solved. In some cases, the

environmental conditions may not be known a priori, at design time, in which case

the multi-agent designer does not know how to develop an optimal organizational

structure. In other cases, the environmental conditions may change requiring a re-

design of the agents’ macro-architecture. These are only a few of the many hurdles

confronting the macro-architecture designer.

In our research, we simplify the macro-architectural design by passing on

some of the macro-architectural design responsibilities to the agents themselves.

xvi



That is, instead of manually designing the macro-architecture of a multiagent sys-

tem at design time, we allow the agents to come up with their own organizational

structure at run time. This approach is known as Organizational Self Design (OSD)

and it allows the agents to adapt their organizational structure to changing envi-

ronmental conditions and differences in the problems being solved.

Most of the current work on OSD has focused on task-oriented domains. In

our research, we extend OSD to apply to worth-oriented domains, the hardest class

of problems. Our research focuses on developing algorithms and mechanisms that

allow (a) the generation of agents as an artifact of the system; and (b) the genera-

tion of different organizational structures that make different quality/cost tradeoffs

based on the organizational design constraints specified and the performance criteria

being optimized. Such tradeoffs are not possible in task-oriented and state-oriented

domains.
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Chapter 1

INTRODUCTION

In ancient times alchemists believed implicitly in a philosopher’s stone
which would provide the key to the universe and, in effect, solve all of
the problems of mankind. The quest for coordination is in many respects
the twentieth century equivalent of the medieval search for the philoso-
pher’s stone. If only we can find the right formula for coordination,
we can reconcile the irreconcilable, harmonize competing and wholly di-
vergent interests, overcome irrationalities in our government structures,
and make hard policy choices to which no one will dissent.

(Harold Seidman: Politics, Position, and Power)

Multiagent systems are increasingly being used to solve a wide variety of

problems in a range of applications such as distributed sensing, information re-

trieval, workflow and business process management, air traffic control and space-

craft control, amongst others. These systems have to be designed at two levels:

the micro-architecture level, which involves the design of the individual agents and

the macro-architecture level, which involves the design of the organizational and

social aspects of the system. In our research, we are primarily interested in the

macro-architectural, organizational design of the multiagent system.

At the organizational level, the multiagent designer is primarily concerned

with issues such as:

• The number of agents needed to solve the problem

• The breakup of the problem into subtasks

• The allocation of the subtasks to the individual agents

1



• The distribution of the available resources amongst the agent population

• The coordination mechanisms being used to manage the interdependencies

between the agent activities.

These issues can be resolved by, firstly, imposing an organizational structure

on the agents and then by instantiating the chosen organizational structure with

actual agents. The organizational structure consists of roles that the agents play and

the manner in which they interact with other agents in the system. The instantiation

consists of selecting the number of agents needed in the system and the assignment

of roles and resources to the individual agents.

The organizational structure employed directly influences the effectiveness

of the organization in solving the problem at hand, the resources needed by the

agents and the cost of coordinating the activities of the individual agents. Hence,

the organizational design is a very important part of the multiagent system design.

However, there are few good rules and formal mechanisms for designing effective

organizations for computational agents that are general enough for a wide range of

agent systems. For example, consider the question of the number of agents needed

in the system. If too few agents are available, the system will be overloaded and

will not be able to perform optimally. If too many agents are used, resources may

be wasted and contention for the limited resources amongst the agents will increase.

However, few researchers have directly addressed this question.

The macro-architectural design is further complicated by the fact that there is

no best way to organize and all ways of organizing are not equally effective [Carley

& Gasser, 1999; So & Durfee, 1996]1. Instead, the optimal organizational struc-

ture depends both on the problem at hand and the environmental conditions under

1 The theory that there is no “one best way” to organize is sometimes referred
to, in the organizational literature, as Contingency Theory, a term coined by
Lawrence and Lorsch [Lawrence & Lorsch, 1967]. See [Scott, 1998] for more
details.
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which the problem needs to be solved. In some cases, the environmental conditions

may not be known a priori, at design time, in which case the multi-agent designer

does not know how to come up with the suitable organizational structure. In other

cases, the environmental conditions may change requiring a redesign of the agents’

macro-architecture. Hence, it is not obvious that a static design-time approach

to an organizational structure is feasible in a significant number of cases. At the

opposite end of the spectrum, systems may be designed to create a new, bespoke

organizational design for every problem instance. The most popular example of such

a one-off task allocation approach is the Contract Net approach [Smith & Davis,

1978; Smith, 1980, 1988] (See Section 2.2.5.1). Such an approach brings with it a

different set of inefficiencies and belies the fact that while many real environments

have dynamic components, there are also commonalities in the structure of problem

instances that can be taken advantage of through proper organizational structuring.

Hence, an alternative approach is needed for such situations in which the envi-

ronment is dynamically, albeit slowly, changing. We will call such environments

semi-dynamic.

In our research, we focus on the organizational design of such a subset of mul-

tiagent systems, that is, ones in which the environment is semi-dynamic. We show

that most current approaches to organizational design either model the organization

at design time, assuming a static environment, or generate a new organization on

the fly, at run time, for each new instance of the problem and that such approaches

are inefficient and fail to correctly model the dynamics of a slowly changing environ-

ment. Furthermore, we show that most of the existing approaches to organizational

design (of multiagent systems in semi-dynamic environments) are not general enough

to handle problem domains that are worth-oriented [Rosenschein & Zlotkin, 1994].

Towards these ends, we propose a dynamic run-time approach to the macro-

architectural design, in which the agents use organizational-self design (OSD)
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Figure 1.1: Figure showing our basic overall approach

[Gasser & Ishida, 1991; Ishida et al. , 1992; So & Durfee, 1993] to come up with

their own organizational structure. In our approach (shown in Figure 1.1), prob-

lem solving requests arrive at the organization continuously at varying rates and

with varying deadlines. To gain utility, the agents in the organization need to solve

the problems by their given deadlines. In our model, we start off with a simple

organization consisting of a single agent which is solely responsible for the prob-

lem solving activities of the entire organization. As new problem solving requests

arrive, the agent checks to see whether it can complete the request by the given

deadline. If not, the agent spawns off a new agent which is responsible for some

subpart of the main problem, thus parallelizing the solution to the problem. Each

agent in the organization is individually responsible for its subpart of the problem

– hence the agent can be thought to fulfill the role of solving that subpart of the

problem and achieving the subgoal characterized by that subpart, coordinated by

some pre-arranged mechanism. If an agent cannot meet a deadline, it is individually

responsible for spawning off a new agent and delegating a part of its responsibility

to the new agent. If an agent is free for an extended period of time, it may decide

4



to combine with another agent to save computational resources. Hence, we propose

two organizational primitives that are responsible for generating the organizational

structure: agent spawning and agent composition. These organizational primitives

are further described in Chapter 3.

The organization of the rest of this chapter is as follows. We begin by enumer-

ating our intellectual contributions in Section 1.1. We follow this up by describing

why organization is hard in Section 1.2. Finally, we end with a description of the

scope of our work in Section 1.3.

1.1 Intellectual Contributions

We divide our intellectual contributions into two parts: (a) Contributions

from a multiagent perspective; and (b) Contributions from a Volunteer/Grid/Cloud

Computing perspective. We primarily focus of the former and only briefly mention

the latter.

From a multiagent perspective, our intellectual contributions are outlined

below:

• We generate the agents as an artifact of the system. That is, given a set of

problems to be solved, and a utility function that allows us to balance agent

costs and performance, our multiagent framework generates the requisite num-

ber of agents needed to solve the problem. This is a significant departure from

most traditional multiagent organizational techniques that assume a preexist-

ing set of agents and then try to organize them.

This is important because, whereas there are many problems (such as, per-

sonal assistant agents) in which there is a natural fit between the problems

being solved and the agents in the system, there are many problems in which

the fact that agents are used is secondary and irrelevant to the problems being

solved. That is, the user is primarily interested in solving a set of problems
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and is not the least bit concerned with whether multiple agents or some other

technology is used to solve the problems, as long as the technology lives up

to his requirements. Also if there is no perfect mapping between the prob-

lems and the agents and if the environment is semi-dynamic, the user has

no way of knowing, a priori, how many agents to use or in what configura-

tion. Using too few agents will result in the agents being overloaded; using

too many agents will result in wasted resources — either way, the system will

be inefficient. Examples of such applications include distributed information

gathering, bioinformatics applications, web service choreography and the ef-

ficient dynamic use of grid and cloud computing, etc. Furthermore, in such

systems, extra resources can often be purchased as needed - hence, in such

systems it makes sense to generate agents at run-time as an artifact of the

system.

In our framework, the user is not concerned with specifying the number of

agents needed in the system or with specifying the organization of these agents.

Instead all the user does is give a representation of the problems and the

system generates the agents and organization needed to solve the problems.

Also note that since more agents are equivalent to more resources (especially

processor resources), our system allows resources to be traded for the number

of problems being solved in a given time and the quality of the solutions.

Hopefully, this will help simplify the use of a multi-agent framework for a

broad range of cooperative, distributed problem-solving (CDPS) applications.

• The OSD approach is not new and has been proposed and used by a number of

researchers over the last twenty years. However, none of the researchers have

proposed applying it to worth-oriented domains — the most complex class of

problem representations.
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What are worth-oriented domains and how do they differ from other domains?

[Rosenschein & Zlotkin, 1994] suggested that problem representations 2 may

be modeled as belonging to one of three kinds of domains — Task-Oriented

Domains, State-Oriented Domains and Worth-Oriented Domains. According

to Rosenschein and Zlotkin:

In task oriented domains, a goal specifies a set of tasks that the
agent is required to carry out. In state oriented domains, a goal
specifies a set of states that the agent wishes to reach. In contrast,
in worth-oriented domains the goal definition is subsumed by a worth
function over all possible final states. Those states with the highest
value of worth might be thought of as those that satisfy the full
goal, while other with lower worth values, only partially specify the
goals. ([Rosenschein & Zlotkin, 1994])

To better understand the difference between these three domains, consider the

example of a “knowledge-seeking agent” that wishes to learn about the natural

sciences by reading a series of books (See Figure 1.2). If this problem were to

be represented in a task-oriented domain, the agent’s goal would be to read

as many books as possible on Physics, Chemistry and Biology. In a state-

oriented domain, on the other hand, the agent would recognize that goal state

is one in which the agent has acquired some requisite knowledge in each of the

three subject areas — Physics, Chemistry and Biology. Hence, the initial state

would be one in which our agent hasn’t read any books and the final states

would be ones in which an agent has read at-least one book in each of the three

subject areas. Every book that the agent reads would lead to a transition from

one state to another. Modeling this problem in the worth-oriented domain,

the agent would recognize that not all books are written equal and that some

books are better than others. Hence, this agent would assign a utility to each

2 There is usually a direct mapping from the problems that the agents are trying
to solve to goals that the agents must achieve.
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Figure 1.2: Figure showing the three types of problem domains. The goal states
are shown using bold rounded rectangles. Not all possible states are shown.
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of the goal states — the goal state with the three worst books on each subject

would have the lowest utility while a state in which every book on all three

subjects has been read would have the highest utility. We can easily envision

a situation in which reading a book would have a cost associated with it and

in such situations the utility calculations would be based on a function of the

benefit (quality of each book) and cost of reading each book.

As should be obvious from this example, the same problem may belong to

different domains depending on how it has been framed, modeled and repre-

sented. Moving from a problem representation in a task-oriented domain to a

problem representation in a worth-oriented domain allows better modeling of

the quality/cost tradeoffs between the various solutions to the problem.

We used TÆMS (Task Analysis, Environment Modeling and Simulation)

[Decker, 1995, 1996; Lesser et al. , 2002; Horling et al. , 1999] as our prob-

lem representation language, since it is a representation language specifically

designed for worth-oriented domains3. TÆMS is a highly expressive general

purpose task modeling language that allows the modeling of a broad range of

problems belonging to the worth oriented domain.

Extending OSD to worth oriented domains allowed us to generate different

organizational structures that make different quality/cost tradeoffs based on

the organizational design constraints specified and the performance criteria

being optimized. Different organizations use a different number of agents, have

different resource requirements and generate different run-time characteristics

(such as the quality of the results produced). For example, if there are two

alternative ways of achieving a goal, representing the goal in TÆMS allows our

OSD approach to select alternative organizations that achieve the maximum

quality possible based on different time and cost constraints. Such tradeoffs

3 See Section 3.1 for more details on TÆMS and for a justification of its use.
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are not possible in task-oriented and state-oriented domains. Another positive

side-effect of using TÆMS is that it allowed us to model uncertainties in the

execution of tasks and to diminish the effects of these uncertainties on the

performance of the organization.

Our research in this area offers key insights to the design of organizations for

worth-oriented domains.

• We not only used TÆMS as our problem representation language, but we also

extended TÆMS in two ways:

1. We used TÆMS to represent the organizational structure of the agents.

Specifically, we added organizational nodes to TÆMS that allow each

agent to represent its local view of the organization — the roles that it

is enacting and its relationship to other agents in the organization. All

reorganization (agent spawning and composition) is defined in terms of

rewriting the local TÆMS task structure of the agents. (See Section 3.4.1

for details.)

2. We added iteration nodes to TÆMS . Iteration nodes allow the number

of iterations of a sub-task to depend on the results of the execution of

another method in the task structure. For example, the number of buffers

required in a grid data transfer application might depend on the size

and criticality of the data being transferred. The goal of allocating a

buffer can then be represented using an iteration node — the number of

iterations of this goal would depend on the results of executing a method

that determines the size of the data being transferred. (See Section 3.3.4

for details.)

• One of the key advantages of using a one-off task allocation/organization

scheme, like the Contract Net Protocol, is that it is more robust to agent and
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task failures4. This is because a new organization is generated from scratch for

every problem instance, which basically allows the multiagent system to work

around agent and task failures. This essentially limits the effect of any failure

to a single problem instance and reduces the likelihood of a failure propagating

to other problem instances. However, organizations that exist for longer than

a single problem instance need some explicit way of detecting and overcoming

failures. Hence, this problem is extremely important in the context of our

OSD approach.

Most of the existing OSD approaches fail to consider the robustness of the

generated organizations. Similarly, there has been limited research that ex-

plicitly looks into the robustness of CDPS applications that use TÆMS as

their underlying framework.

We rectified these shortcomings in the current research on OSD and CDPS

by studying the mechanisms through which organizations can be made more

robust against agent and task failures. In this thesis, we implemented and

evaluated the two commonly used approaches for adding robustness to mul-

tiagent systems — the citizens approach [Dellarocas & Klein, 2000] and the

survivalist approach [Marin et al. , 2001; Briot et al. , 2006]. (See Section 3.4.7

for more details.)

We also studied the interplay between the organizational structure, the prob-

ability of failure and the desired level of robustness. One way of achieving

a higher level of robustness in the survivalist approach, given a large num-

bers of agent failures, would be to relax the task deadlines. However, such

a relaxation would result in the OSD approach using fewer agents in order

4 This is not to say failures have no affect on the performance of the contract
net protocol. This statement is about the comparative effect of failures. See
[Dellarocas & Klein, 2000] for a more thorough investigation of the effect of
failures on the performance of the contract net protocol.
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to conserve resources, which in turn would have a detrimental effect on the

robustness. Hence, we explored the robustness properties of task structures

and the ways in which the organizational design can be modified to take such

properties into account. Specifically we showed that the problem of computing

the robustness properties of a task structure is NP-hard.

• Finally, we believe that task and resource allocation in multiagent systems

is still an open problem. Through our work on OSD, we have offered key

insights and developed new protocols to handle task and resource allocation

for a broad range of problem.

Unfortunately, coming up with an optimal5 task allocation strategy (using, for

example, Partially Observable Markov Decision Processes (POMDPs) [Sutton

& Barto, 1998; Cassandra, 1998]) might not be feasible for a soft real-time

algorithm that is expected to work at runtime (See Section 1.2). Hence, in

this thesis, we have looked at three task allocation heuristics that can be used

with organizational self-design and can generate satisficing solution to the task

allocation problem. (See Section 3.4.5.1 for details.) We investigate how the

variation in task allocation strategy affects the performance of the organization

and the tradeoffs being made when using different strategies.

We have also evaluated the tradeoffs between specialization and generalization

[March & Simon, 1993]. Specialization involves breaking up a task into smaller

subtasks that are assigned to the agents. The agents then become specialists

in executing these tasks. Generalization, on the other hand, involves creating

clones of agents that can handle different instances of a larger task. These

agents are generalists, in that they are capable of achieving a larger set of

tasks. We show that the choice between specialization and generalization

5 For some definition of optimal. Such a definition of optimal will necessarily
depend on the criteria being optimized.
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depends on the task structure and environmental factors like the task arrival

rate and the deadline of the tasks. (See Section 3.4.5.2 for details.)

We now very briefly mention our contributions from a grid/cloud/volunteer

computing and web services perspective. In Grid Computing, one of the key issues

is how to come up with Virtual Organizations (VO) [Foster et al. , 2001] that

make efficient use of the grid resources. Similarly, Web Service Choreography deals

with composing complex web services from simpler ones. We believe that our OSD

approach can be applied (with some modification) to both of these key problems.

Therefore, even though our focus is on multiagent systems, we are hoping that our

work on OSD might provide key insights and may be applied to both grid computing

and web services in the future.

In Chapter 5, we describe how our OSD research can be applied to the prob-

lem of determining a suitable scheduling policy for a volunteer computing system.

A scheduling policy is simply an assignment of jobs (tasks) to volunteers (agents) so

as to maximize the throughput and minimize the turnaround time of the volunteer

computing system. We use simulations to show that our OSD approach performed

better than the naive scheduling policy used in a current volunteer computing sys-

tem, although implementing our approach would require significant architectural

changes to that system.

1.2 Why is the problem hard

Designing and building an organization is an extremely complex problem.

Firstly, the computational complexity of the problem makes it intractable for all

but the simplest of problems and organizations. In his thesis, Bryan Horling [Hor-

ling, 2006], proves that instantiating a valid organization from a set of templates,
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at compile-time, is an NEXP-Complete problem6. And finding an optimal organi-

zation is considerably harder than finding a valid instantiation. Similar results are

presented by Nair et. al. in [Nair et al. , 2003].

Building an organization at run-time has its own set of complexities and

requirements. It might be acceptable to have an algorithm that takes a long time

to build an organization, if the organization is being built before the agents are ever

deployed in the field7. However, in the case of a run-time algorithm, any time spent

making organizational decisions is time that is diverted from the domain-specific

problem-solving that the agent should be doing. Ideally, the time spent making

organizational decisions should be less than the time wasted due to an inefficient

organization. Unfortunately, the problem of deciding when it is appropriate to keep

an existing, inefficient organizational structure and when it makes sense to reorganize

is an open research problem. Furthermore, the time taken to make organizational

decisions should be considerably less than the time required for domain-specific

problem solving. Hence, it is important for the run-time algorithms that we are

interested in to be extremely efficient.

Not only is the problem of organizing computationally hard, but the problem

of determining whether a satisficing organization can exist is itself extremely hard.

Part of the problem is specifying what is needed of the organization and what

the desired optimizing criteria are. Often the specified criteria are at odds with

each other (for example, maximizing quality and minimizing cost) and it is not

obvious how these conflicts can be resolved. But the other part of the problem —

knowing whether the specified criteria and constraints are too strict to be met is a

6 An NEXP-Complete problem is a problem in which the solutions to the problem
can be verified in exponential time. Hence, an NEXP-Complete problem is
considerably harder than an NP-Complete problem, which are usually used in
Computer Science to describe the class of intractable problems.

7 For example, consider a program like Openoffice that takes forever to compile
but works efficiently once it has been compiled
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considerably harder problem. Hence, not only is the problem of coming up with an

organization hard, but the problem of knowing whether an organization can exist is

itself hard.

Finally, the OSD problem has not been studied in any considerable depth.

Hence, there is a lack of any understanding on what the issues are and how efficient

algorithms can be designed to handle this problem. This complicates the design of

algorithms for OSD.

1.3 Scope

In this thesis, we will not be looking at:

1. Scheduling, except where there is an interplay between scheduling and generat-

ing an organizational structure. We believe that scheduling is a separate open

problem in its own right deserving a number of theses. Indeed, both Alan

Garvey [Garvey & Lesser, 1996] and Tom Wagner [Wagner & Lesser, 2000]

have looked at scheduling for TÆMS task structures in some detail. More re-

cently, the entire COORDINATORS project has been studying the scheduling

of TÆMS -based task structures for use in military missions planning [Sims

et al. , 2006; Zimmerman et al. , 2007; Maheswaran et al. , 2008; Atlas, 2009].

2. Coming up with an accurate model of the environment. A model of the en-

vironment will be able to predict things like the kinds of tasks that the orga-

nization will have to deal with, the arrival time of tasks, the variation in the

available resources over time, the failure rate of the agents, the failure rates of

tasks, etc. Whereas, such a model of the environment would be of tremendous

help in generating stable organizational structures, we believe that (1) real-

world environments are highly unpredictable and extremely hard to model and

(2) if such an accurate model exists, it will dispense with the need to generate

organizational structures at run-time.
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3. Generating organizations in which not all the agents are cooperative and

benevolent. In our work, we are assuming that the agents are an artifact

of the system, are a result of trying to solve a set of similar problems using a

multiagent system and are generated and destroyed based on the needs of the

system/organization. Hence, it follows that the primary aim of the agents is

to increase the “utility” of the organization even if it is at their own expense.

4. Generating organizations for open environments. Open environments are those

in which the agents are self-interested and heterogeneous and may join or leave

the environment at any time. Again, since we are assuming that the agents

are an artifact of the system, we will not be looking at such environments.

5. Trying to learn a per-agent subjective model of the task characteristics. In

particular, we assume that the quality, cost and duration distributions as well

as the resource requirements of the executable methods are known, a priori,

before the agents try to execute a task structure. Also we assume that this

knowledge is shared by all the agents in the organization.

1.4 Outline of the rest of this thesis

The organization of the rest of this thesis is as follows: Chapter 2 covers some

background material on organizations and also describes existing literature relevant

to our research. We follow this up with a detailed description of our approach to

organizational self-design in Chapter 3. Chapter 4 then describes some experiments

that we have conducted to evaluate our approach. Subsequently, in Chapter 5, we

describe how our approach can be applied to real-world volunteer, grid and cloud

computing systems. Finally, we conclude and describe our future work in Chapter

6.
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Chapter 2

BACKGROUND

Every phase of evolution commences by being in a state of unstable force
and proceeds through organization to equilibrium. Equilibrium having
been achieved, no further development is possible without once more over-
setting the stability and passing through a phase of contending forces.

(Kabbalah)

This chapter consists of two main parts. The first part of this chapter intro-

duces the term “Organization” and describes its constituent parts. The second part

of this chapter is a review of the related literature relevant to our work.

2.1 Organization of the Agents

Once a problem has been analyzed and an appropriate task structure gen-

erated, the multiagent designer needs to decide on the number of agents needed to

solve the problem and the way in which those agents will be organized. By orga-

nized, we mean (1) what will be the duties and responsibilities of each agent, (2) how

will the available resources be distributed amongst the available agents and (3) how

will the agents be coordinated, that is, how will they manage the interdependencies

between their activities.

Organizing a multiagent system typically involves coming up with a suitable

organizational structure [Fox, 1981; Horling et al. , 2001] and instantiating that
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Figure 2.1: A semi-hierarchical organization for a traditional (human) corporation.
The boxes represent the roles and the lines show the relationships between the roles.

structure with actual agents. See Figure 2.1 for an example of a traditional (hu-

man) organizational structure. An organizational structure consists of two major

components:

1. The roles: The roles are used to answer the question of who does what in

an organization and may be thought of as the parts played by the agents

enacting the roles in the solution to the problem. The roles correspond to

positions in the organizational hierarchy of human organizations. For example,

a team leader is responsible for managing a team, a programmer is responsible

18



for writing code, while a CEO is responsible for the operation of the whole

organization.

Hence, roles reflect the long-term commitments made by the agents enacting

the roles to a certain course of action and typically include a description of

(1) the job/task responsibility of the agents enacting the roles, (2) the skill-

set needed for performing the role and (3) the resources available/allocated

for execution of the role. More broadly, the roles include information about

the deontic aspects of the organization — the obligations, permissions and

prohibitions of the agents enacting these roles. Note that one or more agents

may take on a single role and a single agent can participate in more than one

role.

2. The relationships between the roles: The relationships between the roles are

used to answer the question of who talks to whom and can be thought of as

communication links between the roles. These relationships reflect the inter-

dependencies between the tasks being performed by agents enacting different

roles and are used to effectively coordinate the activities of these agents. The

relationships correspond to authority relations in a hierarchical human orga-

nizations. For example, the CEO has authority over the vice presidents, who

have authority over the project leaders.

An explicit enumeration of relationships between the roles is needed for effi-

cient coordination because it constrains the amount of communication needed

between the agents enacting the roles. An agent only needs to communicate

with other agents that are enacting roles that have direct relationships with a

role that it is enacting. For example, a team member only needs to communi-

cate with other team members for performing its job, whereas a team leader

has to communicate with both the team members and the project leaders.
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The organizational structure directly influences the effectiveness of the multi-

agent system in solving the problem at hand, the resources needed by the agents and

the cost of coordinating the activities of the individual agents. Hence, the design of

the organizational structure is a very important part of the whole multiagent system

design. Unfortunately, there is no best way to organize and all ways of organizing

are not equally effective [Carley & Gasser, 1999; Lawrence & Lorsch, 1967; Scott,

1998]. We will discuss a list of factors that affect the choice of an organizational

structure in the next subsection. For a survey of various organizational paradigms,

see [Horling & Lesser, 2005b].

Besides an organizational structure, organizations also consist of rules, regu-

lations, policies, procedures and conventions that are used for effective coordination

between the agents. These procedures are used to codify a coordination protocol

between the agents. For example, in a human organization, members of a software

team need to complete a set of documents (timeline charts, requirement documents,

use cases, feature specs, UML diagrams, QA plans, etc) that are used to ensure that

jobs are done properly in a coordinated fashion.

Similarly, in organizations made up of software agents, a set of coordina-

tion mechanisms is needed to ensure that the dependencies between the agent roles

are properly managed. Examples of coordination mechanisms that can be used in

such organizations are Generalized Partial Global Planning (GPGP) [Decker, 1995;

Decker & Li, 2000; Lesser et al. , 2004; Chen & Decker, 2005], which involves the

use of commitments for managing scheduling dependencies between tasks and Nego-

tiation [Rosenschein & Zlotkin, 1994; Jennings et al. , 2001; Koifman et al. , 2004;

Kraus, 2001], which involves the resolution of conflicts using various negotiation

strategies.

2.1.1 Choosing an Organizational Structure

The main factors influencing the choice of an organizational structure are:
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1. The task structure: It makes intuitive sense that the organizational struc-

ture should depend on the underlying task structure of the problem being

solved. Indeed in human organizations, the kind of roles, skills and resources

needed by an organization that deals with, say, manufacturing outdoor equip-

ment is very different from the kind of roles, skills and resources needed by an

organization whose primary purpose is to impart an education to college stu-

dents. Table 2.1 shows some of the differences in the roles, skills and resources

of different organizations.

Table 2.1: Table showing the difference in the roles, resources and skills required in
two different organizations

Organiza-
tion

Roles Resources Skills

Manufacturing
Organization

Managers, Product
Designers, Factory-shop
Workers

Corporate Offices, Factories,
Machines, Production Lines,
Distributors, etc.

MBA’s,
tool-operating
skills, etc.

Educational
Organization

President, Deans,
Professors, Lecturers

Classrooms, Libraries, Research
Labs, etc.

Ph.D.s

Similarly, in multiagent organizations, the task structure directly influences

the choice of organizational structures in the following ways:

• At a high level, the number of nodes in the task structure determines

the number of possible roles in the organizational structure. This is

because nodes in the task structure represent goals and equating nodes

to roles is equivalent to assigning responsibility for achieving goals to

the agents enacting the roles.1 Hence, a “bigger” task structure with a

1 Note that equating roles and goals does not preclude the possibility of having
more than one agent responsible for a role and having an agent responsible for
multiple roles.
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greater number of nodes is likely to have a larger number of roles than a

“smaller” task structure with few nodes.

• The number of non-local effects (enablements, disablements, facilitations,

etc) and the number of sibling relationships2 will directly influence the

number of coordination relationships between the roles. Intuitively, a task

structure with a large number of such relationships will be more difficult

to coordinate as the decisions taken by an agent enacting a particular

role directly influences a large number of other agents.

• The number of alternative ways of achieving a task directly affects the

robustness of an organization with respect to that task. We will describe

robustness in some detail later.

2. The criteria being optimized: The criteria being optimized defines what

it means to have an “optimal” organization. The goals of an organization

determine what all the organization wishes to achieve, whereas the criteria de-

termine how well the organization achieves its goals. For example, consider

two personal computer manufacturers. Since they are computer manufactures,

both of these organizations have the same goal — to manufacture computers.

However, they may be optimizing different criteria in trying to meet their goal

— one of these organizations may be trying to manufacture the cheapest pos-

sible computers, while the other organization might be trying to manufacture

the fastest, best designed computers. Now if the computers manufactured by

the first organization are not the cheapest, then the first organization is not

optimal. Similarly, if the computers manufactured by the second organization

are not the best deigned, the second organization is not optimal. Hence, the

criteria being optimized complement the goals of the organization.

2 Nodes in a TÆMS task structure that have a common parent are said to have
a sibling relationship with each other.
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For most publicly traded corporations, the primary criteria being optimized is

the shareholder value of the corporation, which is itself determined by a num-

ber of secondary criteria such as the profits earned, the market capitalization,

etc. Similarly for organizations composed of software agents, the primary cri-

teria being optimized might be an organizational utility function, which might

be itself be dependent on various secondary criteria such as the quality of the

produced solution or the time, cost and resources needed to produce the so-

lution. Expressing the criteria being optimized as a utility function allows us

to combine various different criteria (such as quality, cost, duration, available

resources) in arbitrary ways.

Often, it is extremely difficult to come up with an optimal organization. Fur-

thermore, it is often hard to come up with an accurate utility function for

combining different and often conflicting criteria. Hence, the criteria are often

specified in satisficing terms instead of optimizing terms. For example, the

criteria might be specified as “The solution should have a minimum quality of

10 and a maximum cost of 100”.

The criteria being optimized determines the kind of organizational structure

in two ways:

(a) It affects the number of agents needed in the organization. The num-

ber of agents needed is directly contingent on the assignment of roles to

the agents. Indeed, the number of agents assigned to each role is deter-

mined by (1) the time constraints by which the goal of a role needs to

be achieved, (2) the time it takes for a single agent to achieve the goal

and (3) the amount of resources available for completion of the goal. If

the time it takes for an agent to achieve a goal is greater than than the

deadline by which the goal needs to be completed, more than one agent

needs to be assigned to the goal. The deadline or time constraints on
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Figure 2.2: A Simple Supply-Demand graph for sleeping bags. Note that the inde-
pendent variable, price, is shown on the y-axis and the dependent variable, quantity
is shown on the x-axis.

a goal are usually directly or indirectly determined by the criteria being

optimized by the organization.

To see how, consider an outdoor equipment manufacturing organization

that wishes to maximize its profits. Also, for simplicity, let us assume that

this organization only manufactures a single product, namely sleeping

bags. Now the maximum profit that this organization can make is directly

dependent on the number of sleeping bags sold. Also the quantity of

sleeping bags manufactured must equal the maximum number of sleeping

bags that the organization can possibly sell. Hence, the organization

needs to compute a supply-demand curve for its sleeping bag, similar to
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the one shown in Figure 2.23. In this figure, the demand curve (shown

using the solid red line) shows the inverse relation between the price

and the demand for sleeping bags — as the price increases, the demand

drops (This is known as the law of demand). Similarly, the supply curve

(shown using the blue dashed line) shows the positive relation between

price and supply. As the price increases, the willingness and ability of

manufacturers to produce goods increases. The optimal quantity and

price is determined by the intersection of these curves4. From the figure,

it is obvious that the corporation should manufacture 4400 sleeping bags

per month. If a single factory-shop worker can manufacture 500 sleeping

bags per month, the 9 workers are needed in an optimal organization.

Another way of looking at it is if too few agents are available, the system

will be overloaded and will not be able to perform optimally. If too many

agents are used, resources may be wasted and contention for the limited

resources amongst the agents will increase.

(b) It affects the selection of tasks. The desired criteria that is being opti-

mized primarily affects the sets of tasks that can be scheduled. This in

turn affects the kind of organizational structure that can be produced as

it doesn’t make sense to equate roles and assign agents to tasks that can

never be scheduled.

To see how, consider the two hypothetical TÆMS task structure5 shown

in Figure 2.3. If a minimum quality of 15 is desired and a maximum cost

3 By convention, supply-demand curves are shown with the independent-variable,
the price, on the vertical y-axis and the dependent variable, the quantity on the
horizontal x-axis.

4 This is a very simple example that ignores a lot of market dynamics.
5 TÆMS is simply a hierarchical task representation language that we use for our

problem description. See Section 3.1 for a description and formal definition.
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Task A

Method 1 Method 2 Method 3 Method 4

Quality: 30
Cost: 50

Duration: 10

Quality: 20
Cost: 30

Duration: 10

Quality: 15
Cost: 20

Duration: 5

Quality: 10
Cost: 5

Duration: 1

EXACTLY_ONE

Task B

Method 1 Method 2 Method 3 Method 4

Quality: 30
Cost: 50

Duration: 10

Quality: 20
Cost: 30

Duration: 10

Quality: 15
Cost: 20

Duration: 5

Quality: 10
Cost: 5

Duration: 1

SUM

Figure 2.3: Two TÆMS task structures with different CAFs.

26



of 30 is permissible, then it only makes sense to execute either methods 2

or 3 in order to achieve Task A as both methods 1 and 4 will violate one

of the specified criteria. If, however, the same criteria was specified for

Task B with a SUM CAF6, then either of the sets {Method 2}, {Method

3} or {Method 3, Method 4} could be scheduled. Note that in the former

case, there should be no roles for methods 1 and 4 in the organization,

while in the latter case, only method 1 should not have an equivalent

role.

Hence, the criteria being optimized can be used to prune the possible set

of roles in the organizational structure. This in turn reduces the cost of

scheduling and coordination because non-satisfiable tasks have already

been removed from the task structure, reducing the number of nodes in

the task structure.

3. The available resources: Similar to the criteria being optimized, the avail-

able resources also constrain both the number of agents and the kind of roles

in the organizational structure. The number of agents are constrained because

agents need resources (for example processors, memory, disk space, network

bandwidth, etc.) to operate — the available resources will hence determine

the number of agents that can exist without contending with each other for

the scarce resources. The kind of roles are similarly constrained. If some tasks

require resources that are unavailable, such tasks cannot be scheduled and it

does not make sense to assign roles to such tasks.

Note that there are two differences between the way the available resources

and the criteria being optimized affect the number of agents and the kind

of roles in the organizational structure. Firstly, the available resources are

6 A CAF describes how the quality of a task is computed from the qualities of its
subtasks. See Section 3.1 for a formal definition.
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hard constraints that cannot be violated (for example, if there are only 5

processors available, there is no way in which an organization that requires

10 processors will work). The criteria being optimized, on the other hand,

often impose soft constraints that should be respected as much as possible7.

Secondly, the available resources are usually constraints that are imposed by

the environment rather than by the organization designer or the user of the

system. Hence, these constraints are often at odds with what a designer or user

wants. These conflicts need to be detected and resolved in the organization as

much as possible.

4. The desired robustness: Robustness may be defined as the ability of a

multiagent system to recover from failures and exceptions. An exception may

be defined as a departure from an “ideal” system behavior [Dellarocas & Klein,

2000]. Recovery would then involve the execution of some corrective measures

to reinstate the ideal system behavior.

There are two aspects to robustness in multiagent systems:

(a) Robustness in the face of agent failure: A multiagent system should

be able to survive random agent failures, that is, the failure of any sin-

gle agent or group of agents should not bring the system to its knees.

At its best, the system should be able to function without any perfor-

mance degradation in the face of failures. At its worst, the system should

degrade gracefully in proportion to the number of failures.

(b) Robustness in the face of task failure: A task is said to fail when

the agent achieves no quality, or quality below a desired threshold, on

attempting the task. Tasks may fail for a multitude of reasons such as

7 For hard-real time systems, some of the criteria being optimized might actually
impose hard constraints that cannot be violated.
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the lack of resources, the lack of desired preconditions or enablements,

lack of satisfiable solutions, etc. An agent should be able to detect when

a task has failed (which requires monitoring capabilities), diagnose the

cause of failure and resolve the issues that led to the failure.

Both of these types of failures can affect the choice of organizational structure.

First let us consider agent failure. There are two approaches commonly used

to achieve robustness in such cases:

(a) the Survivalist Approach [Marin et al. , 2001], which involves replicating

domain agents in order to allow the replicas to take over should the

original agents fail; and

(b) the Citizen Approach [Dellarocas & Klein, 2000], which involves the use

of special monitoring agents (called Sentinel Agents) in order to detect

agent failure and dynamically startup new agents in lieu of the failed

ones.

Both of these approaches involve the use extra agents to provide robustness —

they differ in the kinds of extra agents used and the method of recovery. These

extra “recovery” agents also need to be organized and they will affect the re-

sultant organizational structure. Hence, the original organizational structure

needs to be augmented to provide for robustness. For example, consider the

citizens approach. The monitoring agents, in this approach, will fulfill monitor-

ing roles and need relationship/communication links between the roles being

monitored and the monitoring roles. Also the number of extra agents needed

will depend on factors such as the failure rate of the agents, the number of

original (domain-specific) roles, the number of roles that can be monitored by

a single agent, etc. and any change to any of these factors will result in a

change in the organizational structure. Furthermore, the monitoring agents
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might themselves fail and, hence, “second-level” monitoring agents are needed

to monitor the monitors. Hence, the monitoring agents may themselves form

their own organizational hierarchy.

Returning to task failures, note that task failures only affect the organiza-

tional structure in subtle ways. Often, task failures represent coordination

failures and since all the coordination is constrained and determined by the

organizational structure, a coordination failure is usually an indication of a

sub-optimal organizational structure. For example consider two subtasks B

and C of a main task A that are performed by two different agents, Agents 1

and 2. If Task B enables Task C and Task B is the responsibility of Agent 1 and

Task C is the responsibility of Agent 2, it is not sufficient for Agent 1 to know

the deadline on Task A. It also has to know something about the amount of

time needed by Agent 2 to complete Task C and needs to decrease the deadline

on Task B by this amount. Task A might fail due to a failure to communicate

this information and coordinate the two subtasks. Hence, the agents should

carefully monitor task failure and should initiate an organizational change if

the number of task failures increases above a certain threshold.

2.2 Literature Review

Organizations have been studied extensively in the management sciences (for

example see [Burton & Obel, 1984; Lawrence & Lorsch, 1967; March & Simon,

1993; Robbins, 1989; Scott, 1998]), partly because of their importance and ubiquity

and partly because we, as individuals, spend so much of our time in them. It was

not long before researchers in the areas of the distributed systems, in general, and

multiagent systems, in particular, realized the natural fit between organizations and

the systems that they were trying to build. Indeed, Mark Fox offered the following

definition of a distributed system:
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A distributed system is defined as a particular organization — task
decomposition and control regime — resulting from the distribution of
a set of tasks over a logically or physically disjoint processing elements.

(Mark Fox in [Fox, 1981])

Whereas the above definition was offered before the emergence of multiagent

systems as a field, a lot of multiagent researchers have used organizations and orga-

nizational modeling — both as a means for understanding the dynamics of existing

human organizations and for building new computer systems based on multiagent

systems. Since we are primarily interested in building multiagent systems, we will

only discuss research that deals with the latter area here. For a representative sam-

ple of research in the area of organizational modeling using multiagent systems see

[Carley, 2002b; Chang & Harrington, 2006; Forno & Merlone, 2002; Lant, 1994;

Vriend, 2006] and journals like Handbook of Computational Economics [Carley &

Wallace, n.d.] and Computational and Mathematical Organization Theory [Amman

et al. , 1996].

The organization of the rest of this section is as follows: we will first de-

scribe an organizational taxonomy that can be used to classify the various kinds of

organizations. We will then discuss some of the research literature relevant to the

design of static8 multiagent organizations in Section 2.2.2. Such organizations have

a static organizational structure that does not change at run-time. Then we will

discuss most of the work related to adaptive, run-time multiagent organizational

design in Section 2.2.3. This includes the subset of work related to Organizational

Self-Design (OSD), which most of our research is based on. Finally, we will briefly

8 By static, we do not mean that the organization does not change at all during
the entire duration of its existence. Indeed in most organizations, the agents
that make up the organization do change over time, as agents fail or leave the
organization and as new agents join the organization. Instead the term static
here simply means that the organizational structure remains static and does not
change unless explicitly changed by an entity (usually the multiagent designer)
that is external to the agent and its environment.
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discuss some of the work on self-organization, primarily because we have often been

asked for the connection between our work and the significant magnitude of work

done on self-organization.

2.2.1 An Organizational Taxonomy

In the multiagent literature there is no universally accepted definition of what

organizations are, and hence, there is no universally accepted approach towards their

design. Instead most researchers come up with their own definition, depending on

the characteristics of organizations that they are interested in.

It is, however, possible to classify and characterize the various approaches

to organization according to the following criteria [Coutinho et al. , 2007; van Elst

et al. , 2003; Horling & Lesser, 2005b; Vazquez-Salceda et al. , 2005]:

• The meaning of term organization: Coutinho et. al. [dos Reis Coutinho

et al. , 2005] differentiate between two different meanings of an organization.

According to the first meaning, an organization is an entity with a distinct

identity and purpose [Robbins, 1989; Zambonelli et al. , 2003]. This meaning

might be referred to as the enterprise view of an organization and is directly

borrowed from the management sciences. According to the second view, an

organization is basically a set of structures or patterns of joint activity that

serve to constrain the behavior of the constituent agents [Singh & Huhns, 2005].

Note that the distinction between these two meanings is not rigid and clear-

cut. Instead most usages of the term organization transcends both of these

meanings in the literature. The key distinction between these two meanings is

on the emphasis. The first view emphasizes the organization and its goals over

those of any individual agent while the second view stresses the constituent

agents themselves and uses an organization as a means of constraining their

behavior.
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• The type of multiagent system being organized, i.e. whether the multiagent

system is open or closed: A closed multiagent system is one in which (a) all

the agents are designed under centralized control (usually by a single person or

human organization) and (b) the set of agent types is predefined by the entity

that sets up and controls the system [Krupansky, 2005]. Examples of such

systems includes most of the cooperative distributed problem solving (CDPS)

systems [Decker et al. , 1989; Horling & Lesser, 2005a].

An open multiagent system, on the other hand, is one in which agents, that are

owned by a variety of stake-holders, continuously enter and leave the system

[Huynh, 2006]. In such systems, the agents may be designed by multiple non-

interacting entities (persons or organizations) and the set of agents types may

not be predetermined before the system is put into effect. An example of

such a system would be an electronic market place [Dellarocas & Klein, 1999;

Guttman et al. , 1998; Wellman, 1997].

In general open multiagent systems are much more difficult to design than

closed ones. This is because the design of the agents is not under centralized

control, and hence, there is no way, in general, to guarantee the behavior of any

particular agent or even the system as a whole. Some of the issues that have

to be dealt with include stability [Lee et al. , 1998], security, trust [Huynh,

2006], reputation [Huynh, 2006], social norms [Shoham & Tennenholtz, 1995],

etc.

• The type of agents present in the system, i.e. whether cooperative or com-

petitive: The constituent agents of an organization may either be benevolent

(cooperative) or self-interested (competitive). [Lesser, 1999] describes the dif-

ference between the two as follows:

Cooperative agents work toward achieving some common goals,
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whereas self-interested agents have distinct goals but may still in-
teract to advance their own goals. In the latter case, self-interested
agents may, by exchanging favors or currency, coordinate with other
agents in order to get those agents to perform activities that as-
sist in the achievement of their own objectives. For example, in a
manufacturing setting where agents are responsible for scheduling
different aspects of the manufacturing process, agents in the same
manufacturing company would behave in a cooperative way while
agents representing two separate companies where one company was
outsourcing part of its manufacturing process to the other company
would behave in a self-interested way.

• The duration of existence of the organization, i.e. whether short term or long

term: Short term organizations are typically goal-directed, i.e. they are formed

with a specific purpose in mind and cease to exist once the purpose for their

formation is fulfilled. Examples of short term organizations include coalitions

[Klusch & Gerber, 2002; Shehory & Kraus, 1998] and teams [Tambe et al. ,

1999; Pynadath & Tambe, 2002; Tambe, 1997].

Most organizations are, however, long-term [So & Durfee, 1993] and are ex-

pected to outlive the existence of any of their constituent agents. As argued

by Carley, [Carley & Gasser, 1999] organizations are reasonably long term

in duration and have knowledge, culture, memories, history, and capabilities

distinct from (that of) any single agent..

• The explicitness of the organizational structure: Most traditional multiagent

systems either focused on the design of individual agents or on the design of

specific coordination mechanisms. Such systems often did not have an explicit

organizational design or structure — an implicit organization often emerged

from the interactions of individual agents and their coordination protocols.

For example, most of the systems based on the contract net protocol [Smith

& Davis, 1978; Smith, 1980] had an implicit organizational structure that was

generated anew for each problem instance. Implicit organizational design is
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particularly efficient when each problem instance is different from every other

problem instance.

Systems that have an explicit organizational design usually have an explicit

representation of the goals, the organizational structure and the rules, regu-

lations, policies, procedures and conventions that make up the organization.

Some of the advantages of having an explicit organizational structure are: (1)

It allows the modeling and evaluation of alternative task and role assignments

and their effects on the performance of the organization. (2) It reduces the

cost of coordination when problem instances have common task structures or

environments by exploiting the commonalities between the task structures to

pre-coordinate the activities of the agents.

• Run-time adaptability of the organizational structure: Some organizations have

a static organization structure that does not change during the lifetime of the

organization. Designing such an organization involves modeling the problems

being solved and the environmental conditions under which they have to be

solved before the organization and its agents are ever deployed in the field.

The obvious disadvantage of using such a static organizational structure is

that any change in the task-structure and/or environmental conditions (for

example, available resources) requires a redesign of the organization.

To overcome this disadvantage researchers have been looking at ways to al-

low the agents to dynamically alter their organizational structures at run-time.

This is especially true for situations in which the problems being solved and/or

the environmental conditions are likely to change significantly during the life-

time of the organization. Such an adaptive run-time approach to organization

design requires the agents to have a means of representing their organizational

knowledge and reasoning about it. Such approaches form the core of our re-

search and we will be discussing the existing literature in this area in Section
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2.2.3.

• The structural form/type of the organizational structure: If the roles of an

organization form the nodes of a graph and the relationships between the

nodes form the edges of the same, then this criteria attempts to classify the

agents based on the type/structure of the resultant graph. For example, if the

graph representing an organization forms a rooted tree with the root of the tree

being the role of the decision maker, then this organization can be considered

to be a hierarchy. Similarly if all the nodes of the graph are inter-connected

with each other, the organization has a flat structure.

This categorization corresponds to the Structural Dimension of modeling or-

ganizations due to [Coutinho et al. , 2007].

Both Horling and Lesser [Horling & Lesser, 2005b] and Coutinho et. al

[Coutinho et al. , 2007] present alternative schemes for classifying organizations.

The former scheme is based on what the authors refer to as the organizational

paradigms, which attempt to categorize organizations primarily based on both the

structural form of the organization and the functional decomposition of their con-

stituent agents. The latter scheme looks at organization as having four dimensions

— (1) the structural dimension, which deals with roles and relationships between

the roles; (2) the functional dimension, which deals with goal/task decomposition;

(3) the dialogical dimension that deals with how information is communicated and

includes the ontology, communication language, and knowledge representational as-

pects of the organization; and (4) deontic dimension, which deals with permissions,

obligations, norms, rules, etc. We don’t focus much on the dialogical dimension

as this dimension is more relevant to open organizations. See Section 3.4.3 for a

description of the deontic dimension.
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2.2.2 Static Compile-time Organizational Design

In this section we will discuss three representative research works (out of the

many) that deal with static compile-time organizational design — AGR, OMNI and

ODML. The first, AGR, is a qualitative approach to designing static organizations

that emphasizes the concept of roles and relationships as described in this chapter.

The second, OMNI, is another qualitative approach to designing static organizations

that focuses on open multiagent systems. Finally, ODML is a quantitative approach

to organizational design that attempts to come up with near-optimal organizations

given a set of tasks and environmental conditions. These three approaches are very

briefly described below:

• AGR: Agents, Groups and Roles [Ferber et al. , 2005, 2004]. The AGR

model is one of the simplest models of a organization. In this model, organi-

zations are represented using three organizational constructs: Agents, Groups

and Roles. Basically the agents enact one or more roles. One or more roles are

aggregated together to form groups and groups may be further aggregated to

form other groups. The groups are simply a way of partitioning an organiza-

tion so as to constrain the amount of communication that takes place within

an organization since communication only takes place between the agents that

are part of the same group.

Hence, AGR uses the concepts of Agents, Roles and Groups to define orga-

nizational structures that match our notion of an organization as described

above.

• OMNI: Organizational Model for Normative Institutions [Dignum

et al. , 2005; Vazquez-Salceda et al. , 2005]. OMNI is an approach to organiza-

tional design that is best suited to the design of open systems, especially ones

in which the organizational designer is not the same as the agent designer. It

can, however, be used for closed systems as well.
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In OMNI, organizations are viewed as having three dimensions:

1. the normative dimension defines the rules or norms of the organization;

2. the organizational dimension defines the roles and the relationships (in-

teraction patterns) between the roles; and

3. the ontological dimension describes a controlled vocabulary that contains

objects and the relationships between them. This vocabulary is used by

the agents when communicating with each other.

Furthermore, each dimension is modeled at three levels of abstraction: the ab-

stract level, the concrete level and the implementation level. The idea behind

the three levels is that as the designer moves from a more abstract level to

a more concrete level, he moves from a broad representation of the goals of

the organization to an implementation of the organization. In the interests of

brevity, we will not go into all the nitty-gritty details of all the three levels

but refer the reader to the referenced papers.

• ODML: the Organizational Design Modeling Language [Horling &

Lesser, 2005c; Horling, 2006]. ODML takes a very different and quantitative

approach to the design of an organization. ODML tries to predict how the

use of different organizational structures and constructs might affect the vari-

ous organizational characteristics such as scalability, reliability, speed, and/or

efficiency.

In addition to being quantitative, the ODML language is also unique in that

it is almost devoid of most traditional organizational concepts such as agents,

roles, relationships, etc. Instead the central construct in ODML is a node,

which has (a) a user-defined type (which is nothing but a symbol), (b) a set
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of is-a and has-a relationships with other nodes9 and (c) a set of quantitative

fields. These quantitative fields describe the variables, constants, modifiers

and constraints that affect the node.

There is also a special node that represents the whole organization. The

set of nodes collectively describe a high-level representation or organizational

template of the set of possible organizations. These organizational templates

can then be instantiated to form actual organizations by selecting values for

the elementary variables in a way that satisfies all the specified constraints.

The quantitative characteristics of an organization can be determined from

the expressions that describe the special organizational node.

An obvious question is how can ODML be used to represent high-level orga-

nizational constructs like roles and agents? This question is answered by the

authors as follows:

Instead of directly incorporating the usual high-level organiza-
tional components, such as hierarchies, roles, agents, etc., ODML
provides a set of relatively low-level primitives by which such struc-
tures can be defined. For example, a node with the user-defined
type manager, having a has-a relationship with another node of type
agent could embody a role-agent relationship. A sequence of has-a
relationships between nodes could indicate a hierarchy. Although
the high-level semantics for these nodes may only be implicit, the
concrete characteristics and design ramifications are still directly
and quantitatively captured by the nodes’ fields. We feel that this
approach can lead to an increased diversity of representable struc-
tures, by avoiding the assumptions and inevitable restrictions that
can accompany frameworks with higher-level semantics.

(Horling and Lesser [Horling & Lesser, 2005c])

Hence, ODML is a particularly nice way of representing the static design of a

organization in way that allows the designer to determine the characteristics

9 These relationships are equivalent to standard is-a and has-a relationships be-
tween classes in any object oriented programming language.
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of the organization once deployed. Therefore it can be used for worth-oriented

domains. However, ODML is not directly suited to open systems and needs

to be extended to handle systems that have dynamic environments.

2.2.3 Adaptive Run-time Organizational Design

As mentioned previously, agents that exhibit an adaptive organizational de-

sign can change their organizational structure at run-time in order to cater to

changes in the task structure and environment. Such approaches to organization

come under the umbrella term Organizational Self-Design or OSD.

The concept of OSD is not new and has been around since the work of

Corkill and Lesser on the DVMT system [Corkill & Lesser, 1983], even though they

did not fully develop the concept. More recently Dignum et. al. [Dignum et al. ,

2004] have described OSD in the context of the reorganization of agent societies and

attempt to classify the various kinds of reorganization possible according to the the

reason for reorganization, the type of reorganization and who is responsible for the

reorganization decision. According to their scheme, the type of reorganization done

by our agents falls into the category of structural changes and the reorganization

decision can be described as shared command. Also, in our agents, the reason for

reorganization can either be protective or corrective.

Our research primarily builds on the work done by Gasser and Ishida [Gasser

& Ishida, 1991; Ishida et al. , 1992], in which they use OSD in the context of a pro-

duction system in order to perform adaptive work allocation and load balancing. In

their approach, they define two organizational primitives – composition and decom-

position, which are similar to our organizational primitives for agent spawning and

composition. The main difference between their work and our work is that we use

TÆMS as the underlying representation for our problems, which allows, firstly, the

representation of a larger, more general class of problems and, secondly, quantitative

reasoning over the task structures. The latter also allows us to incorporate different
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design-to-criteria schedulers [Wagner & Lesser, 2000]. Furthermore, in addition to

load balancing and task allocation, our approach also attempts to coordinate the

activities of the individual agents by allowing for various coordination mechanisms.

Some other approaches to OSD include:

• Horling et. al.’s work on using self-diagnosis to adapt organizational

structures [Horling et al. , 2001]: This work presents a different, top-down

approach to OSD that also uses TÆMS as the underlying representation. How-

ever, their approach assumes a fixed number of agents with designated (and

fixed) roles. OSD is used in their work to change the interaction patterns be-

tween the agents and results in the agents using different subtasks or different

resources to achieve their goals.

• Sycara et. al.’s work on agent cloning [Decker et al. , 1997; Shehory et al.

, 1998]: This is another approach to resource allocation and load balancing.

In this approach, the authors present agent cloning as a possible response to

agent overload – if an agent detects that it is overloaded and that there are

spare (unused) resources in the system, the agent clones itself and gives its

clone some part of its task load. The cloned agents are perfect replicas of the

original agents and fulfill the same roles and responsibilities as the original

agents.

Our OSD approach incorporates agent cloning as one of the general agent

spawning strategies. The other general agent spawning strategy is agent

breakup in which the spawned agents are specialized on a subpart of the

spawning agent’s task structure, which is no longer the responsibility of the

spawning agent. That is, in agent spawning, the original task being handled

by the agent doing the spawning is broken up into two or more subtasks which

are then the responsibility of two different agents. In our OSD research, we
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have tried to study the tradeoffs between these two strategies and have devel-

oped a hybrid strategy that uses both agent cloning and agent breakup. (See

Section 3.4.5.2 for details.)

Also our OSD approach deals with the explicit formation and adaption of

the organization and with the coordination of the agents’ tasks which are not

handled by this work.

• DeLoach et. al.’s work on The Organization Model for Adaptive

Computational Systems (OMACS) [DeLoach et al. , 2008; DeLoach,

2009]: The OMACS approach defines an organization in terms of the goals of

the organization, the roles needed to achieve those goals, the constituent agents

that make up the organization and the capabilities of the constituent agents.

The OMACS approach also describes a set of relations/functions (achieves,

requires, possesses, etc) that can be used to map agents to roles and goals so

as to maximize an organization assignment function (OAF).

The primary difference between the OMACS approach and our OSD approach

is the primary focus of the work - The OMACS approach emphasizes the agents

that make up the organization and tries to find a good allocation (one that

maximizes the OAF function) of agents to the roles and goals of the organi-

zation. Our OSD approach, on the other hand, emphasizes the problems or

goals that the organization is trying to achieve. The idea behind our approach

is that the multiagent designer is primarily concerned with the set of problems

that he/she wishes to solve and should not have to worry about the details of

the organization that solves those problems. The OMACS approach is more

suitable when there are a fixed set of pre-existing agents in the multiagent sys-

tem whose capabilities are known. Our OSD approach is more geared towards

real-world applications in grid/volunteer/cloud computing where a user has a

workflow that he/she wishes to enact and OSD can be used for the purposes
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of task/resource allocation. Our OSD approach also focuses on the mecha-

nism by which the reorganization occurs and we have presented a distributed

algorithm that can be used for the task/resource allocation. The OMACS

approach allows various reorganization algorithms to be used though most of

them are centralized. Another difference between the OMACS approach and

the OSD approach is that the OMACS approach is more similar to a one-off

task/resource allocation scheme like the contract net protocol in that it treats

every problem instance as separate and creates a different organization for

each.

There are, however, similarities between the OMACS approach and our OSD

approach. The TÆMS task representation language is very general and can

be used to represent many of the concepts in the OMACS approach. For

example, the goals in OMACS are Tasks in TÆMS ; the roles are equivalent

to the executable methods; and the concept of roles requiring capabilities can

be represented by the mapping of executable methods to the set of resources

needed for executing the method. Finally, the assignment of agents to roles

and goals is done in our approach by “creating” agents that have allocated

the desired set of resources on the grid/cloud.

• Kota et. al.’s work on self-organization [Kota et al. , 2008, 2009]: In

this work, an organization is defined by the relationships between the agents.

An agent, A, may be related to another agent, B, in three different ways – (i)

Agent A may be an acquaintance of Agent B, meaning that Agent A knows

about the presence of Agent B but does not have any interactions with it; (ii)

Agent A may be a peer of Agent B, which means that the interactions between

the agents are limited in number; and (iii) Agent A may be a superior of Agent

B, which means that the agents will have a high level of interaction between

them. These relationships are used to allocate tasks amongst the agents, with
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agents preferring to perform tasks on their own if they have the requisite

capacity. If not, they will first try to delegate tasks to their subordinates and

then to their peers. Reorganization is used to change these relationships at

run-time so as to increase the efficiency and performance of the organization.

Some key differences between their work and our OSD work are: (i) Their

work is limited to task-oriented domains in which tasks form a tree structure

consisting of subtasks, called service instances (SIs), which can be further

divided into other SIs. This task structure is used to enforce a partial ordering

on the SIs. Our work, on the other hand, is designed for worth-oriented

domains. (ii) Their work uses a one-off task allocation scheme similar to

the contract net protocol and OMACS – each arriving task is independently

allocated of all the other tasks. The set of relationships are used to limit

the agents considered for allocation decision and constrain the coordination

protocol. Our OSD work, on the other hand, has explicit roles with multiple

instances of a task structure being allocated in the same way. (iii) Their tasks

don’t have deadlines. They have to be executed in the order in which they

were generated.

While there isn’t a direct mapping from their work onto our OSD work, it is

possible to (i) represent their tasks structures using TÆMS ; and (ii) achieve

their form of reorganization through the use of task cloning while spawning a

new agent.

• Barber and Martin’s work on Dynamic Reorganization of Decision-

Making Groups [Barber & Martin, 2001; Martin & Barber, 2006]: This work

focuses on reorganization in which the decision making control and authority-

over relationships amongst the agents are allowed to change during system

operation, at run-time. That is, the agents are able to reorganize decision-

making groups by dynamically changing (1) who makes the decisions for a
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particular goal and (2) who must carry out these decisions. However, the ap-

plication specific resources, task responsibilities, and capabilities of the agents

remain the same, and hence, this work assumes a fixed number of homogeneous

agents.

Specifically, the authors assume that there are three decision making controls

and styles: (1) Command Driven, where a master agent gives commands to one

or more slave agents to do something; (2) True Consensus, in which all agents

work together and decide what to do; and (3) Locally Autonomous/Master, in

which an agent is solely responsible for making its own decisions. The authors

allow the decision making style to vary at run-time and argue that the optimal

style depends on the task and environmental conditions at hand.

Whereas there are fundamental differences between their work and our own

OSD work (for example, the assumption about a fixed number of agents),

there are also similarities. For example, our use of managers to coordinate

high level tasks is similar to the use of master control with the manages being

run in command driven mode. That is, the manager acts as a master agent

for a high-level node and decides which of the subtasks/sub-nodes to execute.

It then gives commands to the agents responsible for the sub-nodes to execute

them. Also some of the tasks are the sole responsibility of one agent in which

case the decisions are similar to the locally autonomous approach.

In fact, this work can be used complement our own OSD work — Since we

allow a lot of flexibility in the choice of the coordination mechanisms being

used to coordinate the inter-task relationships between our agents, we can use

their approach to change the coordination relationship at run-time.

• Goldman and Rosenschein’s work on evolving an organization of

agents [Goldman & Rosenschein, 1997]: This work presents an evolutionary

45



method of generating an organization based on Conway’s Game of Life [Gard-

ner, 1985] and applies it to the information domain. In this domain, the agents

try to divide a set of documents amongst a set of agents such that each agent

ends up with a group of similar documents.

This work is similar to ours in that (1) it does not assume a fixed set of agents,

(2) they use agent spawning when an agent holds too many documents and

(3) agents may die and release their documents, which is similar to agent

composition in our approach.

However, this work cannot directly be applied to worth oriented domains and

has not been formally specified. In fact, it is difficult to see how their method

can be generalized to a broad set of problems.

Other older approaches to OSD include the work of So and Durfee [So &

Durfee, 1993], who describe a top-down model of OSD in the context of Coopera-

tive Distributive Problem Solving (CDPS). Still other researchers have focused on

dynamic organizations in open systems and for modeling human organizations. For

example, both [Artikis et al. , 2009] and [Boella et al. , 2009] primarily deal with

norms in open systems and describe how the agents might change their own rules

of behavior. Since our approach does not deal with open systems, we do not discuss

the evolution of norms in our approach (although using different coordination algo-

rithms can capture some of the ideas presented in these works). Similarly, [Lamieri &

Mangalagiu, 2009] primarily deals with using agent based modeling to study human

organizations. Our approach, on the other hand, is solely concerned with software

organizations.
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2.2.4 Self-Organizing Multiagent Systems

The term Self-organizing system10 [Bonabeau et al. , 1999; Bernon et al. ,

2006; Parunak, 1997; Serugendo et al. , 2006b] is generally used to refer to systems in

which intelligence, organization and complex behavior emerges from the interactions

of relatively simple agents. Such systems have the following characteristics:

• The agents themselves are relatively simplistic in that they possess very limited

intelligence and reasoning capabilities. Whereas most, if not all, multiagent

systems are considered to have agents that are limited in their capabilities

for acquiring knowledge, reasoning and taking decisions (a concept that is

commonly known as bounded rationality [Simon, 1957, 1991; Fox, 1979]), the

agents being considered in self-organizing systems are especially constrained.

The agents in such systems do not (usually) have the ability to reason about

their goals, their actions, the goals of other agents or their organizational

structures. Instead such agents typically follow a very simple protocol or

algorithm to guide their actions.

• The agents in most of these systems do not interact or communicate directly

with each other. Instead they interact indirectly through the environment

— that is, the agents change their environment in subtle ways that may be

detected by some of the other agents. Moreover the agents are spatially dis-

tributed throughout the environment. This means that any one “spatial lo-

cation” will have only a few agents occupying it, which will limit interaction

between the agents. This is because the agents can only affect a small area

of the environment in which they are located and can only sense the spatial

region in which they are located.

10 Note that we will drop the multiagent prefix in this discussion. It should be
obvious that we are dealing specifically with self organizing multiagent systems
and not any other self-organizing systems.
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• The complex behavior of the system emerges from the interactions of the

constituent agents. By emergence, we mean that higher system-level behavior

develops from elementary behavior that is not explicitly represented in agents

themselves. Usually this emergent behavior is considerably more complex than

that would be indicated by the sum of the behavior of the individual agents.

• There is no centralized authority, either internal or external to the system,

that controls or guides the behavior of the system.

Examples of such systems are abound in nature. For example, ants forag-

ing for food, termites building a nest, flocking birds and schools of fishes all exhibit

self-organizing behavior [Parunak, 1997]. Such systems have also been used for engi-

neering applications such as school timetabling, flood forecasting, land-use allocation

and traffic simulation [Bernon et al. , 2006].

The key advantages of self-organizing systems include their scalability and

robustness. Such systems are scalable primarily because the agents are spatially

distributed and interact with each other only through the environment. Since only

a few agents are present in any one location, any one agent will only be interacting

with a limited number of other agents. Hence, self-organizing systems can usually

scale to tens of thousands of agents. Such systems are robust because (a) there

are no central points of failure since control is completely distributed; and (b) it is

difficult to game or spoof the system since most of the agents are running a random

non-deterministic algorithm in order to effectively explore the state space.

The disadvantage of self-organizing systems is that it is very hard to guar-

antee desirable or optimal behavior since the system-level behavior emerges from

behavior that is not explicitly represented at any level. Hence, it is difficult to

predict the exact characteristics (such as performance, efficiency, etc) of the resul-

tant organization. Hence, a number of researchers [Wooldridge & Jennings, 1998;
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Moore & Wright, 2003] have argued that emergent behavior should be limited. For

example, Wooldridge and Jennings argue the following:

... emergent functionality is akin to chaos. In short, the dynamics of
multi-agent systems are complex, and can be chaotic. It is often difficult
to predict and explain the behavior of even a small number of agents;
with larger numbers of agents, attempting to predict and explain the
behavior of a system is futile.

(Wooldridge and Jennings [Wooldridge & Jennings, 1998])

Furthermore, it is not completely obvious how such a system can be adapted

for use in general-purpose worth-oriented domains. Hence, even though self-

organizing systems do have their applications and strengths, we don’t think they

can be applied to a wide variety of general-purpose domains, such as the ones in

which we are interested.

From the above discussion, it should be obvious that there are significant

differences between OSD based systems and self-organizing systems11. For example,

our OSD agents are capable of complex reasoning about their goals, problem domain

and organization. Furthermore, our OSD agents interact directly with each other

by sending each other messages. There are also a lot of other differences that we

have not covered here in the interest of brevity.

2.2.5 Non-organizational approaches to task and resource allocation

There are other non-organizational approaches to task and resource alloca-

tion. Most of these approaches are based on some form of a market mechanism.

It has been argued that since agents are rationally bounded, they cannot make all

the decisions needed to efficiently allocate tasks and resources amongst themselves

using central planning. In such situations, decentralization becomes necessary and

11 Though some researchers do consider OSD to be a subset of self-organizing
systems. For example see [Serugendo et al. , 2006a].
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in such decentralized settings, market mechanisms are a effective way of allocating

tasks and resources:

... it is the very complexity of the division of labor under modern con-
ditions which makes competition the only method by which such coor-
dination can adequately be brought about...

As decentralization has become necessary because nobody can con-
sciously balance all the considerations bearing on the decisions of so
many individuals, the coordination cannot be effected by “conscious con-
trol,” but by arrangements which convey to each agent the information
he must possess in order effectively to adjust his decisions to those of
others.

This is precisely what the price system does under competition, and
which no other system promises to accomplish. The more complicated
the whole, the more dependent we become on that division of knowledge
between individuals whose separate efforts are coordinated by the im-
personal mechanism for transmitting the relevant information known by
us as the price system.

(von Mises and Hayek as reported in [March & Simon, 1993])

In the following subsection, we describe the Contract Net Protocol (CNP),

one of the simplest, yet most famous methods of allocating tasks amongst the agents.

CNP is based on agents bidding for tasks. A lot of other task and resource allocation

mechanisms are loosely based on the contract net protocol. See for example [Fatima

& Wooldridge, 2001] and [Kinnebrew et al. , 2008].

Note that task allocation in multiagent systems is a special case of resource

allocation. The key difference between the two is that tasks are often subdivided

into subtasks which often have interdependencies between them. For a general

description of some of the issues in multiagent resource allocation, see [Chevaleyre

et al. , 2006].

2.2.5.1 The Contract Net Protocol

The Contract Net Protocol (CNP) [Smith, 1980, 1988] is a distributed task-

allocation protocol in which the agents use negotiation to allocate tasks amongst
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themselves. In CNP, the agents enact two major roles — Manager Roles and Con-

tractor Roles. Agents enacting manager roles are responsible for monitoring the

execution of tasks and for processing the results of that execution. Agents enacting

contractor roles, on the other hand, are responsible for the actual execution of the

tasks. Note that agents may be managers and contractors at the same time and

there is no a priori role allocation/assignment being done — instead the agents can

dynamically choose their roles during the course of problem solving.

A typical operation of the CNP is as follows: An agent that has a task to

perform checks to see if it can do the complete task by itself. If it can, the agent

executes the task with no further communication/coordination with its fellow agents.

If not, it acts as a manager agent and breaks up the task into its component subtasks.

For each component subtask, the manager agent then sends out a Request-for-Bids

message to its fellow agents. These agents evaluate this Request-for-Bids message to

see if they can perform the subtask. If they can, they respond to the manager agent

with Bid messages. Upon expiration of the bid deadline, the manager evaluates the

bids and sends an Award message to the best bidder (based on whatever evaluation

criteria that the manager agent used to select the best bid). The best bidder than

enacts the contractor role and is responsible for executing the subtask.

The contractor then runs the same protocol to perform the subtask — that

is if it can’t complete the allocated subtask on its own, it breaks up the subtask into

sub-subtasks and sends out Request-for-Bids messages for each of its sub-subtasks.

The operation of CNP is shown in Figure 2.4.

Key differences between our OSD approach and the CNP approach are:

1. The CNP approach is a one-off task allocation scheme in which all the task

instances are executed independently of each other. The set of agents used

to execute a particular instance of a task has no bearing on any subsequent

instances of the same task. In our OSD approach, on the other hand, the
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Figure 2.4: Operation of The Contract Net Protocol
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task allocation is determined by the roles of the agents and the cost of task

allocation is amortized over all the task instances.

2. In the CNP approach, the organizational structure is implicit in the way in

which the tasks are allocated. Furthermore, the organizational structure is

regenerated for each task instance. Our OSD method uses an explicit organi-

zational structure.

2.3 Chapter Summary

This chapter introduced the reader to the term “organizations” and reviewed

the existing literature on the design of organizations.

Section 2.1 described what an organization is and Section 2.1.1 discussed the

factors that influence the choice of an organizational structure.

Section 2.2 discusses the existing literature relevant to our work — Section

2.2.1 describes an organizational taxonomy that can be used to classify and charac-

terize the various approaches to organizational design. In Section 2.2.2, we saw three

representative approaches to the static compile-time design of an organizational

structure. This was followed by a discussion of the existing research on adaptive

run-time organizational design in Section 2.2.3. This research forms the background

and basis of this dissertation. Next, Section 2.2.4 describes self-organizing systems

and discusses the ways in which such systems differ from the kind of systems that

we are interested in. Finally 2.2.5 discusses some non-organizational approaches to

task and resource allocation.

53



Chapter 3

APPROACH

Every vital organization owes its birth and life to an exciting and daring
idea. (James Bryant Conant)

Human beings, viewed as behaving systems, are quite simple. The ap-
parent complexity of our behavior over time is largely a reflection of the
complexity of the environment in which we find ourselves.

(Herbert Simon)

The organization of this chapter is as follows: We start with an introduction

to TÆMS and task structures. We follow this up with a brief description of our

approach (in Section 3.2) and a formal definition of our task and resource model (in

Section 3.3). We then cover the many facets of Organizational Self Design (OSD)

in Section 3.4. Finally, we discuss the implemented architecture of our agents in

Section 3.5.

3.1 Task Structures and TÆMS

The first step in trying to solve any complex problem is to analyze the problem

and break it up into its constituent sub-problems. The sub-problems can then be

solved and the results of solving these sub-problems can be combined into a solution

to the original problem. Often the sub-problems themselves are too complex to

be solved and need to be further decomposed. This recursive decomposition of

problems can continue to any arbitrary level, until each problem is small enough

and constrained enough to be solvable on its own. This process is known as task
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Figure 3.1: A simple task decomposition tree for the manufacturing domain. Each
node of the tree represents a goal. The children of a node represent the sub-goals of
that goal.

decomposition and results in a task decomposition tree, similar to the one shown in

Figure 3.1. This is the principle on which most of traditional AI planning [Ghallab

et al. , 2004; Rich & Knight, 1991; Russell & Norvig, 2002] is based.

For most complex problems, a simple task decomposition tree is often in-

sufficient and cannot be used to accurately represent and model the wide range of

ramifications that occur in real-life problems. Some of the problems that cannot be

modeled using a simple task decomposition tree are:

• Many problems have alternative ways of solving them and attempting to solve
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a problem in a certain way may result in multiple outcomes. For example, a

sleeping bag may be filled with down feathers or with a synthetic material.

Hence, some mechanism is required to represent the alternatives and reason

about them based on quality/cost tradeoffs.

• The sub-problems may interact with each other in arbitrary ways that need

to be modeled. For example, some problems may need to be completed before

other problems are started. In our running example, a sleeping bag has to be

designed and manufactured before it can be shipped.

• The environment1 in which the agents operate is often complex and directly

affects the performance of the agents and their ability to solve the problems

being attempted. According to the classification scheme presented in Russell

and Norvig[Russell & Norvig, 2002], most multiagent systems have an environ-

ment that is continuous, dynamic (the price of down feathers might change),

non-deterministic (the attempt to ship some sleeping bags might fail if the

shipping company’s workers go on strike) and inaccessible (the agents cannot

know about all the factors that affect the cost of raw materials).

Some mechanism is needed to represent some of the effects of a dynamic, non-

deterministic and inaccessible environment on the task being attempted. In

particular, some means of representing the probability of failing on a task or

of a task having multiple outcomes with different characteristics (eg cost and

duration) is needed.

For these and other reasons, a better representation scheme is needed to

model the complex, real-life problems that the agents are attempting to solve.

1 The environment is the logical entity of a multiagent system in which the agents
and other objects/resources are embedded. This definition is due to Weyns et.
al.[Weyns et al. , 2004].
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Figure 3.2: An example of a TÆMS task structure.

TÆMS (Task Analysis, Environment Modeling and Simulation) [Decker, 1995, 1996;

Lesser et al. , 2002; Horling et al. , 1999] is one such representational framework that

can be used represent and reason about complex task environments. TÆMS has been

used in a wide range of applications including distributed sensor networks [Decker,

1995], information gathering [Lesser et al. , 2000], hospital scheduling [Decker & Li,

2000], EMS [Chen & Decker, 2005], and military planning [Wagner, 2004; Zimmer-

man et al. , 2007; Maheswaran et al. , 2008].

We will be using TÆMS as the underlying representational framework for

reasoning about organizational structures. An example of a TÆMS task structure

is given in Figure 3.2. Salient features of TÆMS , which make it especially suited

for representing a wide range of task structures and environments, are:
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• Representation of tasks at various levels of abstraction. In TÆMS , tasks are

represented using directed acyclic graphs (DAGs). The root nodes (the ones

which don’t have any parents) represent high-level tasks or goals. The sub-

nodes of a node represent the subtasks and methods that make up the high

level task. The leaf nodes are at the lowest level of abstraction and represent

executable methods - the primitive actions that the agent can perform. Hence,

high-level goals are divided into subgoals which have to be achieved and the

primitive actions are the ways in which the subtasks can be achieved.

• Representation of the multiple outcomes of executable methods along with

their quantitative characteristics. Examples of characteristics that we might

wish to model are the quality achievable on successfully completing an exe-

cutable method and cost and time duration needed to perform the method.

Furthermore, some methods may have multiple outcomes with different prob-

abilities of occurrence and each of these outcomes may have different quan-

titative characteristics. TÆMS allows the annotation of executable methods

with their outcomes and quantitative characteristics, which provides a way of

reasoning about cost/quality tradeoffs.

• Various mechanisms for combining subtasks. In TÆMS , each node of the

DAG is labeled with a characteristic accumulation function (CAF, formerly

known as a quality accumulation function or QAF) that describes how many

subgoals need to be achieved in order to achieve the high-level goal, the method

of computing the run-time characteristics of a task based on the run-time

characteristics of the subtasks and, in some cases, the order in which the

subgoals need to be achieved2. For example, all the subtasks and executable

2 Ideally, CAFs should not be used to specify order or sequencing constraints.
Task interrelationships should be used for such purposes (see the next bulleted
item). However, quite a few researchers have used CAFs to specify ordering,
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methods of a node labeled with an Min CAF need to be achieved in order for

the node to accrue quality and the quality of that node will be the minimum

of the qualities of all the sub-nodes of that node. Similarly, one and only one

subgoal should be completed for a node labeled with an Exactly One CAF.

CAFs are mainly used to provide a way of selecting between the alternative

ways of achieving a task and provide semantics for combining the subtasks of

a task.

• The ability to represent interrelationships between the tasks. TÆMS allows

the representation of both hard and soft relationships and the quantitative

effects of those relationships. An example of a “hard” relationship is enables.

If some task, A, enables another task, B, then A must be completed before

B can begin. An example of a “soft” relationship is facilitates. If some task,

A, facilitates a task B, then completing A before beginning work on B might

cause B to take less time, or cause B to produce a higher-quality result, or

both.

For our work, we are assuming that a TÆMS task structure is available for the

problem being attempted. In particular, we won’t look at the planning problem

and will not try to generate TÆMS task structures from basic operators, rules or

templates. Instead we are assuming that the problem has been thoroughly analyzed

by human or other means and a fully specified TÆMS task structure is provided as

input to the multiagent system.

3.2 Our Approach

As stated previously, we take a run-time approach to organizational design

in which the agents in the multiagent system are responsible for designing their own

mostly as a short-hand for explicitly enumerated inter-task relationships.
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organization. This approach may be referred to as Organizational Self-Design or

OSD.

We assume that the user of the multiagent system generates problem solving

requests for the problems that he/she wishes the system to solve. Each problem has

with it, an associated TÆMS task structure3, desired solution characteristics (for

example, minimum solution quality or maximum cost) and a deadline by which the

request must be fulfilled.

In our approach, the system starts up with a single agent that is responsible

for solving the complete problem. As new problem solving requests arrive, the agent

checks to see if it can complete the requests by their given deadlines and in such

a way that the solution characteristics are met. If it finds that it is overloaded

and cannot complete its requests by their specified deadlines or cannot meet the

specified solution characteristics, it spawns off new agents to handle some parts

of the problem. This spawning process effectively breaks up the task structure

— each agent is now responsible for some subpart of the task structure and the

nodes in that subpart represent the roles that that particular agent is enacting.

The newly spawned agents may themselves spawn off new agents and assign them

some of their roles if they feel that they are overloaded and cannot adequately

complete their responsibilities. Note that the spawning process has added agents to

the organization and caused a (re-) distribution/allocation of tasks and resources

amongst the agents. If an agent is free for an extended period of time, it may decide

to combine with another agent to save computational resources. Hence, we propose

two organizational primitives that are responsible for generating the organizational

structure: spawning and composition.

The spawning process can be likened to that of a human agent that enlists

3 In an analogy to an OOP systems, the task structures can be equated to classes
and the problem instances to the instance objects.
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the services of other humans when it finds that the problems that it is trying to

solve are beyond the limits of its bounded rationality. The spawning process is then

effectively equivalent to the division of labor and specialization that occurs in human

organizations. The composition process can be likened to a human agent that resigns

from the organization because it isn’t sufficiently challenged and working to its full

capacity.

We would like to emphasize that the organization is being built in a bottom-

up fashion because each agent is individually responsible for its own spawning and

composition decisions irrespective of what the other agents are doing. There is no

centralized authority or single agent designing the organization.

3.3 Task and Resource Model

To ground our discussion of OSD, We now formally describe our task and

resource model. In our model, the primary input to the multi-agent system (MAS)

is an ordered set of problem solving requests or task instances, < P1, P2, P3, ..., Pn >,

where each problem solving request, Pi, can be represented using the tuple <

ti, ai,di >. In this scheme, ti is the underlying TÆMS task structure, ai ∈ N+

is the arrival time and di ∈ N+ is the deadline of the ith task instance4. The task ti

is not “seen” by the MAS before the time ai, i.e., the MAS has no prior knowledge

about the task ti before the arrival time, ai. In order for the MAS to accrue quality,

the task ti must be completed before the deadline, di.

Furthermore, every underlying task structure, ti, can be represented using

the tuple < T, τ, M, Q, E, R, ρ, C >, where:

• T is the set of tasks. The tasks are non-leaf nodes in a TÆMS task struc-

ture and are used to denote goals that the agents must achieve. Tasks have

4 N is the set of natural numbers including zero and N+ is the set of positive
natural numbers excluding zero.
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a characteristic accumulation function (see below) and are themselves com-

posed of other subtasks and/or methods that need to be achieved in order

to achieve the goal represented by that task. Formally, each task Tj can be

represented using the pair (qj, sj), where qj ∈ Q and sj ⊂ (T ∪ M). For our

convenience, we define two functions Subtasks(Task) : T → P(T ∪ M) and

Supertasks(TÆMS node) : T ∪ M → P(T ), that return the subtasks and

supertasks of a TÆMS node respectively5.

• τ ∈ T , is the root of the task structure, i.e. the highest level goal that the

organization is trying to achieve. The quality accrued on a problem is equal

to the quality of task τ .

• M is the set executable methods, i.e., M = {m1, m2, ...,mn},
where each method, mk, is represented using the outcome distribution,

{(o1, p1), (o2, p2), ..., (om, pm)}. In the pair (ol, pl), ol is an outcome and pl

is the probability that executing mk will result in the outcome ol. Further-

more, each outcome, ol is represented using the triple (ql, cl, dl), where ql is

the quality distribution, cl is the cost distribution and dl is the duration dis-

tribution of outcome ol. Each discrete distribution is itself a set of pairs,

{(n1, p1), (n2, p2), ..., (nn, pn)}, where pi ∈ �+ is the probability that the out-

come will have a quality/cost/duration of nl ∈ N depending on the type of

distribution and
∑m

i=1 pl = 1.

• Q is the set of characteristic accumulation functions (CAFs). The CAFs are a

set of functions that determine how the characteristics of a task are computed

from the characteristics of its subtasks/methods. See Section 3.3.2 for a more

thorough description of CAFs and for a formal definition.

5 P is the power set of set, i.e., the set of all subsets of a set
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• E is the set of (non-local) effects (NLEs) or inter-task relationships (ITRs).

A non-local effect (NLE) describes how the execution of a method or the

achievement of a task (the source of the NLE) affects the quality, cost and

duration characteristics of another method or task (the destination or sink of

the NLE). Note that since tasks do not have their own characteristic, per se,

but depend on the characteristics of their subtasks, an NLE between a node,

A and a task, B is just a short form for a group of equivalent NLEs between

the Node A and all the methods that are descendents of Task B. Non-Local

Effects are formally defined in Section 3.3.3 below.

• R is the set of resources.

• ρ is a mapping from an executable method and resource to the quantity of

that resource needed (by an agent) to schedule/execute that method. That is

ρ(method, resource) : M · R → N .

• C is a mapping from a resource to the cost of that resource, that is

C(resource) : R → N+

3.3.1 Execution Model

This subsection describes how agents might accrue quality on a task.

In TÆMS tasks are used to represent goals that the agent might try to

achieve. However, an agent can’t directly perform or execute a task. An agent may

only execute a method which are represented by the leaf nodes of a TÆMS task

structure.

Since the agents don’t directly perform/execute tasks, the characteristics

(quality/cost/duration) of a task have to be computed recursively from the charac-

teristics of its subtask. This recursion ends at the methods, which can be executed

directly by the agents and which accrue actual quality.
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Recall that methods are represented by an outcome distribution,

{(o1, p1), (o2, p2), ..., (om, pm)}. On completing the execution of a method, the agent

will obtain one of these outcomes. Since each outcome is itself a triple of quality,

costs and duration probability distributions, executing a method will result in a

quality, cost and duration that is sampled from these distributions. Note that in

our model, the methods do not accrue quality until they are actually executed.

For our convenience, we define the following functions:

• QualityD, returns the quality distribution of an outcome.

• DurationD, returns the duration distribution of an outcome.

• CostD, returns the cost distribution of an outcome.

• ExecutedP(TÆMS node, time instance) : T ∪ M, N → {0, 1} is a predicate

function that returns 1 if a TÆMS node has been “executed” by specified

time instance parameter. We define a node as having been executed if it has

accrued positive quality by the given time instance.

• Start(TÆMS node, time instance) : T ∪ M, N → N+ returns the time at

which a TÆMS node is started, if it is started before the specified time instance

parameter. The value of this function is undefined for a node, n ∈ (T ∪M) if

ExecutedP(n, t) = 0. For a method, this function returns the time at which

it was started. For a task, this function is defined as follows:

Start(T, t) = min
T ′∈Subtasks(T )∧Executedp(T ′,t)=1

Start(T ′, t) (3.1)

• End(TÆMS node, time instance) : T ∪M, N → N+ returns the time at which

a TÆMS node is completed, if it is completed before the given time instance

parameter. The value of this function is undefined for a node, n ∈ (T ∪M) if
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ExecutedP(n, t) = 0. For a method, this function returns the time at which

it was completed. For a task, this method is defined as follows:

End(T, t) = max
T ′∈Subtasks(T )∧Executedp(T ′,t)=1

End(T ′, t) (3.2)

3.3.2 Characteristic Accumulation Functions

The set of CAFs, Q, can be subdivided into three sets, i.e Q =<

QAF, $AF, DAF >. These three sets are defined below:

1. The set of quality accumulation functions (QAFs), which determine how a

task accrues quality given the quality accrued by its subtasks. In the following

equations, let Q(T, t) be the quality accrued by task T at time instance t. For

our research, we have focused on four QAFs for our purposes:

• Min: The Min QAF means the quality of a task is the minimum of the

qualities of its executed subtasks. The Min QAF is often used to indicate

an AND relationship between a task and its subtasks because to accrue

positive quality on a task with a Min QAF, all its subtasks have to be

executed6.

Qmin(T, t) = min
T ′∈Subtasks(T )

Q(T ′, t) (3.3)

• Max: The Max QAF denotes that the quality accrued by a task is the

maximum of the qualities accrued by its subtasks. The Max QAF is

usually used to indicate an OR relationship, because to accrue positive

quality on a task with a Max QAF, at least one of the subtasks of a task

has to be completed.

Qmax(T, t) = max
T ′∈Subtasks(T )

Q(T ′, t) (3.4)

6 A subtask that hasn’t been completed will have a quality of 0 and the min of
any positive number and 0 will always be 0.
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• Sum: The Sum QAF implies that the quality of a task is the sum of

the qualities of its executed subtasks. The Sum QAF is used to repre-

sent tasks in which the quality accrued monotonically increases with the

number of subtasks executed. Formally,

Q
P(T, t) =

∑
T ′∈Subtasks(T )

Q(T ′, t) (3.5)

• Exactly One: The Exactly One QAF is used to denote an exclusive or

relationship. The quality of a task with an Exactly One QAF is equal

to the quality of its executed subtask when only one of its subtasks is

executed and is zero in all other situations.

QEO(T, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
T ′∈Subtasks(T ) Q(T ′, t)

∣∣∣{T ′|T ′ ∈ Subtasks(T )

∧Q(T ′, t) > 0}
∣∣∣= 1

0 otherwise

(3.6)

Note that these are not the only set of possible QAFs and it is very easy to add

other QAFs to our approach, including QAFs based on anytime functions. (See

[Wagner, 2004] for the set of QAFs used in the DARPA COORDINATORS

project.)

2. The set of cost accumulation functions ($AFs), which describe how the cost of

achieving a task depends on the costs of achieving its subtasks. Currently, we

have only defined a single $AF —Sum. If C(T, t) is the cost of “performing”

task T at time t, then the Sum $AF indicates that the cost of attempting to

achieve task T is the sum of the costs of trying to achieve all the subtasks of

T . That is,

C(T, t) =
∑

T ′∈Descendents(T )∧T ′∈M

C(T ′, t) (3.7)
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Again it’s fairly simple to use alternative cost accumulation functions.

3. The set of duration accumulation functions (DAFs), which describe how the

duration of a task can be computed from the durations of its subtasks. Again,

we have only defined a single duration accumulation function. However, in-

stead of defining this function in terms of the duration of its subtasks, we

define this duration in terms of the start and end times of its subtasks. This is

because the duration of a task will depend on whether the subtasks are done

consecutively or in parallel.

Hence, the duration accumulation function is defined as:

D(T, t) = End(T, t) − Start(T, t) (3.8)

3.3.3 Non-Local Effects

This subsection formally defines a non-local effects (NLEs).

An NLE is defined by the five-tuple < tp, TS, TD, δ, p >, where tp ∈
{Enables,Disables,Facilitates,Hinders} is the type of the NLE, TS ∈ (T ∪ M)

is the source of the NLE, TD ∈ (T ∪M) is the destination/sink of the NLE, δ ∈ N+

is used to denote the delay between the accrual of positive quality at the source and

the effect of the NLE on the sink, and p is a set of (potentially empty) parameters

that define the characteristics of the NLE. As should be obvious from this defini-

tion, we are interested in four types of NLEs — Enables, Disables, Facilitates

and Hinders. These NLEs are described and formally defined below7. In all of

these formal definitions, assume that Q<NLE,TS ,TD,δ,p>(TD, t) is the quality of the

7 Note that all of the formal definitions of the NLEs assume that the sink of the
NLE is a method. If the sink of the NLE is a Task, replace this NLE with a set
of equivalent NLEs from the source to all the descendent methods of the sink.
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sink after the application of the NLE, and Q(TD, t) is the quality of the sink in the

absence of the NLE8.

• Enables: The Enables NLE is used to enforce an ordering constraint between

two TÆMS nodes — If method A enables method B, then method A has to

be completed before method B is started. Formally,

Q<Enables,TS ,TD,δ,()>(TD, t) =

⎧⎪⎨
⎪⎩

Q(TD, t) If Start(TD, t) − End(TS, t) >= δ

0 otherwise

(3.9)

C<Enables,TS ,TD,δ,()>(TD, t) = C(TD, t) (3.10)

D<Enables,TS ,TD,δ,()>(TD, t) = D(TD, t) (3.11)

• Disables: The Disables NLE is the converse of the Enables NLE — That is,

if a method, A disables a method, B, then Method B should be started before

Method A ends. Formally,

Q<Disables,TS ,TD,δ,()>(TD, t) =

⎧⎪⎨
⎪⎩

Q(TD, t) If Start(TD, t) − End(TS, t) < δ

0 otherwise

(3.12)

C<Disables,TS ,TD,δ,()>(TD, t) = C(TD, t) (3.13)

D<Disables,TS ,TD,δ,()>(TD, t) = D(TD, t) (3.14)

8 In these formal definitions, all the effects of the NLEs are calculated by first
determining the quality/cost/duration characteristics of the sink assuming that
no NLEs are present. Then the effects of the NLEs are incorporated into the
characteristics of the sink. This is the opposite of how the local-scheduler works,
since it takes these NLEs into account before choreographing either the source
or the sink.
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Note that both the Enables and the Disables NLEs enforce hard constraints

on the ordering between the source and sink. If this constraint is violated, the sink

accrues a quality of zero.

The Facilitates and Hinders NLEs, on the other hand, apply a soft con-

straint on the sink. Executing the source before the sink has an effect on the

characteristics of the sink which is in direct proportion to the ratio of the quality of

the source to the maximum possible quality attainable at the source9. This ratio is

defined as follows:

R(TS, t) =
Q(TS, t − δ)

QMax(TS)
(3.15)

where δ is the delay parameter of the NLE and

QMax(TS) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(o,p)∈Outcomes(TS)

[
max(m,q)∈QualityD(o) m

]
If TS ∈ M i.e. the

source is a method

minT ′
S∈Subtasks(TS) QMax(T ′

S) If TS ∈ T∧

CAF(TS) = Min

maxT ′
S∈Subtasks(TS) QMax(T ′

S) If TS ∈ T∧

CAF(TS) ∈ {Max,

Exactly One}∑
T ′

S∈Subtasks(TS) QMax(T ′
S) If TS ∈ T∧

CAF(TS) = Sum

(3.16)

9 Another way of saying this would be to say that the sink always accrues some
quality, irrespective of whether or not the source accrues quality before it. The
quality would simply change as a result of applying the source before it.
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• Facilitates: The Facilitates NLE, allows a source node to have a facilitation

effect on the sink method by either increasing the quality of the sink or by de-

creasing its cost and/or duration or both. The classic example of a facilitation

effect is the relation between sorting and searching an array. Sorting an array

is not necessary for searching it. However, sorting an array before searching it

allows us to use a binary search, which speeds up the search process. Hence,

we can say that sorting an array facilitates the search.

In TÆMS , the degree of the facilitation effect of the source on the sink de-

pends on (1) the quality accrued by the source node relative to the maximum

possible quality attainable by the source (See Equation 3.15); and (2) the in-

put parameter p = (φq, φc, φd). Here, φq, φc, φd are constants between 0 and 1

and represent the quality, cost and duration powers respectively. Specifically,

If p = (φq, φc, φd)

Q<Facilitates,TS ,TD,δ,p)>(TD, t) = Q(TD, t) · [1 + φqR(TS, t)] (3.17)

C<Facilitates,TS ,TD,δ,p>(TD, t) = C(TD, t) · [1 − φcR(TS, t)] (3.18)

D<Facilitates,TS ,TD,δ,p>(TD, t) = D(TD, t) · [1 − φdR(TS, t)] (3.19)

• Hinders: The Hinders NLE is the converse of the Facilitates NLE, i.e. if

a source node hinders a sink method, it decreases the quality accrued by the

sink method and/or increases its cost and/or duration. Formally,

If p = (φq, φc, φd)

Q<Facilitates,TS ,TD,δ,p>(TD, t) = Q(TD, t) · [1 − φqR(TS, t)] (3.20)

C<Facilitates,TS ,TD,δ,p>(TD, t) = C(TD, t) · [1 + φcR(TS, t)] (3.21)

D<Facilitates,TS ,TD,δ,p>(TD, t) = D(TD, t) · [1 + φdR(TS, t)] (3.22)
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3.3.4 Extensions to TÆMS

Generally, TÆMS task structures can be thought of as being the output of

a planning process [Ghallab et al. , 2004]. This is because TÆMS task structures

are basically high-level plans for achieving some goal, in which the steps required

for achieving the goal — as well as the possible contingency situations — have been

pre-computed offline and represented in the task structure.

Most scheduling [Wagner & Lesser, 2000] and organizational research [Car-

ley, 2002a] assumes that the task structure is provided as an input to the system.

Since TÆMS task structures are used to represent many contingencies, alternatives,

uncertain characteristics and run-time flexible choices, the process of organizing can

be thought of as the process of performing long-term task and resource allocation.

For a number of applications, for example protein-ligand docking, generating

a complete task structure offline (at design time) and providing it as input to the

system is often not feasible. This is because the number and type of nodes in the

task structure might depend on the result of some execution that has to be done at

run-time.10

For example, in protein-ligand docking, the number of docking configurations

or attempts, and hence the number of docking tasks in the TÆMS task structure,

depends on the specific protein-ligand pair provided as input to the system. Fur-

thermore factors such as the protein/ligand flexibility and the presence of metals

can influence the docking mechanism used.

Hence, for this application, we needed some way of generating TÆMS nodes

at run-time while constraining and guiding the kind of nodes that can be generated,

10 Note that it might still be possible to represent the complete task structure,
a priori, by having the task structure contain the maximum number of nodes
possible. However, this would often result in an exponential increase in the size
of the task structure.
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without having to resort to an expensive general purpose planner or plan-repair

algorithm.

To this end, we extended the TÆMS task representation language by adding

Template Nodes,
∫

= (tp, TC , TE, q), where tp ∈ {Iteration,Selection}, is the type

of the template node; TC ∈ (T∪M) is a control node, which constrains the expansion

of this template node; TE ⊂ (T ∪ M ∪ ∫
) represents the expansion of this node. In

the case of an Iteration template node, the expansion node is “generated” a fixed

number of times depending on the results of executing TC and |Subtasks(TE)| = 1.

In the case of a Selection node, one of the subtasks of TE is selected as the expansion

of this node. Finally, q ∈ Q is a CAF with similar semantics to the CAF of a task.

3.3.5 Assumptions

We also make the following set of assumptions in our research:

1. The agents in the MAS are drawn from the infinite set A = {a1, a2, a3, ...}.
That is, we do not assume a fixed set of agents — instead agents are created

(spawned) and destroyed (combined) as needed. This does not imply that

there is not in fact a cost associated with each agent. We can easily model

such costs in our approach and our approach will try to minimize these costs.

2. All problem solving requests have the same underlying task structure, i.e.

∃t∀iti = t, where t is the task structure of the problem that the MAS is try-

ing to solve. We believe that this assumption holds for many of the practical

problems that we have in mind because TÆMS task structures are basically

high-level plans for achieving some goal in which the steps required for achiev-

ing the goal—as well as the possible contingency situations—have been pre-

computed offline and represented in the task structure. Because it represents
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many contingencies, alternatives, uncertain characteristics and run-time flexi-

ble choices, “the same underlying task structure” can play out very differently

across specific instances.

3. All resources are exclusive, i.e., only one agent may use a resource at any

given time. Furthermore, we assume that each agent has to “own” the set

of resources that it needs — even though the resource ownership can change

during the evolution of the organization.

4. All resources are non-consumable.

3.4 Organizational Self Design

3.4.1 Agent Roles and Relationships

The organizational structure is primarily composed of roles and the relation-

ships between the roles. One or more agents may enact a particular role and one or

more roles must be enacted by every agent. The roles may be thought of as the parts

played by the agents enacting the roles in the solution to the problem and reflect the

long-term commitments made by the agents in question to a certain course of action

(that includes task responsibility, authority, and mechanisms for coordination). The

relationships between the roles are the coordination relationships that exist between

the subparts of a problem.

In our approach, the organizational design is directly contingent on the task

structure of the problems being solved (the global task structure) and the environ-

mental conditions under which the problems need to be solved. Here, the environ-

mental conditions refer to such attributes as the task arrival rate, the task deadlines

and the available resources.

To form or adapt their organizational structure, the agents use two organi-

zational primitives: agent spawning and composition. These two primitives result
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in a change in the assignment of roles to the agents. Agent spawning is the gener-

ation of a new agent to handle a subset of the roles of the spawning agent. Agent

composition, on the other hand, is orthogonal to agent spawning and involves the

merging of two or more agents together11 — the combined agent is responsible for

enacting all the roles of the agents being merged. Hence, OSD can be thought of as

a search in the space of all the role assignments for a suitable role assignment that

minimizes or maximizes a performance measure.

In order to participate in the organization, and to apply these primitives,

the agents need to explicitly represent and reason about the role assignments and

must maintain some organizational knowledge. This knowledge is represented in

each agent using a TÆMS task structure, called the local task structure. Hence, we

define a role as a local task structure. These local task structures are obtained by

rewriting the global task structure and represent the local task view of the agent

vis-a-vis its role in the organization and its relationship to other agents. Hence,

all reorganization involves rewriting of the global task structure. However, note

that the global task structure is NOT stored in any one agent, i.e. no single agent

has a global view of the complete organization. Instead each agent’s organizational

knowledge is limited to the tasks that it must perform and the other agents that

it must coordinate with — it is this information that is represented using the local

task structures.

To allow the agents to store information about other agents in the task struc-

ture, we augment the basic TÆMS task representation language presented above by

adding organizational nodes (O). Like TÆMS nodes, organizational nodes come in

two flavors (i.e. O = (TO ∪ MO): (a) organizational tasks, (TO), which are used to

aggregate other organizational nodes; and (b) organizational methods, (MO), that

11 Note that any two agents can be merged together — that is, there is no require-
ment for merged agents to be spawned off from the same agent.

74



are used to represent either organizational knowledge or organizational actions that

have some fixed semantics. To differentiate organizational nodes from “regular”

TÆMS nodes (i.e. nodes that are in T ∪ M), we will refer to non-organizational

nodes as domain nodes (denoted as D). We define the following organizational

nodes:

1. Container-Nodes: Σ ⊆ TO12, are aggregates of domain nodes and other orga-

nizational nodes. Formally, Σ = {σ1, σ2, ..., σn}, where each σi =< ti, si >. In

this context ti ∈ {Root,Clone,Coordination} is the type of the container

and determines its purpose; and si ⊂ (D ∪O) is the set of subtasks/nodes in

that container.

2. Non-Local-Nodes: ♦ ⊂ MO, are used to represent a domain node in some other

agent’s local task structure. Non-Local-Nodes are used to represent nodes in

the global task structure that the agent knows the identity (label) of but

does not know the characteristics (e.g. quality, cost duration) of13. Formally,

♦ = {
1, 
2, ..., 
n}; each 
i can be represented using a set consisting of a single

element, η ∈ {Label(d) | d ∈ D} that encapsulates the identity of an existing

domain node.

3. Clone Selectors: SC ⊂ MO are used to select amongst the clones of a node. The

purpose of a selector node within a clone-container is to enable one or more

of the clones, so that the enabled nodes can be “executed” by their agents

owning those clones. See Section 3.4.1 for a more detailed formal description.

12 Currently, Σ = TO, that is, the only type of organizational tasks that have been
defined are container nodes. However, we might need to add other organizational
tasks in the future.

13 At least initially at the time of breakup. It can however learn these character-
istics through some coordination mechanism.
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Figure 3.3: The Breakup Task Rewriting Primitive. This figure shows the Breakup of
Root-1 at Node D. The 
 nodes represent non-local nodes, that are the responsibility
of some other agent.

4. NLE-Inheritors: N ⊂ MO, are methods whose sole purpose is to transfer the

non-local effect from a non-cloned node to a cloned node or vice versa. See

Section 3.4.1 for the rationale behind these node.

To allow for a change in an agent’s organizational knowledge, we define four

rewriting operations on a local task structure, which are described below. However,

before any of these rewriting operators can be applied, we need to create an aggre-

gator node (σ), called a root node for storing “extra” organizational nodes that are

created by the rewriting operations and that can not be affixed to any other part

of the task structure. Recall, that we start off with a single agent whose local task

view is equivalent to the global task view, t. Hence, the created root node will be

σ1 =< Root, {t} >. This node is shown on the left of Figure 3.3.

Breakup: The rationale behind the breakup operator is to divide the workload of

an agent so that parts of it can be assigned to a new agent during the spawning

process. If the workload of an agent consisted only of executable methods (M),

this would be a simple case of picking some subset of M for the spawned agent.
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However, in our problem domain, methods are (recursively) aggregated into

tasks using CAFs and may have interrelationships (NLEs) with other tasks

and methods. Hence, executable methods cannot be executed in isolation

without considering all the interdependent effects of that execution.

Hence, when a spawning agent divides a local task structure, A into two sub-

parts B (for itself) and C (for the spawned agent), it still needs to maintain

some knowledge about the tasks/methods in C while, at the same time, al-

lowing the spawned agent to have as much autonomy as possible about the

execution of C. Specifically the agent will need to know about the subset of

nodes in C that are interrelated to the nodes in B, either through NLEs or

through subtask relations. We will call this subset the related set, of B. Simi-

larly, the spawned agent will need to know some information about the nodes

in B that are interrelated to the nodes in C through NLEs (i.e. the related set

of C).

Furthermore, to allow for the maximum autonomy of both the spawning agent

and the spawned agent, we limit this knowledge to consist of (1) the identity

(label) of the nodes in the related set and (2) the relationship (i.e. subtask or

NLE) through which they are related. Once the agent has been spawned, the

two agents can negotiate a coordination mechanism for the relationship (for

details see Section 3.4.2).

This knowledge will be preserved by creating non-local nodes (
 ’s) to replace

the nodes in the related set. During the breakup rewriting operation, the

NLEs will be altered to point to/from the non-local nodes instead of the the

domain nodes in the related sets. These non-local-nodes will be added to the

root-node. This process is illustrated in Figure 3.3 and the algorithm for the

breakup operator is shown in Algorithm 1.
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Algorithm 1 Breakup (τ ∈ Σ, υ ∈ D)

1: τ ⇐ Descendents(τ) − Descendents(υ)
2: υ ⇐ Descendents(υ)
3: for all { N | N ∈ NLEs(τ) } do
4: if (Source(N) ∈ τ and Sink(N) ∈ υ) or (Source(N) ∈ υ and Sink(N)

∈ τ) then
5: x ⇐ GetNonLocalNode(Source(N))

6: y ⇐ GetNonLocalNode(Sink(N))

7: M ⇐ CopyNLE(N)

8: ReplaceNode(N , Source(N), x)

9: ReplaceNode(M , Sink(N), y)

10: end if
11: end for
12: x ⇐ GetNonLocalNode(υ)

13: ReplaceNode(τ, υ, x)

14: return CreateRootNode(υ)

In this algorithm, υ is the TÆMS node selected for assignment to the spawned

agent14, τ (line 1) is the set of all the TÆMS nodes that will remain in the

leftover part, while υ (line 2) is the set of all the TÆMS nodes that will be

assigned to the spawned agent. The For loop and If statements in lines 3

and 4 are responsible for finding all the NLEs that have a source node in the

remaining part (τ) and a sink in the spawned part (υ) or vice versa. Finally,

lines 5–9 are responsible for (a) creating non-local-nodes for both the source

and sink of this NLE; (b) creating a copy of this NLE; and (c) changing

different ends of the two NLEs to point towards the non-local nodes instead

of the domain nodes.

The running time of this algorithm is O(n · m), where n is the number of

TÆMS nodes in the task structure and m is the number of NLEs in the task

structure.

14 Note that we allow non-contiguous TÆMS nodes (or υ’s) to be broken up via
iterations of this algorithm.
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Figure 3.4: The Merging Task Rewriting Primitive. This figure shows the merging
of Root-3 and Root 2. Notice how the non-local nodes (
’s) E and F in Root-2 and
non-local nodes D and K in Root-3 are destroyed as a result of the merge operation.

Merging: The idea behind the merging operator is to allow two agents to be

composed into a single agent. Hence, merging involves combining two different

local task structures from two different agents to form one local task structure.

Two requirements for the merging operation are (a) merging should be the

exact inverse of breakup, i.e. if A is a task structure that was broken into B and

C, merging B and C should give A; and (b) merging should be associative, i.e.

the resultant local task structure formed after merging should not depend on

the order in which the constituent local task structures were combined. Stated

in another way, if using n breakup operations on a root node, σ, generates n

local task structures ({σ1, σ2, ..., σn}), then n merging operations on these

task structures, in any order, should regenerate σ. Note that we allow any

two arbitrary task structures to be merged and hence allow any two agents to

be composed with one another — hence the order of the merging operations

can be completely independent and different from the order of the breakup

operations.

An example of a merging operation is shown in Figure 3.4 and the algorithm

for the merging operator is shown in Algorithm 2. In order to fulfill these
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Algorithm 2 Merge (τ ∈ Σ, υ ∈ Σ)

1: Let υ =< Root, sυ >
2: for all { y | y ∈ Descendents(sυ) } do
3: x ⇐ FindNode(τ ,Label(y))

4: if Null(x) then
5: DeleteNode(υ, y)

6: if y ∈ sυ then
7: AddNode(τ, y)

8: end if
9: else if (x ∈ ♦) ∧ (y ∈ ♦) then

10: MergeNodes(τ, x, y)

11: else if x ∈ D ∧ y ∈ ♦ then
12: DeleteNode(υ, y)

13: else if x ∈ ♦ ∧ y ∈ D then
14: ReplaceNode(τ, x, y)

15: end if
16: end for
17: return τ

requirements, firstly, the domain nodes in the two local task structures, σ1, σ2,

have to be merged to form the same graph structure as in the global task

structure. This is done in lines 4–8 of the algorithm. Furthermore, any non

local nodes that might exist in Descendents(σ1) that have corresponding

domain nodes in σ2 have to be eliminated and vice versa. This is done in lines

11–15 of the algorithm. Finally, any two non local nodes that have the same

identity should be merged into a single non-local node (lines 9–11) or formally

∃
1,∃ 
2 | (
1 =< η1 > ∧
2 =< η2 > ∧η1 = η2) ⇒ 
1 = 
2.

The running time of Algorithm 2 is O(n2), where n is the maximum of number

of TÆMS nodes in the two task structures being merged.

Cloning: When we discussed the breakup operator above, we said that the ra-

tionale was to use it to “divide the workload of an agent so that parts of it

can be assigned to a new agent ...”. However, a precondition for applying the

breakup operator is that number of executable methods in the root node, σ,
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Figure 3.5: The Cloning Task Rewriting Primitive. This figure shows the cloning of
Node C in Root-4. The � node (Node C(C)) is used to represent a clone container;
the ⊥ node (Node S(C))is used to select which clone to “start”, while the × nodes
represent the NLE-inheriting-methods.

(of the local task structure) of the spawning agent, A, should be greater than

1; (|{x | x ∈Descendents(σ)∧x ∈ M}| > 1). This precondition exists because

it makes no sense for A to spawn off a new agent, B, and assign it the one

and only executable method that agent A was executing — effectively freeing

up A but creating a just as much overloaded agent, B.

To overcome this restriction, we introduce a cloning operator that is respon-

sible for making two copies, < c1, c2 > of a substructure, υ ∈ D15 so that

the root task, τ can be broken up at node, υ, and the breakaway part, c2,

be allocated to a new agent. Hence, the cloning operator is always meant to

be used in association with the breakup operator and the breakup operation

should come after the cloning operation.

An example of the cloning operator is shown in Figure 3.5 and the algorithm

15 Note that we allow both tasks and methods to be cloned
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is described in Algorithm 3. To clone a node, υ in a root task, τ , we first

create a new container node, σc =< Clone, {υ} >, called a clone container

and replace υ in τ with σc. The clone container will be used to “hold” all the

created clones.

Algorithm 3 Clone (τ ∈ Σ, υ ∈ D)

1: τ ⇐ Descendents(τ) − Descendents(υ)

2: υ ⇐ Descendents(υ)

3: φ ⇐ CreateCloneContainer(υ)
4: φ ⇐ CreateCloneSelector()
5: for all { x | x ∈ υ } do
6: y ⇐ CopyNode(x)

7: AddNode(φ, y)

8: end for
9: for all { N | N ∈ NLEs(υ) } do

10: if Source(N) ∈ τ then
11: x ⇐ CreateInheritingNode()

12: AddNode(φ, x)

13: L ⇐ CopyNLE(N)

14: M ⇐ CopyNLE(N)

15: ReplaceNode(N , Sink(N), x)

16: ReplaceNode(L, Source(L), x)

17: ReplaceNode(M , Source(M), x)

18: y ⇐ FindNode(φ, Sink(M))

19: ReplaceNode(M , Sink(M), y)

20: else if Sink(N) ∈ τ then
21: {Similar to the source}
22: end if
23: end for
24: return φ

Next we need some mechanism to select amongst the clones. That is, when a

new task instance arrives, we have to pick one of the clones (and by inference,

one of the owning agents) to run that instance. To do this, we create a clone se-

lector sc ∈ SC method, and add this method to the clone container. Formally,

SC = {s1, s2, ..., sn} is the set of all clone selectors, where each individual se-

lector, si =< ti, ni >. In this context ti ∈ {Load-Balancing,Robustness} is
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the reason behind cloning these nodes16; and ni = {(c1, i1), (c2, i2), ..., (cn, in)}
is the set of mappings from a clone to information about that clone. This

information may include details like the set of task instances assigned to a

particular clone, the average quality, cost and duration of the previous exe-

cuted instances, etc.

Finally, there might be some NLEs in the clones c1 and c2 that have a

source or destination as a non-clone node. (Formally, {e ∈ E | [Source(e)

∈Descendants(c1) ∧ Sink(e) ∈ (Descendants(σ) − Descendants(c1)

)] ∨ [ Sink(e) ∈Descendants(c1) ∧ Source(e) ∈ (Descendants(σ) −
Descendants(c1) )]). Such NLEs that transcend clone boundaries have to

handled carefully in order to (a) preserve their original semantics and (b) al-

low the presence of clones to be transparent to the non clone nodes. In order

to achieve this effect, we create special methods called NLE-Inheritors, (N ).

These methods are simply conduits for the effects from the cloned nodes to

the non-clone nodes.

In Algorithm 3, line 3 is responsible for creating a new clone container and

line 4 creates a clone selector. Lines 5–8 are responsible for cloning (creating

actual copies of) the domain nodes. Finally, lines 9–23 are responsible for

creating the NLEs.

The running time of this algorithm is O(n · m), where n is the number of

TÆMS nodes in the task structure and m is the number of NLEs in the task

structure.

Iterate: The Iterate operator allows us to deal with Iteration template node

16 In addition to being used for load balancing, another advantage of the cloning
operator is that it can be used to increase the robustness capacity of an agent
by having multiple agents work on the same task simultaneously. See Section
3.4.7 for details.
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(
∮ ∈ ∫

) by (a) checking the results of executing the control node to determine

the number of iterations, n, of the template node required and (b) checking

the number of existing copies, m of the expansion node, e — If m < n, n−m

extra copies of the expansion subtree are generated according to the algorithm

presented in Algorithm 4.

Algorithm 4 Iterate (τ ∈ Σ,
∮ ∈ ∫

)

1: Let
∮

= (tp, TC , TE, q)
2: n ⇐ Results(TC)
3: m ⇐ |Subtasks(

∮
)|

4: τ ⇐ Descendents(τ) − Descendents(TE)

5:
∮ ⇐ Descendents(TE)

6: for i ← 1, (n − m) do

7: for all { x | x ∈ ∮ } do
8: y ⇐ CopyNode(x)

9: AddNode(

∮
, y)

10: for all { N | N ∈ NLEs(x) } do
11: if Source(N) ∈ τ then
12: z ⇐ FindInheritingNode(N)
13: M ⇐ CopyNLE(N)

14: ReplaceNode(M , Source(M), y)

15: ReplaceNode(M , Sink(M), z)

16: else if Sink(N) ∈ τ then
17: {Similar to the source}
18: end if
19: end for
20: end for
21: end for

The running time of Algorithm 4 is O(l · n · m), where l is the number of

iterations, n is the number of TÆMS nodes in the task structure and m is the

number of NLEs in the task structure.

These operators result in the rewriting of a local task structure. In the case

of agent spawning, the spawning agent, A, selects a node, υ ∈ D either for breakup
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or for cloning (followed by breakup)17 runs the breakup/cloning+breakup operator

to divide its local task structure into two parts, < σ1, σ2 >, and then spawns a new

agent, B, with σ2 as its local task structure.

For agent composition, on the other hand, composing agent, A with a local

task structure σ1, selects another agent, B with a local task structure σ2, to compose

with. Agent A then sends a message to Agent B requesting composition. Agent

B then call the merging operator to merge σ1 and σ2 to form a single local task

structure, σ. Agent B can now be killed and the composition operation is now

compete.

3.4.2 Coordinating the agents

We allow various coordination mechanisms to be used with our approach.

Coordination between the agents is also achieved by rewriting the local task struc-

tures of the agents. Recall that a newly spawned agent will have a local tasks

structure consisting of domain nodes and organizational nodes. The organizational

nodes consist of, amongst other things, non-local-nodes (♦) that represent domain

nodes in other agents. These non-local nodes form coordination points between the

agents and will be overwritten with coordination nodes corresponding to the selected

coordination mechanism.

To select a coordination mechanism, (1) the newly spawned agent starts off a

negotiation phase in which it sends a mechanism proposal for all the non-local-nodes

to the agents that own the corresponding domain nodes; and (2) the other agents

can either accept the coordination mechanism or they can send a counter-proposal.

This exchange is repeated until both the agents commit to the same coordination

17 See Section 3.4.5.2 for a description of different strategies that can be used to
choose between using the breakup operator on its own or in conjunction with
the cloning operator.
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Figure 3.6: Figure showing the addition of coordination nodes to the task structure.
The � node represents a coordination task. The �→ methods (Nodes H and D) involve
sending results to the specified nodes while the →� method (Node K) indicates that
the agent needs to wait for a result from whatever agent is processing that node.
The � node is added to allow Node B to wait for the preceding node, while the 	
node is used to start the succeeding nodes.

mechanism (or until all the coordination mechanisms have been exhausted, in which

case a default mechanism is selected).

Whereas many coordination mechanisms can potentially be supported by

our approach, we have currently only implemented the send-results/wait-for-results

mechanism18. In this mechanism, each agent executes methods independently of the

other agents and sends a result to the other agents as soon as they become available.

If to execute a method, an agent needs results from another agents, it simply waits

for those results. The addition of this coordination mechanism to the local task

structures is shown in Figure 3.6. In the future, we would like to implement more

complicated coordination mechanisms.

18 This mechanism is equivalent to the GPGP DO Commitment.
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3.4.3 Norms

Norms generally come in three forms — obligations, permissions and pro-

hibitions [McNamara & Prakken, 1999]. In our approach, obligations are enforced

through the coordination mechanism being used. Permissions, on the other hand,

are implicit in the local task structures of the agents and, by inference, in the way in

which the global task structure has been divided amongst the agents. If an Agent,

A has a local task structure τ , then Agent A has the permission to perform all the

tasks and methods represented by Descendents(τ).

Prohibitions, however, have to be explicitly represented. Since roles are rep-

resented in our system using TÆMS nodes (T ∪ M), prohibition norms are im-

plemented as constraints on the nodes of a TÆMS task structure. Currently, we

have implemented two kinds of prohibition norms: (a) unary norms of the form

U(tp, TN), where tp ∈ {Never-Breakup,Always-Breakup}, is the type of the

norm — The Never-Breakup type ensures that a TÆMS node will never be se-

lected for breakup by an agent19 and the Always-Breakup norm forces the agent

to breakup at that node; and (b) binary norms of the form B(tp, TN , TM), where

{tp ∈ Same,Different} is the type of the norm and TN , TM ∈ (T ∪M) are TÆMS

nodes. The Same norm indicates that the nodes TN and TM should be done by the

same agent, whereas the Different norm implies that the nodes TN and TM should

be performed by different agents.

3.4.4 Formal Definition of OSD

For our purposes, we define OSD as a function that maps an ordered set of

problem solving requests (or task instances) and a set of performance criteria to

an ordered set of organizations, together with their execution profile and aggregate

utilities. Formally,

19 See Section 3.4.5.1 for more information on how a node is selected for breakup.
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OSD(P, U, C) →< O, α, γ > (3.23)

where:

• P =< P1, P2, P3, ..., Pn > is an ordered set of problem solving requests or task

instances as formally defined in Section 3.3 above.

• U(Problem Instance, Execution Profile) : P, α → N+20 is a utility-calculation

function that is used to encode a set of domain-dependent optimizing criteria

for the problem instances.

• C(Organizational Instance) : O → N21 is a function that returns the “cost”

of creating that particular organizational instance. This includes the cost of

spawning the agents required for creating the organization, the cost of allo-

cating resources for the agents and the cost of coordinating the agents.

• O =< O1, O2, O3, ..., Om >, is an ordered set of m organizational instances or

organizations. Each organization, Oi can be further denoted using the pair

< Ai,Ci >, where:

– Ai = {a1, a2, ..., ay} is the finite set of Agents that are present in the ith

organization, where each agent, aj, is a pair < τj, ORj >. In this tuple:

∗ τj is an augmented TÆMS task structure representing the local-task

structure of Agent j.

∗ ORj is a set of ordered pairs of the form < Γk ∈ R, vk ∈ N >,

representing the fact that vk amounts of resource Γk are owned by

agent aj.

20 The execution profile is formally defined below.
21 The organizational instance is defined below.
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– Ci = {c1, c2, ..., cz} is a finite set of coordination relationships that exist

in the organization. Each cj is an ordered pair, denoted by < aj ∈ Ai, bj ∈
Ai >, denoting the fact that agent aj has a coordination relationship with

bj
22

• α, is the execution profile of the multiagent system as a whole. The

execution profile maps each problem instance in P to the actual qual-

ity/cost/duration characteristics of its execution. Formally, if α = <

α1, α2, ..., αn >, then αi = (Pi, βi). Here, Pi is a problem instance and the

βi = {(N1, q1, c1, d1), (N2, q2, c2, d2), ..., (Nm, qm, cm, dm)}, is a set of mappings

from domain TÆMS nodes in D to the quality (qj), cost (cj) and duration

(dj) characteristics of that node. That is qj, cj and dj represent the actual

quality accrued, the cost incurred and the time spent by the organization while

“executing” node Nj.

• γ, is the aggregate utility accrued by the multiagent system minus the orga-

nizational costs. Formally,

γ =

|P|∑
i=1

U(Pi, βi) −
|O|∑
j=1

C(Oj) (3.24)

Using Organizational Self-Design, our system will try to maximize either

the aggregate utility, γ accrued by the multiagent system or the average domain-

dependent utility of the organization minus the organizational costs depending on

the designer’s preference: ∑|P|
i=1 U(Pi, βi)

|P| −
∑|O|

j=1 C(Oj)

|O| (3.25)

22 Note that we only allow pairwise coordination relationships between the agents.
This is because the coordination relationships are generated due to the presence
of NLEs between two nodes that are the responsibility of two different agents.
Also note that multi-agent coordination relationships can easily be modeled
using pairwise relationships.
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3.4.5 Organization Formation and Adaptation

Algorithm 5 FindRolesForSpawnedAgent (SpawningAgentRoles) : (T ∪
M) → (T ∪ M)

1: R ← SpawningAgentRoles
2: selectedRoles ← nil
3: for roleSet in [P(R) − {φ,R}] do
4: if Cost(R, roleSet) < Cost(R, selectedRoles) then
5: selectedRoles ← roleSet
6: end if
7: end for
8: return selectedRoles

Algorithm 6 GetResourceCost(Roles) : (T ∪ M) → �
1: M ← (Roles ∩ M)
2: cost ← 0
3: for resource in R do
4: maxResourceUsage ← 0
5: for method in M do
6: if ρ(method, resource) > maxResourceUsage then
7: max ← ρ(method, resource)
8: end if
9: end for

10: cost ← cost +
[C(resource) · maxResourceUsage]

11: end for
12: return cost

3.4.5.1 Role allocation during spawning

One of the key questions that the agent doing the spawning needs to answer

is — which of its local-roles should it assign to the newly spawned agent and which

of its local roles should it keep to itself? The onus of answering this question falls on

the FindRolesForSpawnedAgent() function, shown in Algorithm 5 above. This

function takes the set of local roles that are the responsibility of the spawning agent

and returns a subset of those roles for allocation to the newly spawned agent. The
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Algorithm 7 GetExpectedDuration(Roles) : (T ∪ M) → N+

1: M ← (Roles ∩ M)
2: exptDuration ← 0
3: for [outcome =< (q, c, d), outcomeProb >] in M do
4: exptOutcomeDuration ← 0
5: for (n,p) in d do
6: exptOutcomeDuration ← n · p
7: end for
8: exptDuration ← exptDuration + [exptOutcomeDuration · outcomeProb]
9: end for

10: return exptDuration

running time of Algorithm 5 is O(2n), where n is the number of roles of the spawning

agent23. This subset is selected based on the results of a cost function as is evident

from line 4 of the algorithm. Since the use of different cost functions will result in

different organizational structures and since we have no a priori reason to believe

that one cost function will out-perform the other, we evaluated the performance of

three different cost functions based on the following three different heuristics:

Allocating top-most roles first: This heuristic always breaks up at the

top-most nodes first. That is, if the nodes of a task structure were numbered,

starting from the root, in a breadth-first fashion, then this heuristic would select

the local-role of the spawning agent that had the lowest number and breakup that

node (by allocating one of its subtasks to the newly spawned agent). We selected

this heuristic because (a) it is the simplest to implement, (b) fastest to run (the role

allocation can be done in constant time without the need of a search through the

task structure) and (c) it makes sense from a human-organizational perspective as

23 The running time is exponential in the number of roles of the spawning agent
because we iterate over the power set of the set of these roles in Line 3 of
this algorithm. To overcome this exponential running time, we can make a
simplification by only iterating over the set of roles, R, in Line 3 instead of
considering the power set. We we can still generate every possible organization
since any two or more spawned agents can always compose together after they
are spawned.
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this heuristic corresponds to dividing an organization along functional lines.

Minimizing total resources: This heuristic attempts to minimize the total

cost of the resources needed by the agents in the organization to execute their roles.

(See Algorithm 6). If R be the local roles of the spawning agent and R′ be the

subset of roles being evaluated for allocation to the newly spawned agent, the cost

function for this heuristic is given by: Cost(R, R′) ← GetResourceCost(R −
R′)+GetResourceCost(R′). The running time of Algorithm 6 is O(r · n), where

r = |R| is the number of potential resources and n is the number of TÆMS nodes

in the task structure.

Balancing execution time: This heuristic attempts to allocate roles in

a way that tries to ensure that each agent has an equal amount of work to do.

For each potential role allocation, this heuristic works by calculating the abso-

lute value of the difference between the expected duration of its own roles after

spawning and the expected duration of the roles of the newly spawned agent.

If this difference is close to zero, then the both the agents have roughly the

same amount of work to do. Formally, if R be the local roles of the spawning

agent and R′ be the subset of roles being evaluated for allocation to the newly

spawned agent, then the cost function for this heuristic is given by: Cost(R, R′) ←
|GetExpectedDuration(R−R′)−GetExpectedDuration(R′)|. See Algorithm 6.

The running time of this algorithm is O(n · m), where n is the number of TÆMS

methods in the task structure and m is the number of outcomes of a method.

To evaluate these heuristics, we ran a series of experiments that tested the

performance of the resultant organization on randomly generated task structures.

The results are given in Section 4.3.

3.4.5.2 Selecting a Spawning Strategy

As described in Section 3.4, if an agent is overloaded (i.e. it can’t complete

the problems in its task queue before their respective deadlines), it spawns off a new
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agent to handle part of its load. While spawning off a new agent, the overloaded

agent has two options:

1. It could divide the problem into smaller subproblems and assign one of the

smaller problems to the newly spawned agent. We will refer to this approach

as breakup since this approach uses the breakup operator as defined in Section

3.4.1.

2. It could assign half of the outstanding problems in its task queue to the newly

spawned agent. The individual problems are solved in their entirety by the

two agents. In this approach, the spawning agent has effectively cloned itself.

Hence, we refer to this approach as cloning. This approach makes use of the

cloning operator defined in 3.4.1.

Each of these two approaches have their own advantages and disadvantages:

(1) Breakup may be the only option if the task is too “big” for any single agent to do

on its own. Similarly cloning may be the only option if task cannot be broken up into

smaller parts. (2) Breakup will typically use less resources than cloning, especially

if the subtasks use a different set of resources. (3) Also, breakup would be better

in situations in which the agents include a learning component, since the number

of instances over which the information is being learned would be larger. (4) If,

however, the subtasks are interdependent breakup would require more coordination

between the agents executing the interdependent parts. Hence, cloning would be

better in such situations.

To analyze the tradeoff between breakup and cloning, we compared five

spawning approaches:

1. Breakup: In this approach the task structure is always broken up into smaller

subtasks using the breakup operator as described in Section 3.4.1 above.We
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used the Balancing Execution Time (BET) heuristic to select the node to be

allocated to the new agent, as defined in Section 3.4.5.1.

2. Prefer Breakup: This approach is the same as the Breakup approach, with

the exception that if Breakup is infeasible, the Cloning approach (described

below) is used. We define breakup as being infeasible if the local-task-structure

of the spawning agent consists of a single executable method. (Formally, if

σ is the root node (of the local task structure) of the spawning agent, A,

then feasible(Breakup(σ)) ⇔ |{x | x ∈Descendents(σ)∧x ∈ M}| > 1). This

feasibility condition exists because it makes no sense for A to spawn off a new

agent, B, and assign it the one and only executable method that agent A was

executing — effectively freeing up A but creating a just as much overloaded

agent, B.

3. Cloning: In this approach, the root of the task structure is always cloned

and assigned to the newly spawned agent. All the agents in this approach

are exact replicas in that all of them have equivalent roles, in which they are

responsible for the complete task structure.

4. Prefer Cloning: This is similar to the Cloning approach, with the excep-

tion that if Cloning is infeasible given the current task load, the agent will

Breakup according to the BET heuristic. We define cloning to be infeasible

if the number of clones of a node is greater than or equal to the number of

outstanding tasks in the spawning agent’s task queue. Cloning is infeasible

in such cases because cloning assigns task instances to specific clones (and by

inference their owning agents). The only way to assign a task instance to a

new clone, in such cases, would be to transfer an instance from an existing

clone to the new clone. This would free up the existing clone but would equally

overload the new clone.
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5. Hybrid Model: This is a hybrid model, that we designed on the basis of a

preliminary set of experiments. This model uses a combination of cloning the

highest level goal and breakup according to the BET heuristics. It works by

computing a utility value UBreakup(ϑ), which is the expected utility of breaking

up according to the BET heuristics. Here, ϑ is the node that was selected for

breakup by the BET heuristic. If UBreakup(ϑ) > χ, where χ is a constant called

the breakup threshold, the agent chooses to breakup. Otherwise it clones the

highest level node.

To compute UBreakup(ϑ), we start by initializing it to another constant .

Then according to various “truisms” about the current local-task-structure

of the agent, the selected breakup node and the environmental conditions, the

value of UBreakup(ϑ) is either increased or decreased according to the formula:

UBreakup(ϑ) = UBreakup(ϑ)(1−(ξ ·var)), where both ξ (a constant) and var have

values between -1 and 1. Both the value of ξ and var depend on the evidence

being considered. That is:

UBreakup(ϑ) = ψ ·
4∏

i=1

[1 − (ξi · vari)] (3.26)

For our results, we have considered the following parameters:

• The difference in execution time between the selected breakup node and

the leftover node as defined by the BET heuristic. If this difference is

large, the spawning agent and the spawned agent will be unbalanced and

hence it makes sense to prefer cloning over breakup.

var1 =
Execution Time(Breakaway Part) − Execution Time(Leftover Part)

Execution Time(Original Task)
(3.27)

• The ratio of the number of NLEs that will have to be “broken” up as a

result of the breakup to the total number of NLEs in the task structure.
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The larger the number of these NLEs, the greater the coordination cost

between the spawning agent and the spawned agent. Hence, it makes

more sense to prefer cloning over breakup in cases where there are a

large number of NLEs.

var2 =
# of NLEs Broken

Total # of NLEs
(3.28)

• The ratio of the difference in resource cost between breakup and cloning

divided by the total resource cost. This ratio is used to tradeoff the

increase in resource cost when selecting cloning over breakup.

var3 =
Resource Cost(Breakup) − Resource Cost(Cloning)

Total Resource Cost
(3.29)

• The average amount of time available for each task instance divided by

the expected time needed for performing the task. This is a measure of

the excess load in the system.

var4 =
Average Time Available(instance)

Expected Time Required(instance)
(3.30)

3.4.6 Detecting the need for organizational change

As organizational change is expensive (requiring clock cycles, alloca-

tion/deallocation of resources, etc.) we want a stable organizational structure that

is well suited to the task and environmental conditions at hand. Hence, we wish to

change the organizational structure only if the task structure and/or environmental

conditions change. Also to allow temporary changes to the environmental condi-

tions to be overlooked, we want the probability of an organizational change to be

inversely proportional to the time since the last organizational change. If this time

is relatively short, the agents are still adjusting to the changes in the environment

- hence the probability of an agent initiating an organizational change should be

high. Similarly, if the time since the last organizational change is relatively large,

we wish to have a low probability of organizational change.
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To allow this variation in probability of organizational change, we use sim-

ulated annealing to determine the probability of keeping an existing organizational

structure. This probability is calculated using the annealing formula: p = e−
ΔE
kT

where ΔE is the “amount” of overload/underload, T is the time since the last orga-

nizational change and k is a constant. The mechanism of computing ΔE is different

for agent spawning than for agent composition and is described below. From this

formula, if T is large, p, or the probability of keeping the existing organizational

structure is large. The probability of organizational change, q, can be calculated

using the formula, q = 1− p. Note that the value of p is capped at a certain thresh-

old in order to prevent the organization from being too sluggish in its reaction to

environmental change.

3.4.6.1 Agent Spawning

Agent spawning should only occur when the agent doing the spawning is too

overloaded to complete the tasks in its task queue by their given deadlines. The

obvious question then is: “How can the agents know when they are overloaded?”.

One way in which the agents could detect overload would be to wait until

they fail to complete their tasks on time (i.e. an agent could wait till the deadline

on a task in its task queue is exceeded). Two problems with this approach are:

1. An agent executing a method may, on a single run at any given time, take

significantly longer to finish it than normal. That is, the missed deadline

may be a one-time occurrence. This is because the time taken to execute

a method is often non-deterministic and probabilistic24. Hence, missing a

24 Recall that in TÆMS , executable methods are probabilistic, in that, methods
are allowed to have multiple outcomes with different probabilities. Furthermore,
each outcome is allowed to take a varying amount of time to complete based on
some probability distribution. Hence, it is often not possible to know, a priori,
how long a method is going to take to execute.
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deadline on the current execution run does not automatically imply that the

agent is overloaded or that it will consistently miss deadlines in the future.

2. The overload diagnosis only occurs after the agents have already failed to

execute tasks in their task queue. Ideally, we would prefer to diagnose and

prevent task failures before they actually occur.

The first problem can easily be rectified if the agents wait for a certain percentage

of the tasks in their respective task queues to fail before spawning off new agents.

However, this solution does nothing to address the second problem.

To have a more pro-active approach to organizational structuring, we use two

different items of information as described below:

1. Meta-Information about the task: By meta-information, we mean the

information about the characteristics of a task. For our purposes, we make

use of three pieces of meta-information about the tasks being attempted:

• the min time or the absolute minimum time that agent must have in

order to have a non-zero probability of completing the task;

• the expt time or the expected time needed to complete the task; and

• the g min time25 or the minimum time needed to guarantee task com-

pletion, in the absence of failures. (That is, the time needed to have a

probability of 1 of completing the task, in the absence of failures).

25 Note that the g min time is the same as the worst-case execution time (or
wcet) for executable methods. However, for some CAFs, this time may differ
significantly from the worst-case execution time. To see why, consider a task, T,
with a SUM CAF and two executable methods A and B. A and B have g min
times (wcets) of 2 and 7 respectively. Now, the wcet of T is 9, which occurs
when the agent decides to schedule both methods A and B. However, the g min
time is only 2, since the agent only needs to schedule method A to guarantee a
non-zero quality for task T.
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To understand the difference between the three, consider an executable method

that has two outcomes, the first of which takes a minimum of 3 cycles and a

maximum of 5 cycles to execute and the second of which takes a minimum of

5 and a maximum of 7 cycles to execute. Now, the agent needs at least three

cycles to have a non-zero probability of completing this executable method,

which would be the case if the executable method had the first outcome and

took only 3 cycles to achieve it. Hence the min time is 3. Also, the agent needs

at least 7 cycles to guarantee task completion26 — hence the g min time is 7.

The expt time would be the amount of time it takes to complete the method

on average and would depend on the probability of the two outcomes.

Formally, if Outcomes(Method) : M → {(o, p) | o is an outcome of M ∧
p is the probability of outcome o} be a function that returns the outcomes

of a method and DurationD(Outcome) : O → {(m, q) | m ∈ N ∧ q ∈ �+}, be

a function that returns the duration distribution of outcome, O, then:

min(m ∈ M) ← min
(o,p)∈Outcomes(m)

[
min

(m,q)∈DurationD(o)
m

]
(3.31)

expt(m ∈ M) ←
∑

(o,p)∈Outcomes(m)

p ·
⎡
⎣ ∑

(m,q)∈DurationD(o)

(m · q)
⎤
⎦ (3.32)

g min(m ∈ M) ← max
(o,p)∈Outcomes(m)

[
max

(m,q)∈DurationD(o)
m

]
(3.33)

The meta-information for a higher-level node (task) depends on both the

CAF of the task and the meta-information of its subtasks. Formally, if

26 The reasoning behind the g min time is that the agent cannot control the out-
come of a method and, furthermore, has no way of knowing the actual duration
of an outcome. This is because an agent can only decide on whether or not to
execute a particular method but has no way of influencing or controlling the
actual execution of the method. Hence, to guarantee method completion, the
agent needs to allocate the maximum amount of time that any outcome of the
method might take to complete.
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CAF(Task) : T → {Min,Max,Sum,Exactly One} is a function that returns

the characteristic accumulation function of a task, then this meta-information

can be recursively computed from the meta-information of the subtasks using

the following formulas:

min(t ∈ T ) ←

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
tj∈Subtasks(t) min(tj) if CAF(t) = Min

mintj∈Subtasks(t) min(tj) if CAF(t) ∈ {Sum, Max,

Exactly One}
(3.34)

expt(t ∈ T ) ←

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
tj∈Subtasks(t) expt(tj) if CAF(t) = Min

sohtj∈Subtasks(t) expt(tj) if CAF(t) ∈ { Sum, Max }

avgtj∈Subtasks(t) expt(tj) if CAF(t) = Exactly One

(3.35)

g min(t ∈ T ) ←

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
tj∈Subtasks(t) g min(tj) if CAF(t) = Min

mintj∈Subtasks(t) g min(tj) if CAF(t) ∈ {Sum, Max,

Exactly One}
(3.36)

2. The effective time available for completion of a task: The time available

for completion of a task is computed by assuming that all tasks are equally

important, that all tasks need to be executed and that the total time available

needs to be equally divided amongst all the outstanding tasks.27 If these

assumptions hold, we can compute the time available using the steps given

27 These assumptions do not guarantee optimality in any way. Rather it is trivial
to demonstrate a case where an agent would gain more quality by ignoring
certain tasks. These assumptions have been chosen for simplicity rather than
for optimality.
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Algorithm 8 Algorithm to compute the effective time available for a task

1: Let AT (T ∪ M) → N+ be a function that returns the arrival time of a
task/method

2: Let DT (T ∪M) → N+ be a function that returns the deadline of a task/method

3: Fig. 3.7b: Divide the total time into consecutive time slices bounded by the
arrival times and deadlines of each task.

4: Let Start(ts) and End(tsi) be two functions that respectively return the starting
and ending times of a time slice, ts.
{Fig. 3.7c: Compute the time available per task for each time slice}

5: for each time slice, tsi do
6: n[tsi] ← number of outstanding tasks in time slice i
7: d[tsi] ← End(tsi) − Start(tsi) + 1
8: tavail[tsi] ← n[tsi]/d[tsi]
9: end for

{Fig. 3.7d: Compute the total effective time available for each task}
10: for each task, tj in the task queue do
11: MySlices ← {ts|AT (tj) ≤ Start(ts) ∧ End(ts) ≤ DT (tj)}
12: tavail[tj] ←

∑
tsi∈MySlices tavail[tsi]

13: end for

in Algorithm 8. Refer to Figure 3.7 for an example demonstrating the use of

these steps.

Given these two pieces of information, the agent using Algorithm 9 to deter-

mine if agent spawning is necessary28. The crux of this algorithm is the for loop

on line 2, which iterates over all the outstanding tasks and the if statements in

lines 4 and 7, which compares the effective time available for a task, tavail(Taski),

against min(Taski). If the former is smaller, the agent is guaranteed to fail on the

current task and the agent immediately spawns off a new agent (line 5). If, on the

other hand, tavail(Taski) is greater than min(Taski) but less than g min(Taski), the

agent uses simulated annealing to calculate if a new agent should be spawned, with

ΔE computed as shown in Equation 3.37. The reasoning behind computing ΔE

28 The running time of Algorithm 9 is O(n), where n is the number of outstanding
tasks in the task queue.
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Algorithm 9 Algorithm for determining if Agent Spawning is necessary

1: Let Tcurr ← be the current time (the time instance at which this algorithm is
run

2: for Taski in OutstandingTaskQueue do
3: Let tavail(Taski) ← be the effective time available for Taski, computed using

Algorithm 8
4: if tavail(Taski) < min(Taski) then
5: SpawnAgent()
6: else
7: if min(Taski) < tavail(Taski) < g min(Taski) then
8: SpawnAgent() with probability p calculated using the annealing formula,

with

ΔE =
1[

α· [tavail(Taski) − min(Taski)]

+(1 − α)· [g min(Taski) − min(Taski)]

] (3.37)

where α is a constant.
9: else

10: Do Nothing
11: end if
12: end if
13: end for
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like this is that if tavail(Taski) is less than g min(Taski), there is some probability

of the agent failing Taski due to a lack of time.

The probability of keeping an existing organizational structure in this case

should then be proportional to (and ΔE should be inversely proportional to29): (a)

the difference between the effective time available, tavail(Taski), and min(Taski);

and (b) the difference between g min(Taski) and tavail(Taski), with α being a con-

stant used to determine which of the terms (a) or (b) gets to dominate the calcula-

tion. We use former term, Term (a), because the closer tavail(Taski) is to min(Taski)

the greater the chance of the agent failing a task. We use the latter term, Term (b),

because the greater the value of this difference, the greater the disparity between

two outcomes of the method — one that takes a large amount of time and one that

takes a smaller amount of time.

Note that since agent spawning is triggered by an indication that the agents

might fail on the tasks in the task queue as opposed to actual failure on a task, the

agents can be thought to have a pro-active approach to organizational design.

29 Recall that if ΔE is large, p or the probability of keeping an existing organiza-
tional structure is low.
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3.4.6.2 Agent Composition

Agent composition is exactly orthogonal to agent spawning as agent compo-

sition only occurs when the agents are underloaded. In such a situation, some of the

agents will be sitting idle waiting for tasks to arrive. These idle agents will either

be utilizing resources while waiting, or more likely, will have resources allocated to

them that could be used elsewhere in the system. An example of the former case

is when agents are using CPU cycles while waiting (busy waiting). An example of

the latter case is when agents have been allocated network bandwidth that is being

unused while the agents are sitting idle. In either case, there is an inefficiency in

the allocation and use of resources. In such cases, it makes sense to combine some

of the free agents with other agents thus freeing unused resources.30

To calculate if agent composition is necessary, we again use the simulated

annealing equation. However, in this case, ΔE is computed differently and is

proportional to the amount of time for which the agent was idle. In particular,

ΔE = β · Idle T ime, where β is a constant and Idle T ime is the amount of time

for which the agent was idle. If the agent has been sitting idle for a long period

of time, ΔE is large, which implies that p, the probability of keeping the existing

organizational structure, is low. Since agent composition only occurs after the agent

is already idle (and hence already wasting resources), the agents can also be thought

to have a reactive approach to organizational design.

Hence, organizational design in our agents is both pro-active (in the case of

agent spawning) and reactive (in the case of agent composition). This combination

of pro-active and reactive behavior gives our agents the ability to complete as many

30 Another reason for combining agents might be to reduce the coordination over-
head associated with the communication delay between the agents. If the com-
munication time is greater than the time saved due to the greater parallelism
between the tasks (as a result of having multiple agents), it makes sense to
combine some of the agents.

105



tasks as possible, as the agents react fast to bad news (inability to complete the

outstanding tasks) and slowly to good news (the agents being underloaded).

3.4.7 Robustness Mechanisms

Both of our robustness mechanisms involve three parts: (a) monitoring for

agent failure; (b) maintaining state information for all the agents; and (c) restarting

failed agents.

Furthermore, the underlying mechanism for monitoring and restarting is the

same across the robustness mechanisms. Monitoring is achieved by sending out

periodic Are-You-Alive messages to the set of monitored agents and waiting for

Alive reply messages. If a reply is not received within a certain interval, we assume

that the agent is dead and send a restart message to the environment. The individual

mechanisms, however, differ in who is responsible for the monitoring and which set

of agents are monitored.

State information is needed to restart a failed agent. At a minimum, this state

information should contain the organizational state (i.e. the local task structure)

of the agent being restarted. However, the local task information is not sufficient

for restarting an agent in a complex domain. The restarted agent will still need

information about the execution context, i.e. information about the outstanding

task instances, information about the methods of a task instance that have already

been executed (so that the agent does not try to re-execute them) and information

about coordination commitments (because the subtasks have non-local effects and

are interdependent on each other).

The two coordination mechanisms also use the same underlying mechanism

for maintaining state information about the agents being monitored. Whenever

an agent receives an Are-You-Alive message from its monitor, it adds its current

state information (including information on both the organizational state and the
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execution context) to the Alive reply message. This state information is cached by

the agents doing the monitoring and is used to restart failed agents.

3.4.7.1 Citizens Approach

The citizens approach involves creating a special monitoring agent (called a

sentinel agent), which is responsible for all the robustness related responsibilities of

the organization. This approach is the simplest to execute — the sentinel agent is

the sole monitor that is responsible for monitoring all the agents in the organization.

The primary disadvantage of the citizens approach is that the sentinel agent

has global knowledge about the complete organization — a problem we were trying

to avoid by using the OSD approach in the first place. Furthermore, the sentinel can

(a) quickly become overwhelmed by all the messages that it needs to track and (b)

become a central point of failure31. The solution might be to add multiple sentinel

agents — we will now need to create an organization for the sentinels (for which we

could, again, use OSD) and a way of monitoring the monitors.

Hence, we focus on developing algorithms for the survivalist approach and

use the citizens approach for comparison.

3.4.7.2 Survivalist Approach

In the survivalist approach, there are no special agents responsible for moni-

toring and restarting failed agents. Instead the domain agents divide the monitoring

responsibilities amongst themselves. Furthermore, some/all domain agents may be

replicated in order to (a) increase the robustness capacity of the organization; (b)

decrease the response time to a failure, and (c) process task instances in parallel,

thus helping to balance the load.

31 It’s unreasonable to assume that the other agents might fail, but the sentinel
will never fail
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The obvious advantage of the survivalist approach is that no one agent is

overburdened with the monitoring responsibilities. Also there is no central point

of failure and no agent with global knowledge of the organization. Furthermore,

the survivalist approach can take into account the interplay between a satisficing

organizational structure and probability of failure. For example, one way of achiev-

ing a higher level of robustness in the survivalist approach, given a large numbers

of agent failures, would be to relax the task deadlines. However, such a relaxation

would result in the system using fewer agents in order to conserve resources, which

in turn would have a detrimental effect on the robustness. These advantages come

at a cost of increased complexity of the monitoring mechanism.

3.4.7.3 Creating a monitoring set of agents

The monitoring set of an agent, Agent A, is defined as the set of agents that

are responsible for monitoring Agent A for failures. We assume that the minimum

cardinality of this set, N is an input to the organization32. Also in our approach,

all monitoring is mutual, i.e. if Agent A is in the monitoring set of Agent B (i.e.

if Agent A is responsible for monitoring the health of Agent B), then Agent B is in

the monitoring set of Agent A. This is by design, because Agent A on receiving an

are-you-alive request from Agent B, already knows that Agent B is alive and does

not need to send Agent B a separate request.

Each agent is responsible for determining its monitoring set. At the time an

agent, say Agent A, is first spawned, it runs the following algorithm:

1. Agent A determines its related set. The related set of Agent A is the set of

agents that have a coordination relationship with Agent A. (This coordination

32 It should be possible to develop an algorithm for learning the optimal value of
N given the environment conditions — i.e. the probability of failure. We plan
to incorporate this into our future work.
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relationship would exists because of interdependent tasks and NLEs in the

task structures of the agents).

2. If the number of agents in the related set of Agent A is greater than N, Agent

A sends a message to each of the related agents, requesting the cardinality of

their respective monitoring sets, and then goes to Step 3. If this number is

less than N, Agent A adds all of the related agents to its monitoring set and

then jumps to Step 4.

3. Agent A picks the N related agents with the lowest monitoring-set cardinalities

to be in its monitoring set.

4. Agent A sends messages to all the other non-related agents, requesting their

monitoring-set cardinalities. (This can be done using a single broadcast mes-

sage). Agent A then iteratively selects agents with the lowest monitoring-set

cardinalities until either (a) it has N agents in its monitoring set or (b) until

all the agents have been exhausted (i.e. there are less than N agents in the

whole organization).

Finally, once Agent A has determined its monitoring set, it can send a message to

each of the agents in its set requesting them to monitor its health. In addition

to being distributed, other advantages of this algorithm are: (a) Steps 1–3, can

be piggy-backed onto the coordination-mechanism negotiation messages exchanged

with the agents in the related set and (b) This scheme will reduce the frequency of

are-you-alive messages transmitted since the agents will be communicating in-band

as a part of their normal tasks processing.

3.4.7.4 Augmenting the robustness capacity of an organization

The robustness capacity of an organization is defined as the number of agent

failures that an organization can withstand. The robustness capacity is equal to the
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kill count minus 1, where the kill count is the minimum number of agents that need

to be killed in order to kill the organization (i.e. ensure that the remaining agents

cannot complete tasks without having to restart more agents).

The robustness capacity of an organization is dependent on (a) the underlying

global task structure and (b) the way it has been divided amongst the agents. The

CAFs of the global task structure, especially the root CAF, determines the number

of alternatives available for achieving a task. For example, a one-level deep task

structure with a MAX CAF and three subtasks would have three alternative ways

of achieving the task. If each of these three alternatives was divided amongst three

agents, the resultant organization would have a kill count of 3 and a robustness

capacity of 2.

Figure 3.8 shows how the global task structure and its breakup amongst the

agents affects the robustness capacity of an organization. The first task structure

has a MIN CAF as its root, so either of Agents 1, 2 or 3 can be killed in order to

kill the organization. The kill count is 1 and, hence, the robustness capacity is 0.

The second task structure has a SUM as its root, so all the three agents need to be

killed in order to kill the organization. Hence, the kill count is 3 and the robustness

capacity is two. The third task structure is similar to the second one except that it

has an enablement from Method J to F. With the task structure divided amongst

the agents as shown, if Agent 3 is killed, there is no way to complete Method J. This,

in turn, means that Method F will never be enabled, i.e. the quality of Method F

will always be 0. Since Task B has a MIN CAF, the quality of Task B will also be

0 and, as a result, Agent 1 has effectively been poisoned. Hence, only Agents 2 and

3 need to be killed to kill the organization and the kill count is 2.

Augmenting the robustness capacity of an organization is the process of

adding agents to the organization so as to increase its kill count. Again, we are

assuming that the desired kill count, K is an input to the organization. A trivial
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Figure 3.8: Computing Robustness Capacity: Figure showing how the global
task structure and its breakup amongst the agents affects the robustness capacity.
The X’s on the agents show which agents need to be killed in order to kill the
organization.
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way to do this would be to replicate each agent K-1 times. However, this would be

inefficient as it does not take into account the existing kill-count of the organization.

The first step towards increasing the robustness capacity of an organization

would be to compute the existing kill-count, and then to “add” agents by breaking

up the global task structure and spawning agents in a way that increments this

kill-count. Unfortunately, the bad news is that computing the kill-count of an

organization based on an underlying TÆMS task structure is NP-hard (This result

is similar to the findings in [Zhang et al. , 2009]). An informal proof follows:

This proof is based on the reduction of a minimum set covering problem to

a TÆMS based organization, where the kill-count of that organization would be

the solution to this problem. Assume a ground set M consisting of m elements,

{e1, e2, ..., em} and n subsets {s1, s2, ..., sn}. Create a TÆMS task structure, with a

MAX CAF as the root and the subsets, {s1, s2, ..., sn} as its subtask nodes. Finally

replace each node si with a MIN CAF task, the subtasks of which will be the

methods, {ei,1, ei,2, ..., ei,j}, where each method corresponds to an element of si.

Finally, assign m agents to the organization, where each method corresponding to

ei is assigned to agent ai. This reduction will provably take polynomial time.

Since, (a) the problem of computing the kill count/robustness capacity of a

problem is NP-hard and (b) augmenting the organization by spawning agents at

specific places will interfere with other desirable characteristics such as balancing

the execution time and maximizing quality, we chose an alternative approach to

augmenting the robustness capacity.

In our approach, the initial root node of the global task view is cloned K − 1

times and each clone is allocated to a separate agent. These agents are responsible

for individually forming their own independent organizations and spawning and

composing with agents independently.
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Figure 3.9: The generic architecture of the agents.

3.4.7.5 Frequency of are-you-alive messages

Ideally, we want each agent in the monitoring set of an agent A to send an

are-you-alive request at a different time. To achieve this, we initialize each agent

with a random seed. The next-poll-time is initialized to the poll-interval plus this

random seed. Also the next-poll-time is recalculated on receiving any message from

the monitored agent.

3.5 Agent Architecture

We have implemented a generic, message-driven architecture for our agents

as shown in Figure 3.9. The agents receive input messages from the environment

and other agents which are buffered in the input queue. At the start of each ex-

ecution cycle (clock tick), the input messages are pre-processed and transferred to

the message queue. The handler selector, then, dequeues a message from the mes-

sage queue, determines the message type and then based on the message type finds
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one or more message handlers that are capable of processing messages of the given

type. Each message handler is then called in turn with the message. This process is

repeated until there are no more messages left on the message queue. The message

handlers may generate new messages that are either enqueued in the message queue

or the output queue (if they are meant for other agents or for the environment.)

The logical view of the OSD agents, showing the flow of messages and other

data between the various message handlers is shown in Figure 3.10. A description

of each of these message handlers is given below:

Initializer: The initializer is called once, per agent, in response to an INI-

TIALIZE message from the environment, and is responsible for setting up the agent’s

organizational knowledge.

Scheduler and CM Selector: The scheduler and CM Selector is responsi-

ble for (a) selecting a local schedule for the agent and (b) negotiating a coordination

mechanism with agents in this agent’s related set.

Coordinator: The coordinator receives (a) DO TASK messages from the

environment and other agents; and (b) COORD RESULTS messages from other

agents. The DO TASK message are used by (1) the environment to announce the

arrival of new tasks to the agent; and by (2) other agents to request that this

agent perform a task. (For example, the clone selector will select amongst all the

clones and generate this message.) The COORD RESULT messages are used to

send results to other agents that have an NLE with tasks that are the responsibility

of this agent.

Method Executor: As evident by its name, the method executor is respon-

sible for picking up the next method to execute and sending it off to the environment

for execution.

Agent Spawner: The Agent Spawner is responsible for spawning off new

agents. To do this, the spawner constantly monitors the outstanding methods in the
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agent’s task queue to see if the agent can complete all of them by their respective

deadlines. If not (See Section 3.4.6), it spawns off one or more new agents. To do

this it selects a node for breakup/cloning (See Section 3.4.5.1) and applies either the

breakup or the cloning operator depending on the spawning strategy (See Section

3.4.5.2). It then sends a SPAWN AGENT message to the environment to create a

new agent.

Result Aggregator: The result aggregator is responsible for determining

the execution characteristics of a task from the execution characteristics of its sub-

tasks. The result aggregator also sends a TASK RESULT message to the parent

agents once all the outstanding subtasks of a task have been executed.

Combination Decider: The combination decider gets called when the agent

has remained idle for a given number of cycles. It uses simulated annealing to

determine if the agent should be combined with another agent (See Section 3.4.6).

If it decides in the affirmative, it sends a COMBINE message to the composed agent.

Combiner: This module performs the actual agent composition and is called

in response to a COMBINE message from the composer agent. It calls the merging

operator defined in Section 3.4.1.

3.6 Chapter Summary

This chapter forms the core of this thesis and describes our approach to

Organizational Self-Design.

Section 3.1 starts off this chapter with a description of task structures and

motivates the use of TÆMS as our problem representation language. Section 3.2,

then briefly describes our overall approach to OSD and introduces the reader to our

two organizational design primitives — agent spawning and agent composition.

This is followed by a formal description of our task and resource model in

Section 3.3. This section includes a description of our execution model (in Section

3.3.1) and a formal definition of the Characteristic Accumulation Functions (CAFs)
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(in Section 3.3.2) and the Non-Local-Effects (in Section 3.3.3). Section 3.3.4 in-

troduces the reader to some extensions to the TÆMS task representation language

that we proposed and implemented for our research. Finally, Section 3.3.5 describes

some assumptions that we made about the task and resource model in our research.

This chapter then moves on to an actual description of the OSD approach in

Section 3.4. This section includes a description of the agent roles and relationships

in Section 3.4.1. This is followed by an illustration of the coordination mechanism

employed (in Section 3.4.2) and norms (in Section 3.4.3). Next, we formally define

OSD in Section 3.4.4.

Section 3.4.5 then describes the mechanism and algorithm used to form and

adapt an organizational structure. This includes a description of our task allocation

heuristics in Section 3.4.5.1 and the spawning strategies in Section 3.4.5.2.

Section 3.4.6 describes how the agents might detect a need for organizational

change, including a need for agent spawning (in Section 3.4.6.1) and a need for agent

composition (in Section 3.4.6.2).

This is followed by a description of our robustness mechanisms in Section

3.4.7. The citizens approach to robustness is described in Section 3.4.7.1 while the

survivalist approach to robustness is described in Section 3.4.7.2.

Finally, we end this chapter with a description of our agent architecture in

Section 3.5.
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Chapter 4

EXPERIMENTS IN THE USE OF ORGANIZATIONAL

SELF-DESIGN

The true method of knowledge is experiment. (William Blake)

A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who
made it. (Albert Einstein)

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it doesn’t agree with experiment, it’s wrong

(Richard Feynman)

This chapter is divided into four major sections — First, I compare the per-

formance of my approach with the Contract Net approach, the most commonly used

one-off mechanism for organization and coordination1. Next, I evaluate the perfor-

mance of the three different task allocation heuristics outlined in Section 3.4.5.1

against a random task allocation strategy. I follow this up with an evaluation of the

five spawning strategies presented in Section 4.4. Finally, I test the robustness of

my approach.

1 Refer to Section 2.2.5.1 for details on the Contract Net Protocol.
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4.1 Comparison with the Contract Net Protocol

To evaluate our approach, we ran a series of experiments that simulated the

operation of both the OSD agents and the Contract Net agents on various task

structures with varied arrival rates and deadlines. At the start of each experiment,

a random TÆMS task structure was generated with a specified depth and branching

factor2. During the course of the experiment, a series of task instances (problems)

arrive at the organization and must be completed by the agents before their specified

deadlines.

To directly compare the OSD approach with the Contract Net approach, each

experiment was repeated several times — using OSD agents on the first run and a

different number of Contract Net agents on each subsequent run. We were careful to

use the same task structure, task arrival times, task deadlines and random numbers

for each of these trials.

We divided the experiments into two groups: experiments in which the envi-

ronment was static (fixed task arrival rates and deadlines) and experiments in which

the environment was dynamic (varying arrival rates and/or deadlines).

The two graphs in Figure 4.1, show the average performance of the OSD

organization against the Contract Net organizations with 8, 10, 12 and 14 agents.

The results shown are the averages of running 40 experiments. 20 of those exper-

iments had a static environment with a fixed task arrival time of 15 cycles and a

deadline window of 20 cycles. The remaining 20 experiments had a varying task

arrival rate - the task arrival rate was changed from 15 cycles to 30 cycles and back

to 15 cycles after every 20 tasks. In all the experiments, the task structures were

randomly generated with a maximum depth of 4 and a maximum branching factor

of 3. Note that (a) the size (depth and branching factor) of these task structures

2 We chose to use randomly generated task structures because the only available
repository of task structures is from the DARPA coordinators project and these
are unsuitable for our purposes.
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is greater than the typical size of the task structures for the real world applications

that we looked at; and (b) TÆMS can be used to represent task structures at various

levels of abstraction — so any method of a task structure can be further refined by

breaking it up into its component tasks and methods. Hence, by considering task

structures of a particular size, we are looking at problems at a particular level of

abstraction. The runtime for all the experiments was 2500 cycles.

Graphs 4.2a, 4.2b, 4.2c and 4.2d show the variation in the various measured

characteristics over time for a randomly chosen experiment under static environ-

mental conditions for a range of performance characteristics. Similarly, graphs 4.3a,

4.3b, 4.3c and 4.3d demonstrate the performance of the various groups of agents

under dynamic conditions.

We tested several hypotheses relating to the comparative performance of our

OSD approach using the Wilcoxon Matched-Pair Signed-Rank tests [Daniel, 2000].

Matched-Pair signifies that we are comparing the performance of each system on

precisely the same randomized task set within each separate experiment. The tested

hypothesis are:

1. The OSD organization requires fewer agents to complete an equal

or larger number of tasks when compared to the Contract Net orga-

nization: To test this hypothesis, we tested the stronger null hypothesis that

states that the contract net agents complete more tasks. This null hypothesis

is rejected for all contract net organizations with less than 14 agents (static:

p < 0.0003; dynamic: p < 0.03). For large contract net organizations, the

number of tasks completed is statistically equivalent to the number completed

by the OSD agents, however the number of agents used by the OSD orga-

nization is smaller : 9.59 agents (in the static case) and 7.38 agents (in the

dynamic case) versus 14 contract net agents3. Thus the original hypothesis,

3 These values should not be construed as an indication of the scalability of our
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Figure 4.1: Comparison to the CNP — Average performance over all ex-
periments: Graph comparing the average performance of the OSD organization
with the Contract Net organizations (with 8, 10, 12 and 14 agents). The error bars
show the standard deviations.
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that OSD requires fewer agents to complete an equal or larger number of tasks,

is upheld.

2. The OSD organizations achieve an equal or greater average quality

than the Contract Net organizations: The null hypothesis is that the

Contract Net agents achieve a greater average quality. We can reject the

null hypothesis for contract net organizations with less than 12 agents (static:

p < 0.01; dynamic: p < 0.05). For larger contract net organizations, the

average quality is statistically equivalent to that achieved by OSD.

3. The OSD agents have a lower average response time as compared

to the Contract Net agents: The null hypothesis that OSD has the same

or higher response time is rejected for all contract net organizations (static:

p < 0.0002; dynamic: p < 0.0004).

4. The OSD agents send less messages than the Contract Net Agents:

The null hypothesis that OSD sends the same or more messages is rejected

for all contract net organizations (p < .0003 in all cases except 8 contract net

agents in a static environment where p < 0.02)

Hence, as demonstrated by the above tests, our agents perform better than

the contract net agents as they complete a larger number of tasks, achieve a greater

quality and also have a lower response time and communication overhead. These

results make intuitive sense given our goals for the OSD approach. We expected

the OSD organizations to have a faster average response time and to send fewer

messages because the agents in the OSD organization are not spending time and

approach. We have tested our approach on organizations with more than 300
agents, which is significantly greater than the number of agents needed for the
kind of applications that we have in mind (i.e. web service choreography, efficient
dynamic use of grid computing, distributed information gathering, etc.).
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messages sending bid requests and replying to bids. The quality gained on the

tasks is directly dependent on the number of tasks completed, hence the more the

number of tasks completed, the greater average quality. The results of testing the

first hypothesis were slightly more surprising. It appears that due to the inherent

inefficiency of the contract net protocol in bidding for each and every task instance,

a greater number of agents are needed to complete an equal number of tasks.

4.2 Comparing Apples to Oranges

The next two sets of experiments are used to evaluate the various algorithms

that form the core of OSD framework — the first set of experiments (in Section 4.3)

compares the three task allocation heuristics while the second set (in Section 4.4)

is used to evaluate the five agent spawning strategies. These experiments evaluate

the performance of these algorithms on randomly generated task structures.

Since the task structures are being randomly generated, two task structures

can have vastly varying characteristics (such as the maximum quality achievable,

the minimum amount of time needed to accrue positive quality, etc.), which makes a

direct comparison of the results difficult. To allow experiments with vastly different

task characteristics to be compared, we needed a unified way of reasoning about

such task characteristics. Towards this end, we define three terms (See Figure 4.4

for the general idea behind these values):

• The expected serial-execution-time (SET), is defined as the minimum expected

duration of time needed for a single agent to perform a task on its own. Due

to the presence of NLEs such as facilitates and hinders, the SET is not simply

the sum of the expected durations of the executable methods of a task. This

is because the order in which the methods are executed will affect the amount

of time needed to perform a task. To define our SET time, we need to order

the methods so that the complete execution run takes the minimum amount
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(a) Average Quality Achieved

(b) Number of tasks completed

Figure 4.2: Comparison to the CNP — Performance in static environ-
ments: Graph comparing the performance of our OSD approach against the Con-
tract Net Protocol in a static environment for a single randomly-selected experiment.
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(c) Number of Messages Sent

(d) Average Response Time

Figure 4.2: Comparison to the CNP — Performance in static environ-
ments: Graph comparing the performance of our OSD approach against the Con-
tract Net Protocol in a static environment for a single randomly-selected experiment.
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(a) Average Quality Achieved

(b) Number of tasks completed

Figure 4.3: Comparison to the CNP — Performance in dynamic envi-
ronments: Graph comparing the performance of our OSD approach against the
Contract Net Protocol in a dynamic environment for a single randomly-selected
experiment.
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(c) Number of Messages Sent

(d) Average Response Time

Figure 4.3: Comparison to the CNP — Performance in dynamic envi-
ronments: Graph comparing the performance of our OSD approach against the
Contract Net Protocol in a dynamic environment for a single randomly-selected
experiment.
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of time possible. This can be done by performing a topological sorting of all

the executable methods, taking care to order them so that each method would

take the minimum amount to time possible to execute.

• The expected parallel-execution-time (PET), is the minimum expected amount

of time needed to perform a task assuming maximum parallelism, i.e. each

agent is responsible for executing a single method and all the agents can ex-

ecute methods in parallel. Again computing the PET time is not simply a

matter of taking the maximum of the executable times of the methods in a

task.

• Finally, the sp-diff is defined as the difference between the above two times,

i.e. sp-diff = SET−PET.

The sp-diff value is used to control both the arrival rate of new task instances

and the deadlines of the instance themselves as follows:

• The arrival sp-diff multiple, asp-diff, is used to control the task arrival rate

(defined as the rate at which a new task instance is generated). The arrival

rate is set to asp-diff ∗ sp-diff.

• The deadline sp-diff multiple, dsp-diff, is used to set the deadline window, de-

fined as the difference between the task deadline and the arrival time. The

deadline window for a task is set to PET + dsp-diff * sp-diff.

4.3 Evaluation of the three task allocation heuristics

4.3.1 Experimental Design

To determine which heuristic performs the best, given a set of task struc-

tures, environmental conditions and performance criteria, we performed a series of

experiments that were controlled using the following five variables:

129



• The depth of the task structure was varied from 3 to 5.

• The branching factor was varied from 3 to 5.

• The probability of any given task node having a MIN CAF was varied from

0.0 to 1.0 in increments of 0.2. The probability of any node having a SUM

CAF was in turn modified to ensure that the probabilities add up to 14.

• The arrival sp-diff multiple, asp-diff, was set to the following values, in turn:

0.05, 0.1, 0.5 and 1.0.

• The deadline sp-diff multiple, dsp-diff, was set to 0.1, 0.5 and 1.0.

The total number of NLEs was fixed at 10 and the experiments were run for

a total of 2500 cycles.

Each experiment was repeated 20 times, with a new task structure being

generated each time — these 20 experiments formed an experimental set. Hence,

all the experiments in an experimental set had the same values for the exogenous

variables that were used to control the experiment. Note that a static environment

was used in each of these experiments, as we wanted to see the performance of the

arrival rate and deadline slack on each of the three heuristics. The final evaluation

was done on 648 experimental sets or 12,960 experiments.

4.3.2 Actual Results

We tested the potential of these three heuristics on the following performance

criteria:

4 Since our preliminary analysis led is to believe that the number of Max and Ex-

actly One CAFs in a task structure have a minimal effect on the performance
of the allocation strategies being evaluated, we set the probabilities of the Max

and Exactly One CAFs to 0 in order to reduce the combinatorial explosion of
the full factorial experimental design.
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1. The average number of agents used. (Lower is better.)

2. The total number of organizational changes. (Lower is better.)

3. The total messages sent by all the agents. (Lower is better.)

4. The total resource cost of the organization. (Lower is better.)

5. The percentage of tasks completed. The percentage of tasks completed is

defined as the number of tasks completed divided by the number of tasks

generated. (Higher is better.)

6. The average quality accrued. The average quality is defined as the total quality

accrued during the experimental run divided by the sum of the number of tasks

completed and the number of tasks failed. (Higher is better.)

7. The average response time of the organization. The response time of a task is

defined as the difference between the time at which any agent in the organiza-

tion starts working on the task (the start time) and the time at which the task

was generated (the generation time). Hence, the response time is equivalent

to the wait time. For tasks that are never attempted/started, the response

time is set at final runtime minus the generation time. (Lower is better.)

8. The average runtime of the tasks attempted by the organization. This time

is defined as the difference between the time at which the task completed or

failed and the start time. For tasks that were never stated, this time is set to

zero. (Lower is better.)

9. The turnaround time is defined as the sum of the response time and runtime

of a task. (Lower is better.)

The average performance of these three heuristics is shown in Figure 4.5.
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Figure 4.5: Graph showing the average performance of the three breakup heuristics
for a variety of measured performance criteria. The y-axis uses a logarithmic scale.
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From these results, it is difficult to see much difference between these three

heuristics — This graph demonstrates the lack of a clear winner amongst the three

heuristics for most of the performance criteria that we evaluated. We suspected this

to be the case because different heuristics are better for different task structures and

environmental conditions, and since each experiment starts with a different random

task structure, we couldn’t find one allocation strategy that always dominated the

other for all the performance criteria.

To test whether these heuristics were indeed equivalent and to determine

the conditions under which one heuristic out-performs the others, we again ran

the Wilcoxon Matched-Pair Signed-Rank tests on the experiments in each of the

experimental sets. The null hypothesis in each case was that there is no difference

between the pair of heuristics for the performance criteria under consideration. We

were interested in the cases in which we could reject the null hypothesis with 95%

confidence (p < 0.05). We noted the number of times that a heuristic performed

the best or was in a group that performed statistically better than the rest. These

counts are given in Tables 4.1 and 4.2.

The number of experimental sets in which each heuristic performed the best

or statistically equivalent to the best is shown in Table 4.1. The breakup of these

numbers into (1) the number of times that each heuristic performed better than

all the other heuristics and (2) the number of times each heuristic was statistically

equivalent to another group of heuristics, all of which performed the best, is shown

in Table 4.2. Both of these tables allow us to glean important information about

the performance of the three heuristics.
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Table 4.1: The number of times that each heuristic performed the best or statistically
equivalent to the best for each of the performance criteria. Heuristic Key: BET is
Balancing Execution Time, TF is Topmost First, MR is Minimizing Resources and
Rand is a random allocation strategy, in which every TÆMS node has a uniform
probability of being selected for allocation.

Criteria/Heuristic BET TF MR Rand

No-Agents 620 277 311 204
No-Org-Changes 611 259 165 14
Total-Messages-Sent 196 571 97 35
Total-Resource-Cost 302 222 573 212
Percent-Completed 539 415 443 414
Average-Quality 537 330 440 393
Average-Response-Time 428 414 331 253
Average-Runtime 461 337 362 324
Average-Turnaround-Time 486 380 369 296
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Some interesting observations from these tables are:

• As can be seen, the Balancing Execution Time (BET) heuristic appears to

perform the best for a number of performance criteria. In particular, the BET

heuristic uses the lowest number of agents in 620 out of the 648 experimental

sets (First row of Table 4.1). Furthermore, in 315 out of these 620 experimental

sets, the BET heuristic performed statistically significantly better than all the

other heuristics. (In the remaining 305 cases, it was a part of a group of

heuristics that were statistically equivalent and spawned the lowest number of

agents.) This result was as expected because the BET heuristic always tries

to bifurcate the agents into two agents that have a more or less equal task

load. This results in fewer unevenly loaded agents, which, in turn, results in

fewer total agents being used.

Also as expected, the BET heuristic achieved the lowest number of organiza-

tional changes in the largest number of experimental sets (611 out of 648). In

fact, it was over twice as good as its second best competitor, Topmost first

(TF) at 259 experimental sets. This shows that if the agents are conscientious

in their initial task allocation, there is a lesser need for organizational change

later on, especially for static environments.

• The Topmost First (TF) heuristic outperforms all the other heuristics in the

number of messages sent — the agents in the resultant organization sent the

lowest number of messages in 571 experimental sets. This was almost three

times as much as it second best competitor, BET (which performed the best

or was in a group that performed the best in 196 out of the 648 experimental

sets.) Furthermore, the organizations built using the TF heuristic statistically

outperformed all the other heuristics by sending a lower number of messages

in 390 experimental sets.
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This result can be explained by the fact that most of the messages that are

exchanged between the agents are used for inter-agent coordination. Since the

TF heuristic breaks up the agents at the top of the task tree, it is equivalent

to dividing the organization along functional lines. This results in fewer NLEs

being broken up since most of the NLEs are between two methods. This, in

turn, results in a lower need for coordination between the agents and, hence,

a lower number of messages exchanged between the agents.

• Also, as expected, the Minimizing Resources (MR) heuristic had the lowest

resource cost amongst all the heuristics. In fact, the MR heuristic resulted in

the lowest resource usage in 573 of the 648 experimental sets and in 313 of these

573 experimental sets it statistically outperformed all the other heuristics.

This is in-tune with our goals for designing the MR heuristic.

• Whereas, the prima facie evidence suggests that the BET heuristic completes

the highest percentage of tasks (in 539 experimental sets), accrues the highest

average quality (in 537 experimental sets) and has the lowest response-time

(428), runtime (461) and turnaround time (486) amongst all the other heuris-

tics, when we look at the breakup of these numbers in Table 4.2, a slightly

different conclusion can be reached.

For these performance criteria, in the largest number of experimental sets,

the three heuristics and a random task allocation scheme are all statistically

equivalent. For example, in 342 of the 539 experimental sets in which the

BET heuristic completes the largest percentage of tasks, all the heuristics and

the random allocation scheme are statistically equivalent. (The BET heuristic

does beat all the other heuristics in 135 experimental sets for the percentage

of tasks completed.)
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The equivalence of these heuristics (and the random task allocation scheme) in

a large number of experimental sets suggests that our reorganization algorithm

(described in Section 3.4.6) makes the correct decision about when to spawn

off agents and when to re-compose them. Since this decision about the need

for reorganization is made based on the amount of overload and underload and

hence, indirectly on the probability of completing tasks before their deadlines,

this algorithm tries to ensure that all of the three heuristics have the same task

execution characteristics (such as the quality and turnaround times). Note

that these three heuristics still result in different organizations with different

organizational characteristics (such as the number of agents spawned and the

resource costs).

These results seem to suggest that, in the absence of any other information

about the environmental conditions, the BET heuristic should be employed since

it employs the lowest number of agents to complete the largest percentage of tasks

and outperforms all the other heuristics for a number of performance criteria. (The

total number of messages sent and the total resource cost being notable exceptions.)

However, given more information about the possible environmental conditions

at runtime, such as the arrival rate and deadline, we can make more informed

decisions and tradeoffs about these three heuristics. The graphs in Figures 4.6,

4.7, 4.8, 4.9 and 4.10 show how the number of agents, the percentage of tasks

completed, the total number of messages sent, the total resource cost and the average

turnaround time varies for different values of asp-diff and dsp-diff. (Note these graphs

show the results that have been averaged over all the experiments that have the

same values of asp-diff and dsp-diff. Standard error bars have been omitted to make

the graphs clearer.)

These graphs mostly reinforce the lessons learned when looking at the statis-

tical tests:
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Figure 4.6: Graph showing how the number of agents varies with the arrival and
deadline sp-diff multiples. 139



Figure 4.7: Graph showing how the percentage of tasks completed varies with the
arrival and deadline sp-diff multiples.
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Figure 4.8: Graph showing how the total number of messages sent varies with the
arrival and deadline sp-diff multiples. 141



Figure 4.9: Graph showing how the total resource cost varies with the arrival and
deadline sp-diff multiples.
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Figure 4.10: Graph showing how the average turnaround time varies with the arrival
and deadline sp-diff multiples.

143



• Figure 4.6 shows that the BET heuristic uses fewer agents than the other

heuristics, on average, for all the environmental conditions.

For all three heuristics, as the sp-diff multiples increase, the amount of time

available to complete a task increases and hence fewer agents are spawned.

• Similarly, Figure 4.8 shows that the TF heuristic sends fewer messages than

the other heuristics for all the environmental conditions.

For all three heuristics: As the arrival sp-diff multiple increases, fewer tasks

are being generated and hence, fewer messages are exchanged between the

agents. Also as the deadline sp-diff multiple increases, the deadline pressure

on the agents is being reduced resulting in fewer agents being generated. This,

in turn, results in fewer messages being exchanged between the agents.

• Figures 4.7 and 4.10 show that the three heuristics, on average, have very

similar task execution characteristics (the percentage of tasks completed and

the turnaround time.)

As expected, for all the heuristics, as the arrival sp-diff multiple and deadline

sp-diff multiple increases, the agents have more time to complete tasks and

the percentage of tasks completed increases.5

More interestingly, as the deadline sp-diff multiple increases, the average

turnaround time also increases. This is because as the deadline pressure on

the organization decreases, the organization uses fewer agents. Since fewer

agents are working in parallel, the turnaround time of the organization in-

creases. Also the average turnaround time seems to be independent of the

arrival sp-diff multiple.

5 Note that for extremely low values of the sp-diff multiples, completing the tasks
is infeasible given the arrival rate and the deadlines of the tasks, which is why
the percentage of tasks completed is in the low 40s for such experiments.
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• The most surprising results are those of the graph in Figure 4.9. This graph

shows that the Minimizing Resources (MR) heuristic performs the best for low

values of the arrival sp-diff multiple but fails to perform as well for high-values

of the arrival sp-diff multiple.

We suspect this is the case because when the arrival sp-diff multiple is low,

a significantly larger number of agents are spawned to deal with the high

task arrival rate. This gives the MR heuristic more opportunity to lower the

resource usage since the larger number of agents are spawned in a way that

minimizes the total resource usage.

However, for higher values of the arrival sp-diff multiple, fewer agents are

generated in which case the extremely greedy nature of this heuristic ends up

hurting the performance of this algorithm. This is because the MR heuristic

prefers “smaller” agents 6 that have a lower resource footprint. However, we

suspect that an equivalent count of small agents is not sufficient for completing

the tasks by their deadlines, which causes the MR heuristic to generate more

agents than the other heuristics. This in turn drives up the total resource cost

for the MR heuristic for higher values of the sp-diff multiple.

4.4 Evaluation of The Spawning Strategies

4.4.1 Experimental Design

To measure the performance of our strategies, we used the following input

variables to control the task structures generated in an experimental set:

1. The arrival sp-diff multiple, asp-diff, was set to the following values: 0.01, 0.1,

0.5 and 1.0.

6 For this discussion “small” agents are agents that have a low expected duration
for their local roles (as calculated by Algorithm 7).
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2. The deadline sp-diff multiple, dsp-diff, was set to values ranging from 0.5 to 2.0

in increments of 0.5.

3. The probability of a MIN CAF was set to 0.1, 0.5 and 0.9. The probability of

a SUM CAF was also varied accordingly7.

4. The maximum number of NLEs ranged from 10 to 20.

We were interested in measuring the following performance criteria:

1. The number of agents spawned by the organization. (Lower is better.)

2. The percentage of tasks completed. (Higher is better.)

3. The total number of messages sent by the agents in the organization. (Lower

is better.)

4. The average quality accrued by the organization. (Higher is better.)

5. The total resource cost of the organization. (Lower is better.)

6. The average turnaround time of the tasks in the organization. (Lower is

better.)

We ran a total of 96 experimental sets or 1440 experiments. Again, to test

for statistically significant differences between the performance of strategies, we ran

the Wilcoxon Matched-Pair Signed-Rank tests.

4.4.2 Actual Results

The results of these significance tests are shown in Figure 4.11. The vertical

bars show the number of times (out of 96, for the 96 experimental sets) that each

7 Again, we did not consider MAX and EXACTLY ONE CAFs for the purposes
of these experiments because some preliminary experiments determined that
they were not significant contributers to the performance of the strategies.
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Figure 4.11: Evaluation of The Spawning Strategies — Graph showing the
number of times each strategy performed the best or was in a group that performed
statistically equivalent to the best. The y-axis uses a logarithmic scale.
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strategy either performed the best or was statistically equivalent to a strategy that

performed the best.

Note that this graph is a summary that shows the number of times a strategy

performs as well statistically as the best strategy. Given no other information about

the possible environmental conditions at run-time, for a particular performance

criteria, we would implement the strategy with the longest bar.

However, to understand the task and environmental conditions that favor a

particular spawning strategy, we have to look at the performance of the strategies

under different environmental conditions. These performance results are shown in

Figure 4.12. These two graphs show the average number of agents and average

percentage of tasks completed for different values of asp-diff and dsp-diff.

Some interesting observations follow:

• From Fig. 4.11 we can see that the Breakup strategy performs well and out-

performs most of the other strategies in that it either performs the best or

performs statistically equivalent to the best in the percentage of tasks com-

pleted, average quality and total resource-cost criteria.

However, from Fig. 4.12, we can see that Breakup performs poorly for ex-

tremely low values of asp-diff (i.e. 0.01), completing less than 25% of the tasks

on average. This is because for such high values of asp-diff, the number of

outstanding tasks is so large that the agents have been maximally broken up.

(That is, each agent is performing a single executable method). Since further

breakup is infeasible, the agent population is easily overwhelmed and, hence,

performs poorly.

• As can be seen from Fig. 4.12, when dsp-diff ≤ 1, the Cloning strategy performs

significantly worse than than the other strategies. This is because when the

dsp-diff < 1, the deadline window is shorter than the SET, or the amount of time
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needed by an agent to perform a task on its own8. As the dsp-diff value increases

beyond 1, Cloning performs as good as if not better than other strategies.

• The Cloning strategy performed the best in the number of agents spawned.

This was expected because (a) Cloning prefers to create “bigger”, yet fewer,

agents to perform the same task. The agents are fewer but have more respon-

sibilities; and (b) There were experiments in which the number of agents that

could be spawned by Cloning was limited to the number of outstanding task

instances (i.e. further cloning was infeasible in such experiments.)

However, despite Cloning spawning a fewer number of agents, Breakup out-

performs Cloning in the total resource cost metric. Again this reflects the fact

that Cloning creates fewer “bigger” agents that use more resources.

• The Prefer Breakup and Prefer Cloning strategies perform almost as well as

the Breakup and Cloning strategies respectively under environmental condi-

tions where Breakup and Cloning are feasible and perform well. However, in

situations where either Breakup or Cloning is infeasible, Prefer Breakup and

Prefer Cloning perform better than the approaches on which they are based.

This is expected because the Prefer strategies are the same as the non-Prefer

strategies under feasible conditions.

Finally we were very pleased and encouraged by the performance of our

Hybrid Model based strategy. As can be seen from Fig. 4.11, our Hybrid Model

performs statistically equivalent to the best strategy in 47 out of the 96 experimental

sets (as opposed to 54/96 for the best strategy - Breakup.) Also, our Hybrid Model

performs as well as Breakup in conditions of low load (asp-diff ≥ 0.5)and midway

8 Note that the percentage of tasks completed is not 0 in such cases. This is
because of the presence of SUM CAFs in the task structure which allow the
organization to accrue some quality.
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between Breakup and Cloning for situations where asp-diff ≤ 0.1 and dsp-diff ≤ 0.5.

In particular, for asp-diff = 0.01 and dsp-diff ≤ 1, our Hybrid Model completes almost

twice as many tasks as Breakup, on average. Whereas Prefer Breakup performs

better than Hybrid Model under these conditions, the Hybrid Model uses around

one-seventh the number of agents. We strongly believe that our hybrid model can

be improved by using different values of the constant and thresholds, something that

we hope to investigate in our future work.

4.5 Robustness Evaluation

4.5.1 Experimental Design

To evaluate the two robustness mechanisms, we ran a series of experiments

that simulated the operation of the OSD organization when those mechanisms were

employed. We tested the performance of the Survivalist approach against the Citi-

zens approach with the following (per agent/per cycle) probabilities of agent failures:

0.000, 0.002, 0.006 and 0.010. Here a probability of 0.006 means that on every clock

cycle, each agent has a 0.6 % chance of failing. Note that despite these seemingly

low probabilities of failure, the rate of failure is actually greater than can be ex-

pected for any real world application. For example, a probability of failure of 0.006

implies that every agent can be expected to fail 15 times during a 2500 cycle run.

We used a randomly generated TÆMS task structure with a maximum depth

of 4, branching factor of 4, and NLE count of 10 to seed the experiments. We

were careful to use the same task structure, task arrival times, task deadlines and

random numbers for each of the (robustness-mechanism, failure probability) pairs.

Each experiment was repeated 20 times using a different randomly generated task

structure. The experiments were run for 2500 clock cycles. For the Survivalist

approach we used 4 as the value of the kill-count, K, i.e. the root node is cloned

thrice. The minimum poll interval (for the Are-You-Alive messages) was set to 4
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cycles and the maximum poll interval was set to 8 cycles. We used the following

performance criteria to evaluate our two approaches to robustness:

1. The average number of agents used. (Lower is better.)

2. The percentage of tasks completed. (Higher is better.)

3. The resurrection interval. The resurrection interval is the amount of time an

agent is “out-of-service” and is defined as the difference between the time an

agent is killed and the time when it is restarted. (Lower is better.)

4. The average turnaround time. The turnaround time is defined as the difference

between the time at which a task is either completed or failed and the time at

which the task was generated (the generation time). The average turnaround

time is the turnaround time divided by the total number of tasks. (Lower is

better.)

5. The average quality accrued. The average quality is defined as the total quality

accrued during the experimental run divided by the sum of the number of tasks

completed and the number of tasks failed. (Higher is better.)

6. The total number of messages sent by all the agents. (Lower is better.)

7. The total resource cost of the organization. (Lower is better.)

4.5.2 Actual Results

The average results for these measured performance criteria are shown in

Figure 4.13.

Again, we tested the statistical significance of the obtained results using the

Wilcoxon Matched-Pair Signed-Rank tests with p < 0.05. Matched-Pair signifies

that we are comparing the performance of each robustness approach on precisely
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Figure 4.13: Evaluation of the Robustness Mechanisms — Graph showing the
various measured parameters for the different robustness mechanisms.
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various measured parameters for the different robustness mechanisms.

154



the same randomized task set, environmental conditions and failure probabilities

within each separate experiment. Some interesting observations are:

• As expected, in the absence of failures, the organization uses the fewest num-

ber of agents to complete 100 percent of the tasks. As the probability of

failure increased, the number of agents increased (because agents were being

killed and restarted — restarted agents were counted as new agents) and the

percentage of tasks completed decreased. Furthermore, the difference in the

percentage of tasks completed and number of agents spawned between the no

failure case and the failure cases was statistically significant.

• We were, however, pleased with the overall performance of these two ap-

proaches to robustness. Even in the presence of a high number of agent fail-

ures, the Survivalist approach still managed to complete 90.44 % of the tasks

on average (s.d. ±22.08). The Citizens approach did not perform as well and

only completed 65.63 % of the tasks, on average (s.d. ±32.06). In fact, the

difference in percentage of tasks completed between the two approaches was

statistically significant for each of the probabilities of failure — the Survivalist

approach consistently outperformed the Citizens approach at the same prob-

ability of failure. (In fact the Survivalist approach at probabilities of failure

of 0.010 was statistically equivalent to the Citizens approach at probabilities

of failure of 0.002.)

We were really surprised to see the Survivalist approach out-performing the

Citizens approach, especially since the Survivalist approach is completely de-

centralized and does not assume the presence of immortal monitor agents.

The reason behind these results become clear once we look at the variation

of the resurrection interval with the minimum poll interval as seen in Figure
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4.14a9. For both these approaches, as the minimum poll interval increases,

the resurrection interval also increases and the percentage of tasks completed

decreases.

As can be seen in Figure 4.14a, the resurrection interval of the Citizens ap-

proach is higher than that of the Survivalist approach. This difference in

resurrection interval is due to the fact that in the Survivalist approach, ev-

ery agent is monitoring some set of other agents. Furthermore, all the agents

randomize the time at which they send the Are-You-Alive messages10. These

two factors result in the Survivalist approach detecting failures faster than the

Citizens approach.

This, in turn, means that the agents stay “dead” for longer in the Citizens

approach. Since, dead agents can not do any work, this causes the Citizens

approach to miss more deadlines and complete fewer tasks than the Survivalist

approach.

• The increased robustness performance of the Survivalist approach comes at the

price of a statistically significant increase in the number of agents spawned, the

number of messages sent and the total resource cost of the organization. This

result was expected because the Survivalist approach pro-actively replicates

agents to increase the robustness capacity of the organization.

Since, the number of extra agents replicated by the Survivalist approach de-

pends on the value of the kill count, we decided to measure how the tested

performance criteria varied with a change in the value of the kill-count or

9 In these graphs, the maximum poll interval is set at twice the value of the
minimum poll interval.

10 If an agent in the Survivalist approach, has three other agents in its monitoring
set, the interval at which it receives Are-You-Alive messages from the other
agents is effectively one-third of the interval of the Are-You-Alive messages in
the Citizens approach.
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(a) Resurrection Interval

(b) Percentage of Tasks Completed (Error bars omitted)

Figure 4.14: Graph showing how the Resurrection Interval and Percentage of Tasks
Completed varies with the minimum poll -interval and the probability of failure
(averaged over all the experiments).
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(c) Number of Agents

(d) Total Messages Sent

Figure 4.14: Graph showing how the Number of Agents and Total Number of Mes-
sages Sent varies with the varies with the minimum poll-interval and the probability
of failure (averaged over all the experiments).
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K. The results are show in Figure 4.15. Note that these graphs shown the

number-of-replications11 instead of the kill count.

As can be seen, both the number of agents and percentage of tasks completed

increases with an increase in the kill count. The no replication case (number-

of-replications = 0) uses fewer agents than the Citizens approach and also

completes a fewer percentage of tasks than the Citizens approach. Further-

more, this result is statistically significant for probabilities of failure greater

than 0.002 — showing that the centralized Citizens approach out-performs the

distributed Survivalist approach in the absence of replication. However, with

replications, the Survivalist approach uses more agents but outperforms the

Citizens approach in the percentage of tasks completed.

• Finally, the total resource cost of the organization is lower for the Citizens

approach when compared to the Survivalist approach. This is as expected

because the resource cost is directly dependent on the number of agents used

— since the Citizens approach uses fewer agents, it has a lower total organi-

zational resource cost.

Note that despite prima facie evidence to the contrary, our results do not

directly contradict the results presented in Dellarocas & Klein [2000]. This is because

in their work, Dellarocas & Klein [2000] do not consider replication in their discussion

of the Survivalist approach (that is, they only consider the no replication case, where

number-of-replications = 0). In our results, for the no replication case, the Citizens

approach outperforms the Survivalist approach, which is in-tune with their results.

11 The number of replications is the number of times the root node was replicated.
Recall that the number of replications is defined as K − 1.
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(a) Number of Agents

(b) Percentage of Tasks Completed

Figure 4.15: Graph showing how the Number of Agents and Percentage of Tasks
Completed varies with the desired robustness level and the probability of failure
(averaged over all the experiments). Note that standard error bars are only shown
for the Survivalist approach.
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(c) Total Messages Sent

(d) Total Resource Cost

Figure 4.15: Graph showing how the Total Number of Messages Sent and Total
Resource Cost varies with the desired robustness level and the probability of failure
(averaged over all the experiments). Note that standard error bars are only shown
for the Survivalist approach.
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4.6 Chapter Summary

In this chapter we described a series of experiments that test the use of OSD

to allow the agents to generate their own organizational structures at run-time.

Section 4.1 compared the OSD approach to the Contract Net Protocol and

showed that our OSD approach performed significantly better than the contract

net protocol — our OSD approach completed a larger number of tasks, accrued

more quality and also had a lower response time and communication overhead when

compared to the contract net protocol.

Section 4.2 defined the sp-diff value — a value that is used to control the

arrival rates and deadlines of the tasks in later experiments. This value allows easy

comparison of randomly generated tasks with vastly different task characteristics and

allows us to see the effect of the environmental conditions on the task structures.

Section 4.3 describes an evaluation of the three different task allocation

heuristics outlined in Section 3.4.5.1 against a random task allocation strategy.

These results suggest that the Balancing Execution Time (BET) heuristic outper-

forms the other heuristics for a majority of the performance criteria.

Section 4.4 describes an evaluation of of the five spawning strategies presented

in Section 3.4.5.2. In this section, we show how the choice of the spawning strategy

depends on the environmental conditions under which the tasks are being solved.

We also show that our Hybrid Model presents a good tradeoff between the Breakup

and the Cloning strategies.

Finally, Section 4.5 discusses the performance of the two commonly employed

approaches to robustness — the Survivalist approach and the Citizens approach

when applied to OSD. We show that the Survivalist approach achieves a higher

level of robustness than the Citizens approach. However, the Survivalist approach

uses more agents and has a much higher communication overhead than the Citizens

approach. Hence, there is a tradeoff between using these two approaches.
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Chapter 5

APPLYING ORGANIZATIONAL SELF-DESIGN TO

REAL WORLD DISTRIBUTED COMPUTING SYSTEMS

Basic research is very useful, but it should be more geared toward appli-
cation than it was before. (Luc Montagnier)

The pursuit of pretty formulas and neat theorems can no doubt quickly
degenerate into a silly vice, but so can the quest for austere generalities
which are so very general indeed that they are incapable of application to
any particular. (E. T. Bell)

One of the primary hypothesis behind this dissertation is that multiagent

organizations, in general, and OSD, in particular, are especially suited to the prob-

lem of generating virtual organizations for grid-, volunteer-, and cloud- computing

systems. This is because (a) such systems are often used to solve complex problems

in worth oriented domains and would benefit from having a more flexible workflow

representation language that allows quality, cost and duration tradeoffs to be made

[Atlas et al. , 2005]; and (b) such systems are typically deployed in dynamic and

semi-dynamic environments [Taufer et al. , 2005a].

In this chapter, we discuss the ways in which OSD can be applied to real-

world computing systems. We primarily focus on applying OSD to a to a real-world

volunteer computing system, specifically the docking@home project.
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5.1 Volunteer Computing

Volunteer computing [Anderson, 2004; Shirts & Pande, 2000] is a form of dis-

tributed computing in which a group of volunteers donate their computing resources

to a cause, such as folding proteins, predicting climate change, etc. Currently volun-

teer computing has been implemented using a master-slave (client-server) architec-

ture. Volunteers download a client that connects to one or more centralized servers

and requests jobs that make use of the volunteer’s computing resources. The cen-

tralized servers, in turn, need to figure out a scheduling policy that tries to perform

an optimal allocation of jobs to the clients (for some definition of optimality).

The clients running on the volunteer machines can be thought of as agents.

This leads to a direct mapping from the problem of determining a suitable scheduling

policy for the clients to the problem of determining a suitable organization for the

agents. Hence, the solution to the organizational issues, such as the allocation of

agents to the subtasks of the problem being solved and the coordination of inter-

agent activities, will generate a scheduling policy that can be used to allocate jobs

to the agents.

We focus on applying OSD to the problem of studying protein-ligand docking

[Taufer et al. , 2005b]. Ligands are small molecules that bind to proteins and can

be used to regulate their function[Vera et al. , 2007]. Inhibiting the activity of key

enzymes (proteins) may result in entire biochemical pathways being turned on or off.

Indeed, many small molecule drugs marketed today function by inhibiting enzymes.

Hence, protein-ligand docking can be the first step towards discovering new drugs.

In this chapter, we describe how the problem of job-allocation in volunteer

computing systems can be mapped onto the problem of solving a set of problem in-

stances represented in TÆMS through the use of organizational self-design. Hence,
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Select Docking 
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Run docking 
algorithm

Perform docking

ITERATION-SUM

Figure 5.1: A simplified TÆMS task structure representing protein-ligand docking.
The white rectangles represent tasks, the shaded rectangles represent templates the
rounded rectangles represent executable methods. The arrows represent non-local
effects. Method outcomes and characteristics are not shown.

we try to bridge the gap between theoretical OSD research and a practical appli-

cation of such research to volunteer computing systems. Furthermore, we advo-

cate moving volunteer computing from a strictly master-slave paradigm to a more

distributed peer-to-peer model. We show that such a move allows for increased

throughput of such systems, while at the same time minimizing the load on the

centralized servers.

5.2 Current Approaches to Docking

The use of molecular dynamics for protein-ligand docking1 was first explored

in [Taufer et al. , 2005b]. In this work, the researchers used a traditional cluster

to run their docking attempts. Subsequent work lead to the creation of the dock-

ing@home project, a volunteer computing system based on the BOINC framework

[Anderson, 2004].

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-

source framework that allows researchers to harness the computing resources of a

1 Henceforth, referred to as simply docking
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large and heterogeneous group of volunteers. Task and resource allocation amongst

the volunteers is performed by the BOINC middle-ware, which allocates jobs (tasks)

to the volunteers based on a scheduling policy.

Current approaches to task allocation in BOINC [Anderson & Reed, 2009] are

based on a naive and greedy algorithm. In the current system, volunteers (agents)

periodically issue a scheduler request to a centralized server for a certain number of

jobs. The centralized server then assigns a group of jobs to the requesting volunteer.

To select the assigned jobs, the server randomly scans its cache of outstanding jobs

for a set of jobs that can feasibly be run on the volunteer’s machine. This set of

jobs is assigned to the user.

5.3 The OSD Approach

The OSD approach to docking is based on two intuitions:

1. The agents (volunteers) have the most information about the usage patterns

of the volunteers’ computers. That is the volunteer agents can easily monitor

the computers on which they are running and can, hence, learn if a computer

is lightly used (for example, if the owner of the computer only uses it to check

her/his email) or if it is heavily used (for example, if the owner is an avid

gamer who loves to play CPU intensive games).

Hence, the volunteer agents can easily determine if the computer is overloaded

and will not be able to complete the jobs assigned to it by their deadlines. In

such situations, it can pro-actively spawn off new agents before the time-

out/deadline of the jobs.

Our hypothesis is that our OSD approach should work much better than the

current approach to docking in which the BOINC server has no clue if the jobs

assigned to a volunteer will be completed by the deadlines assigned to that
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volunteer. The BOINC server has to wait for jobs to timeout before assigning

them to other volunteers.

2. By implementing a semi-hierarchical organization, the load on the BOINC

server can be reduced. Specifically, when using OSD, the BOINC server does

not need to maintain detailed information about the millions of volunteer

agents. Instead it can simply maintain information about its immediate chil-

dren sub-organizations and allocate jobs based on this information.

Our hypothesis is that the OSD approach should make better scheduling deci-

sions because it can make these decisions based on more detailed observations

of the sub-organizations. Furthermore, the BOINC server should be able to

make better predictions about the agents that form these sub-organizations.

In the OSD approach to docking, the task structure presented in Fig. 5.1 is

provided as an input to the system. As with regular OSD, the organization starts of

with a single agent responsible for all the activities of the organization. This single

agent is equivalent to the BOINC server in regular docking and performs the same

functions as the BOINC server — it accepts protein-ligand pairs for docking, from

the user, and “generates” a task instance for the input pair. It then applies the

standard OSD approach to this task instance, with the exception that (a) spawning

a new agent involves removing a volunteer from the volunteer pool and creating

an agent (a wrapper or plug-in for the standard BOINC docking client) for that

volunteer; and (b) composition involves destroying the agent and re-adding the

volunteer to the volunteer pool2.

Two key departures from regular BOINC docking are in the way in which we

handle the clients:

2 For the purposes of this chapter, we assume that the volunteer pool is infinite.
In our future work, we would like to investigate OSD approaches that work with
a finite albeit changing set of volunteers.
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1. Instead of a regular master-slave paradigm (i.e. a hierarchical organization

that has a depth of 1), the volunteer clients in our approach form a peer-to-

peer sub-organization with a much deeper hierarchical structure3.

A volunteer that detects an overload while trying to complete the jobs assigned

to it will spawn off a new agent4. The spawning volunteer will, in turn, be

responsible for assigning a subset of its jobs to the newly spawned volunteer.

The spawned volunteer may itself spawn-off new agents, hence forming a multi-

level hierarchy.

2. As in regular docking, the BOINC server is responsible for assigning jobs

to the volunteer agents. However, (a) the volunteers may reassign jobs to

other volunteers at lower levels of the hierarchy; and (b) instead of the naive

BOINC scheduling algorithm, the assignment of jobs to the lower level sub-

organizations is based on the past performance of the sub-organization. Specif-

ically we maintain two pieces of information about each sub-organization, i:

(a) T-Singlei(n) or the nth estimate of the amount of time needed by sub-

organization i to complete a single assigned job. For every result, j,

returned, a new estimate is computed using according to the formula:

T-Singlei(n + 1) = α ∗ Duration(j) + (1 − α) ∗ T-Singlei(n) (5.1)

where T-Singlei(n + 1) is the next (that is, (n + 1)th) estimate of the

amount of time needed to complete a single job, Duration(j) is the

3 The volunteers only form hierarchical structure if composition is disabled. If
composition is enabled, the hierarchy would break down to form an intercon-
nected mesh structure because we allow any agent to compose with any other
agent

4 Spawning an agent still involves asking the BOINC server for a “new” agent
created from its pool of volunteers. The BOINC server would provide a service
similar to the centralized trackers in the bit-torrent protocol.
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amount of time it took for job j to complete, and α is a constant between

0 and 1.

(b) Outstandingi or the estimated completion time for all the outstanding

jobs assigned to the sub-organization, i.

Based on these values, the jobs are assigned to the sub-organization based on

the equation:

arg min
i∈Sub-Organizations(k)

{T-Outstandingi + T-Singlei} (5.2)

Hence, a new job is assigned to the sub-organization that is expected to com-

plete the new job in the fastest time possible.

A slightly complicating issue, in the assignment of jobs to the volunteers, is

the fact that each job has to be replicated a certain number of times (say r) to ensure

the validity of that job5. This is handled in a way that is similar to the survivalist

approach to robustness (See Section 3.4.7.2) — That is, the Run Docking Algorithm

method in Figure 5.1 is explicitly cloned r times at startup and Different norms

(See Section 3.4.3) are inserted between the r clones of this method. This ensures

that each job is replicated the correct number of times and that no volunteer works

on two replicas of the same job. Finally, a verification method is added to verify the

results obtained from the volunteers.

5.4 Evaluation

As a first step towards evaluating our approach, we ran a series of experi-

ments comparing our OSD approach to the BOINC approach with 25, 50 and 100

volunteers6.

5 The results of a job are only accepted if a certain number of these replicas agree
on the results.

6 Our OSD approach automatically selects an appropriate number of agents
through spawning and composition
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To simulate our approach we needed a volunteer population. To keep the

runs realistic, we used the statistical models reported in [Estrada et al. , 2009] to

compute the work-in-progress time or the time needed by a volunteer to generate a

result for a job submitted to it (henceforth referred to as the runtime). These models

were generated from actual BOINC traces. In this chapter, we report the results

obtained by assuming two different volunteer populations: Charmm and MFold from

the Prediction@Home BOINC project.

To generate a volunteer population consisting of n volunteers, we used the

statistical models to generate an array of n · m random run-times, where m is the

maximum number of jobs generated during a simulation run. We then partitioned

this array into n non-overlapping lists — each list was used to generate the runtime

behavior of a specific volunteer. This partitioning was done in three different ways:

1. Random, the generated array of run-times was partitioned into n equal parts.

This population would represent volunteers with no fixed pattern.

2. Sorted, the generated array of run-times was first sorted and then partitioned

into n equal parts. The sorted volunteer population would simulate volunteers

with a fixed and predictable runtime behavior.

3. Stochastic, the generated array of run-times was first sorted. However, in-

stead of performing a simple partition, the sorted array was sampled stochas-

tically to generate the volunteer population. That is, for each volunteer, in

turn, the next runtime was selected with probability p and randomly with

probability (1 − p).

Each experiment was repeated 15 times with a new runtime array and a

new volunteer population for each run. The results are show in Fig. 5.2. As can

be seen, the initial results are extremely promising. Not only does our approach

complete a larger number of tasks than the BOINC approaches, the result is also
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(a) Number of Agents

(b) Number of Tasks Completed

Figure 5.2: Graphs showing the average performance of our OSD approach against
the BOINC approach with 25, 50 and 100 volunteers.
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(c) Average Response Time

(d) Average Turnaround Time

Figure 5.2: Graphs showing the average performance of our OSD approach against
the BOINC approach with 25, 50 and 100 volunteers.
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statistically significant. Furthermore, our approach has a lower response-time and

turnaround-time while using fewer than 50 agents on average.

5.5 Chapter Summary

This chapter presented a first attempt at applying our research on OSD to

a real-world volunteer computing system. Section 5.1 described how the problem

of determining an appropriate scheduling policy can be mapped onto the problem

of generating an organization for the agents. This was followed by a description

of the current approaches to docking in Section 5.2. Section 5.3 presented a novel

approach to docking based on our OSD research. Finally, our OSD approach to

docking was tested against the current naive approach to docking in Section 5.4.

However, our OSD approach would require a significant change to the cur-

rent BOINC approach of allocating jobs to volunteers. Specifically, as explained in

Section 5.3, we need to (1) move from the current master-slave paradigm to a more

peer-to-peer based organizational structure; and (2) we need to the maintain a his-

tory of the past performance of the volunteers. We expect the former to be a more

controversial and radical change than the latter — Already, a few researchers (for

example, see [Sonnek et al. , 2006] and [Budati et al. , 2007]) have proposed using a

reputation-based system for allocating jobs to the volunteers, where the reputation

of a volunteer is a measure of the reliability of that volunteer in delivering correct

results to the server. Whereas, in our system we use the turnaround time to allocate

jobs to the volunteers, our system can be trivially extended to allocate jobs based

on the reliability in addition to the turnaround time.

So the question is: How reasonable is a move from the current master-slave

paradigm to our proposed OSD based peer-to-peer system and are there justifiable

advantages in making the move? We believe that there aren’t many technical limita-

tions to such a move — for example, see [Costa et al. , 2008] for a discussion of how

173



peer-to-peer data distribution techniques can be adapted to the BOINC platform7.

We also believe there are significant advantages of making such a move that will

outweigh the technical difficulties. Specifically, our system can significantly reduce

the load on the central BOINC servers, a problem that is likely to be exacerbated

once a reputation-based system in implemented on top of BOINC, while still increas-

ing the throughput of the whole system. Furthermore, our approach increases the

robustness of the whole system since there is no central point of failure. However,

we believe that the most significant advantage of moving to our OSD-based sys-

tem would be gleaned from the TÆMS based representation of volunteer-computing

workflows. Using TÆMS would allow volunteer-computing customers (i.e. the re-

searchers that use volunteer computing systems like BOINC and folding@home) to

use a more flexible workflow representation language — one that would allow them

to represent alternative ways of achieving a goal (algorithms for solving a problem)

with different quality/time/resource tradeoffs. Our approach would then provide

these researchers with custom solutions based on the characteristics of the problem

and their desired optimizing criteria. So, for example, there are alternative docking

algorithms based on implicit and explicit representations of the protein/ligand and

there are different scoring techniques based on Cartesian Molecular Dynamics (MD)

and Torsion Angle Molecular Dynamics (TAMD). By representing the larger work-

flow in TÆMS (see Figure 5.3), our OSD approach can select different algorithms

and try different alternatives based on the quality achieved and the time available

for coming up with a solution.

7 Note that this paper does not propose any specific algorithms and does not
discuss an existing implementation.
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Chapter 6

CONCLUSION

A conclusion is the place where you got tired thinking.
(Martin Henry Fischer)

I have but one lamp by which my feet are guided, and that is the lamp of
experience. I know no way of judging of the future but by the past.

(Edward Gibbon)

6.1 Conclusion

In this dissertation, we focus on the organizational design of a subset of multi-

agent systems in which the environment is semi-dynamic. Our primary hypothesis is

that most current approaches to organizational design either model the organization

at design time, assuming a static environment, or generate a new organization on

the fly, at run time, for each new instance of the problem and that such approaches

are inefficient and fail to correctly model the dynamics of a slowly changing envi-

ronment. Hence, Organizational Self-Design, in which the agents are responsible for

designing their own organization at run-time is particularly suited to organizational

design in such environments.

In this dissertation, we have described how Organizational Self-Design can

be applied to worth-oriented domains in which problems are represented using the

TÆMS task representation language.

176



In Chapter 3, we developed a formal model for OSD and extended the TÆMS

language to (a) represent information about the local task view of the agent vis-

a-vis its role in the organization and its relationships to the other agents; and (b)

represent iteration nodes in which the number of iterations of a task depend on the

results of executing another task. We also showed how task structure rewriting can

be used to change the organizational structure of the agents at run-time. In Section

3.4.5.1, we have provided a description of three task allocation heuristics that can

be used to select a role for allocation to the newly spawned agent. We follow this

up with Section 3.4.5.2, which discusses different spawning strategies for choosing

between the generalization and specialization of an agent. Section 3.4.6 describes

how the agents might detect a need for reorganization. Finally, we present various

robustness mechanisms in Section 3.4.7.

In Chapter 4, we ran a series of experiments to test the performance and

robustness of our approach and the different algorithms and heuristics that we de-

veloped. Section 4.1, compared our OSD approach to the Contract Net Protocol.

Then in Section 4.3, we compared the three task allocation heuristics to a random

task allocation approach. Section 4.4 evaluates the five spawning strategies pre-

sented in the previous chapter. Finally, this chapter ends with an evaluation of the

two robustness mechanisms in Section 4.5.

Chapter 5 presented a first attempt at applying OSD to a real world

volunteer-computing application, specifically protein-ligand docking. We show that

applying OSD to the job-allocation problem in volunteer computing gave some

promising results — our approach completed a larger number of tasks and had

a better turnaround time compared to the existing BOINC scheduling approach.

In summary, we have developed a set of algorithms, heuristics and models

that mark a significant step forward in the application of Organizational Self-Design

techniques to problems in dynamic, uncertain, worth-oriented domains. We believe
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these techniques will be useful to not just the multiagent systems community but also

to the fields of high-performance grid, cloud and volunteer computing. In particular

we believe that the grid, cloud and volunteer computing communities have focused

on the low-level middle-ware issues such as addressing, discovering and monitoring

individual resources and have not focused on the high level issues, such as generating

an explicit organization that is able to automatically manage and schedule these

resources in an efficient and predictable manner. This is where our research comes

in — we provide a high level framework that can be used to effectively allocate and

manage the resources in such distributed computing environments. Hence, we hope

that our research can help bridge the gap between the focus on individual resources

in distributed computing community and focus on the collective coordination of the

agents in the multiagent community.

6.2 Lessons Learned

We started this thesis based on the postulations of Contingency Theory —

that there is no best way of organizing and that all ways of organizing are not

equally effective. Since the optimal organizational structure depends on the problem

being solved and the environmental conditions under which they are being solved,

we expected a run-time approach to be more suitable for dynamic and uncertain

environments as it can adapt to the changing conditions at hand. As the primary

lesson learned, we would like to add a corollary to Contingency Theory “There is no

optimal set of heuristics or algorithms that are sufficient for adapting an organization

to the changing environmental conditions and problem structure.” We found that

none of our heuristics or algorithms out-performed all the others for all the randomly

generated task structures. Indeed, for every heuristic it was possible to generate a

counter-example in which that heuristic wouldn’t work as well.

This is not a negative result, per se — due to the inherent difficulty and com-

putational intractability of the problem of organizing, we would have been surprised
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if the opposite was true. However, this work led us to strongly believe that using

heuristics developed on completely random task structures is the wrong thing to do

for real-world applications. Instead, use the algorithms and heuristics presented here

as a baseline and systematically vary the constants and the algorithms to whatever

works best for the application at hand. This might require a few bootstrapping steps

before OSD can be deployed “in the field” but should provide consistent results for

a group of similar problems.

6.3 Future Work

We will divide our future work into two parts — (1) work on the further devel-

opment of OSD; and (2) applying OSD to future applications in volunteer/grid/cloud

computing systems.

6.3.1 Further Development of OSD

There are several ways in which our OSD work can be further extended:

1. The performance of the algorithms and heuristics presented in this work de-

pend on the values of a lot of “constants”1. (For example, six constants are

used to select the choice of an agent’s spawning strategy.) However, we haven’t

yet discovered the best values for these constants or whether these constants

even have an optimal value. In our future work, we would like to run some

experiments that determine the sensitivity of our algorithms to the value of

these constants. Furthermore, we would like to determine how these constants

interact with each other.

1 There are at least two dozen such constants in our OSD code. Not all of them
have been mentioned in this thesis.
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2. One of the open questions in this dissertation is the consideration of the inter-

play between coordination and organization. Do certain coordination mech-

anisms preclude the use of certain organizational structures, or vice versa?

What coordination protocols are suitable for an arbitrary type of organiza-

tional structure? In our future work, we would like to evaluate a family of

coordination mechanisms to see which ones perform best under a given set

of conditions. Towards this end, we will be looking at both commitments

made during spawning and mechanisms available during execution of a task

instance.

3. In this work, we have only looked at the allocation of exclusive, non-

consumable resources. We would like to extend this work to look at both

shared and consumable resources. We would like to answer questions like:

How does the resource model constrain the kinds of organizational structures

that can be generated? How do the algorithms change in an environment with

heterogeneous resources?

6.3.2 Applying OSD to Applications in Volunteer/Grid/Cloud Comput-

ing Systems

Chapter 5 only scratched the surface of what’s possible when OSD is ap-

plied to real world volunteer/grid/cloud computing applications. With reference to

volunteer computing, in our future work, we would like to:

1. Scale and test our OSD approach with several hundreds of thousands of vol-

unteers. Specifically we would like to derive bounds for the load on the server

and measure how the load varies depending on (a) the number of volunteers;

and (b) the depth and branching factor of the organization.

2. Maintain a more accurate history model for the volunteers in our organization.

We can anticipate a situation where the time required to complete a job would
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depend on the time of the day when the job is being run. For example, jobs

run during the day when a volunteer’s machine is being heavily used would

take significantly longer than jobs run during the night when the volunteer

is idle. We should be able to vary the number of jobs allocated to an agent

depending on how its execution profile varies according to the time of the day.

3. Implement our approach on the standard BOINC server and clients.

Finally, we would like to show how existing workflow languages might benefit

from the use of organizational modeling, especially the kind of modeling being done

by our approach. Most existing workflow languages (like Business Process Execution

Language for Web Services (BPEL4WS) [Juric, 2006], Grid-Flow [Guan et al. , 2005],

and Grid Services Flow Language [Krishnan et al. , 2002]) are very procedural, in

that they describe exactly how workflows are composed of their component subtasks,

but do not allow alternatives workflows based on environmental conditions. As

argued by [Atlas et al. , 2005], such approaches are fairly rigid and are not suitable

for dynamic environments.

We strongly believe that grids and web services would benefit from using a

more declarative approach, in which the workflow is represented using TÆMS and

an approach similar to mine is used for “executing” these workflows. We would like

to use a detailed example to show why this is the case.
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Appendix A

AN ILLUSTRATED EXAMPLE

Figures A.1, A.2, A.3, A.4, A.5 show the stages in the organizational self-

design of an organization for solving the randomly generated task structure shown

in Appendix B. This task structure had a maximum depth of 3 and a maximum

branching factor of 4. There was an equal probability of generating a Min CAF and

a Sum CAF and the generated task structure had 10 non-local-effects (NLEs).

For generating this organization, we assumed a fixed arrival rate with both the

arrival sp-diff multiple and the deadline sp-diff multiple set to 0.51. This translated

to a task instance being generated every 31 time cycles and the organization has 53

time cycles to complete each task instance (i.e. the deadline window is 53 cycles.)

This experiment was run for 2500 time cycles.

The steps in the formation of this organization are:

• At Time 0: (Figure A.1) The organization starts off with a single agent,

Agent-0 that is responsible for the complete task structure.

• At Time 5: (Figure A.2) Agent-0 is overloaded, so it spawns off two new

agents, Agent-1 and Agent-2 and allocates them part of its task structure2.

1 We chose to use a fixed arrival rate to keep this example small and still illustrate
the formation of a stable organization.

2 Agent-0 actually detects the overload and initiates the spawning at Time 3. The
spawning has been completed at Time 5. In this example, we only show the
organization after the organizational change has been completed.
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Global View

Agent View

M0 M1 M2

T1

M3 M4
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T3

M9 M10 M11 M12
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T0

R0

Time = 0

AGENT0Agent-0

Figure A.1: Organization at Time 0

• At Time 68: (Figure A.3) Agent-2 is overloaded, so it spawns off Agent 3.

• At Time 72: (Figure A.4) Agent-0 is overloaded, so it spawns off Agent 4.

• At Time 122: (Figure A.5) Agent-3 is underloaded, so it composes with

Agent-4 and ceases to exist.

• After Time 123: The organization was stable and no further changes to the

organization were made.
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Figure A.2: Organization at Time 5: Agent-0 spawns off Agent-1 and Agent-2
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Figure A.3: Organization at Time 68: Agent-2 spawns Agent-3
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Figure A.4: Organization at Time 72: Agent-0 spawns Agent-4
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Figure A.5: Organization at Time 122: Agent-3 composes with Agent-4
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Appendix B

A RANDOM TASK STRUCTURE

This appendix describes a randomly generated task structure. The task struc-

ture shown here (see Figure B.1) was generated by specifying a maximum depth of

3 and a maximum branching factor of 4 to our simulator. There was an equal prob-

ability of generating a Min CAF and a Sum CAF and the generated task structure

had 10 non-local-effects (NLEs).

The generated task structure is shown in Figure B.1 and its qualitative and

quantitative characteristics are described in Tables B.1 (the tasks), B.2 (the meth-

ods) and B.6 (the non-local effects).
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M0 M1 M2

T1

M3 M4

T2

M5 M6 M7 M8

T3

M9 M10 M11 M12

T4

T0

Figure B.1: Our randomly generated task structure. The polygons (T0 — T4)
represent tasks and the circles (M0 — M12) represent methods. The arrows show
the non-local effects (NLEs). Green represents an Enables NLE, Red represents a
Disables NLE, Blue represents a Facilitates NLE and Yellow represents a Hinders

NLE.

Table B.1: The set of tasks and their subtasks in our randomly generated task
structure.

Task CAF Subtasks

T0 Sum

T1
T2
T3
T4

T1 Sum

M0
M1
M2

T2 Sum
M3
M4

T3 Min

M5
M6
M7
M8

T4 Min

M9
M10
M11
M12
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Table B.2: The set of methods and their characteristics in our randomly generated
task structure.

Method Outcome Characteristics

M0

OUTCOME0

Probability 0.727
Quality ((1 0.626) (9 0.01) (7 0.364))
Cost ((7 0.873) (5 0.082) (3 0.044))
Duration ((8 1.0))

OUTCOME1

Probability 0.088
Quality ((3 1.0))
Cost ((6 1.0))
Duration ((7 0.616) (3 0.179) (2 0.077) (1 0.127))

OUTCOME2

Probability 0.185
Quality ((1 1.0))
Cost ((1 1.0))
Duration ((10 0.706) (1 0.264) (7 0.0) (5 0.03))

M1

OUTCOME3

Probability 0.686
Quality ((4 1.0))
Cost ((1 0.17) (8 0.633) (10 0.19) (9 0.006))
Duration ((2 0.226) (3 0.258) (1 0.097) (5 0.419))

OUTCOME4

Probability 0.314
Quality ((6 0.905) (3 0.095))
Cost ((2 0.232) (10 0.752) (3 0.016))
Duration ((8 1.0))

M2

OUTCOME5

Probability 0.567
Quality ((4 0.217) (8 0.226) (5 0.244) (3 0.312))
Cost ((9 0.112) (2 0.888))
Duration ((9 0.875) (7 0.084) (1 0.032) (8 0.009))

OUTCOME6

Probability 0.433
Quality ((5 1.0))
Cost ((8 0.602) (4 0.398))
Duration ((8 1.0))
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Table B.3: The set of methods and their characteristics in our randomly generated
task structure. (Continued from the Previous Page.)

Method Outcome Characteristics

M3

OUTCOME7

Probability 0.039
Quality ((3 1.0))
Cost ((9 1.0))
Duration ((7 1.0))

OUTCOME8

Probability 0.961
Quality ((1 0.469) (6 0.191) (4 0.34))
Cost ((5 0.025) (7 0.414) (10 0.561))
Duration ((10 0.114) (5 0.886))

M4 OUTCOME9

Probability 1.0
Quality ((4 1.0))
Cost ((1 0.565) (10 0.435))
Duration ((6 0.191) (9 0.072) (3 0.737))

M5 OUTCOME10

Probability 1.0
Quality ((8 0.322) (7 0.039) (2 0.474) (10 0.164))
Cost ((4 1.0))
Duration ((6 0.578) (4 0.422))

M6

OUTCOME11

Probability 0.122
Quality ((9 0.884) (3 0.091) (2 0.024))
Cost ((1 0.162) (2 0.838))
Duration ((4 0.508) (1 0.491))

OUTCOME12

Probability 0.456
Quality ((7 0.08) (5 0.423) (10 0.497))
Cost ((5 0.756) (9 0.008) (4 0.236))
Duration ((9 0.871) (10 0.129))

OUTCOME13

Probability 0.298
Quality ((8 0.463) (9 0.537))
Cost ((9 1.0))
Duration ((3 0.565) (5 0.379) (6 0.033) (1 0.022))

OUTCOME14

Probability 0.124
Quality ((9 0.099) (1 0.304) (3 0.597))
Cost ((6 0.561) (7 0.075) (3 0.005) (1 0.359))
Duration ((2 0.62) (7 0.279) (3 0.1))
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Table B.4: The set of methods and their characteristics in our randomly generated
task structure. (Continued from the Previous Page.)

Method Outcome Characteristics

M7

OUTCOME15

Probability 0.103
Quality ((7 0.481) (3 0.488) (9 0.022) (2 0.008))
Cost ((5 0.932) (9 0.068))
Duration ((6 1.0))

OUTCOME16

Probability 0.49
Quality ((5 0.146) (2 0.217) (3 0.087) (4 0.549))
Cost ((8 0.978) (6 0.022))
Duration ((9 1.0))

OUTCOME17

Probability 0.306
Quality ((7 1.0))
Cost ((4 0.992) (6 0.008))
Duration ((10 0.176) (1 0.02) (9 0.804))

OUTCOME18

Probability 0.101
Quality ((10 0.533) (8 0.467))
Cost ((5 0.599) (1 0.372) (6 0.028) (2 0.001))
Duration ((9 0.291) (6 0.088) (1 0.621))

M8 OUTCOME19

Probability 1.0
Quality ((2 0.03) (6 0.633) (7 0.337))
Cost ((4 0.61) (6 0.39))
Duration ((10 0.499) (7 0.062) (4 0.438))
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Table B.5: The set of methods and their characteristics in our randomly generated
task structure. (Continued from the Previous Page.)

Method Outcome Characteristics

M9

OUTCOME20

Probability 0.68
Quality ((7 0.847) (5 0.02) (2 0.133))
Cost ((7 0.702) (10 0.297))
Duration ((8 1.0))

OUTCOME21

Probability 0.03
Quality ((3 0.69) (2 0.31))
Cost ((2 0.713) (6 0.17) (10 0.015) (3 0.102))
Duration ((6 0.546) (9 0.059) (10 0.394))

OUTCOME22

Probability 0.143
Quality ((3 0.07) (4 0.93))
Cost ((7 0.361) (4 0.639))
Duration ((4 1.0))

OUTCOME23

Probability 0.146
Quality ((10 0.348) (9 0.37) (1 0.282))
Cost ((2 1.0))
Duration ((1 1.0))

M10 OUTCOME24

Probability 1.0
Quality ((6 0.447) (4 0.277) (3 0.086) (8 0.189))
Cost ((7 1.0))
Duration ((2 0.554) (3 0.445))

M11 OUTCOME25

Probability 1.0
Quality ((6 1.0))
Cost ((8 1.0))
Duration ((4 1.0))

M12

OUTCOME26

Probability 0.405
Quality ((10 0.526) (1 0.436) (5 0.023) (4 0.014))
Cost ((5 0.131) (3 0.869))
Duration ((8 0.145) (6 0.087) (7 0.768))

OUTCOME27

Probability 0.277
Quality ((9 0.893) (3 0.015) (2 0.091))
Cost ((1 0.351) (6 0.079) (8 0.57))
Duration ((5 1.0))

OUTCOME28

Probability 0.318
Quality ((8 0.823) (1 0.132) (5 0.04) (2 0.004))
Cost ((6 0.632) (10 0.367))
Duration ((2 0.939) (8 0.016) (10 0.044))
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Table B.6: The set of Non-Local Effects (NLEs) and their characteristics in our
randomly generated task structure.

NLE Type Source Sink Characteristics

NLE0 Facilitates M12 M6

Delay 0
Quality-power 0.7681476
Cost-power 0.43372154
Duration-power 0.036467075

NLE1 Enables M6 M1 Delay 0
NLE2 Disables M11 M6 Delay 0

NLE3 Facilitates M10 M0

Delay 0
Quality-power 0.42604792
Cost-power 0.29166973
Duration-power 0.38953853

NLE4 Facilitates M12 T3

Delay 0
Quality-power 0.3149761
Cost-power 0.6441519
Duration-power 0.1155262

NLE5 Disables M10 M7 Delay 0

NLE6 Facilitates M9 T3

Delay 0
Quality-power 0.678903
Cost-power 0.9109988
Duration-power 0.35027683

NLE7 Facilitates T2 M0

Delay 0
Quality-power 0.15140426
Cost-power 0.079969764
Duration-power 0.8773806

NLE8 Facilitates M2 M7

Delay 0
Quality-power 0.49688518
Cost-power 0.36176348
Duration-power 0.85883725

NLE9 Hinders T2 M2

Delay 0
Quality-power 0.24853396
Cost-power 0.10359275
Duration-power 0.08548164
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B.1 TÆMS Code

The generated TÆMS code is shown below:

(TASK-SUM (:LABEL T0) (:TASK-TYPE TAEMS::ROOT)

(:SUPERTASKS NIL) (:SUBTASKS (T1 T2 T3 T4)) (:CAF-LABEL TAEMS::SUM))

(TASK-SUM (:LABEL T1) (:TASK-TYPE TAEMS::SUBTASK)

(:SUPERTASKS (T0)) (:SUBTASKS (M0 M1 M2)) (:CAF-LABEL TAEMS::SUM))

(EXEC-METHOD (:LABEL M0) (:SUPERTASKS (T1))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME2) (:DENSITY 0.185)

(:QUALITY_DISTRIBUTION ((1 1.0)))

(:DURATION_DISTRIBUTION

((10 0.706) (1 0.264) (7 0.0) (5 0.03)))

(:COST_DISTRIBUTION ((1 1.0))))

(OUTCOME (:LABEL OUTCOME1) (:DENSITY 0.088)

(:QUALITY_DISTRIBUTION ((3 1.0)))

(:DURATION_DISTRIBUTION

((7 0.616) (3 0.179) (2 0.077) (1 0.127)))

(:COST_DISTRIBUTION ((6 1.0))))

(OUTCOME (:LABEL OUTCOME0) (:DENSITY 0.727)

(:QUALITY_DISTRIBUTION ((1 0.626) (9 0.01) (7 0.364)))

(:DURATION_DISTRIBUTION ((8 1.0)))

(:COST_DISTRIBUTION ((7 0.873) (5 0.082) (3 0.044))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES ((TAEMS::RESOURCE_B ((2 0.459) (4 0.541))))))

(EXEC-METHOD (:LABEL M1) (:SUPERTASKS (T1))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME4) (:DENSITY 0.314)

(:QUALITY_DISTRIBUTION ((6 0.905) (3 0.095)))

(:DURATION_DISTRIBUTION ((8 1.0)))

(:COST_DISTRIBUTION ((2 0.232) (10 0.752) (3 0.016))))

(OUTCOME (:LABEL OUTCOME3) (:DENSITY 0.686)

(:QUALITY_DISTRIBUTION ((4 1.0)))

(:DURATION_DISTRIBUTION

((2 0.226) (3 0.258) (1 0.097) (5 0.419)))

(:COST_DISTRIBUTION

((1 0.17) (8 0.633) (10 0.19) (9 0.006))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES
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((TAEMS::CPU ((5 0.909) (3 0.091)))

(TAEMS::RESOURCE_D ((5 0.275) (1 0.725))))))

(EXEC-METHOD (:LABEL M2) (:SUPERTASKS (T1))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME6) (:DENSITY 0.433)

(:QUALITY_DISTRIBUTION ((5 1.0)))

(:DURATION_DISTRIBUTION ((8 1.0)))

(:COST_DISTRIBUTION ((8 0.602) (4 0.398))))

(OUTCOME (:LABEL OUTCOME5) (:DENSITY 0.567)

(:QUALITY_DISTRIBUTION

((4 0.217) (8 0.226) (5 0.244) (3 0.312)))

(:DURATION_DISTRIBUTION

((9 0.875) (7 0.084) (1 0.032) (8 0.009)))

(:COST_DISTRIBUTION ((9 0.112) (2 0.888))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES ((TAEMS::RESOURCE_B ((5 0.448) (3 0.552))))))

(NLE-FACILITATES (:LABEL NLE8) (:SOURCE M2) (:SINK M7) (:DELAY 0)

(:QUALITY_POWER 0.49688518)

(:COST_POWER 0.36176348)

(:DURATION_POWER 0.85883725) (:MAX-SOURCE-QUALITY 8))

(TASK-SUM (:LABEL T2) (:TASK-TYPE TAEMS::SUBTASK)

(:SUPERTASKS (T0)) (:SUBTASKS (M3 M4)) (:CAF-LABEL TAEMS::SUM))

(EXEC-METHOD (:LABEL M3) (:SUPERTASKS (T2))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME8) (:DENSITY 0.961)

(:QUALITY_DISTRIBUTION ((1 0.469) (6 0.191) (4 0.34)))

(:DURATION_DISTRIBUTION ((10 0.114) (5 0.886)))

(:COST_DISTRIBUTION ((5 0.025) (7 0.414) (10 0.561))))

(OUTCOME (:LABEL OUTCOME7) (:DENSITY 0.039)

(:QUALITY_DISTRIBUTION ((3 1.0)))

(:DURATION_DISTRIBUTION ((7 1.0)))

(:COST_DISTRIBUTION ((9 1.0))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES ((TAEMS::RESOURCE_A ((1 0.78) (2 0.22))))))

(EXEC-METHOD (:LABEL M4) (:SUPERTASKS (T2))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME9) (:DENSITY 1.0)

(:QUALITY_DISTRIBUTION ((4 1.0)))

(:DURATION_DISTRIBUTION ((6 0.191) (9 0.072) (3 0.737)))

(:COST_DISTRIBUTION ((1 0.565) (10 0.435))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)
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(:RESOURCES

((TAEMS::RESOURCE_A ((5 0.342) (2 0.658)))

(TAEMS::RESOURCE_C ((3 0.562) (1 0.438))))))

(NLE-HINDERS (:LABEL NLE9) (:SOURCE T2) (:SINK M2) (:DELAY 0)

(:QUALITY_POWER 0.24853396)

(:COST_POWER 0.10359275)

(:DURATION_POWER 0.08548164)

(:MAX-SOURCE-QUALITY 10))

(NLE-FACILITATES (:LABEL NLE7) (:SOURCE T2) (:SINK M0) (:DELAY 0)

(:QUALITY_POWER 0.15140426)

(:COST_POWER 0.079969764)

(:DURATION_POWER 0.8773806)

(:MAX-SOURCE-QUALITY 10))

(TASK-MIN (:LABEL T3) (:TASK-TYPE TAEMS::SUBTASK)

(:SUPERTASKS (T0)) (:SUBTASKS (M5 M6 M7 M8)) (:CAF-LABEL MIN))

(EXEC-METHOD (:LABEL M5) (:SUPERTASKS (T3))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME10) (:DENSITY 1.0)

(:QUALITY_DISTRIBUTION

((8 0.322) (7 0.039) (2 0.474) (10 0.164)))

(:DURATION_DISTRIBUTION ((6 0.578) (4 0.422)))

(:COST_DISTRIBUTION ((4 1.0))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES ((TAEMS::RESOURCE_D ((3 0.139) (1 0.861))))))

(EXEC-METHOD (:LABEL M6) (:SUPERTASKS (T3))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME14) (:DENSITY 0.124)

(:QUALITY_DISTRIBUTION

((9 0.099) (1 0.304) (3 0.597)))

(:DURATION_DISTRIBUTION

((2 0.62) (7 0.279) (3 0.1)))

(:COST_DISTRIBUTION

((6 0.561) (7 0.075) (3 0.005) (1 0.359))))

(OUTCOME (:LABEL OUTCOME13) (:DENSITY 0.298)

(:QUALITY_DISTRIBUTION ((8 0.463) (9 0.537)))

(:DURATION_DISTRIBUTION

((3 0.565) (5 0.379) (6 0.033) (1 0.022)))

(:COST_DISTRIBUTION ((9 1.0))))

(OUTCOME (:LABEL OUTCOME12) (:DENSITY 0.456)

(:QUALITY_DISTRIBUTION

((7 0.08) (5 0.423) (10 0.497)))
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(:DURATION_DISTRIBUTION ((9 0.871) (10 0.129)))

(:COST_DISTRIBUTION

((5 0.756) (9 0.008) (4 0.236))))

(OUTCOME (:LABEL OUTCOME11) (:DENSITY 0.122)

(:QUALITY_DISTRIBUTION

((9 0.884) (3 0.091) (2 0.024)))

(:DURATION_DISTRIBUTION ((4 0.508) (1 0.491)))

(:COST_DISTRIBUTION ((1 0.162) (2 0.838))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES ((TAEMS::RESOURCE_D ((3 0.724) (2 0.276))))))

(NLE-ENABLES (:LABEL NLE1) (:SOURCE M6) (:SINK M1) (:DELAY 0))

(EXEC-METHOD (:LABEL M7) (:SUPERTASKS (T3))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME18) (:DENSITY 0.101)

(:QUALITY_DISTRIBUTION ((10 0.533) (8 0.467)))

(:DURATION_DISTRIBUTION

((9 0.291) (6 0.088) (1 0.621)))

(:COST_DISTRIBUTION

((5 0.599) (1 0.372) (6 0.028) (2 0.001))))

(OUTCOME (:LABEL OUTCOME17) (:DENSITY 0.306)

(:QUALITY_DISTRIBUTION ((7 1.0)))

(:DURATION_DISTRIBUTION

((10 0.176) (1 0.02) (9 0.804)))

(:COST_DISTRIBUTION ((4 0.992) (6 0.008))))

(OUTCOME (:LABEL OUTCOME16) (:DENSITY 0.49)

(:QUALITY_DISTRIBUTION

((5 0.146) (2 0.217) (3 0.087) (4 0.549)))

(:DURATION_DISTRIBUTION ((9 1.0)))

(:COST_DISTRIBUTION ((8 0.978) (6 0.022))))

(OUTCOME (:LABEL OUTCOME15) (:DENSITY 0.103)

(:QUALITY_DISTRIBUTION

((7 0.481) (3 0.488) (9 0.022) (2 0.008)))

(:DURATION_DISTRIBUTION ((6 1.0)))

(:COST_DISTRIBUTION ((5 0.932) (9 0.068))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::CPU ((5 0.259) (2 0.741)))

(TAEMS::RESOURCE_C ((4 0.043) (3 0.957))))))

(EXEC-METHOD (:LABEL M8) (:SUPERTASKS (T3))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME19) (:DENSITY 1.0)
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(:QUALITY_DISTRIBUTION

((2 0.03) (6 0.633) (7 0.337)))

(:DURATION_DISTRIBUTION

((10 0.499) (7 0.062) (4 0.438)))

(:COST_DISTRIBUTION ((4 0.61) (6 0.39))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::RESOURCE_A ((4 0.564) (3 0.436)))

(TAEMS::RESOURCE_C ((4 0.759) (5 0.241))))))

(TASK-MIN (:LABEL T4) (:TASK-TYPE TAEMS::SUBTASK)

(:SUPERTASKS (T0)) (:SUBTASKS (M9 M10 M11 M12)) (:CAF-LABEL MIN))

(EXEC-METHOD (:LABEL M9) (:SUPERTASKS (T4))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME23) (:DENSITY 0.146)

(:QUALITY_DISTRIBUTION

((10 0.348) (9 0.37) (1 0.282)))

(:DURATION_DISTRIBUTION ((1 1.0)))

(:COST_DISTRIBUTION ((2 1.0))))

(OUTCOME (:LABEL OUTCOME22) (:DENSITY 0.143)

(:QUALITY_DISTRIBUTION ((3 0.07) (4 0.93)))

(:DURATION_DISTRIBUTION ((4 1.0)))

(:COST_DISTRIBUTION ((7 0.361) (4 0.639))))

(OUTCOME (:LABEL OUTCOME21) (:DENSITY 0.03)

(:QUALITY_DISTRIBUTION ((3 0.69) (2 0.31)))

(:DURATION_DISTRIBUTION

((6 0.546) (9 0.059) (10 0.394)))

(:COST_DISTRIBUTION

((2 0.713) (6 0.17) (10 0.015) (3 0.102))))

(OUTCOME (:LABEL OUTCOME20) (:DENSITY 0.68)

(:QUALITY_DISTRIBUTION

((7 0.847) (5 0.02) (2 0.133)))

(:DURATION_DISTRIBUTION ((8 1.0)))

(:COST_DISTRIBUTION ((7 0.702) (10 0.297))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::RESOURCE_A ((5 0.277) (1 0.723)))

(TAEMS::RESOURCE_D ((1 0.732) (5 0.268))))))

(NLE-FACILITATES (:LABEL NLE6) (:SOURCE M9) (:SINK T3) (:DELAY 0)

(:QUALITY_POWER 0.678903)

(:COST_POWER 0.9109988)

(:DURATION_POWER 0.35027683)
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(:MAX-SOURCE-QUALITY 10))

(EXEC-METHOD (:LABEL M10) (:SUPERTASKS (T4))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME24) (:DENSITY 1.0)

(:QUALITY_DISTRIBUTION

((6 0.447) (4 0.277) (3 0.086) (8 0.189)))

(:DURATION_DISTRIBUTION ((2 0.554) (3 0.445)))

(:COST_DISTRIBUTION ((7 1.0))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::CPU ((4 0.975) (5 0.024)))

(TAEMS::RESOURCE_B ((2 0.407) (1 0.593))))))

(NLE-DISABLES (:LABEL NLE5) (:SOURCE M10) (:SINK M7) (:DELAY 0))

(NLE-FACILITATES (:LABEL NLE3) (:SOURCE M10) (:SINK M0) (:DELAY 0)

(:QUALITY_POWER 0.42604792)

(:COST_POWER 0.29166973)

(:DURATION_POWER 0.38953853)

(:MAX-SOURCE-QUALITY 8))

(EXEC-METHOD (:LABEL M11) (:SUPERTASKS (T4))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME25) (:DENSITY 1.0)

(:QUALITY_DISTRIBUTION ((6 1.0)))

(:DURATION_DISTRIBUTION ((4 1.0)))

(:COST_DISTRIBUTION ((8 1.0))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::CPU ((5 0.064) (4 0.936)))

(TAEMS::RESOURCE_B ((2 0.65) (4 0.35))))))

(NLE-DISABLES (:LABEL NLE2)

(:SOURCE M11)

(:SINK M6)

(:DELAY 0))

(EXEC-METHOD (:LABEL M12) (:SUPERTASKS (T4))

(:OUTCOMES

((OUTCOME (:LABEL OUTCOME28) (:DENSITY 0.318)

(:QUALITY_DISTRIBUTION

((8 0.823) (1 0.132) (5 0.04) (2 0.004)))

(:DURATION_DISTRIBUTION

((2 0.939) (8 0.016) (10 0.044)))

(:COST_DISTRIBUTION ((6 0.632) (10 0.367))))

(OUTCOME (:LABEL OUTCOME27) (:DENSITY 0.277)
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(:QUALITY_DISTRIBUTION

((9 0.893) (3 0.015) (2 0.091)))

(:DURATION_DISTRIBUTION ((5 1.0)))

(:COST_DISTRIBUTION

((1 0.351) (6 0.079) (8 0.57))))

(OUTCOME (:LABEL OUTCOME26) (:DENSITY 0.405)

(:QUALITY_DISTRIBUTION

((10 0.526) (1 0.436) (5 0.023) (4 0.014)))

(:DURATION_DISTRIBUTION

((8 0.145) (6 0.087) (7 0.768)))

(:COST_DISTRIBUTION ((5 0.131) (3 0.869))))))

(:EXECUTE-FN NIL) (:MEASURE-CHARACTERISTICS-FN NIL)

(:RESOURCES

((TAEMS::RESOURCE_A ((1 0.696) (2 0.304)))

(TAEMS::RESOURCE_D ((2 0.66) (5 0.339))))))

(NLE-FACILITATES (:LABEL NLE4) (:SOURCE M12) (:SINK T3) (:DELAY 0)

(:QUALITY_POWER 0.3149761)

(:COST_POWER 0.6441519)

(:DURATION_POWER 0.1155262)

(:MAX-SOURCE-QUALITY 10))

(NLE-FACILITATES (:LABEL NLE0) (:SOURCE M12) (:SINK M6) (:DELAY 0)

(:QUALITY_POWER 0.7681476)

(:COST_POWER 0.43372154)

(:DURATION_POWER 0.036467075)

(:MAX-SOURCE-QUALITY 10))
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