
GRAPH-BASED LEARNING FOR INFORMATION SYSTEMS 
 
 
 

by 
 

Xin Li 
 
 
 

__________________________ 
Copyright © Xin Li 2009 

 
 
 
 

A Dissertation Submitted to the Faculty of the 
 

Committee On Business Administration 
 

In Partial Fulfillment of the Requirements 
For the Degree of 

 
DOCTOR OF PHILOSOPHY 

WITH A MAJOR IN MANAGEMENT 
 

In the Graduate College 
 

THE UNIVERSITY OF ARIZONA 
 
 
 

2009 
 
 



 
 
 
 

UMI Number: 3352368
 
 

Copyright 2009 by 
                                                           Li, Xin 
 
 

All rights reserved 
 
 
 
 

INFORMATION TO USERS 
 
 

The quality of this reproduction is dependent upon the quality of the copy 

submitted.  Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript  

and there are missing pages, these will be noted.  Also, if unauthorized  

copyright material had to be removed, a note will indicate the deletion. 

 

        ______________________________________________________________ 
 

UMI Microform 3352368 
Copyright 2009 by ProQuest LLC 

All rights reserved.  This microform edition is protected against  
unauthorized copying under Title 17, United States Code. 

        _______________________________________________________________ 
 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106-1346 

 



 

2

THE UNIVERSITY OF ARIZONA 
GRADUATE COLLEGE 

 
As members of the Dissertation Committee, we certify that we have read the dissertation 
 
prepared by Xin Li 
 
entitled Graph-Based Learning for Information Systems  
 
and recommend that it be accepted as fulfilling the dissertation requirement for the 
 
Degree of Doctor of Philosophy 
 

 
_________________________________________________ Date: 04/21/2009 
Hsinchun Chen 
 
_________________________________________________ Date: 04/21/2009 
Jay F. Nunamaker, Jr. 
 
_________________________________________________ Date: 04/21/2009 
Daniel Zeng 
 
 
 
Final approval and acceptance of this dissertation is contingent upon the candidate’s 
submission of the final copies of the dissertation to the Graduate College. 
 
I hereby certify that I have read this dissertation prepared under my direction and 
recommend that it be accepted as fulfilling the dissertation requirement. 
 
 
_________________________________________________ Date: 04/21/2009 
Dissertation Director: Hsinchun Chen 



 

3

STATEMENT BY AUTHOR 
 

This dissertation has been submitted in partial fulfillment of requirements for an 
advanced degree at the University of Arizona and is deposited in the University Library 
to be made available to borrowers under rules of the Library. 
 
Brief quotations from this dissertation are allowable without special permission, provided 
that accurate acknowledgment of source is made.  Requests for permission for extended 
quotation from or reproduction of this manuscript in whole or in part may be granted by 
the copyright holder. 

 
 
 

                         SIGNED: Xin Li 



 

4

ACKNOWLEDGMENTS 
 
 

I gratefully thank my advisor, Dr. Hsinchun Chen, for his guidance and encouragement 
throughout my five years of doctoral study at the University of Arizona. It has been an 
invaluable opportunity for me to work at the Artificial Intelligence Lab under his 
direction. I believe that what I have learned from him will significantly benefit my future 
career. Special thanks to my dissertation committee members, Dr. Jay F. Nunamaker, Jr., 
Dr. J. Leon Zhao, Dr. Daniel Zeng, and my minor committee member from the 
Department of Electrical and Computer Engineering, Dr. Salim Hariri, for their guidance 
and encouragement. I also thank all other faculty members for their support. A special 
thank you goes to my academic advisor at Tsinghua University, Dr. Cheng Wu, for his 
advice and encouragement. 
 
My dissertation has been partly supported by the National Institutes of Health/National 
Library of Medicine (1 R33 LM07299-01) and the National Science Foundation (IIS-
0311652; CMMI-0533749; CMMI-0549663; CMMI- 0654232; CMMI-0738803). My 
work at the Artificial Intelligence Lab has been supported by many colleagues. I thank Dr. 
Mihail C. Roco of the National Science Foundation, Dr. Jesse Martinez of the Arizona 
Cancer Center, Dr. David W. Galbraith of the Department of Plant Science, Dr. Zhu 
Zhang of the Department of Management Information Systems, Dr. Michael Chau at the 
University of Hong Kong, and Cathy Larson, Chun-Ju Tseng, Dr. Zan Huang, Dr. Hua Su, 
Dr. Jennifer Xu, Dr. Jiexun Li, Daning Hu, Yiling Lin, Yi-Jen Ho, and Yan Dang from 
the AI Lab for their collaboration. I also want to thank Ms. Sarah Marshall and Ms. Carol 
Schumaker for editing my papers.  
 
I would like to thank all my colleagues and friends, including Dr. Byron Marshall, Dr. 
Daniel McDonald, Dr. G. Alan Wang, Dr. Yilu Zhou, Dr. Jialun Qin, Dr. Sherry Sun, Dr. 
Yiwen Zhang, Dr. Ming Lin, Dr. Siddharth Kaza, Dr. Rob Schumaker, Wei Chang, Dr. 
Ahmed Abbasi, Nichalin Suakkaphong, Hsin-min Lu, Tianjun Fu, Runpu Sun, Ping Yan, 
Manlu Liu, Yulei Zhang, Yida Chen, Sven Thomas, Roopali Wakhare, David Zimbra, 
Shaokun Fan, Shuo Zeng, Li Fan, and Chun-Neng Huang for their support of my studies.  
 
Most of all, I am grateful for the constant support from my parents Xianfen Meng and 
Guowang Li, my wife, Fenfang Peng, my sister, Dr. Su Li, and the rest of my family, 
without whom none of this work would have been possible. 
 



 

5

DEDICATION 
 

 

This dissertation is dedicated to my family. 



 

6

TABLE OF CONTENTS 
 
LIST OF ILLUSTRATIONS............................................................................................ 10 
LIST OF TABLES............................................................................................................ 11 
ABSTRACT...................................................................................................................... 12 
CHAPTER 1. INTRODUCTION ..................................................................................... 14 

1.1 Knowledge Discovery ........................................................................................ 14 
1.2 Graph-structured Data ........................................................................................ 15 
1.3 A Framework for Graph-based Learning ........................................................... 17 
1.4 Summary of Dissertation Chapters..................................................................... 19 

CHAPTER 2. TOPOLOGY DESCRIPTION: DIGESTING THE RELATIONAL 
INFORMATION FROM DOCUMENTS ........................................................................ 23 

2.1 Introduction ........................................................................................................ 23 
2.2 Literature Review ............................................................................................... 25 
2.3 Methodology....................................................................................................... 26 
2.4 Case Study 1: Gene Interaction Networks Extracted From Literature............... 30 

2.4.1 Background ............................................................................................. 30 
2.4.2 Dataset..................................................................................................... 32 
2.4.3 Results and Discussion............................................................................ 33 

2.4.3.1 Topological Measures.................................................................. 33 
2.4.3.2 Degree Distribution ..................................................................... 35 
2.4.3.3 Network Evolution....................................................................... 36 

2.5 Case Study 2: Patent Citation Networks ............................................................ 38 
2.5.1 Background ............................................................................................. 38 
2.5.2 Dataset..................................................................................................... 39 
2.5.3 Results and Discussion............................................................................ 40 

2.5.3.1 Topological Measures.................................................................. 40 
2.5.3.2 Degree Distribution ..................................................................... 43 

2.6 Summary............................................................................................................. 45 
CHAPTER 3. NODE CLASSIFICATION: TRACING KNOWLEDGE EVOLUTION 
WITH CITATION NETWORKS FOR PATENT CLASSIFICATION .......................... 47 

3.1 Introduction ........................................................................................................ 47 
3.2 Literature Review ............................................................................................... 49 

3.2.1 Classification of Linked Documents....................................................... 50 
3.2.1.1 Feature Types............................................................................... 50 
3.2.1.2 Algorithm Types.......................................................................... 53 

3.2.2 Kernel-based Methods on Structure Information.................................... 55 
3.2.3 Research Gaps and Research Questions ................................................. 56 

3.3 Research Design ................................................................................................. 58 
3.3.1 A Framework of Kernel-based Patent Classification.............................. 58 
3.3.2 Kernel Function Design .......................................................................... 59 

3.3.2.1 Using Citation Information.......................................................... 59 
3.3.2.2 Using Individual Documents’ Content Information .................... 65 
3.3.2.3 Using Both Content & Citation Information ............................... 65 



 

7

3.4. Experimental Study ........................................................................................... 66 
3.4.1 Dataset..................................................................................................... 66 
3.4.2 Experimental Procedures ........................................................................ 68 
3.4.3 Evaluation Metrics .................................................................................. 69 
3.4.4 Hypotheses .............................................................................................. 71 

3.5. Results and Discussion ...................................................................................... 72 
3.5.1 Overall Performances.............................................................................. 72 
3.5.2 Hypotheses Testing ................................................................................. 74 
3.5.3 Individual Class’s Performances............................................................. 76 

3.6 Summary............................................................................................................. 79 
CHAPTER 4. NODE CLASSIFICATION: CAPTURING GENE INTERACTION 
CONTEXTS FOR GENE FUNCTION PREDICTION ................................................... 81 

4.1 Introduction ........................................................................................................ 81 
4.2 Literature Review ............................................................................................... 82 

4.2.1 Gene Function Prediction........................................................................ 82 
4.2.1.1 Assumptions ................................................................................ 83 
4.2.1.2 Levels of Interactions .................................................................. 84 
4.2.1.3 Computational Techniques .......................................................... 85 

4.2.2 Research Gaps......................................................................................... 86 
4.3 Research Design ................................................................................................. 87 

4.3.1 A Kernel-based Approach....................................................................... 87 
4.3.2 A Context Graph Kernel ......................................................................... 89 

4.3.2.1 Kernel Design .............................................................................. 89 
4.3.2.2 Computing the Context Graph Kernel in a Matrix Form ............ 91 

4.4 Experimental Study ............................................................................................ 93 
4.4.1 Dataset..................................................................................................... 93 

4.4.1.1 Human Genome Gene Interaction Network ................................ 93 
4.4.1.2 Gene Function Labels .................................................................. 93 
4.4.1.3 A P53-related Testbed ................................................................. 94 

4.4.2 Experimental Procedures ........................................................................ 94 
4.4.3 Evaluation Metrics .................................................................................. 96 

4.5 Results and Discussion ....................................................................................... 97 
4.5.1 Experiment I: Effect of Indirect Interactions .......................................... 97 
4.5.2 Experiment II: CGK vs. Other Methods ................................................. 99 

4.5.2.1 Benchmark Algorithms................................................................ 99 
4.5.2.2 Instance-level Performance ....................................................... 100 
4.5.2.3 Class-level Performance ............................................................ 103 

4.6 Summary........................................................................................................... 104 
CHAPTER 5. LINK PREDICTION: ADDRESSING THE RECOMMENDATION 
PROBLEM WITHIN BIPARTITE GRAPHS................................................................ 105 

5.1 Introduction ...................................................................................................... 105 
5.2 Literature Review ............................................................................................. 106 

TABLE OF CONTENTS – Continued 



 

8

5.2.1 Recommendation Algorithms ............................................................... 106 
5.2.1.1 Feature Types............................................................................. 107 
5.2.1.2 Computational Techniques ........................................................ 108 

5.2.2 Research Gaps....................................................................................... 110 
5.3 Research Design ............................................................................................... 111 

5.3.1 A Graph Kernel-based Recommendation Framework.......................... 112 
5.3.2 Graph Kernel Design ............................................................................ 113 

5.4 Experimental Study .......................................................................................... 116 
5.4.1 Dataset................................................................................................... 116 
5.4.2 Experimental Procedures ...................................................................... 117 
5.4.3 Evaluation Metrics ................................................................................ 119 

5.5 Results and Discussion ..................................................................................... 120 
5.5.1 Graph Kernel vs. Heuristics .................................................................. 120 
5.5.2 Graph Kernel vs. Other Learning-based Algorithms ............................ 122 

5.6 Summary........................................................................................................... 125 
CHAPTER 6. COMMUNITY DETECTION: EXPLORING LINK SENTIMENTS TO 
DETECT ONLINE SOCIAL GROUPS ......................................................................... 126 

6.1 Introduction ...................................................................................................... 126 
6.2 Literature Review ............................................................................................. 128 

6.2.1 Community Detection ........................................................................... 128 
6.2.1.1 Network Types........................................................................... 129 
6.2.1.2 Network Characteristics............................................................. 130 
6.2.1.3 Algorithm Types........................................................................ 131 

6.2.2 Research Gaps....................................................................................... 136 
6.3 Research Design ............................................................................................... 139 

6.3.1 Research Framework............................................................................. 139 
6.3.2 Algorithm Design.................................................................................. 141 

6.3.2.1 Modularity Measure................................................................... 142 
6.3.2.2 Hierarchical Clustering.............................................................. 143 
6.3.2.3 The GN Algorithm..................................................................... 144 
6.3.2.4 The GN-H Co-training Algorithm............................................. 144 

6.4 Experimental Study .......................................................................................... 147 
6.4.1 Datasets ................................................................................................. 147 
6.4.2 Experiment Procedure........................................................................... 149 
6.4.3 Evaluation Metrics ................................................................................ 149 
6.4.4 Hypotheses ............................................................................................ 150 

6.5 Results and Discussion ..................................................................................... 151 
6.5.1 Experiments on Simulated Data............................................................ 151 
6.5.2 Experiments on the Eopinions Dataset ................................................. 155 

6.6 Summary........................................................................................................... 161 
CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS .................................. 162 

7.1 Contributions .................................................................................................... 162 

TABLE OF CONTENTS – Continued 



 

9

7.2 Relevance to Management Information Systems Research ............................. 165 
7.3 Future Directions .............................................................................................. 166 

APPENDIX A: MATRIX FORMULATION OF THE CONTEXT GRAPH KERNEL168 
APPENDIX B: CONVERGENCE OF THE CONTEXT GRAPH KERNEL ............... 173 
REFERENCES ............................................................................................................... 176 
 

TABLE OF CONTENTS – Continued 



 

10

LIST OF ILLUSTRATIONS 

Figure 1.1 A Framework for Graph-based Learning ........................................................ 17 
Figure 2.1 A Framework for Network Topology Analysis on Relations From Documents
........................................................................................................................................... 27 
Figure 2.2 Degree Distribution of the Gene Interaction Networks................................... 35 
Figure 2.3 Evolution of the Parsed Network .................................................................... 36 
Figure 2.4 Preferential Attachment Test........................................................................... 37 
Figure 2.5 Patent Citation Network Degree Distributions: In-degree and Out-degree..... 44 
Figure 3.1 A Framework of Kernel-based Patent Classification ...................................... 58 
Figure 3.2 Random Walk Paths on a Labeled Citation Network Related to Patent S ...... 63 
Figure 3.3  Labeled Citation Graph Kernel Algorithm..................................................... 64 
Figure 3.4 Data Distribution in USPC Categories ............................................................ 68 
Figure 3.5 The Kernels’ Performances in Different Classes ............................................ 78 
Figure 4.1 Assumptions of Using Gene Interactions in Gene Function Prediction.......... 83 
Figure 4.2 The Kernel-based Framework for Gene Function Prediction ......................... 88 
Figure 4.3 Performance of CGK Using Different Levels of Interactions......................... 98 
Figure 5.1 A Graph Kernel-based Recommendation Framework .................................. 112 
Figure 5.2 The Associative Interaction Graph of A User-item Pair ............................... 114 
Figure 5.3 ROC Curves of Top 1,000 Recommendations of Graph-based Algorithms . 121 
Figure 5.4 ROC Curves of Top 1,000 Recommendations of Learning-based Algorithms
......................................................................................................................................... 124 
Figure 6.1 A Taxonomy for Community Detection in Network Analysis ..................... 129 
Figure 6.2 A Framework for Community Detection from Online Interactions.............. 139 
Figure 6.3 The GN-H Algorithm .................................................................................... 145 
Figure 6.4 Pseudo Code of the GN-H Algorithm ........................................................... 146 
Figure 6.5 Community Detection Performance on Simulated Data when α=0.7........... 151 
Figure 6.6 Performance Improvement of GN-H Algorithm over the GN Algorithm..... 153 
Figure 6.7 Aggregated Performance on α, β, and γ ........................................................ 154 
Figure 6.8 Community Detection Results on the Eopinions Dataset.............................. 156 
Figure 6.9 Different Communities’ Interests .................................................................. 160 
 



 

11

LIST OF TABLES 

Table 2.1 Topological Measures of the Gene Interaction Networks ................................ 33 
Table 2.2 Topological Measures of the Patent Citation Networks ................................... 41 
Table 2.3 Patent Document Citation Network Degree Distribution Measures................. 44 
Table 3.1 A Summary of Studies on Linked Document Classification............................ 57 
Table 3.2 Kernels for Citation Information ...................................................................... 60 
Table 3.3 Number of Data Instances in the Testing and Training Datasets ..................... 67 
Table 3.4 Performances of Different Kernels ................................................................... 72 
Table 3.5 Hypotheses Testing for Different Kernels ........................................................ 75 
Table 3.6 Some of the Categories Which are Difficult to Classify .................................. 76 
Table 4.1 A Summary of Previous Studies....................................................................... 86 
Table 4.2 Nine Major Gene Functions in the P53 Testbed............................................... 94 
Table 4.3 Baseline Methods for Gene Function Prediction.............................................. 99 
Table 4.4 Instance-level Prediction Performance ........................................................... 101 
Table 4.5 Class-level Prediction Performances .............................................................. 103 
Table 5.1 A Summary of Previous Recommendation Algorithm Studies ...................... 111 
Table 5.2 Dataset Statistics ............................................................................................. 116 
Table 5.3 Top 10 Recommendation Performance for Graph-based Algorithms ............ 120 
Table 5.4 Top 10 Recommendation Performance for Learning-based Algorithms........ 123 
Table 6.1 Web 2.0 Techniques and Possible Social Groups........................................... 127 
Table 6.2 Previous Studies on Community Detection .................................................... 136 
Table 6.3 Hypotheses Testing......................................................................................... 152 
Table 6.4 Characteristics of the Two Major Communities............................................. 157 
Table 6.5 Top 10 High-degree Users in the Two Major Communities .......................... 158 
 



 

12

ABSTRACT 

 The advance of information technologies (IT) makes it possible to collect a 

massive amount of data in business applications and information systems. The increasing 

data volumes require more effective knowledge discovery techniques to make the best 

use of the data. This dissertation focuses on knowledge discovery on graph-structured 

data, i.e., graph-based learning. Graph-structured data refers to data instances with 

relational information indicating their interactions in this study. Graph-structured data 

exist in a variety of application areas related to information systems, such as business 

intelligence, knowledge management, e-commerce, medical informatics, etc. Developing 

knowledge discovery techniques on graph-structured data is critical to decision making 

and the reuse of knowledge in business applications.  

 In this dissertation, I propose a graph-based learning framework and identify four 

major knowledge discovery tasks using graph-structured data: topology description, node 

classification, link prediction, and community detection. I present a series of studies to 

illustrate the knowledge discovery tasks and propose solutions for these example 

applications. As to the topology description task, in Chapter 2 I examine the global 

characteristics of relations extracted from documents. Such relations are extracted using 

different information processing techniques and aggregated to different analytical unit 

levels. As to the node classification task, Chapter 3 and Chapter 4 study the patent 

classification problem and the gene function prediction problem, respectively. In Chapter 

3, I model knowledge diffusion and evolution with patent citation networks for patent 

classification. In Chapter 4, I extend the context assumption in previous research and 
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model context graphs in gene interaction networks for gene function prediction. As to 

the link prediction task, Chapter 5 presents an example application in recommendation 

systems. I frame the recommendation problem as link prediction on user-item interaction 

graphs, and propose capturing graph-related features to tackle this problem. Chapter 6 

examines the community detection task in the context of online interactions. In this study, 

I propose to take advantage of the sentiments (agreements and disagreements) expressed 

in users’ interactions to improve community detection effectiveness.  All these examples 

show that the graph representation allows the graph structure and node/link information 

to be more effectively utilized in addressing the four knowledge discovery tasks.  

 In general, the graph-based learning framework contributes to the domain of 

information systems by categorizing related knowledge discovery tasks, promoting the 

further use of the graph representation, and suggesting approaches for knowledge 

discovery on graph-structured data. In practice, the proposed graph-based learning 

framework can be used to develop a variety of IT artifacts that address critical problems 

in business applications.  
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CHAPTER 1. INTRODUCTION 

1.1 Knowledge Discovery 

 Knowledge discovery is the process of extracting implicit, unknown, and 

potentially useful information from data (Fayyad et al., 1996). In business applications, 

knowledge discovery approaches are critical to decision making because of the difficulty 

people have utilizing data directly in a raw form for decision making. In order to be of 

practical value, data need to be transformed to certain forms (Barlas et al., 2005), limited 

to specific problems (Carlisle, 2006), analyzed for underlying patterns, and aggregated to 

knowledge. To handle such a procedure, manual processing would need a great deal of 

human effort, which is becoming more and more difficult due to the rapidly increasing 

data volumes. 

 The advance of information techniques (IT) and the use of information systems 

have greatly enhanced our ability to collect, digitize, and store data and information in a 

variety of domains. For example, in business applications, we are able to keep track of 

most of the daily business activities related to production, transportation, marketing, sales, 

and accounting operations (Sprott, 2000). In knowledge management, we are able to 

digitize and store most of the books, patents, papers, and other types of documents (Levy 

and Marshall, 1995). The advance of Internet/telecommunication techniques has even 

made it possible to preserve our daily communications conducted online or through 

telephones (Walther, 1996).  

 Such massive amounts of data provide us with great potential to extract useful 

knowledge to address business problems. However, in order to process these large 
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volumes of data, it is necessary to have automatic knowledge discovery techniques. 

Data mining (i.e., knowledge discovery in database) is an IT artifact developed to aid 

human beings in addressing the information overload problem in knowledge discovery 

(Fayyad et al., 1996). Rooted in computer science, statistics, information science, 

cognitive science, etc., data mining research includes various tasks, such as classification, 

clustering, regression, and association rule learning. Traditional data mining research is 

usually conducted on data in relational databases, and has been extended in several 

directions according to the characteristics of the data. Examples include text mining 

research on free-text (Berry, 2004), Web mining research on files on the Web (Zhang and 

Segall, 2008), pattern recognition on multimedia data, temporal data mining (Roddick 

and Spiliopoulou, 1999) on data with time information, and spatial data mining (Roddick 

and Spiliopoulou, 1999) on data with location information, among others. In this 

dissertation, however, I will focus on knowledge discovery on graph-structured data, i.e., 

graph-based learning, and study its application in information systems. 

1.2 Graph-structured Data 

 In this dissertation, I define graph-structured data as data instances (i.e., entities) 

that have relational information indicating their interactions or connections. While one 

relation connects a pair of entities, multiple connected entities constitute a network or a 

graph (in this dissertation, the two terms are used interchangeably unless specified). In 

the network, nodes are the entities being studied and links are the relations between the 

entities. As an example of graph-structured data, the social networks (Wasserman and 

Faust, 1994) in sociology and organizational science consist of individual persons linked 
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by certain relationships, such as friendship. Webpages can also be viewed as a network, 

since they are linked by hyperlinks. 

 In this dissertation, I consider graph-structured data to be more than an abstract 

mathematical representation of nodes and links. The entities (nodes) may have rich 

features or data fields describing their attributes. The relations (links) may also contain 

information reflecting their semantics. In the example of social networks, each node 

(person) can be characterized by gender, career, age, etc. The links among individuals 

may be characterized by relation type (such as friendship, co-authorship, or mentorship), 

strength, sentiment (favorable or unfavorable), formation time, and so forth. In the 

example of Webpage networks, each node (Webpage) holds the rich textual information 

of its content. The hyperlinks can be annotated by the anchor texts, users’ click through 

frequencies, etc., depending on the applications.  

 In graph-structured data, one network may contain more than one type of node or 

more than one type of link. In addition, the nodes/links can be either naturally occurring 

entities/relations in the applications or abstract concepts/implicit correlations extracted 

based on prior knowledge. For example, instead of building Webpage networks based on 

Webpages and hyperlinks, we can extract topic information from Webpages and build a 

topic-based network where nodes represent topics and links represent the similarity 

between topics. Such a network may be meaningful and has its utilities in knowledge 

mapping research. 

  Nowadays, graph-structured data can be found in various information systems 

applications (such as business intelligence, knowledge management, computer mediated 
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communication, and medical informatics). Such examined data include friendship 

networks, co-authorship networks, company supply networks, document citation 

networks, customer-product purchase networks, customer-product review networks, and 

even gene interaction networks in medical informatics. There has been an increasing 

interest in using graph-structured data addressing business problems. However, 

traditional data mining methods have limited abilities to make use of the rich information 

embedded in networks. Thus, I devoted myself to studying knowledge discovery on 

graph-structured data in this dissertation.  

1.3 A Framework for Graph-based Learning  
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Figure 1.1 A Framework for Graph-based Learning  

 In this dissertation, I define graph-based learning as knowledge discovery on the 

basis of graph-structured data. I do not limit graph-based learning to any specific data 
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mining/machine learn algorithm paradigms. However, I propose that such a graph-based 

learning process should take the graph structure into consideration. The graph 

representation highlights the relationships between data instances, especially indirect 

connections. It allows us to take advantage of graph theory developed in previous 

research into data mining for more effective knowledge discovery.  

 Figure 1.1 shows the graph-based learning framework prompted by this 

dissertation. The framework focuses on graph-structured data, i.e., structured/textual data 

and the relations between data instance, and targets at aiding human beings’ knowledge 

acquisition and decision making processes. The framework is built upon data mining 

theory and graph theory. From the perspective of computational efficiency, the 

framework also considers parallel and distributed computing as part of the basis of graph-

based learning. The framework contains four types of tasks for graph-based learning: 

topology description, node classification, link prediction, and community detection. 

 1) The topology description task aims to provide a global description of the 

network structure of the data. This task adopts the theoretical findings and statistical 

measures in social network analysis and graph theory to characterize the size and density 

of the network, the inter-connection patterns, positional relationships, and influences 

between nodes, etc. Such an analysis can help decision makers in the initial explorations 

of the data, which may lead to further more specific analyses. 

 2) The node classification task aims to group entities (nodes) according to 

predefined categories or criteria, such as classifying Webpages according to their topics. 

Such a task is similar to the traditional classification task, while the graph-based learning 
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framework emphasizes using not only nodes’ local features but also relations between 

nodes to facilitate this task.  

 3) The link prediction task aims to infer possible links between nodes. It is similar 

to traditional association rule learning and relational learning studies, which are used to 

discover knowledge about entities’ correlations. A network view enables us to explicitly 

use graph structure in the task and to analyze different types of relations (or relations 

between different types of nodes) in a unified framework. In addition, the predicted links 

also show expected network changes, which can aid in the global assessment of the 

network’s evolution.  

 4) The community detection task aims to identify sub-groups of nodes according 

to their behaviors in the network. It is similar to traditional clustering analysis in the 

sense of grouping data instances. However, using a graph representation focuses more on 

the relationships between nodes in this task. In addition, the detected communities and 

their interconnection patterns provide us a mesoscopic description of the network. 

Community detection can be used to analyze the original network at a coarser level of 

granularity. It can also reduce computational requirements to facilitate our analysis of 

large scale networks.   

 I will further elaborate the proposed graph-based learning process for each one of 

the tasks mentioned above. 

1.4 Summary of Dissertation Chapters  

 Chapter 2 focuses on the topology description task on the relational information 

extracted from documents, specifically gene interaction networks extracted from the 
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biomedical literature and patent citation networks extracted from patents. This study 

empirically examines the characteristics of these networks, such as small-world and 

scale-free properties. In addition, this study compares the networks extracted from the 

documents with different methods and aggregated to different levels of analytical units 

using the network topology analysis measures. This chapter confirms the utility of 

network topology analysis in assessing a network’s global characteristics in descriptive 

studies.  

 Chapter 3 and Chapter 4 examine the node classification problem with an 

example of patent classification and an example of gene function prediction, respectively. 

In Chapter 3, I propose to represent knowledge evolution processes using patent citation 

networks and model citation networks’ structures for focal patents’ classification. In a 

kernel-based framework, I propose a labeled graph kernel to capture the knowledge 

diffusion and evolution patterns on the patent citation network, which are related to the 

patents’ topics. The approach complements traditional content analysis and significantly 

improves classification performance. In Chapter 4, I study the gene function prediction 

problem in the medical informatics domain by utilizing gene interaction networks. Based 

on a context assumption identified in previous gene function prediction research, I 

introduce a context graph kernel to capture features from context graphs, which includes 

the genes directly and indirectly interacting with the focal gene, for focal gene’s function 

prediction. The approach achieves significantly better performance over traditional data 

mining methods.  In addition, the study examines the mathematical formulation of the 

kernel and its performance characteristics under different parameter settings.  
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 Chapter 5 showcases an example application of the link prediction task. In this 

chapter I frame the recommendation problem as a link prediction in a user-item purchase 

graph (which is a bipartite graph). I propose a one-class classification framework and a 

graph kernel model to tackle this problem by capturing the patterns in the structures of 

user-item pairs’ associate interaction graphs. Such an approach provides more accurate 

predictions than prior methods, especially when a large number of recommendations for 

each user are needed. This study shows both the importance of the learning-based 

framework and the effective utilization of the graph-related features in addressing this 

type of difficult problem.  

 Chapter 6 studies the community detection problem in online environments. In 

this study I explore the use of link information, i.e., communication sentiments, in 

detecting online social groups. Based on an effective GN algorithm that can be applied on 

networks without sentiments, I design a GN-H co-training algorithm that uses both links 

with positive sentiments and links with negative sentiments in this task. Experiments on a 

simulated dataset show the superior performance of differentiating positive and negative 

sentiments. The experiments on an online product review dataset show the utility of the 

proposed method in aiding our analysis of online opinions. 

 In general, this dissertation exemplifies the effectiveness of utilizing graph 

structure information in the four knowledge discovery tasks using a variety of 

applications in business intelligence, knowledge management, computer mediated 

communication, and medical informatics. Its contributions to knowledge discovery and 
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information systems are summarized in Chapter 7, which also presents future extensions 

of this work.   
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CHAPTER 2. TOPOLOGY DESCRIPTION: DIGESTING THE RELATIONAL 
INFORMATION FROM DOCUMENTS  

2.1 Introduction  

 In this chapter, I introduce network topology analysis as a descriptive analysis 

approach to explore graph-structured data. Targeting the information overload problem in 

knowledge management, I analyze the relational information extracted from documents 

as an example application. 

 In recent years, the rapid development of modern technologies has led to a large 

increase in scientific literature and patent publications. For example, the number of new 

papers appearing in Medline rose from an average of 746/day in 1980 to 1,494/day by 

2002 (Marshall et al., 2006). In the United States Patent and Trademark Office (USPTO), 

annual patent applications increased from 90,982 in 1963 to 417,508 in 2005 (Li et al., 

2007b). Such large amounts of documents make it difficult for users to access 

information and for researchers to study and analyze the accumulation of knowledge and 

the diffusion of knowledge.  

 To address this problem, various analytical methods have been proposed for 

different information processing purposes. For the purpose of digesting the vast and 

growing collection of documents, text mining techniques have been developed to extract 

entities and relations from free text. In some application domains, such extracted 

relational information reflects the key knowledge elements embedded in the texts. For 

example, the knowledge from gene pathway research can be documented in biomedical 

documents as interactions between genes and their products. Another way of taking 
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advantage of the collections of documents is to extrat inter-document relationships, 

which can facilitate analysis of knowledge diffusion patterns between knowledge holders. 

For example, the citation relationships between patents may indicate the transfer of 

knowledge elements from cited patents to citing patents.  

 Obviously, these two types of research make use of different types of relational 

information (intra-document relations and inter-document relations) and have significant 

semantic differences. However, the two types of information are all related to the 

accumulation and diffusion of knowledge within documents. Analyzing the two types of 

information may help us assess the landscape of knowledge development in application 

domains of interest. Since these relational data can all be represented as a network 

structure, network topology analysis methods can be adopted to assess their global 

characteristics which can be interpreted in their respective contexts.   

 In this chapter, I conduct two network topology analysis case studies. In the first 

case study, I compare the gene interaction networks extracted from biomedical literature 

by different information extraction techniques. In the second case study, I study the 

citation networks of USPTO nanotechnology patents aggregated to different levels of 

analytical units. In both case studies, network topology analysis methods enable us to 

unveil the global structural characteristics of the relational information accumulated in 

the literature and the knowledge diffusion patterns between different types of knowledge 

holders.  

 This chapter is structured as follows. Section 2.2 reviews previous research on 

network topology analysis. Section 2.3 describes the proposed framework for network 
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topology analysis on relations extracted from documents. Sections 2.4 and 2.5 present 

the case studies on gene interaction networks extracted from biomedical literature and 

patent citation networks extracted from USPTO patents, respectively. Section 2.6 

summarizes the findings. 

2.2 Literature Review 

 In this section, I review previous network topology analysis studies in 

general. .Domain-specific literature will be reviewed in the two case study sections since 

there are different implications in their network topology analyses.  

 Network topology analysis employs various statistical measures to characterize 

the topology of complex networks. These measures describe important quantitative 

features such as the distance between nodes (average path length), tendency for the nodes 

to form clusters (clustering coefficient), node degree distribution, etc. Network topology 

analysis is also related to social network analysis studies in sociology. In 1967, Milgram 

discovered the six degrees of separation phenomenon (Milgram, 1967), which led later 

sociologists to study how social networks affect human behaviors.  

 In network topology analysis, three important graph models have been developed 

to understand the governing principles of network topology. 1) The Erdos-Renyi model 

or binomial model is a purely random model assuming links may appear randomly 

between nodes without any underlying governing principles (Erdos and Renyi, 1959). 2) 

The small-world model is a hybrid model that combines a regular lattice and a purely 

random graph to capture the co-existence of regularity and randomness (Watts and 

Strogatz, 1998). 3) The scale-free model incorporates the growth and preferential 
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attachment mechanisms in networks (Barabasi and Albert, 1999). While the random 

graph model enables theoretical and numerical analysis as a baseline model, recent rich 

empirical literature on network topology analysis has found that the small-world property, 

characterized as the co-existence of short average path length and large clustering 

coefficient, and the scale-free property, characterized as having a power-law degree 

distribution, exist in a wide range of networks (Albert and Barabasi, 2002).  

 The network topology analysis methods are effective in describing network 

characteristics. They have been adopted to analyze different types of networks, such as 

the World Wide Web (Lawrence and Giles, 1998), social networks (Watts and Strogatz, 

1998; Newman, 2001), biological networks (Jeong et al., 2000), telecommunication 

networks (Abello et al., 1999), and networks in linguistics (Ferrer et al., 2001). Among 

these studies, some of the relations naturally exist while the others need to be extracted 

from various data sources. In general, studies on the networks created from documents 

(such as scientific literature and patents) are limited.  

2.3 Methodology 

 Based on previous network topology analysis studies, I propose a framework for 

analyzing relational information embedded in documents. The proposed methodology has 

four steps: document collection, relation extraction, network construction, and network 

topology analysis (Figure 2.1).  
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Figure 2.1 A Framework for Network Topology Analysis on Relations From Documents 

1) Document collection 

 In the document collection stage, documents (papers, patents, etc.) need to be 

extracted from relevant domain repositories (such as Medline and USTPO). I propose to 

take a keyword search approach for this procedure, since keyword search is a 

functionality provided by most repositories. Depending on the purpose of the study, the 

keywords can be used to match the full-text of the documents or some of the data fields 

of the documents. The extracted documents usually need to be parsed and saved in 

structured databases.  

2) Relation extraction 

 In the relation extraction stage, the relational information of interest to the users 

needs to be extracted. In general, accurately extracting relational information from 

document contents needs significant parsing efforts or Natural Language Processing 
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(NLP) techniques. It can be relatively easier to extract inter-document relations such as 

citation relations. However, the various reference standards and noise in the references 

may still need to be addressed. In short, in this stage, various relation extraction 

tools/techniques can be adopted.  

3) Network construction 

 In the network construction stage, the extracted relations are aggregated together 

to build the network. In this research, I only consider unipartite networks which contain 

one type of nodes. Thus, all entities connected by extracted relations need to be 

aggregated to a certain type of analytical units. For example, we can aggregate biological 

relations to the gene level; we can also aggregate patent citations to the country level. 

When the entities are aggregated to a certain type of nodes, the links between two nodes 

represent all relations between the entities of the two groups. Thus, one can weight a link 

with the total number of relations represented by the link. However, in this study I 

consider only unweighted networks. Depending on the nature of the relations, the links 

can be directional or non-directional.  

4) Network topology analysis 

 In the network topology analysis stage, various statistical measures are employed 

to characterize the topology of created networks (Albert and Barabasi, 2002):  

a) Network size: The number of nodes (Node#) and links (Link#) in the network 

represents the coverage of the relations.  
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b) Component size: A component is an isolated sub-network in a disconnected network. 

The number of components (NC), number of nodes of the giant component (Node#C), and 

number of links of the giant component (Link#C) are used to characterize the components. 

c) Network diameter (D):  The maximum value of the shortest path length between any 

pair of nodes in the network.  

d) Average path length (l): The average value of the shortest path length between any pair 

of nodes in the network.  

e) Clustering coefficient (C): The network’s clustering coefficient is the average of each 

node’s clustering coefficient C’. A node’s clustering coefficient is the ratio of the number 

of edges between the node’s neighbors to the number of possible edges between those 

neighbors (one node’s neighbors are the nodes directly connected to it): 

number of edges between the neighbors'
possible number of edges between the neighbors

C =
. 

f) Average degree (<k>): The average number of links that a node has to other nodes. 

g) Degree distribution P(k): Degree distribution represents the probability that a selected 

node has exactly k links:  

( )( ) N kP k
N

=
, 

where N(k) is the number of nodes with k links and N is the total number of nodes. It 

should be noted that in a directional network, a link has a start node and an end node. The 

in-degree of a node is the number of links that have the node as an end. The out-degree of 

a node is the number of links that have the node as a start. The degree distribution can be 

calculated based on both in-degree and out-degree. 
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h) Network evolution: If the relations of a network are stamped with the time of 

creation, the entire network can be sliced to sub-networks according to the relations’ time 

of creation. The temporal changes of the topological measures of this series of sub-

networks show the evolution of the relations in documents. It is also possible to test some 

network evolution models on the dataset, such as the preferential attachment model for 

scale-free networks (Barabasi and Albert, 1999; Jeong et al., 2003).  

2.4 Case Study 1: Gene Interaction Networks Extracted From Literature 

2.4.1 Background 

 Genetic interactions control many important biological processes in cells. 

Traditionally, characterization of individual gene regulatory pathways was the focus of 

genomic research. Recent studies have switched to constructing and analyzing networks 

at a genome-wide scale to assess the global characteristics of genetic interactions 

(Barabasi and Oltvai, 2004).  

 Gene interactions can be extracted from high-throughout experimental data, such 

as microarray (Luscombe et al., 2004; Tong et al., 2004), data from mass spectrometric 

analysis (Gavin et al., 2002; Ho et al., 2002), and two-hybrid screening (Jeong et al., 

2001; Yook et al., 2004), using a variety of analytical methods.  

 Biomedical literature provides another source of gene interactions, which are 

human knowledge from previous research. Gene interactions can be manually curated by 

domain experts based on previous research and literature (Fell and Wagner, 2000; Shen-

Orr et al., 2002; Ma and Zeng, 2003). The recent advances in text mining techniques 

make it possible to automatically extract gene/protein interactions from biomedical 
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literature. Co-occurrence analysis identifies the entity pairs that appear in the same 

context (Stapley and Benoit, 2000; Jenssen et al., 2001). Although not every co-

occurrence relation reflects an actual interaction between the two genes, statistically 

significant co-occurrence relations based on a large corpus of literature may correspond 

to underlying gene interactions (Wren et al., 2004). Parsing relations using Natural 

Language Processing (NLP) technology is another approach to gene/protein interaction 

extraction (McDonald et al., 2004; Marshall et al., 2006). Chen and Sharp developed a 

system which incorporates NLP tools to parse syntactic gene relations from Medline 

abstracts and reported the degree distribution of some parsed relation network examples 

(Chen and Sharp, 2004).  

 In previous gene interaction network studies, both small-world and scale-free 

characteristics were found in gene interaction networks (Shaw, 2003; Tari et al., 2005) 

and protein interaction networks (Jeong et al., 2001; Yook et al., 2004). In addition, 

several studies discovered that network motifs, i.e., recurrent interconnection patterns in 

local structures, exist in gene interaction networks (Shen-Orr et al., 2002; Luscombe et al., 

2004) and protein interaction networks (Wuchty et al., 2003).  However, most previous 

gene interaction network studies were conducted based on experimental data and 

manually curated data. The use of relations automatically extracted from a large body of 

biomedical literature using modern text mining techniques is limited. Experimental data 

are usually limited to particular experimental conditions. Manually curated data usually 

require intensive labor by domain experts. Conducting topology analysis on 
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automatically extracted relations from biomedical literature may provide us a better idea 

of the cumulative human knowledge of gene interactions. 

2.4.2 Dataset 

 To test the proposed framework, I created a p53-related testbed from Medline. 

P53 is a tumor suppressor gene playing a central role in cancer development, which is of 

interest to many biologists. The p53-related documents were collected from Medline by 

matching the abstracts that contain various names of p53 and other genes in the p53 

pathways, as suggested by domain experts. In total, 87,903 abstracts related to p53 (1975- 

2003) were identified.  

 I leveraged previously developed text mining techniques to extract the gene 

interactions from the collected Medline abstracts. The process consists of two major steps: 

parsing gene/protein relations with the Arizona Relation Parser (McDonald et al., 2004)  

and aggregating the parsed relations with the BioAggregate tagger (Marshall et al., 2005). 

In the first step 51,033 distinct entities and 44,864 relational triples were extracted. The 

parsed relations were aggregated into 8,837 genes and 29,635 gene interactions in the 

second step.  

 I constructed two types of gene interaction networks from the extracted relations: 

a parsed network and two co-occurrence networks. To construct the parsed network, I 

kept only the aggregated relations with genes on both sides, which contain 2,045 genes 

and 6,092 interactions. Each aggregated gene interaction has a time tag which indicates 

the first time it was documented in biomedical literature. For the co-occurrence networks, 

I first generated a co-occurrence network on the gene pairs that co-occurred in at least 
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one abstract, which contains 4,233 genes and 33,968 relations (some abstracts only 

contain one gene, which were removed in this procedure). As co-occurrence relations 

appearing multiple times are more meaningful, I created a reduced co-occurrence 

network by only including the co-occurrence relationships that appeared in two or more 

abstracts to reduce the network to the same scale as the parsed network. The reduced co-

occurrence network contains 2,017 genes and 10,104 relations. 

2.4.3 Results and Discussion 

2.4.3.1 Topological Measures 

Table 2.1 Topological Measures of the Gene Interaction Networks 

 Parsed 
Network

Co-occurrence
Network 

Reduced Co- 
occurrence Network 

Node# 2,045 4,233 2,017 
Link# 6,092 33,968 10,104 
<k> 5.958 16.050 10.019 
l 3.318 2.884 2.891 
lrand 4.271 3.009 3.302 
C 0.3149 0.6254 0.6769 
Crand 0.0029 0.0038 0.0049 
D 8 8 8 
NC 37 51 30 
Node#C 1,967 4,125 1,956 
Link#C 6,050 33,903 10,071 

 
 The topological measures of the parsed network, co-occurrence network, and 

reduced co-occurrence network are shown in Table 2.1. All three networks are composed 

of several components. They all have a giant component which has most of the genes in 

the network. For example, the giant component of the parsed network contains 96% 

(1,967/2,045) of the nodes and 99% (6,050/6,092) of the links. The existence of the giant 

components, which is also found in other biological networks (Ma and Zeng, 2003), 
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indicates a high degree of interdependency between the genes involved in cellular 

processes. 

 Table 2.1 shows that all three networks have a large clustering coefficient and a 

small average path length compared to random networks of the same size. For example, 

the parsed network has a much larger clustering coefficient (0.3149) and a smaller 

average path length (3.318) than those of a same-size random network (0.0029 and 4.271, 

respectively). These properties reflect the small-world characteristics of the networks. A 

small average path length indicates that one gene’s effect can be quickly propagated to 

other genes in the biological process. A large clustering coefficient indicates that the 

genes interacting with one gene tend to interact among themselves as well. In other words, 

there is a probability of the existence of local clusters.  

 There is a major difference in the size of the reduced co-occurrence network and 

the co-occurrence network, but their average path length and clustering coefficient are 

quite similar. In the co-occurrence network genes appearing in the same abstract form a 

fully connected cluster and the network is made up of those local clusters. Thus the co-

occurrence network has a high clustering coefficient and a small average path length. The 

reduced co-occurrence network is formed by removing weak co-occurrence relations that 

only occurred in one abstract, which might not represent an actual gene interaction 

relationship. The similarity in the topological measures of the two networks indicates that 

removing the rare co-occurrence relations from the network does not substantially change 

the network topology.  
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 Although the three networks have similar average path lengths, there is a large 

difference in their clustering coefficients. The clustering coefficients of the reduced co-

occurrence network (0.6769) and the co-occurrence network (0.6254) are about twice as 

large as that of the parsed network (0.3149). The substantial difference in clustering 

coefficients reflects the nature of the three different networks in local cluster (highly 

connected sub-graph) formation. Comparing the reduced co-occurrence network and the 

parsed network, we can see that although the two networks have similar numbers of 

genes, the reduced co-occurrence network has a much larger clustering coefficient. This 

indicates that the reduced co-occurrence network captured many more relations and has 

more significant local clusters. 

2.4.3.2 Degree Distribution 
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Figure 2.2 Degree Distribution of the Gene Interaction Networks 
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 Figure 2.2 shows the degree distributions of the three networks, which are close 

to a straight line on the log-log plot, indicating that they follow a power-law distribution. 

A power-law distribution means that the number of nodes with a certain degree in the 

network decreases quickly when the degree increases. The scale-free characteristics of 

the networks in the research may have two causes. 1) The actual gene interactions in 

biological processes follow the power-law distribution. 2) As the data is on the 

discovered genes and relations in the literature, the scale-free characteristics may be a 

result of the collective knowledge creation and accumulation process of human beings—

researchers tend to conduct research related to the known important genes.  

2.4.3.3 Network Evolution  
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Figure 2.3 Evolution of the Parsed Network  

 Since the extracted gene interactions in the parsed network are associated with 

timestamps, it is possible to analyze the evolution of this network of gene interactions. 
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Figure 2.3 shows the evolution of the number of nodes and links of the parsed network. 

There is a consistent growth in the number of new interactions and genes, especially in 

recent years (after 1991). The decrease in the number of newly discovered gene 

interactions in 2003 is because of incomplete data at the time of this study. Except for 

that, there is no indication of the network’s convergence to a fixed set of genes. It is 

possible that more genes involved in the p53 pathway will be identified.  
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Figure 2.4 Preferential Attachment Test 

 In Figure 2.4, the preferential attachment test (Jeong et al., 2003) shows more 

details about the expansion of the parsed network. The preferential attachment tests for 

the years from 1976 to 2003 follow similar patterns. I only report results for the most 

recent five years to make the graph easier to read. The straight line of cumulative 

preferential attachment K(k) with positive slope in the log-log graph means that node i’s 

probability to get new links Pi(k) is proportional to its degree k. Thus, the probability a 
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gene will be found to interact with other genes is proportional to the number of known 

interactions involving it. This indicates that researchers tend to focus more on the well-

studied genes and study the gene interactions related to them. This analysis shows 

evidence that the nature of the collective research exploration process at least partially 

accounts for the observed power-law degree distribution of the literature-based networks 

reported earlier. 

2.5 Case Study 2: Patent Citation Networks 

2.5.1 Background 

 Patents contain significant amounts of knowledge on technology innovations. The 

analysis of knowledge in patents has been of interest to researchers for years. Patent 

publication has been used as one major indicator of research productivity and impact 

(Narin, 1994).  For example, previous research has used patents to analyze the 

longitudinal change of the international landscape of nanotechnology research and 

development (Huang et al., 2003b) and the development of high-tech electronics 

companies in Taiwan (Huang et al., 2003a). 

 Patent citation information has been used to represent knowledge transfer (Karki, 

1997; Oppenheim, 2000). Chakrabarti et al. analyzed the inter-organization patent 

citation patterns of defense-related research and development on the civilian sector 

(Chakrabarti et al., 1993). Chen and Hicks  studied the interactions between academia 

and industry by analyzing the paper-patent citations in the field of tissue engineering 

(Chen and Hicks, 2004). These studies were usually based on the citation patterns 

between entity pairs. Performance measures based on patent citation (e.g., number of 
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cites of a patent or an assignee) were used to describe such “local” characteristics of 

knowledge conveyance. 

 Recent advances in network topology analysis methods can enhance our 

understanding of patents’ knowledge flow by considering a network view of patent 

citations. Topology analysis has been incorporated into recent literature/patent citation 

network studies.  It was found that the literature citation network is a tree-like network 

and a scale-free network (Bilke and Peterson, 2001) with a power-law degree distribution 

(Redner, 1998). The power-law degree distribution phenomenon was also found in patent 

citation networks (Chen and Hicks, 2004). In this case study, I apply network topology 

analysis methods to explore the knowledge diffusion patterns in patents at different 

analytical unit levels, including document level, country level, institution level, and 

technology field level.  

2.5.2 Dataset 

 I chose nanotechnology as the application domain of this research due to its 

internationally-recognized importance. I used a nanotechnology-related keyword list 

provided by domain experts (Huang et al., 2003b; Huang et al., 2004a) and conducted 

“full-text” search (matching the keywords in the patent title, abstract, claims, and 

description) to collect nanotechnology patents from the USPTO database. After filtering 

out the patents that matched keyword patterns but were not related to nanotechnology 

research (such as the patents that only contain keywords “nanosecond” or “nanometer”), 

78,609 patents published between 1976 and 2004 were identified. These patents were 

filed by 22,219 assignees institutions and 163 assignee countries. They cover 432 of the 
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462 first-level United States Patent Classification (USPC) categories, which were used 

to represent patents’ technology fields in this research.  

 The patent citation relations are easy to parse from patent documents. First, the 

citation relations were constructed into a document level patent network. Then, the 

relations were aggregated together according to patents’ assignee country, assignee 

institution, and technology fields to create corresponding networks at different analytical 

unit levels. During this process, the patents that were not involved in any citations were 

removed. The resulting document level network contains 54,730 patents and 140,872 

citation relations; the country level network contains 59 countries and 423 aggregated 

relations; the institution level network contains 10,878 institutions and 44,828 aggregated 

relations; and the technology field level network contains 397 technology fields and 

14,487 aggregated relations. 

2.5.3 Results and Discussion 

2.5.3.1 Topological Measures  

 Table 2.2 reports the topological measures of the patent citation networks at 

document, country, institution, and technology field level. The document level citation 

network contains 2,969 components, among which the biggest component contains 

45,717 patents and 133,769 relations. The patent document citation network has a much 

larger average path length (l = 8.923) than the random network of the same size (6.658), 

which is different from most large scale networks (Albert and Barabasi, 2002). The 

knowledge transferring process in this network is not as efficient as that in a random 

network. In a random network, links may appear between any pair of nodes. In a patent 
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document citation network, one patent may only cite its related documents, which may 

cause this phenomenon. The patent document citation network shows a very large 

clustering coefficient (C = 0.1781) compared with the random network of the same size 

(9.41E-05). The high clustering tendency of patents directly follows from the nature of 

citations. Two patents with a citation relationship often involve similar technology and 

are highly likely to be cited together by later patents. Such close citation relations may 

create the local citation clusters and increase the clustering coefficient.  

Table 2.2 Topological Measures of the Patent Citation Networks 

 Document Level Country Level Institution Level Technology Field
Level 

Node# 54,730 59 10,878 397 
Link# 140,872 423 44,828 14,487 
<k> 5.147 8.305 7.571 58.317 
L 8.923 1.933 3.754 2.007 
lrand 6.658 1.926 4.591 1.472 
C 0.1781 0.841 0.3342 0.7168 
Crand 9.41E-05 0.1432 0.0007 0.4907 
D 36 4 15 6 
NC 2,969 1 352 3 
Node#C 45,717 59 10,220 395 
Link#C 133,769 423 39,770 14,485 

 
 The country citation network represents the patent citation relationship at the 

assignee country level. It only contains one network component. In other words, every 

country in the network directly or indirectly affects the other countries through the 

published patents in nanotechnology research. The country citation network has a small 

diameter (D = 4) and a small average path length (l = 1.933). The average path length of 

the country citation network is close to that of a same-size random network (1.926). Thus, 



 

42

the knowledge diffusion process in the country citation network is as effective as that in 

a randomly connected citation network. The country citation network has a larger 

clustering coefficient (C = 0.8410) than that of the random network of the same size 

(0.1432). The large clustering coefficient means that the countries that have citation 

relations to a particular country may have a high tendency to interact with each other. For 

example, some of the major countries in the network, including the United States, Japan, 

Germany, and the United Kingdom, form a cluster with close citations.  

 The institution citation network represents the patent citation relationships at the 

assignee institution level. The institution citation network consists of 352 components. 

The largest component contains 10,220 institutions and 39,770 citation relations. The 

institution citation network has a smaller average path length (l = 3.754) than the random 

network of the same size (4.591). The institutions in the institution citation network are 

connected by fewer steps of citations as compared with a random network. Knowledge 

can be transferred efficiently from the major inventors, such as IBM, the University of 

California, and 3M Company, to other institutions. The institution citation network has a 

much larger clustering coefficient (C = 0.3342) than the random network (0.0007).  

Institutions have a tendency to form local citation clusters because of similar interests and 

collaborations. From the clustering coefficient measure, we can infer that intensive 

knowledge transfer among groups of peer institutions is very common.  

 The nanotechnology technology field citation network has three components. The 

largest component contains 395 of the technology fields and 14,485 of the citation 

relations. The technology field citation network has a very high average degree (<k> = 
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58.317) with only 397 nodes. It is much higher than the average degree of the country 

citation network and the institution citation network. The high average degree shows the 

close, interacting relationship among the technology fields, suggesting that 

nanotechnology is a highly interdisciplinary domain. The technology field citation 

network has a small average path length (l = 2.007) and a small diameter (D = 6). On 

average, the knowledge in one technology field can be transferred to the others through 

two steps of citation relations. However, the average path length is still large in 

comparison with the random network of the same size (1.472). This means that although 

knowledge could transfer quickly in the technology field citation network, it is slower 

than the knowledge transfer process in the random citation network. The technology field 

citation network is a dense network with a high clustering coefficient (C = 0.7168), which 

is larger than that of a random network of the same size (0.4907).  This network does not 

show a distinct local cluster characteristic compared with the random network.  

2.5.3.2 Degree Distribution  

 Because the weight (number of citations) was not reflected in the degree 

distribution, I did not study the degree distributions of the country citation network, the 

institution citation network, and the technology field citation network, which are all 

weighted networks.  

 Figure 2.5 shows the in-degree distribution and out-degree distribution of the 

document level citation network. The out-degree distribution shows the probability of the 

number of citations one patent may receive. The in-degree distribution shows the 

probability of the number of references one patent may have. In the log-log graph, the 
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two degree distributions show the pattern of a straight line, which means that they 

follow the power-law distribution. The power-law distribution takes the form of P(k) ~ k-γ, 

where P(k) is the probability that a node has exactly k links. The power-law exponent γ 

and correlation coefficient r of the two degree distributions are shown in Table 2.3. The 

power-law degree distribution shows that the patent document citation network follows 

the scale-free model, which indicates that a few high degree patents exist in the network. 

The high out-degree patents represent critical, far-reaching, fundamental innovations that 

influence many other patents.  
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Figure 2.5 Patent Citation Network Degree Distributions: In-degree and Out-degree 

Table 2.3 Patent Document Citation Network Degree Distribution Measures 

  power-law exponent γ correlation coefficient r 
Out-degree distribution 2.2925 0.6855 
In-degree distribution 2.1394 0.8528 
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2.6 Summary  

 In this chapter, I adopted a network topology analysis framework to conduct two 

case studies on relational information extracted from documents. The first study analyzes 

the gene interaction networks extracted from biomedical literature, which represent the 

biological knowledge accumulated on gene pathway studies. The second study analyzes 

patent citation networks in the nanotechnology domain, which represent the knowledge 

diffusion patterns in that field. The study compared the networks constructed with 

different text mining techniques and the networks aggregated to different analytical unit 

levels, respectively.  

 In the first case study, I created a testbed of Medline abstracts related to p53 

pathways. In the p53 dataset, the gene interaction networks extracted from literature 

using the NLP approach (parsed network) and using the co-occurrence approach (reduced 

co-occurrence network) show similar topological characteristics. These networks all have 

small-world and scale-free properties. Comparison of the networks shows that the 

reduced co-occurrence network contains more significant local clusters than the parsed 

network, while the parsed network contains less noise than the reduced co-occurrence 

network. The evolution of the parsed network shows preferential attachment 

characteristics, which is consistent with other large-scale networks. 

 In the second case study, I created a testbed of nanotechnology patents from the 

USPTO database. I created citation networks among them at different analytical unit 

levels (i.e., document, country, institution, and technology field). Network topology 

analysis shows that all four citation networks have one large “giant” component that 
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occupies most of the nodes and links. The four networks have different knowledge 

transfer efficiency as compared to a random network of the same size. According to the 

average path length measure, the institution citation network structure exhibits a more 

efficient knowledge transfer than a random network. The country citation network shows 

a knowledge transfer capability as efficient as a random network. The technology field 

citation network and the patent document citation network have a less efficient 

knowledge diffusion capability than the random network. According to the clustering 

coefficient measure, the country citation network, the institution citation network, and the 

patent document citation network all show a tendency to form local citation clusters, 

which indicates the intensive cooperation and knowledge exchange between these 

analytical units.  

 With these two case studies, I have showcased the use of network topology 

analysis methods in descriptive analysis. The framework proposed in this research is a 

general framework that can be applied to relations extracted from other types of 

documents. The two case studies on gene interaction networks and patent citation 

networks confirmed that complex networks are not random. The small-world and scale-

free phenomenon indicates the rich information embedded in the network structures. In 

the next chapter, I will explore the use of this network structure information in addressing 

the node classification tasks. 
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CHAPTER 3. NODE CLASSIFICATION: TRACING KNOWLEDGE EVOLUTION 
WITH CITATION NETWORKS FOR PATENT CLASSIFICATION 

3.1 Introduction  

 In this chapter, I explore the use of network structure information in graph-

structured data to address the node classification problem. I use a critical knowledge 

management problem, patent classification, as an example application of the node 

classification task.   

 Due to the information overload problem, managers face more challenges in 

organizing and managing knowledge for future sharing and usage (Nidumolu et al., 2001). 

To facilitate the knowledge management (KM) tasks, automated tools have been widely 

adopted (Spangler et al., 2003). However, most available tools treat knowledge items 

independently and only process their contents.  

 Knowledge items are not independent from each other. Knowledge evolves after 

transfer and reuse in human collaborations (Bieber et al., 2002). Knowledge creation has 

been considered as a path-dependent evolution process (Nerkar, 2003), where innovation 

is created based on the recombination of prior knowledge elements (Fleming, 2001). 

From this perspective, the knowledge evolution processes may affect the newly created 

knowledge and should be taken into account in KM tasks. The knowledge evolution 

process can be embedded in the relationships among individual documents, such as 

patents and scientific literature citations. In this research I choose one type of such 

“linked document,” patents, and conduct an empirical study to exploit the utility of 

knowledge evolution processes in KM tasks.  
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 Patents contain a significant amount of knowledge on technical innovations. 

Patent management, at both the organization level and the society level, prompts the 

exchange of inventions (Scherer, 2002) and reduces the duplication of research efforts 

(Gallini, 2002). Due to the surge of patent applications and publications in recent years,  

patent processing time has been significantly prolonged (Hunt, 2001) while the patent 

examiners’ workload has been continuously increasing (King, 2003), which hinders 

effective patent management and affects inventors’ benefits. Classification plays a critical 

role in patent management , including assigning patent applications to examiners (Smith, 

2002) and organizing patents based on patent classification schemes, e.g., the United 

States Patent Classification (USPC) system. Improving patent classification performance 

may affect the efficiency of patent examination and the effectiveness of patent search 

systems.  

 Most previous studies on patent classification focused on content analysis and 

treated the problem as a canonical text categorization problem (Sebastiani, 2002; Loh et 

al., 2006). Although various features extracted from patent contents have been used and 

several machine learning algorithms have been applied (Fall et al., 2003), such 

approaches have not provided satisfactory performance (Smith, 2002).  

 In order to utilize knowledge evolution processes in the patent classification task, 

I use patent citations to represent the knowledge diffusion and reuse processes in 

innovation creation (Almeida and Kogut, 1999; Singh, 2005), in the sense that citing 

patents adopt knowledge elements from cited patents. Under a kernel-based machine 

learning framework, I explore different methods to model patent citation networks, which 
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capture knowledge evolution processes, to facilitate patent classification. I propose a 

novel model, the labeled graph kernel, which shows a significant improvement in 

classification performance as compared with traditional content-based approaches. I also 

identify both the citation network structure and the features of cited patents as important 

factors in describing knowledge evolution processes for patent classification. This study 

shows the possibilities for further automating the patent examination process and the 

benefits of considering the knowledge evolution process in KM tasks.  

 This chapter is structured as follows. Section 3.2 reviews previous research on 

patent classification in the context of linked document classification. In this section, I 

also briefly review kernel-based methods on structured information. Section 3.3 describes 

a kernel-based approach and proposes several kernels that use patent citation networks 

and patent contents for classification. Section 3.4 reports the experiments on a 

nanotechnology-related patent testbed. Section 3.5 discusses the experimental results. 

Section 3.6 summarizes the findings. 

3.2 Literature Review 

 As a common type of knowledge, linked documents such as patents, scientific 

literature, and Webpages are associated by links in the form of citations or hyperlinks. 

From a knowledge management perspective, the document content contains different 

forms of knowledge, while the links among them indicate the process of knowledge 

transfer and diffusion.  

 The classification of linked documents is of interest to both managers and 

scholars. Classification tools have been developed and adopted in patent management 
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(Smith, 2002), Webpage management (Craven and Slattery, 2001; Furnkranz, 2002) and 

scientific literature management (Spangler et al., 2003; Ginsparg et al., 2004; Sinclair and 

Webber, 2004). Among these tasks, patent classification has its unique challenges due to 

its critical role in practice and its data characteristics (Smith, 2002). Patent classification 

is usually conducted on a large number of categories (for example, the USPC has 450 

first-level categories and 160,000 second-level categories). Many of these fine-grained 

classes have subtle semantic differences and usually have an uneven number of patent 

instances (Krier and Zacca, 2002). All these factors make patent classification difficult to 

address compared to other linked document classification tasks.  

3.2.1 Classification of Linked Documents  

 I review previous patent classification studies in the context of linked document 

classification from two aspects: features, i.e., how the documents are represented, and 

algorithms, i.e., how the documents are classified.  

3.2.1.1 Feature Types 

 Previous studies on the classification of patents mainly consider the features in 

individual documents. Features related to the citations (links) between documents have 

also been used. 

1) Features of individual documents: 

 Most previous research considered only the knowledge embedded in individual 

patents and extracted features from individual documents to represent patents. These 

features can be categorized into content features and metadata features. Content features 

are often considered good indicators of document subjects, which can be extracted at the 
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word level (i.e., “bag-of-words”) or phrase level (Ghanem et al., 2002) from different 

parts of the documents. In patent classification, previous studies examined the features 

extracted from patent title (Larkey, 1999), abstract (Larkey, 1999; Fall et al., 2004; Loh 

et al., 2006), claims (Hull et al., 2001), and full-text (Koster et al., 2003). Features from 

patent title and abstract have been found to be more effective in patent classification. 

 The metadata, which usually describe the document’s author, institution, 

publication date, etc., may be highly correlated with its content and topic. In patent 

classification, Richter and MacFarlane have used a patent’s International Patent 

Classification (IPC) category to help classify it into another classification scheme 

(Richter and MacFarlane, 2005). In Webpage classification, Yang et al. used Webpage 

headers to help label Webpages by industry sectors (Yang et al., 2002). These studies 

demonstrated metadata’s effectiveness in improving classification performance.  

2) Features of citations/links: 

 In machine learning literature, citations (links) indicate the close relationship 

between linked documents’ topics, methods, etc. From the knowledge creation 

perspective, citations (links) indicate the inheritance or transfer of knowledge elements 

between linked documents (Fleming, 2001). In linked document classification, features 

can be defined on direct citations or the entire citation network (of directly and indirectly 

connected documents) by considering different levels of the knowledge evolution process.  

 The simplest way to take advantage of direct citations is to combine features of 

the neighboring (directly cited) documents and use them to describe the focal document. 

Studies in both patent classification (Chakrabarti et al., 1998) and Webpage classification 
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(Oh et al., 2000; Ghani et al., 2001; Yang et al., 2002) have shown that combining the 

neighbor documents’ content features cannot significantly improve classification 

performance. However, it has been found that combining neighbor documents’ 

classification category (metadata) features does yield improvement (Chakrabarti et al., 

1998; Oh et al., 2000).  

 Another method that utilizes direct citation information is to define features on 

linkage relationships. In Webpage classification research, hyperlinks have been 

represented as first-order logic clauses to build first-order rules describing the common 

characteristics of Webpages in the same category (Slattery and Craven, 1998; Craven et 

al., 2000; Craven and Slattery, 2001; Yang et al., 2002).  Document similarity measures 

based on document in-links (co-citation similarity) (Small, 1974), out-links 

(bibliographic coupling similarity) (Kessler, 1963),  or both in-links and out-links 

(Amsler similarity) (Amsler, 1972) have been used with the K-nearest neighbor (KNN) 

algorithm and the Support Vector Machine (SVM) algorithm (Joachims et al., 2001; 

Cristo et al., 2003; Calado et al., 2006) in both Webpage and scientific literature 

classification studies. Although citation measures have been widely used in patent 

analysis studies to assess the impact of patents, inventors, and assignees (Narin, 1994; 

Huang et al., 2003b), few previous studies have taken advantage of linkage features. 

 While using direct citations only considers a single step of the knowledge transfer 

between citing and cited documents, using features extracted from the entire citation 

network is a natural extension that gives a more complete picture of the knowledge 

evolution process. In recent studies on network topological analysis, researchers found 
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that the networks of patents (Li et al., 2007a), Webpages (Broder et al., 2000), and 

scientific literature (Redner, 1998) are different from random networks. Their organized 

topological characteristics indicate rich information is contained in these networks. 

However, few studies have considered using features defined on patent citation networks 

to represent the knowledge transfer and innovation generation processes in patents and to 

address the patent classification problem.  

3.2.1.2 Algorithm Types 

 The algorithms used in patent and other linked document classification can be 

categorized into feature-based methods and kernel-based methods.  

1) Feature-based methods: 

 Feature-based methods are the major approach used in previous patent 

classification research. In feature-based methods, a data instance is represented by a 

feature vector, in which the features are explicitly constructed and selected based on 

domain knowledge or using automatic algorithms. In patent classification, KNN (Teichert 

and Mittermayer, 2002), Winnow (Krier and Zacca, 2002; Koster et al., 2003), Naïve 

Bayes, and probabilistic relational model (PRM) (Taskar et al., 2002) have been widely 

applied on content features. Feature-based methods can utilize different types of 

information by incorporating different types of features in the feature vector. In previous 

research, content features and neighbor document features (direct citation features) have 

been used together with the Naïve Bayes algorithm in both patent and Webpage 

classification (Chakrabarti et al., 1998; Oh et al., 2000).  

2) Kernel-based methods: 
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 Unlike feature-based methods, kernel-based methods do not require the explicit 

definition of feature vectors. A kernel-based method contains a kernel function and a 

kernel machine. The kernel function (or kernel) maps data instances from the input space 

χ to a feature space H (named reproducing kernel Hilbert space, RKHS) ( ) :x HχΦ → , 

by defining a similarity measure between data instances :k χ χ× →ℜ  

( , ' ) ( , ')x x k x x→ . Although ( )xΦ  is not explicitly defined, for every pair of data 

instances the kernel function ensures that ( , ') ( ), ( ')k x x x x=< Φ Φ > . A kernel machine, 

such as SVM, is a learning algorithm which performs learning tasks in the feature space 

H (Gartner, 2003). Given limited types of kernel machines (with SVM being state-of-the-

art), the performance of kernel-based learning is highly dependent on the selection and 

design of kernel functions (Tan and Wang, 2004). 

 In linked document classification, kernel-based methods have not been used as 

widely as feature-based methods. However, they have shown their potential in some 

recent studies. For example, Fall et al. compared the performances of KNN, Naïve Bayes, 

and Winnow with SVM on a linear kernel using content features and found that SVM 

with the linear kernel outperformed the other three feature-based methods (Fall et al., 

2003; Fall et al., 2004). In Webpage classification, SVM has been used on kernels 

defined on linkage-based similarities and reported good performance (Calado et al., 

2006). 

 In kernel-based methods, we can use well-established kernel composition rules to 

combine different types of information in a learning task (Cristianini and Shawe-Taylor, 

2000; Joachims et al., 2001; Tan and Wang, 2004). In Webpage classification, Joachims 



 

55

et al. adopted such a kernel composition method to consider both direct citation 

information and content information (Joachims et al., 2001).   

3.2.2 Kernel-based Methods on Structure Information  

 Although feature-based methods have been widely used in classification problems, 

they are often criticized for requiring explicit feature extraction. It is also difficult to 

define and extract features from instances with complex structures. This may be one 

reason that citation networks have been used less in patent classification. Kernel-based 

methods provide an effective alternative to feature extraction for capturing such complex 

structure information. 

 In kernel-based methods different kernel functions have been designed to capture 

structure information (Gartner, 2003). Among these kernels, the convolution kernel 

(Haussler, 1999) is one of the most widely used. For objects (data instances) containing a 

set of sub-objects, convolution kernels calculate the similarities between object pairs by 

conducting pairwise comparisons between the set of sub-objects they contain. As a 

special case of convolution kernels, graph kernels are designed for data instances whose 

sub-objects constitute a graph. The similarity between two graphs can be calculated by 

comparing the sub-structures in the graphs, such as nodes, paths, and sub-graphs. By 

representing graphs as random walk paths and conducting pairwise comparison of 

(matching) random walk paths, graph kernels have been successfully used to classify 

proteins according to their molecular (graph) structures (Kashima et al., 2003; Le et al., 

2004; Borgwardt et al., 2005).  
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 Although previous studies showed the effectiveness of capturing structural 

information using graph kernels, most of these studies focus on the structure information 

of the sub-objects contained in data instances. In the patent classification problem, patent 

citation networks represent the structural information outside of data instances, i.e., the 

evolution processes of innovations. Few previous studies have made the effort to capture 

such context structure information for classification purposes.  

3.2.3 Research Gaps and Research Questions 

 Table 3.1 summarizes previous patent classification studies in the context of 

linked document classification. As an important knowledge management task, patent 

classification has been studied by a number of researchers. However, most previous 

studies isolated the knowledge contained in an innovation (patent) from its evolution 

process and employed only individual patent contents to address the classification 

problem. Even in the broader literature of linked document classification, use of the 

knowledge evolution process was limited to direct citations (one-step knowledge transfer). 

The structure of citation (linkage) networks has not been widely utilized.  

 Aiming to capture the structure of patent citation networks to alleviate the patent 

classification problem, I focus on the following two research questions in this research:  

Q1. Exploiting the evolution process: Can the methods using citation networks 

outperform those using only direct citations? Will the features in the directly and 

indirectly cited patents be helpful for classifying the citing patent?  
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Q2. Combining an innovation’s intrinsic information with its evolution process: Will 

combining citation information with patent contents improve patent classification 

performance compared with using citation or content information alone? 

Table 3.1 A Summary of Studies on Linked Document Classification 
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(Larkey, 1999)   √ √  √  
(Hull et al., 2001)   √ √  √  
(Teichert and Mittermayer, 2002)   √ √  √  
(Krier and Zacca, 2002)   √ √  √  
(Koster et al., 2001, 2003)   √ √  √  
(Fall et al., 2003)   √ √  √ √ 
(Fall et al., 2004)   √ √  √ √ 
(Richter and MacFarlane, 2005)   √ √  √  
(Loh et al., 2006)   √ √  √ √ 
(Chakrabarti et al., 1998) √  √ √ Neighbor √  
(Oh et al., 2000) √   √ Neighbor √  
(Slattery and Craven, 1998) √   √ Linkage √  
(Craven et al., 2000) √   √ Linkage √  
(Craven and Slattery, 2001) √   √ Linkage √  
(Ghani et al., 2001) √   √ Both √  
(Yang et al., 2002) √   √ Both √  
(Furnkranz, 2002) √   √ Neighbor √  
(Taskar et al., 2002) √   √ Both √  
(Joachims et al., 2001) √   √ Linkage  √ 
(Calado et al., 2006) √   √ Linkage √ √ 
(Ghanem et al., 2002)  √  √   √ 
(Sinclair and Webber, 2004)  √  √  √  

* Neighbor: to use neighbors’ features; Linkage: to use the linkage itself; Both: to use 
both kind of features. 
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3.3 Research Design  

 To capture the structure of citation networks, I adopt a kernel-based approach, 

which also enables us to combine citation information with content information.  

3.3.1 A Framework of Kernel-based Patent Classification  
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Figure 3.1 A Framework of Kernel-based Patent Classification 

 Figure 3.1 presents a general framework for addressing the patent classification 

problem using a kernel-based approach. 1) At the data acquisition and parsing stage, 

patent data are retrieved and parsed into structured data. It should be noticed that both the 

patents of interest and their directly or indirectly cited patents need to be extracted. 2) At 

the kernel construction stage, the similarities between data instance pairs are pre-

computed according to the kernel function designs. Different kernel functions can capture 

different information in patents and patent citation networks. 3) At the classifier learning 

stage, classifiers are learned based on the pre-computed kernel values using a kernel 

machine. In this research, I chose SVM as the kernel machine because of its reported 

good performance (Joachims et al., 2001; Fall et al., 2003; Fall et al., 2004; Loh et al., 
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2006). 4) At the evaluation stage, testing data instances are provide to the classifiers for 

predictions. The classification performances of different classifiers are evaluated by 

comparing the predictions against the actual categories provide by experienced patent 

examiners. 

 In the proposed kernel-based framework, kernel functions define similarity 

measures between data instances and capture patterns in data instances. The kernel 

machine is in charge of building the classification models. The performance of kernel-

based methods is highly dependent on the design of kernel functions (Tan and Wang, 

2004). The major problem (and contribution) of this research becomes designing 

appropriate kernel functions for patent classification.  

3.3.2 Kernel Function Design 

 In light of the research gaps, I adopt and design several citation-related kernels 

that utilize patent citation and content information. Among these kernels, the labeled 

citation graph kernel is a novel kernel that captures more comprehensive information 

from the patent citation networks.   

3.3.2.1 Using Citation Information 

 I consider two conditions in the design of citation-related kernels: 

1) The scope of the cited documents: The different levels of citations represent the 

different steps of knowledge transfer. In addition to considering direct citations as an 

approximation for one-step knowledge transfer, we can extend the citation structure and 

consider multiple levels of cited documents, which represent a more complete picture of 

the knowledge evolution process.  
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2) The features of the cited documents: When modeling an innovation’s evolution 

process, we can choose to use or not use the cited documents’ features. Without 

considering features of cited documents, a patent’s cited patents are encoded only as 

identifiers. If cited documents’ features are considered, the semantics of knowledge 

elements in cited patents are used, which provide extra clues for understanding the focal 

innovation. In this study I consider the known classification categories of the cited 

patents as this type of feature, due to reported effectiveness in patent classification 

(Chakrabarti et al., 1998).  

 By combining these two conditions, I construct four kernels on patent citation 

information (see Table 3.2): bibliographic coupling kernel (K_Bib), labeled co-reference 

kernel (K_Ref), graph overlap kernel (K_Ovr), and labeled citation graph kernel (K_Gra).  

Table 3.2 Kernels for Citation Information 

 No cited documents’ features Using cited documents’ features
Direct citations Bibliographic coupling kernel

(K_Bib) 
Labeled co-reference kernel 

(K_Ref) 
Citation network  Graph overlap kernel 

(K_Ovr) 
Labeled citation graph kernel 

(K_Gra) 
 
a) Bibliographic coupling kernel: 

 The bibliographic coupling kernel (K_Bib) design adopted from (Calado et al., 

2006) was initially used in the context of Webpage classification. It utilizes direct 

citations of patent documents without considering the cited documents’ features. In this 

kernel, a patent p is represented by a set of patents it cites: { :   }pCV q p cites q= . The 

similarity between two patents is defined as the number of their common citations 

divided by the total number of their citations:  
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1 2 1 21 2_ ( , ) /p p p pK Bib p p CV CV CV CV= ∩ ∪  

where p1 and p2 are two patents and 
1pCV  and 

2pCV  represent the two sets of patents they 

directly cited. In this kernel, the more common neighbors that two patents share, the more 

similar they are.  

b) Labeled co-reference kernel:  

 I design a labeled co-reference kernel (K_Ref) to consider cited patents’ features 

(classification category) while using only the direct citations. In this kernel, a patent p is 

represented as a classification category vector, 1 2( , ,..., )p nCC c c c=  , where the elements 

are the numbers of directly cited patents of p that belong to each classification category. 

The labeled co-reference kernel is defined as the normalized inner product of the 

classification category vectors:   

1 2 1 1 2 21 2_ ( , ) , / , ,p p p p p pK Ref p p CC CC CC CC CC CC= i  

where p1 and p2 are two patents and 
1pCC  and 

1pCC  represent their classification 

category vectors. In the labeled co-reference kernel, if two patents have similar citation 

patterns in different categories, they have relatively high similarity.  

c) Graph overlap kernel:  

 Based on the bibliographic coupling kernel, I design a graph overlap kernel 

(K_Ovr) which considers more than one level of the cited patents in the patent citation 

network. In this kernel, a patent p is represented by the set of patents it directly or 

indirectly cited: { ;         }p p p p pGV CV GV if s GV and s cites t then t GV= ⊆ ∈ ∈ . Two patents’ 



 

62

similarity is defined by the ratio of the overlap part of the two patent citation networks 

in the union of the two networks:  

1 2 1 21 2_ ( , ) /p p p pK Ovr p p GV GV GV GV= ∩ ∪  

where 
1 2p pGV GV∩  is the number of common patents in the two citation networks, and 

1 2p pGV GV∪  is the total number of patents in the two networks. In the graph overlap 

kernel, the larger the overlap part of the two citation networks, the more similar the two 

patents are.  

d) Labeled citation graph kernel:  

 Lastly, as my main contribution, I propose a labeled citation graph kernel (K_Gra) 

which considers both the network of cited documents and the cited documents’ features. 

In this kernel, a patent p is associated with a labeled citation network, 

: ( , , )p p p pG GV GE GL= , which contains the patents directly or indirectly cited by p: pGV , 

and the citations between all patents in pGV : {( , ) : ,  and   }p pGE s t s t GV s cites t= ∀ ∈ . In 

this network, each node (patent) is labeled with its classification category: 

{ ( ) : }p pGL label q q GV= ∀ ∈ . The similarity between two patents is measured by the 

similarity between the labeled citation networks associated with them.  

 In order to analyze patents using their associated labeled citation networks, the 

labeled citation graph kernel compares the random walk paths, starting from the focal 

patents on their associated labeled citation networks, and composes path similarities into 

the similarities of focal patents. This is different from previous graph kernel studies that 

target analyzing graphs, which compare random walk paths starting from any nodes in 
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the focal graphs (Kashima et al., 2003). The random walk paths are generated from the 

focal patents following patent citations (Figure 3.2). When a random walk is conducted, it 

follows a probability distribution and may jump from one patent to one of its neighbors 

(cited documents) or stop at the patent. From a knowledge diffusion perspective, the 

random walk paths represent the knowledge transfer paths (reversely) from prior 

innovations to focal patents. In this model, a longer random walk path has a lower 

probability of existence, indicating the less impact of older predecessors on new 

innovations.  

Random walk paths 
1. S→C1 
2. S→C1 
3. S→C2 
4. S→C1→C2 
5. S→C1→C2 
6. S→C1→C1 
7. S→C1→C4 
8. S→C1→C2→C1 
9. S→C1→C2→C1 
10. S→C1→C1→C3 

C1
C1

C1

C1

C2

C2

C3

C4

S

C1
C1

C1

C1

C2

C2

C3

C4

C1
C1

C1

C1

C2

C2

C3

C4

S

…… 
 

 Figure 3.2 Random Walk Paths on a Labeled Citation Network Related to Patent S 

 In the labeled graph kernel, each random walk path is represented as a sequence 

of labels (i.e., classification categories) of the nodes on the paths, which partially 

documents the knowledge elements related to this knowledge transfer path. The similarity 

of two paths is considered to be one if they share identical label sequences. Otherwise, it 

is considered to be zero for the sake of simplicity. The labeled citation graph kernel is 

defined as the sum of pairwise path similarity values, which are weighted according to 

the probabilities these random walk paths may exist. In other words, the kernel compares 
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all knowledge transfer paths leading to each innovation to identify patents on similar 

topics. The algorithm to calculate the labeled citation graph kernel is summarized in 

Figure 3.3. 

1.  Random path generation  

    1) The random walk starts from the patent to be classified x0. 

    2) On node xi the random walk has a probability of pq(xi) to stop.  

    3) If the random walk does not stop, the random walk has equal  

        probability to choose any of xi’s neighbors (which is noted as xi+1) to  

        jump to. The probability is noted as pt(xi+1|xi). 

    4) Thus a random walk path h={x0, x1, …, xn} has the probability 

         P(h|G)=pt(x1|x0)pt(x2|x1)…pt(xn|xn-1)pq(xn) to exist.  

2.  Kernel definition  

    The labeled citation graph kernel is defined as a convolution kernel 

     
1 2 1 2

'

_ ( , ) ( , ') ( | ) ( ' | )p p p p
h h

K Gra G G k h h P h G P h G=∑∑  

    For two random walk paths h={x0, x1, …, xn}  and h’={x’0, x’1, …, x’n}  

    if n<>m, k(h,h’)=0,  

    else 
1

ˆ( , ') ( , ')
n

i i
i

k h h k x x
=

=∏  where ˆ( , ') 1i ik x x =  iff label(xi)=label(x’i). 

 
Figure 3.3  Labeled Citation Graph Kernel Algorithm 
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3.3.2.2 Using Individual Documents’ Content Information 

 The kernel that uses individual documents’ content information represents the 

previous efforts that used content features to address the patent classification problem. In 

previous studies, features extracted from patent abstracts, claims, and descriptions have 

all been used. Patent abstracts have been reported to be slightly more informative than 

other features in patent classification (Larkey, 1999; Loh et al., 2006). The linear text 

kernel has been reported to have good classification performance (Fall et al., 2003; Fall et 

al., 2004). Therefore, I use the patent abstract to represent the entire patent content and 

choose the linear text kernel to capture patent content information. Such a setting works 

as a baseline to evaluate the performances of the citation-based kernels. In the linear text 

kernel, each patent p is represented by a term vector, 1 2( , ,..., )p mC t t t= , where the 

elements are the number of occurrences of terms in the abstract. The linear text kernel 

(K_Txt) defines the similarity of two patents as the normalized inner product of the term 

vectors (Joachims et al., 2001):  

1 2 1 1 2 21 2_ ( , ) , / , ,p p p p p pK Txt p p C C C C C C= i  

where p1 and p2 represent two patents and 
1pC  and 

2pC  are their term vectors. 

3.3.2.3 Using Both Content & Citation Information  

 Using kernel composition methods, it is easy to consolidate different types of 

information by combining multiple kernels. I use the simple addition operation to 

combine kernels that use citation information (K_Bib, K_Ref, K_Ovr and K_Gra) with 

the linear text kernel (K_Txt) into four composite kernels (K_Com1-K_Com4). For any 
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two kernel functions K1(p1, p2) and K2(p1, p2), the addition operation creates a new 

kernel: 1 2 1 1 2 2 1 2( , ) ( , ) (1 ) ( , )K p p K p p K p pλ λ= + − . The addition operation on the two 

kernels implicitly combines the feature spaces defined by them. The parameter λ controls 

how much each kernel contributes to the composite kernel. This set of kernels represents 

the efforts that exploit both patent contents and the associated knowledge evolution 

process. 

3.4. Experimental Study  

3.4.1 Dataset 

 In order to examine the effectiveness of proposed kernel functions for patent 

classification, I conducted an experimental study on a nanotechnology-related patent 

dataset acquired from the USPTO. I chose USPTO patents because they have more 

complete citation information than patents from other patent offices (hence more reliable 

citation networks). I selected patents in a specific domain so as to restrict the size of the 

testbed without significantly reducing the difficulty of the patent classification task. 

Specifically, nanotechnology was selected due to its deep impact on a nation’s 

technology advancement and its rapid development in patent publication in recent years, 

reflecting the characteristics of many high-tech domains.  

 I retrieved nanotechnology-related patents from the USPTO by keyword-

searching in patent title, abstract, and claims, using a keyword list provided by domain 

experts (Huang et al., 2003b). The retrieved patents were parsed into structured data and 

stored in a relational database. I also retrieved the patents they directly or indirectly cited 

to reconstruct the citation network. Since the number of cited patents increases 
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exponentially as the citation level increases, from a practical standpoint I retrieved only 

cited patents that are two steps away from the core set of patents. (The testbed may 

contain a patent’s ancestors that are more than two steps away, if it cites the patents in the 

core set of patents.) 

Table 3.3 Number of Data Instances in the Testing and Training Datasets 

  Number 
of patents 

Number 
of categories

Number of patents  
in the citation network

Number of categories  
in the citation network

Training 13,913 36 336,303 426 
Testing 4,358 36 227,833 410 

 
 I split the testbed into a training set and a testing set following previous studies 

(Krier and Zacca, 2002). Given a specific date, patents published prior to that date were 

used as the training data, while applications filed after that date were used as testing data. 

The patents under review on that day, which have been applied for but have not yet been 

issued, were not considered in either the training or testing dataset. In this research, the 

patents published between 01/01/1999 and 12/31/2001 were used for training. The patent 

applications that were filed between 01/01/2002 and 12/31/2004 were used for testing. I 

used a patent’s major USPC category as its classification label. To provide enough 

instances to train the classifier, I restricted the experiments to categories with more than 

100 patents in the training dataset. After preprocessing, the training dataset contained 

13,913 data instances and the testing dataset contained 4,358 data instances (see Table 

3.3) which belong to 36 first-level USPTO categories. The number of instances in each 

category varied from 109 to 1,895 in the training data and from 15 to 705 in the testing 

data (Figure 3.4). The retrieved citation network of the training set contained 336,303 
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patents, and that of the testing set contained 227,833 patents. As there were overlap 

patents in these two citation networks, in total I collected 451,853 patents.  
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Figure 3.4 Data Distribution in USPC Categories 

 The research testbed illustrates the challenges in patent classification discussed 

earlier. Produced by a multi-disciplinary research field, nanotechnology patents cover 

many USPC categories (Huang et al., 2003b). Some of these patents may have minor 

topical differences and are difficult to differentiate. In the dataset, the numbers of 

instances are uneven in different categories. This dataset contains 36 classification 

categories, which is comparable to previous patent classification studies.  

3.4.2 Experimental Procedures 

 After creating the training and testing datasets, I calculated the kernel matrices 

that contain the kernel values between the patents in the datasets. To construct the linear 

text kernel matrix, I preprocessed the contents (abstracts) of the patents in the testbed 
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using the open source package “Rainbow” (McCallum, 1996) for stemming, indexing, 

and feature selection (based on mutual information). To construct the kernel matrices of 

citation information, I used the extracted citation relations and classification categories of 

cited patents and pre-computed the kernel values according to their definitions. To 

construct the four composite kernels, I set λ as 0.5 and added the linear text kernel matrix 

to each of the four kernel matrices of citation information. I choseλ as 0.5 for consistency 

with past research (Joachims et al., 2001), where individual documents’ content and 

citation information have equal effect on the final kernel matrix. It is worth knowing that 

the parameter λ can be optimized by solving a semidefinite programming problem 

(Lanckriet et al., 2004). However, parameter optimization is out of the scope of the 

current research and will be considered in the future. After the pre-computation of kernel 

matrices, I used a well-known high-performance SVM package, “libSVM” (Chang and 

Lin, 2001), to build the classification models. I classify each patent to only one class, 

which is considered as its major classification category. The predictions on the testing 

dataset are used for evaluation.  

3.4.3 Evaluation Metrics 

 For each of the data instances in the testing dataset, I compared the classifiers’ 

predictions with its actual classification category in the USPTO. I used standard 

classification performance metrics, accuracy, precision, recall, and F-measure, to evaluate 

the performance of different kernels with the SVM algorithm. These metrics have been 

widely used in information retrieval and machine learning studies.  
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 Accuracy is usually used to assess the overall performance of a classifier at the 

instance level. For the instances in the testing set, 

 Accuracy = number of all correctly identified instances
total # of instances

. 

 Precision, recall, and F-measure are defined to evaluate the performance of a 

classifier on individual classes. For a class i, if TPi is the number of correctly identified 

instances of class i, FPi is the number of instances incorrectly assigned to class i, and FNi 

is the number of instances which belong to class i and have been assigned to other classes 

by mistake, then  

 Precision Pi= /( )i i iTP TP FP+ , 

 Recall Ri= /( )i i iTP TP FN+ , and 

 F-measure Fi= 2 /( )i i i iP R P R× × + , which combines precision and recall. 

 The micro-average (per-instance) value and macro-average (per-category) value 

of precision, recall, and F-measure can be used to compare the kernels’ overall 

performances (Yang, 1999; Sebastiani, 2002). Given that the experiments are designed as 

single-label classification, the micro-averaged precision, recall, and F-measure are equal 

to accuracy, which favors the categories with large numbers of instances by giving each 

instance the same weight. Thus, I report the macro-averaged precision, recall, and F-

measure, which favor the categories with small numbers of instances since each category 

has the same weight. 
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3.4.4 Hypotheses 

 In correspondence with the research questions, I tested two sets of hypotheses to 

examine the effects of using citation networks in patent classification. In these 

hypotheses, I adopted (a) accuracy and (b) F-measure (which combines the precision and 

recall) to gauge the instance-level and category-level performances of different settings. 

H1.1a. Kernels that use the structures of patent citation networks will outperform those 

that use only direct citations on classification accuracy in patent classification.  

H1.1b. Kernels that use the structures of patent citation networks will outperform those 

that use only direct citations on F-measure in patent classification.  

H1.2a. Kernels that use classification categories as cited documents’ features will 

outperform those that do not use any cited documents’ features on classification accuracy 

in patent classification. 

H1.2b. Kernels that use classification categories as cited documents’ features will 

outperform those that do not use any cited documents’ features on F-measure in patent 

classification. 

H2.1a. Composite kernels of citation information and patent content will outperform the 

linear text kernel that uses patent contents on classification accuracy in patent 

classification.  

H2.1b. Composite kernels of citation information and patent content will outperform the 

linear text kernel on patent contents on F-measure in patent classification.  
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H2.2a. Composite kernels of citation information and patent content will outperform 

kernels that use only citation information on classification accuracy in patent 

classification.  

H2.2b. Composite kernels of citation information and patent content will outperform 

kernels that use only citation information on F-measure in patent classification.  

 I conducted single-sided pairwise t-tests to test these hypotheses. The t-test on 

accuracy was conducted at the instance level, in which the mean of every instance’s 

correctness (0 or 1) is accuracy. The t-test on F-measure was conducted at the category 

level, in which the mean of every class’s F-measure is the macro-averaged F-measure. 

3.5. Results and Discussion 

3.5.1 Overall Performances 

Table 3.4 Performances of Different Kernels 

Kernels Accuracy Averaged
precision 

Averaged 
recall 

Averaged 
F-measure

Bibliographic coupling kernel (K_Bib) 7.48% 47.87% 5.81% 5.71%
Labeled co-reference kernel (K_Ref) 61.50% 56.04% 56.82% 55.50%
Graph overlap kernel (K_Ovr) 37.13% 53.32% 29.08% 34.91%
Labeled citation graph kernel (K_Gra) 86.67% 89.09% 87.97% 88.04%
Composite kernel 1 (K_Com1) 57.82% 53.65% 44.24% 46.50%
Composite kernel 2 (K_Com2) 66.02% 59.43% 59.14% 58.78%
Composite kernel 3 (K_Com3) 59.64% 55.49% 47.56% 49.72%
Composite kernel 4 (K_Com4) 87.84% 89.43% 86.97% 87.96%
Linear Text Kernel (K_Txt) 55.55% 51.65% 39.29% 40.83%

  
 Table 3.4 reports the performances achieved by the SVM classifiers with different 

kernels. We can observe that both the labeled citation graph kernel (K_Gra) and its 

composition with the linear text kernel (K_Com4) have high accuracies, precisions, 

recalls, and F-measures. They achieve much better performances (31.12% and 32.29% 
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absolute improvement in accuracy) than the baseline linear text kernel (K_Txt). 

Considering that the linear text kernel represents the performance of content analysis 

(using the knowledge embedded in patents) in previous research and applications, the two 

kernels show good potential to be used in real applications. Both kernels utilize the 

network structure of patent citations and the classification category features of cited 

documents, which account for their good performances. 

 In the experiments, the bibliographic coupling kernel (K_Bib) and the graph 

overlap kernel (K_Ovr) have low accuracy values (7.48% and 37.13%, respectively). 

This may be a direct result of their sparse kernel matrices. The designs of these two 

kernels compare patent citations according to exact match. Given the millions of patents 

existing in the world, the probability that two patents share the same references is very 

low. Thus, there is a high probability that the kernel values will be zero. In the 

experiments, the bibliographic coupling kernel has 99.88% zero values and the graph 

overlap kernel has 98.37% zero values. Compared with the linear text kernel whose 

matrix has 38.81% zero values, the two kernel matrices are too sparse to capture enough 

information to differentiate patents and build an effective classifier.  

 It is also noticed that the bibliographic coupling kernel (K_Bib) and the graph 

overlap kernel (K_Ovr) have much lower recalls (5.81% and 29.08%) than the other 

kernels, while most kernels have similar precision values (except the labeled citation 

graph kernel and its composition with the linear text kernel). Further inspection shows 

that the two kernels tend to assign most patents into certain classes by mistake. For 

example, the bibliographic coupling kernel assigns most instances into USPC category 
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#435 (Chemistry: molecular biology and microbiology) with a low precision. The few 

instances left were assigned accurately, which lead to a high precision and a very low 

recall in most classes. For example, the bibliographic coupling kernel has 100% precision 

in assigning a couple of instances into some categories (e.g., 3 instances in USPC 

category #073, 3 instances in USPC category #106, and 1 instance in USPC category 

#252).  

3.5.2 Hypotheses Testing 

 To further assess the factors that affect the performances of different kernels, I 

tested the hypotheses by conducting single-sided pairwise t-tests on accuracy and F-

measure (Table 3.5). The pairwise t-tests on accuracy were conducted at the instance 

level (n=4,358); the pairwise t-tests on F-measure were conducted at the class level 

(n=36).  

 Statistical tests confirm that the kernels that use networks of patent citations 

significantly outperform the kernels that use only direct citations on both accuracy and F-

measure (i.e., H1.1a and H1.1b are supported). Using citation networks explicates the 

relationship between the patents which do not share directly cited patents but share 

indirect ancestors. Such explications may provide more evidence when the classifiers try 

to categorize such patents into the same class. In addition, using citation networks 

differentiates the patents with similar directly cited patents more distinctly by inspecting 

more levels of citations. Such detailed differentiation may enable the classifiers to 

categorize ambiguous patents into different classes more precisely. 
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Table 3.5 Hypotheses Testing for Different Kernels 

H1.1: p values a) Pairwise t-test on accuracy b) Pairwise t-test on F-measure 
K_Bib < K_Ovr <0.001 <0.001 
K_Ref < K_Gra <0.001 <0.001 

  
H1.2: p values a) Pairwise t-test on accuracy b) Pairwise t-test on F-measure 
K_Bib < K_Ref  <0.001 <0.001 
K_Ovr < K_Gra <0.001 <0.001 

  
H2.1: p values a) Pairwise t-test on accuracy b) Pairwise t-test on F-measure
K_Txt < K_Com1  <0.001 <0.001 
K_Txt < K_Com2 <0.001 <0.001 
K_Txt < K_Com3  <0.001 <0.001 
K_Txt < K_Com4 <0.001 <0.001 

  
H2.2: p values a) Pairwise t-test on accuracy b) Pairwise t-test on F-measure
K_Bib < K_Com1 <0.001 <0.001 
K_Ref < K_Com2 <0.001 <0.005 
K_Ovr < K_Com3 <0.001 <0.001 
K_Gra < K_Com4 0.004 0.533 

  
 Statistical tests confirm that the kernels that use cited documents’ classification 

category features significantly outperform those that do not use any cited documents’ 

features on both accuracy and F-measure (i.e., H1.2a and H1.2b are supported). Previous 

research found that employing neighbor documents’ classification category information 

can improve the classification accuracy (Chakrabarti et al., 1998; Oh et al., 2000), which 

is confirmed by my experiments. My experiments further suggest that, when the entire 

citation network is considered, cited documents’ features can still play an important role. 

 Statistical tests show that all four composite kernels significantly outperform the 

linear text kernel (K_Txt) on both classification accuracy and F-measure (i.e., H2.1a and 

H2.1b are supported). In the statistical test to compare composite kernels with the kernels 

using only citation information, although the labeled citation graph kernel and its 
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composition with the linear text kernel do not have statistically significant differences in 

F-measures in the testing of H2.2b (p value ≈ 0.533), all other tests on accuracy and F-

measure confirm a better performance when combining information (i.e., H2.2a is 

supported and H2.2b is partially supported). The statistical test results strongly suggest 

the complementary roles of patent citations and patent contents when used in patent 

classification tasks. In the experiments, the bibliographic coupling kernel (K_Bib) and 

the graph overlap kernel (K_Ovr) achieved only 7.48% and 37.13% accuracy, 

respectively. However, when they were combined with the linear text kernel, the 

classification performance improved significantly. This indicates that even though the 

citation information may be sparse in patents and using it alone is not very helpful, 

combining citation and content information can still improve the performance for patent 

classification.  

3.5.3 Individual Class’s Performances 

Table 3.6 Some of the Categories Which are Difficult to Classify 

USPC 
code 

Category description Number of 
training 

instances 

Number of
testing 

instances 
#216 Etching a substrate: processes 124 23 
#264 Plastic and nonmetallic article shaping or treating: 

 processes 
111 33 

#422 Chemical apparatus and process disinfecting,  
deodorizing, preserving, or sterilizing 

143 23 

#436 Chemistry: analytical and immunological testing 229 28 
#530 Chemistry: natural resins or derivatives; peptides 

 or proteins; lignins or reaction products thereof 
367 15 

#536 Organic compounds -- part of the class 532-570 series 265 18 
 
 I also inspected the kernels’ performances on all 36 classes. Figure 3.5 shows the 

F-measure each kernel achieved in each class. In general, the labeled citation graph 
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kernel (K_Gra) and its composition with the linear text kernel (K_Com4) have high 

performance in most of the 36 categories. However, the F-measures of the other seven 

kernels vary in the 36 categories, which may reduce their usability. The seven kernels’ F-

measures are relatively low in a similar group of categories. Table 3.6 provides some 

examples of these categories, which are difficult to classify and have a relatively small 

number of training instances. The testbed includes other categories which share similar 

topics with these categories and have a larger number of training instances. The 

classifiers have a high probability of misclassifying patents belonging to these categories 

into other similar categories. For example, most of the instances in USPC category #216 

(Etching a substrate: processes) were incorrectly assigned to category #438 

(Semiconductor device manufacturing: process), which has 1,119 training instances. 

Many of the instances in category #264 (Plastic and nonmetallic article shaping or 

treating: processes) were assigned to category #428 (Stock material or miscellaneous 

articles), which has 774 training instances. Many of the instances in categories #422 

(Chemical apparatus and process disinfecting, deodorizing, preserving, or sterilizing), 

#436 (Chemistry: analytical and immunological testing), #530 (Chemistry: natural resins 

or derivatives; peptides or proteins; lignins or reaction products thereof), and #536 

(Organic compounds -- part of the class 532-570 series) were assigned to #435 

(Chemistry: molecular biology and microbiology), which has 1,895 training instances. 

Even in these categories where most other kernels fail, the labeled citation graph kernel 

and its composition with the linear text kernel (K_Com4) are highly accurate. By 
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considering patent citation information, the two kernels have better differentiation 

abilities on the categories with very similar topics and uneven numbers of instances. 

The kernels' F-measures in different classes
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Figure 3.5 The Kernels’ Performances in Different Classes 

 The performance of the labeled citation graph kernel (K_Gra) and its composition 

with the linear text kernel (K_Com4) also changes slightly in different categories. In 

Figure 3.5, the labeled citation graph kernel (K_Gra) does not achieve a high 

performance in USPC category #435 (F-measure=54.71%). Although it is better than 

most of the other kernels in the same category, such a performance is not comparable to 
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the performance it achieved in other categories (F-measures between 77.78% and 

98.31%). USPC category #435 has the largest number of training instances in the dataset 

and a small number of testing instances. The patents in this category are on fundamental 

science topics or research tools, which were heavily cited by patents in all categories (Li 

et al., 2007). These characteristics may be the cause of the low performance of the 

labeled citation graph kernel and other kernels in USPC category #435. However, after 

combining it with the linear text kernel, the composite kernel (K_Com4) achieves a high 

F-measure on USPC category #435 (81.25%). The composite kernel (K_Com4) employs 

content features in addition to citations, which may help the classifiers differentiate the 

patents belonging to USPC category #435 from the others. Actually, the composite kernel 

(K_Com4) achieves consistent good performance in all categories (F-measures between 

74.42% and 96.73%, average F-measure 87.96%, standard deviation 6.53%). Even the 

labeled citation graph kernel is highly accurate; considering patent contents (linear text 

kernel) ensures more consistent high performance for different categories.  

3.6 Summary 

 Using patent classification as an example, this chapter demonstrates that 

knowledge evolution processes embedded in patent citation networks can be modeled and 

utilized in knowledge management tasks. In this research, I designed different kernel 

functions under a kernel-based framework to capture citation network information for 

patent classification. The proposed labeled citation graph kernel significantly improved 

patent classification performance. The research shows that the features of cited patents 

and the structure of patent citation networks, which together represent innovations’ 
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evolution history, can benefit the classification of focal patents. It is also noticed that 

combining the information in citation networks with patent contents results in higher and 

more consistent performance.  

 In the practice of patent management, the significant performance improvement 

(>30% in accuracy) in the experiments indicates the good potential of using the proposed 

approach to alleviate human efforts in patent pre-classification and further expedite 

patent examination. The research also lends support to a policy that requires inventors to 

file patent citations, since they often have more complete knowledge about their 

innovation’s evolution.  

 The proposed approach can be directly applied to classify other linked documents, 

such as Webpages and scientific literature. With appropriate adaptations it is also 

applicable to other knowledge codification and organization tasks such as building help 

desk systems, decision support systems, and knowledge repositories. 

 The effectiveness of the proposed approach shows the importance of considering 

the network structure in the node classification task. The proposed model explores 

features from related nodes to build models for focal nodes’ analysis. In patent 

classification, such a model can be interpreted with knowledge diffusion theory. In the 

next chapter, I will show that the use of network structure is not limited to such theories. I 

will examine the use of related nodes’ features from a context perspective and conduct 

the analysis in a gene function prediction application.  
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CHAPTER 4. NODE CLASSIFICATION: CAPTURING GENE INTERACTION 
CONTEXTS FOR GENE FUNCTION PREDICTION 

4.1 Introduction 

 In the previous chapter, I proposed a graph-based model based on the knowledge 

creation and diffusion theory for node classification. In this chapter, I generalize this 

model and propose to capture nodes’ contexts for classification purposes. The generalized 

model (context graph kernel) can be used in a broad range of applications, such as the 

gene function prediction problem in this chapter. I also deduce the matrix formulation of 

this model and analyze the characteristics of the model under different parameter settings. 

 In recent years, developments in genome sequencing have led to the identification 

of a large number of genes. However, most of these genes’ functions remain poorly 

known or unknown (Enright et al., 2003). Annotating genes’ functions has become a 

major challenge for biologists in the post-genomic era, which need more development on 

computational techniques. In the early stages of computational modeling, individual 

genes’ physical, chemical, and biological characteristics were the major features used for 

function prediction. Recent studies have used gene interaction information and obtained 

promising results (Hu et al., 2007). However, in most of these studies gene interactions 

are considered to be indicators of functional similarities between connected genes, which 

restrict the prediction power of the models.  

 In this chapter, I propose to predict a gene’s functions according to its context 

graph, which is defined as the gene interaction network composed of the genes 

interacting directly and indirectly with the focal gene. I propose a context graph kernel in 
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a kernel-based machine learning framework that uses both gene features (node 

information) and structural characteristics of the context graph to infer the focal gene’s 

functions.  

 This chapter is organized as follows. Section 4.2 reviews related studies on gene 

function prediction using gene interaction information. Section 4.3 introduces the 

proposed context graph kernel method. Section 4.4 describes the experiments on a p53-

related dataset. Section 4.5 discusses the results. Section 4.6 summarizes the findings. 

4.2 Literature Review 

4.2.1 Gene Function Prediction 

 Gene functions can be predicted through annotating individual genes (Sharan et 

al., 2007) or gene clusters (D'haeseleer et al., 2000; Huynen et al., 2003). At the 

individual gene level, gene features such as gene sequence (Altschul et al., 1997; Jensen 

et al., 2003), molecule structure (Borgwardt et al., 2005), and gene co-expression patterns 

(Pavlidis et al., 2002) have been used for annotation. Recent studies observed that gene 

interactions in biological pathways (including gene-gene interactions, gene-protein 

interactions, and protein-protein interactions) are also related to the functions of genes. 

Thus, the significant amount of gene interactions (Karaoz et al., 2004; Li et al., 2006) 

found in previous biology research can become another important resource for gene 

function prediction.  

 I review previous interaction-based function prediction studies along three 

dimensions: assumptions, levels of interactions, and computational techniques. 
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4.2.1.1 Assumptions 
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a) A linkage assumption assumes connected genes have similar 
functions. b) Indirect neighbors may have lower probability of 
sharing similar functions. c) A context assumption assumes that a 
gene’s functions are correlated with the patterns of its context. d) 
When multiple levels of gene interactions are used, genes with 
similar context graphs may have similar functions. 

Figure 4.1 Assumptions of Using Gene Interactions in Gene Function Prediction   

 Previous studies are typically built upon a linkage assumption or a context 

assumption. A linkage assumption considers gene interactions as an indicator of a 

functional similarity between connected genes. This assumption is supported by the fact 

that immediate neighbor genes (Schwikowski et al., 2000) and level-2 neighbor genes 

(Chua et al., 2006, 2007b) have a high probability of sharing functions. Based on this 

assumption, a focal gene’s functions can be adopted from the majority of its neighbor’s 

functions (Figure 4.1a). In the case of multi-level interactions (Figure 4.1b), it is typically 

assumed that indirect neighbors have weaker influence on the focal gene’s functions.  
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 The context assumption focuses on the correlation between a focal gene’s 

functions and the pattern of its context, i.e., its direct/indirect neighbors. For example, if 

the functions of a gene’s direct/indirect neighbors follow a certain combination, the gene 

may be assigned to a function which is not the same as the majority of its neighbors’ 

(Figure 4.1c). The topological patterns of gene interaction networks could also be used if 

multi-level interactions are considered (Figure 4.1d). In previous research, Schlitt et al. 

considered using direct neighbors as the context and predicted similar functions for genes 

with similar neighbors (Schlitt et al., 2003).  

4.2.1.2 Levels of Interactions 

 When using gene interactions for function prediction, both direct interactions 

between neighbor genes and multiple levels of interactions between indirect neighbor 

genes have been used in previous research. Early studies based on direct interactions used 

the “guilt by association” rule under the linkage assumption to infer a focal gene’s 

functions as the most frequent ones among neighbors (Mayer and Hieter, 2000; Li et al., 

2007c).  

 Considering multiple levels of interactions is a natural extension. Under the 

linkage assumption, the genes that are farther from the focal gene may have less impact 

on the focal gene’s function prediction (Figure 4.1b). Features describing second-level 

neighbors have been explicitly extracted and used in gene function prediction (Chua et al., 

2006; Xu and Li, 2006; Chua et al., 2007b). In addition, Hishigaki et al. proposed 

searching multiple levels of neighbors for the most frequent functions to predict labels of 

the focal gene (Hishigaki et al., 2001). Some studies further extend the scope of 
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neighbors to the entire gene interaction network, e.g., by minimizing inconsistent 

function assignments of connected genes in the network (Vapnik, 1995; Karaoz et al., 

2004) or through propagating gene function labels over the network with a damping 

effect (Nabieva et al., 2005).  

4.2.1.3 Computational Techniques 

 Computational techniques for gene function prediction can be categorized into 

heuristic approaches and machine learning approaches. 

 Heuristic approaches usually predefine rules to make predictions. For example, 

after defining the label propagation rule, function labels can be propagated through direct 

interactions (Mayer and Hieter, 2000) or the entire interaction network (Nabieva et al., 

2005)  to the genes with unknown functions. The predefined rules can also be used to 

design objective functions for optimization models. For example, based on the “guilt by 

association” rule, function prediction is formulated as minimizing inconsistent function 

assignments of connected genes (Vazquez et al., 2003; Karaoz et al., 2004; Massjouni et 

al., 2006; Murali et al., 2006). Simulated annealing (Vazquez et al., 2003) and iterative 

local search methods (Karaoz et al., 2004; Massjouni et al., 2006; Murali et al., 2006) 

have been proposed to find solutions for such models.  

 Machine learning approaches build prediction models from patterns in training 

instances. In particular, kernel-based methods have been frequently used in gene function 

prediction, due to their ability to capture structural information. Based on the context 

assumption, linear kernels (Lanckriet et al., 2004) and graph overlap similarities (Zhao et 

al., 2008) have been used to model focal genes’ contexts for function prediction. Based 
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on the linkage assumption, diffusion kernels have been used to model genes’ positional 

characteristics in gene networks for prediction (Tsuda and Noble, 2004; Yamanishi et al., 

2004).  

4.2.2 Research Gaps 

Table 4.1 A Summary of Previous Studies 

Studies 

A
ss

um
pt

io
n 

* 
Le

ve
l o

f  
In

te
ra

ct
io

ns
 #

 
Te

ch
ni

qu
e 

+ 

Descriptions 

(Mayer and Hieter, 2000)  L D H Guilt by association (majority voting) 
(Schwikowski et al., 2000) L D H Guilt by association  
(Hishigaki et al., 2001) L M H Multi-level neighbor majority voting 
(Schlitt et al., 2003) C D H Similarity of neighbors  
(Vazquez et al., 2003) L M H Minimize un-matching gene pairs 
(Karaoz et al., 2004) L M H Minimize un-matching gene pairs 
(Lanckriet et al., 2004) (a) L M ML Diffusion kernel (classification by gene  

positions in the network) 
(Lanckriet et al., 2004) (b) C D ML Linear kernel 
(Tsuda and Noble, 2004)  L M ML Locally constraint diffusion kernel 
(Yamanishi et al., 2004)  L M ML Diffusion kernel 
(Nabieva et al., 2005)  L M H Label propagation  
(Massjouni et al., 2006)  L M H Minimize un-matching gene pairs 
(Chua et al., 2006) L M H Weighted neighbor function label counting
(Murali et al., 2006)  L M H Minimize un-matching gene pairs 
(Xu and Li, 2006) B M ML KNN with neighbor-related features 
(Chua et al., 2007b) L M H Weighted neighbor function label counting
(Li et al., 2007c)  L D H Guilt by association 
(Zhao et al., 2008)  C D H Similarity of neighbors 

* L – linkage assumption; C – context assumption; B – both assumptions. 
# D – direct interactions; M – multi-level interactions. 
+  H – heuristic approach; ML – machine learning approach. 
 
 Table 4.1 summarizes previous studies that use gene interactions in gene function 

prediction. I identify the following research gaps in previous research: 
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1) Most studies addressed the gene function prediction problem under a linkage 

assumption. The use of context assumption is limited.  

2) Although both direct interactions and multi-level interactions have been used under the 

linkage assumption, the context-based studies used only direct interactions. The effect of 

indirect interactions under the context assumption still remains to be investigated. 

3) Heuristic approaches have been the major technique adopted. Several machine 

learning-based studies used features of individual genes (Pavlidis et al., 2002; Jensen et 

al., 2003; Borgwardt et al., 2005) without considering gene interactions. However, less 

attention has been paid to leveraging graph structures in statistical learning for gene 

function prediction. 

4.3 Research Design 

 To bridge the aforementioned research gaps, this study aims at predicting a gene’s 

functions based on its context in a gene interaction network. I also inspect the effect of 

using multiple levels of (indirect) interactions in function prediction. I choose a kernel-

based machine learning approach in this research due to its documented good 

performance and ability to handle structural data (Gartner, 2003). 

4.3.1 A Kernel-based Approach 

 I formulate gene function prediction as a classification problem. The objective is 

to assign function labels to each gene. Figure 4.2 shows the process of gene function 

prediction in a kernel-based framework. At the data preparation stage, gene interactions 

are extracted from public databases. Genes are annotated with their known function 

labels. At the classifier construction stage, genes with known functions are selected and 
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used as training instances to build the models. Specifically, I build a binary classifier for 

each function label. At the inference stage, the genes with unknown functions are given 

to the classifiers; the predictions from multiple binary classifiers are combined to assign 

functions to each gene. Finally, at the evaluation stage, the predictions are validated 

against existing knowledge, by domain experts or through further experiments.  
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Figure 4.2 The Kernel-based Framework for Gene Function Prediction 

 To build classifiers using a kernel-based method, a kernel function and a kernel 

machine need to be specified. The performance of kernel-based methods is highly 

dependent on the design of kernel functions (Tan and Wang, 2004). Thus, the main focus 

and contribution of this research is to design a kernel function that can better capture 

structural patterns in gene interaction networks for the gene function prediction task. For 

the kernel machine, I choose the well-studied Support Vector Machines (SVM) (Vapnik, 

1995) algorithm due to its reported competitive performance in many domains (Muller et 

al., 2001; Vinayagam et al., 2004).  
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4.3.2 A Context Graph Kernel 

4.3.2.1 Kernel Design 

 Recognizing the limitations of previous research, I adopt a context assumption 

and use multiple levels of gene interactions for gene function prediction. As shown in 

Figure 4.1d, I represent each gene’s context as a graph. A context graph centers on the 

focal gene and contains its direct and indirect neighbors. According to the context 

assumption, genes with similar context graphs may share similar functions. Therefore I 

design a context graph kernel (CGK) to compute the similarity between context graphs.  

 Similar to the labeled graph kernel proposed in the last chapter, the proposed 

CGK also relies on the comparisons of random walk paths in the graphs. It belongs to the 

family of convolution kernels (Haussler, 1999) and computes the similarity between 

graphs by accumulating the similarity scores of random walk paths on the graphs in a 

pairwise manner. The CGK considers the random walk paths that start from the focal 

gene. These paths represent the gene pathways related to the focal gene and thus may 

potentially indicate its functions. I calculate the similarity between two context graphs as 

the sum of pairwise similarities of these random walk paths. Each path’s contribution is 

weighted according to its probability to appear among all paths, i.e., probability of 

existence. Since longer random walk paths have a relatively lower probability of 

existence, the genes that are far from the focal gene have less impact on the focal gene’s 

function.  

 The following procedure summarizes the kernel design: 
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(i) In the gene interaction network G of a genome with n genes {g1, g2, … gn}, I 

represent gene gx’s context graph as Gx. All random walks in Gx start at gx. At each gene 

(node) gi, a random walk has a probability of ps(gi) to stop and a probability of pt(gj|gi) to 

jump to one of gi’s neighbors, gj. Thus, a random walk path of length l, 

h=(g<h,0>→g<h,1>→…→g<h,l>), has the probability of existence:  

,1 ,0 ,2 ,1 , , 1( | ) ( | ) ( | ) ( | ) ( )x t h h t h h t h l h l s lP h G p g g p g g p g g p g< > < > < > < > < > < − >= "  

where g<h,i> indicates the i-th gene on the path h. 

(ii) After enumerating all random walk paths, the similarity between two context graphs, 

K(Gx,Gy),  is defined as the sum of the similarity scores of random walk paths weighted 

by the paths’ probability of existence: 

( ) ( )

( , ) ( , ) ( | ) ( | )
i x j

x y h i j i x j y
h H G h H Gy

K G G K h h P h G P h G
∈ ∈

= ∑ ∑  

where Kh(hi,hj) is the similarity score between two random walk paths hi and hj, and H(Gx) 

and H(Gy) denote the sets of random walk paths in the two context graphs.  

(iii) The similarity between random walk paths is computed by multiplying the similarity 

of the corresponding nodes along the two paths. I define Kh(hi,hj) as:  
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where |hi| and |hj| are the lengths of the two paths hi and hj, and , ,( , )
i jg h k h kK g g< > < > is a 

similarity function defined on nodes.  

(iv) The node similarity , ,( , )
i jg h k h kK g g< > < >  uses only the information of individual genes, 

potentially available from various biological data sources such as experiments, literature, 
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gene sequences, and ontologies. For instance, known gene functions are often used as 

evidence for interaction-based function prediction (Hishigaki et al., 2001; Vazquez et al., 

2003; Nabieva et al., 2005; Murali et al., 2006). Gene functions are often defined as a 

hierarchical structure in ontologies such as Gene Ontology (GO) (Ashburner et al., 2000), 

thus the similarity between two function labels can be defined based on the number of 

their common ancestors in the hierarchy. Since a gene may have multiple known function 

labels, the similarity between two genes can be calculated by summing up the pairwise 

similarity scores of all their functions: 

( , )( , ) (1 )i j

i j

common l l
f i j

l l

K g g ρ= −∑∑  

where li and lj are the known functions of gi and gj, and common(li, lj) is the number of 

the two functions’ common ancestors. ( , )1 i jcommon l lρ−  is the sum of functional similarities 

for each level of common ancestors (i.e., ( , ) 1
1

(1 )i jcommon l l k
k

ρ ρ −
=

⎡ ⎤− ⋅⎣ ⎦∑ ), where higher level 

ancestors have higher weight than lower level ones by a damping fact ρ (0<ρ<1) between 

each level. 

 (v) In practice, kernel normalization may be considered for better classification 

performance on some datasets:  

'( , ) ( , ) / ( , ) ( , )x y x y x x y yK G G K G G K G G K G G= . 

4.3.2.2 Computing the Context Graph Kernel in a Matrix Form 

 To compute the CGK by enumerating all random walk paths is computationally 

expensive. In this research, I introduce an efficient method for computing the CGK based 

on the matrix form of the kernel. 
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 In the gene interaction network G of a genome with n genes {g1, g2, … gn}, I use 

two matrices M={Mi,j}={pt(gj|gi)} and Q={Qi,j}={ps(gi)} to encode each node’s transition 

probability and stopping probability in the graph, respectively. The context graph kernel 

matrix of the entire genome ,{ } { ( , )}i j i jK K K G G= =� �  can be represented as the summation 

of a series of matrices (Proposition in Appendix A):  

∑=
i

iKK~             (i=1,2,…,∞)    

where K1=(M*Q)K0(M*Q)T, Ki+1=M(K0*Ki)MT (i=1,2,…,∞) , and  

,0 0{ } { ( , )}
i j g i jK K K g g= =  is the kernel matrix of node information. The operation * is the 

Hadamard product (i.e., entrywise product) where A*B={ai,j·bi,j}. 

 Each matrix Ki covers the random walk paths of length = i in the context graphs. 

It can be proved that when r approaches +∞, K1+K2+…+Kr converges if there is a 

normalized K0  and the stop probability ps(gi) is unified or larger than 0.5 (Proposition in 

Appendix B). Therefore, given a maximum length of random walk paths, r, we can use 

K1+K2+…+Kr to approximate the kernel K~ . With the decomposed form of Ki, the kernel 

K~  can be computed by simple matrix operations with a time complexity in O(rn3), where 

n is the number of nodes in the network.  

 Another advantage of the matrix formulation is that it facilitates the investigation 

of the effect of indirect interactions on gene function prediction. Since all random walks 

start from the focal genes, each Ki covers the genes that are i step(s) away from the focal 

gene. While 
1

r

i
i

K
=
∑  will converge as r increases, specifying a different r restricts the CGK 
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to a limited number of indirect interactions and may yield a different prediction 

performance. It may help us understand the effect of indirect interactions in gene function 

prediction.   

4.4 Experimental Study 

4.4.1 Dataset 

4.4.1.1 Human Genome Gene Interaction Network  

 In this study I used the collection of gene interactions from the BioGRID database 

(Breitkreutz et al., 2003) to construct a gene interaction network of human genomes. 

BioGRID is a free and well-known database with protein/gene interactions manually 

curated from Medline literature. I extracted 38,225 relations related to Homo sapiens 

genes from BioGRID (version 2.026). By mapping proteins to genes and consolidating 

duplicate relations, I constructed a gene interaction network with 19,623 non-directional 

relations among 7,167 genes.  

4.4.1.2 Gene Function Labels 

 Following previous studies and domain experts’ suggestions, I used terms from 

the “biological process” hierarchy of Gene Ontology (Ashburner et al., 2000) as gene 

function labels. The “biological process” hierarchy is a 10-level structure of 7,172 GO 

terms in the dataset (downloaded in 2003). It has 7 second-level terms (including one 

“unknown” class) and 264 third-level terms. I use the third-level terms as class labels in 

the study so as to have both enough classification granularity and sufficient 

training/testing data instances for each class. The genes whose functions are not 

documented in GO were annotated as “unknown.”  
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4.4.1.3 A P53-related Testbed  

 The tumor suppressor gene, p53, plays a central role in the regulation of apoptosis 

and cell cycle arrest in cancer development. P53-related genes have attracted much 

attention and their functions are well-studied as compared to other human genes. 

Therefore, I chose p53-related genes as the research testbed. In chapter 2, I identified 

2,045 p53-related genes from the Medline abstracts with a Natural Language Processing 

tool. After eliminating the genes without known functions, I had 1,436 genes within 38 

“biological process” functions. Nine functions that have more than 50 instances are used 

in the experiments for evaluation (Table 4.2). While each of the genes is a training/testing 

instance in the experiment, I used the entire human genome gene interaction network to 

extract context graphs and generate features for function prediction. 

Table 4.2 Nine Major Gene Functions in the P53 Testbed  

GO term Description Parent GO term Number of
instances 

GO:6928 cell motility GO:9987 (cellular process) 66 
GO:30154 cell differentiation GO:9987 (cellular process); 

GO:7275 (development) 
71 

GO:16265 death GO:7582 (physiological processes) 181 
GO:9653 morphogenesis GO:7275 (development) 200 
GO:9605 response to 

external stimulus 
GO:7582 (physiological processes) 214 

GO:6950 response to stress GO:7582 (physiological processes) 220 
GO:8151 cell growth and/ 

or maintenance 
GO:9987 (cellular process); 
GO:7582 (physiological processes) 

499 

GO:7154 cell communication GO:9987 (cellular process) 663 
GO:8152 metabolism GO:7582 (physiological processes) 854 

 
4.4.2 Experimental Procedures 

 While implementing the CGK, I used the known gene functions as node 

information because they have been often used as evidence for function prediction. The 
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“unknown” functions of the genes are considered as having the same probability of 

being in any second-level GO categories for kernel calculation. When generating random 

walks on the gene interaction network G, I specified a uniform stopping probability 

ps(gi)=1-λ (0<λ<1) for all random walks for the sake of simplicity. I also assumed equal 

probability of jumping from one node to any of its neighbors, i.e., pt(gj|gi)=λ/d(gi), where 

d(gi) is the number of gi’s interacting genes. I used a popular SVM package, libSVM 

(Chang and Lin, 2001), to build classifiers based on the CGK kernel. The CGK kernel 

was normalized before being fed into libSVM. 

 To test the algorithm’s performance, I conducted 10-fold cross-validations on the 

p53 dataset. In each run, the functions of genes in the testing fold were treated as 

“unknown” in the gene interaction network. To specify λ, ρ (for node information), and 

the parameters of the SVM algorithm, I used one fold of the data and utilized the tool 

provided by libSVM to select parameters based on the number of correctly predicted 

genes. The parameter setting optimized for this one fold of data were later applied on the 

entire dataset for evaluation. In the experiments, ρ was finalized as 0.9 (from 0.5 to 0.9) 

and λ was selected as 0.8 (from 0.1 to 0.9) from this tuning process.  

 For the study, I designed two sets of experiments: 1) to examine the effect of 

indirect interactions in gene function prediction and 2) to compare the proposed CGK-

based method with other state-of-the-art methods.  

 As described in Section 4.3.2.2, using K1+K2+…+Kr to approximate the kernel K�   

restricts the CGK to using the indirect interactions that are up to r steps away from the 

focal genes. In addition, the stopping probability, ps(gi), also affects the use of indirect 
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interactions by controlling the probability of longer random walks’ appearance. Thus, in 

the first experiment, I compared the performances of CGK based on different r and λ 

settings to inspect the effect of indirect interactions.  

 For the second experiment, I compared the CGK with four baseline methods from 

previous studies. In this experiment, I specified λ=0.8 based on the tuning process and 

calculated the CGK kernel matrix till convergence. The same 10-fold validation method 

was applied to all prediction models in this experiment for a fair comparison. 

4.4.3 Evaluation Metrics 

 I evaluated the performance of the classification models using precision, recall, 

and F-measure, which are common evaluation metrics in gene function prediction studies 

(Karaoz et al., 2004; Murali et al., 2006; Sharan et al., 2007). Since one gene may have 

more than one function and one function may be associated with more than one gene, I 

calculated the three measures at both the instance level (i.e., gene level) and class level 

(i.e., function level). I also inspected instance-level performance with respect to the 

number of interacting genes to better understand the algorithms’ characteristics 

(Hishigaki et al., 2001).   

 Instance-level precision Pi, recall Ri, and F-measure Fi are defined as:  

correctly predicted functions of a gene
all predicted functions of a geneiP =  

correctly predicted functions of a gene
all (known) functions of a geneiR =  

2 /( )i i i i iF P R P R= × × +  
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Class-level precision Pc, recall Rc, and F-measure Fc are defined as: 

correctly predicted genes of a class
all predicted genes of a classcP =  

correctly predicted genes of a class
all (known) genes of a classcR =  

2 /( )c c c c cF P R P R= × × +  

4.5 Results and Discussion 

4.5.1 Experiment I: Effect of Indirect Interactions  

 Figure 4.3 shows the instance-level and class-level performances using different r 

and λ. When only direct interactions are considered (r=1), the normalized CGK kernels 

are the same for different λ, which achieves average F-measure scores of 59.2% at the 

instance level and 33.3% at the class level. When additional levels of indirect interactions 

are taken into account, for most λ settings the average F-measure score curves show an 

increasing trend until convergence (for λ=0.8 and λ=0.9, a little fluctuation is shown for 

instance-level F-measure). In addition, when I specify parameter r, a larger λ tends to 

lead to a better performance. For the instance-level performance, the performance curves 

converge to similar values for λ=0.6 and λ=0.8.  

 It should be noted that a larger r indicates more indirect interaction can be used in 

the experiments. A larger λ indicates that indirect interactions have a larger probability to 

be adopted by the kernel. The experimental results on r and λ demonstrate that 

incorporating information of indirect interactions in context-based models can improve 

the gene function prediction performance. The convergence of the performance curves 
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when r is larger is expected as the kernel’s convergence property (Proposition in 

Appendix B). Moreover, the experiments suggest that computing CGK up to two to three 

levels (r = 2 or 3) gives a sufficiently accurate approximation of the CGK, which can be 

used in future empirical studies.  
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Figure 4.3 Performance of CGK Using Different Levels of Interactions  
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4.5.2 Experiment II: CGK vs. Other Methods 

4.5.2.1 Benchmark Algorithms  

 Based on the three dimensions considered in the literature review (i.e., assumption, 

interactions, and techniques), I compare the proposed context graph kernel method 

against four baseline methods from previous studies (Table 4.3):  

Table 4.3 Baseline Methods for Gene Function Prediction 

Benchmark algorithms Assumptions Interactions Techniques 
Linear kernel Context Direct Learning 
Diffusion kernels Linkage Multi-level Learning 

Gene Annotation using 
Interaction Network 

Linkage Multi-level Heuristic 

Majority voting  Linkage Direct Heuristic 
 
a) Linear kernel: A linear kernel (LK) uses direct interactions under a context assumption 

(Lanckriet et al., 2004). For gene function prediction, the genes directly connected to the 

focal gene are represented as the gene’s features. The inner product of the feature vectors 

is used to calculate genes’ similarities. Genes with higher similarities, i.e., genes sharing 

a larger number of neighbor genes, are predicted to have similar functions. 

b) Diffusion kernel: A diffusion kernel (DK) uses multi-level interactions under a linkage 

assumption. DK uses genes’ relative positions in the gene interaction network to predict 

their functions. Two genes that have more and shorter paths between them are more 

likely to be predicted to share function labels (Lanckriet et al., 2004; Yamanishi et al., 

2004). In addition to using the traditional diffusion kernel, I also adopt a locally 

constrained diffusion kernel (LDK) as proposed by Tsuda et al. due to its reported 

superior performance (Tsuda and Noble, 2004).  
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c) Gene Annotation using Interaction Network (GAIN): GAIN is a heuristic method 

using gene interaction networks under a linkage assumption, as reported in Karaoz et al. 

(Karaoz et al., 2004) and Murali et al. (Murali et al., 2006). It optimizes gene function 

assignment by minimizing the inconsistency among connected genes in the network.  

d) Neighbor majority voting method (MV): Guided by the “guilt by association” rule 

(Mayer and Hieter, 2000), I construct a simple neighbor majority voting classifier. The 

most dominant function label in the directly connected neighbors is predicted as the focal 

gene’s function. 

 In this research the implementation of LDK and GAIN were provided by the 

authors, while the others were implemented by us. For the context graph kernel, I adopt 

the parameter setting from the tuning process explained before. I calculate the kernel till 

convergence (r=6). 

4.5.2.2 Instance-level Performance 

 Table 4.4 shows the instance-level prediction performances for different methods. 

The proposed context graph kernel achieves the highest average precision (74.01%) and 

F-measure (61.34%), which are significantly better than other methods with a p value < 

0.0001 in pairwise t-tests. The DK achieves the highest recall but not significantly 

different from that of CGK’s (p value>0.12). Among all learning-based methods, the 

context graph kernel outperforms the linear kernel by about 12% and the diffusion 

kernels by about 12%~14% in precision.  Overall, the context graph kernel provides more 

precise predictions without missing significantly more hits than other methods. In these 

experiments, the majority voting algorithm has significantly worse performance than the 



 

101

other algorithms, due to its use of only direct interactions. This finding is consistent 

with previous research (Vazquez et al., 2003).  

Table 4.4 Instance-level Prediction Performance 

Instance-level performance Average 
precision

Average
recall 

Average 
F-measure 

Context Graph Kernel (CGK) 74.01% 58.45% 61.34% 
Linear Kernel (LK) 61.94% 56.55% 55.00% 
Diffusion Kernel (DK) 60.08% 59.63% 55.24% 
Locally Constrained Diffusion
Kernel (LDK) 

62.18% 59.58% 56.21% 

Gene Annotation using 
Interaction Network (GAIN) 

71.08% 57.91% 59.18% 

Majority Voting (MV) 23.33% 16.07% 17.20% 
* Within the same measure, the bold numbers do not have a significant difference from 
the largest one at the 90% confidence level. 
 
 Figure 4.4 shows different classifiers’ performances for genes with different 

numbers of interacting genes (or in graph theoretical terms, nodes with different degrees). 

The number of genes in each group is shown by column bars. In general, there is a 

positive correlation between classification performance and the number of interacting 

genes, except for the majority voting algorithm. Most algorithms were able to capture the 

information provided by a larger number of interactions for a more accurate prediction. 

Figure 4 also shows that the CGK performance is not the best for genes with a smaller 

number of interacting genes. However, as the number of interacting genes increases, 

CGK’s performance becomes more competitive.   
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(c) F-measure 
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Figure 4.4 Instance-level Performance for Genes with Different Interacting Genes 
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4.5.2.3 Class-level Performance 

 Table 4.5 shows the class-level performances of different classifiers. For most 

classes, the context graph kernel achieves the highest precision, while the two diffusion 

kernels (DK and LDK) achieve the highest recall. Both CGK and the diffusion kernels 

use a machine learning approach and utilize the structure of the gene interaction network. 

Their performance differences show the different prediction power of the context 

assumption and the linkage assumption.  

Table 4.5 Class-level Prediction Performances 

GO term 6928 30154 16265 9653 9605 6950 8151 7154 8152 
# of genes 66 71 181 200 214 220 499 663 854

Pc 25.00% 75.00% 81.58% 50.68% 62.92% 76.12% 62.59% 78.55% 82.67%
Rc 1.52% 4.23% 34.25% 18.50% 26.17% 23.18% 35.87% 70.14% 78.22%CGK 
Fc 2.86% 8.00% 48.25% 27.11% 36.96% 35.54% 45.61% 74.10% 80.39%
Pc 20.00% 29.03% 48.28% 26.72% 40.00% 40.74% 48.64% 73.36% 73.43%
Rc 4.55% 12.68% 30.94% 17.50% 28.97% 25.00% 39.48% 65.61% 79.63%LK 
Fc 7.41% 17.65% 37.71% 21.15% 33.60% 30.99% 43.58% 69.27% 76.40%
Pc 16.22% 27.08% 52.08% 35.00% 38.17% 38.20% 48.54% 70.45% 73.15%
Rc 9.09% 18.31% 41.44% 28.00% 33.18% 30.91% 46.69% 70.14% 74.00%DK 
Fc 11.65% 21.85% 46.15% 31.11% 35.50% 34.17% 47.60% 70.29% 73.57%
Pc 10.00% 28.21% 56.49% 32.56% 43.82% 41.28% 50.00% 71.97% 72.31%
Rc 6.06% 15.49% 40.88% 21.00% 36.45% 32.27% 41.88% 68.17% 77.99%LDK 
Fc 7.55% 20.00% 47.44% 25.53% 39.80% 36.22% 45.58% 70.02% 75.04%
Pc 12.50% 38.46% 70.89% 46.94% 68.75% 48.42% 57.53% 75.24% 74.83%
Rc 3.03% 7.04% 30.94% 11.50% 25.70% 20.91% 38.28% 72.40% 76.23%GAIN 
Fc 4.88% 11.90% 43.08% 18.47% 37.41% 29.21% 45.97% 73.79% 75.52%
Pc 25.87% 29.19% 11.50% 13.82% 12.64% 11.94% 40.54% 47.17% 65.00%
Rc 16.82% 21.96% 7.18% 8.50% 16.67% 11.27% 15.03% 11.31% 15.22%MV 
Fc 20.39% 25.07% 8.84% 10.53% 14.38% 11.59% 21.93% 18.25% 24.67%

 
 From the experimental results, I observe a positive correlation between the class-

level performance measures and the number of instances in the classes. I also identify 

some classes that are difficult to classify (compared with classes with a similar number of 
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instances), such as “GO:0009653 (morphogenesis)” and “GO:0006928 (cell motility).” 

Both of these classes belong to a super class “GO:0007275 (development)” in the GO 

ontology. Function prediction methods based on gene interactions do not perform well on 

these two classes, probably because their functions are less related to gene interactions. 

Other types of information may need to be considered in this case. 

4.6 Summary 

 In this research, I propose a context graph kernel for gene function prediction. 

This approach is based on a context assumption and leverages multiple levels of 

interactions in gene interaction networks. The experiments on a testbed of p53-related 

genes show that the prediction performance of the CGK increases when more levels of 

indirect interactions are considered. When compared to other state-of-the-art methods 

that often use linkage assumptions and/or direct interactions, the proposed approach is 

highly competitive and achieves the highest F-measure (61.34%). In addition, I find that 

the proposed approach works better on genes with a larger number of interacting genes 

and function classes with a larger number of genes.  

 The context graph kernel extends the labeled graph kernel and enables us to 

incorporate different types of node information in the node classification task. Together 

they show the effectiveness of using graph structure in the task of analyzing individual 

nodes. In the next chapter, I will explore using the graph structure to analyze relations 

between nodes, i.e., a link prediction task in knowledge discovery.  
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CHAPTER 5. LINK PREDICTION: ADDRESSING THE RECOMMENDATION 
PROBLEM WITHIN BIPARTITE GRAPHS 

5.1 Introduction 

 In the previous two chapters, I have studied the node classification problem. In 

this chapter, I study the relationship between entity pairs in graph-structured data, i.e., the 

link prediction task. Specifically, I examine this with an example application in 

recommender systems.  

 Recommender systems are widely used in recommending products, services, and 

contents to users. As the core of recommender systems, recommendation algorithms 

usually rely on user characteristics, item attributes, and user-item interactions (browsing, 

rating, purchasing, etc.) to infer user interests (Pazzani, 1999). Successful collaborative 

filtering (CF) algorithms take advantage of user-item interactions and infer users’ 

interests based on their overlapping usage history.  

 In CF, users (or customers) and items (or products) can be considered as nodes in 

a bipartite graph linked by their interactions. Such a representation converts the 

recommendation problem into a link prediction problem. The success of previous CF 

algorithms suggests that graph-related features from the user-item graph may be useful in 

the recommendation process. However, such graph-related features were mainly used in 

heuristic algorithms (Huang et al., 2004b; Zhou et al., 2007). The use of graph-related 

features in learning-based studies is still limited. In addition, the few existing learning-

based recommendation algorithms usually rely on explicit feature extraction, which needs 
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intensive domain knowledge and is computationally expensive. These disadvantages 

limited the use of graph information in learning-based recommendation algorithms. 

 In this chapter, I propose a kernel-based machine learning approach to address the 

recommendation problem as a link prediction problem in user-item interaction graphs. I 

study an associative interaction graph (AIG) for each user-item pair, and develop a graph 

kernel that captures the features in the AIGs to predict if a link may exist between the 

user-item pair or not. I demonstrate the improved recommendation performance of the 

new method using three real-world datasets. 

 This chapter is organized as follows. Section 5.2 reviews related studies on 

recommendation algorithms. Section 5.3 introduces the proposed graph kernel-based 

recommendation framework. Section 5.4 describes the experiments on three real-world 

datasets. Section 5.5 discusses the experimental results. Section 5.6 summarizes the 

findings. 

5.2 Literature Review 

5.2.1 Recommendation Algorithms 

 Huang et al. (Huang et al., 2004c) and Adomavicius et al. (Adomavicius and 

Tuzhilin, 2005) have conducted comprehensive reviews on recommender systems and 

recommendation algorithm studies. In general, recommender system research can be 

characterized by their recommendation algorithms, system inputs (i.e., user information 

(Pazzani, 1999), item information (Linden et al., 2003), transaction information (Huang 

et al., 2004d)), and system outputs (i.e., whether the predictions are linkages/purchases, 

or numerical ratings).  
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 Focusing on the recommendation algorithm design, I review previous studies 

according to their feature types and computational techniques.  

5.2.1.1 Feature Types 

 According to the feature type, previous recommendation algorithm studies fall 

into two groups: the ones using local features and the ones using graph-related features.  

1) Local features 

 Local features include both individual user/items’ features and the statistical 

characteristics of user usage histories. The local features have been used to define 

user/item similarity measures, based on which similar products can be cross-

recommended between similar users (Ahn, 2008). The statistical patterns of users’ 

purchasing histories can be captured by probabilistic models. Such models may introduce 

hidden classes of users/items and estimate user-item pairs’ probabilities of having 

interactions given existing transactions (Hofmann, 2004).  

2) Graph-related features 

 Graph-related features are defined on graphs constructed from user-item 

interactions based on graph theory and topology analysis. User-item interactions can be 

represented as bipartite graphs, where users and items are nodes and business transactions 

are links. Eigenvector-based node ranking algorithms that are similar to PageRank 

(Huang et al., 2004b; Griffith et al., 2006; Gori and Pucci, 2007)  and HITS (Huang et al., 

2007b) have been applied on such graphs to rank items and recommend highly ranked 

items to the users. In addition, some research has projected the bipartite user-item graph 

onto a unipartite user (or item) graph (Zhou et al., 2007) and derived user (item) 



 

108

similarities using graph-based algorithms. The similarity measures can be used to cross-

recommend items between users. Moreover, the graphs can be constructed from user/item 

characteristics other than transactions. For example, graphs reflecting similarities of user 

usage logs and item contents were used in previous research (Bollen et al., 2007).  

5.2.1.2 Computational Techniques  

 According to computational techniques, previous recommendation algorithms can 

be classified as heuristics and learning-based algorithms.  

1) Heuristics 

 Heuristic methods use predefined measures or rules to rank items and make 

recommendations. For example, recommending the most popular items to every user is 

the simplest heuristic that can be applied. Similarity-based heuristics that recommend 

similar items between similar users are another type of heuristic algorithm. The similarity 

measures can be defined on users (using demographic information or purchase history 

information) or items (using item content, attribute, specification, or sales information). 

In previous research, several similarity measures have been proposed (Ahn, 2008), while 

the most popular measures were Pearson correlation coefficient (Resnick et al., 1994) and 

cosine-based similarity (Sarwar et al., 2001).  

 Heuristic methods can also be designed based on graph-related features. In 

addition to the popular eigenvector-based node ranking algorithms (Huang et al., 2007b), 

some studies have focused on the positional information of users and items in their 

interaction networks. Fouss et al. proposed that closer users and items (as measured by 

conducting random walks on the network) may have a higher probability of interacting 



 

109

(Fouss et al., 2007). Moreover, Huang et al. proposed to recommend the links that can 

lead to higher graph clustering coefficients (Huang et al., 2007a). 

2) Learning-based methods 

 Learning-based methods build models on the data for future recommendations. 

Focusing on the transactions in user purchase history, some studies have built 

probabilistic models to uncover the hidden class (Polcicova and Tino, 2004; Yu et al., 

2004; Zeng et al., 2004) among users and items, as well as to interpret user-item 

relationships. For instance, Hofmann et al. applied the probabilistic latent semantic 

analysis (PLSA) model in recommendation (Hofmann, 2004). Iwata et al. applied a 

maximum entropy model to better capture the temporal information in user purchase 

histories for recommendation (Iwata et al., 2008). Another approach of learning-based 

methods was to take advantage of mature models and explore feature construction 

methods that can achieve better recommendation performance. The probabilistic 

relational model (PRM) (Getoor and Sahami, 1999; Newton and Greiner, 2004), the 

regression model (Vucetic and Obradovic, 2005), and the SVM algorithm (Xu and Araki, 

2006) have all been applied to the recommendation problem.  

 Considering business transactions as a user-item graph, the graph-related features 

have been shown to be beneficial in learning-based recommendation algorithms. Huang 

et al. extended the PRM framework (Huang et al., 2004d) and proposed to take advantage 

of features from directly or indirectly connected nodes for recommendation. Yajima used 

the Laplacian kernel to capture the distances between items and build one-class SVM 

recommendation models to predict positionally closer items for each user (Yajima, 2006). 
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Reddy et al. used a graph-based clustering algorithm to find similar users in user-item 

graphs for the purpose of recommendation (Reddy et al., 2002). Hasan et al. proposed a 

general supervised framework to use proximity features, aggregated features, and 

topological features for link prediction, which can be utilized in the recommendation 

problem (Hasan et al., 2006). 

5.2.2 Research Gaps 

 Table 5.1 summarizes previous research on recommendation algorithms. While 

several efforts have been made to use graph-related features in heuristics, the heuristic 

algorithms’ performance varies with datasets, due to the fact that the models are not built 

based on the data. Compared to heuristic algorithms, the studies on learning-based 

recommendation algorithms that used graph-related features are still limited. The few 

existing learning-based algorithms in that category, such as (Huang et al., 2004d), usually 

need explicitly defined features, which require intensive domain knowledge. In addition, 

it is computationally expensive to specify the graph-related features in user-item 

interaction networks, due to the fan-out characteristic of graph-structured data.  
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Table 5.1 A Summary of Previous Recommendation Algorithm Studies 

Studies 

Fe
at

ur
e*

  

Te
ch

ni
qu

e#
 

Notes 

(Resnick et al., 1994) L H 
(Sarwar et al., 2001) L H 
(Ahn, 2008) L H 

Similarity-based  

(Huang et al., 2004b) G H 
(Griffith et al., 2006) G H 
(Gori and Pucci, 2007) G H 
(Huang et al., 2007b) G H 
(Zhou et al., 2007) G H 

Eigenvector-based node ranking 

(Fouss et al., 2007) G H Node position-based 
(Huang et al., 2007a) G H Clustering coefficient-based 
(Hofmann, 2004) L L 
(Yu et al., 2004) L L 
(Zeng et al., 2004) L L 
(Polcicova and Tino, 2004) L L 
(Iwata et al., 2008) L L 

Probabilistic model 

(Getoor and Sahami, 1999) L L 
(Newton and Greiner, 2004) L L 
(Vucetic and Obradovic, 2005) L L 
(Adomavicius and Tuzhilin, 2005) L L 
(Xu and Araki, 2006) L L 

Mature model + local features 

(Huang et al., 2004d) G L PRM + aggregative features 
(Yajima, 2006) G L One-class SVM + Laplacian kernel
(Reddy et al., 2002) G L Graph-based clustering  

* L – local features; G – graph-related features. 
# H – heuristic methods; L – learning-based methods. 
 
5.3 Research Design 

 In this research, I take a learning-based approach to explore graph-related features 

for making recommendations. I adopt a kernel-based framework due to its ability to 

incorporate structural information without enumerating features in the learning process.  
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 To predict whether a user-item pair may interact, I examine the user-item 

interactions that are related to the focal user-item pair. From a graph perspective, I define 

an AIG for each user-item pair. The AIG includes the users and items that are n steps 

from the focal pair and their interactions. The topologically similar AIGs may include 

users with similar usage behaviors and items with similar access characteristics. Thus, if 

two user-item pairs have similar AIGs, they may have a similar probability of having 

interactions in the future. In a kernel-based framework, this design is implemented by 

designing a graph kernel to model the AIGs to classify user-item pairs as possible or 

impossible links.  

5.3.1 A Graph Kernel-based Recommendation Framework  
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Figure 5.1 A Graph Kernel-based Recommendation Framework  

 Figure 5.1 shows the four steps in the graph kernel-based framework. 1) In the 

graph and feature extraction step, I construct the user-item graph from user usage 

histories. I also extract features describing nodes (users and items) and links (transaction 
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information) from the data. 2) In the graph kernel construction step, I define a graph 

similarity measure that can capture the structure of AIGs. This kernel design is the most 

essential module in kernel methods, which I will elaborate on later. 3) In the model 

learning step, a binary classifier is built to separate potential links from impossible links. 

In the recommendation problem, all known data instances are the interactions that have 

happened. There are no negative data instances. Thus, I adopt a one-class SVM algorithm 

(Scholkopf et al., 1999), which looks for a hyper-plane to separate positive data instances 

from the origin. In this algorithm, the unclassified data instances on the origin side of the 

hyper-plane are predicted to be negative (i.e., impossible to exist). 4) In the prediction 

step, it is necessary to provide prediction confidence values to rank the items for 

recommendation. I use the Euclid distance between a data instance (i.e., user-item pair) 

and the classification hyper-plane as the confidence estimation. Such a measure is 

proportional to several classification confidence probability estimation measures for 

SVM (Wu et al., 2004). Since recommendation algorithms only need ranks of items, this 

kind of method is sufficient for this research.  

5.3.2 Graph Kernel Design 

 The graph kernel defines a similarity measure for the AIGs. I decompose graphs 

to random walk paths to measure graph similarities. The decomposition method has been 

shown to be effective in previous research (Borgwardt et al., 2005; Li et al., 2007b). 

Moreover, I consider only the random walk paths that pass through the hypothetical link 

of the focal user-item pair in each AIG. In such a design the nodes (users and items) 

closer to the focal pair are more likely to be used for prediction. The graph kernel is 
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calculated as the summation of pairwise comparisons of matching random walk paths 

weighted by their probability of existence.  

 Figure 5.2a shows an example of a user-item pair (X-Y) and its AIG. In Figure 

5.2b, I present a transformed representation of the AIG to show how random walks 

passing through the hypothetical link of X-Y can be generated. It should be noted that 

some nodes are presented more than once for explanation. For example, the node “a” that  

is one step away from X on the left side is identical to the node “a” that is two steps away 

from Y on the right side. Examples of the random walk paths are shown in Figure 5.2c. 

These random walk paths can also be considered to be starting from X and Y and going 

to the other parts of the graph simultaneously.  
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Figure 5.2 The Associative Interaction Graph of A User-item Pair 

 After the random walk paths are generated, I calculate their probability of 

existence. At a certain time, a random walk may jump from one node to its neighbors or 

stop following a probability distribution. Thus, the random walk path 

1 2  lh n n n= → → →" will have a probability of existence of 2 1( | ) ( | )tP h G p n n=  
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3 2 1( | ) ( | ) ( )t t l l s lp n n p n n p n−" , where pt is the transit probability and ps is the stop 

probability.  

 Next, I define similarities between random walk paths ( , )h i jK h h  as the product of 

the similarities of matching nodes and links on the paths. Since I focus on one user-item 

pair for each AIG, I always match the focal user-item pairs when comparing the random 

walk paths. If two random walk paths do not have a one-to-one (node and link) mapping 

after I match their focal user-item pairs, I simply deem their similarity as 0, otherwise I 

define it as: 0 0 0 1 0 1 1 1( , ) ( , ) ( , ) ( , )j j j ji i i ih h h hh h h h
h i j node link nodeK h h K n n K n n n n K n n= × → → × × ×"   

1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )j j j j j ji i i i i ih h h h h hh h h h h h
node node node l l link l l l l node l lK X X K Y Y K n n K n n n n K n n− − − −× × × × → → ×" , 

where ih
tn   is the tth node on the random walk path hi, Knode() is the kernel representation 

of node features, and Klink() is the kernel representation of link features. 

 Finally, I define the graph kernel as the sum of pairwise similarities of random 

walk paths weighted by their existence probability: 

( )( , ) ( , ) ( | ) ( | )x y h i j i jK G G K h h P h G P h G= × ×∑∑ . In this research, I normalize the 

graph kernel for better prediction performance.  

 In my design, the graph kernel is essentially a convolution kernel. It meets the 

semi-positive definite property required by kernel methods. The graph kernel covers both 

the structure and the node/link features of the AIG. It is able to accumulate node/link 

features by following the graph structure to focal user-item pairs.  
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5.4 Experimental Study 

5.4.1 Dataset 

 In this research, I used three datasets to evaluate the performance of the proposed 

approach. 1) An online book retail dataset obtained from a major Chinese online 

bookstore in Taiwan. The dataset includes 3 years of transactions of 2,000 randomly 

selected users, involving 9,695 books and 18,771 transactions. 2) An online clothing 

retail dataset provided by a leading U.S. online clothing merchant. The dataset includes 

16 million online transactions from a 3-month period, involving 4 million households and 

128,000 items. 3) A book rating dataset collected from the Book-Crossing community 

(Ziegler et al., 2005). The dataset reports 278,858 users’ 1,149,780 ratings on 271,379 

books. In this research I treated a rating as a transaction and ignored the rating grade. 

Table 5.2 Dataset Statistics  

Dataset Number of 
users 

Number of 
items 

Number of 
transactions 

Avg. purchases 
per user 

Avg. sales
per item 

Book  
Retail 

851 
(~2,000) 

8,566 
(~9,700)

13,902 
(~18,000)

16.34 
(~9) 

1.62
(~1.86)

Clothing  
Retail 

1,000 
(~4 million) 

7,328
(~128,000)

9,332 
(~16 million)

9.33 
(~4) 

1.27
(~125)

Book  
Rating 

1,000 
(~280,000) 

15,578
(~270,000) 

19,329
(~1.15 million)

19.33 
(~4.12) 

1.24
(~4.24)

* The numbers in parentheses are the statistics on the original dataset.  

 For the experiments, I included only the users with 5 to 100 transactions for 

meaningful testing. This range constraint resulted in 851 users for the book retail dataset. 

For comparison purposes, I sampled 1,000 users with 5 to 100 items from the clothing 

retail dataset and book rating dataset. Table 5.2 reports the descriptive statics of the three 

reduced datasets. The reduced data set were split into 80% training data and 20% testing 
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data according to transaction time. The items that were only in the testing data, which 

cannot be predicted by the algorithm, were removed. 

5.4.2 Experimental Procedures 

 To evaluate the effectiveness of the proposed method, I conducted two sets of 

experiments. Experiment I compares the proposed algorithm with the state-of the art 

heuristic algorithms that use graph structure. For a fair comparison, only transaction 

information is used in this set of experiments. Experiment II compares the proposed 

algorithm with learning-based algorithms that use local features or limited graph-related 

features. For this experiment, available user/item information is used. 

 In experiment I, I compared the performance of the proposed approach with five 

major popular recommendation algorithms: 1) a user-based algorithm that cross-

recommends items to users who have interacted with similar items; 2) an item-based 

algorithm that cross-recommends items whose users are similar; 3) an item popularity 

algorithm that recommends items according to its sales/access volumes; 4) a spreading 

activation algorithm (Huang et al., 2004b), which is a PageRank-like node ranking 

algorithm; and, 5) a link analysis algorithm (Huang et al., 2007b), which is a HITS-like 

node ranking algorithm.  In this set of experiments, I calculated the graph kernel based on 

the training data instances and trained a one-class SVM classifier. The classifier was 

applied onto all user-item pairs without links. For each user, the items with the highest 

rank according to the prediction confidence were considered as recommendations. For the 

benchmark algorithms, similar procedures were conducted.  
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 In experiment II, I compared the performance of the proposed approach with 

two learning-based algorithms that use no or limited graph information: 1) the set kernel, 

which is a convolution kernel that considers each of the nodes on the AIGs equally and 

sums pairwise node comparisons of the nodes on the AIGs for focal user-item pairs’ 

similarity: ( , ) ( , )
x y

set x y node
i G j G

K G G K i j
∈ ∈

= ∑ ∑ ; 2) The local feature-based method, that 

considers only the local features of the focal user-item pair. The similarity between two 

user-item pairs is calculated as the product of their user similarity and the item similarity.  

 In experiment II, all the models can utilize local features on users and items. For 

the three datasets in the experiments, different local features can be extracted. 1) For the 

book retail dataset, user information includes “year of birth” and “education level;” item 

information includes “book title,” “keywords,” and “introduction.” 2) For the clothing 

retail dataset, user information is not available; item information includes “product 

category” and “description.” 3) For the book rating dataset, user information includes 

“location” and “age;” item information includes “book author.” I applied different kernels 

to represent these local features to a kernel form. For categorical data, such as “location,” 

“book author,” “category,” “description,” etc., I applied a linear kernel to represent them 

in a kernel form. For numerical data, such as “age” and “education level,” I applied a 

Radial Basis Function (RBF) kernel to represent them in a kernel form. For textual data, 

such as “book title,” “keywords,” etc., I applied a linear kernel with a bag-of-words 

model to represent them in a kernel form. 

 In experiment II, the proposed graph kernel, the set kernel, and the kernel on local 

features were implemented based on the split training and testing data. A one-class SVM 
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classifier was trained for customer information and one classifier was trained for item 

information for each algorithm.  The classifiers were applied onto the user-item pairs 

without links. For each user, the highly ranked items according to the prediction 

confidence were considered to be recommendations.  

5.4.3 Evaluation Metrics 

 For evaluation, I generated a ranked recommendation list of N items for each user 

and compared the recommendations with actual transactions in the testing data. I adopted 

three types of evaluation metrics:  

1) The precision, recall, and F-measure of the top-10 recommendations (Pazzani, 1999). 

Precision= 
products drecommendeofnumberTotal

purchasesfuturethewithmatchthatproductsdrecommendeofNumber  

Recall=
purchasesfuturewithproductsofnumberTotal

purchasesfuturethewithmatchthatproductsdrecommendeofNumber  

F-measure= 2*Precision*Recall/(Precision+Recall) 

2) The rank score that emphasizes the first couple of recommendations (Pazzani, 1999). 

Rank score max100
i

i

i
i

R
R

R
=

∑
∑

, where ( 1) /( 1)

( , )
2i j h

j

p i jR − −= ∑  and  

 1,      if product  is in customer 's future purchase list
( , )

0,      otherwise.                                                              
j i

p i j ⎧
= ⎨
⎩

.  

3) The ROC curve that represents the global performance of recommendations. 
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5.5 Results and Discussion 

5.5.1 Graph Kernel vs. Heuristics  

Table 5.3 Top 10 Recommendation Performance for Graph-based Algorithms 

Dataset Algorithms Precision Recall F-measure Rank Score
User-based 0.0242 0.1165 0.0377 8.2882
Item-based 0.0076 0.0396 0.0121 2.4338
Item popularity 0.0258 0.1317 0.0405 12.4843
Link analysis 0.0280 0.1408 0.0439 11.8745
Spreading activation 0.0224 0.1110 0.0349 9.3618B

oo
k 

R
et

ai
l 

Graph kernel 0.0286 0.1461 0.0449 11.2838
 

User-based 0.0114 0.0778 0.0193 4.5900
Item-based 0.0078 0.0597 0.0136 3.0354
Item popularity 0.0062 0.0326 0.0100 1.4173
Link analysis 0.0124 0.0818 0.0209 4.7752
Spreading activation 0.0076 0.0513 0.0129 3.1005

C
lo

th
in

g 
R

et
ai

l 

Graph kernel 0.0131 0.0855 0.0219 4.1307

User-based 0.0082 0.0269 0.0119 1.8260
Item-based 0.0052 0.0203 0.0079 1.3080
Item popularity 0.0058 0.0224 0.0089 1.9283
Link analysis 0.0065 0.0225 0.0096 1.6260
Spreading activation 0.0071 0.0264 0.0106 1.7307B

oo
k 

R
at

in
g 

Graph kernel 0.0077 0.0295 0.0118 1.6251
* Boldfaced measures are not significantly different from the largest measure at the 10% 
significance level 
 
 Table 5.3 reports the performance of top 10 recommendations by the models that 

use the graph structure. In general, according to precision, recall, and F-measure for the 

top-10 recommendations, the proposed graph kernel is always in the group of best 

algorithms. The other heuristic algorithms’ ranks vary on different datasets, which is 

because their models were not learned from the data. According to the rank score 

measure, which values the first couple of recommendations more than later 

recommendations, the proposed algorithm is slightly lower than the link analysis 
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algorithm or the item popularity algorithm in different datasets, although the 

performance difference is minor.  
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 Figure 5.3 ROC Curves of Top 1,000 Recommendations of Graph-based Algorithms 
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 Figure 5.3 reports the ROC curves for the top 1,000 recommendations made by 

the six different models. It shows that when a small number of predictions were needed, 

the graph kernel was among one of the best algorithms. When a large number of 

predictions were needed, the graph kernel significantly outperformed all other methods. 

The graph kernel targets at link prediction on the entire graph. It may provide more “high 

confidence” predictions to some users than others. In a top-N recommendation task, 

many of these predictions may not be considered and used. Enlarging the number of 

recommendations takes other “high confidence” predictions into consideration. In real 

life applications, it represents those cases to recommend items to frequent users. The 

proposed algorithm will provide more benefits in such circumstances.  

5.5.2 Graph Kernel vs. Other Learning-based Algorithms 

 Table 5.4 reports the performance of top 10 recommendations by different 

learning-based algorithms. In most of the experiments, the graph kernel outperformed 

both the set kernel and method on local features in precision, recall, F-measure, and rank 

score. In the book rating dataset, if item information was used, the local feature-based 

method had the best precision, recall, and F-measure. 

 Figure 5.4 reports the ROC curves for the top 1,000 recommendations made by 

the learning-based algorithms. In most of the experiments, the graph kernel significantly 

outperformed the set kernel and local features. When using item information on the book 

rating dataset, the local feature method archived the best performance at first, which was 

outperformed by the graph kernel later. In this dataset, the item information was author 

name. In the book rating application, the author information had a strong correlation with 
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users’ ratings. A reader may choose a book purely because of the author. On the other 

hand, books rated by a reader may have minor topic/style similarities. Compared with the 

author information, co-rated books (the AIGs) may have significantly less information 

that can interoperate with readers’ choice.  

Table 5.4 Top 10 Recommendation Performance for Learning-based Algorithms 

Dataset Node 
information 

Algorithm Precision Recall F-measure Rank 
score 

Graph kernel 0.0267 0.1354 0.0418 12.0860
Set kernel 0.0053 0.0292 0.0086 0.8428User  

information Local feature 0.0102 0.0514 0.0160 3.0465
Graph kernel 0.0262 0.1338 0.0412 12.4667
Set kernel 0.0074 0.0362 0.0114 1.0491B

oo
k 

re
ta

il 

Item 
information Local feature 0.0007 0.0026 0.0011 0.1277 

Graph kernel 0.0080 0.0463 0.0132 2.9329

Set kernel 0.0046 0.0351 0.0080 1.0879

C
lo

th
in

g 
re

ta
il Item  

information 
Local feature 0.0006 0.0037 0.0001 0.3487 

Graph kernel 0.0054 0.0235 0.0085 1.6750
Set kernel 0.0017 0.0073 0.0026 0.3351User 

information Local feature 0.0017 0.0062 0.0026 0.6212
Graph kernel 0.0071 0.0289 0.0108 2.0688
Set kernel 0.0010 0.0044 0.0016 0.7701B

oo
k 

ra
tin

g 

Item 
information Local feature 0.0102 0.0507 0.0158 1.7072

*Boldfaced measures are not significantly different from the largest measure at the 10% 
significance level. 
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Figure 5.4 ROC Curves of Top 1,000 Recommendations of Learning-based Algorithms 

 Compared to the set kernel and the local feature method, the graph kernel makes 

better use of the user-item graph, which may cause its better performances. In the graph 

kernel the features of individual nodes can be considered to be propagated to the focal 

user-item pairs following the links. The set kernel considers only the nodes in the AIG 
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without utilizing the network structure. The local feature-based method even does not 

use the neighbor’s node information. These design deficiencies may have limited their 

prediction abilities.  

5.6 Summary 

 In this chapter I presented a graph kernel-based approach for making 

recommendations. Treating the recommendation task as a link prediction problem in 

user-item interaction graph, I defined an associative interaction graph for each user-item 

pair and use the structure of the graph to infer whether or not the user-item pair may have 

a link. I proposed a graph kernel that can effectively capture graph-related features from 

the AIGs. In the experiments on three real-world datasets, the proposed method achieved 

nearly the best precision, recall, and F-measure for the top-10 recommendations as 

compared to graph-based heuristics and learning-based algorithms that use less graph 

information. Moreover, if a larger number of recommendations are needed, the proposed 

method achieves significantly better performance than all the benchmark algorithms.  

 Using the application in recommender systems, this chapter shows the 

effectiveness of using graph structure in the link prediction task. With the explorations in 

the previous three chapters, it is shown that graph structure is correlated with node 

information (in node classification) and link information (in link prediction). In the next 

chapter, I will study the community detection task, in which I examine whether the node 

information or link information could help detect multiple entities with close interactions 

(i.e., dense local graph structures). I will examine the problem in the context of online 

interactions in the next chapter. 
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CHAPTER 6. COMMUNITY DETECTION: EXPLORING LINK SENTIMENTS TO 
DETECT ONLINE SOCIAL GROUPS  

6.1 Introduction 

 In previous chapters, I studied the node classification task and the link prediction 

task. In this chapter, I move on to study the relationships among multiple nodes and deal 

with the community detection task. I explore the use of link sentiment information to 

identify groups of individuals who have similar interests and activities according to their 

online communications.  

 With the development of the Internet and computer mediated communication 

(CMC) techniques, humans’  social interaction patterns have been significantly changed. 

In addition to traditional social activities, which were limited by the spatial factor, people 

now extend their friendships from neighborhoods to the Internet (Wellman, 2005). The 

advance of Web 2.0 provides several new communication channels, such as Web blogs, 

online review Websites, Web forums, social networking Websites, etc., for individuals to 

express their opinions and interact with each other. With these interactive social media, 

individuals can form online virtual social groups. Table 6.1 provides some examples of 

the communication channels and the social groups they may lead to. 

 Online interactions usually involve a large number of participants. Grouping 

persons with similar interests and activities into social groups or communities could make 

it easier to assess online opinions and to trace the opinion leaders and followers. The 

community detection problem in social networks has attracted several researchers’ 

interest. Most previous studies deemed social relationships as binary relations, in which 
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the links only indicate the existence of the relationship. Such a simplified model cannot 

capture the rich information in social networks, especially the sentiment (favorable vs. 

unfavorable, agreement vs. disagreement) of the interactions. Such sentiments may be 

more important in online interactions, in which people show stronger sentiments than in 

face-to-face interactions (Sia et al., 2002). 

Table 6.1 Web 2.0 Techniques and Possible Social Groups 

Web 2.0 media Examples Contents Possible social groups
Web blog Myspace.com Diverse opinions 

from the blogger 
Opinion leaders  
and followers 

Online review 
Website 

Eopinions.com,  
Youtube.com, 
Digg.com 

Reviews targeted 
on selected items

People with similar 
interests on targeted  
items 

Web forum Walmartblows.com Discussions  
related to  
selected themes 

People hold similar  
opinions on selected  
topics 

Social networking  
Website 

Secondlife.com, 
Facebook.com 

Casual talks Friendship 

 
 In this research, I propose to label links in social networks with the sentiment of 

social relations (positive/negative) and construct sentiment social networks for 

community detection. I propose a framework to extract sentiment social networks from 

online communications and a GN-H co-training algorithm that can use both positive and 

negative sentiments in SSN for community detection. I evaluate the performance of using 

sentiment information in community detection with simulated data and conduct a case 

study on an online review dataset (www.eopinions.com) to show the utility of the 

proposed framework. 

 This chapter is organized as follows. Section 6.2 reviews previous community 

detection studies. Section 6.3 introduces the proposed community detection framework 
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on sentiment social networks. Section 6.4 describes the experiments on simulated data 

and an online review dataset. Section 6.5 discusses the results. Section 6.6 summarizes 

the findings. 

6.2 Literature Review 

 Social relations and social networks in organizations have been considered to 

have an affect on the adoption of IT artifacts (Bruque et al., 2008; Montazemi et al., 2008) 

and knowledge diffusion (Oh et al., 2005; Robert et al., 2008). At the same time, social 

interactions are being changed by information technology and IT artifacts. For example, 

groupware has changed people’s collaboration patterns in decision making (Huang and 

Wei, 2000; Gemino et al., 2005). Internet and computer mediated communication have 

changed our daily communication patterns (Watson-Manheim and Belanger, 2007).  

 The recent development of Web 2.0 media has led to a great amount of online 

interactions (Jones et al., 2004) and computerized communities from traditional 

neighborhoods (Wellman, 2005). Different types of participants form online communities 

with different characteristics (Gu and Konana, 2007) and contribute knowledge to the 

online community (Bieber et al., 2002; Ma and Agarwal, 2007). The community factors 

in online interactions also affect real-world business problems (Chua et al., 2007a). 

Accessing the community structure of online interactions can help us study online 

opinions and their impact on business applications. 

6.2.1 Community Detection  

 Previous literature argues that community studies should be approached more 

from a network analytic perspective (Piselli, 2007). The network of social interactions 
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embedded in online communications can be used to detect groups of participants with 

similar interests and activities. At the algorithm level, such a community detection 

problem in social networks is similar to the graph partition problem in computer science 

(Karypis and Kumar, 1998) and the gene clustering problem in medical informatics 

(D'haeseleer et al., 2000) . In this research, I propose a taxonomy to review previous 

community detection literature. While focusing on the applications in social networks, I 

also include other application areas due to their algorithm innovations.  

 As shown in Figure 6.1, previous community detection studies can be 

characterized by network types, network characteristics, and algorithm types. 

Polarity of links

Weight of links
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Relation-basedAttribute-based

Spectral 
analysis

Combinational 
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Graph 
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Figure 6.1 A Taxonomy for Community Detection in Network Analysis 

6.2.1.1 Network Types 

 Previous community detection studies have been conducted on various types of 

networks, including both social networks and non-social networks. The examined social 
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networks included co-authorship networks (Girvan and Newman, 2002), friendship 

networks (Airoldi et al., 2008), email networks (Guimera et al., 2006), and purchase 

relationship (between buyers and sellers) networks (Reichardt and Bornholdt, 2007). 

Community detection studies have also been conducted on Webpage networks (Flake et 

al., 2002), paper citation networks (Hopcroft et al., 2004), biological networks (e.g., gene 

interaction network) (Wilkinson and Huberman, 2004), zoological networks (e.g., food 

web) (Newman, 2004a), linguistics networks (e.g., word semantic network) (Capocci et 

al., 2005), financial networks (e.g., stock price correlation network) (Barber, 2007), and 

product networks (e.g., product co-sales network) (Clauset et al., 2004).  

 Most studies on social networks are constructed on the basis of certain 

communication channels which can be classified into two types, face-to-face interactions 

and online interactions. Social networks based on face-to-face interactions include 

traditional co-authorship networks and real-world friendship networks. Examples of 

social networks based on online interactions include email networks, online friendship 

networks (e.g., friendships in Web forums), and purchase relationship networks in e-

commerce Websites.  

6.2.1.2 Network Characteristics  

 The networks analyzed in previous community detection studies can be 

characterized by their node types, weight of links, and polarity of links.  

 According to the types of nodes, networks can be classified as unipartite networks, 

which contain only one type of nodes, bipartite networks, which contain two types of 

nodes, and multi-partite networks, which contain multiple types of nodes. A social 
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network is usually studied as a unipartite network in which the nodes are persons. 

Multi-partite networks have been used to model the word semantic network, which is a 

type of linguistics networks (Newman and Leicht, 2007). The nodes in the network could 

be nouns, adjectives, or other types of words (Newman and Leicht, 2007).  

 Networks can be classified as unweighted networks and weighted networks 

according to the weight of the links. In social networks, the weight of links can be used to 

represent the strength of social relations, such as the strength of friendships and 

frequency of email contacts. However, most previous studies on social networks ignore 

such weight information and use the links only to represent the existences of relationships.  

 Polarity of links can be considered as a special type of link weight, i.e., whether 

the link is positive or negative. In social networks, link polarity can be used to represent 

sentiment of social interactions, for example, whether two persons like each other or hate 

each other or whether two persons agree with each other or not. According to this 

measure, networks can be classified as polar networks and non-polar networks, where a 

polar network may contain both positive and negative links and non-polar networks only 

contain positive (or negative) links. 

6.2.1.3 Algorithm Types 

 Previous community detection algorithms can be classified into attribute-based 

algorithms and relation-based algorithms. An attribute-based algorithm takes advantage 

of only node attributes or views links as some special node attributes. Under such a 

design most traditional clustering algorithms can be directly applied on the community 

detection problem. For example, after defining a similarity measure based on node 
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attributes, such as Pearson correlation measure, both hierarchical clustering (Girvan and 

Newman, 2002) and K-means (Hopcroft et al., 2004) have been applied to group similar 

nodes together. Since the links are converted to node features in the attribute-based 

algorithms, they can be directly applied to weighted networks and polar networks. If a 

proper node similarity function is designed, they can also be applied to bipartite and 

multi-partite networks. Although attribute-based algorithms make limited use of 

relational information in the data, they are easy to extend to complicated networks.  

 Relation-based algorithms make use of relational information in the network for 

community detection. They can be further categorized into graph analysis methods, 

spectral analysis methods, combinational optimization methods, and model matching 

methods.  

1) Graph analysis methods 

 Graph analysis methods take a network view of the data in community detection. 

For example, fully connected nodes (cliques) can be used to build K-clique chains, i.e., a 

chain of connected K-cliques, as indicators of communities (Palla et al., 2005; Farkas et 

al., 2007). 

 One major graph analysis method is divisive algorithms that remove links from 

networks to generate isolated components as communities. For example, the max-flow-

min-cut method in graph theory has been applied to split Webpage networks into clusters 

(Flake et al., 2002). As a milestone algorithm, the GN algorithm removes the high 

betweenness links to generate communities (Girvan and Newman, 2002). The same 

researchers proposed a modularity measure (Newman and Girvan, 2004) to determine the 
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best community generated from the algorithm. The GN algorithm has been extended to 

weighted networks (Newman, 2004a). In addition, Monte Carlo estimation has been 

applied to approximate betweenness measures in the algorithm to improve its 

computational efficiency (Wilkinson and Huberman, 2004). Using design methodology 

similar to Girvan and Newman’s, other studies proposed to gradually remove the links 

that cause the biggest change to the average shortest path length (Fortunato et al., 2004) 

and the links with the highest edge clustering coefficient (Radicchi et al., 2004) to detect 

communities. 

 Another type of graph analysis method is random walk-based algorithms that 

model networks with random walks to pursue the community structure. Among these 

algorithms, the Markov Cluster Algorithm (MCL) is one successful method that has been 

widely used in bioinformatics (Enright et al., 2002). The algorithm first “expands” each 

node’s links to its indirect neighbors, then “inflates” the weights of the links to remove 

less important links. Zhou proposed node distance measures based on random walks to 

cluster “closer” nodes together (Zhou, 2003a, 2003b). Alves designed clustering 

algorithms based on random walk transit probabilities between nodes and put node pairs 

with higher transit probabilities into the same communities (Alves, 2007). The model is 

able to model both unweighted and weighted networks. Raghavan et al. proposed a label 

propagation method in which each node gradually adopts the majority its neighbors’ 

labels (Raghavan et al., 2007). The algorithm is efficient and can address the community 

detection problem on very large-scale networks.  

2) Spectral analysis methods 
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 Spectral analysis methods take a matrix view of the network. Based on the 

spectral graph theory, the eigenvectors of representative matrices of graphs are related to 

the graphs’ community structures. In previous computer science research, spectral 

analysis on the Laplacian matrix has been widely adopted in addressing the graph 

partition problem (Donetti and Munoz, 2004). Capocci et al. applied spectral analysis 

methods on a normal matrix derived from the adjacency matrix for community detection 

on word semantic networks (Capocci et al., 2005). Newman applied the spectral analysis 

method on the modularity matrix, which is derived from their proposed modularity 

measure, for community detection (Newman, 2006b, 2006a). Barber generalized the 

modularity measure to bipartite networks in the framework of spectral analysis methods 

(Barber, 2007). 

3) Combinational optimization methods 

 Combinational optimization methods take a search approach for community 

detection. Assuming each node can be assigned into one of the N clusters, they look for a 

combination of the nodes (in different clusters) that can provide a better community 

structure. After defining the quality of community assignments as an objective function, 

all traditional combinational optimization algorithms can be directly applied to find a 

community assignment that can maximize the objective function.  

 The modularity measure (Newman and Girvan, 2004) is a well-adopted quality 

measure for combinational optimization methods. Greedy search method (Clauset et al., 

2004; Newman, 2004b), simulated annealing (Guimera and Amaral, 2005; Reichardt and 

Bornholdt, 2007) and extremal optimization (Duch and Arenas, 2005) have been applied 
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on this measure to find a better community. Recent research found that the modularity 

measure has a “resolution limit” that can only detect coarse-level partitions (Fortunato 

and Barthelemy, 2007). Thus, Arenas et al. modified the modularity measure to address 

this problem (Arenas et al., 2008a; Arenas et al., 2008b) by applying extremal 

optimization and tabu search. Rosvall and Bergstrom proposed another quality measure 

based on the mutual information of the network’s original topology and community level 

topology (Rosvall and Bergstrom, 2007). They applied the simulated annealing algorithm 

to maximize this measure for community detection. 

4) Model matching methods 

 Model matching methods take a probabilistic view of the networks. They aim to 

design probabilistic models on node distributions (in different clusters) and link 

distributions (inter and intra-clusters) and find appropriate parameters of the model that 

can generate networks that are similar to the original network. Hastings assumed that 

there is a uniform probability for inter-cluster links and a uniform probability for intra-

cluster links, and used the belief propagation algorithm to find the node assignments that 

have the highest probability of generating a given network (Hastings, 2006). Newman 

and Leicht assumed that nodes in a cluster have similar distributions to link to other 

nodes and find out the analytical solutions that maximize the likelihood of generating the 

network given the model (Newman and Leicht, 2007). Airoldi et al. proposed a 

membership stochastic model that captured both cluster-level inter-connection patterns 

and node-level characteristics of the connections for the generation of networks (Airoldi 
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et al., 2008). The model parameters were estimated based on a mean-field variational 

inference method and an E-M algorithm. 

6.2.2 Research Gaps 

Table 6.2 Previous Studies on Community Detection 

Network 
Characteristics 

Studies Network Types 

N
od

e*
 

W
ei

gh
t#

 

Po
la

rit
y+

 

Algorithm 
Types 

(Enright et al., 
2002) 

Biological network U U N Graph analysis 

(Flake et al., 
2002) 

Webpage network U U N Graph analysis 

(Girvan and 
Newman, 2002) 

(F2F) Co-authorship network;  
Zoological network 

U U N Graph analysis 

(Zhou, 2003a)  (F2F) Friendship network;  
(F2F) Co-authorship network; etc. 

U U N Graph analysis 

(Zhou, 2003b)  Biological network U U N Graph analysis 
(Clauset et al., 
2004) 

Product network U U N Combinational  
optimization 

(Donetti and 
Munoz, 2004) 

(F2F) Friendship network;  
(F2F) Co-authorship network 

U U N Spectral analysis

(Fortunato et 
al., 2004) 

(F2F) Friendship network; 
Zoological network 

U U N Graph analysis 

(Hopcroft et al., 
2004) 

Paper Citation Network U U N K-Means 

(Newman, 
2004a) 

Zoological network;  
Linguistics network 

U W N Graph analysis 

(Newman, 
2004b) 

(F2F) Co-authorship network U U N Combinational  
optimization 

(Radicchi et al., 
2004) 

(F2F) Co-authorship network U U N Graph analysis 

(Wilkinson and 
Huberman, 
2004) 

Biological network U U N Graph analysis 

(Capocci et al., 
2005) 

Linguistics network U W N Spectral analysis

(Duch and (F2F) Friendship network;  U U N Combinational  
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Arenas, 2005) (OL) Email network;  
(F2F) Co-authorship network; etc. 

optimization 

(Guimera and 
Amaral, 2005) 

Biological network U U N Combinational  
optimization 

(Palla et al., 
2005) 

(F2F) Co-authorship network;  
Biological network 

U U N Graph analysis 

(Guimera et al., 
2006) 

(OL) Email network U U N Graph analysis 

(Hastings, 
2006) 

N/A U U N Model matching 

(Newman, 
2006a) 

(F2F) Friendship network;  
(F2F) Co-authorship network; etc. 

U U N Spectral analysis

(Newman, 
2006b) 

(F2F) Friendship network;  
(F2F) Co-authorship network; etc. 

U U N Spectral analysis

(Alves, 2007) (F2F) Friendship network U W N Graph analysis 
(Barber, 2007) (F2F) Friendship network;  

Financial network 
B U N Spectral analysis

(Farkas et al., 
2007) 

(F2F) Co-authorship network;  
Stock network 

U W N Graph analysis 

(Newman and 
Leicht, 2007) 

(F2F) Friendship network;  
Word network 

U U N Model matching 

(Palla et al., 
2007) 

(F2F) Co-authorship network;  
(OL) Email network 

U U N Graph analysis 

(Raghavan et 
al., 2007) 

Biological network;  
(F2F) Friendship network 

U U N Graph analysis 

(Reichardt and 
Bornholdt, 
2007) 

(OL) Purchase network U U N Combinational  
optimization 

(Rosvall and 
Bergstrom, 
2007) 

(F2F) Friendship network; etc. U U N Model matching 

(Arenas et al., 
2008a) 

(F2F) Friendship network M U N Combinational  
optimization 

(Arenas et al., 
2008b) 

(F2F) Friendship network U U N Combinational  
optimization 

(Airoldi et al., 
2008) 

(F2F) Friendship network;  
Biological network 

U U N Model matching 

* Node: U - unipartite; B - bipartite; M - Multi-partite;  
# Weight: U - unweighted; W - weighted;  
+ Polarity: N – non-polar; P - polar. 
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 Table 6.2 summarizes previous studies on community detection. One may notice 

that social networks were the major application domain of previous research. In addition, 

most of these studies on social networks were based on face-to-face interactions 

(annotated by F2F in Table 6.2) collected from survey or co-authorship data. Only a few 

studies were based on online interactions (annotated by OL in Table 6.2). As one type of 

Web 2.0 online interaction, the seller-buyer networks extracted from e-commerce 

transactions were studied in (Reichardt and Bornholdt, 2007).  

 In previous research, most studies were conducted on unipartite, unweighted, and 

non-polar networks. From a social network perspective, that means the links were 

indicators of the existence of certain relationships between individuals. Few studies 

considered sentiments (polarity) of the links, which is common in social interactions.  

 The literature review shows that most research took a relation-based approach. 

One reason is that the attribute-based algorithms have been well-studied in traditional 

clustering research. The other reason could be the better performance that can be 

achieved by using relational information (Girvan and Newman, 2002). Among the four 

types of relation-based algorithms, graph analysis algorithms were more frequently used. 

This type of algorithms has also been applied to weighted networks in previous studies. 

 Noticing the limited research on community detection in online interactions and 

on using link polarity (sentiment) in community detection, I focus on the following two 

research questions in this research: 1) How can we effectively detect communities from 

online interactions? 2) Will using link polarities (sentiments) improve community 

detection effectiveness? 
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6.3 Research Design 

6.3.1 Research Framework 

 In this research, I propose to extract social networks from online interactions and 

apply community detection algorithms to find individuals with more consistent interest 

and activities. In addition, I propose to take the sentiments embedded in online 

interactions into consideration. Figure 6.2 shows my framework for extracting sentiment 

social networks from online interactions and detecting communities from the networks. 

The framework contains four steps: data collection, sentiment social network 

construction, community detection, and evaluation.  

EvaluationCommunity detectionData 
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Database
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negative 

sentiment

Detection 
correctness on 
simulated data

Sentiment 
social network 
construction

Analysis of 
detected 

communities

Sentiment 
detection

Interaction 
identification

Relation-
based

Attribute-
based

EvaluationCommunity detectionData 
collection

Database

Spider/
Parser

Web
2.0 No 

sentiment

Case study on 
real data

Positive 
sentiment

Positive & 
negative 

sentiment

Detection 
correctness on 
simulated data

Sentiment 
social network 
construction

Analysis of 
detected 

communities

Sentiment 
detection

Interaction 
identification

Relation-
based

Attribute-
based

 

Figure 6.2 A Framework for Community Detection from Online Interactions 

 Online interactions are usually documented in comments and postings on Web 2.0 

Websites, such as Web forums, Web blogs, etc. In the data collection stage, such data 

need to be collected using Web spiders or retrieved through Web APIs. The extracted 
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data is usually in free-text format, which needs to be parsed into relational databases for 

further analysis.  

 At the sentiment social network construction stage, I first extract social 

interactions from the communications and then annotate them with interaction sentiments. 

In Web forums, detecting social interactions (i.e., the reply relationship between postings) 

is non-trivial, since many postings do not specify this information. Thus, text mining 

approaches can be applied to extract such relationships (Fu et al., 2008). In online 

product/news review applications, the reviewed items can be considered a proxy of 

online social interactions, where everyone’s reviews respond to others’ reviews on the 

same item. In sentiment social networks, “sentiment” may have subtle differences in 

meaning in different applications. In friendship networks, it may mean favorable and 

unfavorable sentiments. In online interactions, it means the agreement of individual 

opinions, which may be related to favorable and unfavorable sentiments. To annotate two 

opinions’ or arguments’ agreement, previous research extracted word features and 

sentiment from the messages and applied machine learning algorithms to assess their 

agreement (Hahn et al., 2006; Stavrianou and Chauchat, 2008). In online product/news 

reviews, the sentiment (agreement) of interactions can be measured by the differences 

between people’s ratings on the same products. In this research, I consider sentiment 

social networks at the person level and aggregated all agreement/disagreement of online 

opinions as indirectional links between node pairs.  

 At the community detection stage, I apply both attribute-based and relation-based 

algorithms on the sentiment social networks. To answer the research questions, I derive 
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three types of networks from each original sentiment social network: one network 

without sentiment information, one network with only positive sentiment information, 

and one network with both positive and negative sentiment information. The two sets of 

algorithms are applied onto the three networks to examine the effect of using sentiment 

information in community detection.  

 At the evaluation stage, the community detection algorithms’ performances can 

be measured if the networks’ community structure is known, such as on simulated data. 

In addition to such strict evaluations, I conduct a case study on a real-world dataset to 

show the utility of community detection in helping us understand the opinions and 

opinion leaders in online interactions. 

6.3.2 Algorithm Design 

 In this research, I choose hierarchical clustering as the attribute-based algorithm. 

The algorithm can directly handle weighted links and links with positive or negative 

sentiments. I choose the GN algorithm (Girvan and Newman, 2002) as the relation-based 

algorithm, since it is one of the most successful community detection algorithms in 

previous literature. The GN algorithm can be applied in weighted networks. However it 

cannot handle negative links at all. Thus, I design a GN-H co-training algorithm as the 

relation-based algorithm on networks with both positive and negative sentiments. Since 

the two sets of algorithms used in this research can both generate a series of community 

assignments, I adopt and modify the modularity measure to select the best one for output. 
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6.3.2.1 Modularity Measure 

 The modularity measure was originally proposed by Newman and Girvan 

(Newman and Girvan, 2004) and has been widely used to select better community 

assignments from a series of candidates. The measure is defined as: 
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2m 2

i j
ij i j
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k k
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⎝ ⎠

∑  

where m is the total number of edges (or the sum of edge weights); Aij is the weight 

(sentiment) of the link between node i and j; and ki (kj) is the degree (or the sum of edge 

weights) of node i (j). δ(ci,cj)=1 if ci=cj, i.e., i and j are in the same community. It is 

designed to favor intra-cluster links rather than inter-cluster links. The community 

assignments with more intra-cluster links and less inter-cluster links have a higher 

modularity measure and are considered a better community assignment.  

 The original modularity measure can be applied only to networks without 

negative sentiments. Thus, I modify it for community detection in networks with both 

positive and negative sentiments. I first split the sentiment social network into a network 

with positive sentiments and a network with negative sentiments.  

The modified measure is then defined as: 
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where m+ (m-) is the total number of edges (or the sum of absolute edge weights) of the 

positive (negative) sentiment network; A+
ij (Aij

-) is the absolute weight (sentiment) of the 

link between node i and j in the positive (negative) sentiment network; and k+
i and k+

j (ki
- 
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and kj
-) are the degrees (or the sum of absolute edge weights) of node i and j in the 

positive (negative) sentiment network. δ(ci,cj)=1 if ci=cj, i.e., i and j are in the same 

community. The modified measure can be considered as combining two original 

measures applied onto the positive sentiment social network and negative sentiment 

social network, respectively. The community assignments with more intra-cluster 

positive links (and less inter-cluster positive links) and less intra-cluster negative links 

(more inter-cluster negative links) have higher modularity measures and are considered 

better assignments.  

 After modifying the modularity measure, combinational optimization algorithms 

can be directly applied to detect communities in sentiment social networks. However, in 

this research I adopt and develop graph analysis methods as examples of relation-based 

algorithms, due to their good performance and ease of interpretation. 

6.3.2.2 Hierarchical Clustering 

 For the attribute-based algorithm, I apply the hierarchical clustering algorithm 

(Johnson, 1967) which can be applied on networks with both positive and negative 

sentiments. In this algorithm, each node’s neighbors (links) are considered as its features. 

The link weight and sentiment (if it exists) are used as feature values. For two nodes i and 

j with feature vectors Vi and Vj, I define their similarity using the Pearson correlation 

efficient measure: 
( )( )ik i jk jk

ij
i j

V V
C

n
μ μ
σ σ

− −
= ∑ , where μi (μj) is the mean of the vector Vi 

(Vj); σi (σj) is the standard deviation of the vector Vi (Vj); and n is the length of the feature 

vectors, i.e., the number of nodes in the network. After defining the similarity measure, 
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the single link hierarchical clustering algorithm is applied to group nodes together. The 

single link hierarchical clustering algorithm starts from considering each node as a cluster. 

It then combines clusters that have the most similar nodes. The algorithm generates a 

series of communities, among which the best one can be selected according to the 

(modified) modularity measure.  

6.3.2.3 The GN Algorithm 

 For the relation-based algorithm on networks without negative sentiment 

information, I apply the GN algorithm, which is an effective graph analysis algorithm in 

community detection. It gradually removes the high betweenness links from the graph to 

split the graph into isolated components, which are considered as detected communities 

in the network. The algorithm can generate a series of communities, among which the 

best one can be selected according to the modularity measure. 

6.3.2.4 The GN-H Co-training Algorithm 

 For the relation-based algorithm on networks with both positive and negative 

sentiments, I propose a GN-H co-training algorithm which combines the GN algorithm 

with hierarchical clustering to detect communities.  
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Figure 6.3 The GN-H Algorithm  

 As shown in Figure 6.3, in the GN-H algorithm the original sentiment social 

network is split into a positive network and a negative network. The GN algorithm is 

applied on the positive part, while hierarchical clustering is applied to the negative part. 

In this process, the community detection results of the GN algorithm are incorporated 

into hierarchical clustering and the community detection results of hierarchical clustering 

are incorporated into the GN algorithm. In hierarchical clustering the nodes that have 

similar (negative) link distributions to the clusters generated by the GN algorithm are 

considered as having a higher probability to be in the same community. In the GN 

algorithm, the shortest paths between the nodes in a cluster generated by hierarchical 

clustering are weighted less than original paths, so that they will have smaller probability 

to be separated to different communities. In addition, I also generate hidden positive links 

based on their similarities in negative link distributions and combine them with original 

positive links to be used in the GN algorithms. For multiple iterations of the algorithm, 
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the generated communities from the GN-part with the highest modularity measure are 

considered as the entire algorithm’s output (see details in Figure 6.4).  

1) Split the inputted sentiment social network G to a positive part G+ and a 

negative part G-. 

2) Using G+ as the input of GN algorithm GGN, generate communities CGN. 

3) Represent each node i as a feature vector NVi based on its negative links in G- to 

each of the communities in CGN.  

      sum of the absolute weight of links from node i to cluster j
number of nodes in cluster jijNV = . 

4) Define node similarity S(i,j) as the inner product of their feature vectors 

<NVi,NVj>. 

5) Apply hierarchal clustering based on S(i,j) and generate communities Ch. 

6) Select top m links according to S(i,j), which do not belong to G+. Combine the 

m links and G+ as the input of GN algorithm GGN.  

7) Apply the GN algorithm based on both GGN and Ch to generate output CGN. In 

the GN algorithm, the shortest paths between the nodes in a same community 

of Ch are weighted as half of the original paths when calculating links’ 

betweenness.  

8) Go to step 3 and iterate multiple times. For the multiple iterations, keep the 

community assignment CGN generated by GN-part with the highest modularity 

measure as the entire algorithm’s output.  

 
Figure 6.4 Pseudo Code of the GN-H Algorithm  
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6.4 Experimental Study  

 In previous community detection research, the effectiveness of proposed 

algorithms was usually evaluated on simulated data with known community structure. I 

adopted this approach to examine the effect of using sentiments in community detection. 

In addition, I conducted a case study on a product review dataset to exemplify the utility 

of the proposed framework in helping us understand online opinions and activities. In 

these experiments, I only considered the link polarity and ignore the weight of links to 

focus on the effect of link sentiments.  

6.4.1 Datasets 

1) Simulated data 

 I adopted a widely used data generation methodology for simulated data (Girvan 

and Newman, 2002; Radicchi et al., 2004; Guimera and Amaral, 2005). The generated 

network contains 128 nodes that belong to 4 clusters (32 nodes each). The average degree 

for each node is 16 (i.e., in total 1,024 links). The links were generated randomly, which 

contains α portion of positive links and 1-α portion of negative links. Both positive links 

and negative links can be inter-community and intra-community links. Among the 

negative links there were β portion intra-cluster links and 1-β portion inter-cluster links. 

For the positive links there were γ portion intra-cluster links and 1-γ portion inter-cluster 

links. Since positive links indicate people agreeing with each other and negative links 

indicate people disagreeing with each other, a smaller β and a larger γ indicates that the 

network shows clearer community structure, while vice versa means the network has less 

clear community structure. I generated networks for α from 0.1 to 0.9 (step 0.1), β from 0 
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to 0.2 (step 0.05), and γ from 0.5 to 0.9 (step 0.1). (Since the network has only four 

clusters, β should be less than 0.25 and γ should be larger than 0.25. I considered β≤0.2 

and γ≥0.5 as more realistic parameter settings that may happen in real data.) The 

combination of the three parameters led to 225 parameter settings. For each parameter 

setting, I randomly generated 100 networks to test different algorithms.  

2) Real-world dataset 

 In this research, I used an online product review dataset spidered from 

www.eopinions.com (http://www.trustlet.org/wiki/Downloaded_Epinions_dataset)  

(Massa and Avesani, 2007) to show the utility of the proposed framework. This dataset 

contains 49,290 users who rated 139,738 items in 664,824 reviews. The ratings are from 

1 to 5 where 1 means the best and 5 means the worst. To control the experiment size and 

focus on more active users, I reduced the eopinions dataset by randomly choosing 10% of 

the users who have more than 5 product reviews on file. If two users had co-reviewed a 

product, they were considered having an online interaction, where the absolute 

differences of their ratings were used to represent interaction sentiments. For each pair of 

users, I aggregated their interactions and average the sentiment values on all links 

between them. If two users had only co-reviewed one or two products, the link was 

considered unreliable and discarded. If a user pair’s average sentiment value was less 

than 2, they were considered as having a positive interaction. If such value was larger 

than 2 they were considered as having a negative interaction. The final network contains 

1,037 users, 6,808 positive links, and 505 negative links. 
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6.4.2 Experiment Procedure 

 To compare the effect of using sentiment in community detection on simulated 

data, I generate three networks for each simulated network. The original simulated 

network contains both positive and negative sentiments. The network with positive 

sentiment was generated by removing all negative links. The network without sentiment 

information was generated by considering all links equally. The attribute-based and 

relation-based algorithms were applied on the networks. The results were compared with 

the actual cluster when generating the data for evaluation. 

 The similar three types of networks with different sentiment information were 

derived from the network extracted from the eopinions dataset,. I only apply relation-

based algorithms, which are the focus of this research, to generate the clusters on these 

three networks. The statistics of the generated communities were examined for the utility 

of the proposed framework. 

6.4.3 Evaluation Metrics 

 For the simulated data, the underlying community structure is known. I adopted 

the normalized mutual information measure (Danon et al., 2005), which was widely used 

in evaluating clustering algorithms, to evaluate community detection algorithms’ 

performances. To calculate this measure, one needs to construct an n*m confusion matrix 

N, where n is the number of real communities, m is the number of generated communities, 

and Nij is the number of nodes in the real community i that has been assigned to 

community j by the algorithm. The normalized mutual information measure is 
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where Ni. is the sum of row i; N.j is the sum of column j; and N.. is the sum of all 

elements. A higher value of the normalized mutual information measure indicates better 

community detection results.  

 For the real-world dataset, the underlying community structure is unknown. Thus, 

I inspected the mesoscopic description of the network (i.e., community-level topology 

structure of the network) resulting from the relation-based algorithms. I also studied the 

opinion leaders and key opinions for the major communities identified to assess the 

utility of conducting community detection analysis on online interactions. 

6.4.4 Hypotheses  

 In correspondence with the research questions, I tested two hypotheses in the 

experiments on the simulated data: 

H1. Differentiating link sentiments (using positive sentiments) outperforms not 

differentiating link sentiments (not using sentiments) in community detection. 

H2. Using both positive and negative sentiment information outperforms using only 

positive sentiment information in community detection. 
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6.5 Results and Discussion 

6.5.1 Experiments on Simulated Data 
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Figure 6.5 Community Detection Performance on Simulated Data when α=0.7 

 Figure 6.5 exemplifies the attribute-based and relation-based algorithms’ 

performances on simulated data when α =0.7. The algorithms’ performances on other 

parameter settings show similar trends. On the graph, it is clear that including sentiment 
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information significantly outperformed excluding sentiment information in community 

detection, whether attribute-based or relation-based algorithms were used. In addition, the 

proposed GN-H algorithm that uses both types of sentiments outperformed the GN 

algorithm that uses only positive sentiments in most parameter settings. For the attribute-

based algorithm, i.e., hierarchical clustering, the use of both types of sentiments 

outperformed the use of positive sentiments only when γ is small, i.e., positive links are 

less correlated with the community structure. The hierarchical clustering algorithm does 

not effectively use sentiment information. The effect of negative sentiments only shows 

when the positive sentiments are not useful enough.  

Table 6.3 Hypotheses Testing 

H1 pairwise t-test: positive sentiment >no sentiment 
Number of parameter settings GN  

algorithm 
Hierarchal
clustering 

Hypothesis confirmed at 99% confidence interval 186 212
Hypothesis confirmed at 95%~99% confidence interval 0 6
Hypothesis confirmed at 90%~95% confidence interval 2 1
Hypothesis rejected at 90% confidence interval 37 6

 

H2 pairwise t-test: both sentiments > positive sentiment 
Number of parameter settings GN/GN-H 

 algorithm 
Hierarchal 
clustering 

Hypothesis confirmed at 99% confidence interval 104 66
Hypothesis confirmed at 95%~99% confidence interval 12 7
Hypothesis confirmed at 90%~95% confidence interval 11 2
Hypothesis rejected at 90% confidence interval 98 150

 
 Table 6.3 shows the pairwise t-test results on the total 225 parameter settings for 

the two hypotheses. It is clear that H1 was supported on most of the parameter settings. 

For H2, the hypothesis was partially supported. The hierarchical clustering algorithm 
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cannot effectively use negative sentiment information and the hypothesis was rejected 

for 2/3 of the parameter settings for this algorithm.  

 
Figure 6.6 Performance Improvement of GN-H Algorithm over the GN Algorithm  

 To better show the hypothesis testing results on H2 for the GN-H algorithm, I 

visualize its result in Figure 6.6, where a darker cell shows the higher performance 

improvement of the GN-H algorithm (using both positive and negative sentiments) over 

the GN algorithm (using positive sentiment).  X means the improvement is not significant 

at the 90% confidence interval in pairwise t-tests. In general, the GN-H co-training 

algorithm significantly outperformed the GN algorithm on most parameter settings when 

α is larger than 0.2 and γ is larger than 0.5. In other words, for the networks have more 
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positive links and the positive links indicate clearer community structure, the hypothesis 

H2 is confirmed for the GN-H algorithm.  
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Figure 6.7 Aggregated Performance on α, β, and γ 
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 Figure 6.7 reports the aggregate performances of all algorithms according to the 

three parameters that control the generation of the simulated data. In general, the 

proposed GN-H algorithm outperformed all other algorithms on the aggregated measures. 

In addition, I noticed that all algorithms’ performances are positively correlated with α 

and γ. This means that positive links play important roles in community detection in 

sentiment social networks. When the network contains more positive links and the 

positive links indicate clearer community structure, the algorithms’ performances 

improve. I also noticed that the performances of the algorithms that use negative 

sentiments have a negative correlation with β. Since a smaller β indicates that negative 

links show clear community structure, this phenomenon clearly shows the effect of using 

negative sentiments in community detection. Furthermore, the performances of the 

algorithms that deem negative links as positive links have a positive correlation with β, 

which indicates that these algorithms use negative sentiments reversely (or wrongly). In 

community detection, it is critical to differentiate positive and negative sentiments.  

6.5.2 Experiments on the Eopinions Dataset 

 I applied three relation-based algorithms (GN algorithm on network without 

sentiments, GN algorithm on network with positive sentiment, and GN-H algorithm with 

both sentiments) on the eopinions dataset. As shown in Figure 6.8, the communities 

generated by all three algorithms show clearer structure as compared to the original node 

level representation. The three algorithms’ results have similar structures and all have 

two major communities and some smaller communities with close interconnections.  
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Figure 6.8 Community Detection Results on the Eopinions Dataset 
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 The GN algorithm that used no sentiment information generated 438 

communities; its intra-cluster negative link ratio is 6.63% and inter-cluster negative link 

ratio is 7.16%, which are similar to the overall negative link ratio of the network (6.91%). 

The GN on the positive sentiment network has 5.00% intra-cluster negative link ratio and 

8.25% inter-cluster negative link ratio. The GN-H algorithm using both sentiments has 

5.75% intra-cluster negative link ratio and 8.41% inter-cluster negative link ratio. Both of 

them were able to put less negative links inside communities and put more negative links 

between communities as compared to the one that used no sentiment information. 

According to the generated community structure, the GN-H algorithm using both 

sentiments and the GN algorithm that use only positive sentiments are more similar to 

each other.  

Table 6.4 Characteristics of the Two Major Communities 

  Largest  
community  

Second largest 
community  

No sentiment 6.93% 6.13%
Positive sentiment 6.14% 3.43%

Negative  
link ratio 

Both sentiments 6.61% 3.57%
No sentiment vs. positive sentiment 141 59
Positive sentiment vs. both sentiments 141 61
Both sentiments vs. no sentiment 179 56

Different  
algorithms’ 
community 
overlap  

All three algorithms 137 64
 
 Table 6.4 reports some characteristics of the two major communities identified by 

the three algorithms, respectively. Obviously, major portions of the communities 

generated by different algorithms are the same. However, the algorithms using sentiment 

information provide communities with smaller intra-cluster negative link ratios, 
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especially for the second largest community. Such structural differences were caused by 

the small portions of non-overlapped nodes, which show the effect of considering 

sentiment information in community detection. 

Table 6.5 Top 10 High-degree Users in the Two Major Communities 

No sentiment Positive sentiment Both sentiments Top 
10 

users 
User 
ID 

Intra- 
cluster 
degree 

Overall
ranking

User 
ID 

Intra- 
cluster
degree

Overall
ranking

User 
ID 

Intra- 
cluster 
degree 

Overall
ranking

4855 99 5 3037 89 8 5734 139 1 
3037 98 8 4855 86 5 7585 113 4 
5304 96 7 7585 85 4 3037 112 8 
7585 94 4 5304 83 7 4855 111 5 
3604 88 11 3604 80 11 3604 110 11 
6334 80 13 6334 77 13 5304 109 7 
12724 78 20 17165 67 15 2051 98 12 
17165 76 15 12983 63 14 17165 89 15 
8584 74 21 8584 63 21 6334 88 13 La

rg
es

t c
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ity
 

28164 72 16 12780 61 31 12983 85 14 
776 51 10 776 50 10 2397 48 25 
2397 45 25 2397 50 25 768 44 35 
310 38 55 310 41 55 310 44 55 
3796 38 17 14428 41 30 3796 43 17 
14428 37 30 3796 41 17 14428 43 30 
768 36 35 768 39 35 1138 34 46 
1211 30 82 517 33 9 302 33 42 
302 30 42 302 33 42 2565 33 22 
1138 29 46 1138 32 46 34581 33 38 

Se
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ity
 

10069 29 85 1985 31 59 1985 32 59 
 
 Table 6.5 reports the top 10 opinion leaders of the two major communities 

according to their degree (i.e., number of peoples who agree with them) in the 

community. It also reports their overall ranking according to their degree in the entire 

network. In general, the three algorithms generated similar top 10 opinion leaders for the 

two major communities. It is noticed that these opinion leaders of major communities 
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were necessary high-degree users in the network. The opinion leaders of the largest 

community usually rank around 5-15 on the entire network, while the opinion leaders of 

the second largest community usually rank around 20-50. Several other high-degree users 

on the entire network may be users who posted a lot of reviews and were involved in a lot 

of online interactions but did not have a consistent like/dislike pattern. Such users will 

not have a high impact on the other users in the community, since they may not be 

considered as friends/peers by other users. The high-degree users in individual 

communities, on the other hand, have higher impact on a community’s behavior. They 

deserve further analysis and long term observation. 

 Figure 6.9 shows the two major communities’ ratings on the most frequently rated 

items together with their global ratings, using the communities detected by the GN-H 

algorithm as an example. While many items’ ratings are consistent for different 

communities, there is some evidence of the different interests of individual communities. 

For example, the second largest community’s average rating on item 660 is significantly 

higher than the global rating at the 90% confidence interval. The second largest 

community’s average rating on item 6114 is significantly lower than that of the largest 

community. In addition, the numbers of ratings on the items are not balanced, which also 

indicates individual communities’ different interests. For example, the second largest 

community’s users do not like to rate items 11436 and 734. But they rated item 1083 

quite often. Such phenomena can also be found on the results provided by the other two 

algorithms. In general, the identified communities may have significantly different 
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opinions. To assess online opinions, it is necessary to inspect discussions at the 

community level.  

Group  
name 

Community* Number  
of ratings
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Figure 6.9 Different Communities’ Interests 
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6.6 Summary  

 In this research, I proposed to account for social interaction sentiments in tackling 

the community detection task. I proposed a framework to extract sentiment social 

networks from online interactions and proposed a GN-H co-training algorithm that can 

handle both positive and negative sentiment information for community detection. 

Experiments on simulated data showed that differentiating sentiments would significantly 

benefit the community detection task. In addition, using both positive and negative 

sentiments in the GN-H algorithm could further improve community performance. 

Experiments on a product review dataset also showed that considering sentiment 

information led to community assignments with fewer negative links inside of 

communities and more negative links between communities. Analysis on the generated 

communities suggested that opinion leaders and opinions extracted from individual 

communities could provide us with more detailed information of online community 

behaviors. It is worthwhile to analyze online interactions at the community level.  

 This chapter explored the community detection task using an example application 

of online communications. Together with the previous chapters, it shows the necessity of 

combining node/link information with graph structure in graph-based learning problems. 

I will further explicate the findings, contributions, and implications of the graph-based 

learning framework in the next chapter. I will discuss its relevance to Management 

Information Systems research and possible extensions in the future.  
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Contributions 

 The work presented in this dissertation highlights several methods and 

applications in graph-based learning. It has made several theoretical and practical 

contributions which can be found useful to future researchers.  

 In Chapter 2 I presented two examples that showcase the effective application of 

network typology analysis methods in improving our understanding about the global 

characteristics of relational information extracted from documents. The first study in 

Chapter 2 analyzed gene interaction networks extracted from biomedical literature using 

various information extraction methods. The second study in the chapter analyzed the 

patent citation networks aggregated to different analytical unit levels. While the analysis 

in this chapter provides us with some concrete results on the two types of networks’ 

structural characteristics, a major contribution of this study is to show the advantage of 

using the network topology analysis to compare relational information extracted from the 

same data sources using different extraction methods. In studies of information systems, 

the extracted relations represent the outputs of various IT artifacts and have their 

semantic implications. The global characteristics of these outputted relations help us 

better understand the IT artifacts. Moreover, this chapter proposed a general framework 

to conduct network topology analysis on relational information extracted from literature, 

which can be used in other research in knowledge mapping, knowledge diffusion, and 

information extraction.  
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 Chapter 3 addressed the patent classification problem as a node classification 

task. As a major theoretical contribution of this chapter, I proposed incorporating 

knowledge evolution processes in addressing knowledge management tasks. I used 

citation networks to represent the knowledge evolution processes in patents and designed 

different kernel functions under a kernel-based framework to capture the structures of the 

patent citation networks. I found that features of cited patents and the structure of patent 

citation networks both play important roles in patent classification. I also found that 

combining information in citation networks with patent contents benefited the 

classification. This chapter also made a critical practical contribution to patent 

management. In the experiments, the proposed method achieved more than 30 percent 

performance improvement in accuracy as compared with the state-of-the-art algorithms. 

It showed the potential to reduce human effort in patent pre-classification in patent 

offices’ daily operations. This study also lent support to a policy that requires inventors to 

file patent citations together with their patent applications.  

 In Chapter 4, I addressed a gene function prediction problem using gene 

interaction networks. From a theoretical perspective this chapter is an extension of the 

previous chapter. This chapter used a context graph concept to represent the related 

features in neighbor nodes to facilitate focal nodes’ classification. I proposed a context 

graph kernel to capture such features to address the gene function prediction problem. 

Moreover, I proved the matrix formulation and the convergence characteristics of the 

context graph kernel. All these theoretical findings can be extended to other node 

classification problems as long as a context assumption can hold. In addition, as a 
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particular contribution to the medical informatics domain, the improved prediction 

performance of the proposed method as compared to other state-of-the-art methods offers 

biologists a more sophisticated IT artifact to support their research. 

 In Chapter 5, I addressed the recommendation system problem as a link prediction 

problem in user-item interaction networks. I defined an associative interaction graph for 

each user-item pair and captured its structure with a graph model to infer the possibility 

of the existence of the link. This chapter continued making theoretical contributions 

through taking advantage of the graph structure of the data. Furthermore, I extended the 

kernel-based framework and introduced one-class classification for this task. From the 

perspective of link prediction, this extension is necessary and would help improve the 

performance of link prediction. This research can be directly applied to e-commerce 

applications to improve customer online shopping experiences.  

 Chapter 6 focused on the community detection problem in online environments. 

This research made multiple contributions to research in online communities. First of all, 

I identified sentiment as an important link attribute that affects the effectiveness of 

community detection. This finding may prompt future research to combine sentiment 

analysis with social network analysis into a next stage of sentiment social network 

analysis. Second, I proposed a general framework that can be used to detect communities 

in online communications. The framework can be applied in various contexts with light 

adaption, such as Web forums, Web blogs, social Websites, etc. Finally, the proposed 

GN-H co-training algorithm provided an effective routine for designing sentiment-based 
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communication detection algorithms. I expect more design science research will be 

conducted in this direction in the future.  

7.2 Relevance to Management Information Systems Research 

 Knowledge discovery is critical to organizations’ knowledge creation and 

knowledge management. As an IT artifact studied by information systems (IS) 

researchers for years, knowledge discovery modules have been embedded in various 

information systems and affected daily businesses activities (Matheus et al., 1993). 

Knowledge discovery from graph-structured data is relevant to IS research not only from 

the methodological perspective, but also from a practical perspective. Graph-structured 

data widely exist in intra-organizational social relations, computer mediated 

communications, and the technology adoption process. These application areas have been 

of the interest to IS researchers for years. The graph-based learning framework proposed 

in this dissertation provides more methods that support these studies.  

 The research in the information systems discipline has been classified into 

behavioral science and design science paradigms (Hevner et al., 2004). Design science 

studies targets producing technology-based IT artifacts, such as constructs, models, 

methods, or instantiations, to relevant business problems. The studies conducted in this 

dissertation follow the design science paradigm and are aimed at creating a set of new 

and innovative methods under the graph-based learning framework to reduce the gap 

between growing amounts of (graph-structured) data and human beings’ cognition 

limitations in acquiring knowledge from the data for decision making. In this dissertation, 

I have applied the graph-based learning framework in order to address several critical 
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business-related problems, such as the patent classification problem in knowledge 

management, the recommender system problem, and the community detection problem in 

online communications. The framework has also been applied to medical informatics 

applications. The essays in this dissertation exemplify the design process of several 

artifacts to address the four graph-based learning tasks. In this graph-based learning 

framework, the identified knowledge discovery tasks, proposed knowledge discovery 

approaches, and examined knowledge discovery applications in this dissertation 

contribute to our knowledge in information systems and can be adopted by future 

researchers in new applications.  

7.3 Future Directions 

 Although this dissertation has addressed several challenges in graph-based 

learning, future research will continue to broaden and deepen our understanding in 

knowledge discovery on graph-structured data from the following directions: 

 1) Explore the use of more complicated graph information in knowledge 

discovery. In this dissertation, most examined networks are unipartite networks (except 

Chapter 5), most of the networks contain only one type of links (except Chapter 6), and 

all the applications are conducted on a single network. While these applications perfectly 

showcased the proposed graph-based learning framework, there could be additional 

applications with more complicated graph-structured data relevant to the real-world. In 

the future, I will explore knowledge discovery problems in multi-partite networks, with 

multiple types of links, or by combining multiple networks under the proposed graph-

based learning framework.  
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 2) Explore more effective methods for the four graph-based learning tasks. 

While this dissertation has addressed some aspects of the four tasks, these problems are 

far from being solved from the methodological perspective. For future business 

applications and information systems research, it is necessary to explore more effective, 

efficient, and scalable techniques.  

 3) Explore applications that can be better addressed by the framework. In business 

intelligence, computer mediated communication, knowledge management, etc., there are 

a large number of problems that involve graph-structured data and that can be better 

addressed using a graph-based learning framework. I plan to further expand the 

application area of the proposed framework in the future.  
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APPENDIX A: MATRIX FORMULATION OF THE CONTEXT GRAPH KERNEL 

 
Proposition:  

 In a genome’s gene interaction network G with n genes {g1, g2, … gn}, the context 

graphs of gene gx is represented as Gx. If ,{ } { ( , )}i j i jK K K G G= =� �  is the context graph 

kernel matrix of the entire genome; M={Mi,j}={pt(gj|gi)} is the transition probability 

matrix; Q={Qi,j}={ps(gi)} is the stopping probability matrix; and  

,0 0{ } { ( , )}
i j g i jK K K g g= =  is the node information kernel matrix. The context graph 

kernel matrix can be decomposed as: 

1 2 3K K K K= + + +� "= 0( * ) ( * )TM Q K M Q + 0 1( * ) TM K K M + 0 2( * )( )TM K K M +…  (0) 

i.e., 1 0( * ) ( * )TK M Q K M Q= and 1 0( * )     ( 1,2, )T
i iK M K K M i+ = = ∞"  where * is the 

Hadamard product (i.e., entrywise product) where A*B={ai,j·bi,j}.  

 

Proof: 

According to our definition of the context graph kernel: 

( ) ( )

( , ) ( , ) ( | ) ( | )
i x j

x y h i j i x j y
h H G h H Gy

K G G K h h P h G P h G
∈ ∈

= ∑ ∑ .       (1) 

Considering that  ( , ) 0h i jK h h =   when the lengths of hi and hj are not equal, and 

, ,( , ) ( , )
i jh i j g h k h k

k

K h h K g g< > < >=∏  when the lengths of hi and hj are equal, the random 

walk paths with the same length can be grouped together. The context graph kernel 

becomes: 
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, ,
1 1

( , ) lim ( , ) ( | ) ( | )
i j

i j

L l

x y g h k h k i x j yL l h l kh l

K G G K g g P h G P h G< > < >→∞
= = ==

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑∑ ∏ ,      (2) 

where ih  and jh are the lengths of random walk paths hi and hj. 

For random walk path ,0 ,1 ,( ... )h h h lh g g g< > < > < >= → → → , the probability to exist is 

,1 ,0 ,2 ,1 , , 1 ,( | ) ( | ) ( | ) ( | ) ( )t h h t h h t h l h l s h lP h G p g g p g g p g g p g< > < > < > < > < > < − > < >= " .       (3) 

Combining formula (3) into formula (2), the context graph kernel can be represented as: 

( , , , , 1
1 1

, , 1 , ,

( , ) lim ( , ) ( | )

                                        ( | ) ( ) ( )

i j i i

i j

j j i j

L l

x y g h k h k t h k h kL l h l kh l

t h k h k s h l s h l

K G G K g g p g g

p g g p g p g

< > < > < > < − >→∞
= = ==

< > < − > < > < >

⎛
= ⎜

⎜
⎝

⎞⎞
⎟⎟

⎠ ⎠

∑ ∑∑∏
.        (4) 

By converting the random walk paths in the pair-wised summation to node sequences and 

changing the order of summation and multiplication (Kashima et al., 2003, 2004), 

formula (4) is converted to: 



 

170
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which can be represented as K(Gx,Gy)=
1

lim ( , )
L

x y lL l

K G G
→∞

=
∑ .           (6) 

We now work on proving that K(Gx,Gy)l  in formula (6) is the element of kernel matrix Kl 

in formula (0): 

a) For l=1 

Noticing that x=<hi,0> and y= <hj,0>, from formula (5) we have: 

1 ,0 ,0 1( , ) ( , )
i jx y h hK G G K G G< > < >=        (7) 

,1 ,1 ,1 ,0 ,1 ,0 ,1 ,1
,1 , ,1

( , ) ( | ) ( | ) ( ) ( )
i j i i j j i j

i j

g h h t h h t h h s h s h
h h

K g g p g g p g g p g p g< > < > < > < > < > < > < > < >
< > < >

= ∑  

,1 ,1 ,1 ,0 ,1 ,1 ,0 ,1
,1 , ,1

( , ) ( | ) ( ) ( | ) ( )
i j i i i j j j

i j

g h h t h h s h t h h s h
h h

K g g p g g p g p g g p g< > < > < > < > < > < > < > < >
< > < >

= ∑  
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( ) ( ),1 ,0 ,1 ,1 ,1 ,1 ,0 ,1
,1 , ,1

( | ) ( ) ( , ) ( | ) ( )
i i i i j j j j

i j

t h h s h g h h t h h s h
h h

p g g p g K g g p g g p g< > < > < > < > < > < > < > < >
< > < >

= ∑ . 

From the provided matrices in the proposition, we have:  

, ,* { } { ( | ) ( )}i j i j t j i s jM Q M Q p g g p g= × = ,              (8) 

where * is Hadamard product (i.e., entrywise product) of the two matrices. 

Thus, one element in the matrix K1: 

( )1 , 0 ,
( ) ( * ) ( * )T

x y x y
K M Q K M Q=  

( ) ( )0 , ,
1

( * ) ( * )
n

T
x z z y

z

M Q K M Q
=

= ∑  

( ) ( ) ( )0, ' ', ,
1 ' 1

( * ) ( * )
n n

T
x z z z z y

z z
M Q K M Q

= =

= ∑∑ .       (9) 

Since x=<hi,0> and y= <hj,0>, and ( ) ( ) ,,
( * ) ( * )T

y zz y
M Q M Q= , 

1 ,( )x yK            (10) 

( ) ( ),1 ,0 ,1 ,1 ,1 ,1 ,0 ,1
,1 , ,1

( | ) ( ) ( , ) ( | ) ( )
i i i i j j j j

i j

t h h s h g h h t h h s h
h h

p g g p g K g g p g g p g< > < > < > < > < > < > < > < >
< > < >

= ∑ .   

Comparing formula (7) with formula (10), we see that 1 , 1( ) ( , )x y x yK K G G= . 

b) For l= 2: 

From formula (5) we have:  

2 ,1 ,1 ,1 ,0 ,1 ,0
,1 , ,1

,2 ,2 ,2 ,1 ,2 ,1 ,2 ,2
,2 , ,2

( , ) ( , ) ( | ) ( | )

( , ) ( | ) ( | ) ( ) ( )

i j i i j j

i j

i j i i j j i j

i j

x y g h h t h h t h h
h h

g h h t h h t h h s h s h
h h

K G G K g g p g g p g g

K g g p g g p g g p g p g

< > < > < > < > < > < >
< > < >

< > < > < > < > < > < > < > < >
< > < >

= ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
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( ),1 ,1 ,1 ,0 ,1 ,0 ,1 ,1 1
,1 , ,1

( , ) ( | ) ( | ) ( , )
i j i i j j i j

i j

g h h t h h t h h h h
h h

K g g p g g p g g K G G< > < > < > < > < > < > < > < >
< > < >

= ×∑ .   (11) 

From the proposition, one element in K2 is: 

( )2 , 1 0 ,
( ) ( * ) T

x y x y
K M K K M=   

( ) ( ) ( )1 0, ' ', ,
1 ' 1

*
n n

T
x z z z z y

z z

M K K M
= =

= ∑∑   

( )( ),1 ,0 ,1 ,1 ,1 ,1 1 ,1 ,0
,1 , ,1

( | ) ( , ) ( , ) ( | )
i i i j i j j j

i j

t h h g h h h h t h h
h h

p g g K g g K G G p g g< > < > < > < > < > < > < > < >
< > < >

= ×∑  

( ),1 ,1 ,1 ,0 ,1 ,0 ,1 ,1 1
,1 , ,1

( , ) ( | ) ( | ) ( , )
i j i i j j i j

i j

g h h t h h t h h h h
h h

K g g p g g p g g K G G< > < > < > < > < > < > < > < >
< > < >

= ×∑ .  (12) 

Comparing formula (11) with formula (12), we see that 2 , 2( ) ( , )x y x yK K G G= . 

c) Providing any l>=2, if ,( ) ( , )l x y x y lK K G G= , we can follow the procedure in (b) and 

prove that 1 , 1( ) ( , )l x y x y lK K G G+ += . 

From this procedure, we can prove that any K(Gx,Gy)l in formula (6) is the element of 

kernel matrix Kl in formula (0). Since formula (6) was deduced from the design of the 

context graph kernel, we have proved that the kernel matrix can be decomposed to the 

forms in formula (0).  
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APPENDIX B: CONVERGENCE OF THE CONTEXT GRAPH KERNEL 

 
Proposition:  

 For the context graph kernel, if node information Kg() is normalized and 1) there 

is uniform stopping probability ( )s ip g  or 2) ( )s ip g >0.5, then the calculation of the 

kernel converges when more levels of interactions are included in the context graph, i.e., 

the process of 1 2 3 iK K K K K= + + + +� "  converges when i approaches ∞ . 

 

Proof: 

 We first represent each element in the kernel matrix as 

K(Gx,Gy)= K(Gx,Gy)1+ K(Gx,Gy)2+ K(Gx,Gy)3+…     (1) 

 All similarity measures are non-negative numbers in the kernel matrix. According 

to the rule of d’alembert (i.e., ratio test), such a non-negative series summation converges 

if 1( , )
lim 1

( , )
x y k

k
x y k

K G G
K G G

+

→∞
< . 

We can represent K(Gx,Gy)k and K(Gx,Gy)k+1as: 
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,1 ,1 ,1 ,0 ,1 ,0
,1 , ,1

,2 ,2 ,2 ,1 ,2 ,1
,2 , ,2

( , ) ( , ) ( | ) ( | )

                  ( , ) ( | ) ( | )

                        

i j i i j j

i j

i j i i j j

i j

x y k g h h t h h t h h
h h

g h h t h h t h h
h h

K G G K g g p g g p g g

K g g p g g p g g

< > < > < > < > < > < >
< > < >

< > < > < > < > < > < >
< > < >

= ×

⎛
×⎜⎜

⎝

∑

∑

, , , , 1 , , 1
, , ,

                                                                                   

           ( , ) ( | ) ( | )

                     

i j i i j j

i j

g h k h k t h k h k t h k h k
h k h k

K g g p g g p g g< > < > < > < − > < > < − >
< > < >

⎛
×⎜

⎝
⎛

×⎜⎜
⎝

∑

"

, ,                                                  ( ) ( )
i js h k s h kp g p g< > < >

⎞⎞ ⎞
⎟⎟ ⎟

⎠ ⎠⎠
"

       (2) 

 and  

1 ,1 ,1 ,1 ,0 ,1 ,0
,1 , ,1

,2 ,2 ,2 ,1 ,2 ,1
,2 , ,2

( , ) ( , ) ( | ) ( | )

                    ( , ) ( | ) ( | )

                    

i j i i j j

i j

i j i i j j

i j

x y k g h h t h h t h h
h h

g h h t h h t h h
h h

K G G K g g p g g p g g

K g g p g g p g g

+ < > < > < > < > < > < >
< > < >

< > < > < > < > < > < >
< > < >

= ×

⎛
×⎜⎜

⎝

∑

∑

, 1 , 1 , 1 , , 1 ,
, 1 , , 1

                                                                                         

   ( , ) ( | ) ( | )

               

i j i i j j

i j

g h k h k t h k h k t h k h k
h k h k

K g g p g g p g g< + > < + > < + > < > < + > < >
< + > < + >

⎛
×⎜

⎝
⎛

×⎜⎜
⎝

∑

"

, 1 , 1                                                         ( ) ( )
i js h k s h kp g p g< + > < + >

⎞⎞⎞
⎟⎟⎟ ⎟⎠ ⎠⎠

"

  (3) 

Thus,  

1( , )
( , )

x y k

x y k

K G G
K G G

+ = 

, 1 , 1 , 1 , , 1 , , 1 , 1
, 1 , , 1

, ,

( , ) ( | ) ( | ) ( ) ( )

( ) ( )

i j i i j j j

i j

j

g h k h k t h k h k t h k h k s h k s h k
h k h k

s h k s h k

K g g p g g p g g p g p g

p g p g

< + > < + > < + > < > < + > < > < + > < + >
< + > < + >

< > < >

∑
      (4) 
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Since node information Kg() is normalized, each of its elements is between 0 and 1, thus: 

1( , )
( , )

x y k

x y k

K G G
K G G

+ ≤  

, 1 , , 1 , , 1 , 1
, 1 , , 1

, ,

( | ) ( | ) ( ) ( )

( ) ( )

i i j j i j

i j

i j

t h k h k t h k h k s h k s h k
h k h k

s h k s h k

p g g p g g p g p g

p g p g

< + > < > < + > < > < + > < + >
< + > < + >

< > < >

∑
        (5) 

1) For the first condition, if ( )s ip g is unified for every gene:  

1( , )
( , )

x y k

x y k

K G G
K G G

+
, 1 , , 1 ,

, 1 , , 1

( | ) ( | )
i i j j

i j

t h k h k t h k h k
h k h k

p g g p g g< + > < > < + > < >
< + > < + >

≤ ∑   

  ( ) ( ), ,1 ( ) 1 ( ) 1
i js h k s h kp g p g< > < >≤ − − <                       (6) 

2) For the second condition, if ( )s ip g is larger than 0.5 for every gene:  

Since ( )s ip g <1, we can first relax  

1( , )
( , )

x y k

x y k

K G G
K G G

+
, 1 , , 1 ,

, 1 , , 1

, ,

( | ) ( | )

( ) ( )

i i j j

i j

i j

t h k h k t h k h k
h k h k

s h k s h k

p g g p g g

p g p g

< + > < > < + > < >
< + > < + >

< > < >

≤
∑

 

  
( ) ( ), ,

, ,

1 ( ) 1 ( )

( ) ( )
i j

i j

s h k s h k

s h k s h k

p g p g

p g p g
< > < >

< > < >

− −
≤           (7) 

Since ( )s ip g >0.5, it is easy to see 1( , )
( , )

x y k

x y k

K G G
K G G

+ <1          (8) 

 Thus, for both conditions, we can get 1( , )
lim 1

( , )
x y k

k
x y k

K G G
K G G

+

→∞
< , and the kernel converges 

when more levels of interactions are included in the context graph.  
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