
A MULTIDIMENSIONAL SYSTEMS APPROACH TO GRID SENSOR

NETWORKS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

M.G. Buddika Sumanasena

Peter H. Bauer, Director

Graduate Program in Electrical Engineering

Notre Dame, Indiana

April 2012

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3578994
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3578994

A MULTIDIMENSIONAL SYSTEMS APPROACH TO GRID SENSOR

NETWORKS

Abstract

by

M.G. Buddika Sumanasena

A method for distributed information processing in rectangular grid based wire-

less sensor networks is presented, employing the Givone-Roesser and the Fornasini-

Marchesini state space models for m-D systems. It can be used for distributed imple-

mentation of any general linear system on a grid sensor network. The method is highly

scalable and requires only communication between immediate neighbors.

Usage of finite precision schemes for the representation of numbers and computa-

tions introduce nonlinearities to the otherwise linear m-D system models. Nonlineari-

ties caused by fixed point and floating point number representation schemes used for in

node computations and inter-node communication are modeled. Stability of the system

is analyzed with special consideration given to the influence of inter-node communica-

tion on system dynamics. Necessary and sufficient conditions for the global asymptotic

stability under both fixed point and floating point arithmetic is derived. It has been

shown that the global asymptotic stability of the sensor networks is equivalent to that

of a 1-D system for both the cases of fixed point and floating number representation.

Issues posed by communication time delay, in real-time implementation of the pro-

posed method, are discussed. It is shown that, in order to implement a real-time sensor

M.G. Buddika Sumanasena

network, system matrices of the state space models have to satisfy certain conditions.

A necessary and sufficient condition for a transfer function to be realizable in the con-

strained state space models is established. Realization algorithms to derive state space

models of the desired form given an admissible transfer function are also presented.

Node and link failure introduce complications not encountered in centralized imple-

mentation of m-D systems. Givone-Roesser and the Fornasini-Marchesini state space

models are extended to include node and link failure. Necessary and sufficient condi-

tions for mean square stability are then derived with the help of these two state space

models. Input output stability of the distributed systems under node and link failure is

also discussed.

The utility of the proposed method is demonstrated by examples. In particular a

distributed Kalman filter is proposed for grid sensor networks. Implementation of the

proposed Kalman filter on grid sensor networks is discussed in some detail. A method

for contaminant detection and its implementation using the proposed method is also

presented.

CONTENTS

FIGURES . v

SYMBOLS . vii

ACKNOWLEDGMENTS . ix

CHAPTER 1: INTRODUCTION . 1
1.1 Motivation . 4

1.1.1 Grid Sensor Networks . 4
1.1.2 Linear Algorithms on Sensor Networks 6
1.1.3 Local State Space Models for 3-D Systems 7
1.1.4 The Proposed Approach . 10

1.2 Literature Survey . 11
1.3 The Big Picture . 14
1.4 Structure of the Thesis . 15

CHAPTER 2: MODELS FOR GRID SENSOR NETWORKS 17
2.1 GR Model Based Implementation . 17

2.1.1 GR Model for 3-D Systems 17
2.1.2 Implementation in a Sensor Network 18

2.2 FM Model Based Implementation . 20
2.2.1 FM Model for 3-D Systems 20
2.2.2 Implementation in a Sensor Network 20

2.3 Realization of Non-causal Systems . 22
2.4 Real-time Implementation Issues . 22

2.4.1 Delayed Response Implementation 23
2.4.2 Real-Time Implementation . 24

2.5 Power and Energy Considerations . 26
2.6 Special Topologies . 26

2.6.1 Infinite Grids . 26
2.6.2 Cyclic Sensor Networks . 27

ii

CHAPTER 3: REALIZABILITY IN REAL-TIME 29
3.1 Realizability in the GR Model . 29

3.1.1 Proper Transfer Matrices . 30
3.1.2 Non Proper Transfer Matrices 40
3.1.3 Example . 43

3.2 Realizability in the FM Model . 48
3.2.1 Causal Transfer Matrices . 49
3.2.2 Summary of the Realization Algorithm 61
3.2.3 Non Causal Transfer Matrices 62
3.2.4 Example . 64
3.2.5 Comparison with GR Model Based Implementations 70

CHAPTER 4: STABILITY UNDER FINITE PRECISION ARITHMETIC 71
4.1 Fixed Point Arithmetic . 71

4.1.1 Fixed Point Quantization and Overflow 71
4.1.2 Models for Quantization and Overflow Nonlinearities 76
4.1.3 Internal Stability . 80
4.1.4 BIBO Stability . 85
4.1.5 Example . 91

4.2 Floating Point Arithmetic . 97
4.2.1 Floating Point Representation of Numbers 97
4.2.2 Quantization Models . 99
4.2.3 Stability of the System . 103
4.2.4 Example . 104

CHAPTER 5: NODE AND LINK FAILURE 113
5.1 Models for 3-D Systems Under Link Failure 114

5.1.1 FM Model . 114
5.1.2 GR Model . 115

5.2 Asymptotic Stability under Link Failure 116
5.2.1 FM Model . 119
5.2.2 GR Model . 125
5.2.3 Example . 128

5.3 Models for 3-D Systems Under Node Failure 133
5.3.1 Permanent Node Failure . 133
5.3.2 Temporary Node Failure . 141
5.3.3 Example . 149

5.4 Input-Output Stability . 149
5.4.1 Input-Output Stability Under Link Failure 150
5.4.2 Input-Output Stability Under Node Failure 151

iii

CHAPTER 6: EXAMPLE . 153
6.1 Distributed Kalman Filtering . 153

6.1.1 The Proposed Algorithm . 154
6.1.2 Mean and Mean Square Error Performance 161
6.1.3 Simulation Results . 168

6.2 Contaminant propagation detection . 173

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS . . 177
7.1 Future Research Directions . 177

7.1.1 Realization of Transfer Matrices 177
7.1.2 Power Efficient Implementations 178
7.1.3 Robustness . 179
7.1.4 Extension to Random Sensor Networks 181
7.1.5 Extension to Broader Classes of Systems 182
7.1.6 Applications . 184

7.2 Conclusions . 184

BIBLIOGRAPHY . 186

iv

FIGURES

1.1 Equilateral triangular, square and hexagonal sensor deployment patterns 5

2.1 Communication of state vectors between nodes in the network 19

2.2 Communication of state vectors between nodes in the network 21

2.3 Equivalence classes of nodes . 24

3.1 Algorithm for constructing Ψ . 38
3.2 Algorithm for constructing Ψ . 58

4.1 Fixed-point quantization schemes: Magnitude Truncation 73
4.2 Fixed-point quantization schemes: Rounding 73
4.3 Fixed-point quantization schemes: Two’s complement 74
4.4 Fixed-point overflow nonlinearities: Saturation Nonlinearity 75
4.5 Fixed-point overflow nonlinearities: Wraparound Nonlinearity 76
4.6 Fixed-point overflow nonlinearities: Zeroing Nonlinearity 76
4.7 Euclidean norm of the state vector of the node (1, 1) 92

4.8 Euclidean norm of the state vector of the node (4, 4) 93

4.9 Euclidean norm of the state vectors versus t for the GR model 93

4.10 Euclidean norm of the state vectors versus t for the GR model 93
4.11 Euclidean norm of the state vector of the node (1, 1) 95
4.12 Euclidean norm of the state vector of the node 96
4.13 Euclidean norm of the state vectors versus t for the FM model 96
4.14 Euclidean norm of the state vectors versus t for the FM model 97
4.15 Euclidean norm of the state vectors versus time t for the GR model . . . 107

4.16 Euclidean norm of the state vectors versus time t for the GR model . . . 108

4.17 Euclidean norm of the state vectors versus time t for the GR model . . . 108
4.18 Euclidean norm of the state vectors versus time t for the FM model . . . 110
4.19 Euclidean norm of the state vectors versus time t for the FM model . . . 111
4.20 Euclidean norm of the state vectors versus time t for the FM model . . . 111

6.1 Algorithm for global Kalman filtering 156

v

6.2 Algorithm for local Kalman filtering at node (n1, n2) 157

6.3 Algorithm for DKF . 161
6.4 Evaluation of the Mean Square Error 163

6.5 Evaluation of the Mean Square Error 166
6.6 Logarithm of RMS of error over the sensor network 169
6.7 Logarithm of MS difference between estimates of nodes 169
6.8 Logarithm of RMS of error over the sensor network 170
6.9 Logarithm of MS difference between estimates of nodes 171
6.10 Logarithm of RMS of error over the sensor network 172
6.11 Logarithm of MS difference between estimates of nodes 172
6.12 Implementation of the Filter . 174

6.13 False detections with no input signal 175
6.14 Detection of the front perpendicular to the n1 axis 176
6.15 Detection of the front making 450 to the n1 axis 176

7.1 Virtual grid sensor network of randomly deployed nodes. 182

vi

SYMBOLS

1-D One dimensional

2-D Two dimensional

3-D Three dimensional

R The set of real numbers

Rm×n The set of real matrices of order m× n

Z The set of integers

Z+ The set of non-negative integers

[a, b] {x : x ∈ R and a ≤ x ≤ b}

[a, b) {x : x ∈ R and a ≤ x < b}

A⊗ B Kronecker product of matrices A and B

ρ(A) Spectral norm of matrix A

σ(A) Spectral radius of matrix A

BIBO Bounded input bounded output

BIBOMS Bounded input bounded output stable in the mean square sense

FM model Fornasini-Marchesini model

GR model Givone-Roesser model

GAS Globally asymptotically stable

GAS Global asymptotic stability

In Identity matrix of order n

vii

LHS Left hand side

m-D Multidimensional

MSS Mean square stable

MSS Mean square stability

RF Radio frequency

RHS Right hand side

viii

ACKNOWLEDGMENTS

The author would like to thank his advisor, Professor Peter Bauer for his continued

support throughout this work. His patient guidance and encouragement was conducive

for the smooth progress of this work.

The author is indebted to the committee members Professor Panos Antsaklis, Pro-

fessor Ken Sauer and Professor Tracy L. Kijewski-Correa for time and effort spent

amidst their busy schedules on short notice. The author owes his colleagues a debt of

gratitude for their support granted in many an occasion.

This material is based upon research supported by the National Science Foundation

(NSF) under grant IIS-0325252 (ITR Medium) at University of Notre Dame. Funding

was also provided by Defense Threat Reduction Agency (DTRA) and Naval Surface

Warfare Center (NSWC) - Crane division under grant N00164-07-C-8510. The author

would like to take this opportunity to thank the funding agencies for their generosity.

ix

CHAPTER 1

INTRODUCTION

Sensor networks, collections of spatially distributed sensor nodes cooperating to ac-

complish a common task, are promising to change the way we live our lives,

Akyildiz et al. [2002]. Though the development of sensor networks was originally mo-

tivated by military applications, such as battlefield surveillance, they are used in numer-

ous civilian applications including industrial process monitoring and control, agricul-

ture, environmental and habitat monitoring, and traffic control.

A sensor network comprises of sensor nodes and a communication medium en-

abling inter node communication. A node consists of a processor, a sensor unit and a

transceiver. The sensor unit may consist of different types of sensors such as seismic,

magnetic, temperature, infrared radiation, acoustic and radar sensors, Chong and Kumar

[2003]. Processors in typical sensor nodes have very limited computational capabilities

and memory. The transceiver facilitates communication between nodes and possibly

between the node and the outer world.

The most commonly used means of communication in sensor networks is wireless

RF communication. Free space optical communication is proposed as an alternative in

Kahn et al. [1999]. The main disadvantage of free space optical communication is the

necessity of line-of-sight between the transmitter and the receiver. When a line-of-sight

path is available, a well designed free space optical link requires significantly lower

energy per bit than their RF counterparts Kahn et al. [1998].

1

Applications of sensor networks are many and varied, but typically involve some

kind of monitoring, tracking, and controlling. They can be classified broadly into the

following categories.

Military applications An early example of military applications of sensor networks is

the Sound Surveillance System (SOSUS). It is an array of acoustic sensors (hy-

drophones) deployed on the ocean bottom at strategic locations to detect and track

Soviet submarines. Over the years, other more sophisticated acoustic sensor net-

works have been developed for submarine surveillance. Sensor networks can be

rapidly deployed, are fault tolerant and require little or no maintenance once de-

ployed. Destruction of some nodes by hostile action does not affect the operation

of the network as much as the destruction of a traditional sensor. These proper-

ties have rendered sensor networks promising candidates for military command,

communication, intelligence, surveillance, and targeting systems.

Environmental applications Sensor networks have the potential to make a profound

impact on the monitoring of natural environments, Hart and Martinez [2006].

Sensor networks have also been successfully employed for habitat monitoring,

Mainwaring et al. [September 2002]. Other potential application areas include

forest fire detection, flood detection and metrological and geological research.

Industrial applications Industrial process control is a potential application area of

sensor networks. Information gathered by sensors can be used to reduce cost

and improve performance and maintainability of machines and assembly lines.

Traffic control Sensor networks have been used for traffic control for quite a while.

However the cost of sensors and the communication network that connects them

have limited the deployment of traffic monitoring systems to few critical points.

2

Cheap sensors with embedded networking capabilities can change the landscape

of traffic monitoring and control completely. A network of widely deployed sen-

sors can estimate the flow of traffic and make real-time control decisions. An-

other approach is to equip vehicles with sensors Estrin et al. [1999]. Information

on locations of traffic jams, the speed and density of traffic is exchanged between

vehicles. This information can be used by both the drivers and traffic control

systems.

Health applications Potential health applications of sensor networks include drug ad-

ministration in hospitals, telemonitoring of human physiological data, diagnos-

tics and tracking and monitoring patients inside a hospital, Akyildiz et al. [2002].

Sensor networks can allow a single system to be used for all the above mentioned

applications.

Domestic applications A networked home where domestic appliances are networked

and can interact with each other and external networks is envisioned in Petriu et al.

[2000]. Remote monitoring and control of domestic devices would be made pos-

sible by such a network. Domestic energy saving and assisting impaired or el-

derly people are potential applications of such networks.

Despite the potential of sensor networks in diverse application areas, a number of

unique technical challenges posed by them have impeded their deployment in envi-

sioned applications.

Energy and power limitations Since the sensor nodes upon deployment are often in-

accessible, the lifetime of a sensor network depends on the energy resources on

the nodes. Power available for a sensor node is very limited due to size and cost

constraints of a node.

3

Deployment Some applications demand sensor networks be deployed randomly in re-

gions with little or no infrastructure, an example of which is military applications.

Therefore sensor network protocols and algorithms must possess self organizing

capabilities.

Cost The number of nodes in a sensor network may be very large. To justify the cost of

the overall network, the cost of a sensor node has to be low. On the other hand the

restrictions on the cost of a node have implications on the computational, power,

energy and communication resources on board.

Reliability and fault tolerance Sensor networks may be deployed in hostile environ-

ments and left unattended. Lack of power, physical damage, or interference can

cause some nodes to malfunction. The sensor network should therefore be able

to sustain its functionalities under node failures and other faults.

1.1 Motivation

1.1.1 Grid Sensor Networks

Sensor networks can be broadly classified into three categories based on the sensor

deployment strategy.

• Random deployment

• Regular Deployment

• Application specific deterministic deployment

A sensor network where sensors are placed in a regular pattern is called a regular

sensor network. Such deployment of sensors may not be feasible in many applications.

However, random placement of sensor nodes can be very expensive due to redundancy

4

required to overcome the uncertainty. Regular sensor networks have drawn consider-

able attention in the literature.

(a) (b) (c)

Figure 1.1. Equilateral triangular(a), square(b) and hexagonal(c) sensor
deployment patterns

Three sensor placement patterns for regular sensor networks are discussed in

Biagioni and Sasaki [2003]. The three patterns are derived from the three regular tes-

sellations of the 2-D plane. For deployment of sensors in a triangular lattice, the region

to be covered is tessellated by equilateral triangles, and sensor nodes are placed at the

vertices of the triangles. The same procedure is followed for deployment of sensors

in square and hexagonal patterns except the region to be covered is tiled by squares

and hexagons respectively. Figure 1.1 illustrates the equilateral triangular, square and

hexagonal sensor deployment patterns. Regular sensor networks with sensors deployed

in a rectangular lattice are referred to as grid sensor networks.

5

1.1.2 Linear Algorithms on Sensor Networks

Vast and diverse applications of sensor networks have prompted a wide variety of

signal processing algorithms to be implemented on them. Of particular relevance to

the current work are algorithms that perform linear operations on the raw sensor data

or functions of them. A few representative examples from the literature are discussed

below.

1.1.2.1 Distributed Kalman Filters

Centralized implementation of Kalman filters on sensor networks has stringent com-

munication, and hence energy, requirements. A strategy for distributed Kalman filtering

was presented in [Cattivelli et al., 2008; Sumanasena and Bauer, 2010e]. Every node

runs a local Kalman filter. Estimates from local Kalman filters of neighboring nodes

are linearly combined to achieve asymptotically the performance of a global Kalman

filter.

1.1.2.2 Consensus Filters

Distributed algorithms for computing the average of sensor data over a sensor net-

work are proposed in [Olfati-saber and Shamma, 2005; Scherber and Papadopoulos,

2004, 2005]. The average is approximated at every node by iteratively performing lo-

cal low pass filtering on data collected from neighboring nodes. Consensus filters have

been used for distributed Kalman filtering [Olfati-Saber, 2005, 2007; Spanos et al.,

2005]. In Pham et al. [2004] consensus filters are used for the distributed realization of

sound source localization algorithms given in Pham et al. [2003].

6

1.1.2.3 Distributed Optimization

A sub-gradient descent algorithm for optimizing a convex function of sensor node

measurements in a sensor network is given in Rabbat and Nowak [2004] . The update

step in the proposed approach linearly combines data from all the sensors. Distributed

optimization is possible by employing a distributed update step. Application of the

algorithm for robust estimation, energy-based source localization and clustering density

estimation is also discussed.

1.1.2.4 Filtering

Linear filtering based approaches for edge detection, noise reduction and contam-

inant front detection in sensor networks are proposed in Chintalapudi and Govindan

[2003]; Devaguptapu and Krishnamachari [2003]; Sumanasena and Bauer [2008]. Meth-

ods discussed employ 2-D filters from image processing literature.

1.1.2.5 Multi Resolution Processing

When the sensor measurements in a sensor network exhibit redundancies, it is more

efficient from a computational and communication perspective to process a sparser ver-

sion of sensor measurements. Multi resolution signal processing techniques can be

employed to make the data from the sensor network sparse. A wavelet-based approach

for storage and search in sensor networks is proposed in Ganesan et al. [2005].

1.1.3 Local State Space Models for 3-D Systems

Multidimensional system theory is the theory concerning systems that evolve over

multiple independent dimensions. Its applications include signal processing in radar,

seismology, sonar, and image and video processing in general. The Givone-Roesser

7

model Givone and Roesser [1972] and the Fornasini-Marchesini model

Fornasini and Marchesini [1978] are widely used local state space models for m-D sys-

tems. The Givone-Roesser(GR) and the Fornasini-Marchesini(FM) models were orig-

inally proposed for 2-D systems but can be extended readily to higher dimensional

systems.

Of particular importance to the current work are 3-D systems with two spatial di-

mensions and one temporal dimension. GR and FM models for such systems are dis-

cussed next. Details of dimensions of vectors and matrices are omitted since they are

not necessary for the discussion at hand and will be treated when these models will be

revisited in the next chapter.

1.1.3.1 Givone-Roesser Model

The GR model for 3-D systems is given by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (1.1)

where x(n1, n2, t) = (xhT

(n1, n2, t),x
vT (n1, n2, t),x

tT (n1, n2, t))
T is the state vector,

u(n1, n2, t) is the input vector and y(n1, n2, t) is the output vector. Here, n1 ∈ Z,

n2 ∈ Z and t ∈ Z. Vectors xh, xv and xt are called the horizontal, vertical and

temporal state vector components respectively.

8

1.1.3.2 Fornasini-Marchesini Model

There are two variations of the Fornasini-Marchesini model called the FM I and

FM II models. The FM II model for 3-D systems is given by:

x(n1, n2, t) = Atx(n1, n2, t−1) +Avx(n1, n2−1, t) +Ahx(n1−1, n2, t)

+Btu(n1, n2, t−1) +Bvu(n1, n2−1, t) +Bhu(n1−1, n2, t)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t). (1.2)

where x(n1, n2, t) is the state vector, u(n1, n2, t) is the input vector and y(n1, n2, t) is

the output vector. Here, n1 ∈ Z, n2 ∈ Z and t ∈ Z. The FM I model for 3-D systems

is given by:

x(n1, n2, t) = Atx(n1, n2, t−1) +Avx(n1, n2−1, t) +Ahx(n1−1, n2, t)

+Atvx(n1, n2−1, t−1) +Avhx(n1−1, n2−1, t) +Ahtx(n1−1, n2, t−1)

+Atvhx(n1−1, n2−1, t−1) +Btu(n1, n2, t−1) +Bvu(n1, n2−1, t)

+Bhu(n1−1, n2, t) +Btvu(n1, n2−1, t−1) +Bvhu(n1−1, n2−1, t)

+Bhtu(n1−1, n2, t−1) +Btvhu(n1−1, n2−1, t−1)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t). (1.3)

where x(n1, n2, t) is the state vector, u(n1, n2, t) is the input vector and y(n1, n2, t) is

the output vector. A 3-D system representable in the FM-II model is also representable

in the FM-I model. The converse is also true. Using the FM-II model makes the notation

more concise since it has fewer matrices and vectors than the FM-I model. Therefore

FM-II model is used throughout this work to represent 3-D systems.

9

1.1.4 The Proposed Approach

Consider a grid sensor network of size N1 × N2 . A linear process operating on

sensor measurements of multiple nodes and over multiple sampling instances is a 3-

D process. Let there be a spatially and temporally causal 3-D linear process to be

implemented on the sensor network. Such a process is first octant causal and can be

represented by models (1.1) and (1.2). State space models can be implemented on a

sensor network as follows.

• In models (1.1) and (1.2), let (n1, n2) be the coordinates of sensor nodes in the

grid and t denote the sampling time index.

• Every node computes its state vector using equations (1.1) or (1.2) depend-

ing upon which models is used, using the information received from preceding

nodes1 and the state vector of itself at the previous sampling time instance.

• Every node computes the output vector using the state vector and the input vector.

• Every node transmits the information required by the succeeding nodes to com-

pute their state vectors.

The method described above is a distributed computational procedure and requires com-

munication only between the neighboring nodes in a grid sensor network. Hence it is

highly scalable. The sequence of operations has to be started at a node, preferably

the node at the origin, and propagated in the positive directions of the spatial axes.

Therefore the process realized is first octant causal. By selecting the origin and the di-

rection of propagation appropriately, spatially second, third and fourth quadrant causal

1Node (n1

1
, n1

2
) is said succeed node (n2

1
, n2

2
) if n1

1
≥ n2

1
and n1

2
≥ n2

2
. Node (n1

1
, n1

2
) is said to

precede node (n2

1
, n2

2
) if the later succeeds the former

10

processes can be implemented. A spatially non-causal process can be realized as a

combination of processes causal in each of the four quadrants.

If the system implemented is spatially invariant, every node runs identical code

and over-the-air programming methods can be used to reconfigure the sensor network.

Output at each node is computed by the node itself. Therefore the approach supports

local actuation in response to local activity. The method assumes some kind of ordering

of sensors in space. This results from the formulation of state space models (1.1) and

(1.2). Hence there is no straightforward extension to irregular sensor networks, but the

approach can be adapted to grids that are not rectangular.

1.2 Literature Survey

Existing literature on sensor networks and multidimensional systems is vast and

diverse. In this section contributions pertinent for the discussion at hand are discussed.

General introductions to evolution, applications, routing algorithms, signal pro-

cessing aspects and challenges of sensor networks are given in [Akyildiz et al., 2002;

Chong and Kumar, 2003; Estrin et al., 2001; Romer and Mattern, 2004].

A sensor deployment strategy to deploy sensors in a grid when manual deploy-

ment is impossible is given in Leoncini et al. [2005]. Sensor drop strategies given in

Leoncini et al. [2005] aim to meet a given degree of coverage with a minimum num-

ber of nodes under placement uncertainties. An algorithm to achieve connectivity and

coverage for multiple target points in a grid sensor network is proposed in Wu et al.

[2008]. The procedure given provides close to optimal results. In Xu et al. [2006] ro-

bustness of regular sensor networks against sensor placement errors is discussed. The

work concentrates on the effect of both random and non-random deployment errors on

the coverage in triangular lattice sensor networks. Triangular, square and hexagonal

11

lattice sensor networks are compared for the number of nodes required to cover a given

area and robustness against node failure in Biagioni and Sasaki [2003]. Coverage and

connectivity of grid sensor networks in the presence of node failure has been studied in

Shakkottai et al. [2003]. A sufficient condition for the connectivity of the active nodes

is also derived.

For the case where there are two types of sensor nodes with different coverage and

cost, an optimal scheme for placing sensors on a grid, which minimizes the cost and

assures coverage in the presence of node failure, is given in Chakrabarty et al. [2002].

A reliability measure for sensor networks, which considers a group of sensors to

be operational if there exists an operational bidirectional path from the sink node to at

least one operational sensor in the group, is formulated in AboElFotoh et al. [2005].

A reliability measure based on the aggregate flow of information from sensor nodes

to the sink node is proposed in AboElFotoh et al. [2007]. It is also proven that eval-

uating this measure for an arbitrary sensor network is nP -hard. It has been shown

that evaluating this reliability measure for grid sensor networks is also nP -hard see,

AboElFotoh and Elmallah [2008]. An algorithm to evaluate the said reliability mea-

sure for a grid sensor network with uniformly generated traffic upon a particular routing

algorithm is proposed in AboElFotoh and Elmallah [2008].

Network capacity limits and optimal routing algorithms for grid sensor networks for

cases with no node failure and random node failure are studied in Barrenechea et al.

[2004]. For sensor networks with no node failures, an upper bound for network capac-

ity was derived, and a routing algorithm which achieves the upper bound is presented.

A combination of two routing algorithms, the first being the optimal routing algorithm

for the no node failure case and the second an algorithm suitable if the probability of

node failure is high, is proposed for sensor networks with random node failure. Proto-

12

cols and algorithms that allow routing load to be distributed fairly in a sensor network

are proposed in Akbar et al. [2006] for grid sensor networks. A node or link failure

recovery scheme is also presented.

A power consumption model for sensor nodes in a sensor network was proposed

in Wang et al. [2006]. In Wang and Yang [2007] an energy consumption model is

proposed for sensor networks. Energy aware routing protocols have been proposed in

[Muruganathan et al., 2005; Stojmenovic and Lin, 2001] and references therein.

Several local state space models for multidimensional systems have been proposed

[Attasi, 1973; Fornasini and Marchesini, 1978; Givone and Roesser, 1972]. They were

originally proposed for 2-D systems. A comparison of the three state space models

presented in above work is given in Kung et al. [1977]. A procedure to derive the

GR model from the FM model of a 2-D system is also presented and it is argued that

the GR model is the most general model of the three. The local state space models in

[Attasi, 1973; Fornasini and Marchesini, 1978; Givone and Roesser, 1972] are shown

to be special cases of another local state space model in Eising [1978].

Contrary to the 1-D case, where minimal state space realizations can be derived for

a given causal transfer function, minimal realizations can be derived only for special

categories of m-D systems such as, continued fraction expandable systems, all-pole,

and all-zero filters, product factorable transfer functions, discrete time lossless bounded

real functions, separable and factorable systems, and first order all-pass filters Antoniou

[2001]. A realization procedure to realize a causal transfer function in the GR model is

presented in Eising [1978]. Realization procedure presented in Eising [1978] is gen-

eralized to a larger class of 2-D systems in Eising [1980]. It is shown that in general,

causal 2-D systems do not have a causal inverse. Algorithms to realize a given 2-D

transfer function in the GR model are given in [Antoniou, 2001; Mitra et al., 1975].

13

A 3-D realization algorithm for the GR model is given in Fan et al. [2006]. Realiza-

tion of 2-D transfer functions in the FM model is addressed in [Bisiacco et al., 1989;

Fornasini and Marchesini, 1978; Xu et al., 2008].

Stability of multidimensional systems has drawn much attention and a rich literature

exists on the subject. It has been argued that direct extension of 1-D BIBO stability to

multidimensional systems is overly restrictive Agathoklis and Bruton [1983]. A new

external stability criterion, practical-BIBO stability which is less restrictive and more

relevant for practical applications than the conventional one, is also introduced.

A set of 1-D conditions necessary for GAS of non-linear multidimensional systems

is given in Bauer [1995b]. Conditions under which GAS of a system with quantization

and overflow nonlinearities is equivalent to GAS of that with only the quantization

nonlinearity was established in Leclerc and Bauer [1994]. A sufficient condition for

GAS of a 2-D system realized in the FM model is established in Bose [1995]. Stability

of 2-D systems realized in FM and GR models using two’s complement arithmetic is

studied in Bose [1995] and Bose [1994], respectively. Further results on GAS of

2-D systems realized in GR and FM models employing finite precision arithmetic are

presented in [Kar and Singh, 2001a; Singh, 2008] and references therein.

1.3 The Big Picture

Though m-D systems theory and local state space models for m-D systems were

known for a long time and linear systems were implemented on sensor networks in a

variety of applications, the first efforts to realize m-D systems on grid sensor networks

using the local state space models appeared in Dewasurendra and Bauer [2008] and

Sumanasena and Bauer [2008, 2009, 2010a] to the best of the author’s knowledge.

The approach proposed enables distributed implementations of linear systems on

14

grid sensor networks. Tools and techniques already developed in m-D systems the-

ory can be used for implementation and analysis of properties such as stability of such

systems. The m-D systems theory was developed in a centralized context and the mi-

gration to a distributed and more uncertain setting poses striking theoretical challenges

and opportunities to explore.

Communication time delay mandates system matrices to have certain properties for

them to be implementable in real-time. This makes it impossible to realize any given

transfer function. Different number representation and quantization schemes may be

used for in-node computations and communication among nodes. The effect of possibly

different overflow and quantization nonlinearities on system dynamics also needs to be

analyzed. On the other hand, the finite spatial extent of the sensor network enables

stronger conditions for stability to be established, see Sumanasena and Bauer [2011e,

2009, 2010a].

Node and link failures in a sensor network introduce uncertainties to otherwise de-

terministic m-D system models [Sumanasena and Bauer, 2011c,d]. These uncertain-

ties have to be modeled and their effect on the overall system performance has to be

assessed. In a grid sensor network it may not be feasible to place sensors exactly on

the grid. Non uniform sampling resulting from the irregular sensor placement can have

adverse effects on the performance of the system.

The aim of the current work is to address these issues that naturally arise in dis-

tributed implementations of m-D systems in grid sensor networks.

1.4 Structure of the Thesis

The GR and FM local state space models for 3-D systems and their application

to information processing in grid sensor networks are discussed in chapter 2. Issues

15

posed by time lag in data communication, in real-time implementation of the proposed

method, are also discussed. Extension of the proposed method to a ring topology is also

discussed in chapter 2.

In chapter 3 realizability of a given 3-D transfer function in real-time is studied. A

necessary and sufficient condition, for a transfer function to be realizable as GR and

FM models in real-time, is established. Realization algorithms that realize an admis-

sible transfer matrix in GR and FM models of the desired form are also presented.

Stability of the 3-D distributed systems in the face of quantization and overflow nonlin-

earities is treated in chapter 4. Nonlinearities resulting from quantization and overflow

are modeled for both fixed point and floating point implementations. Necessary and

sufficient conditions for GAS of GR and FM models are also established. Sufficient

conditions for BIBO stability are derived for systems realized in both local state space

models when fixed point implementations.

The effect of node and link failure on system dynamics is studied in chapter 5.

GR and FM models for 3-D systems are extended to incorporate node and link failure.

Internal and external stability of the distributed 3-D systems under node and link failure

is also analyzed. Two examples are presented to demonstrate the utility of the proposed

approach for signal processing in sensor networks in chapter 6. Open research issues

are discussed and concluding remarks are given in chapter 7.

16

CHAPTER 2

MODELS FOR GRID SENSOR NETWORKS

GR and FM models are m-D counterparts of 1-D state space models for discrete

time systems. They model the evolution of an m-D system driven by an input, over

multiple independent dimensions. Similar to 1-D state space models where the current

state is evaluated using the previous state and input, states are evaluated using immedi-

ately preceding states and inputs. The local nature of computation renders GR and FM

state space models promising candidates for distributed signal processing in grid sensor

networks.

2.1 GR Model Based Implementation

2.1.1 GR Model for 3-D Systems

The GR model for 3-D systems is given by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (2.1)

17

where x(n1, n2, t) = (xhT

(n1, n2, t),x
vT (n1, n2, t),x

tT (n1, n2, t))
T , n1 ∈ Z, n2 ∈ Z

and t ∈ Z. Vectors xh ∈ Ra, xv ∈ Rb and xt ∈ Rc are called the horizontal, vertical

and temporal state vector components respectively. Let the input vector u ∈ Rp and

the output vector y ∈ Rq. Then A1 ∈ Ra×a, A2 ∈ Ra×b, A3 ∈ Ra×c, A4 ∈ Rb×a,

A5 ∈ Rb×b, A6 ∈ Rb×c, A7 ∈ Rc×a, A8 ∈ Rc×b, A9 ∈ Rc×c, B1 ∈ Ra×p, B2 ∈ Rb×p,

B3 ∈ Rc×p, C ∈ Rq×(a+b+c) and D ∈ Rq×p. Let:

A =













A1 A2 A3

A4 A5 A6

A7 A8 A9













and B = (BT
1 ,B

T
2 ,B

T
3)

T . A first octant causal linear process can be represented using

this model. Given a 2-D causal input-output transfer function, state space representa-

tion of the system in the GR model can be derived using methods given in [Eising,

1978; Kung et al., 1977; Mitra et al., 1975]. Algorithms to realize a given causal 3-

D transfer function in the GR model are given in Fan et al. [2006]; Kanellakis et al.

[1989]; Manikopoulos and Antoniou [1990]; Sumanasena and Bauer [2011d, 2010c];

Theodorou and Tzafestas [1984]. The 3-D realization algorithm proposed in Fan et al.

[2006] was generalized for m-D realization in Xu et al. [2008].

2.1.2 Implementation in a Sensor Network

In model (2.1) let spatial variables n1 and n2 be the horizontal and vertical coor-

dinates of a node respectively. The tuple (n1, n2) thus refers to a unique node in the

sensor network. Vectors x(n1, n2, t), y(n1, n2, t) and u(n1, n2, t) are the state vector,

the output vector and the input vector of node (n1, n2) at time slot t respectively. The

following operations are performed by each node (n1, n2) at the time slot t.

18

• Receive state vector components xh(n1, n2, t) and xv(n1, n2, t) from nodes (n1−

1, n2) and (n1, n2 − 1) respectively.

• Use equation (2.1) to computexh(n1+1, n2, t), xv(n1, n2+1, t) and xt(n1, n2, t+

1)

• Transmit xh(n1 + 1, n2, t) and xv(n1, n2 + 1, t)

• Use equation (2.1) to compute the output.

For a sensor network of size N1×N2, 0 ≤ n1 ≤ N1−1 and 0 ≤ n2 ≤ N2−1. For con-

venience let t ∈ Z+. Figure 2.1 illustrates the operation of nodes and communication

of state vectors between nodes.

Figure 2.1. Communication of state vectors between nodes in the network for
the GR model based implementation

19

2.2 FM Model Based Implementation

There are two variations of the FM model called the FM I and FM II models. In the

current work FM II local state space models will be used and would be referred to as

FM model.

2.2.1 FM Model for 3-D Systems

The FM model for 3-D systems is given by:

x(n1, n2, t) = Atx(n1, n2, t−1) +Avx(n1, n2−1, t) +Ahx(n1−1, n2, t)

+Btu(n1, n2, t−1) +Bvu(n1, n2−1, t) +Bhu(n1−1, n2, t)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t) (2.2)

where n1 ∈ Z, n2 ∈ Z and t ∈ Z. Let the input vector u ∈ Rp and the output vector

y ∈ Rq . If the state vector x ∈ Rn, C ∈ Rq×n, D ∈ Rq×p, At ∈ Rn×n, Av ∈ Rn×n,

Ah ∈ Rn×n, Bh ∈ Rn×p, Bv ∈ Rn×p and Bt ∈ Rn×p.

Realization of 2-D causal input-output transfer functions in the FM state space

model is discussed in [Bisiacco et al., 1989; Fornasini and Marchesini, 1978; Xu et al.,

2005, 2007]. Algorithms to realize a given causal 3-D transfer function in the FM

model are discussed in [Sumanasena and Bauer, 2011b, 2010b].

2.2.2 Implementation in a Sensor Network

The FM model can be implemented in a sensor network employing a similar ap-

proach to the implementation of the GR model. The following operations are performed

by each node (n1, n2) at the time slot t.

• Receive state vectors x(n1−1, n2, t) and x(n1, n2−1, t) and input vectors u(n1−

20

1, n2, t) and u(n1, n2 − 1, t).

• Use equation (2.2) to compute x(n1, n2, t).

• Transmit x(n1, n2, t) and u(n1, n2, t)

• Use equation (2.2) to compute the output.

For a sensor network of size N1 ×N2, 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1. Let t ∈

Z
+ for convenience. Figure 2.2 illustrates the operation of nodes and communication

of state vectors among the nodes.

Figure 2.2. Communication of state vectors between nodes in the network for
the FM model based implementation

21

2.3 Realization of Non-causal Systems

Systems realizable in models (2.1) and (2.2) are necessarily first octant causal. A

non causal impulse response in the spatial plane can be decomposed into four quarter

plane causal components. In [Lele and Mendel, 1987; Ntogramatzidis et al., 2007] a

non causal 2-D impulse response is decomposed into four quarter plane causal impulse

responses. Each component is realized in a generalized FM model Kaczorek [1988] in

Ntogramatzidis et al. [2007]. The four local state space realizations are then combined

to a single local state space model. Each quarter plane causal impulse response is

realized by a GR model in [Lele and Mendel, 1987].

In a sensor network implementation, each component of the impulse response can

be realized using the above models by appropriately selecting the origin and the di-

rection of propagation. Outputs of the four quarter plane causal systems are summed

to obtain the final output. Alternatively if the transfer function to be realized can be

represented as a concatenation of quarter plane causal transfer functions, a series com-

bination of quarter plane causal systems can be used to obtain the final output. Without

loss of generality it is assumed in the rest of this work that the process implemented is

first octant causal.

2.4 Real-time Implementation Issues

In a GR model based implementation state vector components xh(n1+1, n2, t) and

xv(n1, n2 + 1, t) of nodes (n1 + 1, n2) and (n1, n2 + 1) are evaluated at node (n1, n2)

at time slot t. These components are required at time slot t by the nodes (n1 + 1, n2)

and (n1, n2 + 1) to perform their computations. In a FM model based implementation

the state vector x(n1, n2, t) is evaluated at the node (n1, n2) at time slot t. It is required

by nodes (n1 + 1, n2) and (n1, n2 + 1) at time slot t to perform their computations. A

22

real-time implementation using either model thus requires data transmission with zero

time delay, which is impossible. There are two options to work around this problem.

One is to allow a time lag between nodes which means the system is not real-time.

This could be a good solution for small sized sensor networks. The other option is to

modify the system matrices such that zero time delay data transmission is not required

in the spatial dimensions to perform computations. This would limit the type of systems

that can be implemented. These two options are discussed next.

2.4.1 Delayed Response Implementation

The problem is that nodes (n1 + 1, n2) and (n1, n2 + 1) do not receive state vector

components xh(n1 + 1, n2, t) and xv(n1, n2 + 1, t) at time slot t to perform their com-

putations at time slot t. In a FM model based implementation nodes (n1 + 1, n2) and

(n1, n2 +1) do not receive the state vector x(n1, n2, t) at time slot t. A simple solution

is to allow those nodes to do the computations they should do at time slot t at time slot

t+1 instead. This means for each distance unit in either spatial direction there is a time

lag of one time slot (one distance unit is equivalent to the distance between two nodes).

This time lag could be significant in a moderate sized sensor network.

The time lag can be reduced significantly if the computation front of nodes propa-

gates more than one distance unit in a sampling interval [t, t + 1]. Let the computation

front propagate d distance units along either spatial axis in one time slot. Let the equiv-

alence class Ek of nodes be defined by:

Ek = {(n1, n2) : ⌊
n1 + n2

d
⌋ = k − 1}

where ⌊ ⌋ is the floor function. For example, consider the case where d = 3.

23

Figure 2.3. Equivalence classes of nodes

Equivalence classes of nodes for this case are shown in figure 2.3. Let computations

start from node (0, 0) at the first time slot. In the first time slot nodes in E1 perform

their computations and transmit the state vectors. At time slot 2 nodes in E2 perform

computations they should have done at time slot 1. At time slot 3 nodes in E3 perform

computations they should have done at time slot 1. In general, nodes in Ek do their first

computation on the k-th time slot and the t-th computation on the (k − 1 + t) th time

slot. So the node (n1, n2) does its t-th computation on the (⌊n1+n2

d
⌋ + t) th time slot.

For a sensor network of size N1 ×N2 the maximum delay is ⌊N1+N2−2
d

⌋.

2.4.2 Real-Time Implementation

2.4.2.1 Using the GR Model

If the matrices A1, A2, A4 and A5 in (2.1) are zero, node (n1, n2) requires state

vector components xv(n1, n2, t) and xh(n1, n2, t) only to compute xt(n1, n2, t + 1).

Since the state vector component xt(n1, n2, t+1) is used only by the node (n1, n2) the

node can compute it at time slot t+1. Thus the node (n1, n2) does not require state vec-

24

tor components xh(n1, n2, t) and xv(n1, n2, t) at time slot t to perform computations.

So there is no need for data communication with zero time delay. The system (2.1)

becomes:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













0 0 A3

0 0 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (2.3)

This modification to system matrix A makes a real-time implementation possible, but

limits the impulse responses the system could have.

2.4.2.2 Using the FM Model

Let:

AvAv = AvAh = AhAv = AhAh = 0

AvBv = AvBh = AhBv = AhBh = 0 (2.4)

in (2.2). Then node (n1, n2) can transmit Atx(n1, n2, t−1) +Btu(n1, n2, t−1) at time

slot t instead of x(n1, n2, t) which can’t be computed with the information it has at

time slot t. This doesn’t affect computations at nodes (n1 + 1, n2) and (n1, n2 + 1) due

to the condition (2.4). Node (n1, n2) can compute state vector x(n1, n2, t) and output

vector y(n1, n2, t) at time slot t + 1, when the necessary information is available. The

constraint (2.4) on system matrices restricts the impulse responses the system could

have.

25

2.5 Power and Energy Considerations

Implementation of the proposed scheme requires sensor nodes to transmit and re-

ceive data periodically. Receiver circuitry of current sensor nodes consumes a consid-

erable amount of power, Wang et al. [2006], making it inefficient to keep it on all the

time. Energy efficient implementation thus requires nodes to operate in synchroniza-

tion with their neighbors. Synchronization can be achieved through synchronization

schemes such as Li and Rus [2006]. This enables sensor nodes to operate on sleep-

wake cycles resulting in significant energy savings.

State vectors of different nodes in a neighborhood may share common state vec-

tor elements albeit not in the same location of the state vector. This opens up the

possibility of transmitting state vectors over multiple hops. It has been shown that

transmission over multiple hops can reduce the energy consumption when 2-D sys-

tems are implemented in the FM model Sumanasena and Bauer [2008]. Realization

algorithm proposed in Xu et al. [2005] was used to realize the 2-D transfer function.

Since the repetition of state vector elements among nodes depend on the realization

algorithm used, the merits of multi-hop data transmission depend on the realization

algorithm used. Models derived in this chapter, for the distributed implementation of

m-D systems, remain valid regardless of the number of hops over which information is

transmitted.

2.6 Special Topologies

2.6.1 Infinite Grids

Though sensor networks are necessarily of finite size, the case in which the spatial

extent of the system is infinite is of theoretical interest. Models derived in this chapter

remain valid except that spatial variables can assume any integer value. In general,

26

conditions established for stability of finite grids are not applicable for infinite grids.

2.6.2 Cyclic Sensor Networks

In applications such as perimeter security sensors may be deployed in a ring encir-

cling the target to be protected. A sensor network in which sensors are placed in a ring

is called a cyclic sensor network. A system evolving on temporal and spatial dimen-

sions in this setting can be considered a 2-D system. Spatial dimension of the system

has a finite extent and is cyclic. Conventional definitions of linearity and spatial and

temporal invariance can be extended to such systems.

Systems evolving on cyclic network dimensions have not been studied to the best

of the author’s knowledge. FM and GR models for 2-D systems with cyclic spatial di-

mension are proposed below. It is not understood yet, which types of transfer functions

or impulse responses are realizable in the proposed models.

Let the sensor network has N nodes deployed on a ring. Arithmetic operator ⊕ :

[0 N − 1]× [0 N − 1] → [0 N − 1] is defined by.

i⊕ j =











i+ j i+ j ≤ N − 1

i+ j −N else

2.6.2.1 GR Model

The GR model for the 2-D system is given by:







xs(n1 ⊕ 1, t)

xt(n1, t+ 1)






=







A1 A2

A3 A4













xs(n1, t)

xt(n1, t)






+







B1

B2






u(n1, t)

y(n1, t) =Cx(n1, t) +Du(n1, t) (2.5)

27

where xs(n1, t) ∈ Ra and xt(n1, t) ∈ Rc are the spatial and temporal state vector

components respectively. Vectors x(n1, t) = (xsT (n1, t),x
tT (n1, t))

T , u(n1, t) ∈ Rp,

and y(n1, t) ∈ Rq are the state, input and output vectors respectively. Matrices A1, A2,

A3, A4, B1, B2, C and D are of appropriate dimensions.

2.6.2.2 FM Model

The FM model for the 2-D system is given by:

x(n1 ⊕ 1, t) = Atx(n1 ⊕ 1, t−1) +Ahx(n1, t) +Btu(n1 ⊕ 1, t−1) +Bhu(n1, t)

y(n1, t) = Cx(n1, t) +Du(n1, t). (2.6)

where x(n1, t) ∈ Rn, u(n1, t) ∈ Rp, and y(n1, t) ∈ Rq . Matrices At, Ah, Bt, Bh, C

and D are of appropriate dimensions.

28

CHAPTER 3

REALIZABILITY IN REAL-TIME

Real-time implementation demands system matrices of GR and FM models to sat-

isfy conditions described in chapter 2. Not all causal rational transfer functions are

realizable in the GR model (2.3) or the FM model (2.2) under the constraint (2.4). It

is important to address the following issues.

• What are the transfer functions realizable in real-time using the GR and FM mod-

els?

• Given a realizable transfer function how to derive the GR or FM state space model

of the desired form?

Since non-causal systems can be implemented as a combination of quarter plane causal

systems, the solution to above issues for the case of causal systems can be generalized

to non-causal systems.

3.1 Realizability in the GR Model

A necessary and sufficient condition, for a 3-D rational transfer matrix to be real-

izable in a GR model of the form (2.3), is established in this section. A realization

algorithm to derive the GR model of the from (2.3), given an admissible transfer ma-

trix, is presented as part of the proof.

29

3.1.1 Proper Transfer Matrices

Right matrix fraction description [Bose, 2003] is used to represent rational transfer

matrices in this paper. Furthermore, let the Z-transform of a signal s(n1, n2, t) denoted

by Z[s(n1, n2, t)] be defined by:

Z[s(n1, n2, t)] =

∞
∑

i=−∞

∞
∑

j=−∞

∞
∑

k=−∞

s(i, j, k)z−i
1 z−j

2 z−k
t

Theorem 3.1.1 Let an input-output transfer matrix be given by:

H(z1, z2, zt) = NR(z1, z2, zt)D
−1
R (z1, z2, zt) (3.1)

where matrices NR(z1, z2, zt) and DR(z1, z2, zt) are of size q×p and p×p respectively.

Let NR(l, m) and DR(l, m) denote (l, m)th elements of matrices NR(z1, z2, zt) and

DR(z1, z2, zt) respectively1. Let:

NR(l, m) =

NR1
∑

i=0

NR2
∑

j=0

NRt
∑

k=0

nlm
ijkz

−i
1 z−j

2 z−k
t

DR(l, m) =

DR1
∑

i=0

DR2
∑

i=0

DRt
∑

i=0

dlmijkz
−i
1 z−j

2 z−k
t

where NR1, NR2 and NRt are the degrees of the polynomial matrix NR(z1, z2, zt) with

respect to variables z1, z2 and zt respectively. Furthermore DR1, DR2 and DRt are the

degrees of the polynomial matrix DR(z1, z2, zt) with respect to variables z1, z2 and zt

respectively. The transfer matrix (3.1) can be realized in a GR model of the form (2.3)

1In order to make the notation concise the (l,m)-th element of a polynomial matrix P (z1, z2, zt) is
denoted by P (l,m) in this work.

30

if and only if the conditions (3.2) and (3.3) are satisfied.

nlm
ijk = 0 for i+ j > k + 1 (3.2)

dlmijk = 0 for i+ j ≥ k + 1 (3.3)

Proof Necessity is proved by showing that, if a transfer matrix is realizable in the

GR model (2.3), it can be represented in the form (3.1) with conditions (3.2) and

(3.3) satisfied. In order to prove sufficiency, a realization algorithm, which realizes

the transfer matrix (3.1) in a GR model of the form (2.3), provided conditions (3.2)

and (3.3) are satisfied, is presented2. The proposed algorithm is a modification of the

algorithm given in Fan et al. [2006].

To prove the necessity let the input-output transfer matrix (3.1) be realized by the

GR model (2.3). Let Xk(z1, z2, zt) = Z[xk(n1, n2, t)] for k ∈ {h, v, t},

U(z1, z2, zt) = Z[u(n1, n2, t)], Y (z1, z2, zt) = Z[y(n1, n2, t)], Z1 = z1Ia
3, Z2 =

z2Ib and Zt = ztIc. Let Z = diag{z1Ia, z2Ib, ztIc}. We have:

H(z1, z2, zt) = CZ−1(Ia+b+c −AZ−1)−1B +D

Elements of the transfer matrix H(z1, z2, zt) are rational functions. The (l, m) − th

element of H(z1, z2, zt) is denoted by H(l, m).

H(l, m) =

∑∑∑

almijkz
−i
1 z−j

2 z−k
t

1−∑∑∑

blmijkz
−i
1 z−j

2 z−k
t

2It can be shown by counterexamples, that none of the 3-D realization algorithms presented in
[Fan et al., 2006; Kanellakis et al., 1989; Manikopoulos and Antoniou, 1990; Theodorou and Tzafestas,
1984] realizes a transfer matrix of the form (3.1) with conditions (3.2) and (3.3) satisfied in a GR model
of the form (2.3), in general

3Identity matrix of order n is denoted by In

31

xh(n1 + 1, n2, t) = A3x
t(n1, n2, t) +B1u(n1, n2, t)

Z1X
h(z1, z2, zt) = A3X

t(z1, z2, zt) +B1U(z1, z2, zt)

Xh(z1, z2, zt) = z−1
1 A3X

t(z1, z2, zt) + z−1
1 B1U (z1, z2, zt) (3.4)

Similarly:

Xv(z1, z2, zt) = z−1
2 A6X

t(z1, z2, zt) + z−1
2 B2U(z1, z2, zt) (3.5)

X t(z1, z2, zt) = z−1
t A7X

h(z1, z2, zt) + z−1
t A8X

v(z1, z2, zt)

+ z−1
t A9X

t(z1, z2, zt) + z−1
t B3U(z1, z2, zt)

X t(z1, z2, zt) = (Ic − z−1
t z−1

1 A7A3 − z−1
t z−1

2 A8A6 − z−1
t A9)

−1

× (z−1
t z−1

1 A7B1 + z−1
t z−1

2 A8B2 + z−1
t B3)U(z1, z2, zt) (3.6)

Let:

U (z1, z2, zt) = [1 0...........0]T (3.7)

Then, elements of vectors Xh(z1, z2, zt), X
v(z1, z2, zt) and X t(z1, z2, zt) are rational

functions. Monomials in the RHS of the equation (3.6) result from products of mono-

mials z−1
t z−1

1 , z−1
t z−1

2 and z−1
t . Hence any monomial z−i

1 z−j
2 z−k

t on the RHS of (3.6)

satisfies i + j ≤ k. By equations (3.4) and (3.5), denominators of the elements of

Xh(z1, z2, zt) and Xv(z1, z2, zt) have monomials that conform to the same property.

Monomials in the numerators of the elements of Xh(z1, z2, zt) and Xv(z1, z2, zt) re-

sult from multiplication of monomials of X t(z1, z2, zt) by z−1
1 and z−1

2 respectively.

Therefore monomials z−i
1 z−j

2 z−k
t in numerators of the elements of Xh(z1, z2, zt) and

32

Xv(z1, z2, zt) satisfy i+ j ≤ k + 1.

Y (z1, z2, zt) = CX(z1, z2, zt) +D

Therefore, monomials z−i
1 z−j

2 z−k
t in the numerators and denominators of the elements

of Y (z1, z2, zt) satisfy i + j ≤ k + 1 and i + j ≤ k, respectively. Due to (3.7),

Y (z1, z2, zt) is equal to the first column of H(z1, z2, zt). Hence:

al1ijk = 0 for i+ j > k + 1

bl1ijk = 0 for i+ j ≥ k + 1

By choosing u(n1, n2, t) appropriately, the same argument can be used to show that:

almijk = 0 for i+ j > k + 1

blmijk = 0 for i+ j ≥ k + 1

Therefore, H(z1, z2, zt) can be represented in the form (3.1) with conditions (3.2) and

(3.3) satisfied. This completes the proof of necessity.

In order to prove the sufficiency, let the transfer matrix (3.1) satisfy the conditions

(3.2) and (3.3). The realization algorithm given below realizes the transfer matrix

in a GR model of the form (2.3). Without loss of generality it can be assumed that

NR(z1, z2, zt) = 0 and DR(z1, z2, zt) = Ip when z−1
1 = z−1

2 = z−1
t = 0. Let:

D̃R(z1, z2, zt) = Ip −DR(z1, z2, zt)

F (z1, z2, zt) =







NR(z1, z2, zt)

D̃R(z1, z2, zt)







33

Elements of NR(z1, z2, zt) and DR(z1, z2, zt) are polynomials in z−1
1 , z−1

2 and z−1
t . The

basic idea behind the algorithm is to construct a matrixΨ of size (a+b+c)×p consisting

of all the monomials required for the realization. Matrices DHT ∈ Rp×(a+b+c), NHT ∈

Rq×(a+b+c), B ∈ R(a+b+c)×p and A ∈ R(a+b+c)×(a+b+c) are constructed such that:

D̃R(z1, z2, zt) = DHTZ
−1
Ψ (3.8)

NR(z1, z2, zt) = NHTZ
−1
Ψ (3.9)

and

ΨD−1
R (z1, z2, zt) = (Ia+b+c −AZ−1)−1B (3.10)

Then:

NR(z1, z2, zt)D
−1
R (z1, z2, zt) = NHTZ

−1 ×ΨD−1
R (z1, z2, zt)

= NHTZ
−1(Ia+b+c −AZ−1)−1B

= CZ−1(Ia+b+c −AZ−1)−1B

where C = NHT . For reasons that would become obvious later, let Ψ have the follow-

34

ing structure:

Ψ = [ΨT
1 Ψ

T
2 Ψ

T
t]

T

=









































































Ψ11 · · 0

· · · ·

· · · ·

0 · · Ψ1p

Ψ21 · · 0

· · · ·

· · · ·

0 · · Ψ2p

Ψt1 · · 0

· · · ·

· · · ·

0 · · Ψtp









































































(3.11)

To construct DHT , NHT , B and A that conform to above conditions Ψ should

have the following properties.

1. Entries in the j − th column of Z−1
Ψ should contain all the monomials in the

j − th column of F (z1, z2, zt). This condition guarantees that DHT and NHT

which satisfy (3.8) and (3.9) respectively, always exist.

2. For any non-unity entry Ψ(i, j) in the j−th column of Ψ there should be another

entry Ψ(h, j) in the same column such that Ψ(i, j) = z−1
k Ψ(h, j) where k ∈

{1, 2, t}. As will be explained later this property enables the construction of A

and B such that equation (3.10) is satisfied.

35

3. There is at least one unity entry in every column of Ψ. This condition in necessi-

tated by condition 2 above.

Construct A0 ∈ R(a+b+c)×(a+b+c) such that A0(i, j) = 1 if the only non zero element

in the i − th row of Ψ, say Ψ(i, h) is equal to the (j, h) − th entry of Z−1
Ψ and

A0(i, j) = 0 otherwise. Let B ∈ R(a+b+c)×p and B(i, j) = 1 if Ψ(i, j) = 1 and

B(i, j) = 0 otherwise.

Ψ−A0Z
−1
Ψ = B

Condition 2 above guarantees that A0 and B can be constructed to satisfy the above

equation.

(Ia+b+c −A0Z
−1)Ψ = B

Let A = A0 +BDHT . Then:

BDR(z1, z2, zt) = B(1− D̃R(z1, z2, zt))

= (Ia+b+c −A0Z
−1)Ψ−BDHTZ

−1
Ψ

= (Ia+b+c −A0Z
−1 −BDHTZ

−1)Ψ

= (Ia+b+c − (A0 +BDHT)Z
−1)Ψ

= (Ia+b+c −AZ−1)Ψ

ΨD−1
R (z1, z2, zt) = (Ia+b+c −AZ−1)−1B

Vector Ψ must be constructed such that the matrix A resulting from the above pro-

cedure is in the desired form. Matrix A should be such that A(i, j) = 0 for (i, j) ∈

[1, a+b]×[1, a+b]. Matrix A would have the desired property if A0 and DHT are such

that A0(i, j) = 0 for (i, j) ∈ [1, a + b] × [1, a + b] and DHT (i, j) = 0 for j ≤ a + b.

Let Ψ = [ΨT
1 ,Ψ

T
2 ,Ψ

T
t]

T where Ψ1, Ψ2 and Ψt are of size a × p, b × p and c × p

36

respectively. For the matrix A to be in the desired form the following properties must

be satisfied by Ψ1, Ψ2 and Ψt.

4. All the monomials in the j − th column of D̃R(z1, z2, zt) should be contained in

the same column of z−1
t Ψt.

5. For every non-unity and non-zero entry Ψ1(i, j) in Ψ1 there should be a term

Ψt(h, j) in Ψt such that Ψ1(i, j) = z−1
t Ψt(h, j)

6. For every non-unity and non-zero entry Ψ2(i, j) in Ψ2 there should be a term

Ψt(h, j) in Ψt such that Ψ2(i, j) = z−1
t Ψt(h, j)

Condition 4 guarantees that DHT is in the desired form. Properties 5 and 6 enable A0

to be constructed in the desired form. The algorithm given in figure 3.1 can be used to

construct the matrix Ψ with the above properties.

Steps 2-6 of the algorithm ensure that all the monomials in F (z1, z2, zt) and

D̃R(z1, z2, zt) are contained in Z−1
Ψ and z−1

t Ψt respectively. The monomials missing

in Ψ that are needed to satisfy conditions 2, 5 and 6 are inserted in the loop starting

from step 8. Note that the monomials z−i
1 z−j

2 z−k
t in Φm for m ∈ [1, p] have the property

i+ j ≤ k+1. Hence for every monomial K inserted into Ψ1m or Ψ2m, ztK is inserted

into Ψtm. Further for every monomial K inserted into Ψtm, zkK is inserted to Ψkm,

where k ∈ {1, 2, t}. This ensures that properties 2, 5 and 6 are satisfied by Ψ1, Ψ2 and

Ψt. This completes the proof of the theorem.

37

1: for j = 1 to p do
2: Collect all the monomials z−l

1 z−m
2 z−n

t in the j − th column of NR(z1, z2, zt)
that satisfy l+m = n+1 and has at least one power of z−1

1 to Φ1j in the ascending
total degree lexicographic order 4.

3: Collect all the monomials z−l
1 z−m

2 z−n
t in the j − th column of NR(z1, z2, zt)

and not in Φ1j that satisfy l +m = n + 1 and has at least one power of z−1
2 to Φ2j

in the ascending total degree lexicographic order.
4: Collect all the other distinct monomials in the j− th column of F (z1, z2, zt) to

vector Φtj in the ascending total degree lexicographic order.
5: Φkj = zkΦkj k ∈ {1, 2, t}
6: Ψkj = Φkj k ∈ {1, 2, t}
7: Φj = [ΦT

1j Φ
T
2j Φ

T
tj]

T

8: for i = 0 to Number of elements in Φj do
9: K = Φj(i)

10: if K is an element of Φ1j or Φ2j then
11: if There is at least one power of z−1

t in K then
12: if ztK is not in Ψtj then
13: Insert ztK to Ψtj in the ascending total degree lexicographic

order.
14: end if
15: K = ztK
16: end if
17: else
18: while K 6= 1 and orderz1(K) + orderz2(K) ≤ orderzt(K)5 do
19: if There is at least one power of z−1

t in K then
20: if ztK is not in Ψtj then
21: Insert ztK to Ψtj in the ascending total degree lexicographic

order.
22: end if

Figure 3.1. Algorithm for constructing Ψ

4z−1

1
< z−1

2
< z−1

t
< z−2

1
< z−1

1
z−1

2
< z−2

2
..........

5orderz1(z
−l

1
z−m

2
z−n

t
) = l, orderz2(z

−l

1
z−m

2
z−n

t
) = m and orderzt(z

−l

1
z−m

2
z−n

t
) = n

38

23: K = ztK
24: end if
25: end while
26: end if
27: while K 6= 1 do
28: if There is at least one power of z−1

1 in K then
29: if z1K is not in Ψ1j then
30: Insert z1K to Ψ1j in the ascending total degree lexicographic

order.
31: end if
32: K = z1K
33: if There is at least one power of z−1

t in K then
34: if ztK is not in Ψtj then
35: Insert ztK to Ψtj in the ascending total degree lexicographic

order.
36: end if
37: K = ztK
38: end if
39: else
40: if There is at least one power of z−1

2 in K then
41: if z2K is not in Ψ2j then
42: Insert z2K to Ψ2j in the ascending total degree lexico-

graphic order.
43: end if
44: K = z2K
45: end if
46: if There is at least one power of z−1

t in K then
47: if ztK is not in Ψtj then
48: Insert ztK to Ψtj in the ascending total degree lexicographic

order.
49: end if
50: K = ztK
51: end if
52: end if
53: end while
54: end for
55: end for
56: Using the vectors Ψtj where k ∈ {1, 2, t} and j ∈ [1, p] construct the matrix Ψ

according to the structure given in (3.11).

Figure 3.1. continued

39

For the sake of simplicity, implications of the theorem would be discussed for the

case of single input single output systems. In this case, the right matrix fraction de-

scription of the system given by (3.1), reduces to a rational transfer function. Let the

impulse response of the system described by the transfer function (3.1) be h(n1, n2, t).

If conditions (3.2) and (3.3) are satisfied by the transfer function:

h(n1, n2, t) = 0 for n1 + n2 > t+ 1 (3.12)

Therefore an impulse response realizable in a GR model of the form (2.3) satisfies the

condition (3.12). The GR model (2.3) is implementable in a grid sensor network in

which information is conveyed over a single hop in one time slot. The effect of an input

at a node propagates over a single hop in a time slot. Therefore the result is intuitive.

Let a first octant causal impulse response satisfying the condition (3.12) have a rational

Z-transform H(z1, z2, zt). It can be easily shown that it satisfies the conditions (3.2)

and (3.3). Hence any first octant causal impulse response satisfying (3.12) with a

rational Z-transform is realizable in the GR model (2.3).

3.1.2 Non Proper Transfer Matrices

Systems described by the GR model (2.3) are necessarily first octant causal. Sys-

tems causal in any of the four quadrants of the spatial plane can be realized as:













xh(n1 + α, n2, t)

xv(n1, n2 + β, t)

xt(n1, n2, t+ 1)













=













0 0 A3

0 0 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (3.13)

40

by appropriately choosing α and β. Here (α, β) ∈ {−1, 1} × {−1, 1}. For example

when (α, β) = (−1,−1) the region of support of the impulse response lies in the 3rd

quadrant of the spatial plane. The following lemma which is a generalization of the

Theorem 3.1.1 can be used to derive the final result of this section.

Lemma 3.1.1 Let an input-output transfer matrix be given by the right matrix fraction

description:

Hαβ(z1, z2, zt) = Nαβ(z1, z2, zt)D
−1
αβ(z1, z2, zt) (3.14)

where (α, β) ∈ {−1, 1}×{−1, 1} and where matricesNαβ(z1, z2, zt) andDαβ(z1, z2, zt)

are of size q×p and p×p respectively. Let (l, m)−th elements of matricesNαβ(z1, z2, zt)

and Dαβ(z1, z2, zt) be denoted by Nαβ(l, m) and Dαβ(l, m) respectively. Let:

Nαβ(l, m) =

Nαβ1
∑

i=0

Nαβ2
∑

j=0

Nαβt
∑

k=0

nlm
ijk(αβ)z

−αi
1 z−βj

2 z−k
t

Dαβ(l, m) =

Dαβ1
∑

i=0

Dαβ2
∑

j=0

Dαβt
∑

k=0

dlmijk(αβ)z
−αi
1 z−βj

2 z−k
t

where Nαβ1, Nαβ2 and Nαβt are the degrees of the polynomial matrix Nαβ(z1, z2, zt)

with respect to variables z1, z2 and zt respectively. Furthermore Dαβ1, Dαβ2 and Dαβt

are the degrees of the polynomial matrix Dαβ(z1, z2, zt) with respect to variables z1, z2

and zt respectively. The transfer matrix (3.14) can be realized in a GR model of the

form (3.13) if and only if the conditions (3.15) and (3.16) are satisfied.

nlm
ijk(αβ) = 0 for i+ j > k + 1 (3.15)

dlmijk(αβ) = 0 for i+ j ≥ k + 1 (3.16)

Proof For the case of (α, β) = (1, 1) the lemma is a restatement of Theorem 3.1.1.

41

For other cases it can be proven using an identical approach to the proof of Theorem

3.1.1.

A parallel combination of systems causal in each quadrant can be used to realize

non causal systems [Lele and Mendel, 1987].

Theorem 3.1.2 A transfer matrix H(z1, z2, zt) can be realized as a parallel combina-

tion of GR models of the form (3.13) if and only if it can be expressed as:

H(z1, z2, zt) =
∑

(α,β)∈{−1,1}×{−1,1}

Nαβ(z1, z2, zt)D
−1
αβ(z1, z2, zt) (3.17)

where elements of matrices Nαβ(z1, z2, zt) and Dαβ(z1, z2, zt) are polynomials of z−α
1 ,

z−β
2 and z−1

t satisfying the following conditions: If the (l, m)− th elements of

Nαβ(z1, z2, zt) and Dαβ(z1, z2, zt) are given by:

Nαβ(l, m) =

Nαβ1
∑

i=0

Nαβ2
∑

j=0

Nαβt
∑

k=0

nlm
ijk(αβ)z

−iα
1 z−jβ

2 z−k
t

Dαβ(l, m) =

Dαβ1
∑

i=0

Dαβ1
∑

j=0

Dαβt
∑

k=0

dlmijk(αβ)z
−iα
1 z−jβ

2 z−k
t

then

nlm
ijk(αβ) = 0 for i+ j > k + 1 (3.18)

dlmijk(αβ) = 0 for i+ j ≥ k + 1 (3.19)

Proof The result trivially follows from Lemma 3.1.1.

42

3.1.3 Example

The realization algorithm discussed in the above section will be illustrated by an

example in this section. Let the transfer matrix to be realized be as follows:

H(z1, z2, zt) =







a11100z
−1
1 + a11010z

−1
2 + a11101z

−1
1 z−1

t a12010z
−1
2

a21001z
−1
t a22101z

−1
1 z−1

t







×







1− b11011z
−1
2 z−1

t − b11001z
−1
t − b11112z

−1
1 z−1

2 z−2
t −b12001z

−1
t

−b21011z
−1
2 z−1

t 1− b22101z
−1
1 z−1

t







−1

(3.20)

According to Theorem 3.1.1, the above transfer matrix is realizable in a GR model of

the form (2.3).

F (z1, z2, zt) =



















a11100z
−1
1 + a11010z

−1
2 + a11101z

−1
1 z−1

t a12010z
−1
2

a21001z
−1
t a22101z

−1
1 z−1

t

b11011z
−1
2 z−1

t + b11001z
−1
t + b11112z

−1
1 z−1

2 z−2
t b12001z

−1
t

b21011z
−1
2 z−1

t b22101z
−1
1 z−1

t



















Since the system has two inputs, the loop starting in step 1 of the algorithm given in

figure 3.1 runs twice. The sequence of operations in the first iteration is given in table

3.1.

43

TABLE 3.1:

THE SEQUENCE OF OPERATIONS IN THE FIRST ITERATION OF THE
ALGORITHM

step operation

2 Φ11 = [z−1
1]T

3 Φ21 = [z−1
2]T

4 Φt1 = [z−1
t z−1

1 z−1
t z−1

2 z−1
t z−1

1 z−1
2 z−2

t]T

5 Φ11 =

[

1

]

Φ21 =

[

1

]

Φt1 =



















1

z−1
1

z−1
2

z−1
1 z−1

2 z−1
t



















6 Ψ11 =

[

1

]

Ψ21 =

[

1

]

Ψt1 =



















1

z−1
1

z−1
2

z−1
1 z−1

2 z−1
t



















7 Φ1 = [1 1 1 z−1
1 z−1

2 z−1
1 z−1

2 z−1
t]T

8 i = 1 This is the first iteration of the for loop

starting at step 8.

9 K = 1 No elements are inserted to Ψ11, Ψ21 or

Ψt1 in this iteration.

8 i = 2 This is the second iteration of the for loop

starting at step 8.

9 K = 1 No elements are inserted to Ψ11, Ψ21 or

Ψt1 in this iteration.

8 i = 3 This is the third iteration of the for loop

44

TABLE 3.1 continued

starting at step 8.

9 K = 1 No elements are inserted to Ψ11, Ψ21 or

Ψt1 in this iteration.

8 i = 4 This is the fourth iteration of the for loop

starting at step 8.

9 K = z−1
1

10 K is not an element of Φ11 or Φ21

18 orderz1(z
−1
1) + orderz2(z

−1
1) > orderzt(z

−1
1)

27 K 6= 1

28 There is one power of z−1
1 in K

29 z1K = 1 is in Ψ11

32 K = z1K Since K = 1 the iteration ends

8 i = 5 This is the fifth iteration of the for loop

starting at step 8.

9 K = z−1
2

10 K is not an element of Φ11 or Φ21

18 orderz1(z
−1
1) + orderz2(z

−1
1) > orderzt(z

−1
1)

27 K 6= 1

28 There is no power of z−1
1 in K

40 There is one power of z−1
2 in K

41 z2K = 1 is in Ψ21

44 K = z2K Since K = 1 the iteration ends

8 i = 6 This is the sixth iteration of the for loop

starting at step 8.

45

TABLE 3.1 continued

9 K = z−1
1 z−1

2 z−1
t

10 K is not an element of Φ11 or Φ21

18 orderz1(z
−1
1) + orderz2(z

−1
1) > orderzt(z

−1
1)

27 K 6= 1

28 There is one power of z−1
1 in K

29 z1K = z−1
2 z−1

t is not in Ψ11

30 Insert z−1
2 z−1

t into Ψ11

32 K = z1K Now K = z−1
2 z−1

t

33 There is one power of z−1
t in K

34 ztK = z−1
2 is in Ψt1

37 K = ztK Now K = z−1
2

27 K 6= 1

28 There is no power of z−1
1 in K

40 There is one power of z−1
2 in K

41 z2K = 1 is in Ψ21

44 K = z2K Since K = 1 the iteration ends

46

At the end of the first iteration of the loop starting at step 1 of the algorithm we have

Ψ11, Ψ21 and Ψt1. Vectors Ψ12, Ψ22 and Ψt2 can be derived in the second iteration

which is omitted for the sake of brevity. In accordance with the structure given in

(3.11), Ψ can be constructed.

Ψ =

































































1 0

z−1
2 z−1

t 0

0 1

1 0

0 1

1 0

z−1
1 0

z−1
2 0

z−1
1 z−1

2 z−1
t 0

0 1

0 z−1
1

































































Matrices DHT and NHT can be derived using (3.8) and (3.9).

DHT =







0 0 0 0 0 b11001 0 b11011 b11112 b12001 0

0 0 0 0 0 0 0 b21011 0 0 b22101







NHT =







a11100 0 0 a11010 a12010 0 a11101 0 0 0 0

0 0 0 0 0 a21001 0 0 0 0 a22101







Matrix C = NHT . Matrices A and B can be derived using the procedure given in

47

section 3.1.1.

B =







1 0 0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0







T

A =



































































0 0 0 0 0 b11001 0 b11011 b11112 b12001 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 b21011 0 0 b22101

0 0 0 0 0 b11001 0 b11011 b11112 b12001 0

0 0 0 0 0 0 0 b21011 0 0 b22101

0 0 0 0 0 b11001 0 b11011 b11112 b12001 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 b21011 0 0 b22101

0 0 1 0 0 0 0 0 0 0 0



































































In this realization xh ∈ R3, xv ∈ R2 and xt ∈ R6

3.2 Realizability in the FM Model

In this section, a necessary and sufficient condition for a 3-D rational transfer matrix

to be realizable in an FM model, that satisfies condition (2.4), is established . A real-

ization algorithm for the derivation of an FM model that satisfies the desired condition,

given an admissible transfer matrix6, is presented as part of the proof.

6A transfer matrix realizable in an FM model that satisfies condition (2.4)

48

3.2.1 Causal Transfer Matrices

Theorem 3.2.1 Let an input-output transfer matrix be given by the right matrix frac-

tion description Bose [2003]:

H(z1, z2, zt) = NR(z1, z2, zt)D
−1
R (z1, z2, zt) (3.21)

where matrices NR(z1, z2, zt) and DR(z1, z2, zt) are of size q×p and p×p respectively.

Let NR(l, m) and DR(l, m) denote (l, m)-th elements of matrices NR(z1, z2, zt) and

DR(z1, z2, zt) respectively. Let:

NR(l,m) =

NR1
∑

i=0

NR2
∑

j=0

NRt
∑

k=0

nlm
ijkz

−i
1 z

−j
2 z−k

t

DR(l,m) =

DR1
∑

i=0

DR2
∑

j=0

DRt
∑

k=0

dlmijkz
−i
1 z

−j
2 z−k

t

where NR1, NR2 and NRt are the degrees of the polynomial matrix NR(z1, z2, zt) with

respect to variables z−1
1 , z−1

2 and z−1
t respectively. Furthermore DR1, DR2 and DRt are

the degrees of the polynomial matrix DR(z1, z2, zt) with respect to variables z−1
1 , z−1

2

and z−1
t respectively. The transfer matrix (3.21) can be realized in an FM model (2.2)

satisfying condition (2.4), if and only if the conditions (3.22) and (3.23) are satisfied.

nlm
ijk = 0 for i+ j > k + 1 (3.22)

dlmijk = 0 for i+ j ≥ k + 1 (3.23)

Proof Necessity is proved by showing that, if a transfer matrix is realizable in an FM

model (2.2) satisfying condition (2.4), it can be represented in the form (3.21) with

conditions (3.22) and (3.23) satisfied. In order to prove sufficiency, a realization

algorithm which realizes a transfer matrix (3.21) that satisfies conditions (3.22) and

49

(3.23), in an FM model satisfying condition (2.4), is presented. The proposed algorithm

is a modification of the algorithm given in Cheng et al. [2010]; Xu et al. [2005, 2007].

To prove the necessity, let the input-output transfer matrix (3.21) be realized by the

FM model (2.2) with condition (2.4) satisfied. From (2.2) we have:

x(n1−1, n2, t)=Ahx(n1−2, n2, t) +Avx(n1−1, n2−1, t) +Atx(n1−1, n2, t−1)

+Bhu(n1−2, n2, t) +Bvu(n1−1, n2−1, t) +Btu(n1−1, n2, t−1)

Due to condition (2.4):

Ahx(n1 − 1, n2, t) = AhAtx(n1 − 1, n2, t− 1) +AhBtu(n1 − 1, n2, t− 1)

AhX(z1, z2, zt)z
−1
1 = AhAtX(z1, z2, zt)z

−1
1 z−1

t +AhBtU(z1, z2, zt)z
−1
1 z−1

t

(3.24)

Similarly:

AvX(z1, z2, zt)z
−1
2 = AvAtX(z1, z2, zt)z

−1
2 z−1

t +AvBtU(z1, z2, zt)z
−1
2 z−1

t (3.25)

X(z1, z2, zt) = AhX(z1, z2, zt)z
−1
1 +AvX(z1, z2, zt)z

−1
2 +AtX(z1, z2, zt)z

−1
t

+BhU(z1, z2, zt)z
−1
1 +BvU(z1, z2, zt)z

−1
2 +BtU(z1, z2, zt)z

−1
t

Y (z1, z2, zt) = CX(z1, z2, zt) +DU(z1, z2, zt) (3.26)

50

By substituting from (3.24) and (3.25) in (3.26), we have:

H(z1, z2, zt) = [C(In −AhAtz
−1
1 z−1

t −AvAtz
−1
2 z−1

t −Atzt)
−1

× (Bhz
−1
1 +Bvz

−1
2 +Btz

−1
t +AhBtz

−1
1 z−1

t +AvBtz
−1
2 z−1

t)] +D

Elements of the transfer matrix H(z1, z2, zt) are rational functions. The (l, m)-th ele-

ment of H(z1, z2, zt) is denoted by H(l, m).

H(l, m) =

∑∑∑

almijkz
−i
1 z−j

2 z−k
t

1−∑∑∑

blmijkz
−i
1 z−j

2 z−k
t

Assume

U(z1, z2, zt) = [1 0........0]T (3.27)

Y (z1, z2, zt) = H(z1, z2, zt)U(z1, z2, zt)

Monomials in the denominators of the elements of Y (z1, z2, zt) result from products of

monomials z−1
t , z−1

2 z−1
t and z−1

1 z−1
t . Therefore monomials z−i

1 z−j
2 z−k

t in the denomina-

tors of the elements of Y (z1, z2, zt) satisfy i+ j ≤ k. Monomials in the numerators of

the elements of Y (z1, z2, zt) result from products of monomials z−1
t , z−1

1 , z−1
2 , z−1

2 z−1
t

and z−1
1 z−1

t . Therefore monomials z−i
1 z−j

2 z−k
t in the numerators of the elements of

Y (z1, z2, zt) satisfy i + j ≤ k + 1. Due to (3.27), Y (z1, z2, zt) is equal to the first

column of H(z1, z2, zt). Hence:

al1ijk = 0 for i+ j > k + 1

bl1ijk = 0 for i+ j ≥ k + 1

51

Select u(n1, n2, t) such that the m-th element in the vector U(z1, z2, zt) is unity and

all other elements are zero. Then the same argument can be used to show that:

almijk = 0 for i+ j > k + 1

blmijk = 0 for i+ j ≥ k + 1

Therefore, H(z1, z2, zt) can be represented in the form (3.21) while satisfying condi-

tions (3.22) and (3.23). This completes the proof of necessity.

In order to prove sufficiency, let the transfer matrix (3.21) satisfy conditions (3.22)

and (3.23). The realization algorithm given below realizes the transfer matrix (3.21)

in the FM model (2.2) while satisfying condition (2.4). Without loss of generality it

can be assumed that NR(z1, z2, zt) = 0 and DR(z1, z2, zt) = Ip when z−1
1 = z−1

2 =

z−1
t = 0. Let D̃R(z1, z2, zt) = Ip −DR(z1, z2, zt) and:

F (z1, z2, zt) =







NR(z1, z2, zt)

D̃R(z1, z2, zt)







The basic idea behind the algorithm is to construct a matrix Ψ of size n× p containing

all the monomials required for the realization. Matrix Ψ is of the following form:

Ψ = diag{Ψ1,Ψ2.......Ψp}

where each Ψl for l ∈ {1, 2,p} is a column vector of size nl × 1 whose elements are

monomials of the form z−i
1 z−j

2 z−k
t where i, j and k are non-negative integers. Matrices

DHT ∈ Rp×n, NHT ∈ Rq×n, Ah ∈ Rn×n, Av ∈ Rn×n, At ∈ Rn×n, Bh ∈ Rn×p,

52

Bv ∈ Rn×p and Bt ∈ Rn×p are constructed such that:

D̃R(z1, z2, zt) = DHTΨ (3.28)

N (z1, z2, zt) = NHTΨ (3.29)

Bvz
−1
1 +Bvz

−1
2 +Btz

−1
t = (In −Ahz

−1
1 −Avz

−1
2 −Atz

−1
t)×ΨD−1

R (z1, z2, zt)

(3.30)

Then:

NR(z1, z2, zt)D
−1
R (z1, z2, zt) = NHTΨD−1

R (z1, z2, zt)

= NHT (In−Ahz
−1
1 −Avz

−1
2 −Atz

−1
t)−1(Bhz

−1
1 +Bvz

−1
2 +Btz

−1
t)

= C(In−Ahz
−1
1 −Avz

−1
2 −Atz

−1
t)−1(Bhz

−1
1 +Bvz

−1
2 +Btz

−1
t)

where C = NHT .

In order to construct matrices DHT , NHT , Ah, Av, At, Bh, Bv and Bt that satisfy

the above properties, Ψ should have the following properties.

1. Entries in Ψj where j ∈ {1, 2...p} should contain all the monomials in the j-th

column of F (z1, z2, zt). This condition guarantees that DHT and NHT always

exist and satisfy conditions (3.28) and (3.29) respectively.

2. For every entry in Ψj say Ψj(i) which is not z1, z2 or zt there should be another

element in Ψj say Ψj(h) such that Ψj(i) = z−1
k Ψj(h), where k ∈ {1, 2, t}. As

will be explained later this condition enables the construction of matrices Ah,

Av, At, Bv, Bv and Bt such that equation (3.30) is satisfied.

3. Vectors Ψj where j ∈ {1, 2...p} should contain at least one of the terms z−1
1 , z−1

2

53

and z−1
t . This is necessitated by condition 2 above.

For l ∈ {1, 2...p}, matrices Al
h ∈ R

nl×nl , Al
v ∈ R

nl×nl , Al
t ∈ R

nl×nl , Bl
h ∈ R

nl×1,

Bl
v ∈ Rnl×1 and Bl

t ∈ Rnl×1 are constructed as follows.

I For i ∈ {1, 2...nl}, Al
t(i, j) = 1 if ∃ j ∈ {1, 2, ...nl} such that Ψl(i) = z−1

t Ψl(j).

Otherwise Al
t(i, j) = 0.

II For i ∈ {1, 2...nl}, Al
v(i, j) = 1 if Al

t(i, k) = 0 for ∀ k ∈ {1, 2...nl} and ∃

j ∈ {1, 2, ...nl} such that Ψl(i) = z−1
2 Ψl(j). Otherwise Al

v(i, j) = 0 .

III For i ∈ {1, 2...nl}, Al
h(i, j) = 1 if Al

t(i, k) = 0 and Al
v(i, k) = 0 for ∀

k ∈ {1, 2...nl} and ∃ j ∈ {1, 2, ...nl} such that Ψl(i) = z−1
1 Ψl(j). Otherwise

Al
h(i, j) = 0 .

IV Bl
t(i) = 1 if Ψl(i) = z−1

t and Bl
t(i) = 0 otherwise.

V Bl
v(i) = 1 if Ψl(i) = z−1

2 and Bl
v(i) = 0 otherwise.

VI Bl
h(i) = 1 if Ψl(i) = z−1

1 and Bl
h(i) = 0 otherwise.

Let for k ∈ {h, v, t}:

VII Āk = diag{A1
k,A

2
k, ...,A

p
k}

VIII Bk = diag{B1
k,B

2
k, ...,B

p
k}

It can be easily seen that:

(In − Āhz
−1
1 − Āvz

−1
2 − Ātz

−1
t)Ψ = Bhz

−1
1 +Bvz

−1
2 +Btz

−1
t (3.31)

54

Let

Ah =Āh +BhDHT

Av =Āv +BvDHT

At =Āt +BtDHT (3.32)

{In−Ahz
−1
1 −Avz

−1
2 −Atz

−1
t }Ψ = {In − Āhz

−1
1 − Āvz

−1
2 − Ātz

−1
t }Ψ

− {BhDHT z
−1
1 +BvDHT z

−1
2 +BtDHT z

−1
t }Ψ

= Bhz
−1
1 +Bvz

−1
2 +Btz

−1
t

− (Bhz
−1
1 +Bvz

−1
2 +Btz

−1
t)D̃R(z1, z2, zt)

= (Bhz
−1
1 +Bvz

−1
2 +Btz

−1
t)(Ip−D̃R(z1, z2, zt))

= (Bhz
−1
1 +Bvz

−1
2 +Btz

−1
t)DR(z1, z2, zt)

Matrices Ah, Av, At, Bh, Bv and Bt satisfy condition (3.30). Therefore matrices Ah,

Av, At, Bh, Bv, Bt and C realize the transfer matrix (3.21). In addition to realizing

the transfer matrix (3.21), all system matrices are required to satisfy condition (2.4).

Let Ψ(i, j) = z−1
1 . There is no monomial z−1

1 in any of the polynomial elements of

DR(z1, z2, zt) due to (3.23). Therefore DHT (h, i) = 0, ∀ h ∈ {1, 2, ..., p}. Hence:

DHTBh = 0 (3.33)

Similarly:

DHTBv = 0 (3.34)

55

Let Ψ be constructed such that, it doesn’t contain monomials z−2
1 , z−1

1 z−1
2 and z−2

2 . Due

to (3.22) and (3.23) monomials z−2
1 , z−1

1 z−1
2 and z−2

2 are not required by Ψ to satisfy

(3.28) and (3.29). There is no element in Ψ such that Ψ(h, j) = z−1
1 Ψ(i, j) = z−2

1 .

Therefore Āh(h, i) = 0 for ∀ h ∈ {1, 2, ..., n}. Hence:

ĀhBh = 0 (3.35)

Since there are no z−2
2 or z−1

1 z−1
2 terms in Ψ, using a similar argument:

ĀhBv = ĀvBh = ĀvBv = 0 (3.36)

Due to (3.33), (3.34), (3.35) and (3.36) we can deduce that:

AvBv = AvBh = AhBv = AhBh = 0 (3.37)

Let ∃ Ψ(h, j) such that Ψ(i, j) = z−1
t Ψ(h, j) when Ψ(i, j) is a monomial in the j-

th column of D̃R(z1, z2, zt) and Ψ(i, j) 6= z−1
t . Let DHT (l, i) 6= 0 for some l ∈

{1, 2, ..., p}. By construction, there can be one and only one non-zero element in any

row of Ψ. Let Ψ(i, j) be the non-zero element in the i-th row. Due to (3.28) Ψ(i, j)

is in the j-th column of D̃R(z1, z2, zt). If Ψ(i, j) 6= z−1
t , since At is constructed

according to steps I and VII above, At(i, h) = 1 for some h ∈ {1, 2, ..., n}. Therefore,

by construction of Āh and Āv(given by steps II and III and VII), Āh(i, k) = 0 and

Āv(i, k) = 0 for k ∈ {1, 2, ..., n}, if DHT (l, i) 6= 0 for some l ∈ {1, 2, ..., p}. Hence:

DHT Āh = DHT Āv = 0 (3.38)

Assume that, if Ψ(h, j) is not equal to z−1
1 , z−1

2 or z−1
t and satisfy Ψ(i, j) = z−1

1 Ψ(h, j)

56

or Ψ(i, j) = z−1
2 Ψ(h, j), then ∃Ψ(k, j) such thatΨ(h, j) = z−1

t Ψ(k, j). Let Āh(i, h) =

1. Then by construction of Āh, Ψ(i, j) = z−1
1 Ψ(h, j) for some j ∈ {1, 2, ..., n}.

Hence, either Āt(h, k) = 1 for some k ∈ {1, 2, ..., n} or Ψ(h, j) ∈ {z−1
1 , z−1

2 , z−1
t }.

Therefore, by construction of Āh and Āv, if Āh(i, h) = 1, then Āh(h, k) = 0 and

Āv(h, k) = 0 for k ∈ {1, 2, ..., n}. Similarly if Āv(i, h) = 1, then Āh(h, k) = 0 and

Āv(h, k) = 0 for k ∈ {1, 2, ..., n}. Therefore:

ĀhĀh = ĀhĀv = ĀvĀh = ĀvĀv = 0 (3.39)

From (3.37), (3.38) and (3.39), we can deduce that condition (3.40) is satisfied.

AvAv = AvAh = AhAv = AhAh = 0

AvBv = AvBh = AhBv = AhBh = 0 (3.40)

Therefore, in addition to conditions 1, 2 and 3, if matrix Ψ satisfies the following con-

ditions, the transfer matrix (3.21) can be realized in an FM model satisfying condition

(2.4).

4 Monomials z−2
1 , z−1

1 z−1
2 and z−2

2 are not contained in Ψ.

5 When Ψ(i, j) is a monomial in D̃R(z1, z2, zt) and Ψ(i, j) 6= z−1
t , ∃Ψ(h, j) such

that Ψ(i, j) = z−1
t Ψ(h, j) .

6 For Ψ(h, j) that is not equal to z−1
1 , z−1

2 or z−1
t and satisfies Ψ(i, j) = z−1

1 Ψ(h, j),

there exist a Ψ(k, j) such that Ψ(h, j) = z−1
t Ψ(k, j).

7 For Ψ(h, j) not equal to z−1
1 , z−1

2 or z−1
t satisfying Ψ(i, j) = z−1

2 Ψ(h, j) there

exist a Ψ(k, j) such that Ψ(h, j) = z−1
t Ψ(k, j).

57

1: for j = 1 to p do
2: Collect all the monomials in the j-th column of F (z1, z2, zt) into Φj in the

ascending total degree lexicographic order .
3: Ψj = Φj

4: for i = 1 to Number of elements in Φj do
5: K = Φj(i)
6: if orderz1(K) + orderz2(K) ≤ orderzt(K) then
7: while orderz1(K) + orderz2(K) ≤ orderzt(K) and K /∈

{z−1
1 , z−1

2 , z−1
t } do

8: if ztK is not in Ψj then
9: Insert ztK to Ψj in the ascending total degree lexicographic or-

der.
10: end if
11: K = ztK
12: end while
13: end if
14: while K /∈ {z−1

1 , z−1
2 , z−1

t } do
15: if There is at least one power of z−1

1 in K then
16: if z1K is not in Ψj then
17: Insert z1K to Ψj in the ascending total degree lexicographic

order.
18: end if
19: K = z1K
20: if There is at least one power of z−1

t in K and K 6= z−1
t then

21: if z−1
t K is not in Ψj then

22: Insert ztK to Ψj in the ascending total degree lexicographic
order.

23: end if
24: K = ztK
25: end if
26: else
27: if There is at least one power of z−1

2 in K and K 6= z−1
2 then

28: if z2K is not in Ψj then
29: Insert z2K to Ψj in the ascending total degree lexicographic

order.
30: end if
31: K = z2K
32: end if

Figure 3.2. Algorithm for constructing Ψ

58

33: if There is at least one power of z−1
t in K and K 6= z−1

t then
34: if ztK is not in Ψj then
35: Insert ztK to Ψj in the ascending total degree lexicographic

order.
36: end if
37: K = ztK
38: end if
39: end if
40: end while
41: end for
42: end for
43: Ψ = diag{Ψ1,Ψ1, ...,Ψp}

Figure 3.2. continued

59

The algorithm given in figure 3.2 can be used to construct the matrix Ψ with the

above properties.

Lines 2 and 3 of the algorithm ensure that all the monomials in F (z1, z2, zt) are

contained in Ψ. Lines 6-13 ensure that Ψ satisfies condition 5. The monomials missing

in Ψ that are needed to satisfy conditions 2, 6 and 7 are inserted in the loop starting

from line 14. Due to conditions (3.22) and (3.23), monomials z−i
1 z−j

2 z−k
t in vectors

Φl satisfy i + j ≤ k + 1 for l ∈ {1, 2, ...p}. Moreover, if monomial z−i
1 z−j

2 z−k
t satisfy

i+ j = k+1, the algorithm starts inserting monomials to Ψl by inserting z−i+1
1 z−j

2 z−k
t

or z−i
1 z−j+1

2 z−k
t . Therefore, for every monomial z1K inserted into Ψl, ztz1K is inserted

into Ψl unless z1K ∈ {z−1
1 , z−1

2 , z−1
t }. For every monomial z2K inserted to Ψl, ztz2K

is inserted to Ψl unless z2K ∈ {z−1
1 , z−1

2 , z−1
t }. Therefore conditions 6 and 7 are

satisfied by Ψ. It is easily seen that, the matrix Ψ constructed by the algorithm satisfies

condition 4 if conditions (3.22) and (3.23) hold. This completes the proof of the

theorem.

For the sake of simplicity, implications of the theorem are discussed for the case of

single-input single-output systems. In this case, the right matrix fraction description

of the system given by (3.21), reduces to a rational transfer function. Let the impulse

response of the system described by the transfer function (3.21) be h(n1, n2, t). If

conditions (3.22) and (3.23) are satisfied by the transfer function, then we have:

h(n1, n2, t) = 0 for n1 + n2 > t+ 1 (3.41)

Therefore an impulse response, realizable in an FM model (2.2) which satisfies con-

dition (2.4), satisfies the condition (3.41). The FM model (2.2) (satisfying condition

(2.4)) is implementable in a grid sensor network in which information is conveyed over

a single hop in one time slot. The effect of an input at a node propagates over a sin-

60

gle hop in a single time slot. Let a first octant causal impulse response that satisfies

the condition (3.41) have a rational Z-transform H(z1, z2, zt). It can easily be shown

that H(z1, z2, zt) satisfies conditions (3.22) and (3.23). Hence any first octant causal

impulse response satisfying (3.41) with a rational Z-transform is realizable in an FM

model (2.2) that satisfies condition (2.4).

3.2.2 Summary of the Realization Algorithm

The algorithm to derive an FM model, that satisfies condition (2.4), given the right

matrix fraction description (3.21) of an admissible transfer function, can be summa-

rized as follows.

• Compute D̃R(z1, z2, zt) using D̃R(z1, z2, zt) = Ip −DR(z1, z2, zt)

• Compute F (z1, z2, zt) using:

F (z1, z2, zt) =







NR(z1, z2, zt)

D̃R(z1, z2, zt)







• Construct the matrix Ψ using the algorithm given in figure 3.2.

• Derive the matrices NHT and DHT that satisfies (3.28) and (3.29)

• Using the steps I-VIII derive matrices Āh, Āv, Āt, Bh, Bv, and Bt

• Compute Ah, Av and At using (3.32).

• C = NHT

61

3.2.3 Non Causal Transfer Matrices

Systems described by the FM model (2.2) are necessarily first octant causal. Sys-

tems causal in any of the four quadrants of the spatial plane can be realized as:

x(n1, n2, t) = Ahx(n1−α, n2, t) +Avx(n1, n2−β, t) +Atx(n1, n2, t−1)

+Bhu(n1−α, n2, t) +Bvu(n1, n2−β, t) +Btu(n1, n2, t−1)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t) (3.42)

by appropriately choosing α and β. Here (α, β) ∈ {−1, 1}×{−1, 1}. For example

when (α, β) = (−1,−1) the region of support of the impulse response lies in the 3rd

quadrant of the spatial plane. The following lemma which is a generalization of the

Theorem 3.2.1 can be used to derive the final result of this paper.

Lemma 3.2.1 Let an input-output transfer matrix be given by the right matrix fraction

description:

Hαβ(z1, z2, zt) = Nαβ(z1, z2, zt)D
−1
αβ(z1, z2, zt) (3.43)

where (α, β) ∈ {−1, 1} × {−1, 1} and where matrices Nαβ(z1, z2, zt) and

Dαβ(z1, z2, zt) are of size q × p and p × p respectively. Let (l, m)-th elements of

matrices Nαβ(z1, z2, zt) and Dαβ(z1, z2, zt) be denoted by Nαβ(l, m) and Dαβ(l, m)

respectively. Let:

Nαβ(l,m) =

Nαβ1
∑

i=0

Nαβ2
∑

j=0

Nαβt
∑

k=0

nlm
ijk(αβ)z

−αi
1 z

−βj
2 z−k

t

Dαβ(l,m) =

Dαβ1
∑

i=0

Dαβ2
∑

j=0

Dαβt
∑

k=0

dlmijk(αβ)z
−αi
1 z

−βj
2 z−k

t

where Nαβ1, Nαβ2 and Nαβt are the degrees of the polynomial matrix Nαβ(z1, z2, zt)

with respect to variables z−1
1 , z−1

2 and z−1
t respectively. Furthermore Dαβ1, Dαβ2 and

62

Dαβt are the degrees of the polynomial matrix Dαβ(z1, z2, zt) with respect to variables

z−1
1 , z−1

2 and z−1
t respectively.

The transfer matrix (3.43) can be realized in an FM model of the form (3.42) while

satisfying condition (2.4), if and only if the conditions (3.44) and (3.45) are satisfied.

nlm
ijk(αβ) = 0 for i+ j > k + 1 (3.44)

dlmijk(αβ) = 0 for i+ j ≥ k + 1 (3.45)

Proof For the case of (α, β) = (1, 1) the lemma is a restatement of Theorem 3.2.1. For

other cases it can be proven using an identical approach to the proof of Theorem 3.2.1.

A parallel combination of systems causal in each quadrant can be used to realize

non causal systems Lele and Mendel [1987].

Theorem 3.2.2 A transfer matrix H(z1, z2, zt) can be realized as a parallel combina-

tion of FM models of the form (3.42) while satisfying condition (2.4), if and only if it

can be expressed as:

H(z1, z2, zt) =
∑

(α,β)∈{−1,1}×{−1,1}

Nαβ(z1, z2, zt)D
−1
αβ(z1, z2, zt) (3.46)

where elements of matrices Nαβ(z1, z2, zt) and Dαβ(z1, z2, zt) are polynomials of z−α
1 ,

z−β
2 and z−t satisfying the following conditions: If the (l, m)-th elements of

Nαβ(z1, z2, zt) and Dαβ(z1, z2, zt) are given by:

Nαβ(l, m) =

Nαβ1
∑

i=0

Nαβ2
∑

j=0

Nαβt
∑

k=0

nlm
ijk(αβ)z

−iα
1 z−jβ

2 z−k
t

Dαβ(l, m) =

Dαβ1
∑

i=0

Nαβ2
∑

j=0

Nαβt
∑

k=0

dlmijk(αβ)z
−iα
1 z−jβ

2 z−k
t

63

then

nlm
ijk(αβ) = 0 for i+ j > k + 1 (3.47)

dlmijk(αβ) = 0 for i+ j ≥ k + 1 (3.48)

Proof The result trivially follows from Lemma 3.2.1.

3.2.4 Example

The realization algorithm discussed in the above section is illustrated by an example

in this section. Let the transfer matrix to be realized be as follows:

H(z1, z2, zt) =







n11
100z

−1
1 + n11

010z
−1
2 + n11

101z
−1
1 z−1

t n12
010z

−1
2

n21
001z

−1
t n22

101z
−1
1 z−1

t







×







1+ d11011z
−1
2 z−1

t + d11001z
−1
t + d11112z

−1
1 z−1

2 z−2
t d12001z

−1
t

d21011z
−1
2 z−1

t 1 + d22101z
−1
1 z−1

t







−1

(3.49)

The transfer function (3.49) satisfies conditions (3.22) and (3.23). Therefore, accord-

ing to Theorem 3.2.1 the above transfer matrix is realizable in the FM model (2.2) with

condition (2.4) satisfied. Matrix F (z1, z2, zt) is given by:

F (z1, z2, zt)=

























n11
100z

−1
1 + n11

010z
−1
2 + n11

101z
−1
1 z−1

t n12
010z

−1
2

n21
001z

−1
t n22

101z
−1
1 z−1

t

−d11011z
−1
2 z−1

t − d11001z
−1
t − d11112z

−1
1 z−1

2 z−2
t −d12001z

−1
t

−d21011z
−1
2 z−1

t −d22101z
−1
1 z−1

t

























64

Since the system has two inputs, the loop starting at line 1 of the algorithm given in

figure 3.2 runs twice. The sequence of operations in the first iteration is given in table

3.2.

TABLE 3.2:

THE SEQUENCE OF OPERATIONS IN THE FIRST ITERATION OF THE
ALGORITHM

step operation

2 Φ1 = [z−1
1 z−1

2 z−1
t z−1

1 z−1
t z−1

2 z−1
t z−1

1 z−1
2 z−2

t]T

3 Ψ1 = Φ1

4 i = 1 This is the first iteration of the for loop

starting at step 3.

5 K = z−1
1 No elements are inserted to Ψ1

in this iteration.

4 i = 2 This is the second iteration of the for loop

starting at step 3.

5 K = z−1
2 No elements are inserted to Ψ1

in this iteration.

4 i = 3 This is the third iteration of the for loop

starting at step 3.

5 K = z−1
t No elements are inserted to Ψ1

in this iteration.

4 i = 4 This is the fourth iteration of the for loop

starting at step 3.

5 K = z−1
1 z−1

t

65

TABLE 3.2 continued

6 orderz1(K) + orderz2(K) = orderzt(K)

7 K /∈ {z−1
1 , z−1

2 , z−1
t }

8 ztK = z1 is in Ψ1

11 K = ztK Since K = z−1
1 the iteration ends

4 i = 5 This is the fifth iteration of the for loop

starting at step 3.

5 K = z−1
2 z−1

t

6 orderz1(K) + orderz2(K) = orderzt(K)

7 K /∈ {z−1
1 , z−1

2 , z−1
t }

8 ztK = z−1
2 is in Ψ1

11 K = ztK Since K = z−1
2 the iteration ends

4 i = 6 This is the sixth iteration of the for loop

starting at step 3.

5 K = z−1
1 z−1

2 z−2
t

6 orderz1(K) + orderz2(K) = orderzt(K)

7 K /∈ {z−1
1 , z−1

2 , z−1
t }

8 ztK = z−1
1 z−1

2 z−1
t is not in Ψ1

9 Insert z−1
1 z−1

2 z−1
t into Ψ1

11 K = ztK Now K = z−1
1 z−1

2 z−1
t

7 orderz1(K) + orderz2(K) > orderzt(K)

14 K /∈ {z−1
1 , z−1

2 , z−1
t }

15 There is one power of z−1
1 in K

16 z1K = z−1
2 z−1

t is in Ψ1

19 K = z1K Now K = z−1
2 z−1

t

66

TABLE 3.2 continued

20 There is one power of z−1
t in K and K 6= zt

21 ztK = z−1
2 is in Ψ1

24 K = ztK Since K = z−1
2 the iteration ends

67

At the end of the first iteration (of the loop starting at line 1 of the algorithm) we

obtain Ψ1. Vector Ψ2 can be derived in the second iteration which is omitted for the

sake of brevity. Using Ψ1 and Ψ2, Ψ can be constructed as:

Ψ =







z−1

1
z−1

2
z−1

t
z−1

1
z−1

t
z−1

2
z−1

t
z−1

1
z−1

2
z−1

t
z−1

1
z−1

2
z−2

t
0 0 0 0

0 0 0 0 0 0 0 z−1

1
z−1

2
z−1

t z−1

1
z−1

t







T

Matrices DHT and NHT can be derived using (3.28) and (3.29) as:

DHT =







0 0 −d11001 0 −d11011 0 −d11112 0 0 −d12001 0

0 0 0 0 −d21011 0 0 0 0 0 −d22101







NHT =







n11
100 n11

010 0 n11
101 0 0 0 0 n12

010 0 0

0 0 n21
001 0 0 0 0 0 0 0 n22

101







Matrix C = NHT . Matrices Ah, Av, At, Bh, Bv and Bt can be derived using the

procedure given in section 3.2.1.

Bh =







1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0







T

Bv =







0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0







T

Bt =







0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0







T

68

Ah =

































































0 0 −d11001 0 −d11011 0 −d11112 0 0 −d12001 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −d21011 0 0 0 0 0 −d22101

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

































































Av =

































































0 0 0 0 0 0 0 0 0 0 0

0 0 −d11001 0 −d11011 0 −d11112 0 0 −d12001 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −d21011 0 0 0 0 0 −d22101

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

































































69

At =

































































0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 −d11001 0 −d11011 0 −d11112 0 0 −d12001 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −d21011 0 0 0 0 0 −d22101

0 0 0 0 0 0 0 1 0 0 0

































































The state vector x ∈ R11 in this realization.

3.2.5 Comparison with GR Model Based Implementations

A causal transfer matrix of the form (3.21) is realizable in the constrained GR

model if and only if conditions (3.22) and (3.23) are satisfied. Therefore a causal

transfer matrix realizable in the constrained GR model is also realizable in the con-

strained FM model and vice versa. Similarly a transfer matrix realizable as a parallel

combination of constrained GR models that are causal in each quadrant is also realiz-

able as a parallel combination of constrained FM models causal in each quadrant.The

converse is also true.

70

CHAPTER 4

STABILITY UNDER FINITE PRECISION ARITHMETIC

Systems (2.1) and (2.2) are implemented on wireless sensor networks using finite

precision number representation schemes. Shorter word lengths may be used for num-

bers communicated between nodes due to bandwidth and power restrictions. The effect

of quantization and finite precision arithmetic on system dynamics is modeled in this

chapter. Internal and external stability of distributed systems implemented using finite

precision arithmetic is analyzed. Emphasis is given to the effect of inter node commu-

nication on system stability, since short word length formats are an important means

of reducing communication bandwidth and energy requirements. Floating point and

fixed point computations result in different system models for the distributed systems.

Therefore the cases of floating point and fixed point computation are treated separately

in this chapter.

4.1 Fixed Point Arithmetic

4.1.1 Fixed Point Quantization and Overflow

Quantization and overflow operators widely used in fixed point arithmetic are dis-

cussed in the following. Let S be the set of numbers representable with the number

representation scheme used. Quantization and overflow operators employed are de-

noted by Q and O respectively. If the difference between any two consecutive elements

71

in S is either q or −q, the quantization operator is said to be uniform and q is called the

quantization step size. Widely used fixed point quantization schemes are discussed in

the following paragraphs. It is assumed that the quantization is uniform with a step size

of q. Input versus output plots for the quantization schemes shown in figures 4.1, 4.2

and 4.3 are for the case where q = 1.

Magnitude Truncation This scheme rounds the input to the closest representable quan-

tization level in the direction of zero as shown in Figure 4.1. The quantization

error is less than q in this scheme .

Rounding This scheme rounds the output value to the nearest quantization level as

shown in figure 4.2. In the case of a tie, it rounds positive numbers to the closest

quantization level in the direction of positive infinity, and negative numbers to

the closest quantization level in the direction of negative infinity. The maximum

quantization error that occurs under this scheme is q/2.

Two’s Complement This scheme rounds the input to the closest representable quan-

tization level in the direction of negative infinity as shown in Figure 4.3. The

maximum quantization error is less than q in this scheme.

72

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

input value

ou
tp

ut

Figure 4.1. Fixed-point quantization schemes: Magnitude Truncation

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

input value

ou
tp

ut

Figure 4.2. Fixed-point quantization schemes: Rounding

73

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

input value

ou
tp

ut

Figure 4.3. Fixed-point quantization schemes: Two’s complement

Overflow occurs when a result of an arithmetic operation is either larger than the

largest representable number or smaller than the smallest representable number of the

number format used. Input-output behavior of the overflow nonlinearity depends on

how the overflow is handled. Models pertaining to commonly used methods to handle

overflow are discussed below. Input output curves for the overflow nonlinearities dis-

cussed are shown in figures 4.4, 4.5 and 4.6. for the case where the largest and smallest

representable numbers are 4 and −4 respectively.

Saturation nonlinearity When an overflow occurs in an arithmetic operation, the clos-

est representable number to the outcome of the arithmetic operation may be used

instead of it. The resulting nonlinearity is illustrated in figure 4.4 and is called

the saturation nonlinearity.

Wraparound (2’s complement overflow) nonlinearity Input-output behavior of the

wraparound nonlinearity is illustrated in figure 4.5. When two’s complement

74

arithmetic is used, overflow of arithmetic operations result in the wraparound

nonlinearity.

Zeroing nonlinearity Nonlinearity resulting from replacing the outcome of an arith-

metic operation by zero when an overflow occurs is the zeroing nonlinearity. This

nonlinearity is illustrated in figure 4.6.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

input value

ou
tp

ut

Figure 4.4. Fixed-point overflow nonlinearities: Saturation Nonlinearity

75

−8 −6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

input value

ou
tp

ut

Figure 4.5. Fixed-point overflow nonlinearities: Wraparound Nonlinearity

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

input value

ou
tp

ut

Figure 4.6. Fixed-point overflow nonlinearities: Zeroing Nonlinearity

4.1.2 Models for Quantization and Overflow Nonlinearities

Microprocessors used in most wireless sensor platforms use fixed point number rep-

resentation schemes. Bandwidth and power restrictions may demand even shorter word

76

lengths for numbers communicated between nodes. So the error resulting from finite

precision arithmetic could be significant. Finite word lengths, used for the representa-

tion of numbers, can result in errors due to three reasons:

• Coefficients of matrices must be quantized to numbers that are representable us-

ing the number format used.

• Results of arithmetic operations must be quantized.

• Overflow can occur during arithmetic operations.

Only the effects of quantization and overflow nonlinearities are considered in this work.

For notational convenience the net effect of quantization and overflow nonlinearities

will be modeled by a single nonlinear operator. The nonlinearity resulting from quanti-

zation and overflow can be considered as a concatenation of quantization and overflow

nonlinearities.

Let O : R → [Lmin, Lmax] denote the overflow nonlinearity where Lmin and Lmax

denote the smallest and the largest numbers representable with the number format used

respectively. The quantization operator is denoted by Q : [Lmin, Lmax] → S where

S is the set of numbers representable with the number format used. The nonlinearity

resulting from quantization and overflow is denoted by N : R → S where N = Q · O.

Models for three different quantization schemes are discussed in the following sec-

tion. It will be assumed that the node’s microprocessor uses a double length accumula-

tor to sum the intermediate products and quantize only the final sum.

4.1.2.1 Model 1

Let NP : R → Sp be the concatenation of quantization and overflow operators for

computations within the node. Here Sp denotes the set of numbers representable with

77

the number format used by the node to store the final result. In a GR model based

implementation, computation of state vectors within each node can be modeled by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













= NP [Ax(n1, n2, t) +Bu(n1, n2, t)] (4.1)

In a FM model based implementation, computation of state vectors within each node

can be modeled by:

x(n1, n2, t) = NP [Atx(n1, n2, t−1) +Avx(n1, n2−1, t) +Ahx(n1−1, n2, t)

+Btu(n1, n2, t−1) +Bvu(n1, n2−1, t) +Bhu(n1−1, n2, t)] (4.2)

4.1.2.2 Model 2

Due to bandwidth and power limitations the word length of numbers communi-

cated between nodes may be shorter than that for in-node computations. This result

in coarser quantization for state vector components communicated between nodes. Let

NC : R → SC be the concatenation of quantization and overflow operators used for

state vector components communicated between nodes. Here SC denotes the set of

numbers representable with the number format used for communicated numbers. In a

GR model based implementation, computation of state vectors within each node can be

78

modeled by:







xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)






=NC













A1 A2 A3

A4 A5 A6






x(n1, n2, t) +







B1

B2






u(n1, n2, t)







[

xt(n1, n2, t+ 1)

]

=NP

[[

A7 A8 A9

]

x(n1, n2, t) +

[

B3

]

u(n1, n2, t)

]

(4.3)

In a FM model based implementation, computation of state vectors within each node

can be modeled by:

x(n1, n2, t) = NP [Atx(n1, n2, t−1) +AvNC [x(n1, n2−1, t)] +AhNC [x(n1−1, n2, t)]

+Btu(n1, n2, t−1) +BvNC [u(n1, n2−1, t)] +BhNC [u(n1−1, n2, t)]]

(4.4)

NP : R → Sp is the concatenation of quantization and overflow operators for computa-

tions within the node.

4.1.2.3 Model 3

If the required precision for the two directions of communication is different, com-

puted values may be quantized to different precisions in the orthogonal spatial direc-

tions. Possible reasons for this could be that the size of the sensor network is different in

the two directions or there is a preferred direction in which higher precision is required

. In a GR model based implementation, computation of state vectors within each node

79

can be modeled by:

[

xh(n1 + 1, n2, t)

]

=NCh

[[

A1 A2 A3

]

x(n1, n2, t) +

[

B1

]

u(n1, n2, t)

]

[

xv(n1, n2 + 1, t)

]

=NCv

[[

A4 A5 A6

]

x(n1, n2, t) +

[

B2

]

u(n1, n2, t)

]

[

xt(n1, n2, t+ 1)

]

=NP

[[

A7 A8 A9

]

x(n1, n2, t) +

[

B3

]

u(n1, n2, t)

]

(4.5)

Here NCh
: R → SCh

and NCv
: R → SCv

denote concatenation of quantization

and overflow operators used for horizontal and vertical state vector components respec-

tively. Here SCh
and SCv

denote sets of numbers representable with the number formats

used for horizontal and vertical state vector components respectively.

In a FM model based implementation each node transmits its state vector to its

neighboring nodes. Both the neighboring nodes in the orthogonal spatial directions can

receive the same transmission. Hence quantizing state vectors to different precisions

for the two orthogonal spatial directions is not required.

4.1.3 Internal Stability

The definition of GAS for 1-D systems can be directly extended for m-D systems.

GAS of a nonlinear system ensures the absence of zero-input limit cycles. It has been

argued that the conventional definition of GAS for m-D systems is overly restrictive

and less practically applicable Xu et al. [1996]. An alternative definition, practical

internal stability is also introduced in Xu et al. [1996]. A m-D system is practically

asymptotically stable if the norm of the state vector of the system, driven only by the

initial conditions, tend to zero when each of the independent dimensions tend to infinity

while keeping the other dimensions of the system finite.

80

GAS of m-D systems under finite precision arithmetic has drawn considerable at-

tention and a vast literature exist on the subject. Sufficient conditions, for GAS of 2-D

systems described by the FM model, under overflow and saturation nonlinearities are

given in Kar and Singh [2001b] and Hinamoto [1997] respectively. 2-D systems real-

ized in the FM model are studied for GAS when implemented using two’s complement

arithmetic in Bose [1995].

For 2-D systems described by the GR model, sufficient conditions for GAS under

saturation and quantization nonlinearities are established in [Kar, 2008; Singh, 2008]

and Bose [1994] respectively. Further results on GAS of 2-D systems realized in the

GR model in the presence of quantization nonlinearities are reported in Kar and Singh

[2000]. In Kar and Singh [2001a], sufficient conditions, for GAS of 2-D systems de-

scribed by either local state space model, under both quantization and overflow non-

linearities are established. A set of necessary conditions for GAS of nonlinear m-D

systems is reported in Bauer [1995b].

Since we are interested in GAS, the input to all the nodes is assumed to be zero for

t ≥ 0. Since the sensor network is assumed to be of size N1 × N2 the spatial variables

satisfy (n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Definition 4.1.1 A system implemented on a sensor network of size N1×N2 employing

either local state space model is said to be GAS if:

lim
t→∞

‖ x(n1, n2, t) ‖= 0 ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]

where x(n1, n2, t) is the state vector, ‖ · ‖ is any vector norm and the only non-zero

initial conditions are given by x(n1, n2, 0)

Finite extent of the two spatial dimensions of the system and the discrete nature of

81

the quantization nonlinearity allow a stability condition, which is simple to check (but

stronger than those available in the literature), to be derived.

4.1.3.1 GR Model Based Implementation

The system (4.5) is considered since it is the most general case and results derived

for this case carry over to the other two cases. Model (4.5) describes the evolution

of the system, when different quantization and overflow nonlinearities are applied to

temporal, horizontal and vertical state vector components, possibly due to different

number formats used to represent them.

Theorem 4.1.1 The system (4.5) is GAS, if and only if the 1-D system:

x(t+ 1) = NP [A9x(t)] (4.6)

is GAS. Here x ∈ Rc and NP is the concatenation of quantization and overflow opera-

tors for in node computations.

Therefore global asymptotic stability of the 3-D distributed system is equivalent to that

of a 1-D system. For any K < ∞, the set of state vectors of system (4.6) with a norm

less than K is finite. If the state trajectory of the system (4.6) traverses the same non-

zero state twice the system is not GAS. Therefore if the system (4.6) is GAS it reaches

the origin in finite time, Premaratne et al. [1996].

Proof It is assumed that nodes initially have non zero states. The proof of necessity is

trivial. To prove sufficiency, assuming that the system (4.6) is GAS, it will be shown

that states of all the nodes reach the origin in finite time.

From the boundary conditions 1 xh(0, 0, t) = 0 and xv(0, 0, t) = 0 for ∀t > 0 . For

1This simply follows from the fact that there are no nodes along n1 = −1 or n2 = −1.

82

t > 0:

xt(0, 0, t+ 1) = NP

[

A9x
t(0, 0, t)

]

(4.7)

Since the system (4.7) is GAS, ∃ a finite M00 such that xt(0, 0, t) = 0 for ∀ t ≥

M00. For t ≥ M00, x(0, 0, t) = 0 and from (4.5) xh(1, 0, t) = 0. From the boundary

conditions xv(1, 0, t) = 0 and hence:

xt(1, 0, t+ 1) = NP

[

A9x
t(1, 0, t)

]

(4.8)

Since the system (4.8) is GAS ∃ a finite M10 ≥ M00 such that xt(1, 0, t) = 0 for

∀ t ≥ M10. So, for t ≥ M10 x(1, 0, t) = 0. Following the same argument iteratively ∃

a finite MN1−1 0 such that x(N1−1, 0, t) = 0 for ∀ t ≥ MN1−1 0. Since by construction

MN1−1 0 ≥ ≥ M10 ≥ M00, x(n1, 0, t) = 0 for 0 ≤ n1 ≤ N1 − 1 and t ≥ MN1−1 0.

Following a similar argument ∃ a finite M0N2−1 such that x(0, n2, t) = 0 for 0 ≤ n2 ≤

N2 − 1 and for ∀ t ≥ M0N2−1. We have proved that state vectors of the nodes in planes

n1 = 0 and n2 = 0 become zero in finite time.

Let M0 = max(MN1−1 0,M0N2−1). From (4.5) xh(1, 1, t) = 0 and xv(1, 1, t) = 0

for t ≥ M0. Therefore for t ≥ M0:

xt(1, 1, t+ 1) = NP

[

A9x
t(1, 1, t)

]

(4.9)

Since the system (4.9) is GAS ∃ a finite M11 ≥ M0 such that xt(1, 1, t) = 0 for

∀ t ≥ M11. We have x(1, 1, t) = 0 for ∀ t ≥ M11. It can be seen that the argument used

to show the GAS of the nodes in planes n1 = 0 and n2 = 0 extend to nodes in planes

n1 = 1 and n2 = 1.

This can be repeated to show that ∃ a finite M such that x(n1, n2, t) = 0 for all

83

n1 ∈ [0, N1 − 1] and n2 ∈ [0, N2 − 1], for t ≥ M . This completes the proof.

4.1.3.2 FM Model Based Implementation

The system in (4.4) is considered since it is the most general case and results de-

rived for this case carry over to the other cases. Evolution of the system, when different

quantization and overflow operators are used for in node computations and communi-

cated state vectors, is described by the model (4.4).

Theorem 4.1.2 The system (4.4) is GAS, if and only if the 1-D system:

x(t+ 1) = NP [Atx(t)] (4.10)

is GAS. NP is the concatenation of quantization and overflow operators for in-node

computations and x ∈ Rn.

Proof The proof is similar to the proof of Theorem 4.1.1.

For implementations using either local state space model, GAS of the 3-D system un-

der quantization and overflow nonlinearities is equivalent to that of a 1-D system under

quantization and overflow nonlinearities. Conditions, under which the GAS of a sys-

tem under quantization and overflow nonlinearities is equivalent to the GAS of that

under quantization only, are established in [Kar and Singh, 2001a; Leclerc and Bauer,

1994]. An exhaustive search algorithm to determine the GAS of 1-D systems under

fixed point quantization is presented in Premaratne et al. [1996]. The algorithm re-

ported in Premaratne et al. [1996] can be readily extended to determine the GAS of

1-D systems under both quantization and overflow nonlinearities. Therefore Theorems

4.1.1 and 4.1.2 allow to test the GAS, of 3-D systems implemented on grid sensor net-

84

works, using either local state space model under the occurrence of fixed point quanti-

zation and overflow nonlinearities.

GAS of the system is independent of its dynamics along horizontal and vertical di-

mensions. This is due to the finite extent of the system in the said dimensions. An

important implication is that, GAS of the sensor network is independent of the quanti-

zation and overflow operations applied to communicated state vectors.

4.1.4 BIBO Stability

The definition of BIBO stability for 1-D systems can be directly extended for m-D

systems. It has been argued, that the direct extension of the definition of BIBO stability

for 1-D systems to m-D systems, is too restrictive for most applications

Agathoklis and Bruton [1983]; Lazar and Bruton [1993]. Practical BIBO stability, an

alternative input-output stability criterion for m-D systems is introduced in

Agathoklis and Bruton [1983].

When finite precision arithmetic is used in computations, overflow nonlinearities are

introduced to the system. Hence the output vector of a system, under finite precision

arithmetic, necessarily has a bounded norm. BIBO stability of distributed 3-D systems,

in the presence of only the quantization nonlinearity, is studied in the following.

4.1.4.1 GR Model Based Implementation

Assuming infinite precision arithmetic, a sufficient condition for the BIBO stability

of a system implemented on a sensor network of size N1 ×N2, is established first.

85

Theorem 4.1.3 The system













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (4.11)

where 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1 is BIBO stable, if the 1-D system,

x(t+ 1) = A9x(t) (4.12)

is GAS. Here x ∈ Rc,

Proof To prove sufficiency, assuming the system (4.12) is GAS and the inputu(n1, n2, t)

is bounded, it will be shown that the output y(n1, n2, t) is bounded. From the boundary

conditions xh(0, 0, t) = 0 and xv(0, 0, t) = 0.

xt(0, 0, t+ 1) = A9x
t(0, 0, t) +B3u(0, 0, t)

y(0, 0, t) = C3x
t(0, 0, t) +Du(0, 0, t) (4.13)

Since the system (4.12) is GAS, system (4.13) is BIBO stable. Therefore, ‖ y(0, 0, t) ‖

is bounded. Moreover ‖ xt(0, 0, t) ‖ and ‖ x(0, 0, t) ‖ are bounded.

xt(1, 0, t+ 1) = A9x
t(1, 0, t) +A7x

h(1, 0, t) +B3u(1, 0, t)

y(1, 0, t) = C3x
t(1, 0, t) +C1x

h(1, 0, t) +Du(1, 0, t) (4.14)

86

Since xh(1, 0, t) = A3x
t(0, 0, t) + B1u(0, 0, t), ‖ xh(1, 0, t) ‖ is bounded. Sys-

tem (4.14) can be considered as a single dimensional system with a bounded input

A7x
h(1, 0, t) + B3u(0, 0, t). The system (4.14) is BIBO stable and ‖ y(1, 0, t) ‖

is bounded. Moreover ‖ xt(1, 0, t) ‖ and ‖ x(1, 0, t) ‖ are bounded. This argument

can be used iteratively to show that ‖ y(n1, 0, t) ‖ and ‖ x(n1, 0, t) ‖ are bounded for

0 ≤ n1 ≤ N1 − 1. Following a similar argument it can be shown that ‖ y(0, n2, t) ‖

and ‖ x(0, n2, t) ‖ are bounded for 0 ≤ n2 ≤ N2 − 1.

xt(1, 1, t+ 1) =A9x
t(1, 1, t) +A7x

h(1, 1, t) +A8x
v(1, 1, t) +B3u(1, 1, t)

y(1, 1, t) =C3x
t(1, 1, t) +C1x

h(1, 1, t) +C2x
v(1, 1, t) +Du(1, 1, t) (4.15)

The system (4.15) can be considered as a single dimensional system with a bounded

input. Therefore ‖ y(1, 1, t) ‖ and ‖ x(1, 1, t) ‖ are bounded. This can be repeated to

show that ‖ y(n1, n2, t) ‖ is bounded for 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1. This

completes the proof of Theorem 4.1.3.

If the 1-D system (4.12) which describes the temporal dynamics of the 3-D system

(4.11) is GAS, BIBO stability of the system is independent of its spatial dynamics. The

result is due to the finite spatial extent of the 3-D system.

Above result can be used to derive a sufficient condition for the BIBO stability of a

system, implemented on a sensor network, in the presence of quantization nonlinearity.

The model (4.5) is used since it is the most general case. It can be modified to include

87

only the quantization nonlinearities as follows:

[

xh(n1 + 1, n2, t)

]

=QCh

[[

A1 A2 A3

]

x(n1, n2, t) +

[

B1

]

u(n1, n2, t)

]

[

xv(n1, n2 + 1, t)

]

=QCv

[[

A4 A5 A6

]

x(n1, n2, t) +

[

B2

]

u(n1, n2, t)

]

[

xt(n1, n2, t+ 1)

]

=QP

[[

A7 A8 A9

]

x(n1, n2, t) +

[

B3

]

u(n1, n2, t)

]

y(n1, n2, t) =QP [Cx(n1, n2, t) +Du(n1, n2, t)] (4.16)

Here QP : R → SP , QCh
: R → SCh

and QCv
: R → SCv

denote quantization op-

erators used for temporal, horizontal and vertical state vector components respectively.

Here SCh
and SCv

denote sets of numbers representable with the number formats used

for horizontal and vertical state vector components respectively. The set of numbers

representable with the number format used for in-node computations is denoted by SP .

Theorem 4.1.4 The system (4.16) is BIBO stable, if the 1-D system,

x(t+ 1) = A9x(t) (4.17)

is GAS, where x ∈ Rc.

88

Proof Let:

QCh
[[A1 A2 A3]x(n1, n2, t) + [B1]u(n1, n2, t)] = [A1 A2 A3]x(n1, n2, t)

+ [B1]u(n1, n2, t) + eh(n1, n2, t)

QCv
[[A4 A5 A6]x(n1, n2, t) + [B2]u(n1, n2, t)] = [A4 A5 A6]x(n1, n2, t)

+ [B2]u(n1, n2, t) + ev(n1, n2, t)

QCt
[[A7 A8 A9]x(n1, n2, t) + [B3]u(n1, n2, t)] = [A7 A8 A9]x(n1, n2, t)

+ [B3]u(n1, n2, t) + et(n1, n2, t)

where the error vectors eh ∈ Ra, ev ∈ Rb and et ∈ Rc are the errors introduced to

horizontal, vertical and temporal state vector components due to quantization. Since

fixed point number representations schemes are used, elements of vectors eh, ev and et

are bounded. Therefore the error vector (ehT

(n1, n2, t), e
vT (n1, n2, t), e

tT (n1, n2, t))
T

has a bounded norm.













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

+













eh(n1, n2, t)

ev(n1, n2, t)

et(n1, n2, t)













(4.18)

The system (4.18) can be considered as a 3-D linear space and time invariant system.

Let the system (4.17) be GAS. According to the Theorem 4.1.3 system (4.18) is BIBO

stable. When ‖ u(n1, n2, t) ‖ is bounded the input to the system (4.18) is bounded.

Therefore ‖ x(n1, n2, t) ‖ and hence ‖ y(n1, n2, t) ‖ are bounded. This completes the

89

proof of theorem (4.1.4).

4.1.4.2 FM Model Based Implementation

The system (4.4) is considered since it is the most general case. It can be modified

to include only the quantization nonlinearities as follows:

x(n1, n2, t) = QP [Atx(n1, n2, t−1) +AvQC [x(n1, n2−1, t)] +AhQC [x(n1−1, n2, t)]

+Btu(n1, n2, t−1) +BvQC [u(n1, n2−1, t)] +BhQC [u(n1−1, n2, t)]]

(4.19)

Here QP : R → SP and QC : R → SC denote quantization operators used for computa-

tions within the node and communication among nodes respectively. SP and SC denote

sets of numbers representable with the number formats used for in node computations

and inter-node communication respectively.

Theorem 4.1.5 The system (4.19) is BIBO stable if the 1-D system:

x(t + 1) = Atx(t) (4.20)

is GAS, where x ∈ Rn

Proof Theorem can be proved using a similar line of argument as in the proof of The-

orem 4.1.4.

The error introduced in quantization, in systems described by GR and FM models can

be considered as a second input to the system. Quantization error in fixed point quan-

tization schemes is bounded by the quantization step size. Therefore GAS of 1-D sys-

tems (4.17) and (4.20), which are sufficient conditions for the BIBO stability of the

90

corresponding un-quantized 3-D systems, are also sufficient conditions for the BIBO

stability of the quantized 3-D systems

4.1.5 Example

In this section, an example implementation of a linear filter on a grid sensor network

is presented. Let the transfer function of the single input single output filter be as

follows:

H(z1, z2, zt) =
z−1
t

1− az−1
t − bz−1

1 z−1
t − cz−1

2 z−1
t

(4.21)

4.1.5.1 GR Model Based Implementation

The above system can be realized using the GR model:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













0 0 a3

0 0 a6

a7 a8 a9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













0

0

1













u(n1, n2, t)

y(n1, n2, t) =[0 0 1] x(n1, n2, t) (4.22)

where a9 = a, a3a7 = b and a6a8 = c. According to Theorem 4.1.1, the system (4.22)

is GAS if and only if the system,

x(t + 1) = NP [a9x(t)] (4.23)

is GAS. To illustrate the convergence of state vectors to the origin, the system (4.22)

was simulated on a sensor network of size 4× 4. Coefficients a, b and c in the transfer

function were set to 0.375, 0.25 and 0.25 respectively. Coefficients a3, a6, a7 and a8

91

were set to 0.5. The quantization scheme described by model 2 was used. State vector

components computed for use within the node were quantized to 8 bit sign magnitude

with 4 fractional bits. State vector components communicated between nodes were

quantized to 4 bit sign magnitude with 3 fractional bits. The input given to the system

is as follows:

u(n1, n2, t) =











1 1 ≤ t ≤ 5, n1, n2 ∈ [0, 3]

0 t > 5, n1, n2 ∈ [0, 3]

The input is used only to drive state vectors of nodes to non zero values. Figures 4.7

and 4.8 show plots of the Euclidean norm of state vectors of nodes (1, 1) and (4, 4)

respectively versus time.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

t

E
uc

lid
ea

n
N

or
m

 o
f X

(1
,1

,t)

Figure 4.7. Euclidean norm of the state vector of the node (1, 1) versus t for
the GR model

Figures 4.9 and 4.10 show plots of the Euclidean norm of the state vectors versus

time for all other nodes of the sensor network. Due to symmetry, state vectors of nodes

(i, j) and (j, i) are equal.

92

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

E
uc

lid
ea

n
N

or
m

 o
f X

(4
,4

,t)

Figure 4.8. Euclidean norm of the state vector of the node (4, 4) versus t for
the GR model

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vectors of nodes (1,2) and (2,1)
Euclidean norm of state vectors of nodes (1,3) and (3,1)
Euclidean norm of state vectors of nodes (1,4) and (4,1)
Euclidean norm of the state vector of node (2,2)

Figure 4.9. Euclidean norm of the state vectors versus t for the GR model

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vectors of nodes (2,3) and (3,2)
Euclidean norm of state vectors of nodes (2,4) and (4,2)
Euclidean norm of the state vector of node (3,3)
Euclidean norm of state vectors of nodes (3,4) and (4,3)

Figure 4.10. Euclidean norm of the state vectors versus t for the GR model

93

Using the algorithm given in Premaratne et al. [1996], it can be verified that the

system (4.23) is GAS for the value of a9 used in the example. According to the The-

orem 4.1.1, the system (4.22) is also GAS. The simulation results are in accordance

with the theoretical conclusion. Note that the state vector of node (4, 4) reach the ori-

gin later than the state vector of node (1, 1). This is due to the system being first octant

causal.

4.1.5.2 FM Model Based Implementation

The input-output transfer function (4.21) can be realized using the FM model:

x(n1, n2, t) =







a 0

1 0






x(n1, n2, t− 1) +







0 b

0 0






x(n1 − 1, n2, t)

+







0 c

0 0






x(n1, n2 − 1, t) +







1

0






u(n1, n2, t− 1)

y(n1, n2, t) =

[

1 0

]

x(n1, n2, t) (4.24)

where x(n1, n2, t) ∈ R2. According to the Theorem 4.1.2, the system (4.24) is GAS

if and only if the system,

x(t+ 1) = NP













a 0

1 0






x(t)






(4.25)

where x(t) ∈ R2 is GAS. To illustrate the convergence of state vectors to the origin,

the system (4.24) was simulated on a sensor network of size 4 × 4. The input to the

system and the coefficients a, b and c were the same as for the simulation of the GR

94

model based implementation described above. The quantization scheme described by

model 2 was used. In node computations were done using 8 bit sign magnitude numbers

with 4 fractional bits. Communicated state vectors were represented using 4 bit sign

magnitude with 3 fractional bits.

Figures 4.11 and 4.12 show plots of the Euclidean norm of state vectors of nodes

(1, 1) and (4, 4) versus time respectively.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

t

E
uc

lid
ea

n
N

or
m

 o
f X

(1
,1

,t)

Figure 4.11. Euclidean norm of the state vector of the node (1, 1) versus t for
the FM model

95

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

t

E
uc

lid
ea

n
N

or
m

 o
f X

(4
,4

,t)

Figure 4.12. Euclidean norm of the state vector of the node (4, 4) versus t for
the FM model

Figures 4.13 and 4.14 show plots of the Euclidean norm of the state vectors versus

time for all other nodes of the sensor network. State vectors of nodes (i, j) and (j, i)

are equal due to symmetry in this example.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vectors of nodes (1,2) and (2,1)
Euclidean norm of state vectors of nodes (1,3) and (3,1)
Euclidean norm of state vectors of nodes (1,4) and (4,1)
Euclidean norm of the state vector of node (2,2)

Figure 4.13. Euclidean norm of the state vectors versus t for the FM model

96

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vectors of nodes (2,3) and (3,2)
Euclidean norm of state vectors of nodes (2,4) and (4,2)
Euclidean norm of the state vector of node (3,3)
Euclidean norm of state vectors of nodes (3,4) and (4,3)

Figure 4.14. Euclidean norm of the state vectors versus t for the FM model

For the value of a used in the example the system (4.25) is GAS. Hence the system

(4.24) is also GAS according to the theorem 4.1.2. Simulation results are in accordance

with the theoretical findings.

4.2 Floating Point Arithmetic

Though most of the commercially available sensor nodes use fixed point proces-

sors for computations, sensor nodes capable of floating point computations have also

appeared. Sun SPOT is an example for a sensor node capable of floating point compu-

tations [Labs, 2010] As computational capabilities of embedded processors improve,

floating point processors can be expected to be used widely in sensor nodes in the fu-

ture.

4.2.1 Floating Point Representation of Numbers

In floating point base 2 formats a real number x is represented as

x = sgn(x)m(x)2e(x). Here sgn(x) = −1 if x < 0 and sgn(x) = 1 otherwise.

Furthermore m(x) is the mantissa of x and e(x) is the exponent of x. The mantissa is

97

usually normalized such that 0.5 ≤ m(x) < 1. Sign of x, sgn(x) can be represented

by 1 bit. Mantissa and exponent are represented using fixed point schemes. Number

of binary digits used to represent mantissa and exponent is determined based on the

relative precision and the range of numbers required to be represented. For example in

the IEEE 754 single precision floating point format the mantissa is represented by 23

bits and the exponent is represented by 8 bits.

4.2.1.1 Floating Point Multiplication

Let x1 and x2 be the two numbers, represented in floating point, that are to be mul-

tiplied. Their product is given by sgn(x1x2)m(x1)m(x2)2
e(x1)+e(x2). Three different

kinds of errors can occur in representing the product of x1 and x2 in a floating point

format.

1. Overflow occurs if the product is larger than the largest representable number.

2. Underflow occurs if the product is smaller than the smallest representable num-

ber.

3. To represent the mantissa of the product exactly, word length of the mantissa

should be equal to or larger than, the summation of the word lengths of the man-

tissas of the two multiplicands. Otherwise a quantization error is introduced in

the multiplication.

Let Nm : R → Sm denote the overall non-linearity introduced in floating point mul-

tiplication. Here Sm denotes the set of numbers representable with the number format

used.

98

4.2.1.2 Floating Point Addition

Let x1 and x2 be the two numbers, represented in floating point, that are to be

added. Without loss of generality it can be assumed that x1 ≤ x2. To add the two

numbers, mantissa of the smaller number is denormalized such that exponents of the

two numbers are equal. Their summation is given by {sgn(x1)m(x1)2
e(x1)−e(x2) +

sgn(x2)m(x2)}2e(x2). The mantissa of the summation may have to be normalized to

represent it in a floating point format. Overflow, underflow and quantization errors

can be introduced in floating point addition. Let Na : R → Sa denote the overall

non-linearity introduced in floating point addition. Here Sa denotes the set of numbers

representable with the number format used.

4.2.2 Quantization Models

Floating point computations introduce nonlinearities to otherwise linear system

models (2.1) and (2.2). System models (2.1) and (2.2) are modified to incorporate

effects of different floating point quantization schemes in this section. The following

notation is used to make the presentation of the quantization models more concise. Let

the (i, j) − th element of matrix A ∈ Rn×n be aij and the i − th element of vector

x ∈ Rn be xi. The product of matrix A with vector x computed using floating point

arithmetic is denoted by N [Ax], where N [Ax] is of the form given by (4.26).

N [Ax] =



























Na[Nm[a11x1] +Na[Nm[a12x2] +Na[Nm[a13x3] + · · ·+Nm[a1nxn]]]]

Na[Nm[a21x1] +Na[Nm[a22x2] +Na[Nm[a23x3] + · · ·+Nm[a2nxn]]]]

· · · · ··

· · · · ··

Na[Nm[an1x1] +Na[Nm[an2x2] +Na[Nm[an3x3] + · · ·+Nm[annxn]]]]



























(4.26)

99

In (4.26), Na and Nm denote nonlinearities caused by floating point addition and

multiplication respectively.

4.2.2.1 Model 1

Let Na
P : R → S

a
p and Nm

P : R → S
m
p denote nonlinearities caused by floating point

addition and multiplication respectively within the node. Here Sa
p and Sm

p denote the

sets of numbers representable with the number formats used by the node to store the re-

sults of addition and multiplication respectively. In a GR model based implementation,

computation of state vectors within each node can be modeled by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













= Na
P [NP [Ax(n1, n2, t)] +NP [Bu(n1, n2, t)]] (4.28)

It is assumed that Ax(n1, n2, t) and Bu(n1, n2, t) are computed first and then their

summation is computed. The nonlinearity introduced in the on node computation of a

product of a matrix and a vector is denoted by NP . Nonlinear operator NP is of the form

given by (4.26). In a FM model based implementation, computation of state vectors

within each node can be modeled by:

x(n1, n2, t) = Na
P [NP [Atx(n1, n2, t−1)] +Na

P [NP [Avx(n1, n2−1, t)]

+Na
P [NP [Ahx(n1−1, n2, t)] +Na

P [NP [Btu(n1, n2, t−1)]

+ Na
P [NP [Bvu(n1, n2−1, t)] +NP [Bhu(n1−1, n2, t)]]]]]] (4.29)

100

4.2.2.2 Model 2

Due to bandwidth and power limitations the word length of numbers communi-

cated between nodes may be shorter than that for in-node computations. This results

in coarser quantization for state vector components communicated between nodes. Let

NC : R → SC be the quantization operator used for state vector components com-

municated between nodes. Here SC denotes the set of numbers representable with the

number format used for communicated numbers. In a GR model based implementation,

computation of state vectors within each node can be modeled by:







xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)






=NC






NP













A1 A2 A3

A4 A5 A6






x(n1, n2, t)







+ NP













B1

B2






u(n1, n2, t)













[

xt(n1, n2, t+ 1)

]

=Na
P

[

NP

[[

A7 A8 A9

]

x(n1, n2, t)

]

+NP

[[

B3

]

u(n1, n2, t)

]]

(4.30)

In (4.30), it is assumed that communicated state vector components are computed using

the same floating point scheme as the temporal state vector component and then quan-

tized to shorter word lengths for communication. In a FM model based implementation,

101

computation of state vectors within each node can be modeled by:

x(n1, n2, t) = Na
P [NP [Atx(n1, n2, t−1)] +Na

P [NP [Av[NC [x(n1, n2−1, t)]]]

+Na
P [NP [Ah[NC [x(n1−1, n2, t)]]] +Na

P [NP [Btu(n1, n2, t−1)]

+Na
P [NP [Bv[NC [u(n1, n2−1, t)]]] + NP [Bh[NC [u(n1−1, n2, t)]]]]]]]]

(4.31)

4.2.2.3 Model 3

If the required precision for the two directions of communication is different, com-

puted values may be quantized to different precisions in the orthogonal spatial direc-

tions. Possible reasons for this could be the size of the sensor network is different in the

two directions or there is a preferred direction in which higher precision is required. In

a GR model based implementation, computation of state vectors within each node can

be modeled by:

[

xh(n1 + 1, n2, t)

]

=NCh

[

NP

[[

A1 A2 A3

]

x(n1, n2, t)

]

+NP

[[

B1

]

u(n1, n2, t)

]]

[

xv(n1, n2 + 1, t)

]

=NCv

[

NP

[[

A4 A5 A6

]

x(n1, n2, t)

]

+NP

[[

B2

]

u(n1, n2, t)

]]

[

xt(n1, n2, t+ 1)

]

=NP

[

NP

[[

A7 A8 A9

]

x(n1, n2, t)

]

+ NP

[[

B3

]

u(n1, n2, t)

]]

(4.32)

Here NCh
: R → SCh

and NCv
: R → SCv

denote quantization operators used for

horizontal and vertical state vector components respectively. Here SCh
and SCv

denote

102

sets of numbers representable with the number formats used for horizontal and vertical

state vector components respectively. In (4.32), it is assumed that communicated state

vector components are computed using the same floating point scheme as the temporal

state vector component and then quantized to shorter word lengths for communication.

In a FM model based implementation each node transmits its state vector to its

neighboring nodes. Both the neighboring nodes in the orthogonal spatial directions can

receive the same transmission. Hence quantizing state vectors to different precisions

for the two orthogonal spatial directions is not required.

4.2.3 Stability of the System

Global asymptotic stability of the quantized system will be considered in this work,

while the input output stability of the system would be a subject for future research.

4.2.3.1 GR Model Based Implementation

The system (4.32) is considered since it is the most general case and results derived

for this case carry over to the other two cases.

Theorem 4.2.1 The system (4.32) is GAS, if and only if the 1-D system,

x(t+ 1) = NP [A9x(t)] (4.33)

is GAS. Here x ∈ Rc and NP denotes the nonlinearity introduced in computations

within the node.

Proof The proof is similar to the proof of Theorem 4.1.1.

103

4.2.3.2 FM Model Based Implementation

The system (4.31) is considered since it is the most general case and results derived

for this case carry over to the other cases.

Theorem 4.2.2 The system (4.31) is GAS, if and only if the 1-D system,

x(t+ 1) = NP [Atx(t)] (4.34)

is GAS. Here x ∈ Rn.

Proof The proof is similar to the proof of Theorem 4.1.1.

Implications of theorems 4.2.1 and 4.2.2 are similar to those of theorems 4.1.1 and

4.1.2 for fixed point implementations. Global asymptotic stability of distributed sys-

tems implemented on the sensor network is independent of the quantization and over-

flow operations applied to communicated state vectors. Global asymptotic stability of

the 3-D system under floating point arithmetic is equivalent to the global asymptotic sta-

bility of a 1-D system under floating point computations. Asymptotic stability of 1-D

systems described by second order difference equations under floating point arithmetic

is studied in Bauer and Wang [1993]. Asymptotic stability of 1-D systems described

by state space models under floating point computations is analyzed in Bauer [1995a];

Ralev and Bauer [1999]. Note that in contrast to fixed point systems, in floating point

systems an otherwise GAS system can cause an unbounded response to a bounded input

or a zero input with non-zero initial conditions due to quantization nonlinearities.

4.2.4 Example

Theoretical results are illustrated using an example implementation of a linear filter

on a grid sensor network. Let the transfer function of the single input single output filter

104

be given by (4.35)

H(z1, z2, zt) =
n(z1, z2, zt)

d(z1, z2, zt)
(4.35)

where

n(z1, z2, zt) =
1

8
z−1
1 − 1

128
z−1
1 z−1

2 − 5

256
z−1
1 z−1

t +
129

4096
z−1
1 z−1

2 z−1
t

d(z1, z2, zt) = 1− 1

16
z−1
1 − 1

16
z−1
2 +

1

256
z−1
1 z−1

2

− 5

4
z−1
t +

5

64
z−1
1 z−1

t +
5

64
z−1
2 z−1

t − 5

1024
z−1
1 z−1

2 z−1
t

+
25

128
z−2
t − 25

2048
z−1
1 z−2

t − 25

2048
z−1
2 z−2

t +
25

32768
z−1
1 z−1

2 z−2
t

The sensor network is assumed to be of size 4 × 4. It is assumed that the exponent of

the floating point representation can be any integer. Therefore overflow and underflow

do not occur. In stable linear systems used in practical applications overflow is unlikely

to occur when the maximum exponent allowed by the floating point representation is

sufficiently large. The effect of underflow on global asymptotic stability of the system

depends on how underflow is handled. Hence allowing the range of the exponent to be

infinite is justified for the purpose of this example.

Errors are introduced due to quantization of the mantissa. In this example magni-

tude truncation is used to quantize the mantissa in all arithmetic operations.

105

4.2.4.1 GR Model Based Implementation

The transfer function (4.35) can be realized using the GR model:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=























1
16 0 1

8 0

0 1
16 0 1

4

1
2 0 5

4
5
32

0 1 5
4 0



































xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+



















0

0

1

1



















u(n1, n2, t)

y(n1, n2, t) =[1 0 0 0]x(n1, n2, t) (4.36)

where xh ∈ R, xv ∈ R and xt ∈ R
2. According to Theorem 4.1.1, the system (4.36)

under floating point computation is GAS if and only if the system,

x(t+ 1) = NP













5
4

5
32

5
4 0






x(t)






(4.37)

is GAS. Here x ∈ R
2 and NP is the quantization operator used for in node compu-

tations. Global asymptotic stability of systems of the form (4.37) has been studied in

Bauer [1995a]. It has been shown that quantization nonlinearities can result in four fun-

damental response types if the system is otherwise GAS. A sufficient condition on the

length of the mantissa to ensure a granular periodic response in the underflow regime

is established in Bauer [1995a]. For the system (4.37) a mantissa length of 11 bits is

sufficient to ensure a granular periodic response in the underflow regime.

The system (4.36) was simulated on the sensor network using floating point compu-

tations with a mantissa length of 6 bits. The quantization scheme described by model 1

was used. The only non-zero initial conditions are given by x(n1, n2, 0) = [0, 0, 5, 14]T

for 0 ≤ n1 ≤ 3 and 0 ≤ n1 ≤ 3. Figure 4.15 shows plots of the Euclidean norm of

state vectors of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time. In this case, states of

the nodes reach the origin as time tends to infinity. Figure 4.16 illustrates plots of the

106

Euclidean norm of state vectors of the same nodes versus time when a mantissa length

of 5 is used for computations.

0 50 100 150 200 250
0

5

10

15

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.15. Euclidean norm of the state vectors versus time t for the GR
model, when computations are done with a 6 bit mantissa

System (4.37) is not GAS when computations are done with a 5 bit mantissa. There-

fore, when computations are done with a 5 bit mantissa, system (4.36) is also not GAS

according to Theorem 4.2.1. Simulation results are in accordance with the theoretical

findings. Simulation results, for the case when the quantization scheme described by

model 2 was used, is given in figure 4.17. State vectors communicated between nodes

were represented using a floating point scheme with a 5 bit mantissa. A 6 bit mantissa

was used for floating point computations within the node. Figure 4.17 shows plots of

the Euclidean norm of state vectors of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time.

107

0 50 100 150 200 250
0

5

10

15

t
E

uc
lid

ea
n

N
or

m
 o

f S
ta

te
 V

ec
to

rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.16. Euclidean norm of the state vectors versus time t for the GR
model, when computations are done with a 5 bit mantissa

0 50 100 150 200 250
0

5

10

15

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.17. Euclidean norm of the state vectors versus time t for the GR
model, when in node computations are performed with a 6 bit mantissa and

communicated state vectors are quantized to a 5 bit mantissa.

In this case states of the nodes reach the origin as time tends to infinity, even though

a 5 bit mantissa is used for communicated state vectors. As predicted by Theorem

4.2.1 the quantization scheme used for communicated state vectors does not affect the

asymptotic stability of the system.

108

4.2.4.2 FM Model Based Implementation

The input output transfer function (4.35) can be realized using the FM model:

x(n1, n2, t)=























1
8

− 1
16

1
8

0

1
8

− 1
16

1
8

0

0 0 0 0

0 0 0 0























x(n1−1, n2, t)+





















− 1
16

1
16

0 1
8

−1
8

1
8

0 1
4

0 0 0 0

0 0 0 0





















x(n1, n2−1, t)

+





















0 0 0 0

0 0 0 0

1 1
2

5
4

5
32

−2 2 5
4

0





















x(n1, n2, t−1)+



















0

0

1

1



















u(n1−1, n2, t)

y(n1, n2, t) =[2 − 1 0 0]x(n1, n2, t) (4.39)

Here x ∈ R4. According to Theorem 4.2.2, the system (4.39) under floating point

computation is GAS if and only if the system,

x(t+ 1) = NP













































0 0 0 0

0 0 0 0

1 1
2

5
4

5
32

−2 2 5
4 0























x(t)























(4.40)

is GAS. Here x ∈ R4 and NP is the quantization operator used for in node compu-

tations. It is evident that global asymptotic stability of system (4.40) is equivalent

to that of system (4.37). The system (4.39) was simulated on the sensor network

using floating point computations with a mantissa length of 6 bits. The quantization

109

scheme described by model 1 was used. The only non-zero initial conditions are given

by x(n1, n2, 0) = [0, 0, 5, 14]T for 0 ≤ n1 ≤ 3 and 0 ≤ n1 ≤ 3. Figure 4.18 shows

plots of the Euclidean norm of state vectors of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus

time. In this case states of the nodes reach the origin as time tends to infinity. Figure

4.19 illustrates plots of the Euclidean norm of state vectors of the same nodes versus

time when a mantissa length of 5 is used for computations.

0 50 100 150 200 250
0

5

10

15

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.18. Euclidean norm of the state vectors versus time t for the FM
model, when computations are done with a 6 bit mantissa

System (4.40) is not GAS when computations are done with a 5 bit mantissa. There-

fore, when computations are done with a 5 bit mantissa, system (4.39) is also not GAS

according to Theorem 4.2.2. Simulation results show that system (4.39) is not GAS.

Simulation results, for the case when the quantization scheme described by model 2

was used, is given in figure 4.20. A floating point scheme with 5 bit mantissa was used

to represent state vectors communicated between nodes. A 6 bit mantissa was used for

floating point computations within the node. Figure 4.20 shows plots of the Euclidean

110

norm of state vectors of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time.

0 50 100 150 200 250
0

5

10

15

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.19. Euclidean norm of the state vectors versus time t for the FM
model, when computations are done with a 5 bit mantissa

0 50 100 150 200 250
0

5

10

15

t

E
uc

lid
ea

n
N

or
m

 o
f S

ta
te

 V
ec

to
rs

Euclidean norm of state vector of node (1,1)
Euclidean norm of state vector of node (1,4)
Euclidean norm of state vector of node (4,1)
Euclidean norm of state vector of node (4,4)

Figure 4.20. Euclidean norm of the state vectors versus time t for the FM
model, when in node computations are performed with a 6 bit mantissa and

communicated state vectors are quantized to a 5 bit mantissa.

111

In this case states of the nodes reach the origin as time tends to infinity, even though

a 5 bit mantissa is used for communicated state vectors. As predicted by Theorem

4.2.2 the quantization scheme used for communicated state vectors does not affect the

asymptotic stability of the system (4.39).

112

CHAPTER 5

NODE AND LINK FAILURE

Node and link failure is a common occurrence in sensor networks. Various aspects

of sensor networks, under the occurrence of node and link failure, have been addressed

in the literature. Coverage, connectivity, routing schemes and network capacity limits of

sensor networks with node failure are studied in Akbar et al. [2006]; Barrenechea et al.

[2004]; Shakkottai et al. [2003]. Preservation of generated data in a sensor network in

case of node failures is discussed in Hamed Azimi et al. [2010]. A topology manage-

ment scheme is proposed for sensor networks with node failure in Frye et al. [2006]. In

Imamoglu and Keskinoz [2010] serial distributed detection in wireless sensor networks

with node failure is studied. Impact of node failures and unreliable communication on

decentralized detection in sensor networks is discussed in Tay et al. [2008].

State and input vectors of sensor nodes have to be communicated between nodes

to implement the FM and GR models in sensor networks. A node may not receive

information required for its computations if a neighboring node or the communication

link with the same fails. In order to ensure uninterrupted functioning of the sensor net-

work, when information required for a computation is not received by a node it has to

carry on its operation with the information it can acquire. An approach to mathemat-

ically model such behavior is to assume that nodes estimate missing information with

the information it can acquire. In this work, the said approach is used to extend FM

and GR models for 3-D systems to include node and link failure. Resulting system

113

models are stochastic due to randomness of node and link failure. In this work, asymp-

totic and input-output stability criteria are proposed for sensor networks under node and

link failure. Node failure and communication link failure are treated as separate cases

throughout this work.

5.1 Models for 3-D Systems Under Link Failure

Let q1(n1, n2, t) and q2(n1, n2, t) be random processes such that:

q1(n1, n2, t) =















0 communication link between nodes (n1, n2)

and (n1 − 1, n2) failed at time t

1 otherwise

(5.1)

q2(n1, n2, t) =















0 communication link between nodes (n1, n2)

and (n1, n2 − 1) failed at time t

1 otherwise

(5.2)

Random processes q1(n1, n2, t) and q2(n1, n2, t) are success-failure processes of data

blocks communicated between node (n1, n2) and its immediate predecessors. The

node at the origin does not require any information from other nodes to perform its

computations. Nodes on the axis receive information from only one neighboring node.

Therefore q1(n1, n2, t) = 1 for n1 = 0 and q2(n1, n2, t) = 1 for n2 = 0.

5.1.1 FM Model

Node (n1, n2) receives state and input vectors of nodes (n1−1, n2) and (n1, n2−1).

It is assumed that if there is a failure in the communication link between node (n1, n2)

114

and any of its immediate predecessors, node (n1, n2) receives neither the state vector

nor the input vector from that node. When node (n1, n2) does not receive state or input

vectors required for a computation it estimates the missing vectors. Let x̂n1n2
(n1 −

i, n2 − j, t) and ûn1n2
(n1 − i, n2 − j, t) be estimates of x(n1 − i, n2 − j, t) and u(n1 −

i, n2− j, t) made by node (n1, n2) at time t. The FM model for distributed 3-D systems

under link failure is given by:

x(n1, n2, t) = q1(n1, n2, t){Ahx(n1−1, n2, t) +Bhu(n1−1, n2, t)}

+ (1− q1(n1, n2, t)){Ahx̂n1n2
(n1−1, n2, t) +Bhûn1n2

(n1−1, n2, t)}

+ q2(n1, n2, t){Avx(n1, n2−1, t) +Bvu(n1, n2−1, t)}

+ (1− q2(n1, n2, t)){Avx̂n1n2
(n1, n2−1, t) +Bvûn1n2

(n1, n2−1, t)}

+Atx(n1, n2, t−1) +Btu(n1, n2, t−1)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t) (5.3)

Here x(n1, n2, t), y(n1, n2, t) and u(n1, n2, t) are the state vector, output vector and

input vector of node (n1, n2) at time t respectively. Let the input vector u ∈ Rp, output

vector y ∈ Rq and state vector x ∈ Rn. Then û ∈ Rp,x̂ ∈ Rn, C ∈ Rq×n, D ∈ Rq×p,

Ah ∈ R
n×n, Av ∈ R

n×n, At ∈ R
n×n, Bh ∈ R

n×p, Bv ∈ R
n×p and Bt ∈ R

n×p. For a

sensor network of size N1 ×N2, n1 ∈ [0, N1 − 1], n2 ∈ [0, N2 − 1] and t ∈ [0,∞).

5.1.2 GR Model

In the GR model based implementation, node (n1, n2) receives its horizontal and

vertical state vector components from nodes (n1 − 1, n2) and (n1, n2 − 1) respectively.

Input vectors of other nodes are not required for computations and hence not required

to be estimated. Let estimates of xh(n1, n2, t) and xv(n1, n2, t) made by node (n1, n2)

115

at time t be denoted by x̂h(n1, n2, t) and x̂v(n1, n2, t) respectively. Let:

x̃h(n1, n2, t) = q1(n1, n2, t)x
h(n1, n2, t) + (1− q1(n1, n2, t))x̂

h(n1, n2, t)

x̃v(n1, n2, t) = q2(n1, n2, t)x
v(n1, n2, t) + (1− q2(n1, n2, t))x̂

v(n1, n2, t) (5.4)

The GR model for distributed 3-D systems under link failure is given by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























x̃h(n1, n2, t)

x̃v(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx̃(n1, n2, t) +Du(n1, n2, t) (5.5)

where x̃(n1, n2, t) = (x̃hT

(n1, n2, t), x̃
vT(n1, n2, t),x

tT(n1, n2, t))
T . Let the input vector

u ∈ Rp and output vector y ∈ Rq. Then x̃h ∈ Ra, x̃v ∈ Rb,x̂h ∈ Rc,x̂v ∈ Rb,

A1 ∈ Ra×a, A2 ∈ Ra×b, A3 ∈ Ra×c, A4 ∈ Rb×a, A5 ∈ Rb×b, A6 ∈ Rb×c, A7 ∈ Rc×a,

A8 ∈ R
c×b, A9 ∈ R

c×c, B1 ∈ R
a×p, B2 ∈ R

b×p, B3 ∈ R
c×p, C ∈ R

q×(a+b+c) and

D ∈ Rq×p. For a sensor network of size N1 × N2, n1 ∈ [0, N1 − 1], n2 ∈ [0, N2 − 1]

and t ∈ [0,∞).

5.2 Asymptotic Stability under Link Failure

In this work asymptotic stability of systems (5.3) and (5.5) is studied. Systems

(5.3) and (5.5) are stochastic systems. Therefore a stochastic notion of asymptotic

stability has to be employed. Mean square stability of systems (5.3) and (5.5) is studied

in this work. An important consideration that affects stability and the performance

of the systems is how the missing vectors are estimated by nodes. In this work it

is assumed that all estimates made are linear combinations of known state and input

116

vectors. It is also assumed that estimations are time invariant. Further it is assumed that

for an estimate made by node (n1, n2) at time t, the following is true.

1. Only state and input vectors from its neighboring nodes are used.

2. State and input vectors at time less than t− 1 are not used.

3. State vectors of its succeeding neighbors are not used.

Failure of a communication link between two nodes does not generate an additional

information routing burden on the sensor network due to condition (1). This condition

can be lifted if there is a means to acquire information from non neighboring nodes

when a communication link fails. Results derived below can be extended in a straight-

forward manner to the case, where conditions (1) and (2) are lifted but a finite number

of state and input vectors are included in the estimation. Condition (3) is necessitated

due to causality and computability considerations. At time t, any of the available vec-

tors from the set S(n1, n2, t), defined in (5.6), can be used by node (n1, n2) to estimate

the missing information.

S(n1, n2, t) = {x(n1, n2, t− 1),x(n1 − 1, n2, t− 1),x(n1, n2 − 1, t− 1),

x(n1 − 1, n2, t),x(n1, n2 − 1, t),u(n1, n2, t− 1),

u(n1 − 1, n2, t− 1),u(n1, n2 − 1, t− 1),u(n1 + 1, n2, t− 1),

u(n1, n2 + 1, t− 1),u(n1, n2, t),u(n1 − 1, n2, t),

u(n1, n2 − 1, t),u(n1 + 1, n2, t),u(n1, n2 + 1, t)} (5.6)

Since we are interested in asymptotic stability, the input to all the nodes is assumed

to be zero for t ≥ 0.

117

Definition 5.2.1 The system is said to be mean square stable if:

lim
t→∞

‖x(n1, n2, t)‖ = 0

∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1],where:

‖x(n1, n2, t)‖ =
√

E(x(n1, n2, t)Tx(n1, n2, t))

and the operator E denotes the expectation of a random variable. It is assumed that

x(−1, n2, t) = 0, x(n1,−1, t) = 0 and the only non-zero boundary conditions are

given by x(n1, n2, 0).

Mean square stability of the systems (5.3) and (5.5) depends on the statistical prop-

erties of random processes q1(n1, n2, t) and q2(n1, n2, t) which switch the system be-

tween its modes of operation. Statistical properties of the communication channel be-

tween nodes in the sensor network determine the statistical properties of the success-

failure process of data blocks, q1(n1, n2, t) and q2(n1, n2, t). A set of models that map

attributes such as transmission power and the distance between nodes to packet re-

ception probabilities is given in Cerpa et al. [2005]. A channel model that describes

path loss in near-to-ground communication links in wireless sensor networks is given

in Martinez-Sala et al. [2005]. First order Markovian chains have been proposed in

the literature to model received signal strength of fading radio communication links

Tan and Beaulieu [2000]; Turin and van Nobelen [1998]; Wang and Chang [1996]

Wang and Moayeri [1995]. A finite state first order Markovian model is proposed for

Rayleigh fading channels in Wang and Moayeri [1995]. Wang and Chang [1996] pro-

pose a mutual information metric to demonstrate that first order finite state Markov

chain models are sufficient to model slow fading channels. Higher order finite state

118

Markovian models for fading communication channels are examined in Babich et al.

[1997]; Turin and van Nobelen [1998]. Using a mutual information metric similar to

the one used in Wang and Chang [1996], a binary first order Markov model is demon-

strated to be sufficient to model the success failure process of data blocks over fading

communication links in Zorzi et al. [1995]. Methods to determine the parameters of

the Markov model are also discussed in Zorzi et al. [1995].

Therefore the success-failure process of data blocks can be assumed to be binary

Markovian. In order to make the analysis general enough to accommodate higher or-

der Makovian models for the success-failure process of data blocks, it is assumed that

processes q1(n1, n2, t) and q2(n1, n2, t) are Markovian processes of order N . There-

fore given {q1(n1, n2, t − d) : 0 < d ≤ N} and {q2(n1, n2, t − d) : 0 < d ≤ N},

q1(n1, n2, t) and q2(n1, n2, t) are independent of {q1(n1, n2, t − d) : d > N} and

{q2(n1, n2, t− d) : d > N}.

5.2.1 FM Model

For notational simplicity let:

Ahx̂n1n2
(n1−1, n2, t) +Bhûn1n2

(n1−1, n2, t) = L1
q2(n1,n2,t)

(n1, n2, t)

+K1
q2(n1,n2,t)

(n1, n2)x(n1, n2, t− 1)

(5.7)

Avx̂n1n2
(n1, n2−1, t) +Bvûn1n2

(n1, n2−1, t) = L2
q1(n1,n2,t)

(n1, n2, t)

+K2
q1(n1,n2,t)

(n1, n2)x(n1, n2, t− 1)

(5.8)

In the above, L1
q2(n1,n2,t)

(n1, n2, t) and L2
q1(n1,n2,t)

(n1, n2, t) denote linear combinations

of the elements of S(n1, n2, t) except x(n1, n2, t − 1). Subscripts q1(n1, n2, t) and

119

q2(n1, n2, t) are used to indicate that weights given to available vectors in the estimation

may depend upon random variables q1(n1, n2, t) and q2(n1, n2, t). Consider the set of

systems described by the state space model:

x(n1, n2, t) = Atx(n1, n2, t−1) + (1− q1(n1, n2, t))K
1
q2(n1,n2,t)

(n1, n2)x(n1, n2, t− 1)

+ (1− q2(n1, n2, t))K
2
q1(n1,n2,t)

(n1, n2)x(n1, n2, t− 1) (5.9)

where (n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]. Though the same notation as (5.3) is used

for state vectors, equation (5.9) describes a set of 1-D systems which is not as same

as the 3-D system (5.3). System matrices of systems described by (5.9) are subjected

to random variations. Such systems are called jump linear systems. Systems described

by (5.9) can have one, two or four modes of operation, and the mode of operation at

time t is determined by random variables q1(n1, n2, t) and q2(n1, n2, t). Stochastic sta-

bility of jump linear systems is examined in Bolzern et al. [2004]; Costa and Fragoso

[1993]; Feng et al. [1992]; Kubrusly and Costa [1985]; Tejada et al. [2005]and refer-

ences therein. A necessary and sufficient condition for mean square stability of dis-

crete time stochastic bilinear systems is presented in Kubrusly and Costa [1985]. In

Feng et al. [1992] a necessary and sufficient condition for mean square stability of con-

tinuous time Markovian jump linear systems is presented. Costa and Fragoso [1993]

give a necessary and sufficient condition for mean square stability of discrete time

Markovian jump linear systems.

Define an integer valued random process Ψ(n1, n2, t) such that:

Ψ(n1, n2, t) =

(t+1)N−1
∑

i=Nt

{2q2(n1, n2, i) + q1(n1, n2, i)}22i−2Nt (5.10)

Given Ψ(n1, n2, t), {q1(n1, n2, i) : Nt ≤ i < N(t + 1)} and {q2(n1, n2, i) : Nt ≤ i <

120

N(t + 1)} can be determined. It is easily seen that given Ψ(n1, n2, t− 1), Ψ(n1, n2, t)

is independent of {Ψ(n1, n2, t − d) : d ≥ 2}. Therefore Ψ(n1, n2, t) is a Markovian

random process. Furthermore Ψ(n1, n2, t) ∈ Z ∩ [0, 4N − 1]. Let the set of values

that Ψ(n1, n2, t) can take be denoted by SΨ(n1, n2) and the number of distinct values

Ψ(n1, n2, t) can take be denoted by NΨ(n1, n2). Let the transition probability matrix of

the Markovian random process Ψ(n1, n2, t) be P(n1, n2).

Lemma 5.2.1 Let:

AF
q1(n1,n2,t),q2(n1,n2,t)(n1, n2) = At + (1− q1(n1, n2, t))K

1
q2(n1,n2,t)(n1, n2)

+ (1− q2(n1, n2, t))K
2
q1(n1,n2,t)(n1, n2) (5.11)

AF
Ψ(n1,n2,t)(n1, n2) =

N(t+1)−1
∏

i=Nt

AF
q1(n1,n2,i),q2(n1,n2,i)(n1, n2) (5.12)

Then the system:

x̄(n1, n2, t+ 1) = AF
Ψ(n1,n2,t)(n1, n2)x̄(n1, n2, t) (5.13)

is a Markovian jump linear systems. Furthermore the system (5.13) is mean square

stable if and only if the system (5.9) is mean square stable.

Proof System (5.13) is switched between its modes of operation by the Markovian

random process Ψ(n1, n2, t). Hence it is a Markovian jump linear system. If the sys-

tems (5.9) and (5.13) have the same initial conditions state vector of system (5.13) at

time t is equal to the state vector of system (5.9) at time Nt. Hence the system (5.13)

is mean square stable if and only if the system (5.9) is mean square stable.

121

Lemma 5.2.2 If a system described by (5.9) is mean square stable ∃ µn1n2
> 0, λn1n2

∈

[0, 1) and kn1n2
∈ Z

+ such that ‖x(n1, n2, t)‖ < µn1n2
tkn1n2λt

n1n2
‖x(n1, n2, 0)‖.

Proof Assume that systems described by (5.9) are mean square stable. The system

(5.13) is also mean square stable. According to the proposition 8 in Costa and Fragoso

[1993] root mean square norm of the state vector of system (5.13) bounded as below:

‖x(n1, n2, t)‖ < µ̃n1n2
tk̃n1n2 λ̃t

n1n2
‖x(n1, n2, 0)‖

where µ̃n1n2
> 0, λ̃n1n2

∈ [0, 1) and k̃n1n2
∈ Z

+. If systems (5.9) and (5.13) have the

same initial conditions state vector of system (5.13) at time t is equal to the state vector

of system (5.9) at time Nt. Hence root mean square norm of the state vector of system

(5.9) has and upper bound of the form given above.

Theorem 5.2.1 The system (5.3) is mean square stable, if and only if systems described

by (5.9) are mean square stable ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Proof The proof of necessity is trivial. To prove sufficiency it is assumed that, ∀(n1, n2)

∈ [0, N1 − 1]× [0, N2 − 1] systems described by (5.9) are mean square stable. Since,

for (n1, n2) = (0, 0), the system described by (5.9) is mean square stable ∃ constants

µ00 > 0, λ00 ∈ [0, 1) and k00 ∈ Z
+ such that ‖x(0, 0, t)‖ < µ00t

k00λt
00‖x(0, 0, 0)‖.

Therefore:

lim
t→∞

‖x(0, 0, t)‖ = 0

122

x(0, 1, t) =

(

t−1
∏

i=0

AF
q1(0,1,i),q2(0,1,i)

(0, 1)

)

x(0, 1, 0)

+

t
∑

k=0

(

t−1
∏

i=k

AF
q1(0,1,i),q2(0,1,i)(0, 1)

)

q1(0, 1, k)Ahx(0, 0, k)

+

t−1
∑

k=0

(

t−1
∏

i=k+1

AF
q1(0,1,i),q2(0,1,i)(0, 1)

)

G1(0, 1, k)x(0, 0, k)

If the state vector x(0, 0, t) has not been received by node (0, 1) at time t it may use the

state vector x(0, 0, t−1) to estimate the former state vector if x(0, 0, t−1) is available.

Therefore x(0, 0, t − 1) may be used by node (0, 1) at time t, in computing x(0, 1, t)

depending upon random variables q1(0, 1, t) and q1(0, 1, t − 1). Matrix G1(0, 1, k) ∈

Rn×n is of the form:

G1(0, 1, k) = (1− q1(0, 1, k + 1))q1(0, 1, k)AhW
1(0, 1)

Here W 1(0, 1) ∈ Rn×n is the weight given to x(0, 0, k−1) by node (0, 1) in estimating

x(0, 1, k). We have:

‖x(0, 1, t)‖ ≤
∥

∥

∥

∥

∥

(

t−1
∏

i=0

AF
q1(0,1,i),q2(0,1,i)(0, 1)

)

x(0, 1, 0)

∥

∥

∥

∥

∥

+

t
∑

k=0

∥

∥

∥

∥

∥

(

t−1
∏

i=k

AF
q1(0,1,i),q2(0,1,i)(0, 1)

)

q1(0, 1, k)Ahx(0, 0, k)

∥

∥

∥

∥

∥

+

t−1
∑

k=0

∥

∥

∥

∥

∥

(

t−1
∏

i=k+1

AF
q1(0,1,i),q2(0,1,i)(0, 1)

)

G1(0, 1, k)x(0, 0, k)

∥

∥

∥

∥

∥

123

Since, for (n1, n2) = (0, 1), the system described by (5.9) is mean square stable:

‖x(0, 1, t)‖ ≤ µ01t
k01λt

01‖x(0, 1, 0)‖

+

t
∑

k=0

µ01(t− k)k01λt−k
01 µ00k

k00λk
00σ(Ah)‖x(0, 0, 0)‖

+

t
∑

k=0

µ01(t− k − 1)k01λt−k−1
01 µ00k

k00λk
00σ(G

1(0, 1, k))‖x(0, 0, 0)‖

Therefore:

lim
t→∞

‖x(0, 1, t)‖ = 0

Following the same reasoning it can be shown that ‖x(0,2, t)‖ tends to zero as time t

tends to infinity. Furthermore using the same reasoning iteratively it can be shown that,

∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]:

lim
t→∞

‖x(n1, n2, t)‖ = 0

Therefore the system (5.3) is mean square stable.

Mean square stability of the distributed 3-D system (5.3) is equivalent to that of a set

of 1-D systems described by (5.9).

Lemma 5.2.3 Let:

HF (n1, n2) = diagi∈SΨ(n1,n2)(A
F
i (n1, n2)⊗AF

i (n1, n2))

and

AF(n1, n2) = (PT (n1, n2)⊗ In2)HF (n1, n2)

Here HF (n1, n2) ∈ R
NΨ(n1,n2)n2×NΨ(n1,n2)n2

,AF ∈ R
NΨ(n1,n2)n2×NΨ(n1,n2)n2

and oper-

124

ator ⊗ denotes the Kronecker product of two matrices. System (5.13) is mean square

stable if and only if the spectral radius of the matrix AF(n1, n2), ρ(A
F(n1, n2)) < 1.

Proof The lemma 5.2.3 is a direct result of proposition 8 in Costa and Fragoso [1993].

Theorem 5.2.2 System (5.3) is mean square stable if and only if the spectral radius of

the matrix AF(n1, n2), ρ(A
F(n1, n2)) < 1 ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Proof The result follows directly from Lemma 5.2.1, Theorem 5.2.1 and Lemma

5.2.3.

For FM model based implementations checking the mean square stability of the sensor

network involves evaluating the spectral radius of a matrix or a set of matrices. Since

AF ∈ R
NΨ(n1,n2)n2×NΨ(n1,n2)n2

computational complexity of computing the spectral

radius is dependant on:

• n, the size of the state vector.

• N the order of the Markovian processes q1(n1, n2, t) and q2(n1, n2, t).

5.2.2 GR Model

For notational simplicity let:

x̂h(n1, n2, t) = L1
q2(n1,n2,t)

(n1, n2, t) +K1h
q2(n1,n2,t)

(n1, n2)x
h(n1, n2, t− 1)

+K1v
q2(n1,n2,t)

(n1, n2)x
v(n1, n2, t− 1)

+K1t
q2(n1,n2,t)

(n1, n2)x
t(n1, n2, t− 1)

x̂v(n1, n2, t) = L2
q1(n1,n2,t)

(n1, n2, t) +K2h
q1(n1,n2,t)

(n1, n2)x
h(n1, n2, t− 1)

+K2v
q1(n1,n2,t)(n1, n2)x

v(n1, n2, t− 1)

+K2t
q1(n1,n2,t)(n1, n2)x

t(n1, n2, t− 1) (5.14)

125

In the above, L1
q2(n1,n2,t)

(n1, n2, t) and L2
q1(n1,n2,t)

(n1, n2, t) denote linear combinations

of the elements of S(n1, n2, t) except x(n1, n2, t − 1). Subscripts q1(n1, n2, t) and

q2(n1, n2, t) indicate that weights given to available vectors in the estimation may de-

pend upon random variables q1(n1, n2, t) and q2(n1, n2, t).

Consider the set of systems described by the state space model:

x(n1, n2, t) = A9x(n1, n2, t−1)

+ (1− q1(n1, n2, t))A7K
1t
q2(n1,n2,t)

(n1, n2)x(n1, n2, t− 1)

+ (1− q2(n1, n2, t))A8K
2t
q1(n1,n2,t)(n1, n2)x(n1, n2, t− 1) (5.15)

where (n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Lemma 5.2.4 Let:

AR
q1(n1,n2,t),q2(n1,n2,t)(n1, n2) = A9 + (1− q1(n1, n2, t))A7K

1t
q2(n1,n2,t)(n1, n2)

+ (1− q2(n1, n2, t))A8K
2t
q1(n1,n2,t)

(n1, n2) (5.16)

AR
Ψ(n1,n2,t)(n1, n2) =

N(t+1)−1
∏

i=Nt

AR
q1(n1,n2,i),q2(n1,n2,i)(n1, n2) (5.17)

Then the system

x̄(n1, n2, t+ 1) = AR
Ψ(n1,n2,t)

(n1, n2)x̄(n1, n2, t) (5.18)

is a Markovian jump linear system. Furthermore the system (5.18) is mean square

stable if and only if the system (5.15) is mean square stable.

Proof The proof follows the same line of argument as that of lemma 5.2.1 and is

126

omitted for the sake of brevity.

Lemma 5.2.5 If a system described by (5.15) is mean square stable, ∃ constants

µn1n2
> 0, λn1n2

∈ [0, 1) and kn1n2
∈ Z

+ such that:

‖x(n1, n2, t)‖ < µn1n2
tkn1n2λt

n1n2
‖x(n1, n2, 0)‖

Proof The proof follows the same line of argument as that of lemma 5.2.2 and would

be omitted for the sake of brevity.

Theorem 5.2.3 The system (5.5) is mean square stable, if and only if systems described

by (5.15), are mean square stable ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Proof The proof is similar to the proof of Theorem 5.2.1.

Lemma 5.2.6 Let:

HR(n1, n2) = diagi∈SΨ(n1,n2)(A
R
i (n1, n2)⊗AR

i (n1, n2))

and

AR(n1, n2) = (PT (n1, n2)⊗ Ic2)H
R(n1, n2)

Here HR(n1, n2) ∈ R
NΨ(n1,n2)c2×NΨ(n1,n2)c2 and AR ∈ R

NΨ(n1,n2)c2×NΨ(n1,n2)c2 . Sys-

tem (5.18) is mean square stable if and only if the spectral radius of the matrix

AR(n1, n2), ρ(A
R(n1, n2)) < 1.

Proof The lemma 5.2.6 is a direct result of proposition 8 in Costa and Fragoso [1993].

Theorem 5.2.4 System (5.5) is mean square stable if and only if the spectral radius of

the matrix AR(n1, n2), ρ(A
R(n1, n2)) < 1, ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

127

Proof The result follows directly from Lemma 5.2.4, Theorem 5.2.3 and and Lemma

5.2.6.

For GR model based implementations checking the mean square stability of the sensor

network involves evaluating the spectral radius of a matrix or a set of matrices. Since

AR ∈ R
NΨ(n1,n2)c2×NΨ(n1,n2)c2 computational complexity of computing the spectral

radius is dependant on:

• c, the size of the temporal vector component.

• N the order of the Markovian processes q1(n1, n2, t) and q2(n1, n2, t).

5.2.3 Example

Stability of an implementation of a linear filter on a grid sensor network is discussed

to illustrate the theoretical results. Let the transfer function of the single input single

output filter be as follows:

H(z1, z2, zt) =
z−1
t

1− az−1
t − bz−1

1 z−1
t − cz−1

2 z−1
t

(5.19)

Success/failure processes of data blocks communicated between node (n1, n2) and its

immediate predecessors, q1(n1, n2, t) and q2(n1, n2, t) are assumed to be first order

Markovian processes. Furthermore it is assumed that random processes q1(n1, n2, t)

and q2(n1, n2, t) are independent. For n2 ∈ [0, N1 − 1], q1(0, n2, t) = 1 and for n1 ∈

[0, N1−1], q2(n1, 0, t) = 1. For n1 6= 0 let the transition probability from 0 to 1 be 1−p0

and transition probability from 1 to 0 be 1 − p1 for the random process q1(n1, n2, t).

Let the random process q2(n1, n2, t) have the same transition probabilities for n2 6= 0.

Random process Ψ(n1, n2, t) given by (5.10) is also first order Markovian. We have

128

Ψ(0, 0, t) = 3, Ψ(0, n2, t) ∈ {1, 3} for n2 6= 0, Ψ(n1, 0, t) ∈ {2, 3} for n1 6= 0 and

Ψ(n1, n2, t) ∈ {0, 1, 2, 3} for n1 6= 0 and n2 6= 0. Let:

P0 = 1

P1 =







p0 1− p0

1− p1 p1







P2 =







p0 1− p0

1− p1 p1







P3=



















p0p0 p0(1− p0) p0(1− p0) (1− p0)
2

p0(1− p1) p0p1 (1− p0)(1− p1) (1− p0)p1

(1− p1)p0 (1− p0)(1− p1) p0p1 (1− p0)p1

(1− p1)
2 p1(1− p1) p1(1− p1) p1p1



















Transition probability matrices for the random process Ψ(n1, n2, t) are given below.

P(0, 0) =P0

P(0, n2) =P1 for n2 6= 0

P(n1, 0) =P2 for n1 6= 0

P(n1, n2) =P3 for n1 6= 0 and n2 6= 0

129

5.2.3.1 FM Model Based Implementation

The input-output transfer function (5.19) can be realized using the FM model:

x(n1, n2, t) =







a 0

1 0






x(n1, n2, t− 1) +







0 b

0 0






x(n1 − 1, n2, t)

+







0 c

0 0






x(n1, n2 − 1, t) +







1

0






u(n1, n2, t)

y(n1, n2, t) =

[

1 0

]

x(n1, n2, t) (5.20)

where x(n1, n2, t) ∈ R2. Let:

K1
0(n1, n2) =







f1
11(0) f1

12(0)

f1
21(0) f1

22(0)







K1
1(n1, n2) =







f1
11(1) f1

12(1)

f1
21(1) f1

22(1)







K2
0(n1, n2) =







f2
11(0) f2

12(0)

f2
21(0) f2

22(0)







K2
1(n1, n2) =







f2
11(1) f2

12(1)

f2
21(1) f2

22(1)






(5.21)

130

∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]. Then from (5.11):

AF
0,0(n1, n2) =







a+ f1
11(0) + f2

11(0) f1
12(0) + f2

12(0)

1 + f1
21(0) + f2

21(0) f1
22(0) + f2

22(0)







AF
0,1(n1, n2) =







a+ f1
11(1) f1

12(1)

1 + f1
21(1) f1

22(1)







AF
1,0(n1, n2) =







a+ f2
11(1) f2

12(1)

1 + f2
21(1) f2

22(1)







AF
1,1(n1, n2) =







a 0

1 0







for (n1, n2) ∈ [0, N1 − 1] × [0, N2 − 1]. From (5.12), AF
0 (n1, n2) = AF

0,0(n1, n2),

AF
1 (n1, n2) = AF

0,1(n1, n2), A
F
2 (n1, n2) = AF

1,0(n1, n2) and AF
3 (n1, n2) = AF

1,1(n1, n2).

HF
0 = AF

3 (n1, n2)⊗AF
3 (n1, n2)

HF
1 = diagi∈{1,3}(A

F
i (n1, n2)⊗AF

i (n1, n2))

HF
2 = diagi∈{2,3}(A

F
i (n1, n2)⊗AF

i (n1, n2))

HF
3 = diagi∈{0,1,2,3}(A

F
i (n1, n2)⊗AF

i (n1, n2))

AF (0, 0) = (PT
0 ⊗ I4)H

F
0

AF (0, n2) = (PT
1 ⊗ I4)H

F
1 for n2 6= 0

AF (n1, 0) = (PT
2 ⊗ I4)H

F
2 for n1 6= 0

AF (n1, n2) = (PT
3 ⊗ I4)H

F
3 for n1 6= 0 and n2 6= 0

System (5.20) is mean square stable under link failure if and only if ρ(AF(n1, n2)) < 1,

∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

131

5.2.3.2 GR Model Based Implementation

The input-output transfer function (5.19) can be realized using the GR model:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













0 0 a3

0 0 a6

a7 a8 a9

























xh(n1, n2, t)

xv(n1, n2, t)

xt(n1, n2, t)













+













0

0

1













u(n1, n2, t)

y(n1, n2, t) =[0 0 1]x(n1, n2, t) (5.22)

where a9 = a, a3a7 = b, a6a8 = c and x(n1, n2, t) ∈ R
3. Let K1t

0 (n1, n2) = r111(0),

K1t
1 (n1, n2) = r111(1), K

2t
0 (n1, n2) = r211(0) and K2t

1 (n1, n2) = r211(1), ∀(n1, n2) ∈

[0, N1 − 1]× [0, N2 − 1]. Then from (5.16):

AR
0,0(n1, n2) = a9 + a7r

1
11(0) + a8r

2
11(0)

AR
0,1(n1, n2) = a9 + a7r

1
11(1)

AR
1,0(n1, n2) = a9 + a8r

2
11(1)

AR
1,1(n1, n2) = a9

for (n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]. From (5.17), AR
0 (n1, n2) = AR

0,0(n1, n2),

AR
1 (n1, n2) = AR

0,1(n1, n2), A
R
2 (n1, n2) = AR

1,0(n1, n2) and AR
3 (n1, n2) = AR

1,1(n1, n2).

HR
3 = AR

3 (n1, n2)⊗AR
3 (n1, n2)

HR
2 = diagi∈{2,3}(A

R
i (n1, n2)⊗AR

i (n1, n2))

HR
1 = diagi∈{1,3}(A

R
i (n1, n2)⊗AR

i (n1, n2))

HR
0 = diagi∈{0,1,2,3}(A

R
i (n1, n2)⊗AR

i (n1, n2))

132

AR(0, 0) = (PT
0 ⊗ I4)H

R
0

AR(0, n2) = (PT
1 ⊗ I4)H

R
1 for n2 6= 0

AR(n1, 0) = (PT
2 ⊗ I4)H

R
2 for n1 6= 0

AR(n1, n2) = (PT
3 ⊗ I4)H

R
3 for n1 6= 0 and n2 6= 0

System (5.22) is mean square stable under link failure if and only if ρ(AR(n1, n2)) <

1, ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

5.3 Models for 3-D Systems Under Node Failure

Node failure can be due to intrusion, faults in the node or battery exhaustion. Once

a fault has occurred the faulty node may or may not be repaired. In this work the cases

where a faulty node is repaired and not repaired is treated separately.

It is assumed that if the node (n1, n2) has failed at time slot t, it is unable to transmit

any information in the time slot . Let q(n1, n2, t) be a random processes such that:

q(n1, n2, t) =











0 node (n1, n2) failed at time t

1 otherwise
(5.23)

Random process q(n1, n2, t) is a success-failure process of node (n1, n2) at time t.

5.3.1 Permanent Node Failure

When there are node failures in the sensor network, at a given time, only a subset

of the originally deployed sensor nodes may be operational. If node failures are perma-

nent, number of nodes operational at a given time t is a non increasing function of t.

133

Depending upon how failures are handled by the sensor network system matrices and

interconnections between nodes may change after every new node failure. Furthermore

it is reasonable to assume that as time tends to infinity the probability of at least one

node remaining functional tends to zero. Therefore it is impossible to adopt the notion

of asymptotic stability in the conventional sense to sensor networks with permanent

node failures. The following notion of stability is introduced for sensor networks with

permanent node failure.

Definition 5.3.1 The sensor network is said to be asymptotically stable when configu-

ration is frozen in time if:

lim
t→∞

‖x(n1, n2, t)‖2 = 0 ∀(n1, n2) ∈ O(t0)

when the set of currently functional nodes remain unchanged. Here ‖x(n1, n2, t)‖2 =
√

x(n1, n2, t)Tx(n1, n2, t), t0 is the current time and O(t0) denotes the set of nodes

operational at time t0. There are no nodes along n1 = −1 or n2 = −1. Therefore

it is assumed that x(−1, n2, t) = 0, x(n1,−1, t) = 0. The only non-zero boundary

conditions are given by x(n1, n2, 0).

To determine the asymptotic stability of a sensor network according to the above defini-

tion the set of operational nodes is fixed to be invariant. Therefore the system of which

asymptotic stability when configuration is frozen in time has to be determined becomes

a deterministic system.

5.3.1.1 FM Model under Permanent Node Failure

When node (n1, n2) does not receive state or input vectors required for computation,

it estimates the missing vectors. Let x̂n1n2
(n1− i, n2− j, t) and ûn1n2

(n1− i, n2− j, t)

134

be estimates of x(n1−i, n2−j, t) and u(n1−i, n2−j, t) made by node (n1, n2) at time

t. The FM model for distributed 3-D systems under permanent node failure is given by:

x(n1, n2, t) = q(n1 − 1, n2, t){Ahx(n1−1, n2, t) +Bhu(n1−1, n2, t)}

+ (1− q(n1 − 1, n2, t)){Ahx̂n1n2
(n1−1, n2, t) +Bhûn1n2

(n1−1, n2, t)}

+ q(n1, n2 − 1, t){Avx(n1, n2−1, t) +Bvu(n1, n2−1, t)}

+ (1− q(n1, n2 − 1, t)){Avx̂n1n2
(n1, n2−1, t) +Bvûn1n2

(n1, n2−1, t)}

+Atx(n1, n2, t−1) +Btu(n1, n2, t−1)

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t) (5.24)

where (n1, n2) ∈ O(t). Dimensions of vectors and matrices in (5.24) are the same as

those in (5.3).

5.3.1.2 GR Model under Permanent Node Failure

Input vectors of other nodes are not required for computations and hence not re-

quired to be estimated. Let estimates of xh(n1, n2, t) and xv(n1, n2, t) made by node

(n1, n2) at time t be denoted by x̂h(n1, n2, t) and x̂v(n1, n2, t) respectively. Let:

x̃h(n1, n2, t) = q(n1 − 1, n2, t)x
h(n1, n2, t) + (1− q(n1 − 1, n2, t))x̂

h(n1, n2, t)

x̃v(n1, n2, t) = q(n1, n2 − 1, t)xv(n1, n2, t) + (1− q(n1, n2 − 1, t))x̂v(n1, n2, t)

(5.25)

135

The GR model for distributed 3-D systems under link failure is given by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























x̃h(n1, n2, t)

x̃v(n1, n2, t)

xt(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx̃(n1, n2, t) +Du(n1, n2, t) (5.26)

where x̃(n1, n2, t) = (x̃hT

(n1, n2, t), x̃
vT (n1, n2, t),x

tT (n1, n2, t))
T .

Here (n1, n2) ∈ O(t). Dimensions of vectors and matrices in (5.26) are the same as

those in (5.5).

5.3.1.3 Asymptotic Stability

How the missing vectors are estimated by nodes affects stability of the system. All

the neighbors of a node could be non-functional after a certain time. Nodes from which

information is gathered for estimation, once a neighboring node fails, can’t be restricted

to immediate neighbors of a node. Sensor networks with permanent node failure may

require schemes to reconfigure the interconnections between nodes once a node failure

is detected. It is assumed that all estimates made are linear combinations of known state

and input vectors. It is further assumed that for a estimation made by node (n1, n2) at

time t:

1. A node does not use its state and input vectors at times less than t− 1.

2. State vectors of its succeeding nodes are not used.

Results derived in the following can be extended readily to the case where state and

input vectors at a finite number of previous time slots are used for the estimation. Con-

dition 2 is necessitated due to causality and computability considerations.

136

5.3.1.4 FM Model

For notational simplicity let:

Ahx̂n1n2
(n1−1, n2, t) +Bhûn1n2

(n1−1, n2, t) = L1
q(n1,n2−1,t)(n1, n2, t)

+K1
q(n1,n2−1,t)(n1, n2)x(n1, n2, t− 1)

(5.27)

Avx̂n1n2
(n1, n2−1, t) +Bvûn1n2

(n1, n2−1, t) = L2
q(n1−1,n2,t)

(n1, n2, t)

+K2
q(n1−1,n2,t)

(n1, n2)x(n1, n2, t− 1)

(5.28)

In the above, L1
q(n1,n2−1,t)(n1, n2, t) and L2

q(n1−1,n2,t)
(n1, n2, t) denote linear combina-

tions of all the vectors used by node (n1, n2) for the estimation except x(n1, n2, t− 1).

Subscripts q(n1−1, n2, t) and q(n1, n2−1, t) are used to indicate that weights given to

the vectors used in the estimation may depend upon random variables q(n1 − 1, n2, t)

and q(n1, n2 − 1, t).

Theorem 5.3.1 The system (5.24) is asymptotically stable when configuration is frozen

in time, if and only if ρ(AF (n1, n2)) < 1 ∀(n1, n2) ∈ O(t) where:

AF (n1, n2) = At + (1− q(n1, n2 − 1, t))K2
q(n1−1,n2,t)

(n1, n2)

+ (1− q(n1 − 1, n2, t))K
1
q(n1,n2−1,t)(n1, n2) (5.29)

Proof Proof of necessity is trivial. In order to prove sufficiency it is assumed that

137

ρ(AF (n1, n2)) < 1, ∀(n1, n2) ∈ O(t). Let:

O1(t) = {(n1, n2) : (n1, n2) ∈ O(t) and node (n1, n2)

doesn′t have preceeding nodes}

Since nodes in O1(t) do not have predecessors to receive state vectors from, state tran-

sition of nodes in the aforementioned set is described by the following equation.

x(n1, n2, t+ 1) = AF (n1, n2)x(n1, n2, t)

Therefore:

lim
t→∞

‖x(n1, n2, t)‖2 = 0 ∀(n1, n2) ∈ O1(t)

Let:

O2(t) = {(n1, n2) : (n1, n2) ∈ O(t) and all preceeding

nodes of node (n1, n2) are in O1(t)}

Nodes in O2(t) receive state vectors, form nodes in O1(t), which are used in computing

their own state vectors. But state vectors of nodes in O1(t) decay exponentially to origin

as time t tends to infinity. Systems running on nodes in O2(t) are asymptotically stable

and driven by exponentially decaying inputs. Therefore:

lim
t→∞

‖x(n1, n2, t)‖ = 0 ∀(n1, n2) ∈ O2(t)

138

By using the same argument iteratively it can be shown that:

lim
t→∞

‖x(n1, n2, t)‖ = 0 ∀(n1, n2) ∈ O(t)

This completes the proof.

5.3.1.5 GR Model

For notational simplicity let:

x̂h(n1, n2, t) = L1
q(n1,n2−1,t)(n1, n2, t) +K1h

q(n1,n2−1,t)(n1, n2)x
h(n1, n2, t− 1)

+K1v
q(n1,n2−1,t)(n1, n2)x

v(n1, n2, t− 1)

+K1t
q(n1,n2−1,t)(n1, n2)x

t(n1, n2, t− 1)

x̂v(n1, n2, t) = L2
q(n1−1,n2,t)

(n1, n2, t) +K2h
q(n1−1,n2,t)

(n1, n2)x
h(n1, n2, t− 1)

+K2v
q(n1−1,n2,t)

(n1, n2)x
v(n1, n2, t− 1)

+K2t
q(n1−1,n2,t)

(n1, n2)x
t(n1, n2, t− 1) (5.30)

In the above, L1
q(n1−1,n2,t)(n1, n2, t) and Lq(n1,n2−1,t)(n1, n2, t) denote linear combina-

tions of all the vectors used by node (n1, n2) for the estimation except x(n1, n2, t− 1).

Subscripts q(n1−1, n2, t) and q(n1, n2−1, t) indicate that weights given to vectors used

in the estimation may depend upon random variables q(n1−1, n2, t) and q(n1, n2−1, t).

Theorem 5.3.2 The system (5.26) is asymptotically stable when configuration is frozen

139

in time if and only if ρ(AR(n1, n2)) < 1, ∀(n1, n2) ∈ O(t) where:

AR(n1, n2) = A9 + (1− q(n1 − 1, n2, t))A7K
1t
q(n1,n2−1,t)(n1, n2)

+ (1− q(n1, n2 − 1, t))A8K
2t
q(n1−1,n2,t)(n1, n2) (5.31)

Proof The proof is similar to the proof of Theorem 5.3.1 and would be omitted for the

sake of brevity.

5.3.1.6 Example

Let the transfer function to be implemented be given by (5.19). FM model (5.20)

is used to realize the transfer function. Let K1
0(n1, n2),K

1
1(n1, n2),K

2
0(n1, n2) and

K2
1(n1, n2) be given by (5.21). Then from (5.29):

AF (n1, n2) =

























































































































a 0

1 0






+K1

0(n1, n2) +K2
0(n1, n2)

q(n1 − 1, n2, t) = 0

q(n1, n2 − 1, t) = 0







a 0

1 0






+K1

1

q(n1 − 1, n2, t) = 1

q(n1, n2 − 1, t) = 0







a 0

1 0






+K2

1

q(n1 − 1, n2, t) = 0

q(n1, n2 − 1, t) = 1







a 0

1 0







q(n1 − 1, n2, t) = 1

q(n1, n2 − 1, t) = 1

System (5.20) is asymptotically stable when configuration is frozen in time if and only

if ρ(AF(n1, n2)) < 1, ∀(n1, n2) ∈ O(t).

Let the GR model (5.22) be used to realize the transfer function. Let K1t
0 (n1, n2) =

140

r111(0), K
1t
1 (n1, n2) = r111(1), K

2t
0 (n1, n2) = r211(0) and K2t

1 (n1, n2) = r211(1), ∀(n1, n2) ∈

[0, N1 − 1]× [0, N2 − 1]. Then from (5.31):

AR(n1, n2) =































































































a9 + a7r
1
11(0) + a8r

2
11(0)

q(n1 − 1, n2, t) = 0

q(n1, n2 − 1, t) = 0

a9 + a8r
2
11(1)

q(n1 − 1, n2, t) = 1

q(n1, n2 − 1, t) = 0

a9 + a7r
1
11(1)

q(n1 − 1, n2, t) = 0

q(n1, n2 − 1, t) = 1

a9
q(n1 − 1, n2, t) = 1

q(n1, n2 − 1, t) = 1

System (5.22) is asymptotically stable when configuration is frozen in time if and only

if ρ(AR(n1, n2)) < 1, ∀(n1, n2) ∈ O(t).

5.3.2 Temporary Node Failure

Node failure in a sensor network may be temporary because either non functional

nodes are repaired or nodes start to work again spontaneously. For example in a sensor

network powered by solar power, sensor nodes that ceased to function due to lack of

power may start to work again once batteries are recharged. The notion of asymptotic

stability as defined in definition 5.2.1 can be used for sensor networks with temporary

node failure.

5.3.2.1 FM Model under Temporary Node Failure

Let x̂n1n2
(n1 − i, n2 − j, t− k), ûn1n2

(n1 − i, n2 − j, t− k) be estimates of x(n1 −

i, n2 − j, t− k) and u(n1 − i, n2 − j, t− k) made by node (n1, n2) at time t. The FM

141

model for distributed 3-D systems under temporary node failure is given by:

x(n1, n2, t) = q(n1 − 1, n2, t){Ahx(n1−1, n2, t) +Bhu(n1−1, n2, t)}

+ (1− q(n1 − 1, n2, t)){Ahx̂n1n2
(n1−1, n2, t) +Bhûn1n2

(n1−1, n2, t)}

+ q(n1, n2 − 1, t){Avx(n1, n2−1, t) +Bvu(n1, n2−1, t)}

+ (1− q(n1, n2 − 1, t)){Avx̂n1n2
(n1, n2−1, t) +Bvûn1n2

(n1, n2−1, t)}

+ q(n1, n2, t− 1){Atx(n1, n2, t−1) +Btu(n1, n2, t−1)}

+ (1− q(n1, n2, t− 1)){Atx̂(n1, n2, t−1) +Btû(n1, n2, t−1)}

y(n1, n2, t) = Cx(n1, n2, t) +Du(n1, n2, t) (5.32)

Dimensions of vectors and matrices in (5.32) are the same as those in (5.3). An

important difference compared to the other two cases is that, nodes may have to estimate

their own state and input vectors at the last time slot they were not functioning, when

they start to function again.

5.3.2.2 GR Model under Temporary Node Failure

Input vectors of other nodes are not required for computations and hence not re-

quired to be estimated. Let estimates of xh(n1, n2, t), xv(n1, n2, t) and xt(n1, n2, t)

made by node (n1, n2) be denoted by x̂h(n1, n2, t), x̂
v(n1, n2, t) and x̂t(n1, n2, t) re-

spectively. Let:

x̃h(n1, n2, t) = q(n1 − 1, n2, t)x
h(n1, n2, t) + (1− q(n1 − 1, n2, t))x̂

h(n1, n2, t)

x̃v(n1, n2, t) = q(n1, n2 − 1, t)xv(n1, n2, t) + (1− q(n1, n2 − 1, t))x̂v(n1, n2, t)

x̃t(n1, n2, t) = q(n1, n2, t− 1)xt(n1, n2, t) + (1− q(n1, n2, t− 1))x̂t(n1, n2, t)

(5.33)

142

The GR model for distributed 3-D systems under link failure is given by:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













=













A1 A2 A3

A4 A5 A6

A7 A8 A9

























x̃h(n1, n2, t)

x̃v(n1, n2, t)

x̃t(n1, n2, t)













+













B1

B2

B3













u(n1, n2, t)

y(n1, n2, t) =Cx̃(n1, n2, t) +Du(n1, n2, t) (5.34)

where x̃(n1, n2, t)=(x̃hT

(n1, n2, t), x̃
vT(n1, n2, t), x̃

tT(n1, n2, t))
T .

Dimensions of vectors and matrices in (5.34) are the same as those in (5.5). Unlike in

the other two cases nodes may have to estimate their own temporal vector component,

when they start to function again after having been non-functional.

5.3.2.3 Asymptotic Stability

When a node restarts to function it has to estimate is own state vector or temporal

state vector component depending upon the state space model used. State vectors from

succeeding nodes in the sensor networks may be used for the estimation. Causality and

computability of the system must be considered if state vectors from succeeding nodes

are used to compute the state vector of a node. Using state vectors from succeeding

nodes for estimating the state vector of itself has far reaching implications on asymp-

totic stability of the system. Conditions on stability are not available for this case at the

time of writing. The case where nodes abide by conditions (1) and (2) given in 5.3.1.3

in estimations is studied in the following treatise.

Let P (n1, n2, t0, t0 + t) denote the probability that node (n1, n2) has not failed be-

tween time t0 and t0 + t. It is assumed that node failure is statistically independent of

the initial conditions of the sensor network. Spectral norm of a square matrix M is

denoted by σ(M).

143

5.3.2.4 FM Model

Lemma 5.3.1 Consider the system described by:

x(n1, n2, t) = At
tx(n1, n2, 0)

i=t
∏

i=0

q(n1, n2, i) (5.35)

If ∃ µn1n2
> 0, λn1n2

∈ [0, γ] where 0 ≤ γ < 1 and kn1n2
∈ Z

+ such that:

σ(4

√

P (n1, n2, 0, t)A
t
t) ≤ µn1n2

tkn1n2λt
n1n2

(5.36)

∀ t, then

‖x(n1, n2, t)‖ ≤ µn1n2
tkn1n2λt

n1n2
‖x(n1, n2, 0)‖

Proof

‖x(n1, n2, t)‖ =E{x(n1, n2, 0)
T (At

t)
TAt

tx(n1, n2, 0)

i=t
∏

i=0

q(n1, n2, i)

i=t
∏

i=0

q(n1, n2, i)}

Since node failure is assumed to be statistically independent of initial conditions of the

144

sensor network, we have:

‖x(n1, n2, t)‖ = E{x(n1, n2, 0)
T (At

t)
TAt

tx(n1, n2, 0)}

× E {
i=t
∏

i=0

q(n1, n2, i)

i=t
∏

i=0

q(n1, n2, i)}

= E{x(n1, n2, 0)
T
√

P (n1, n2, 0, t)(A
t
t)

T

×
√

P (n1, n2, 0, t)A
t
tx(n1, n2, 0)}

≤ E{x(n1, n2, 0)
T 4

√

P (n1, n2, 0, t)(A
t
t)

T

× 4

√

P (n1, n2, 0, t)A
t
tx(n1, n2, 0)}

≤ µn1n2
tkn1n2λt

n1n2
‖x(n1, n2, 0)‖

Theorem 5.3.3 The system (5.32) is mean square stable if: ∃ µn1n2
> 0, λn1n2

∈ [0, γ]

where 0 ≤ γ < 1 and kn1n2
∈ Z

+ such that:

σ(4

√

P (n1, n2, t0, t0 + t)At
t) ≤ µn1n2

tkn1n2λt
n1n2

(5.37)

∀ t and ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Proof In order to prove sufficiency let condition (5.37) be satisfied ∀(n1, n2) ∈ [0, N1−

1]× [0, N2 − 1]. We have:

x(0, 0, t) = At
tx(0, 0, 0)

i=t
∏

i=0

q(0, 0, i)

Due to Lemma 5.3.1:

‖x(0, 0, t)‖ ≤ µ00t
k00λt

00‖x(0, 0, 0)‖

145

Therefore:

lim
t→∞

‖x(0, 0, t)‖ = 0

If the node (1, 0) was non-functional at time t − 1 and starts to function at time t, that

is if q(1, 0, t − 1) = 0 and q(1, 0, t) = 1, it uses state vector of node (0.0) at time

t to estimate its own state vector at time t − 1. Let the weight given to x(0, 0, t) in

estimating x(1, 0, t − 1) be W 1(0, 1) ∈ Rn. State vector of node (1, 0) at time t is

given by:

x(1, 0, t) = At
tx(1, 0, 0)

i=t
∏

i=0

q(1, 0, i) +
t
∑

i=0

At−i
t Ahx(0, 0, i)

j=t
∏

j=i

q(1, 0, j)

+

t−1
∑

i=0

At−i
t W 1(0, 1)x(0, 0, i)(1− q(1, 0, i− 1))

j=t
∏

j=i

q(1, 0, j)

‖x(1, 0, t)‖ ≤ ‖At
tx(1, 0, 0)

i=t
∏

i=0

q(1, 0, i)‖+
t
∑

i=0

‖At−i
t Ahx(0, 0, i)

j=t
∏

j=i

q(1, 0, j)‖

+

t−1
∑

i=0

‖At−i
t W 1(0, 1)x(0, 0, i)(1− q(1, 0, i− 1))

j=t
∏

j=i

q(1, 0, j)‖

146

Since node failure is assumed to be statistically independent of the initial conditions:

‖At−i
t Ahx(0, 0, i)

j=t
∏

j=i

q(1, 0, j)‖ ≤ ‖At−i
t AhA

i
tx(0, 0, 0)‖

× E{
j=i
∏

j=0

q(0, 0, i)

j=t
∏

j=i

q(1, 0, j)}

≤ ‖At−i
t AhA

i
tx(0, 0, 0)‖

×
√

P (0, 0, 0, i)
√

P (1, 0, i, t)

≤ µ10(t− i)k10λt−i
10 σ(Ah)µ00i

k00λi
00‖x(0, 0, 0)‖

Therefore:

‖x(1, 0, t)‖ ≤ µ10t
k10λt

10‖x(1, 0, 0)‖

+

t
∑

i=0

µ10(t− i)k10λt−i
10 σ(Ah)µ00i

k00λi
00‖x(0, 0, 0)‖

+

t−1
∑

i=0

µ10(t− i)k10λt−i
10 σ(W 1(0, 1))µ00i

k00λi
00‖x(0, 0, 0)‖

It is easily seen that:

lim
t→∞

‖x(1, 0, t)‖ = 0

By using the same argument iteratively is can be shown that:

lim
t→∞

‖x(n1, n2, t)‖ = 0

∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1].

Corollary I f the system (5.32) is asymptotically stable when there are no node fail-

147

ures it is mean square stable under temporary node failure.

Proof If the system is asymptotically stable condition (5.37) is satisfied ∀(n1, n2) ∈

[0, N1 − 1]× [0, N2 − 1]. Hence the system (5.32) is mean square stable.

5.3.2.5 GR Model

Lemma 5.3.2 Consider the system described by:

xt(n1, n2, t) = At
9x

t(n1, n2, 0)
i=t
∏

i=0

q(n1, n2, i) (5.38)

If ∃ µn1n2
> 0, λn1n2

∈ [0, γ] where 0 ≤ γ < 1 and kn1n2
∈ Z

+ such that:

σ(4

√

P (n1, n2, t0, t0 + t)At
9) ≤ µn1n2

tkn1n2λt
n1n2

(5.39)

∀ t then

‖xt(n1, n2, t)‖ ≤ µn1n2
tkn1n2λt

n1n2
‖xt(n1, n2, 0)‖

Proof The proof is similar to the proof of Lemma 5.3.1.

Theorem 5.3.4 The system (5.34) is mean square stable, if ∃ µn1n2
> 0, λn1n2

∈ [0, γ]

where 0 ≤ γ < 1 and kn1n2
∈ Z

+ such that:

σ(4

√

P (n1, n2, t0, t0 + t)At
9) < µn1n2

tkn1n2λt
n1n2

(5.40)

∀ t and ∀(n1, n2) ∈ [0, N1 − 1]× [0, N2 − 1]

Proof The proof is similar to the proof of Theorem 3.1.

148

Corollary 2 If the system (5.34) is asymptotically stable when there are no node

failures it is mean square stable under temporary node failure.

Proof If the system is asymptotically stable condition (5.40) is satisfied ∀(n1, n2) ∈

[0, N1 − 1]× [0, N2 − 1]. Hence the system (5.34) is mean square stable.

5.3.3 Example

Let the transfer function (5.19) be realized using the FM model (5.20) and GR

model (5.22) on a sensor network. Let the probability of node (n1, n2) not failing

until time t, P (n1, n2, t0, t + t0) = γt where γ ∈ (0, 1). In the FM model based

implementation:

σ(4

√

P (n1, n2, t0, t + t0)A
t
t) = (4

√
γa)t

Therefore the system (5.20) is mean square stable if 4
√
γa < 1. In the GR model based

implementation:

σ(4

√

P (n1, n2, t0, t+ t0)A
t
t) = (4

√
γa9)

t

Therefore the system (5.22) is mean square stable if 4
√
γa9 < 1.

5.4 Input-Output Stability

Input-output stability of 3-D systems implemented on grid sensor networks with

node and link failure and its relationship with the internal stability of the same is stud-

ied in this section. A stochastic notion of input output stability is employed due to

randomness of systems under consideration.

Definition 5.4.1 The sensor network is said to be bounded input bounded output stable

in the mean square sense (BIBOMS), if for an input with a bounded mean square value

output at every node has a bounded mean square value.

149

Input-output stability of grid sensor networks under link failure and node failure are

treated separately in this work.

5.4.1 Input-Output Stability Under Link Failure

It is assumed that link failure is statistically independent of the input signal.

Lemma 5.4.1 Let the output at node (n1, n2) at time t due to the input at node (n1
1, n

1
2)

at time t1 be denoted by y(n1

1
,n1

2
,t1)(n1, n2, t). If the sensor network is asymptotically

stable in the mean square sense ∃ µn1n2
> 0, λn1n2

∈ [0, 1) and kn1n2
∈ Z

+ such that

‖y(n1

1
,n1

2
,t1)(n1, n2, t)‖ < µn1n2

(t− t1)kn1n2λt−t1

n1n2
‖u(n1

1, n
1
2, t

1)‖.

Proof For implementations using the FM model the result follows directly from Lemma

5.2.2 and Theorem 5.2.1. For GR model based implementations the result follows di-

rectly from Lemma 5.2.5 and Theorem 5.2.3.

Theorem 5.4.1 Systems (5.3) and (5.5) are BIBOMS if they are mean square stable:

Proof Systems (5.3) and (5.5) are linear. Hence:

y(n1, n2, t) =

n1
∑

i=0

n2
∑

j=0

t
∑

k=−∞

y(i,j,k)(n1, n2, t) (5.41)

‖y(n1, n2, t)‖ ≤
n1
∑

i=0

n2
∑

j=0

t
∑

k=−∞

‖y(i,j,k)(n1, n2, t)‖

≤
n1
∑

i=0

n2
∑

j=0

t
∑

k=−∞

µn1n2
(t− k)kn1n2λt−k

n1n2
‖u(i, j, k)‖

Since ‖u(i, j, k)‖ is bounded so is ‖y(i, j, k)‖. This completes the proof.

150

5.4.2 Input-Output Stability Under Node Failure

Input output stability under permanent and temporary node failure is treated sepa-

rately in this work.

5.4.2.1 Under Permanent Node Failure

Due to the same considerations that led to adopting a notion of asymptotic stability

when configuration is frozen in time, input-output stability when configuration is frozen

in time is studied for sensor networks.

Definition 5.4.2 The sensor network is said to be bounded input bounded output stable

when configuration is frozen in time, if for a bounded input the output is bounded when

the set of currently operational nodes remain unchanged.

To determine the BIBO stability of a sensor network according to the above definition

the set of operational nodes is fixed to be invariant. Therefore the system of which

BIBO stability when configuration is frozen in time has to be determined becomes a

deterministic system.

Theorem 5.4.2 Systems (5.24) and (5.26) are BIBO stable when configuration is

frozen in time if they are are asymptotically stable in the current mode of operation.

Proof The result follows directly from the well know result in system theory, that if a

linear time invariant system described by a state space model is asymptotically stable it

is also BIBO stable.

5.4.2.2 Under Temporary Node Failure

Theorem 5.4.3 System (5.32) and (5.34) are BIBOMS if conditions (5.37) and (5.40)

are satisfied respectively.

151

Proof Proof is similar to the proof of Theorem 5.3.3 and is omitted for the sake of

brevity.

152

CHAPTER 6

EXAMPLE

Algorithms performing linear operations on sensor measurements or functions of

them are used in a wide variety of applications. Therefore the approach proposed in this

work is applicable in many distributed signal processing applications. Implementation

of a distributed Kalman filter and a contaminant front detector will be discussed to

illustrate the state space model based approach proposed in this work.

6.1 Distributed Kalman Filtering

Let the evolution of a dynamic process driven by zero mean Gaussian noise be

described by:

x(t + 1) = Ax(t) +Bw(t) (6.1)

where A ∈ Rn×n and B ∈ Rn×p. State vector x(t) ∈ Rn and input w(t) ∈ Rp is

drawn from a zero mean multivariate white Gaussian noise process. Let

E{w(t)w(t)T} = Q(t). Initial state x(0) is Gaussian distributed with mean zero and

covariance matrix P (0).

The output of the dynamic system is measured by sensor nodes in a grid sensor

153

network of size N1 ×N2. Let the sensing model at node (n1, n2) be given by:

y(n1, n2, t) = H(t)x(t) + v(n1, n2, t) (6.2)

where H(n1, n2, t) ∈ Rm×n and output vector y(n1, n2, t) ∈ Rm. The measurement at

node (n1, n2) is corrupted by zero mean white Gaussian noise v(n1, n2, t) with covari-

ance matrix R(t). Noise v(n1, n2, t) at different nodes is assumed to be uncorrelated.

Measurements made by nodes are linearly related to the state of the dynamic process

by the matrix H(t) which is independent of the node.

The objective is to estimate, at each node, the state of the dynamic process in col-

laboration with other nodes in the sensor network. The collaboration strategy that can

be used depends on inter-node communication allowed by the sensor network. Let

inter-node communication be restricted such that:

1. Node (n1, n2) can communicate only with nodes (n1−1, n2), (n1, n2−1), (n1+

1, n2) and (n1, n2 + 1).

2. There is no information relaying over multiple hops in a single time slot.

The DKF problem is to estimate, at each node, the state of the dynamic process

x(t) using measurements up to time t when inter-node communication is restricted by

constraints (1) and (2) above.

6.1.1 The Proposed Algorithm

Let S = [0 , N1 − 1] × [0 , N2 − 1] and S(n1, n2, t) = {y(i, j, k)|(i, j) ∈ S, 0 ≤

k ≤ t and | n1 − i | + | n2 − j |≤ t− k + 1}. A measurement made by a node can be

conveyed over only a single hop in a single time slot due to communication constraints

(1) and (2). Therefore S(n1, n2, t) is the set of measurements that can be made available

154

for a computation at node (n1, n2) at time slot t, when inter-node communication is

restricted by constraints (1) and (2).

The linear minimum mean square error(LMMSE) estimate of x(t) givenS(n1, n2, t)

is a linear combination of the elements of S(n1, n2, t). Therefore in principle LMMSE

estimator of x(t) at node (n1, n2) given S(n1, n2, t) can be implemented as a linear

filter operating on sensor measurements in S(n1, n2, t). But even for simple examples,

the filters required for estimation are complex.

Therefore the focus of this paper in not to obtain at each node (n1, n2) the LMMSE

estimate of x(t) given S(n1, n2, t). Rather a DKF algorithm that requires minimal

inter-node communication is proposed in this paper.

In order to make the rationale behind the proposed algorithm more evident, LMMSE

estimator of x(t) given measurements of all the nodes in the sensor network up to time

t, is discussed briefly in the following. Let:

Y (t) = [y(1, 1, t)T y(1, 2, t)T y(1, 3, t)T · · · y(N1, N2, t)
T]T

V (t) = [v(1, 1, t)T v(1, 2, t)T v(1, 3, t)T · · · v(N1, N2, t)
T]T

and

H(t) = [H(t)T H(t)T H(t)T · · ·H(t)T]T

Then we have:

Y (t) = H(t)x(t) + V (t) (6.3)

Let G(t) = {y(i, j, k)|0 ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1 and 0 ≤ k ≤ t}

and the LMMSE estimate of x(t1) given G(t2) be denoted by Ê(x(t1) | G(t2)). Let

155

R(i) = E{V (t)V (t)T}. The Kalman filter algorithm given in figure 6.1 computes the

LMMSE estimate of x(t) given G(t).

1: for k = 0 to t do
2: if k=0 then
3: x̄(k) = µx(0)

4: end if
5: M(k) = (P (k)−1 +H(k)TR(k)−1

H(k))−1

6: K(k) = M(k)H(k)TR(k)−1

7: x̂(k) = x̄(k) +K(k)(Y (k)−H(k)x̄(k))
8: P (k + 1) = AM (k)AT +BQ(k)BT

9: x̄(k + 1) = Ax̂(k)
10: end for

Figure 6.1. Algorithm for global Kalman filtering

In the algorithm in figure 6.1, x̂(k) = Ê(x(k) | G(k)) and x̄(k) = Ê(x(k) |

G(k − 1)).

Theorem 6.1.1 Let the algorithm given in figure 6.2 be run by every node in the sensor

network. Then we have:

x̂(k) =

N1
∑

i=1

N2
∑

j=1

x̂(i, j, k) (6.4)

Proof Let the statement be true for k = p− 1. Then it is easily seen that:

156

1: for k = 0 to t do
2: if k=0 then
3: x̄(n1, n2, k) =

1
N1N2

µx(0)

4: end if
5: M(k) = (P (k)−1 +H(k)TR(k)−1

H(k))−1

6: K(k) = M(k)H(k)TR(k)−1

7: x̂(n1, n2, k) = x̄(n1, n2, k) +K(k)(y(n1, n2, k)−N1N2H(k)x̄(n1, n2, k))
8: P (k + 1) = AM(k)AT +BQ(k)BT

9: x̄(n1, n2, k + 1) = Ax̂(n1, n2, k)
10: end for

Figure 6.2. Algorithm for local Kalman filtering at node (n1, n2)

x̄(p) =
N1
∑

i=1

N2
∑

j=1

x̄(i, j, p)

Substituting in step 7 of the algorithm in figure 6.1 we have:

x̂(p) =

N1
∑

i=1

N2
∑

j=1

x̄(i, j, p) +K(p){Y (p)−H(p)

N1
∑

i=1

N2
∑

j=1

x̄(i, j, p)}

=

N1
∑

i=1

N2
∑

j=1

x̄(i, j, p) +

N1
∑

i=1

N2
∑

j=1

K(p)y(i, j, p)

−
N1
∑

i=1

N2
∑

j=1

N1
∑

r=1

N2
∑

s=1

K(p)H(p)x̄(i, j, p)

=

N1
∑

i=1

N2
∑

j=1

x̂(i, j, p)

The statement holds for k = p. Since:

x̄(0) =
N1
∑

i=1

N2
∑

j=1

x̄(i, j, 0)

157

using the case of p = 0 in the above derivation it can be shown that the statement holds

for p = 0. Therefore by the principle of mathematical induction statement (6.4) holds

for any finite k. This completes the proof of the theorem.

The following result on the expected value of the estimates of local Kalman filters will

be useful later.

Theorem 6.1.2 The local Kalman filter algorithm given in figure 6.2, provides an

unbiased estimate of 1
N1N2

x(t). Equivalently:

E{x̂(n1, n2, t)−
1

N1N2
x(t)} = 0 (6.5)

Proof Let the statement (6.5) be true for t = p− 1. We have:

E{x̄(n1, n2, p)−
1

N1N2
x(p)} = 0

Since E{y(n1, n2, p)−N1N2H(p)x̄(n1, n2, p)} = 0 we have:

E{x̂(n1, n2, p)−
1

N1N2
x(p)} = 0

The statement (6.5) holds for t = p. Moreover E{x̄(n1, n2, 0) − 1
N1N2

x(0)} = 0. It

can be easily seen that:

E{x̂(n1, n2, 0)−
1

N1N2

x(0)} = 0

Therefore by the principle of mathematical induction, statement (6.5) holds for any

finite t. This completes the proof of the theorem.

The LMMSE estimate of x(t) given measurements of all the nodes up to time t can

158

be obtained by summing the local estimates, of all the nodes in the sensor network.

Summation given by (6.4) cannot be computed under communication constraints (1)

and (2). Therefore we seek a summation of local estimates that can be performed at

every node under prevailing restrictions on inter-node communication. It is desirable for

the summation of the estimates of local Kalman filters to have the following properties.

• For the computation at node (n1, n2), the latest possible estimate is taken from

node (n1 + i, n2 + j), where i 6= 0 or j 6= 0. It is easily seen that under commu-

nication constraints (1) and (2) the latest estimate that can be included from node

(n1+ i, n2+ j) for a computation at node (n1, n2) at time t is x̂(n1+ i, n2+ j, t−

|i| − |j|+ 1).

• When computing the summation of local estimates at node (n1, n2) at time t,

x̂(n1 + i, n2 + j, t − |i| − |j| + 1), the local estimate obtained from node (n1 +

i, n2+ j) is weighted by A|i|+|j|−1. As would be explained in section 6.1.2.1, the

intention of aforementioned weighting is to make the final estimate unbiased.

Estimate of x(t) at node (n1, n2) is computed as a weighted summation of estimates of

local Kalman filters according to the following equation:

x̂D(n1, n2, t) =
N1N2

C(n1, n2, t) + 1
{x̂(n1, n2, t)

+
∑

(i,j)∈Sn(n1,n2,t)

A|i|+|j|−1x̂(n1 + i, n2 + j, t− |i| − |j|+ 1)} (6.6)

159

where:

Sn(n1, n2, t) ={(i, j) : (n1 + i, n2 + j) ∈ [0, N1 − 1]× [0, N2 − 1] and

(i, j) 6= (0, 0) and t−|i|−|j| + 1 ≥ 0}

C(n1, n2, t) =The number of elements in Sn(n1, n2, t) (6.7)

Values of i and j are restricted such that t − |i| − |j| + 1 ≥ 0 since local estimates

x̂(n1, n2, k) exist for time k ≥ 0 only. When computing the estimate at node (n1, n2),

summation of local estimates is taken over the entire sensor network, after a certain time

t. Thereafter the scale factor N1N2

C(n1,n2,t)+1
becomes unity. Node (n1, n2) can compute

C(n1, n2, t) provided it knows its coordinates in the grid sensor network and the size of

the sensor network.

The summation in (6.6) can be implemented as a 3-D linear filter operating on

local Kalman filter estimates. Impulse response of the linear filter required to perform

the summation in (6.6) is as follows:

h(n1, n2, t) =











In n1 = n2 = 0

A|n1|+|n2|−1δ[n1 + n2 − 1− t] otherwise

(6.8)

where δ : Z → R is the unit impulse function.

According to theorems 3.1.1 and 3.2.1 impulse response (6.8) can be realized

in a grid sensor network using methods given in the chapter 2 under communication

constraints (1) and (2).

The proposed algorithm for DKF in grid sensor networks is given in figure 6.3:

160

1: At each node (n1, n2) run the algorithm given in figure 6.2 using local measure-
ments.

2: Perform computation given by (6.6) at each node (n1, n2) to obtain x̂D(n1, n2, t)
the final estimate of x(t) at node (n1, n2).

Figure 6.3. Algorithm for DKF

Since the computation given by (6.6) can be performed at every node using the

methods given in chapter 2 the DKF algorithm given above can be implemented under

communication constrains (1) and (2).

6.1.2 Mean and Mean Square Error Performance

6.1.2.1 Mean Error Performance of the Algorithm

Mean error performance of the algorithm is summarized in the following theorem.

Theorem 6.1.3

E{x̂D(n1, n2, t)− x(t)} = 0 (6.9)

Therefore the DKF algorithm given in figure 6.2 is unbiased.

Proof From theorem 6.1.2 we have that:

E{x̂(n1, n2, t)−
1

N1N2
x(t)} = 0 (6.10)

161

and

E{A|i|+|j|−1x̂(n1+ i, n2+ j, t−|i|−|j| + 1)− 1

N1N2
x(t)} = 0 (6.11)

The result (6.9) follows readily from (6.6), (6.10) and (6.11).

While A|i|+|j|−1x̂(n1+ i, n2+ j, t−|i|−|j| + 1) is an unbiased estimate of 1
N1N2

x(t),

x̂(n1+ i, n2+ j, t−|i|−|j| + 1) is in general not. Therefore weighting x̂(n1+ i, n2+

j, t−|i|−|j| + 1) by A|i|+|j|−1 in the summation (6.6) enables the distributed estimate

to be unbiased.

6.1.2.2 Mean Square Error Performance of the Algorithm

Let:

ê(n1, n2, t, t− k) =
1

N1N2
x(t)−Akx̂(n1, n2, t− k)

ē(n1, n2, t, t− k) =
1

N1N2
x(t)−Akx̄(n1, n2, t− k)

P ê(n1, n2, t, t− k) = E{ê(n1, n2, t, t− k)ê(n1, n2, t, t− k)T} and P ē(n1, n2, t, t−

k) = E{ē(n1, n2, t, t− k)ē(n1, n2, t, t− k)T } for t ≥ k.

Lemma 6.1.1 P ê(n1, n2, t, t−k) and P ē(n1, n2, t, t−k) can be computed iteratively

using the algorithm given in figure 6.4.

Proof We have:

P ē(n1, n2, 0) = E{ 1

N1N2
(x(0) − µx(0))

1

N1N2
(x(0)− µx(0))

T }

=

(

1

N1N2

)2

P (0) (6.12)

162

1: for p = 0 to t do
2: if p=0 then

3: P ē(n1, n2, 0, 0) =
(

1
N1N2

)2

P (0)

4: end if
5: if p ≤ t− k then
6: P ê(n1, n2, p, p) = (I −K(p)H(p))P ē(n1, n2, p, p)(I −K(p)H(p))T +

K(p)R(p)K(p)T

7: P ē(n1, n2, p+ 1, p+ 1) = APê(n1, n2, p, p)A
T +

(

1
N1N2

)2

BQ(p)BT

8: else
9: P ê(n1, n2, p, t− k) = P ē(n1, n2, p, t− k + 1)

10: P ē(n1, n2, p + 1, t − k + 1) = APê(n1, n2, p, t − k)AT +
(

1
N1N2

)2

BQ(p)BT

11: end if
12: end for

Figure 6.4. Algorithm for computing P ê(n1, n2, t, t− k) and
P ē(n1, n2, t, t− k)

For p ≤ t− k:

ê(n1, n2, p, p) =
1

N1N2
x(p)− x̂(n1, n2, p)

=
1

N1N2
x(p)− x̄(n1, n2, p)−K(t)y(n1, n2, p)

+N1N2K(p)H(p)x̄(n1, n2, p)

=
1

N1N2
x(p)− x̄(n1, n2, p)−K(p)v(n1, n2, p)

−K(p)H(p)x(p) +N1N2K(p)H(p)x̄(n1, n2, p)

= {I −N1N2K(p)H(p)}ē(n1, n2, p)−K(p)v(n1, n2, p) (6.13)

163

From (6.13) we have:

Pê(n1, n2, p) = (I −N1N2K(p)H(p))P ē(n1, n2, t)(I −N1N2K(p)H(p))T

+K(p)R(p)K(p)T (6.14)

ē(n1, n2, p + 1, p + 1) =
1

N1N2
x(p+ 1)−Ax̂(n1, n2, p)

=Aê(n1, n2, p, p) +
1

N1N2
Bw(p) (6.15)

From (6.15) we have:

P ē(n1, n2, p+ 1, p + 1) =AP ê(n1, n2, p, p)A
T +

(

1

N1N2

)2

BQ(p)BT (6.16)

It is evident from equations (6.12), (6.14) and (6.16) that steps 1-7 of the algorithm given in

figure 6.4 can be used to compute P ê(n1, n2, p, p) and P ē(n1, n2, p, p) for p ≤ t− k.

For t ≥ p > t− k:

ê(n1, n2, p, t− k) =
1

N1N2
x(p)−Ap−t+kx̂(n1, n2, t− k)

=
1

N1N2
x(p)−Ap−t+k−1x̄(n1, n2, t− k + 1)

=ē(n1, n2, p, t− k + 1)

Therefore:

P ê(n1, n2, p, t− k) = P ē(n1, n2, p, t− k + 1) (6.17)

164

ē(n1, n2, p+ 1, t− k + 1) =
1

N1N2
x(p+ 1)−Ap−t+k+1x̂(n1, n2, t− k)

=Aê(n1, n2, p, t− k) +
1

N1N2
Bw(p)

Therefore:

P ē(n1, n2, p+ 1, t− k + 1) = APê(n1, n2, p, t− k)AT +

(

1

N1N2

)2

BQ(p)BT (6.18)

Steps 9 and 10 of the algorithm given in figure 6.4 can be used to compute P ê(n1, n2, p, t−k)

for t ≥ p > t− k. This completes the proof of lemma 6.1.1.

Since P ê(n1, n2, t, t − k) is independent of n1 and n2, P ê(t, t − k) would be used

instead of P ê(n1, n2, t, t− k) in the rest of this work for notational simplicity.

Let:

P ẽ(n1, n2, i, j, t, t− k, t− l) = E{ê(n1, n2, t, t− k)ê(i, j, t, t− l)T}

and

P̄ ě(n1, n2, i, j, t, t − k, t− l) = E{ē(n1, n2, t, t− k)ē(i, j, t, t − l)T }

where (n1, n2) 6= (i, j), t ≥ k and t ≥ l.

By the definition of P ẽ(n1, n2, i, j, t, t− k, t− l) we have:

P ẽ(n1, n2, i, j, t, t− k, t− l) = P ẽ(i, j, n1, n2, t, t− l, t− k)T

Therefore, if P ẽ(n1, n2, i, j, t, t − k, t − l) can be computed for l ≥ k it can also be

computed for l < k.

Lemma 6.1.2 When l ≥ k, P ẽ(n1, n2, i, j, t, t − k, t − l) and P ě(n1, n2, i, j, t, t −

k, t− l) can be computed iteratively using the algorithm given in figure 6.5.

165

Proof Proof is similar to the proof of lemma 6.1.1 and is omitted for the sake of

brevity.

1: for p = 0 to t do
2: if p = 0 then

3: P ẽ(n1, n2, i, j, 0, 0, 0) =
(

1
N1N2

)2

P (0)

4: end if
5: if p ≤ t− l then
6: P ẽ(n1, n2, i, j, p, p, p) = (I − K(p)H(p))P ě(n1, n2i, j, p, p, p)(I −

K(p)H(p))T

7: P ě(n1, n2, i, j, p + 1, p + 1, p + 1) = APẽ(n1, n2, i, j, p, p, p)A
T +

(

1
N1N2

)2

BQ(p)BT

8: else if t− k ≥ p > t− l then
9: P ẽ(n1, n2, i, j, p, p, t−l) = (I−K(p)H(p))P ě(n1, n2, i, j, p, p, t−l+1)

10: P ě(n1, n2, i, j, p+1, p+1, t− l+1) = APẽ(n1, n2, i, j, p, p, t− l)AT +
(

1
N1N2

)2

BQ(p)BT

11: else
12: P ẽ(n1, n2, i, j, p, t− k, t− l) = P ē(n1, n2, i, j, p, t− k + 1, t− l + 1)
13: P ě(n1, n2, p + 1, t − k + 1, t − l + 1) = APê(n1, n2, i, j, p, t − k, t −

l)AT +
(

1
N1N2

)2

BQ(p)BT

14: end if
15: end for

Figure 6.5. Algorithm for computing P ẽ(n1, n2, i, j, p, t− k, t− l) and
P ě(n1, n2, p+ 1, t− k + 1, t− l + 1)

Since P ẽ(n1, n2, i, j, t, t−k, t− l) is independent of n1, n2, i and j, P ẽ(t, t−k, t− l)

would be will be used instead of P ẽ(n1, n2, i, j, t, t− k, t − l) in the rest of this work

166

for notational simplicity.

Estimation error of the DKF algorithm, at node (n1, n2) at time t is given by:

eD(n1, n2, t) = x(t)− xD(n1, n2, t)

Let the covariance of the estimation error at node (n1, n2) at time t be PD(n1, n2, t) =

E{eD(n1, n2, t)eD(n1, n2, t)
T}

Theorem 6.1.4

PD(n1, n2, t) =

(

N1N2

C(n1, n2, t) + 1

)2

{
∑

(i,j)∈S

P ê(t, t− |i| − |j|+ 1)

+
∑

(i,j)∈S

∑

(p,q)∈S (p,q)6=(i,j)

P ẽ(t, t− |i| − |j|+ 1, t− |p| − |q|+ 1)} (6.19)

Proof By substituting for xD(n1, n2, t) from (6.6) we have:

eD(n1, n2, t) =
N1N2

C(n1, n2, t) + 1
{ 1

N1N2
x(t)− x̂(n1, n2, t)

+
∑

(i,j)∈Sn(n1,n2,t)

1

N1N2

x(t)−A|i|+|j|−1x̂(n1 + i, n2 + j, t− |i| − |j|+ 1)}

=
N1N2

C(n1, n2, t) + 1

∑

(i,j)∈Sn(n1,n2,t)
⋃
(0,0)

ê(n1 + i, n2 + j, t, t− |i| − |j|+ 1)

(6.20)

Equation (6.19) can be derived by taking the covariance of eD(n1, n2, t) and replacing

terms E{ê(n1, n2, t, t−k)e(n1, n2, t, t−k)T } and E{ê(n1, n2, t, t−k)ê(i, j, t, t−l)T }

by P ê(t, t− k) and P ẽ(t, t− k, t− l) respectively.

167

6.1.3 Simulation Results

Let the evolution of the system under observation be described by:

x(t+ 1) =







0.9996 −0.0300

−0.0300 0.9996






x(t) +







0.25 0

0 0.25






w(t)

(6.21)

x(t) ∈ R2. The input w(t) is drawn from a zero mean two dimensional white Gaus-

sian noise process. Let E{w(t)w(t)T } = 20I2. The state space model describes the

trajectory of an object on a circular path(not necessarily in the same space as the sensor

network). Initial state is Gaussian distributed with mean µx(0) = [15 0]T and covari-

ance matrix P (0) = 20I2. The dynamic system is observed by nodes of a grid sensor

network of size 20× 20. Sensing model at every node is given by:

y(n1, n2, t) = [1 0]x(t) + v(n1, n2, t) (6.22)

where y(n1, n2, t) and v(n1, n2, t) are scaler quantities. Measurement noise v(n1, n2, t)

is drawn from a zero mean white Gaussian noise process with covariance

E{v(n1, n2, t)v(n1, n2, t)
T} = 10.

The proposed DKF algorithm was used to estimate the state of the system. The

logarithm of the root mean square value of the estimation error, where the mean is

taken over all the nodes, is plotted versus time in figure 6.6.

168

0 50 100 150
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

t

Lo
ga

rit
hm

 o
f R

M
S

 o
f e

rr
or

 o
ve

r
se

ns
or

 n
et

w
or

k

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Global Kalman Filter
Proposed Algorithm

Figure 6.6. Logarithm of RMS of error over the sensor network

0 50 100 150
−10

−8

−6

−4

−2

0

2

Lo
ga

rit
hm

 o
f M

S
 o

f d
iff

re
nc

e
be

tw
ee

n
es

tis
m

at
es

 o
f n

od
es

t

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Proposed Algorithm

Figure 6.7. Logarithm of MS difference between estimates of nodes

The logarithm of the variance of estimates across the sensor network, is plotted

versus time in figure 6.7. Variance of state estimates across the nodes is a measure

of the mutual disagreement among nodes, on their estimates. This is an important

169

performance metric for a distributed estimation algorithm. The simulation was repeated

with state transition equation changed to:

x(t+ 1) = 0.95







0.9996 −0.0300

−0.0300 0.9996






x(t) +







0.25 0

0 0.25






w(t)

(6.23)

The state space model (6.23) describes the trajectory of an object that converges to the

origin along a logarithmic spiral. The logarithm of the root mean square value of the

estimation error is plotted versus time in figure 6.8.

0 50 100 150
−12

−10

−8

−6

−4

−2

0

2

4

t

Lo
ga

rit
hm

 o
f R

M
S

 o
f e

rr
or

 o
ve

r
se

ns
or

 n
et

w
or

k

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Global Kalman Filter
Proposed Algorithm

Figure 6.8. Logarithm of RMS of error over the sensor network

170

0 50 100 150
−25

−20

−15

−10

−5

0

5

t

Lo
ga

rit
hm

 o
f M

S
 d

iff
re

nc
e

be
tw

ee
n

es
tis

m
at

es
 o

f n
od

es

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Proposed Algorithm

Figure 6.9. Logarithm of MS difference between estimates of nodes

The logarithm of the variance of estimates across the sensor network, is plotted

versus time in figure 6.9.The state transition equation was changed to:

x(t+ 1) = 1.05







0.9996 −0.0300

−0.0300 0.9996






x(t) +







0.25 0

0 0.25






w(t)

(6.24)

and simulation was repeated again. The state space model (6.24) describes the tra-

jectory of an object along a logarithmic spiral. The logarithm of the root mean square

value of the estimation error is plotted versus time in figure 6.10.

171

0 50 100 150
−5

0

5

10

15

20

t
Lo

ga
rit

hm
 o

f R
M

S
 o

f e
rr

or
 o

ve
r

se
ns

or
 n

et
w

or
k

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Global Kalman Filter
Proposed Algorithm

Figure 6.10. Logarithm of RMS of error over the sensor network

0 50 100 150
−4

−2

0

2

4

6

8

10

12

14

t

Lo
ga

rit
hm

 o
f M

S
 d

iff
re

nc
e

be
tw

ee
n

es
tis

m
at

es
 o

f n
od

es

Algorithm 3 given in [Olfati−Saber, 2007]
Algorithm given in [Cattivelli et al., 2008]
Proposed Algorithm

Figure 6.11. Logarithm of MS difference between estimates of nodes

The logarithm of the variance of estimates across the sensor network, is plotted

versus time in figure 6.11.The proposed DKF algorithm outperforms existing DKF

algorithms in simulated example applications.

Distributed Kalman filtering algorithms presented in the literature involve averaging

172

of local estimates across the sensor network to obtain a better estimate. Hence the

performance of a DKF algorithm depends upon the strategy used to obtain network

wide averages. In the algorithm proposed in this paper a 3-D linear filter is used to

average estimates of local Kalman filters. In a grid sensor network a network wide

average can be computed faster using linear filters than consensus filters used in existing

DKF algorithms. Therefore authors expect the proposed DKF algorithm to outperform

or at least match the performance of existing DKF algorithms even though a theoretical

comparison of mean square error performance is not available yet.

6.2 Contaminant propagation detection

A method to detect the propagation of contaminants in air was proposed in

Sumanasena and Bauer [2008]. The variation of intensity across the propagating front

of the contaminant is detected using image processing techniques. The edge detection

filter used, operates on sensor measurements at a single sampling instance. Therefore

the system implemented on the sensor network is 2-D. It is assumed that the variation

of intensity across the propagating front produce a unit step signal in sensor measure-

ments. The impulse response of the filter used is given by:

h(n1, n2) = h1(n1)h2(n2)

h1(n1) =











{0.511n1(n1 + 1) + 0.348n1}0.73n1 n1 ≥ 0

−h1(−n1) n1 < 0

h2(n2) = 0.0123δ(n2) + 0.3254(0.4)|n2| + 0.4020(0.44)|n2| − 0.7020(0.42)|n2|

The filter was derived by numerically maximizing the detection probability for a given

worst case false detection probability within the class of third order separable 2-D fil-

173

ters. Impulse response of the filter can be decomposed into four quarter plane causal

components. Let:

h1q(n1, n2) =























h(n1, n2) n1 > 0 and n2 > 0

1
2
h(n1, n2) n1 > 0 and n2 = 0

0 otherwise

We have:

h(n1, n2) = h1q(n1, n2)− h1q(−n1, n2)− h1q(−n1,−n2) + h1q(n1,−n2)

Each quarter plane causal filter can be realized in 2-D GR or FM state space mod-

els. Block diagram in figure 6.12 illustrates the implementation of the filter. Let

Figure 6.12. Implementation of the Filter

the output of the filter be y(n1, n2). Point (n1, n2) is marked as an edge point if

174

y(n1, n2) − y(n1 − 1, n2) > 0.02 and y(n1, n2) − y(n1 + 1, n2) > 0.02. The sys-

tem was simulated on a sensor network of size 50 × 40. It is assumed that the input

signal produced by the contaminant front is a unit step edge. Sensor readings are as-

sumed to be contaminated by zero mean additive white Gaussian noise with variance

of 0.5. False detection probability when there is no contaminant front is 0.0017.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

detections

n1 ↑

Figure 6.13. False detections with no input signal

False detections when there is no contaminant front is shown in figure 6.13. Figures

6.14 and 6.15 show the detection of contaminant fronts perpendicular to and having a

450 angle with the n1 axis respectively.

175

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

detections

actual edge

n1 ↑
Figure 6.14. Detection of the front perpendicular to the n1 axis

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

detections

actual edge

n1 ↑
Figure 6.15. Detection of the front making 450 to the n1 axis

176

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Distributed implementation of m-D systems on sensor networks poses issues not

raised in their centralized implementations. Open research issues that were not already

addressed in chapters 2-6 are discussed in the following subsections.

7.1 Future Research Directions

7.1.1 Realization of Transfer Matrices

In the GR model based implementation node (n1, n2) transmits the horizontal and

the vertical state vector components of nodes (n1+1, n2) and (n1, n2+1) respectively.

Therefore per each time slot node (n1, n2) transmits a + b state vector elements. In the

FM model based implementation node (n1, n2) transmits its state vector and input vec-

tor. Hence n state vector elements and p input vector elements are transmitted by node

(n1, n2) per time slot. Power required for the implementation of GR and FM models

on the sensor network depends upon the order of the realization. Therefore realizing

systems using state space models of lower order is beneficial for implementations in

sensor networks.

Except for several special classes of transfer functions reported in [Kung et al.,

1977; Lin et al., 2007] realizations algorithms capable of deriving the minimal real-

ization of a given m-D transfer function are not available to the best of the author’s

177

knowledge. Furthermore there is no method to determine the order of the minimal re-

alization given a general m-D transfer function. Minimal realization of m-D transfer

functions and matrices is an open research issue in itself.

Unlike in FM model based implementations, in GR model based implementations it

is not required to transmit the entire state vector. Therefore in order to conserve power

and communication bandwidth it is sufficient to realize a given transfer function such

that the combined size of the horizontal and the vertical state vector components are

as small as possible. Realizations algorithms presented in literature for the GR model

such as [Fan et al., 2006; Kanellakis et al., 1989; Manikopoulos and Antoniou, 1990;

Theodorou and Tzafestas, 1984; Xu et al., 2008] have put emphasis on minimizing the

order of the realization. For implementations on sensor networks, algorithms that derive

realizations with minimal horizontal and vertical state vector components even at the

expense of a larger temporal vector component are desirable.

7.1.2 Power Efficient Implementations

In the procedure described in chapter 2 for implementing GR and FM models in

sensor networks, inter-node communication is restricted to adjacent nodes in the sen-

sor network. Depending on the characteristics of the transmitter and receiver circuitry

of the sensor node it may be power efficient to transmit data over multiple hops in

a sensor network [Haenggi, 2004; Sikora et al., 2004]. Realization algorithms for

both GR and FM state space models such as [Bisiacco et al., 1989; Eising, 1978;

Fan et al., 2006; Fornasini and Marchesini, 1978; Kanellakis et al., 1989; Kung et al.,

1977; Manikopoulos and Antoniou, 1990; Mitra et al., 1975; Theodorou and Tzafestas,

1984; Xu et al., 2005, 2007, 2008] result in system matrices that have most of the rows

containing zeros except for one unity element. Therefore state vectors of adjacent sen-

178

sor nodes may share the same state vector element albeit in different positions of the

state vector. This opens up the possibility of transmission over multiple hops. It has

been shown in Sumanasena and Bauer [2008] that, for a FM models based implemen-

tation of an edge detection filter in a sensor network, transmission of data over multiple

hops results in lower power consumption than transmission over a single hop.

However a general treatment, of the condition under which multi-hop data trans-

mission more power efficient than single-hop data transmission in implementing GR

and FM state space models, is not available. Implications of multi-hop transmission

on bandwidth requirements and the optimal number of hops over which data should be

transmitted should be analyzed.

7.1.3 Robustness

Node and link failures in a sensor network can have adverse effects on the per-

formance of the sensor network. Stability of distributed systems implemented on grid

sensor networks under the occurrence of node and link failure was studied in chapter 5.

It was shown that, adaptation of a sensor network to link and node failure can render

an otherwise stable system unstable. Stability of 2-D distributed systems under com-

munication delays has been studied in Bauer et al. [2001]. However the effect of node

and link failure in a sensor network on the performance of the signal processing algo-

rithm implemented on the same has not been analyzed. An approach to achieve optimal

performance under node and link failure is given below.

• Propose a performance metric for the system implemented on the sensor network.

• Model the effect of node and link failure on system dynamics. The overall ap-

proach for handling link and node failure in the sensor network should be known

to model the effect of the same on the system. System dynamics under link and

179

node failure can be modeled using models 5.3, 5.5, 5.24, 5.26, 5.32 and 5.33.

• Choose system parameters that represent the adaptation of the sensor network to

node and link failure such that the performance metric is optimized.

The last step in the aforementioned approach in general requires the knowledge of

statistics of node failure, link failure and input signal which may not be available. Due

to the vast variety of signal processing applications implemented on sensor networks it

may not be possible to propose an optimal criteria to handle node and link failure for

all applications. But if criteria to handle node and link failure are restricted, for exam-

ple to use linear estimates for unknown quantities, the author believes that methods to

achieve optimal performance under node and link failure can be derived for classes of

signal processing algorithms.

Sensors may not be placed exactly on the grid depending on the deployment strat-

egy used Leoncini et al. [2005]. Deployment errors lead to non-unifrom sampling of

the input signal. Deployment errors do not affect the stability properties of the system

as long as the connection topology remains a grid. The effect of deployment errors

on the system performance depends on the signal processing application as well. For

example in the distributed Kalman filter example discussed in chapter 6, the signal to

be estimated and the noise statistics were uniform over the sensor network. Therefore

deployment errors do not affect the performance of the system provided that the grid

topology is maintained. In a sound source localization application, deployment errors

can introduce an error to the estimate of the location of the sound source [Pham et al.,

2003, 2004]. But if the locations of the sensors are known deployment errors can be

accounted for in signal processing. A treatment on the effect of sensor deployment er-

rors on the performance of systems implemented on grid sensor networks and methods

to counter the adverse effects of deployment errors is not available.

180

7.1.4 Extension to Random Sensor Networks

Of the three categories of sensor networks classified according to the deployment

strategy in chapter 1, random sensor networks are the most widely studied in literature.

The method proposed in this work to implement distributed systems in sensor networks

assumes regular placement of sensor nodes. This is due to the formulation of state

space models (2.1) and (2.2). Extending the method proposed in this work to random

sensor networks will greatly enhance the utility of the proposed method and open up an

entirely new approach for distributed signal processing in random sensor networks.

A potential approach to extend the current work to random sensor networks is as

follows. Consider a rectangular area over which sensors are randomly deployed. The

rectangular area can be hypothetically divided into N1N2 rectangles. Sensor nodes in

the (i, j)-th rectangle can be collectively considered to be the (i, j)-th node of the grid

sensor network. This approach is illustrated in figure 7.1. A virtual grid sensor network

of size 10 × 10 is constructed by randomly deploying 150 sensor nodes in the area to

be covered.

In order to assign randomly deployed sensor nodes to grid nodes of the virtual grid

sensor network, location of the nodes has to be determined. Sensor localization in sen-

sor networks has been widely studied in literature, see [Ji and Zha, 2003; Khan et al.,

2009; Patwari and Hero, 2003; Zhang et al., 2008] and references therein. An apparent

issue in the above method is that some nodes in the virtual grid sensor network may not

have sensors assigned to them. This is due to some rectangles in the area to be covered

not having any nodes deployed in them. It is possible to treat the unavailability of the

virtual node as a node failure using models proposed in chapter 5.

181

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Randomly deployed sensors
Ideal sensor locations

Figure 7.1. Virtual grid sensor network of randomly deployed nodes.

7.1.5 Extension to Broader Classes of Systems

Systems described by models (2.1) and (2.2) are necessarily linear and space-time

invariant. They can be used only to implement linear space-time invariant systems. The

GR model (2.1) and FM model (2.2) were extended for nonlinear and non space-time

invariant systems in Sumanasena and Bauer [2011a]. The GR model for 3-D linear

systems can be extended to non-linear systems as follows:













xh(n1 + 1, n2, t)

xv(n1, n2 + 1, t)

xt(n1, n2, t+ 1)













= f(n1,n2,t)(x(n1, n2, t),u(n1, n2, t))

y(n1, n2, t) = g(n1,n2,t)(x(n1, n2, t),u(n1, n2, t)) (7.1)

182

where x(n1, n2, t) = (xhT

(n1, n2, t),x
vT (n1, n2, t),x

tT (n1, n2, t))
T . Vectors xh ∈

Ra, xv ∈ Rb and xt ∈ Rc are called the horizontal, vertical and temporal state vector

components respectively. Let the input vector u ∈ Rp and the output vector y ∈ Rq .

Functions f(n1,n2,t) : Rn × Rp → Rn and g(n1,n2,t) : Rn × Rp → Rq are in general

non-linear. For a sensor network of size N1×N2, n1 ∈ [0, N1−1] and n2 ∈ [0, N2−1].

The FM model for 3-D linear systems can be extended to non-linear systems as follows:

x(n1, n2, t) = f(n1,n2,t)(x(n1, n2, t−1),x(n1, n2−1, t),x(n1−1, n2, t),

u(n1, n2, t−1),u(n1, n2−1, t),u(n1−1, n2, t))

y(n1, n2, t) = g(n1,n2,t)(x(n1, n2, t),u(n1, n2, t)) (7.2)

Let the state vector x ∈ Rn, the input vector u ∈ Rp and the output vector y ∈ Rq .

Functions f(n1,n2,t) : R
n×Rn×Rn×Rp×Rp×Rp → Rn and g(n1,n2,t) : R

n×Rp → Rq

are in general non-linear.

Systems (7.1) and (7.2) can be implemented on grid sensor networks using meth-

ods described in chapter 2 for the implementation of systems (2.1) and (2.2). An

important issue that has to be addressed is, given a processing algorithm, how to select

functions f(n1,n2,t) and g(n1,n2,t) such that state space models (7.1) and (7.2) realize the

said algorithm. To the best of the author’s knowledge, realization of non-linear systems

in local state space models has not been investigated in the literature even for restricted

cases.

Models (2.1) and (2.2) were traditionally used to realize multidimensional sys-

tems in a centralized context. In the current work they were employed to implement

distributed systems in grid sensor networks. State space models (2.1), (2.2), (7.1) and

(7.2) provide a method to partition a potentially large computation into a sequence of

smaller computations. Such partitioning of computations to a sequence of sub compu-

183

tations may be useful even in grid and cluster computing Sadashiv and Kumar [2011].

7.1.6 Applications

Based on the method proposed in this work to implement linear systems in grid

sensor networks, in chapter 6 a DKF algorithm, which outperformed DKF algorithms

proposed in literature such as [Cattivelli et al., 2008; Olfati-Saber, 2005; Spanos et al.,

2005], was presented. Wide variety of signal processing algorithms implemented on

sensor networks involves performing linear operations on sensor measurements

[Ganesan et al., 2005; Pham et al., 2004; Rabbat and Nowak, 2004]. Potentially a va-

riety of other signal processing algorithms that can improve the performance of algo-

rithms existing in the literature can be developed based on the method proposed in this

work .

7.2 Conclusions

A novel approach for distributed information processing in grid sensor networks

was presented. The method based on the GR and the FM local state space models

for 3-D systems can be used to implement any linear system on a regular grid sensor

network. The method offers several advantages such as scalability and reconfigurability.

Moreover, the output computed at each node can be used to decide on the execution of

local actuation tasks, in response to local events.

Conditions on system matrices of the GR and FM models, for real-time imple-

mentation in a distributed sensor network, were derived. A necessary and sufficient

conditions for a transfer function to be realizable in GR and FM models under the said

constrains was established. If a transfer function is realizable in the constrained GR

model it is also realizable in the constrained FM model. The converse is also true.

184

The effect of fixed point and floating point arithmetic on system dynamics was

modeled. Models incorporate quantization and overflow nonlinearities introduced dur-

ing computations inside the nodes and communication among nodes. Simple, necessary

and sufficient conditions for global asymptotic stability of the system was derived for

both fixed point and floating point implementations. Global asymptotic stability of the

system is independent of the quantization and overflow nonlinearities applied to state

vector components communicated between nodes. Sufficient conditions for the BIBO

stability of the system under fixed point quantization nonlinearities were derived.

GR model and FM model were extended to incorporate the effects of node and link

failure on system dynamics. Internal and external stability criteria were proposed for

systems under node and link failure. Conditions for internal and external stability under

node and link failure were established. It was shown that systems are externally stable

if they are internally stable. Utility of the proposed method was demonstrated using

two example applications.

This work is the first major effort to use state space models and methodologies

developed in the multidimensional systems literature for distributed signal processing

in sensor networks, to the best of the author’s knowledge. It is the author’s opinion that

methods proposed in this work can be extended to broader classes of sensor networks

and used in wide variety of signal processing applications. A significant amount of

work has to be done in this regard, some of which has been outlined in this thesis.

185

BIBLIOGRAPHY

H. AboElFotoh and E. Elmallah. Reliability of wireless sensor grids. In 33rd IEEE
Conference on Local Computer Networks, pages 252–257, Montreal, Canada, Octo-
ber 2008.

H. AboElFotoh, S. Iyengar, and K. Chakrabarty. Computing reliability and message
delay for cooperative wireless distributed sensor networks subject to random failures.
IEEE Transactions on Reliability, 54(1):145– 155, March 2005.

H. M. F. AboElFotoh, E. S. Elmallah, and H. S. Hassanein. A flow-based reliability
measure for wireless sensor networks. International Journal of Sensor Networks, 2
(5/6):311–320, July 2007.

P. Agathoklis and L. Bruton. Practical-BIBO stability of n-dimensional discrete sys-
tems. IEE Proceedings on Electronic Circuits and Systems, 130(6):571–574, De-
cember 1983.

A. Akbar, W. Mansoor, S. Chaudhry, A. Kashif, and K. Kim. Node-link-failure resilient
routing architecture for sensor grids. In The 8th International Conference Advanced
Communication Technology, pages 131–135, Phoenix, USA, February 2006.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 38:393–422, 2002.

G. E. Antoniou. 2-D lattice discrete filters: Minimal delay and state space realization.
IEEE Signal Processing Letters, 8(1):1097–1105, January 2001.

S. Attasi. Systems lineaires homogènes à deux indices. Rapport Laboria, 31, September
1973.

F. Babich, O. E. Kelly, and G. Lombardi. A variable-order discrete model for the
fading channel. In IEEE 9th Thyrrenian International Workshop on Digital Commu-
nications, Levici, Italy, September 1997.

G. Barrenechea, B. Beferull-Lozano, and M. Vetterli. Lattice sensor networks: capacity
limits, optimal routing and robustness to failures. In Proceedings of the 3rd interna-
tional symposium on Information processing in sensor networks, pages 186–195,
Berkeley, USA, April 2004.

186

P. Bauer. Absolute response error bounds for floating point digital filters in state space
representation. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 42(9):610–613, Sept. 1995a.

P. Bauer and J. Wang. Limit cycle bounds for floating point implementations of second-
order recursive digital filters. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, 40(8):493–501, August 1993.

P. Bauer, M. Sichitiu, and K. Premaratne. Stability of 2-D distributed processes with
time-variant communication delays. In The 2001 IEEE International Symposium on
Circuits and Systems, pages 497 – 500, Sydney, Australia, May 2001.

P. H. Bauer. A set of necessary stability conditions for m-D nonlinear digital filters.
Circuits, Systems, and Signal Processing, 14(4):555–561, July 1995b.

E. Biagioni and G. Sasaki. Wireless sensor placement for reliable and efficient data
collection. In Proceedings of the 36 th Annual Hawaii International Conference on
System Sciences (HICSS03), page 127b, 2003.

M. Bisiacco, E. Fornasini, and G. Marchesini. Dynamic regulation of 2-D systems:
A statespace approach. Linear Algebra and Its Applications, 122/123/124:195–218,
1989.

P. Bolzern, P. Colaneri, and G. De Nicolao. On almost sure stability of discrete-time
Markov jump linear systems. In 43rd IEEE Conference on Decision and Control,
volume 3, pages 3204 –3208, December 2004.

N. K. Bose. Multidimensional systems theory and applications. Kluwer Academic
Publishers, 2003.

T. Bose. Asymptotic stability of two-dimensional digital filters under quantization.
IEEE Transactions On Signal Processing, 42(5):1172–1177, May 1994.

T. Bose. Stability of the 2-D state-space system with overflow and quantization. IEEE
Transactions On Circuits And Systems-II, 42(6):432–434, June 1995.

F. S. Cattivelli, C. G. Lopes, and A. H. Sayed. Diffusion strategies for distributed
Kalman filtering: Formulation and performance analysis. In Proceedings of the Cog-
nitive Information Processing, Santorini, Greece, June 2008.

A. Cerpa, J. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical model of lossy
links in wireless sensor networks. In Fourth International Symposium on Information
Processing in Sensor Networks, pages 81 – 88, Los Angeles, USA, April 2005.

K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance and
target location in distributed sensor networks. IEEE Transactions on Computers, 51
(12):1448– 1453, December 2002.

187

H. Cheng, T. Saito, S. Matsushita, and L. Xu. Realization of multidimensional systems
in Fornasini-Marchesini state-space model. Multidimensional Systems and Signal
Processing, pages 1–15, September 2010.

K. K. Chintalapudi and R. Govindan. Localized edge detection in sensor fields. In
Proceedings of the First IEEE International Workshop on Sensor Network Protocols
and Applications, pages 59–70, May 2003.

C. Y. Chong and S. P. Kumar. Sensor networks: evolution, opportunities, and chal-
lenges. In Proceedings of the IEEE, pages 1247–1256, 2003.

O. L. V. Costa and M. D. Fragoso. Stability results for discrete-time linear systems with
Markovian jumping parameters. Journal of Mathematical Analysis and Applications,
179(1):154 – 178, October 1993.

D. Devaguptapu and B. Krishnamachari. Applications of localized image processing
techniques in wireless sensor networks. In SPIE’s 17th Annual International Sympo-
sium on Aerospace/Defense Sensing, Simulation, and Controls, April 2003.

D. A. Dewasurendra and P. H. Bauer. A novel approach to grid sensor networks. In 15th
IEEE International Conference on Electronics, Circuits and Systems, pages 1191–
1194, Malta, August 2008.

R. Eising. Realization and stabilization of 2-D systems. IEEE Transactions on Auto-
matic Control, 23(5), October 1978.

R. Eising. State-space realization and inversion of 2-D systems. IEEE Transactions on
Circuits and Systems, CAS-27(7), July 1980.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scal-
able coordination in sensor networks. In Proceedings of the International Conference
on Mobile Computing and Networking, pages 263–270, 1999.

D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wire-
less sensor networks. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2001), pages 2033–2036, Salt Lake City, USA, May 2001.

H. Fan, L. Xu, and Z. Lin. A constructive procedure for three-dimensional realization.
In Proceedings of the 6th World Congress on Intelligent Control and Automation,
pages 1893–1896, Dalian, China, June 2006.

X. Feng, K. Loparo, Y. Ji, and H. Chizeck. Stochastic stability properties of jump linear
systems. IEEE Transactions on Automatic Control, 37(1):38 –53, January 1992.

E. Fornasini and G. Marchesini. Doubly-indexed dynamical systems: State-space mod-
els and structural properties. Mathematical Systems Theory, 12(1):59–72, December
1978.

188

L. Frye, L. Cheng, S. Du, and M. Bigrigg. Topology maintenance of wireless sensor
networks in node failure-prone environments. In Networking, Sensing and Control,
2006. ICNSC ’06. Proceedings of the 2006 IEEE International Conference on, pages
886 –891, August 2006.

D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and R. Govindan. Multiresolution
storage and search in sensor networks. ACM Transactions in Storage, 1(3):277–315,
August 2005. ISSN 1553-3077.

D. Givone and R. Roesser. Multidimensional linear iterative circuits- general properties.
IEEE Transactions on Computers, C-21(10):1067–1073, October 1972.

M. Haenggi. Twelve reasons not to route over many short hops. In Vehicular Technology
Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, volume 5, pages 3130 – 3134,
September 2004.

N. Hamed Azimi, H. Gupta, X. Hou, and J. Gao. Data preservation under
spatial failures in sensor networks. In Proceedings of the eleventh ACM in-
ternational symposium on Mobile ad hoc networking and computing, pages
171–180, 2010. doi: http://doi.acm.org/10.1145/1860093.1860117. URL
http://doi.acm.org/10.1145/1860093.1860117.

J. K. Hart and K. Martinez. Environmental sensor networks:a revolution in the earth
system science? Earth-Science Reviews, 78:177–191, 2006.

T. Hinamoto. Stability of 2-D discrete systems described by the Fornasini-Marchesini
second model. IEEE Transactions on Circuits and Systems I, 44(3):254–257, March
1997.

M. Imamoglu and M. Keskinoz. Node failure handling for serial distributed detection
in wireless sensor networks. In Personal Indoor and Mobile Radio Communications
(PIMRC), 2010 IEEE 21st International Symposium on, pages 1894 –1898, Istanbul,
Turkey, September 2010.

X. Ji and H. Zha. Robust sensor localization algorithm in wireless ad-hoc sensor net-
works. In ICCCN 2003, Proceedings of the 12th International Conference onCom-
puter Communications and Networks, Arlington,USA, October 2003.

T. Kaczorek. The singular general model of 2-D systems and its solution. IEEE Trans-
actions on Automatic Control, 33(11):1060–1061, November 1988.

H. Kahn, V. S. Hsu, J. M. Kahn, and K. S. J. Pister. Wireless communications for smart
dust. In Electronics Research Laboratory Technical Memorandum M98/2, 1998.

J. M. Kahn, R. H. Katz, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for ”smart dust”. In Proceedings of the ACM MobiCom, 1999.

189

http://doi.acm.org/10.1145/1860093.1860117

A. J. Kanellakis, P. N. Paraskevopoulos, N. J. Theodorou, and S. J. Varoufakis. On
the canonical state-space realization of 3-D discrete systems. IEE Proceedings on
Circuits, Devices and Systems, 136:19–31, February 1989.

H. Kar. A new sufficient condition for the global asymptotic stability of 2-D state-space
digital filters with saturation arithmetic. Signal Processing, 88(1):86–98, January
2008.

H. Kar and V. Singh. Stability analysis of 2-D state-space digital filters with overflow
nonlinearities. IEEE Transactions on Circuits and Systems I, 47(4):598–601, April
2000.

H. Kar and V. Singh. Stability analysis of 1-D and 2-D fixed-point state-space digi-
tal filters using any combination of overflow and quantization nonlinearities. IEEE
Transactions On Signal Processing, 49(5):1097–1105, May 2001a.

H. Kar and V. Singh. Stability analysis of 2-D digital filters described by the Fornasini-
Marchesini second model using overflow nonlinearities. IEEE Transactions on Cir-
cuits and Systems I, 48(5):612–617, May 2001b.

U. Khan, S. Kar, and J. Moura. Distributed sensor localization in random environments
using minimal number of anchor nodes. IEEE Transactions on Signal Processing,
57(5):2000 –2016, may 2009.

C. Kubrusly and O. Costa. Mean square stability conditions for discrete stochastic
bilinear systems. IEEE Transactions on Automatic Control, 30(11):1082 – 1087,
November 1985.

S. Y. Kung, B. Levy, M. Morf, and T. Kailath. New results in 2-D systems theory, part
ii: 2-D state-space models realization and the notions of controllability, observability,
and minimality. Proceedings of the IEEE, 65(6), June 1977.

Oracle Labs. Sun spot developer’s guide. November 2010. URL
http://www.sunspotworld.com/docs/YellowSunSPOT-
Programmers-Manual.pdf.

M. Lazar and L. Bruton. On the practical BIBO stability of multidimensional filters. In
IEEE International Symposium on Circuits and Systems, pages 571–574, Chicago,
USA, May 1993.

L. J. Leclerc and P. H. Bauer. New criteria for asymptotic stability of one and multidi-
mensional state-space digital filters in fixed-point arithmetic. IEEE Transactions On
Signal Processing, 42(1):46–53, January 1994.

190

http://www.sunspotworld.com/docs/YellowSunSPOT-
Programmers-Manual.pdf

S. G. Lele and J. M. Mendel. Modeling and recursive state estimation for two-
dimensional noncausal filters with applications in image restoration. IEEE Trans-
actions on Circuits and Systems I, CAS-34(12):1507–1517, December 1987.

M. Leoncini, G. Resta, and P. Santi. Analysis of a wireless sensor dropping problem in
wide-area environmental monitoring. In Proceedings of the 4th international sympo-
sium on Information processing in sensor networks, pages 239– 245, Los Angeles,
California, 2005.

Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transaction
on Computers, 55(2):214–226, February 2006.

Z. Lin, L. Xu, and Y. Anazawa. Revisiting the absolutely minimal realization for two-
dimensional digital filters. In Circuits and Systems, 2007. ISCAS 2007. IEEE Inter-
national Symposium on, pages 597 –600, New Orleans, USA, May 2007.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor
networks for habitat monitoring. In ACM Int. Workshop on Wireless Sensor Networks
and Applications, September 2002.

C. N. Manikopoulos and G. E. Antoniou. State-space realization of three-dimensional
systems using the modified Cauer form. International Journal of Systems Science,
12(21):2673 – 2678, December 1990.

A. Martinez-Sala, J.-M. Molina-Garcia-Pardo, E. Egea-Lopez, J. Vales-Alonso,
L. Juan-Llacer, and J. Garcia-Haro. An accurate radio channel model for wireless
sensor networks simulation. Journal Of Communications And Networks, 7(4):401–
407, December 2005.

S. K. Mitra, A. D. Sagar, and N. A. Pendergrass. Realizations of two-dimensional
recursive digital filters. IEEE Transactions On Circuits And Systems, CAS-22(3):
177–184, March 1975.

S. Muruganathan, D. Ma, R. Bhasin, and A. Fapojuwo. A centralized energy-efficient
routing protocol for wireless sensor networks. IEEE Communications Magazine, 43
(3):8–13, March 2005.

L. Ntogramatzidis, M. Cantoni, and R. Yang. On the partial realization of non-causal
2-D linear systems. IEEE Transactions on Circuits and Systems I, 54(8):1800–1808,
August 2007.

R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. In 44th
IEEE Conference on Decision and Control and European Control Conference (CDC-
ECC 05), pages 8179 – 8184, Seville, Spain, December 2005.

191

R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In 46th IEEE Con-
ference on Decision and Control, pages 5492-5498, New Orleans, LA, December
2007.

R. Olfati-saber and J. S. Shamma. Consensus filters for sensor networks and distributed
sensor fusion. In 44th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC 05), pages 6698–6703, Seville, Spain, December
2005.

N. Patwari and A. O. Hero, III. Using proximity and quantized RSS for sensor localiza-
tion in wireless networks. In Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications, WSNA ’03, pages 20–29, 2003. ISBN
1-58113-764-8.

E. M. Petriu, N. D. Georganas, D. C. Petriu, D. Makrakis, and V. Z. Groza. Sensor-
based information appliances. IEEE Instrumentation and Measurement Magazine,
3:31–35, 2000.

T. Pham, B. M. Sadler, and H. Papadopoulos. Energy-based source localization via
ad-hoc acoustic sensor network. In IEEE Workshop on Statistical Signal Processing,
pages 387– 390, October 2003.

T. Pham, D. S. Scherber, and H. Papadopoulos. Distributed source localization algo-
rithms for acoustic ad-hoc sensor networks. In Sensor Array and Multichannel Signal
Processing Workshop Proceedings, pages 613– 617, July 2004.

K. Premaratne, E. Kulasekere, P. Bauer, and L. Leclerc. An exhaustive search algorithm
for checking limit cycle behavior of digital filters. IEEE Transactions on Signal
Processing, 44(10):2405–2412, October 1996.

M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Proceedings
of the 3rd international symposium on Information processing in sensor networks,
pages 20–27, Berkeley, California, USA, 2004. ISBN 1-58113-846-6. doi: http:
//doi.acm.org/10.1145/984622.984626.

K. Ralev and P. Bauer. Asymptotic behavior of block floating-point digital filters. Cir-
cuits, Systems, and Signal Processing, 18:75–84, 1999.

K. Romer and F. Mattern. The design space of wireless sensor networks. Wireless
Communications, IEEE, 11(6):54– 61, December 2004.

N. Sadashiv and S. Kumar. Cluster, grid and cloud computing: A detailed comparison.
In 6th International Conference on Computer Science Education (ICCSE), pages 477
–482, Singapore, Singapore, aug. 2011.

192

D. S. Scherber and H. C. Papadopoulos. Locally constructed algorithms for distributed
computations in ad-hoc networks. In Third International Symposium on Information
Processing in Sensor Networks, pages 11–19, Berkeley, California, April 2004.

D. S. Scherber and H. C. Papadopoulos. Distributed computation of averages over ad
hoc networks. IEEE Journal on Selected Areas in Communications, 23(4):776–787,
April 2005.

S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connec-
tivity and diameter. In Proceedings of IEEE INFOCOM, pages 1073–1083, San
Francisco, April 2003.

M. Sikora, J. Laneman, M. Haenggi, J. Costello, D.J., and T. Fuja. On the optimum
number of hops in linear wireless networks. In Information Theory Workshop, 2004.
IEEE, pages 165 – 169, October 2004.

V. Singh. Global asymptotic stability of 2-D state-space digital filters with saturation
arithmetic: Modified approach. Signal Processing, 88(5):1304–1309, May 2008.

D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Approximate distributed Kalman
filtering in sensor networks with quantifiable performance. In Proceedings of the
4th international symposium on Information processing in sensor networks, pages
133–139, Los Angeles, California, April 2005. IEEE Press.

I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks. IEEE
Transactions on Parallel and Distributed Systems, 12(11):1122–1133, November
2001.

M. G. B. Sumanasena and P. Bauer. Models for distributed computing in grid sensor
networks. In International Symposium on Distributed Computing and Artificial Intel-
ligence, volume 91 of Advances in Intelligent and Soft Computing, pages 151–158.
Springer Berlin / Heidelberg, 2011a.

M. G. B. Sumanasena and P. Bauer. A distributed Kalman filter for grid sensor net-
works. Under review, Journal of The Franklin Institute, 2010e.

M. G. B. Sumanasena and P. Bauer. Realization using the Fornasini-Marchesini model
for implementations in distributed grid sensor networks. Circuits and Systems I:
Regular Papers, IEEE Transactions on, 58(11):2708 –2717, November 2011b.

M. G. B. Sumanasena and P. Bauer. Stability of distributed 3-D systems implemented
on grid sensor networks - part i: Link failure. Under review, IEEE Transactions on
Signal Processing, 2011c.

193

M. G. B. Sumanasena and P. Bauer. Stability of distributed 3-D systems implemented
on grid sensor networks - part ii: Node failure. Under review, IEEE Transactions on
Signal Processing, 2011d.

M. G. B. Sumanasena and P. Bauer. Stability of distributed 3-D systems implemented
on grid sensor networks using floating point arithmetic. In Accepted for 50th IEEE
Conference on Decision and Control, Orlando, USA, December 2011e.

M. G. B. Sumanasena and P. H. Bauer. Distributed m-D filtering for wave front de-
tection in grid sensor networks. In Proceedings of the 20th IASTED International
Conference on Parallel and Distributed Computing and Systems, pages 423–429,
Orlando, Florida, November 2008.

M. G. B. Sumanasena and P. H. Bauer. A Roesser model based multidimensional sys-
tems approach for grid sensor networks. In 43rd Asilomar Conference on Signals
Systems and Computers, pages 2151 –2155, Pacific Grove, USA, November 2009.

M. G. B. Sumanasena and P. H. Bauer. Stability of distributed 3-D systems implemented
on grid sensor networks. IEEE Transactions on Signal Processing, 58(8):4447–4453,
August 2010a.

M. G. B. Sumanasena and P. H. Bauer. Realization using the Roesser model for imple-
mentations in distributed grid sensor networks. Multidimensional Systems and Signal
Processing, 22:131–146, 2011d.

M. G. B. Sumanasena and P. H. Bauer. Realization using the FM model for implemen-
tations in distributed grid sensor networks. In 49th IEEE Conference on Decision
and Control, pages 389 –395, Atlanta, USA, December 2010b.

M. G. B. Sumanasena and P. H. Bauer. Realization using the Roesser model for imple-
mentations in distributed grid sensor networks. In 49th IEEE Conference on Decision
and Control, pages 382 –388, Atlanta, USA, December 2010c.

C. Tan and N. Beaulieu. On first-order Markov modeling for the Rayleigh fading chan-
nel. IEEE Transactions on Communications, 48(12):2032 –2040, December 2000.

W. P. Tay, J. Tsitsiklis, and M. Win. On the impact of node failures and unreliable
communications in dense sensor networks. IEEE Transactions on Signal Processing,
56(6):2535 –2546, june 2008. ISSN 1053-587X. doi: 10.1109/TSP.2007.914343.

A. Tejada, O. Gonzalez, and W. Gray. Asymptotic and mean square stability conditions
for hybrid jump linear systems with performance supervision. In Proceedings of the
American Control Conference 2005, pages 569 – 574 vol. 1, Portland ,USA, June
2005.

194

N. J. Theodorou and S. G. Tzafestas. A canonical state-space model for three-
dimensional systems. International Journal of Systems Science, 12(15):1353–1379,
December 1984.

W. Turin and R. van Nobelen. Hidden Markov modeling of flat fading channels. IEEE
Journal on Selected Areas in Communications, 16(9):1809 –1817, December 1998.

H. S. Wang and P.-C. Chang. On verifying the first-order Markovian assumption for a
Rayleigh fading channel model. IEEE Transactions on Vehicular Technology, 45(2):
353 –357, May 1996.

H. S. Wang and N. Moayeri. Finite-state Markov channel-a useful model for radio
communication channels. IEEE Transactions on Vehicular Technology, 44(1):163
–171, February 1995.

Q. Wang and W. Yang. Energy consumption model for power management in wireless
sensor networks. In 4th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, pages 142–151, San Diego, USA,
June 2007.

Q. Wang, M. Hempstead, and W. Yang. A realistic power consumption model for wire-
less sensor network devices. In 3rd Annual IEEE Communications Society Confer-
ence on Sensor and Ad Hoc Communications and Networks, pages 286–295, Reston,
USA, September 2006.

D. Wu, D. Xie, and L. Wang. A deployment algorithm to achieve both connectivity
and coverage in grid sensor networks. In The 9th International Conference for Young
Computer Scientists, pages 522–526, Hunan, China, November 2008.

K. Xu, G. Takahara, and H. Hassanein. On the robustness of grid-based deployment
in wireless sensor networks. In Proceedings of the 2006 international conference
on Wireless communications and mobile computing, pages 1183–1188, Vancouver,
Canada, July 2006.

L. Xu, O. Saito, and K. Abe. Practical internal stability of n-D discrete systems. IEEE
Transactions On Automatic Control, 41(5):756–761, May 1996.

L. Xu, L. Wu, Q. Wu, Z. Lin, and Y. Xiao. On realization of 2-D discrete systems
by Fornasini-Marchecini model. International Journal of Control, Automation, and
Systems, 3(4):631–639, December 2005.

L. Xu, Q. Wu, Z. Lin, and Y. Xiao. A new constructive procedure for 2-D coprime real-
ization in Fornasini-Marchesini model. IEEE Transactions on Circuits and Systems
I, 54(9):2061–2069, September 2007.

195

L. Xu, H. Fan, Z. Lin, and N. K. Bose. A direct-construction approach to multidimen-
sional realization and LFR uncertainty modeling. Multidimensional Systems Signal
Processing, 19(3-4):323–359, December 2008.

J. Zhang, J. Luo, and X. Luo. A robust localization algorithm for wireless sensor net-
works. In WiCOM 2008, 4th International Conference on Wireless Communications,
Networking and Mobile Computing,, pages 1–4, Dalian, China, October 2008.

M. Zorzi, R. Rao, and L. Milstein. On the accuracy of a first-order Markov model
for data transmission on fading channels. In Fourth IEEE International Conference
on Universal Personal Communications, pages 211 –215, Tokyo, Japan, November
1995.

196

	FIGURES
	SYMBOLS
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	Motivation
	Grid Sensor Networks
	Linear Algorithms on Sensor Networks
	Local State Space Models for 3-D Systems
	The Proposed Approach

	Literature Survey
	The Big Picture
	Structure of the Thesis

	CHAPTER 2: MODELS FOR GRID SENSOR NETWORKS
	GR Model Based Implementation
	GR Model for 3-D Systems
	Implementation in a Sensor Network

	FM Model Based Implementation
	FM Model for 3-D Systems
	Implementation in a Sensor Network

	Realization of Non-causal Systems
	Real-time Implementation Issues
	Delayed Response Implementation
	Real-Time Implementation

	Power and Energy Considerations
	Special Topologies
	Infinite Grids
	Cyclic Sensor Networks

	CHAPTER 3: REALIZABILITY IN REAL-TIME
	Realizability in the GR Model
	Proper Transfer Matrices
	Non Proper Transfer Matrices
	Example

	Realizability in the FM Model
	Causal Transfer Matrices
	Summary of the Realization Algorithm
	Non Causal Transfer Matrices
	Example
	Comparison with GR Model Based Implementations

	CHAPTER 4: STABILITY UNDER FINITE PRECISION ARITHMETIC
	Fixed Point Arithmetic
	Fixed Point Quantization and Overflow
	Models for Quantization and Overflow Nonlinearities
	Internal Stability
	BIBO Stability
	Example

	Floating Point Arithmetic
	Floating Point Representation of Numbers
	Quantization Models
	Stability of the System
	Example

	CHAPTER 5: NODE AND LINK FAILURE
	Models for 3-D Systems Under Link Failure
	FM Model
	GR Model

	Asymptotic Stability under Link Failure
	FM Model
	GR Model
	Example

	Models for 3-D Systems Under Node Failure
	Permanent Node Failure
	Temporary Node Failure
	Example

	Input-Output Stability
	Input-Output Stability Under Link Failure
	Input-Output Stability Under Node Failure

	CHAPTER 6: EXAMPLE
	Distributed Kalman Filtering
	The Proposed Algorithm
	Mean and Mean Square Error Performance
	Simulation Results

	Contaminant propagation detection

	CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	Future Research Directions
	Realization of Transfer Matrices
	Power Efficient Implementations
	Robustness
	Extension to Random Sensor Networks
	Extension to Broader Classes of Systems
	Applications

	Conclusions

	BIBLIOGRAPHY

