
MODELING AND ANALYZING SERVICE-ORIENTED ENTERPRISE

ARCHITECTURAL STYLES

by

Longji Tang

 APPROVED BY SUPERVISORY COMMITTEE:

 Farokh B. Bastani, Chair

 Kang Zhang

 Lawrence Chung

 __

 Jing Dong

 __

 Wei-Tek Tsai

Copyright © 2011

Longji Tang

All Rights Reserved

© 2011, IGI Global. Reprinted, with permission, from (book) Performance and Dependability in

Service Computing: Concepts, Techniques and Research Directions, SLA-Aware Enterprise

Service Computing, Longji Tang, Jing Dong and Yajing Zhao

© 2010, Springer. Reprinted, with permission, from Service Oriented Computing and

Application, Modeling Enterprise Service-Oriented Architectural Styles, Longji Tang, Jing

Dong, Tu Peng, and Wei-Tek Tsai

© 2009, Springer. Reprinted, with permission, from (book) High Assurance Service Computing,

Specifying Web-Oriented Architecture, Longji Tang, Jing Dong and Yajing Zhao

To my wife Jianglan Hu and my daughter Helen Tang Paradise

MODELING AND ANALYZING SERVICE-ORIENTED ENTERPRISE

ARCHITECTURAL STYLES

by

LONGJI TANG, B.E., M.S.

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

MAJOR IN SOFTWARE ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

December 2011

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3494567

Copyright 2012 by ProQuest LLC.

UMI Number: 3494567

v

PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as part

of the dissertation the text of an original paper or papers submitted for publication. The

dissertation must still conform to all other requirements explained in the "Guide for the

Preparation of Master's Theses and Doctoral Dissertations at The University of Texas at Dallas."

It must include a comprehensive abstract, a full introduction and literature review and a final

overall conclusion. Additional material (procedural and design data as well as descriptions of

equipment) must be provided in sufficient detail to allow a clear and precise judgment to be

made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student's

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.

vi

ACKNOWLEDGEMENTS

It has been a great pleasure working with the faculty, staff, and students in The University of

Texas at Dallas, during my studies as a doctoral student on a part-time schedule. This work

would never have been possible if it were not for the freedom I was given to pursue my own

research interests. I would like to give appreciation to many people for their inspiration and

encouragement that led to the completion of this dissertation.

I owe my deepest gratitude to my Ph.D. program advisors, Dr. Farokh B. Bastani and Dr. Jing

Dong. I never could have completed this dissertation without their dedicated instruction and

assistance.

Specifically, I greatly appreciate Prof. Wei-Tek Tsai of School of Computing, Information and

Decision Systems Engineering at Arizona State University for his kindness and considerable

guidance on my research and dissertation.

It is an honor for me to have Dr. Kang Zhang, Dr. Lawrence Chung, Dr. Jing Dong and Dr. Wei-

Tek Tsai as my dissertation committee members. I am grateful for their provision of a great

number of valuable comments on my work.

I would like to thank my company FedEx for providing me full financial support through the

FedEx education program. I greatly appreciate my vice presidents, manager directors, managers,

and my colleagues for their encouragement and support.

I owe my thanks to Dr. Yajing Zhao and Peng Tu for their collaborations on my research work.

This dissertation would not have been possible without my family and other friends’ continuous

vii

support. I particularly thank my wife, Jianglan Hu, and my daughter, Helen Tang Paradise, for

their continuous encouragement.

September 2011

viii

MODELING AND ANALYZING SERVICE-ORIENTED ENTERPRISE

ARCHITECTURAL STYLES

Publication No. ___________________

Longji Tang, Ph.D.

The University of Texas at Dallas, 2011

 Supervising Professor: Dr. Farokh B. Bastani

Modern enterprises consist of complex business systems. The Enterprise Service-Oriented

Architecture (ESOA) becomes an important enterprise architectural style (EAS) for designing

and implementing business systems. Cloud computing is a new paradigm of distributed

computing and is bringing many new ideas, concepts, principles, technologies, and architectural

styles into enterprise service-oriented computing. A new hybrid architectural style with ESOA

and cloud computing, Enterprise Cloud Service Architecture (ECSA), is emerging as the future

design principle of service-oriented enterprise architecture. The methodology and design

principles of Service Level Agreement (SLA) and Quality of Service (QoS), originally used in

telecommunication and networking services, are increasingly being adopted in enterprise service

computing. Combining SLA and QoS with ESOA and ECSA is forging new kinds of service-

oriented enterprise architectural styles: SLA-Aware ESOA and SLA-Aware ECSA. To better

understand enterprise service-oriented architectural styles and guide their system specification,

ix

design, implementation, and runtime behavior, a framework for specifying and analyzing

service-oriented enterprise architectural styles is needed. The software architectural style is an

abstraction of a family of concrete software architectures. It specifies the architectural structures

and includes elements and connectors, design principles, and system constraints as well as non-

functional behavior.

The research work in this Dissertation is motivated by the desire to understand and evaluate the

architectural design of enterprise service-oriented architectural applications in terms of ESOA

and ECSA structures, principles, and constraints, thereby achieving higher architectural quality,

including enhanced performance, scalability, security, and other quality attributes of the

architecture. This Dissertation defines a framework based on EAS ontology for modeling and

analyzing service-oriented enterprise architectural styles and its various extensions, refinements,

and compositions both formally and informally. The framework not only specifies the generic

structures of ESOA and ECSA systems, but also specifies system constraints through software

architectural quality attributes. The framework emphasizes performance, security, elastic

scalability, dynamic infrastructure, tradeoff of quality attributes, and enterprise service-oriented

system runtime management. With the framework, the Dissertation presents models and analyzes

ESOA and ECSA styles as well as their extensions and compositions, such as SLA-Aware

ESOA and SLA-Aware ECSA. The consistency of properties, constraints, and refinements of

the service-oriented enterprise architectural styles are formally and informally analyzed. This is

used to understand and evaluate service-oriented enterprise architectures and provide guidance

for the design of ESOA and ECSA systems as well as their SLA-Aware systems. Moreover, the

dissertation describes and discusses the lessons learned from various ESOA and ECSA style

architectures.

x

TABLE OF CONTENTS

PREFACE ..v

ACKNOWLEDGEMENTS ... vi

ABSTRACT ... viii

LIST OF FIGURES ...xv

LIST OF TABLES ... xviii

CHAPTER 1 Introduction ..1

CHAPTER 2 Related Work ...7

2.1 Software Architecture and Architectural Styles ..7

2.1.1 Traditional Architectural Style Modeling ..9

2.1.2 Formalism and Informalism for Architectural Styles12

2.1.3 Modeling Dynamism of Software Architecture and its Styles15

2.1.4 Architectural Pattern, Type and Styles ...15

2.1.5 Ontology-based Modeling of Architectural Styles.........................17

2.1.6 Issues and Challenges...20

2.2 Modeling Enterprise Service-Oriented Architecture21

2.2.1 Traditional EAI Model and Styles ...21

2.2.2 SOA Model and Specification..22

2.2.3 Modeling and Validating SOA vs. Style ..23

2.2.4 SOA Architecture Evaluation...24

2.2.5 SOA Application Architectures and Styles Classification25

2.2.6 SOA Design Patterns ..25

2.2.7 SOA Formalization ..26

2.2.8 Issues and Challenges...26

xi

2.3 Modeling Enterprise Cloud Service Architecture27

2.3.1 Specifying and Analyzing Cloud Service Architecture28

2.3.2 Cloud Computing and SOA Convergence in Enterprises28

2.3.3 Cloud Architecture ...29

2.3.4 Issues and Challenges...29

2.4 SLA-Aware Enterprise Service Computing ...30

2.4.1 SLA Frameworks, Standards and Languages30

2.4.2 Modeling and Formalizing SLA and QoS......................................31

2.4.3 SLA-Aware Enterprise Service Computing33

2.4.4 SLA Management and SLM ..34

2.4.5 Adaptive and Automated Computing ...35

2.4.6 Event-Driven and Real-Time Enterprise Service Computing36

2.4.7 Challenges and Research Direction..36

2.5 Summary ..37

CHAPTER 3 Framework for Service-oriented Enterprise Architectural Styles39

3.1 EAS Ontology ..39

3.2 EAS Style Syntax and Semantics ..47

3.3 ESOA and ECSA ...49

3.4 Summary ..50

CHAPTER 4 Enterprise Service-oriented Architecture ...51

4.1 Introducing ESOA ...51

4.2 Architectural Context in Service-Oriented Enterprise54

4.3 ESOA Ontology ...57

4.4 Enterprise Service-Oriented Architectural Styles62

4.5 Specifying EWS-* ...66

4.5.1 Web Service ...66

4.5.2 Service Consumers ...70

4.5.3 SOA Data ...73

4.5.4 SOA Infrastructure ...74

4.5.5 SOA Management ..75

xii

4.5.6 SOA Process ...77

4.5.7 SOA Quality Attributes ..84

4.5.8 Relationship of Parts of EWS-* Style ..86

4.6 Specifying EWOA ...87

4.6.1 RESTful Web Services...90

4.6.2 RESTful Web Service Consumers ...94

4.6.3 WOA Data Elements ..97

4.6.4 WOA Infrastructure..97

4.6.5 WOA Management ..98

4.6.6 WOA Processes ..99

4.6.7 WOA Quality Attributes ..100

4.6.8 High-Assurance EWOA ...101

4.7 Comparison of ESOA Styles ...106

4.8 Summary ..109

CHAPTER 5 Enterprise Cloud Service Architecture ..113

5.1 Introducing ECSA ..113

5.2 ECSA Ontology ...116

5.3 Specifying ECSA ...120

5.3.1 A 3D Model of Cloud Services ..120

5.3.2 Services and Cloud Services ..121

5.3.3 Cloud Service Consumers ..125

5.3.4 SOA and Cloud Data ..127

5.3.5 SOA and Cloud Infrastructure..127

5.3.6 SOA and Cloud Management ..134

5.3.7 SOA and Cloud Process ...139

5.3.8 Cloud Quality Attributes ..144

5.4 ECSA Quality Ontology ..145

5.4.1 Cloud Performance (CSP) ..145

5.4.2 Cloud Scalability (CS) ...150

5.4.3 Cloud Security (CSE) ...153

xiii

5.4.4 Cloud Service Availability (CSA)..156

5.4.5 Cloud Service Reliability (CSR) ..160

5.4.6 Cloud Resiliency (CR) ...161

5.4.7 Public Cloud Service Properties ...163

5.5 Summary ..167

CHAPTER 6 SLA-Aware Enterprise Service Computing ...169

6.1 Introducing SLA-Aware Enterprise Service Computing170

6.2 The Concept of SLA and SLA-Awareness ..173

6.3 SLA-Aware ESOA and SLA-Aware ECSA ..174

6.3.1 SLA-Aware SOA Quality Attributes ...176

6.3.2 SLA-Aware Web Services ...177

6.3.3 SLA-Aware Service Consumers ..178

6.3.4 SLA-Aware SOA Infrastracture ...180

6.3.5 SLA-Aware SOA Management ...182

6.3.6 SLA-Aware SOA Process ..187

6.3.7 SLA-Aware Cloud Service Provisioning and Subscription189

6.4 Challenges of SLA-Aware Enterprise Service Computing191

6.5 Summary ..192

CHAPTER 7 Analysis and Evaluation ..194

7.1 Analyzing ESOA and ECSA Styles ...194

7.1.1 Checking Style Consistency ...194

7.1.2 Checking Style Extension ..195

7.1.3 Private Cloud as a Refinement of ESOA197

7.1.4 Service-Oriented Public Cloud as Refinement of ECC198

7.2 Instance of ESOA and Case Studies ..199

7.2.1 Traditional EAI ..200

7.2.2 Hybrid ESOA System ..201

7.2.3 An Incomplete ESOA System ..205

7.2.4 FUSE ESB for ESOA System ..206

7.2.5 Enterprise Systems based on IBM WebSphere209

xiv

7.3 Instance of ECSA and Case Studies ..212

7.3.1 ECSA-EPRC Style Instance ...213

7.3.2 ECSA-EPUC Style Instance ..214

7.3.3 ECSA-EHYC Style Instance and Z Cloud216

7.3.4 Amazon Cloud Architecture (ACA) ..218

7.4 Case Studies of ECSA-SLA...222

7.4.1 SLA-Aware Private Cloud Architecture222

7.4.2 SLA-Aware Public Cloud Enterprise Architecture223

7.5 Summary ..226

CHAPTER 8 Conclusions ..227

8.1 Conclusions ..227

8.2 Future Work ...230

REFERENCES ..231

VITA

xv

LIST OF FIGURES

Number Page

Figure 2.1 Triangle Model of SOA ..22

Figure 2.2 Relationship of KQI, KPI, SLA in SLM ..35

Figure 3.1 Infrastructure Ontology ..42

Figure 3.2 Management Ontology ...43

Figure 3.3 Process Ontology ..44

Figure 3.4 Description of Virtualized Enterprise Architecture ..46

Figure 4.1 Domain Ontology of Service-Oriented Enterprise ...55

Figure 4.2 ESOA Domain Ontology Model ..59

Figure 4.3 Governed Service View ..62

Figure 4.4 ESOA Classification and Hierarchy ...64

Figure 4.5 UML Model of Web Service ..70

Figure 4.6 Action-Based Service Consumer ..72

Figure 4.7 SOA Management ..77

Figure 4.8 SOA Processes View ..78

Figure 4.9 Service Orchestration Process ..80

Figure 4.10 Structural Model of Service Choreography ..83

Figure 4.11 Service Choreography Example ...84

Figure 4.12 ESOA Model for EWS-* Style...87

xvi

Figure 4.13 SOA Core with Reach – WOA ...88

Figure 4.14 Triangle of Web-Oriented Architecture ...89

Figure 4.15 Relation Model of RWS ...93

Figure 4.16 Connection Model of RWS ..94

Figure 4.17 Synchronous Interaction Model ...95

Figure 4.18 Asynchronous Interaction Model ...96

Figure 4.19 RESTful Web Services Orchestration by Extended BPEL100

Figure 4.20 High-Assurance RESTful Information System Architecture102

Figure 4.21 Venn Diagram of RESTful operations ...104

Figure 5.1 Enterprise SOA Data Center ..115

Figure 5.2 ECSA Domain Ontology ..119

Figure 5.3 View of Cloud Services ..122

Figure 5.4 Cloud Service Consumers ..126

Figure 5.5 Dynamic Enterprise Infrastructure ...133

Figure 5.6 Boundaries of Components ..138

Figure 5.7 Typical Topology of ECSA Process...143

Figure 5.8 Cloud Performance Challenge ..149

Figure 5.9 End-to-End Cloud Security Management ..156

Figure 5.10 Service Interfaces of Amazon S3 ...164

Figure 5.11 Dual Triangles ..167

Figure 6.1 SLA-Aware QoS Taxonomy ..177

Figure 6.2 SLA-Aware Web Service Ontology ...178

xvii

Figure 6.3 Model of the Interaction between SLA-Aware CSC and SLA-Aware CSP ..180

Figure 6.4 SLA-Aware SOA Cloud Infrastructure ..183

Figure 6.5 End-to-End SLA Management in Service-Oriented Enterprise Architecture 184

Figure 6.6 Agreement Offer of WS-Agreement for Search Ticker Service185

Figure 6.7 SLM for SLA-Aware Cloud Travel Service ..186

Figure 6.8 A SLA-Aware Sequence Travel Reservation Workflow188

Figure 7.1 SLA-Aware ESOA and ECSA Architectural Styles Family196

Figure 7.2 ECSA Architectural Styles Family ...197

Figure 7.3 Traditional EAI – Spaghetti-like Architecture ...201

Figure 7.4 An Enterprise Architecture ...203

Figure 7.5 FUSE-ServiceMix for ESOA Style Architecture ...208

Figure 7.6 EA Built on IBM SOA Products ..211

Figure 7.7 ESOA Style EA with Dynamic Infrastructure..214

Figure 7.8 Public Cloud Built on IBM Cloud ..216

Figure 7.9 ESOA Style EA with EHYC ..217

Figure 7.10 Zynga Hybrid Cloud Service Architecture ...218

Figure 7.11 Amazon Cloud Architecture ...222

Figure 7.12 SLA-Aware Private Cloud Enterprise Architecture223

Figure 7.13 SLA-Aware Public Cloud Enterprise Architecture224

xviii

LIST OF TABLES

Number Page

Table 2.1 Comparison of Formalism and Informalism ..12

Table 2.2 Formal Modeling Methods of Architectural Styles ...13

Table 2.3 SOA Formalization ..26

Table 2.4 Characteristics of Enterprise Architectures ...27

Table 2.5 Challenges and research directions ..37

Table 4.1 Description of Basic Substyles ..65

Table 4.2 Message Exchange Patterns ...68

Table 4.3 SOA Data Elements ...74

Table 4.4 SOA Processes ...78

Table 4.5 Mapping to WS-BPEL ...80

Table 4.6 Mapping to WS-CDL...82

Table 4.7 EWS-* SOA Quality Attributes ...85

Table 4.8 Uniform Service Interfaces ..91

Table 4.9 Standard Asynchronous Interaction Patterns ...96

Table 4.10 WOA Data Elements ...97

Table 4.11 Role and Functionality of Infrastructural Components98

Table 4.12 Quality Attributes of WEB and REST Style ...101

Table 4.13 Comparison of REST and SOAP Messages ..105

xix

Table 4.14 Major Quality Attributes Comparison ...110

Table 4.15 Comparison of Parts and their Constraints of ESOA Styles111

Table 5.1 Deployment Types of Cloud Services ...120

Table 5.2 Delivery Modes of Cloud Services ..121

Table 5.3 Cloud Data ...128

Table 5.4 Impacts on Attributes of VMType ...153

Table 5.5 AEC and NINES (Number 9s)...157

Table 5.6 Cloud Service Abstraction ...163

Table 6.1 Dynamic SLA vs. Static SLA ..174

Table 6.2 Vertical SLA vs. Horizontal SLA ..174

Table 6.3 Service Credits of Amazon Web Service S3 ...179

Table 6.4 SLA-Aware Delivery Models of Cloud Services ..189

Table 7.1 Evaluation Form for Traditional EAI ..200

Table 7.2 Evaluation Form of a Hybrid ESOA System ...202

Table 7.3 Evaluation of the Incomplete ESOA System ...206

Table 7.4 Evaluation of FUSE ESB ESOA Architecture ..208

Table 7.5 WS-* Specification for ServiceMix ...209

Table 7.6 Evaluation of IBM SOA-Based Architecture ..210

Table 7.7 IBM SOA Quality Attributes ...213

Table 7.8 Evaluating SOA EA with EPRC ..213

Table 7.9 Evaluating the CEA Built on IBM Cloud ..215

Table 7.10 Evaluating ESOA Style EA with EHYC ...217

Table 7.11 Evaluating Amazon Cloud Architecture ..220

1

CHAPTER 1

INTRODUCTION

The general software architectural style has been used to specify various architectural families

and guide software system design since Perry and Wolf [170] and Shaw and Garlan [185]

introduced the concept of software architecture. The complexity of modern enterprise

information systems is evolving the architecture of software systems from component-oriented

styles to service-oriented styles, where services are the central and basic elements in specific

architectural systems. The services are designed and implemented for communicating with their

consumers through a network and performing various business tasks. With the Internet becoming

a global information superhighway and a common platform that spans across enterprises and

their geographic locations, the enterprise information architecture is becoming ubiquitous and

continuing its evolution from on-premise service-oriented styles to cloud service computing

styles. The evolution of enterprise architectures brings forth opportunities for modern software

architecture research. Software architecture research studies methods of determining how best to

construct an enterprise system, how services identify and communicate with each other, how

information and data are communicated, how an enterprise system can meet software quality

constraints, and how all of the above can be specified by using formal and informal notations.

Software architectural style specifies the common architectural elements, design patterns,

principles, and common constraints for a family of specific architectures in terms of certain

formal and informal notations. Hence, research involving the investigation of architectural styles

2

can help both architects and practitioners in understanding and evaluating complex systems and

guiding the correct design decisions.

As a new software architecture style, service-oriented architecture (SOA) [62][66]

[213][215][204][178] is receiving significant attention. SOA promotes loosely coupled

architecture, interoperability, reusability, and extensibility. Due to the globalization of economic

environment, business processes are becoming more and more complex, which makes enterprise

information systems more and more complex. Enterprise service-oriented architecture (ESOA), a

new architectural style, is designed to help enterprises to build better architectures and solutions

for serving the increasingly sophisticated business processes. Conceptually, the ESOA is an

architectural style which defines any concrete ESOA architecture as a set of well-defined

services. It may be further abstracted to process layers and composite applications for business

solutions. The services are deployed and accessed through the SOA infrastructure. They are

governed and managed by SOA principles and management system. Enterprise Service-Oriented

Architecture (ESOA) is a specific style of SOA, which has been used in many industrial

applications [112]. The ESOA and its substyles [201][202][203][204] define the common

service-oriented architectural elements, design principles, and a coordinated set of constraints –

functional and non-functional for various enterprise architectures. Therefore, research in ESOA

and its substyles can uncover generic models of service-oriented enterprise systems and

determine a system’s overall properties which can be defined by architectural quality attributes

and the service properties. This results in a better high-level architectural understanding and

enables correct design decisions as well as the selection of appropriate technologies for a given

system.

3

 The ESOA brings an agility aspect to enterprise architecture, allowing enterprises to deal

with system changes using a configuration mediation layer, rather than constantly having to

redevelop these systems. However, ESOA introduces new challenges and issues to enterprise

architecture because of its following on-premise characteristics:

 The enterprise owns its data center with ESOA services and the infrastructure is not dynamic,

such as not supporting auto scaling and elastic load balancing [10].

 The enterprise architecture is built behind firewalls.

 The resources are dedicated to each workload.

 The resources are shared within the enterprise only.

 Building a data center to support ESOA architecture is expensive and is not possible for

some small to medium enterprises. For large enterprises, it is not possible to complete some

complex business processes, such as online shopping and shipping, without third party services.

Moreover many server resources in a large data center are idle or passive, such as during non-

peak times, since the acquisition of resources is based on the need to be able to cope with peak

workloads. Thus, resources are wasted, thereby resulting in increasing cost of resources and

operations. Many enterprises view SOA as something that only occurs within firewall. The

ESOA is facing new challenges from enterprises – reducing complexity as well as cost and

increasing capacity, flexibility as well as agility. Cloud computing as a new paradigm of

distributed computing is being applied to enterprises, which brings forth many new ideas,

concepts, solutions, principles to enterprise architecture and ESOA. Originally, cloud computing

evolved from web computing (such as web 2.0 [83]), service-oriented computing

[244][215][201][204], grid computing [246], utility computing [35] and other technologies –

4

virtualization [98] and virtual applications. Cloud computing is about moving services,

computation, and/or data to an on-premise or off-premise, location-transparent, centralized

facility or contractor for cost and business advantages. By making services and data available in

the cloud, it can be more easily and ubiquitously accessed, often at much lower cost, thereby

increasing its value by enabling opportunities for enhanced collaboration, integration, and

analysis on a shared common platform [52]. On the other hand, cloud computing without

adopting ESOA’s service orientation, service management, and other SOA principles, will most

probably fail and not be adopted by enterprises. Therefore, combining cloud computing and

ESOA takes ESOA to the next level and expands it from on-premise to off-premise.

This dissertation investigates service-oriented enterprise architectural styles (SOEAS) which

include ESOA and a junction on the frontiers of two new software architectural styles in

enterprise distributed computing, namely, enterprise service-oriented architectural style and

enterprise cloud computing style. The intersection of these two paradigms leads to a new

architectural style, Enterprise Cloud Service Architecture (ECSA). The ESOA has been

investigated and practiced for several years in both academia and industry. However, generic

understanding and categorization of models and substyles are still lacking. There are many

challenges from enterprises and software industries. In contrast, as an emerging technology,

enterprise cloud computing becomes a key to improving ESOA systems in both academia and

industry. My research work is motivated by the aspiration to (i) better understand both new

architectural styles and their intersection ECSA, (ii) evaluate the architectural design by

specifying a generic model of the ESOA and ECSA, and (iii) guide the process of decision

5

making for designing ESOA and ECSA systems with high quality assurance in both structural

and behavioral aspects.

To achieve high quality assurance in ESOA and ECSA style systems, the technology of Service

Level Agreement (SLA) and Quality of Service (QoS), originally from telecommunication and

networking services, are adopted by service-oriented enterprise architecture. Also, the Service

Level Management (SLM) is becoming an important design methodology and principle in ESOA

and ECSA. The dynamic SLM provides an SLA-Aware approach in an ESOA or ECSA

architecture. Therefore, adding SLA-Aware into ESOA and ECSA generates two new enterprise

architecture styles, namely, SLA-Aware ESOA and SLA-Aware ECSA. Finally, the dissertation

investigates the new important enterprise architectural style based on the proposed ESOA and

ECSA models.

The rest of the dissertation is organized as follows: Chapter 2 presents a review of the existing

work related to this research. In particular, research regarding general architectural styles as well

as the ESOA and enterprise cloud computing literatures are surveyed and classified. Chapter 3

builds a framework for modeling and analyzing service-oriented enterprise architectural styles.

The framework is based on architectural style ontology [168] and the model proposed in

[201][204][205]. Chapter 4 includes (1) a proposed model of ESOA and specifications of two

major substyles of ESOA by the model; (2) classification of five major substyles of ESOA.

Chapter 5 models and analyzes a new hybrid enterprise architectural style ECSA. Chapter 6

introduces the SLA-Aware enterprise service computing and specifies new styles SLA-Aware

ESOA and SLA-Aware ECSA. Chapter 7 Analyzes the ESOA and ECSA based on the

6

framework proposed in Chapter 3 and defines ESOA and ECSA system evaluation method and

discusses several case studies.

In summary, this dissertation makes the following contributions to software architecture research

within the field of Software Engineering:

 It defines a framework for modeling and analyzing ESOA and ECSA styles;

 It presents a classification of ESOA substyles;

 It extends ESOA and ECSA models for specifying the new styles: SLA-Aware ESOA and

ECSA;

 It develops methods for evaluating ESOA and ECSA systems;

 It presents applications and a detailed evaluation of ESOA and ECSA systems.

7

CHAPTER 2

RELATED WORK

There have been numerous studies on research of general software architectural styles and

enterprise service-oriented architecture. Although enterprise cloud computing (ECC) is an

emerging area, the research work of ECC is increasing significantly. The SLA-Aware SOEA is

getting more and more attention because of the enterprise QoS challenges. This chapter provides

a comprehensive review of the literatures.

2.1 Software Architecture and Architectural Styles

Currently, software architecture is being increasingly recognized as an important part of the

software engineering discipline. Over the past two decades, software architecture research has

emerged as the principal basis for specifying the overall high-level structure and relationships

among subsystems and components of software systems [184][183], especially the software

quality attributes of systems, which can be best designed and analyzed at the system level [114].

Software architecture research focus on the following two aspects:

(1) Specification of software architecture, which includes formal and informal architectural

modeling and representation;

(2) Analysis and evaluation of software architecture, which include analyzing and evaluating its

structure and its quality attributes (or properties) formally and informally.

8

Modern software architecture research, especially enterprise software architecture research, has

greatly increased its interest in software architecture integration, dynamism and automation of

systems [209].

There are many definitions of software architecture [24][49][185][209]. This dissertation focuses

on enterprise software architecture research. We define this as follows:

Mature common software architectural principles, structure, and description are often applied to

a family of systems repeatedly. This leads to software architectural styles, such as pipe-filter,

client-server [185]. Software architectural style is increasingly getting attention from both

software engineering researchers and practitioners. With the growing complexity of modern

software systems, specifically large distributed enterprise systems, architectural style is

becoming increasingly important for achieving high quality software architecture design and

enabling accurate system quality analysis. Hence, research regarding software architectural styles

is greatly inspired by its value to the design of cost-effective enterprise software architectures.

Based on some traditional definitions of architectural styles [185][181][209][49], we propose an

informal definition of enterprise architectural style as follows:

An enterprise software architecture is an abstraction of enterprise-level software

systems. It consists of the set of principal design decisions (PDD) and the

corresponding set of architectural artifacts (AA) made about the enterprise IT systems.

9

Compared with software architecture, architectural style is the parent of a family of concrete

architectures and concrete architecture is an instance of its architectural style. Similar to software

architecture research, research of software architectural styles mainly focus on the following two

aspects:

(1) Specification of architectural style, which includes formal and informal modeling and

representation of architectural styles.

(2) Analysis and evaluation of architectural style, which includes its structure as well as

behavior, consistency as well as correctness, and composition as well as instantiation.

In this section, the related research work on these two aspects are summarized and reviewed.

2.1.1 Traditional Architectural Style Modeling

Software architecture as a software engineering discipline has been investigated by researchers

since the early 1990s. The development of software architectural models and styles was

pioneered by Perry and Wolf in their article on “Foundations for the Study of Software

Architecture” [170]. This article introduced a formula:

 Software Architecture = {Elements, Form, Rational}, (2.1)

An enterprise architecture style is an abstraction of a family of enterprise-level

software systems. It consists of the set of architecture design principles and

architectural quality attributes, and the set of descriptions of common structures and

behaviors, and common constraints. It guides how they can be applied to form a

concrete enterprise architecture that meets enterprise architecture requirements.

10

and it defined the architectural style as an abstraction of specific architectures. Boehm added

“constraints” to (2.1) shortly thereafter [114] and Shaw and Garlan [180][185] describe the

software architectural style as a family of systems in terms of a pattern of structural organization.

Several typical architectural styles are specified in [185] formally and informally. Abowd, Allen

and Garlan give a formal definition of architectural style and use formalized architectural styles

to understand the description of software architectures [2]. The early research works

[114][180][185] of software architectural styles focused on building basic concepts as well as

developing foundations and specifying common traditional styles, such as pipes and filters and

client-server patterns. The early research work was also evolved by the software engineering

community into what are called architectural patterns [241].

 Shaw and Garlan define architectural style as “a vocabulary of components and connector

types, and a set of constraints on how they can be combined” [185]. Traditional architectural

models and concepts of architectural style are fundamental to our research on ESOA models and

styles. However, traditional architectural style [114][180][185] is based on three main parts in

software architecture :

 Components (Elements - Perry/Wolf style);

 Connector types;

 Constraints, such as a set of configuration rules.

 Klein and Kazman developed the quality attribute-based architectural styles (ABAS)

[158][159] which are used to aid in the design of architecture for large, complex systems and are

also used in analyzing existing systems as part of the Architecture Tradeoff Analysis Method

(ATAM) [158][159]. My partial research work is also motivated by the ABAS and ATAM.

11

 Bass, Clements and Kazman have further developed architectural styles for modern

component-oriented software systems, such as COM, CORBA and J2EE/EJB systems in [24].

 Fielding and Taylor proposed and evolved the Web (World Wide Web) architectural style

called as Representational State Transfer (REST) in [70]. Khare and Taylor extended the REST

style to several new styles for decentralized systems [107]. The REST is a basis for one of the

ESOA sub-styles we specify later.

 Singh, et al., propose an SOA model – Commitment-Based Service-Oriented Architecture

(CSOA) in [187]. CSOA defines components as business services and connectors as patterns,

modeled as commitments which support key elements of service engagements. Although our

approach for modeling ESOA styles is very different from [187], the ESOA specifies services as

enterprise services which are based on customers’ functional and non-functional requirements.

Moreover, we consider quality attributes as constraints of ESOA styles, which are similar to the

CSOA commitments.

 In the past decade, component-based architecture systems have evolved to service-oriented

architecture systems, especially in many enterprises with necessities of resolving various

business demands, such as better integration, better agility, and better quality. The architectural

styles are developed from component-based and object-oriented styles to service-oriented

architectural styles (SOA) [127] and ESOA [201][202][204] which is a specific SOA style for

enterprise. Nowadays, the enterprise cloud computing [125][243] as a new distributed style is

receiving a great amount of attention by researchers in both industry and academia. My research

work focuses on ESOA styles as well as ECC styles and their intersection. In the next two sub-

sections, these are surveyed and classified.

12

2.1.2 Formalism and Informalism for Architectural Styles

Except for some traditional and simple architectural styles, such as pipe-filter and client-server

styles, the current specification and modeling of architectural styles is informal and ad hoc [6].

As we know, formalism of software architecture has been investigated for two decades. Many

formal methods [181], like various Architectural Description Languages (ADL), such as ACME

[79], Rapide [78] and Wright [78][200], have been developed. The formalism of architectural

styles, especially of enterprise architectural styles, is still in its early stages. Because of the great

complexity of modern software architectures, such as WWW architectures and large enterprise

architectures, pure formalism of architectural styles is not always possible [209]. R. Allen

showed in [6] that both formalism and informalism of architectural style have their advantages

and disadvantages as listed in Table 2.1:

Table 2.1. Comparison of Formalism and Informalism

Formalism Informalism

 Precise

 Provable properties

 Structures analysis

 Based on architectural principles

 Easy to understand

 Shows how to build one

 Structures design

 Based on architectural intuitions

The conclusion is that formal and informal methods are both useful and needed for specifying

architectural styles [6] [209].

 Formal modeling of architectural styles can be classified into the following major methods as

shown in Table 2.3:

13

Table 2.2. Formal Modeling Methods of Architectural Styles
Formal Modeling Method Characteristics of method References
ADL-based methods, such as

ACME, Alloy
 Using extendable ADL for modeling architectural style

 Describe styles in terms of basic ADL syntax as well as semantic and type
concept

o A set of structure types – component types, connector types and
system topology (configurations) which provide the architecture

structure design vocabulary

o A set of property types which provide the semantic vocabulary for a
family of system.

o A set of constraints which decide how style’s instances of those types

can be used.
o A default structure which prescribes the minimal set of instances that

must appear in any system of the style.

 Tool support – AcmeStudio and Alloy Applyzer

 Based-on first-order logic

 Can precisely describe traditional component-based architectural styles,
such as pipe-filter and client-server

 Does not support architecture dynamism and makes it hard to specify large
distributed systems’ styles

ACME

[77][79]
Alloy [108]

Process Algebra-based methods,

such as PADL
 Formalizing architectural styles by means of a process algebra based

ADL – PADL whose syntax and semantics are based on process algebra

 Describing styles by introducing the intermediate abstraction of
architectural type in a process algebra framework.

 Provide type checking for evaluating architectural compatibility

 Provide precious formalism for traditional architectural styles, such as
pipe-filter.

PADL [25]

LOTOS-based methods LOTOS consists of two parts – an algebra specification language for

defining data and a process algebra for defining the system behavior.

 Combining LOTOS pattern with constraints can specify architectural style
formally.

 Some of traditional styles, such as shared memory, pipe-filter, are
specified by LOTOS

LOTOS [88]

Z and CHAM-based methods Z formal notation is a descriptive language which can be used for

modeling structure of architectural styles

 CHAM = Chemical Abstract Machine allows us to model and analyze

dynamic properties of architectural style

 Mapping Z notation to a formal operational semantics based on CHAM
can allow us to specify and analyze architectural style using tools.

Z + CHAM

[47]

Graph-based methods Its formalism is based on formal graph theory.

 In [93], software architectural style is defined in terms of graph (Nodes,

Edges, Grammar), in which Nodes represent components; Edges denote
the interconnection of components. The graph grammar defines style.

 In [139], software architectural style is described as a hyperedge context-
free grammar.

 Both describe traditional client-server style

 Both provide dynamic reconfiguration, refinement through graph rewriting

[139][93]

Ontology-based methods Ontology-based approach represents architectural style as architectural

knowledge (vocabulary) which is formalized based on description logic.

 It is easy to integrate with some ADLs and other modeling languages, such

as ACME for modeling and analyzing architectural styles.

 Traditional architectural styles can be described and analyzed by the

approach.

[167][168]

From Table 2.2, we can see that the main advantage of the formal approach is its high precision

in accurately modeling and analyzing architectural styles since it provides description languages

for specifying each style’s structure and behavior. However, formal methods are hard to

14

understand and lack the ability to specify large and complex enterprise architectural styles,

especially in modeling and analyzing their dynamic behaviors and changes. In the next section,

we will present a few ADLs that can describe dynamism in software architectures to at least a

limited extent and a few formal methods in Table 2.2 have features for specifying dynamic

behavior and changes. Moreover, the dissertation research shows that combining formal and

informal approaches (FINF method) is a way to model and analyze modern complex distributed

software architectural styles, especially enterprise IT architectural styles in today’s dynamic

environment, such as enterprise cloud service architecture (ECSA) [205].

In fact, the approach in [170] is the first FINF method for specifying software architectures and

architectural styles. SEI Attribute-Based Modeling of Architectural Styles [110] is another

typical FINF approach for specifying and analyzing architectural styles. The research on

software architectural styles developed by Prof. Taylor and his students [209][71][70][107]

adopted the FINF approach. Unlike earlier UML versions, UML 2.0 has been developed with

some capabilities for describing software architecture as a semi-formal ADL. Its extension

capacity, namely, UML profile plus OCL (Object Constraint Language), allows the description

of some of the architectural styles [49][209]. The biggest advantages of the UML approach are

(1) it can virtually describe software architecture, (2) it has tool support, and (3) its notations are

easy to understand by software engineers and architects. It is good at describing static aspects,

such as the structure (components and connectors) of the architecture and its style and some

limited dynamic behaviors by its behavior diagrams, such as activity diagram, state diagram, and

sequence diagram. However, it lacks the capability to describe dynamic infrastructures and

architectural quality attributes as well as their tradeoffs.

15

2.1.3 Modeling Dynamism of Software Architecture and its Styles

Dynamism is playing more and more important roles in modern software architectures and

architectural styles, such as enterprise SOA and cloud service computing, and is receiving

increasing attention of software architecture researchers. Dynamism is a kind of characteristics

and measure of dynamic software system, such as dynamic scalability. Specifying and modeling

dynamism of software architecture and architectural style is not easy. Only a few ADLs have

some capability to describe dynamism. Darwin [209] only allows constrained dynamism. Rapide

[209] can express event-based dynamic architecture. Process Algebra-based formal languages,

such as CHAM [47], CSP and Pi-Calculus [200][209], are good at describing dynamic behavior,

especially such as communication and interaction activities.

Not all architectural styles are capable of supporting the specification of dynamic reconfiguration

and dynamic system quality attributes. C2 [209] is a traditional architectural style which

facilitates runtime reconfiguration. Some formal modeling methods, such as PADL [25] and

graph-based methods [139][93], are able to describe dynamism of architectural styles. Enterprise

SOA and cloud computing are highly dynamic architectural styles. The above-mentioned

modeling methods have some limitations, especially because they lack capabilities for modeling

dynamic service-orientation and supporting dynamic quality attributes. Specifying and analyzing

the dynamism of ESOA and ECSA is an important part of this dissertation.

2.1.4 Architectural Pattern, Type and Styles

In the early 1990s, software architecture research introduced architectural style concept

[180][181][185] which is based on the observation of recurring coarse-grained problem solutions

in related systems (or family of systems), which use a set of specific elements with certain

16

relationships. In parallel with the research on architectural styles, design patterns and pattern

languages have been used for describing common design solutions or idioms that are found

repeatedly in object-oriented software systems. R.T. Monroe, et al., compared architectural styles

with design patterns and pointed out that they are related in two ways in [145]:

 Architectural styles can be viewed as kinds of architecture design patterns or pattern

languages.

 A given architectural style may use a set of idioms which can be viewed as micro-

architectures or design patterns.

P. Clements, et al., describe commonalities and differences in both architectural styles and

patterns [49]. The common goal of both architectural style and pattern research is not to make up

solutions but to capture solutions that are already in use. However, there is a slight difference

between architectural styles and patterns. In particular, a style tends to refer to a coarse grain

design solution (or decision) for a family of systems while a pattern tends to refer to a design

solution localized within a few (or one of many) architectural components of a system [49]. L.

Bass, et al., propose that an architectural pattern is equal to an architectural style [24]. In this

dissertation, we focus on research of architectural styles.

As is well known, the traditional ADL ACME [77][79] can be extended to specify architectural

styles via its type system. In ACME, three types can be defined by architects – property types,

structure types and family types (styles), which can be used to encapsulate recurring structures

and relationships in a family of systems. The structure types can help define component types,

connector types and ports, and roles. Each component type and connector type defines its name

and a list of required substructures, properties, and constraints. The property type is used to

17

define the type of properties. The family type (style) defines a family of systems [77][79]. PADL

is an ADL based on process algebra. PADL models architectural style in terms of an

intermediate abstraction of architectural type [25]. As discussed in the following section, we can

see that the architectural type concept is also the core of ontology-based modeling technology of

architectural styles [167][168].

2.1.5 Ontology-based Modeling of Architectural Styles

We have surveyed different approaches and languages, such as ADL-based ACME and process

algebra-based PADL, for modeling and analyzing software architectures and architectural styles.

Although each of these has different views and capabilities, they all share some common

conceptual foundations. Specifically, software architecture and architectural ontology provide a

set of common concepts and concerns for describing software architectures. D. Garlan, et al.,

describe the main elements of component-based architecture and architectural style ontology in

[77]:

 Components represent the primary computational elements and data stores of a system.

 Connectors represent interactions among components.

 Systems represent configurations (graphs) of components and connectors.

 Properties represent semantic information about a system and its components that goes

beyond structure.

 Constraints represent claims about an architectural design that should remain true even as it

evolves over time.

 Styles represent families of related systems. An architectural style typically defines a

vocabulary of design element types and rules for composing them [185].

18

Beyond ADL-based architectural style modeling language, such as ACME, C. Pahl, et al.,

proposed an ontology-based modeling language for specifying and analyzing architectural styles

[167][168]. They defined a generic architectural style ontology based on ontology and

description logic [19], which serves as a modeling language with rich and extensible semantic of

styles, and operators for combining, comparing and deriving architectural styles and a

composition mechanism for incorporating behavioral composition. Their approach mainly

includes three parts:

 The basic architectural style ontology

The ontology based on ARL language [19] is defined as

ArchType Configuration Components Connectors Role Port, (2.2)

and

Configuration ArchType hasPart(ComponentsConnectors Role Port), (2.3)

Components ArchType hasInterface.Port, (2.4)

Connectors ArchType hasEndpoint.Role, (2.5)

The style ontology consist of five basic elements – Configuration, Components, Connectors,

Role and Port in (2.2). The hasPart, hasInterface and hasEndpoint are also part of the basic

vocabulary.

 Style syntax and semantics for relating architectural styles based on ARL [19]

Based on the elementary type ontology, a style as a specification can be defined as

 (2.6)

where

19

 (2.7)

in which C is a set of concepts and R is a set of roles.

= { | is a concept description based on }. (2.8)

Assume that style is interpreted by a set of models M in which the model notion refers to

algebraic structures that satisfy all concept description . The algebraic structure m in M

includes

20

 Composite elements in architectural styles

C. Pahl, et al., present the architectural composition principles in [168] based on subsumption

which is usually the central relationship in ontology language. The authors introduce the

symbol “ ” to express the composition relationship and define structural composition,

sequential composition and behavior composition. For example, (2.3) can be expressed as

Infrastructure {Components, Connectors, Role, Port}. (2.13)

The ontology-based modeling approach is one of the foundations of my dissertation research on

service-oriented enterprise architecture.

2.1.6 Issues and Challenges

This section surveys different approaches in modeling and analyzing software architectures and

architectural styles. It also compares formal and informal methods and finds that mixing formal

and informal specification of architectural styles is a better way to investigate complex and larger

enterprise architectural styles. From the survey, we identify some of the issues and challenges

involved in research on software architecture and architectural styles.

 Most formal methods lack the capability to model architectural styles for large, distributed,

highly dynamic and complex systems, such as ESOA style and ECSA style systems.

21

 Given the complexity and dynamism of service-oriented enterprise architecture, especially

those based on modern Internet architectures, traditional components-controllers-and-

configurations is not enough and not capable for describing and analyzing them.

 Specifying and analyzing dynamism of software architecture and architectural style is one of

the challenges.

 Specifying and analyzing quality attributes of software architecture and architectural styles is

another challenge under highly dynamic distributed enterprise environments.

2.2 Modeling Enterprise Service-Oriented Architecture

The research work presented in this dissertation is rooted in the following three main research

areas: (1) traditional software architecture model and styles, (2) enterprise service-oriented

architectural model and its styles which include their formal as well as informal specifications

and classifications, and (3) ESOA architectural evaluation.

2.2.1 Traditional EAI Model and Styles

 The ESOA is an evolution of traditional Enterprise Application Integration (EAI). The EAI is

an integration framework composed of a collection of technologies and services which form a

middleware to enable integration of systems and applications across the enterprise.

 Erasala, David and Rajkumar [65] conducted a survey of EAI model. EAI software

architecture is a middleware-centric integration architecture, such as CORBA, J2EE application

servers. Hub-Spoke, EAI Message Broker and Point-to-Point are its major architectural styles.

 Giesecke [81] investigates the middleware-induced styles for EAI. He found a way to select

middleware for EAI architecture based on different styles – CORBA style, RPC style, ETL style

and MOM style.

22

 Andersson and Johnson [14] describe architectural integration styles for large-scale

enterprise software systems. These styles include

 Database gateway style

 Desktop integration style

 Message route style

 Database federation style

 Point to point style

 Adapter style

 Hohpe and Woolf [94] define and describe 65 enterprise integration patterns for EAI.

Although EAI is moving to ESOA in enterprise, most of the patterns they defined will be used in

ESOA architecture analysis and design.

2.2.2 SOA Model and Specification

 The triangle model (Figure 2.1) of SOA presented in the literature is a basic SOA model

[140]. It presents the interaction model of three parties – Service Provider, Service Broker and

service Requester in SOA. However, it does not provide specific features in SOA or ESOA, for

example, SOA Quality and SOA management.

Figure 2.1. Triangle Model of SOA

23

OASIS [154] develops and proposes an SOA Reference Model (SOA-RM) which defines SOA

as a paradigm for organizing and utilizing distributed capabilities that may be under the control

of different ownership domains. It provides a uniform means to offer, discover, interact with and

use capabilities to produce desired effects consistent with measurable preconditions and

expectations. The SOA-RM specification bases its definition of SOA around the concept of

“needs and capabilities”, where SOA provides a mechanism for matching needs of service

consumers with capabilities provided by service providers.

 Some of the research work of SOA modeling and specification is based on UML2 profile.

Butler [34] proposes an SOA metamodel (SAE) based on UML 2.0 profile. The approach

provides a vehicle to quickly begin using the existing UML tools for visually depicting SOA.

OMG [161] released its Service-Oriented Architecture Modeling Language (SoaML) on

08/04/2008. The SoaML is also based on UML2 profile, which provides a tool for modeling

services behavior through UML2 collaborations platform-independently.

 Many SOA industrial players, such as IBM [91], Oracle [163], SUN [195], SAP [214] and

Microsoft [141], develop their specific SOA and ESOA models which tie to their products and

implementation.

2.2.3 Modeling and Validating SOA vs. Style

 Lublinky [127] defines SOA as an architectural style which is similar to the definition of

enterprise SOA as an architectural style in my research work on ESOA [201][202][203][204]. He

proposed an enterprise SOA conceptual model in which SOA consists of its elements –

organization, business model, business process, semantic data model, documents, services and

24

information. My research work defines ESOA style through a 7-tuple model which is based on

the domain ontology model of service-oriented enterprise [204].

 Baresi, Hecke, Thone and Varro proposed several UML models for modeling, refinement and

validation of SOA style applications in [23]. The approach is based on graphs and graph

transformation. Based on a formal interpretation of the approach, the consistency between SOA

platform and applications can be validated.

2.2.4 SOA Architecture Evaluation

 Brien, Bass and Merson [158][159] give a detailed analysis of SOA quality attributes. Their

work addresses the relationship between SOA and software architectural quality attributes. They

discuss the thirteen quality attributes which should be taken into consideration when designing

an SOA application system. It evaluates how quality attributes guide SOA system design and

what is the impact of an SOA approach on the quality attributes. The quality attributes become

the basis for the SOA architecture evaluation.

 Bianco, Kotermanski and Merson [27] propose an evaluation method for evaluating SOA

based on quality attributes. They list important SOA design questions that affect quality

attributes and discuss each quality attribute through evaluation questions.

 Choi, Her and Kim [42] define seven important SOA quality attributes (QA) – availability,

performance, reliability, usability, discoverability, adaptability and composability and define

metrics for each QA. Their model analysis and SOA evaluation is based on SOA consumers’

prospective as the first requirement.

25

2.2.5 SOA Application Architectures and Styles Classification

 Tsai, et al., [214] develop a new methodology and model for classifying SOA-based

application architectures that have been proposed based on the structure of application, the

runtime re-composition capability, the fault-tolerance capability, and the system engineering

support.

 Zhao, Dong, and Peng develop classification [248] on ontology and semantic web

technologies for software development.

 Tang, Dong, Zhao and Tsai investigate a classification of ESOA styles in [203][204]. The five

major ESOA styles are compared based on the ESOA model in [201][202][204].

 Cesare, et al., compare RESTful web services with traditional web services in architectural

principles and decision in [37]. Their work is close to the comparison between EWOA style and

EWS-* style [203][204]. However, the comparison in [203][204] emphasizes architectural styles

– their common parts and constraints.

2.2.6 SOA Design Patterns

 Pahl and Barrett [166] present a modeling and transformation method for service-based

software systems. Architectural configurations, expressed through architectural patterns, form

the core of an underlying specification and transformation calculus. Patterns at different levels of

abstraction form transformation invariants that structure and constrain the transformation

process. They explore the role that layered patterns can play in modeling and as invariants for

transformation techniques.

26

 Erl [68] provides a set of important SOA design patterns in the book. The SOA patterns are

categorized into three groups – Service Inventory Design Patterns, Service Design Patterns, and

Service Composition Design Patterns.

2.2.7 SOA Formalization

 Various formal models [1][32][58][84][200] for services and service processes have been

developed. Table 2.3 summarizes the formal methods for SOA modeling:

Table 2.3. SOA Formalization
SOA & Standard Formal Methods & Formalism

General Modeling SO-SAM: PN and TL [73]

 SCC: - calculus, Orc logic [29]

 ArchiMate: -methods[118]

Specification: WSDL Z notation [232]

orchestration

WS-BPEL

 YAWL: Peril Net [1]

 DySco: CSP [171]

 Orc: CCS, CSP and Kleene Algebra [144]

 Web

Calculus: timed extension of -calculus with a

transaction construct [133]

Choreography

WS-CDL

 -Process: - calculus [58]

 SCIFF: ALP, CLP [5]

 GMF: -calculus and Solos calculus [102][103]

Design ASDL: ITL and CSP [193]

However, the formal model for ESOA and ECSA has not been defined.

2.2.8 Issues and Challenges

Unlike traditional software architectural styles, SOA and ESOA are relatively new architectural

styles. Most of the research surveyed in the section either focused on some specific aspects or

emphasized their structure based on the vendor’s architectural approach. Therefore, the whole

architectural style model of ESOA needs to be built for better understanding of complex

enterprise SOA systems for both researchers and practitioners. Some researchers view SOA and

ESOA as architectural styles, but the formal description and analysis of architectural quality

27

attributes of ESOA have not been investigated. [204] depicts seven characteristics of enterprise

architectures as shown in Table 2.4:

Table 2.4. Characteristics of Enterprise Architectures

Characteristics Description

Customer oriented System design is based on customers’ requirements

 System is interacted by customers

 Systems serve customers and meet business demands

Heterogeneous environment Complex organization structure

 Multiple-vendor software products

Distributed computing Everything is connected by enterprise networks

 Software systems are highly distributed through the Internet

Integration Modern software systems are integrated with existing legacy

systems

 Different systems in different organizations or different

enterprises are integrated.

Manage and access

customer/business data and

system data

 Business and customer data are managed and can be accessed

 System data are managed and can be accessed

Support business processes Business transactions

 Workflows

Meet certain non-functional

requirements

 Performance

 Security

 Scalability

 Agility

 Flexibility

 Extensibility

 Reusability

 On time and within budget

 Other requirements

Therefore, building a framework for modeling and analyzing enterprise SOA is very challenging.

2.3 Modeling Enterprise Cloud Service Architecture

Current work on bridging ESOA and Cloud Computing (CC) can be classified in the

following categories: (1) Specifying and analyzing cloud service-oriented architectural style or

framework; (2) CC and SOA convergence in enterprises; (3) creating new approaches combining

28

SOA approaches and cloud computing which includes bringing SOA best practices into cloud

computing and adopting cloud computing power for improving existing ESOA architectures.

2.3.1 Specifying and analyzing cloud service architecture

Zhang and Zhou [243] proposed a Cloud Computing Open Architecture (CCOA). The CCOA

is a cloud computing service-oriented architecture framework which bridges the power of SOA

and virtualization in the context of Cloud Computing ecosystems. Seven principles of cloud

computing architecture are also presented in [243].

Many SOA software venders, such as IBM [98], HP [95], SUN [197], Oracle [164] and

Microsoft [142], proposed their new software product architectural models and frameworks

which combine the SOA and cloud computing powers. The model presented in [243] can be used

for evaluating the architectures of the different approaches.

2.3.2 Cloud Computing and SOA convergence in enterprises

Linthicum presents the dream team of cloud computing and SOA in [125]. He points out that

SOA and cloud computing provide a great deal of value when they work together. His book

describes the relationship of SOA and cloud computing and guides enterprises on how to make

cloud computing and SOA convergence step-by-step. We describe the relationship of SOA and

cloud computing through the hybrid architectural style.

Lakshman [115] shows how cloud stretches the SOA scope and proposes a process for

idendifying cloud scenarios. Its case studies show that the Microsoft cloud Azure integrates into

the enterprise SOA system.

Lawson [119] points out that SOA can help cloud computing in three aspects: (1) One can

move services around as needed – including to a cloud server – to address pressing business

29

needs. (2) One can take advantage of virtualization or, as Linthicum explains, address “core

applications as logical instances that may run on any number of physical server instances,

providing better resource utilization and scalability.” (3) One can create mashups or on-the-fly

composite applications with services and leverage the cloud's computing power.

2.3.3 Cloud Architecture

Varia [222] introduces the cloud architectures of Amazon Web Services (AWS). AWS is a

typical example of adopting ESOA’s web services (SOAP or REST) to their cloud architectures.

DeCandia, et al., [57] present Amazon service-oriented cloud architecture through Dynamo

design and how SOA governance can help clouds in achieving high performance and

availability.

Dornemann [64] proposes an approach that extends an open source SOA BPEL

implementation to use Amazon’s EC2 for providing the process with dynamic resources.

Several research works, such as [173][222][236], describe Amazon cloud, Google cloud, and

Saleforce cloud.

2.3.4 Issues and Challenges

If SOA and ESOA are in their early stages, cloud computing is still in its infancy stage. From

current research works, we can see that the research and practice of cloud computing tends to

combine cloud computing with service-oriented computing. The existing technology for

modeling and analyzing enterprise cloud service architecture is still immature and cloud

computing is very complicated as well as dynamic with many issues, such as performance,

security, and availability. Hence, building a framework for modeling and analyzing enterprise

cloud service architecture is very challenging.

30

2.4 SLA-Aware Enterprise Service Computing

A body of research exists related to our work, which can be categorized as follows: (1) SLA

standards and languages; (2) Modeling SLA and QoS; (3) SLA-Aware SOI; (4) SLA

Management and SLM; and (5) Adaptive and Automated Computing.

2.4.1 SLA Frameworks, Standards and Languages

There are several SLA frameworks, standards, and languages for SOA systems based on web

services. This section introduces SLA frameworks, standards, and languages as well as some

other related research works.

The Web Service Level Agreement (WSLA) [55][105][128] is a specification and reference

implementation proposed by IBM. The WSLA provides a framework for specifying and

monitoring SLA for web services, which includes:

 A Runtime WSLA architecture, and

 An XML-based WSLA language.

The WS-Agreement [128] is a specification from the Open Grid Forum (OGF) which provides

an agreement protocol between service consumers and service providers. It uses an extensible

XML language for specifying the agreement which includes a negotiation constraint. The

specification mainly includes three parts:

 A schema for specifying an agreement;

 A schema for specifying agreement templates to facilitate discovery of compatible agreement

parties;

 A set of port types and operations for managing agreement life-cycle which includes

creation, expiration and monitoring of agreement states.

31

The WS-Policy and WS-Policy Attachment [126] are specifications of service qualities which

are part of SLA developed by the World Wide Web Consortium (W3C). It is often used in

conjunction with other web service specifications, such as WS-Security policy, WS-

ReliableMessage policy, and WS-Transaction policy. The specification is not based on

agreement but on service quality requirements.

The SLAng [189] is an XML language for defining SLA which is a part of the contracts

between web service clients and web services. It has been developed by the TAPAS project at

UCL.

The Web Service Offering Language (WSOL) [211][212] is a formal XML language

compatible with the Web Services Description Language (WSDL). While WSDL is used for

describing operations provided by web services, WSOL provides a formal specification of

multiple classes of services for one web service. The classes of services for a web service are

distinguished by different combinations of functional provisions and QoS constraints (non-

functional requirements [46]), such as response time, simple access rights, and cost/performance.

It allows service consumers to select different classes of services in depth, or based on cost.

Hence, it can be used to enable a service provider’s provisioning models and a consumer’s pay-

as-you-go business models.

2.4.2 Modeling and Formalizing SLA and QoS

Modeling and formalizing SLA and QoS has received much attention in the enterprise service

computing research community. Traditional SLA is typically specified by plain-text documents,

such as Amazon’s EC2 Service Level Agreement (http://aws.amazon.com/ec2-sla/). The

machine unreadable format would not be usable for QoS management and automated negotiation

http://aws.amazon.com/ec2-sla/

32

in today’s dynamic and on-demand service computing environments. Enterprise cloud service

computing provides a pay-as-you-use business model. Consumers pay for the services and QoS.

Without using machine-processable SLA, the service billing system would not be able to

automatically calculate charges when users are using the cloud service. Moreover, the service

billing system would not be able to automatically reduce the customers’ charges when the system

fails or exhibits slower performance. Therefore, much research focuses on specifying SLA and

QoS as machine readable and processable languages. Moreover, service-oriented enterprises are

hard to manage and it is difficult to monitor the quality of their systems in order to satisfy their

customers and to reduce the service cost. WSLA [129], WS-Agreement 0, SLAng [189] and

WSOL [211], introduced in Section 2.4.1, not only make SLA and QoS machine readable and

processable, but also provide formal specifications for system modeling and management. Keller

and Ludwig describe a novel WSLA framework for specifying and monitoring SLA for Web

services [105]. In addition, Tosic and colleagues developed a management infrastructure to show

how WSOL manages web service applications [212].

There is ontology-based SLA and QoS modeling research. Dobson and Sánchez-Macián

proposed a unified QoS and SLA ontology [61]. Zhou, et al., developed a DAML-QoS ontology

[249] to provide better QoS metric models. They proposed a semantic modeling framework for

QoS specification [249]. Zhou and Niemela [250] extended OWL-S by including a QoS

specification ontology. In addition, they proposed a novel matchmaking algorithm, which is

based on the concept of QoS profile compatibility. Kritikos and Plexousakis developed a

semantic QoS-based framework for web servive description and discovery using OWL-Q [113].

33

Rigorous formal modeling is helpful towards reasoning about the structure and behavior of SLA

as well as QoS based systems and investigating the issue of the description of SLA. Meng

proposed a QCCS [136] formal model to enforce QoS requirements in service composition based

on Milner’s CCS [200]. Nicola, et al., defined a process calculus for QoS-Aware applications

[149]. Chothia and Kleijn introduced Q-Automata [43] for modeling QoS on trust and other

quality attributes, such as availability and response time.

2.4.3 SLA-Aware Enterprise Service Computing

SLA-Aware enterprise service computing is receiving attention from many researchers since

SLA-Awareness brings forth software quality management and QoS into enterprise service

computing and implements the enterprise non-functional requirements. Zeng, et al., proposed a

QoS-Aware middleware, Agflow [242], for supporting web service composition based on the

QoS model they developed. McGough, et al., defined an end-to-end workflow pipeline –

Workflow Management Service (WfMS) [134] which is a real-time QoS aware workflow

management system based on both strict and loose QoS guarantees. The guarantee requirements

are defined in an XPath document, which is connected to a BPEL engine. Wada, et al., proposed

a multiobjective optimization framework E
3
 for SLA-Aware service composition. SLA-Aware or

QoS-Aware approach is also applied to web service selection [126]. The aforementioned work

does not include SLA negotiation and dynamic resource scheduling. Brandic, et al., presented

novel meta-negotiation architecture for SLA-Aware grid services [30]. Song, et al., proposed a

framework which supports resource scheduling in a virtualization environment for achieving

QoS [194].

34

2.4.4 SLA Management and SLM

SLA management and Service Level management (SLM) play important roles in SLA-Aware

enterprise service computing. While some research focuses on aspects such as SLA-Aware

service composition and workflow, SLA modeling, and specification, there are some research

works that emphasize SLA management. This addresses end-to-end scenarios across all layers,

including internal and external service interfaces, in an enterprise service computing stack. The

SLA@SOI consortium published a series of their research works [190] about SLA-Aware

Service Oriented Infrastructure (SOI) empowering the service economy in a flexible and

dependable way. Their research works include general as well as multi-level SLA management

for SOI [190] and SLA-Aware resource management [51]. The Open group published the SLA

Management Handbook [162] from Enterprise Perspective as Volume 4 of a series of SLA

management handbooks edited by the TeleManagement FORUM. The book is based on a lot of

research and practice in SLA management and aims at a true end-to-end SLA. Yeom, et al.,

proposed a contract-based web service QoS management system architecture [240]. Badidi, et

al., presented a broker-based architecture for web service QoS management (WS-QoSM [21])

which is a QoS-aware web service management architecture based on the common concept of

brokerage service to mediate between web service providers and consumers. The management

operations are executed by the QoS broker. Bhoj, et al., described SLA management

architectures in federated environments which share selective management information across

administrative boundaries [26]. The SLM focuses on managing SLA commitments at the service

level according to the SLA. Figure 2.2 describes the relationship of Key Quality Indicators

(KQI), Key Performance Indicators (KPI), SLA and SLA Monitoring in SLM [162]:

35

Business Application

Key Quality Indicators(KQI)

Business Service

Key Performance Indicators

(KPI)

Monitoring

Instrumentation

Service Level

Agreement

Service Level

Monitoring

Mapping &

Negotiation

Figure 2.2. Relationship of KQI, KPI, SLA in SLM

Traditional SLM architectures fail to cope with the dynamic runtime nature of enterprise service

oriented architecture (ESOA). Schmid and Froeger [186] proposed a decentralized QoS-

Management architecture in SOA based on the self-management framework of Service

Component Architecture (SCA). Nurmela [150] developed an evaluation framework for SLM in

the federated service management context. The SLM not only provides service management for

achieving the QoS required by service consumers (enterprise business customers), but also

differentiates services [55][80][247]. For instance, a web service can be differentiated into Gold,

Silver and Bronze service classes based on KQI and KPI, as defined in the SLO and SLA, with

the price of service being associated with each of the service classes. This approach provides a

dynamic service provisioning framework and is playing an important role in enterprise cloud

service computing.

2.4.5 Adaptive and Automated Computing

SLA-Aware enterprise service computing provides a way to allow enterprises to achieve higher

quality assurance and cost-effectiveness in their service oriented architecture systems. However,

36

it also brings forth challenges to distributed service computing in enterprises. The challenges

include higher adaptability and automation of enterprise service computing. There is a body of

research around the challenges. Yau and An discussed the challenges of adaptive resource

allocation for service-based systems [239]. Gao and colleagues presented a QoS analysis

technology of adaptive SOA based on a dynamic reconfiguration approach [76]. Wang and

colleagues proposed an SLM framework by using QoS monitoring, diagnostics, and adaptation

for networked enterprise service oriented systems [233][234]. Self-management [106] and self-

adaptive automatic computing [45][76][239] are new challenges for today’s SLA-Aware

enterprise cloud service computing, such as ECSA [205].

2.4.6 Event-Driven and Real-Time Enterprise Service Computing

Enterprises need automated SLM to make sure they meet SLAs and optimize service delivery in

order to improve business outcomes. The SLM for SLA-Aware ESC requires real-time or close

to RT visibility, dynamic SLA negotiation, and dynamic system reconfiguration and continuous

refinement. However, this level of management is not easy to accomplish with today's distributed

and interconnected applications because they execute on heterogeneous systems in different

locations. As a result, getting end-to-end visibility to track real-time processes and assure that

individual business transactions meet SLAs is a challenging task. Event-Driven Architecture

(EDA) [208][204] and RTSOA [220][221] are solutions for this challenge.

2.4.7 Challenges and Research Direction

There are a lot of challenges and opportunities for both researchers and practitioners in the

emerging area. [206] summarizes these challenges (or issues) and future research directions as

shown in Table 2.5:

37

Table 2.5. Challenges and research directions
Challenge Research Directions
Theoretical foundation of SLA-Aware

enterprise service computing

The SLA-Aware enterprise service computing is a new paradigm of distributed

computing. Its theory and formalization is a hot research topic. There are several
research directions:

 Ontology of SLA-Aware enterprise service computing, such as SLA and QoS

ontology [61].

 Formal calculus for programmable QoS, such as Kaos [148].

 Event calculus for WS-Agreement [131].

Modeling SLA-Aware enterprise service

computing styles

The SLA-Aware enterprise service computing can be viewed as an architectural

style. Modeling the style and its refinement, such as its substyles, is an interesting

research topic. Recent trends are

 Ontology-based modeling methodology [168].

 Architectural Description Language (ADL) based modeling, such as ACME [78];

Alloy [108].

 Graph-based modeling [23].

Automated and Adaptive SLA-Aware enterprise

service computing

The SLA-Aware enterprise service computing requests automated and adaptive

service level management automated QoS-pricing computing, SLA-based adaptive
optimization, elastic infrastructure and dynamic system reconfiguration. Those

requirements introduced many challenging research topics we have outlined in this

chapter.

Real-Time or Close to RT SLA-Aware

enterprise service computing

To guarantee delivering services and the end-to-end transaction process on SLA in a

highly dynamic environment, such as the cloud, SLA-Aware ESC needs to support

real-time or close to RT monitoring as well as measurement and management.
Event-Driven Architecture (EDA) and RTSOA provide ideas and technologies. How

to plug them into SLA-Aware ESC becomes another interesting research direction.

Automated End-to-End and chain SLA in

transaction process or workflow

There is a lot of research on SOA process and workflow. However, how to meet

SLAs for each service node in the end-to-end transaction process or workflow is a

challenge. Modeling the SLA-Aware SOA process and its architecture is worthy of
further research.

SLA-Aware application server and enterprise
message bus (ESB) and other service process

engines

SOA-enabled application servers, such as Weblogic, Websphere, ESB and process
engines play an important role – the role of service mediator in enterprise service

computing. Researching the next-generation SLA-Aware and adaptive highly-

intelligent service mediator is also an exciting project.

2.5 Summary

This chapter presented an in-depth review of the related works and the background of this

dissertation. It discusses issues and challenges in research aimed at modeling and analyzing

enterprise software architectures and architectural styles. This dissertation builds a framework

for resolving some of the issues and accepting some of challenges. This chapter also introduces

and analyzes some concepts and methodologies of software architecture and architectural style.

These are fundamental basis for the dissertation research. The next five chapters build a

38

framework for modeling and analyzing service-oriented enterprise architectural styles and apply

the framework to modeling and analyzing ESOA, ECSA and other enterprise architectural styles.

39

CHAPTER 3

FRAMEWORK FOR SERVICE-ORIENTED ENTERPRISE

ARCHITECTURAL STYLES

We have informally defined enterprise architectural style (EAS) in Chapter 2. EAS is an

abstraction of all enterprise software architectural styles, which includes traditional EAS, such as

EAI style, and modern service-oriented enterprise architectural styles, such as ESOA and ECSA.

The dissertation focuses on modeling and analyzing service-oriented enterprise architectural

styles. This chapter presents a framework for modeling enterprise architectural styles using the

ontology-based modeling methodology proposed in [168]. The framework includes (1) enterprise

architectural style (EAS) ontology, (2) EAS style syntax and semantics, and (3) definitions of

ESOA and ECSA.

3.1 EAS Ontology

[168] proposed the basic architectural style ontology (ASO) based on ontology and description

logic ALC language [19], and it presented an operation calculus for developing architectural

styles. [168] also showed how ASO integrates with formal ADLs, such as ACME [79]. However,

the basic vocabulary contained in the ontology consists of five elements – Configuration,

Component, Connector, Port, and Role – which are suitable for modeling traditional component-

based architectural styles, such as Client-Server style, Pipe-Filter style, etc. The five basic

elements are not enough to describe enterprise architectural styles, such as ESOA and ECC,

40

since (1) they are lacking of concept and description of enterprise infrastructure, management,

and process; (2) system family in traditional styles lived on dedicated physical servers with static

configuration in certain period of time; however, modern enterprise systems in ESOA or ECSA

styles are highly integrated, distributed, and dynamic. Specifically, for virtualized infrastructure

in ECC, physical resources, such as network and servers are dynamically connected and

reconnected on-demand. The virtual workloads are mobilized and look like fluid – changing

dynamically. Therefore, it is hard to model virtualized infrastructures and elastic resource

management (in which “elastic” means allocating computer resources dynamically.) using

traditional style models. We extend the basic architectural style ontology to EAS ontology by

using nine parts – Infrastructure, Management (or Governance), Process, Configuration,

Component, Connector, Port, Role, and Quality Attributes (QA) and we introduce the time t as a

parameter in Infrastructure, Management, Process, and Configuration [207]. The time t separates

each of the four parts into two subparts – static part and dynamic part. If Infrastructure is not

changing with time, it is a static Infrastructure; otherwise, it is a dynamic Infrastructure.

Similarly, we can define static Management and dynamic Management; static Process and

dynamic Process. Each of static Infrastructure, Management, and Process is associated with

related static Configuration and each of dynamic Infrastructure, Management, and Process is

associated with corresponding dynamic Configuration. The semantics of EAS ontology is

defined as follows:

EAType Infrastructure(t)Management (t) Process (t)Configuration (t)

 ComponentConnector PortRoleQA, (3.1)

in which, EAType denotes enterprise architecture type, and

41

Configuration (t) hasPart.(ComponentConnector PortRole) (t), (3.2)

Component EAType hasInterface.Port, (3.3)

Connector EAType hasEndpoint.Role, (3.4)

where Configuration (t) represents the application topology; Component is an abstraction of

application, component, or service; Connector is an abstraction of the communication (behavior)

and glue or link (structure) between Components.

Infrastructure(t) IConfiguration(t) IComponent

 IConnector PortRoleQA. (3.5)

IConfiguration(t) hasPart.(IComponent IConnector PortRole)(t), (3.6)

in which t denotes time and IConfiguration(t) is the topology of enterprise infrastructure

architecture. If it is invariant with time, then it represents a static topology; if it varies with time,

then it denotes a dynamic topology, such as dynamic infrastructure and cloud elastic topology

EC2 [9][226].

IComponent Infrastructure(t) hasInterface.Port

IConnector Infrastructure(t) hasEndpoint.Role

Virtually, the Infrastructure(t) can be depicted as shown in the following Infrastracture ontology

Figure 3.1:

42

IComponent

Infrastructure (t)

1..*

1

Port

1

1..*

IConnector

InterfaceEndPoint

1

1..*

IConfiguration (t)

(topology)
1 1..*

11..*

Role

1

1..*

h
a

s
In

te
rfa

c
e
4

1

1

h
a

s4

1

1..*

h
a

s
E

n
d

P
o

in
t4

1

2

c
o

n
n

e
c
t4

Process (t)

Service

Mamagement (t)
1

1..*

hosted4

1

1..*

support4

1

1..* 3 support

1..*

1

3 playing

11 3 binding

Application

(Service Consumer)

1

1..*

3 support

Service Provider

1..* 1

3 provide

1..*

1

in
v
o

k
e
4

1..* 1

interact4

QA
1

1..*

Figure 3.1. Infrastructure Ontology

Management(t) MConfiguration(t)MComponent

 MConnector PortRoleQA. (3.7)

MConfiguration (t) hasPart.(MComponentMConnector PortRole)(t), (3.8)

in which

MComponent Management hasInterface.Port

43

MConnector Management hasEndpoint.Role

Similarly, we describe the Management(t) by using a diagram of Management Ontology in

Figure 3.2.

MComponent

Management (t)

1..*

1

Port

1

1..*

MConnector

InterfaceEndPoint

1

1..*

MConfiguration (t)

(topology)
1 1..*

11..*

Role

Infrastracture (t)

Process (t)

Application (t)

1
1..*

manage4

1

1..*

m
a

n
a

g
e
4

11..*3 manage

1

1

h
a

s4

1

1..*

h
a

s
In

te
rfa

c
e
4

1

1..*

h
a

s
E

n
d

P
o

in
t4

1

2

c
o

n
n

e
c
t4

1..*

1

3 playing

11 3 binding

Service

1

1..*

c
o

n
s
is

t
o

f4

1

1..*
m

a
n

a
g

e
4

QA
1

1..*

Figure 3.2. Management Ontology

Process (t) PConfiguration(t) PComponent

 PConnector PortRoleQA, (3.9)

44

PConfiguration(t) hasPart.(PComponent PConnector PortRole)(t), (3.10)

PComponent Process hasInterface.Port

PConnector Process hasEndpoint.Role

The Process ontology can be described as shown in the following diagram in Figure 3.3:

PComponent

(services, Data)

Process (t)

1..*

1

Port

1

1..*

PConnector

(services, Data)

InterfaceEndPoint

1

1..*

PConfiguration (t)

(topology)
1 1..*

11..*

Role

1

1..*

h
a

s
In

te
rfa

c
e
4

1

1

h
a

s
4

1

1..*

h
a

s
E

n
d

P
o

in
t4

1

2

c
o

n
n

e
c
t4

Application

(Service Consumer)

1

1..*

e
x
e

c
u

te
4

Customers or Events

1 1..*

interact/trigger4

11 3 binding

1..*

1

3 playing

QA
1

1..*

Figure 3.3. Process Ontology

45

We define quality attributes type QAType as

QAType PerformanceReliability ScalabilityReusability

 Maintainability SecurityCost Interoperability

 Availability FlexibilityManageabilityAgility

 SimplicityConsciousnessAccountabilityOtherQA. (3.11)

The quality attribute ontology can be defined as:

QA hasTradeoff.(PerformanceReliability Scalability

 ReusabilityMaintainability SecurityCost

 InteroperabilityAvailability Flexibility

 ManageabilityAgility Simplicity

 ConsciousnessAccountability OtherQA). (3.12)

Here, the roles hasPart, hasInterface, hasEndpoint, and hasTradeoff are part of the basic

vocabulary of EA styles. [168] formally defines hasPart by defining an architectural composition

principle and introducing a notation to express the composition relationship. The composition

is syntactically used in the same way as subsumption “ ” to related concept description. (3.2)

can be formally described as follows [168], for given t:

 Configuration {Component, Connector, Port, Role}, (3.13)

The hasInterface expresses the structural link from components to ports and hasEndpoint denotes

the structural links from connectors to roles.

46

 As defined here, the five basic elements - Configuration, Component, Connector, Port, and

Role are still the most atomic concepts. The new concepts – Infrastructure, Management, and

Process are defined by those basic concepts. They are defined as sub-types of EAType.

Virtualized Dynamic Infrastructure

Virtual Infrastructure

Physical Resource Pool

Service

Comsumer

Dynamic

Load

Balancer

Network

Virtual

router

Virtual

Services

(Process)

Management

Other Management Services Monitoring Services

Component IComponent

IComponent
IComponent

IComponents

IConnector

Port

Service Endpoint

Service Provider

Services

IConfiguration(virtual_parts, hypervisor, physical_parts)

Connector

MComponents

MConnector

Storage

StorageStorage

Storage

Component

Port

Figure 3.4. Description of Virtualized Enterprise Architecture

Figure 3.4 describes a high level virtualized enterprise architecture and mainly depicts the

virtualized enterprise cloud-enabled dynamic Infrastructure in terms of EAS ontology (3.5) and

(3.6). Obviously IComponent includes virtual services, virtual servers, virtual network, and

physical servers, physical network, physical service providers as well as services in the resource

pool. The resources are located in enterprise data center and may be located in cloud providers’

data center. IConnector includes LBC-VM, VM-VR, VR-RN, and NR-EP in which LBC = Load

47

Balancer; VM = Virtual Machine; VR=Virtual Router; RN=Resource Network; EP=End Point of

service (Service Port).

The QA in (3.12) can also be formally defined as a composition of architectural quality

attributes:

 QA {Performance, Reliability, Scalability, Reusability, Maintainability,

 Security, Cost, Interoperability, Availability, Flexibility, Manageability,

 Agility, Simplicity, Consciousness, Accountability, OtherQA}, (3.14)

The composition is under an optimization constraint through tradeoff [159][207] for

consideration of design constraints. The vocabulary we defined is extensible by adding

additional parts and elements using the same mechanism based on subsumption and concept

description.

3.2 EAS style syntax and semantics

We denote an enterprise architectural style as EAS which is defined by a specification based on

the style syntax and semantics as [207]

48

 Intersection of EAS styles:

Removing part of concepts and/or roles from one style based on another style is required for

style development. The intersection of styles can specify the requirement, which is expressed

by EAS1 EAS2 defined as

 (3.16)

 Union of EAS styles:

Adding parts of one style to another style is often required for generating a new hybrid style

by two styles. The union of styles is denoted by EAS1 EAS2 and deals with the scenario

which is defined as

 (3.17)

 Refinement of EAS Styles:

Refinement of style is important for keeping consistency of all generation of styles, such as a

combination of multiple styles, derivation of a new style from an existing style, and

Specifically, we define a notation “ ” to indicate the style extension relationship. If style

EASi is an extension of style EASj, then

 EASj EASi, (3.19)

49

3.3 ESOA and ECSA

As we know, ESOA and ECC are different enterprise architectural styles. We have defined the

ESOA in [204] and we redefine it based on the ontology-based style notion as

 (3.20)

where

 (3.21)

In (3.20), S,C,D,SI,SM,SP,SQ are defined in Chapter 4, in which S,C,D are primary component

types in ESOA, SI, SM, SP are architectural sub-types – SOA infrastructure type, SOA

management type, and SOA process type, respectively. SQ is the architecture quality type or

In (3.24), Sc, Cc, Dc are cloud services, cloud service consumers, and cloud data, respectively,

which are primary component types in ECC. SIc, SMc, SPc are architectural sub-types and they

are cloud service infrastructure, cloud service management, and cloud service process,

respectively. SQc is the cloud architecture quality type or attribute which is the set of design

constraints of cloud systems. SDc
is the cloud specific architecture sub-types which include

50

cloud Development platform, cloud service Deploy type, and cloud service Delivery mode. ECC

will be discussed in Chapter 5.

3.4 Summary

This chapter presents a framework for modeling and analyzing enterprise architectural styles

based on ontology-based modeling technology [167]. The chapter defines nine major

vocabularies of enterprise architectural styles and shows how styles can be extended, combined

and refined by basic EAS ontology syntax and semantics [207]. The next chapter describes

ESOA styles in terms of the framework and research work [201][202][203][204].

51

CHAPTER 4

ENTERPRISE SERVICE-ORIENTED ARCHITECTURE

This chapter defines and specifies an important enterprise architectural style ESOA based on the

framework built in the Chapter 3 and previous research work [201][202][203][204].

4.1 Introducing ESOA

 With frequently changing business requirements and the rapid development of technology,

enterprise systems have to be built based on adaptable, flexible, and reusable architectures. To

reduce coupling, service-oriented architecture (SOA) [44][66][67][96][188][213][215][244] has

been applied in many software systems by assembling loosely coupled services that can be used

within multiple business domains. SOA provides a flexible set of design principles, constraints,

and governing concepts to aid in system design, development, and integration. It defines the

interface in terms of protocols and functionality. It also defines service communications by

passing data in a shared and well-defined format, or by coordinating an activity among services.

SOA can help businesses respond quickly and cost-effectively to changing market-conditions by

promoting interoperability, reusability, and extensibility.

 Enterprise SOA (ESOA) is a special type of SOA for enterprises. As an architectural style

[170][185][70], it is an abstraction of a family of concrete enterprise architectures (instances of a

style). It specifies the key aspects of the architectures, and encapsulates important design

decisions of common architectural elements and gives emphasis to common constraints as well

52

as their relationships. ESOA combines SOA basic principles and constraints with specific

enterprise architecture environment and business requirements (functional and non-functional).

From the architectural style prospective, ESOA has more constraints than SOA. The constraints

of ESOA are based on enterprise-wide requirements which are specified in Section 2.2.8. ESOA

is a new enterprise software architectural style that is an abstraction of concrete SOA

architectures in enterprises. Some of the architectures, such as Amazon web service architecture

and IBM SOA-based enterprise architecture, are instances of ESOA. ESOA and its substyles

focus on service orientation, loose-coupled integration, and interoperability, agility, performance,

reliability, reusability, and extensibility. Enterprise systems consist of complex applications in

heterogeneous environments. ESOA can better aid application integration because of its

interoperability and relatively loose coupling service nature.

 Enterprise architecture (EA) is for both businesses and customers. Thus, EA is required to be

easy to change with high flexibility. ESOA can help EA to achieve these goals. Moreover,

enterprises believe ESOA can enhance their software reusability from “class” to service so that it

can help them to reduce their IT costs. Scientists have developed formal service models [32],

semiformal service models in UML [23], and formal service interaction models [58]. Recently

various ESOA models have been proposed, such as:

 OASIS SOA Reference Model [154] based on the Entity-Relationship (ER) model;

 SOA Meta Model based on the UML profile [34];

 Enterprise Service Bus (ESB) centric ESOA model based on integration notation [38];

 IBM Foundation SOA component model [91];

 Microsoft ESOA model BizTalk [141];

53

 BEA Aqualogic Service Bus model [56];

 Oracle ESB model [163];

 Pattern-oriented SOA model [241][104]; and

 RESTful model of Web-Oriented Architecture [202].

All these models either focus on the aspects of ESOA which are not abstracted as an architectural

style or are vendor-specific implementation of the ESOA. Although a style-based approach for

modeling and validating SOA application is proposed in [23], it does not emphasis enterprise-

wide SOA application and non-functional constraints.

In addition, lack of understanding of the enterprise service-oriented architectural style and its

set of constraints, which includes software architectural quality attributes as well as their

tradeoffs, often leads to design-by-buzzword and failure-in-runtime in enterprises. Our research

work is motivated by the desire to understand complex ESOA architectural styles and their

design constraints with the goal of guiding the ESOA architecture design. My research in this

Chapter focuses on ESOA generic model and styles based on our earlier work

[62][201][202][204][214][215].

This chapter classifies a generic ESOA architecture model and specifies the ESOA styles. The

ESOA model and formal and informal style specification can help with understanding the

complex ESOA architectures and in guiding better design of ESOA systems.

 This chapter is organized as follows: Section 4.1 discusses the architectural context in

service-oriented enterprises Section 4.2 defines a generic ESOA ontology model; Section 4.3

classifies enterprise service-oriented architectural styles into five major styles and defines their

54

hierarchy; Section 4.4 specifies SOAP-based substyle; Section 4.5 specifies REST-based

substyle, and the last section compares all the major substyles of ESOA.

4.2 Architectural Context in Service-Oriented Enterprise

This section describes the characteristics of modern enterprise architectures, specifically the

architectural context in service-oriented enterprises. Table 2.4 in Section 2.2.8 summarizes

various characteristics of modern enterprise information systems.

 The characteristics of enterprise information systems are also the basic characteristics of

enterprise architecture, which indicate the complexity, requirements, and concerns in designing

enterprise architectures. Enterprise Application Integration (EAI) as an integration style provides

the principles for building middleware-centric enterprise architectures, such as SUN’s J2EE,

Microsoft .NET, and has aided in solving more and more complicated enterprise systems

integration issues from early 2000 [18]. However, traditional EAI does not fully resolve

enterprise integration issues because of the tightly-coupled traditional EAI architecture, lack of

good interoperability, and poor scalability as well as security. ESOA, as a better approach than

EAI, has been broadly adopted by enterprises since 2003 [135]. ESOA is a new architectural

style which is a general SOA style for enterprise architectures.

 Figure 4.1 depicts architectural entities and their relationships within a service-oriented

enterprise through a domain ontology and reflects the characteristics found in Table 2.4. It is the

foundation of our study on generic ESOA architectural model and styles. Compared with other

styles, such as client-server and component-based EAI, ESOA styles are service-oriented.

55

service

infrastructure

Application
(Requests/Actions-Driven or

Events-Driven)
customer or

event

functionality

process

management

service

provider

data
(customer/business data

and system data)

non-functional

requirement

0..*

1

3
 i
n

v
o

k
e

*

1

request4

1 1..*

interact/trigger4

1

1..*

provide4

1

0..*

interact/trigger directly4

1..*

1

3 accomplish

1..*

1

3 serve

1

1

re
g

is
te

r4

1..*

1

3
 s

u
p

p
o

rt

11..* 3 consist of

1..* 1

3 manage

1 1..*

support4

1..* 1

3 include

1..*

1

m
e

e
t4

1..*
1

3 meet

1..*

1

3
 u

s
e

1..*

1

3 manage

1

1..*

3
 u

s
e

/a
c
c
e

s
s

1

1..*

u
s
e
4

1

1..* 3 rely on

1..*

1

3 satisfy

1

1..*

m
e

e
t4

1..*

1

u
s
e

/a
c
c
e

s
s4

1..*

1

3
 u

s
e
/a

c
c
e

s
s

1

1..*

m
e

e
t4

1

1..*

use4

1

0..* invoke4

*

*

3
 f
in

d
/b

in
d

1

1..*
manage4

1

1..*

3 manage

Figure 4.1. Domain Ontology of Service-Oriented Enterprise

56

The major architectural ontology entities in service-oriented enterprises include:

 Customer or event – A customer is a person who requests business services from the

enterprise, and an event is a notable thing ("a significant change in state") that happens inside

or outside of an enterprise.

 Application – the interface between customer and service and another kind of service

consumer. Application invokes service either by actions or events.

 Service – the operator of the service provider, which is registered in service registry and

serves functionalities to customers.

 Service provider – the container or engine of service.

 Process – the coordinated and composed set of services.

 Infrastructure – a set of virtual and physical servers and systems, such as web servers, OS,

application servers, database, registry, network, file system.

 Management – the manager and controller of service-oriented systems, such as service life

cycle manager, security manager.

 Data – the data includes customer and business data for the enterprise business and system

data for defining as well as building a service-oriented architecture and controlling runtime

behaviors.

 Functionality – the functional requirement of the system and the service operation served by

service.

 Non-functional requirements – the software quality that the service-oriented system should

meet.

57

 The domain ontology is independent of any technologies and implementations chosen by

enterprises for building a service-oriented system. It not only specifies the relationship among

architectural elements, but also describes the relationship between the architecture and customers

(business) as well as their requirements. Specifically, the non-functional requirements are

specified as constraints for analyzing and designing the service-oriented systems.

4.3 ESOA Ontology

We have defined the ESOA ontology in (3.20) – (3.22). In this section, we give a detailed

description of all parts in (3.21). The description of the ESOA ontology in this chapter is based

on the domain ontology and in terms of set theory and UML graphic notation. We present (3.20)

- (3.22) here as (4.1) - (4.3)

An ESOA ontology is a set of SOA elements, environment, processes, principles, and quality

attributes which are specified by the following architectural parts:

 S ={ | is a service} (4.4)

 C ={ | is a service consumer} (4.5)

 D ={ | is an SOA data element} (4.6)

 SI ={ | is an SOA infrastructure} (4.7)

 SM ={ | is an SOA management} (4.8)

is is

ic ic

id id

ir ir

im im

58

 SP ={ | is an SOA process} (4.9)

 SQ ={ | is an SOA quality attribute} (4.10)

Each architectural part is a set of its specific elements in (4.4) to (4.10) in which each element in

each set corresponds to one entity of the domain ontology in Figure 4.1. Specifically, the service

in S corresponds to the “service” entity; the service consumer in C is one of the entities,

“customer” or “application”. The SOA data element in D is the system data part of “data” entity.

The SOA infrastructure element in SI is the “infrastructure” entity. The SOA management

element in SM is the “management” entity. The SOA process element in SP is the “process”

entity. The SOA quality attribute element in SQ is the “non-functional requirement” entity.

Formula (4.2) can be described by an upper domain ontology diagram as shown in Figure 4.2.

This dissertation differentiates seven different classes of service-oriented architectural parts as

ESOA ontology:

 Services;

 Service consumers;

 SOA data elements;

 SOA infrastructure elements;

 SOA management elements;

 SOA processes; and

 Quality attributes.

Services: In formula (4.2), S is a finite set of services and a service is the fundamental element of

SOA. Informally, a service is a self-contained software abstraction of business, technical

functionality, or infrastructure management, defined by a well-defined interface that focuses

ip ip

iq iq

59

Service-Oriented

Enterprise Architecture

(ESOA Ontology)

1

1..*

1

1..*

1

1..*

Application (C)

(Service Consumer, Data)

Infrastructure (SI)

(Services, Data)

Management (SM)

(Services, Data)

Process (SP)

(Services, Data)

1

1..*

Quality Attributes (SQ)

(Non-Functional requirements)

1

1..*

1

1..*

m
e

e
t4

1

1..*

3 meet1

1..*

meet4

1

1..*

m
e

e
t4

Performance

Availability

Security

Reliability

Reusability

Interoperability Modifibility

Scalability

Extensibility

Adaptability

Testability

Audidability

Operability & Deployability

*

1
3 inlude

*
1

3 inlude
*

1 3 inlude

*

1

3 inlude

*

1

3 inlude

*

1

3 inlude

*

1

3
 i
n

lu
d

e

*

1

3
 i
n

lu
d

e

*

1

inlude4

*
1

inlude4
*

1
inlude4

*

1

inlude4

*

1
inlude4

Service (S)

1

1..*

1

1..*

m
e

e
t4

Data (D)
1 1..*

Figure 4.2. ESOA Domain Ontology Model

normally on the descriptions of functional aspects, such as input, output, preconditions, and

effects known as IOPE [62]. Services in S are published through the service registry in the

Service Infrastructure (SI). They are found and bound by the facilities in SI. In addition, services

are consumed by service consumers in C. There are three kinds of fundamental services in ESOA

in terms of the fundamental service classification in [99]:

 Basic services which are the fundamental elements of ESOA.

60

 Composed services that are composed from basic services;

 Process services are those services that perform process computations in ESOA.

Service consumers: To serve service consumers in C and execute business management

processes, composed services and process services are orchestrated and/or choreographed by the

Service Process (SP). Based on the states of services, services can be classified as stateless

services and stateful services. The traditional web services are stateless [67], whereas the Grid

services defined by the Web Service Resource Framework (WSRF) [157] are stateful services.

Section 4.7 will discuss WSRF services.

SOA Data Elements: These (D) include SOA meta-data, policy data, and other service data used

by all other parts in the ESOA model. There are two kinds of service representations:

 WSDL-based representation.

 Ontology-based representation, such as OWL-S [228] for describing semantic web services.

The service representation or specification is a subset of D.

SOA Infrastructure: This (SI) is the heart of ESOA, which discovers, and routes and binds

services to proper service providers based on the service requests from a service consumer C. In

the previous section, SI is defined as a layered architecture model. Each layer can consist of a set

of services, such as communication service, on-ramp service, and off-ramp service. Thus, any

infrastructure service is denoted by IS S SI.

SOA Management: This (SM) controls SI, S, and SP. It relies on SOA quality attributes SQ.

Four common SOA management functions are provided:

61

1. The Business Management manages the transformation between the business model and the

services model: service orchestration and/or service choreography in SP for business

processes, transaction, and workflow.

2. The Lifecycle Management controls S, SI, and SP at service modelling, assembling, service

routing, transformation, and versioning.

3. The Quality-of-Service (QoS) management provides provisioning and quality of service

(QoS) assurance based on the SQ. For example QoWS [165] provides QoS management.

4. The Security and Policy Management controls service with system level security and

policy by using various security definition data in D as well as security and policy services in

S.

 SM monitors S, SI, and SP by observing system run-time behaviours, measures various

performance and QoS metrics, and reports back to a control agent, such as QoWS.

SOA Processes: This (SP) is composed of services in S and defined by business management in

SM. SP includes two main kinds of processes [169]:

 Service Orchestration (SO) which refers to an executable business process that can interact

with both internal and external services.

 Service Choreography (SC) which defines the interaction between independently defined

processes.

 They can be formalized by Petri nets [137], -calculus [58], or other formalisms. Petri nets

are suitable for modeling concurrency. The basic elements, e-service net and orchestration net

for modeling the SO, are developed in [137]. IBM’s Web Services Flow Language (WSFL)

adopts Petri nets for expressing the service process logic. The -calculus is a kind of process

62

algebra [143] for modeling processes. It can be used for modeling SO and SC [58]. Moreover,

the SOA process languages, such as Microsoft’s XLANG and Oracle’s WS-CDL, are inspired by

-calculus. Note that once formalized, software services can be analyzed using numerous tools

that have already been developed. For example, if a service has been formalized by Petri nets,

reachability and deadlock analyses can be conducted.

SOA quality attributes: These (SQ) are important to all other parts for architectural decisions

and design. The quality attributes are constraints for structure and behavior of services,

processes, infrastructures, and management. They provide the principles and guidelines for

analyzing and designing ESOA. For instance, the extended service defined in (4.4) can be called

a “Governed service” depicted in Figure 4.3

Figure 4.3. Governed Service View

Ontology model (4.1) – (4.3) is an abstraction of general ESOA architectures which include

different families of ESOA architectures, such as web service SOA architectures based on SOAP

(Simple Object Access Protocol) [66] and Representational State Transfer (REST) web service

SOA architectures based on HTTP protocol [70]. For different ESOA architectural families, the

above seven parts can be specified with their different characteristics.

4.4 Enterprise Service-Oriented Architectural Styles

Section 4.3 defined ESOA ontology. There are different families of ESOA architectures. In

general, an architectural style defines a family of architectures with common structure and

constraints. The enterprise service-oriented architectural styles are abstractions from different

63

families of ESOA architectures. Like SOA architectural style, the ESOA architectural style is the

umbrella of all different ESOA substyles. Figure 4.4 shows various ESOA architectural styles

based on ESOA ontology defined in Section 4.3:

 Services: they are the building blocks in any ESOA systems.

 Service consumers: they are customers or customer facing applications of enterprise

business. Services shall provide business and technical services for consumers.

 Data elements: Various representations and data will be used to specify services, workflows,

and data used in ESOA.

 Infrastructure: Enterprise services and providers must be supported by ESOA infrastructure

for guaranteeing QoS.

 Management: Enterprise services must be managed and controlled by SOA management

services based on Service Level Agreement (SLA).

 Processes: Enterprise services shall be capable of executing business processes and

workflows.

 Quality attributes: Enterprise services and their supports as well as management shall

satisfy both functional and non-functional requirements.

The SOAP-based enterprise service architecture is the first substyle of ESOA, called EWS-*

style in this chapter.

 The Web SOA (WSOA) based on REST architectural style [70][74] and enterprise Web 2.0

is another substyle (called EWOA) [202] of the ESOA.

 Unlike the request-driven styles, such as EWS-* style and EWOA style, the Enterprise

Event-Driven SOA (EEDA) is an event-driven style [178][208].

64

 Because of the maturity of component-based technology and application server, the

enterprise component-based services architecture (ECBS), such as the Service Component

Architecture (SCA) [153] and J2EE component-based enterprise services approach [33], is

another substyle of ESOA.

 Unlike the above styles, the enterprise grid-enabled SOA, called EGSA style in this chapter,

is a hybrid style of the ESOA style and the grid computing style [36][160][122][191] which

coordinates computing resources that are not subject to centralized control and provides dynamic

scalability and continuous availability.

 In addition, many enterprise systems have used a hybrid approach by combining two or more

different ESOA substyles. Figure 4.4 shows the classification of ESOA styles and their

hierarchy.

ESOA

EWS-*

SOA

HybridECBS EGSAEWOA EEDA

Figure 4.4. ESOA Classification and Hierarchy

65

Table 4.1 provides the definition and related references for each basic ESOA substyle.

Table 4.1. Description of Basic Substyles

Style Style keywords Description

EWS-* Simple Object Access Protocol (SOAP)

Request/Response

Web service

Web service standards (WS-*)

It is SOAP-based enterprise service

architectural style. Specifically the style is

based on a series of web service standards

called WS-* [235].

EWOA

Representation State Transfer (REST)

HTTP protocol

Request/Response

Web 2.0

Web-Oriented Architecture (WOA)

It is Enterprise Web-Oriented Architectural

style. The Web-Oriented Architectural style is

first defined by Gartner [74]. The EWOA style

is specified in [202].

EEDA Events

Event-Driven Architecture (EDA)

Event-Driven Services

Complex Events Processing (CEP)

Events Channel

It is Enterprise Event-Driven Architectural style

which is a hybrid style with ESOA and EDA

style. The EDA is introduced in [135] and is

defined as a SOA style by Gartner [178].

ECBS Component-based

Service Component Architecture (SCA)

Enterprise Java Bean(EJB)

Java Business Integration (JBI)

It is Enterprise Component-Based Service

Architectural style which is based on service

component-based specifications, such as SCA

[153] and SUN’s JBI [179] as well as EJB [33].

EGSA Grid Computing

Open Grid Services Infrastructure (OGSI)

Web Service Resource Framework (WSRF)

Grid Standards (OGSI, WS-Resources)

It is Enterprise Grid-Enabled Service

Architectural style which is a hybrid style with

ESOA and Grid computing style [157].

66

According to the syntax defined in Section 3.2, we can formally define all substyles as

extensions of ESOA as:

 ESOA EWS-*; ESOA EWOA; ESOA EEDA;

 ESOA ECBS; ESOA EGSA.

4.5 Specifying EWS-*

This section presents one of the ESOA substyles EWS-* based on the proposed ESOA ontology

model (4.2). The EWS-* defines a family of ESOA architectures – SOAP-based web-services

architectures.

4.5.1 Web Service

This dissertation defines an abstract model of services with both functional aspects (operations)

and non-functional properties (quality attributes or semantics). Specifically for EWS-* style

services, the functional descriptions of services are based on WSDL 2.0 [229] whereas the non-

functional descriptions are based on its extensibility that allows extending WSDL 2.0 at both the

element and attribute levels. For example, SAWSDEL [111] is the Semantics Annotation for

WSDL 2.0, which is the first standard for adding quality semantics into the service descriptions.

A web service is defined as a set of service operations:

 pSO = {
io |

io is an operation}, (4.11)

where

io =

iiiiiii qmcpoutfoutinn ,,,inf,,,

in which
in is the name of operation io ; iin is the incoming message of a service and iout is the

outgoing message from a service; iinf and ioutf indicates whether a fault (the fault is an event that

happens during the execution of a message exchange that disrupts the normal flow of message) is

67

injected into the service or generated by the service, respectively; imcp denotes message

exchange patterns (WSDL 2.0 supports eight message exchange patterns as shown in Table 4.2);

iq is the set of quality attributes, such as transaction for the operation.

provided for service consumers and QI is the set of quality attributes for the interface, which can

be described by a set of features and a set of properties such as security request features and

security-level properties, through WSDL 2.0 extension, such as SAWSDL [111], and SOp and QI

define the functional and non-functional behaviors of a service, respectively.

 Ms is a set of internal states of the service, which can represent any information it manages,

such as variables, service lifecycle states [231], and interaction states.

 Pf is the internal process which denotes the service functionality encoded by the formalism f.

Pf denotes a service implementation model which is not visible outside of the service. The

functionalities implemented by Pf provide services to consumers through the interface.

 l defines the service location, such as a set of endpoints: l = { ep | ep is an endpoint} for

SOAP-based web services. An endpoint indicates an association between a binding and a

network address, specified by a URI, that may be used to communicate with an instance of a

service. Formally, for a web service,

68

Table 4.2. Message Exchange Patterns
Pattern name Description

In-Only

A standard one-way message exchange where the consumer

sends a message to the service provider only.

Robust In-Only

This pattern is for reliable one-way message exchanges.

The consumer (client) initiates a message to which the

service provider responds with status. If the response is a

status, the exchange is complete. If the response is a fault,

the consumer must respond with a status.

In-Out

This is equivalent to request-response. A standard two-way

message exchange where the consumer (client) sends a

message, the service provider responds with a message or

fault and the consumer responds with a status.

In Optional-Out

A standard two-way message exchange where the

provider's response is optional.

Out-Only

The service operation produces an out-only message, and

cannot trigger a fault. This is equivalent to the notification

message pattern.

Robust Out-Only

The service operation produces an out-only message, and

can trigger a fault.

Out-In

This is equivalent to the solicit-response message pattern.

The service sends a message to the consumer and receives a

response message from the consumer.

Out Optional-In

The service produces an out message first, which may

optionally be followed by an inbound response.

69

where the Binding specifies a concrete message format and transmission protocol used for

defining the endpoint; the Address is an optional WS-Addressing reference.

 , which defines service quality attributes such as interoperability, performance, and

security at the service level, also called Quality of Service (QoS) and Service Level Agreement

(SLA), as well as service properties Sp. We define

 Qs = {common quality attributes} Sp (4.13)

where the common quality attributes for SOA are described in [158] and

 Sp
 = {standardized service contracts, reusability, relative autonomy,

 statelessness, discoverability, relative loose coupling,

 abstraction, composability}

Qs is also called the set of non-functional properties and can be described through service

ontology of Web Service Modeling Ontology (WSMO) [224] or Ontology Semantic Markup for

Web Services (OWL-S) [132] and linked through the extensibility of WSDL 2.0.

 Formula (4.12) is an extension of the formula of service in [84]. The 5-tuple is an abstraction

of service in EWS-*, which abstracts away from the concrete service implemented by a specific

technology with particular formalism f and the representation of the internal states. Formula

(4.12) defines both service structures and its behaviors. I defines both functional and non-

functional contracts which include data and service behaviors. Ms,Pf, Qs
mainly define the

internal service logic which is the implementation of the contracts of data and behaviors defined

by I. l defines an endpoint where a service can be accessed. Visually, a web service can be

depicted as shown in Figure 4.5:

70

Figure 4.5. UML Model of Web Service

 Figure 4.5 not only describes formula (4.12) and formula (4.13) visually, but also depicts the

relationship between the service and external system, such as the Data Sources and the Registry,

which belong to SI in (4.2). Moreover, Figure 4.5 shows the service composability which means

services can be composable for completing a business task, such as a transaction. It is one of the

service properties in Sp and is a pre-condition for constructing SP.

4.5.2 Service Consumers

The traditional service consumers are any applications which can access web services, such as

a web-based J2EE application or a .NET application. An action-based service consumer is

defined as a 5-tuple

 (4.14)

where

cE is a set of elements including

 Data elements, such as data objects;

71

 Component elements, such as controller, filter, state manager, web cache;

 Connector elements, such as adaptor, AJAX;

cF is a set of forms which includes

 User interfaces;

 Web-based interfaces;

 System properties;

cA is a set of actions which includes

 External actions, such as an event trigger for service request or a SOAP message sending

to a SOAP-based web service;

 Internal actions, such as a trigger for operations or a reply processed by the services;

 cM is a set of internal states that determine the consumer’s behaviour.

 is a set of client system quality attributes.

A typical action-based web service consumer can be modeled as shown in Figure 4.6 whose

components can be mapped to the formula (4.14) as follows:

cE = {Connectors, Controller, Filters, Domain objects, State manager,

 Business delegation objects, Widgets},

cF = {Web forms, GUI components, Interface Config, Server config},

cA = {Action Events, Action Handlers},

 cM = {GUI States, States},

 cQ = {security (through SSO, ACL), performance (defined in Config)}.

72

Figure 4.6. Action-Based Service Consumer

Once this aspect is formally specified, one can perform various analyses based on service

consumers:

1) User-service interaction: The interaction can be short and brief like UML use cases, or can

be extensive like use case scenarios [216] and anything in between [121][123]. The user-

service interaction can be useful for system composition, integration testing, and automated

test script generation. For example, given the user-service interaction specification of a

consumer, it is easy to verify that a given service can provide the needed service.

2) Profiling and provisioning: Once the workflow and usage pattern of a service consumer are

known, the information can be useful for profiling and resource provisioning. This is

important for QoS-based system evaluation and assurance.

3) GUI representation: System GUI can be formally specified and analyzed [217] for

completeness analysis (all inputs or combinations of inputs can be handled by the system,

and each input button in the GUI has the corresponding action routine to respond),

73

reachability analysis (all paths lead to an end state), and consistency analysis (the system will

deliver consistent answer for consistent input).

4) Data flow analysis: From input-output and from an architecture description of

interconnecting services, one can show the flow from one service to another service. This

information can be useful for data provenance and various data analysis such as data integrity

analysis.

4.5.3 SOA Data

The D in (4.2) is a set of SOA data elements that is a finite set. For EWS-* style, the D is formed

by various web service metadata and data files, such as WSDL files, policy definition files,

infrastructure configuration files, resource metadata, and SOA management data. Table 4.3Table

4.3 lists major SOA data elements for EWS-*.

In the SOA data, the service metadata, such as service definition and service registration data,

plays a key role in SOA [53].

 Note that many data elements are represented by XML and, thus, they can be analyzed or

reasoned about based on XML-related tools. For example, many ontology systems, including

RDF, OWL, and OWL-S, are all based on XML and many reasoning tools such as DL

(Description Logic) can be used for reasoning about them. Policy data can be subjected to

completeness and consistency checking, dependency analysis, simulation, and performance

evaluation [216][217].

74

Table 4.3. SOA Data Elements

Data Elements Examples of Web Services

Resource metadata Metadata of Web services, Clients, Database, mainframes, caches

Resource identifier UDDI keys, data sources

SOA metadata XML Schema (XSD)

Service description

Endpoint schema

Infrastructure data Administrative metadata

Process data WS-CDL document

BPEL, XLANG documents

Service specification WSDL documents

Management data Monitor report, SLA data

Policy data XACML documents

4.5.4 SOA Infrastructure

The SOA infrastructure is the heart of ESOA, and it supports the transformation of business in

an enterprise or between enterprises into a set of managed services S or repeatable business tasks,

which can be accessed over a network when needed. The network can be a local network, the

internet, or a wireless device network. The SOA infrastructure SI is the bridge of the

transformation between business and services. It is defined as three layers, each of which

consists of internal services and components for a traditional ESOA or EWS-* style ESOA:

 Connection layer which includes rich client API, standard protocols, such as HTTP, SOAP,

TCP/IP, and adapters. The layer provides connectivity to different application systems and

services, such as ERP, CRM, Finance, Shopping/Shipping, and Travel, in different platforms,

such as J2EE, .NET, and legacy backend systems.

75

 Communication layer which includes message services, such as JMS and SOAP Engine, and

provides the capability of carrying messages between services as well as transferring various

messages, such as XML messages, in a reliable and secure way.

 Mediation layer which includes a set of on-ramps, a set of off-ramps, smart routing services,

transformation services of protocols, and data. It provides the semantic glue between

disparate services and different applications in enterprises. It includes transport protocol

conversion, smart service routing, service invocation and dispatch, etc.

The Enterprise Services Bus (ESB) [38] is one of the implementations of SI. It is the core of

the SOA infrastructure for a traditional ESOA. For Web SOA, the infrastructure includes the

HTTP servers and other web infrastructure. This section focuses on traditional ESOA (EWS-*

style).

Another popular trend is the use of a cloud computing environment where service requests are

automatically tracked and provisioned like Google’s App Engine. Such cloud computing

environments are still the subject of active research. A cloud computing infrastructure often

consists of three separate infrastructures: Infrastructure-as-a-Service (IaaS) [125], Platform-as-a-

Service (PaaS) [125], and Software-as-a-Service (SaaS) [125] . IaaS is at the bottom and SaaS is

at the top with respect to user interaction. The dissertation will discuss and model the new

enterprise architecture style in Chapter 6.

4.5.5 SOA Management

The SOA Management SM plays an important role in ESOA. It is defined as a 5-tuple for an

EWS-* style

 (4.15)

76

where

mI is a set of SOA management interfaces which provide management operations to the

EWS-* system;

 mC is a channel of SOA management which provides the connectivity and communication

between the management interfaces and service interfaces;

mS is a set of management servers which include the directory server, messaging server,

policy server, and service management server. They provide a set of management operations:

 Resource management: Services as system resources;

 Service and infrastructure discovery;

 Network and application monitoring;

 Policy enforcement;

 Service-level agreement management;

 Exception management;

 Closed-loop governance; and

 Service lifecycle management.

 mA is a set of distributed agents which monitor any ESOA-style system;

 , which is a set of metadata and quality attributes specified in management

policies and service-level agreement.

 Figure 4.7 describes the relationship among elements in (4.15).

 For an EWS-* style, OASIS has proposed several standards: WSDM (Web Service

Distributed Management) [156], MUWS (Web Service Using Management) [152] and MOWS

77

(Management of Web Services) [151] for web services SOA management. For an EWS-* style

with WSDM, the Management Channel mC is a part of the SOA infrastructure, the Management

Interface
mI is the set of web services endpoints, the Management Service

mS is the set of web

services for management, the distributed agent mA is a set of management agents, and the quality

mQ is a set of quality attributes and properties of services and its infrastructures.

Management

consumer

Sm
(Management

Service)

Metadata and

properties

Cm
(Management

channel)

Im
Management

interfcae)

Qm
(Management

quality)

Am
(Monitoring

agent)

Managed

resource

*

*

c
o

n
n

e
c
t4

* *

Exchange messages

1

1..*

3
 u

s
e

1..* 1

3 use

1..* 1

3 has

1

1..* 3
 m

a
n

a
g

e

1..*

1

3
 u

s
e

1..*

1

m
o

n
ito

rin
g
4

1..*

1

3
 r

e
ly

 o
n

1

1..* 3
 m

e
e

t

1

1..*

meet4

Figure 4.7. SOA Management

4.5.6 SOA Process

The SOA Process SP is an important part of any ESOA-style system since a complex business

task must be completed in multiple steps of business processes. The business processes can be

executed by multiple services which are managed in an SOA process. An SOA process includes

a set of composite and/or coordinated services in various process patterns, such as sequence or

parallel. Its major elements [169] are shown in Table 4.4.

Figure 4.8 shows the general SOA processes. Different ESOA styles have different SOA

process styles. An EWS-* process is mainly based on two WS-* standards:

 Web Services Business Process Execution Language (WS-BPEL)

 Web Services Choreography Description Language (WS-CDL)

78

Table 4.4. SOA Processes

Service Process Examples of Web Service Process Standards

Orchestration

Web services Composition:

WS-BPEL, XPATH

Choreography Web services coordination:

WS-CDL, BPML,WSC I

Figure 4.8 shows the general SOA processes. Different ESOA styles have different SOA

process styles. An EWS-* process is mainly based on two WS-* standards:

 Web Services Business Process Execution Language (WS-BPEL)

 Web Services Choreography Description Language (WS-CDL)

Figure 4.8. SOA Processes View

 Formally, we define the orchestration process in the following form:

 SO = {
iso |

iso is a service orchestration process}

where

79

from model (4.16) to the components in WS-BPEL [155].

 From Table 4.5, one can see that the proposed model is an abstraction of WS-BPEL and it is

in a concise form which captures its core concepts and parts, such as process participants,

interfaces and activities, and extends it with quality attributes.

Visually, the orchestration can be depicted both structurally and behaviourally by UML

activity diagrams. Figure 4.9 is an example of sequence service orchestration process modelled

by UML activity diagram.

80

Table 4.5. Mapping to WS-BPEL

Abstract model Component in WS-BPEL

orcS <partnerLinks> – roles of process participants

orcI <portType> – the operation interfaces of participants

orcM <variables> – the data and state used within process

orcCS <correlationSets> – properties that enable conversations, such as the

state of initialization; message invocation patterns:

request|response|request-response

orcH <compensationHandler>, <eventHandler>, <terminationHandler>,

<faultHandler>

orcA
obsa

<receive>, <pick>, <onEvent>, <onMessage>, <onAlarm>, <reply>

unobs

<assign>,<compensate>,<flow>,<invoke>,

<scope>,<sequence>,<switch>,<while>,<wait>

 <empty>

orcQ Such as <compensationHandler> for transaction;

<faultHandler> for reliability

Figure 4.9. Service Orchestration Process

 act Orc Process

Web Serv ice2

Web Serv ice1Orchetration Process - Serv iceClient

Request

serv ices
Interface

<receiv e>
interface

<inv oke>

interface

<inv oke>

<reply>

<inv oke>

Web serv ice

Web serv ice

Actor

Web serv ice 3

Web serv ice

interface

«invokes»

81

 The services choreography can be formally defined as

 SC =
chochochochocho CLIPINFCHO ,,,,, , (4.17)

in which

 CHO = {
isc |

isc is service choreography}

CHO is a set of choreographies for participating collaborations,

where

isc =

chochochochosub QCRAMCHO ,,,, , (4.18)

In (4.17),

choINF is a set of declarations of data types for messages;

 is a set of services and service processes;

choI is a set of interfaces of participants, which defines the observable behaviours of each

participant;

choL is a set of links among publicly observable participant behaviour – the constraint between

two interfaces;

choM = {STcho, Dcho, CHcho} in which

choST is a set of states;
choD is a set of variables and data;

choCH is a set of information of communication channels, such as URI;

choC defines a point of collaboration between participants by specifying where and how

information is exchanged;

82

Table 4.6. Mapping to WS-CDL
Abstract model Component in WS-CDL

SC <package> – a groups of abstract types

isc <choreography> – contains other choreographies, variables, activities, rules and exception

handler and finalizer

choINF <informationType> – declaration of data types

choP <participateType> – abstract of a participate service, specifically, orchestration process

choI <roleType> – a specification of operation interfaces of participates

choL <relationshipType> – A relationshipType identifies the roleTypes and behaviors, where

mutual commitments MUST be made for collaborations to be successful.

choM <variables> – the data, state, channel information used within choreography

choC <channelType> – A channelType realizes a point of collaboration between

participantTypes by specifying where and how information is exchanged.

choA
obsa <sequence>, <parallel>, <choice>, <interaction>, <perform>,

<workUnit>

unobs

 <assign>,<silentAction>

 <noAction>

choCR collaboration rules and constraints

choQ Such as <exception>, <finalizeBlock> for reliability

 in which
obsa is a set of observable actions performed by the participants,

and
unobs

 is a set of silent actions which are unobservable, but impact globally observable

behaviours, and indicates no action for an idle participant;

choCR defines choreography collaboration rules and constraints, such as order rules =

{sequence, parallel, choice}; exception handling rule; and finalizing rule [230];

83

 is the set of service choreography quality attributes. Table 4.6 shows a mapping from

the abstract model to the main components in WS-CDL [230].

 Table 4.6 shows that the proposed model is an abstraction of WS-CDL and it is a succinct

form in concept and structure which catches its core concepts and parts, such as choreography,

process participants, and activities. Moreover, our model extends WS-CDL with quality

attributes.

 The UML diagram of the service choreography structural model (4.16) is shown in Figure

4.10.

 The SC behaviours can be modelled in terms of UML behavioural diagrams, such as

sequence diagram and activity diagram. Figure 4.11 shows a choreography example with four

participants.

choP = {Buyer, Seller, PaymentService, ShipService}

Acho

CHO

1..*

1

Mcho

Qcho

CRcho

Icho

Pcho

Ccho

SC

INFcho

Lcho

1 0..*

12

1

*

1
1..*

1

*

1 1..*

1 1..*

1 *

1

*

1

*

1

*

Figure 4.10. Structural Model of Service Choreography

84

Although one can map the orchestration model to WS-BPEL in Table 4.5 and map the

choreography model to WS-CDL in Table 4.6, the proposed models are independent of concrete

languages such as WS-BEPL. They can be mapped to other process description languages.

Figure 4.11. Service Choreography Example

4.5.7 SOA Quality Attributes

Quality is an important requirement for software architectural design as well as ESOA system

design. Therefore, the SOA quality attributes, SQ, are the rationale for the various choices and

alternatives in realizing ESOA in enterprise systems. The QoS and SLA are based on the quality

attributes. In model (4.2), SQ can be defined as a set of SOA quality attributes based on [158]:

 SQ = },,,,,,,,,,,,{ MOODAUTEADEXSCPESEUSAVREIN . (4.19)

 For an EWS-* style ESOA, the SOA quality attributes are specified and implemented by

different service specifications [235]. Table 4.7 lists part of the specifications which are related

to SOA quality attributes in EWS-* style systems.

 Table 4.7 lists all attribute names and status. The “Status” column refers to the level of

maturity of SOA in that area. The green color indicates that there are known solutions for the

sd Cho Global Vi...

Buyer Seller PaymentService ShipService

alt ExceptionHandler

[InvalidCredit]

[validCredit]

par

requestQuote()

quoteResponse()

verifyCreditCard()

reject()
reject()

requestShipping()

shippingDetail()

shippingDetail()

85

SOA based on relatively mature standards and technologies. The yellow color indicates that

some solutions exist but need further research to prove their usefulness in handling the

requirements for the quality attribute. The red color indicates that the standards and technologies

are immature and further significant effort is required to fully support the quality attribute within

an SOA. Detailed descriptions can be found in [158].

Table 4.7. EWS-* SOA Quality Attributes
Quality Attribute (abbreviation) Web Service Specifications Status

Interoperability (IN) WS-I Profiles Green

Reliability (RE) WS-Reliability

WS-ReliableMessaging

Yellow

Availability (AV) No direct specification Yellow

Usability (US) WSDL Yellow

Security (SE) WS-Security

WS-Trust

Red

Performance (PE) WS-Transaction

SOAP Message Transmission

Optimization Mechanism

XML-binary Optimized Packaging

Red

Scalability (SC) Web Service Management Foundation Yellow

Extensibility (EX) WSDL 2.0 Green

Adaptability (AD) No direct specification Yellow

Testability (TE) No direct specification Red

Auditability (AU) No direct specification Red

Operability and Deployability (OD) WSDL, WS-BPEL, WS-CDL Yellow

Modifiability (MO) WSDM-MOWS,

WS-ResourceMetadataDescriptor

Green

86

4.5.8 Relationship of Parts of EWS-* Style

Sections 4.5.1 - 4.5.7 have specified common structure, behavior, and constraints of all EWS-*

style parts in the generic model (4.2) and discussed some of their relationships. Sections 4.5.1

and 4.5.2 discussed the relationship between service consumer and services. The consumer,

typically a web service client application, requests services and services serve its request. One

can also connect service-level quality attributes to SOA quality attributes (SQ). Sections 4.5.5

and 4.5.6 discussed the relationships of SOA Management (SM), and SOA processes (SP) and

SOA quality attributes (SQ). Figure 4.12 shows the overall relationship for EWS-*. All EWS-*

parts and their constraints are formally and informally described from Section 4.5.1 - 4.5.7. Each

part in Figure 4.12 is described by typical elements in enterprise or some of graphics, such as

web services. For example,

 C ={Portal, Thin Client, Fat Client, Wireless Client}.

 This section discussed the relationship of all parts described in Figure 4.12. The services (S)

are registered in service registry of SOA Infrastructure (SI) and they are represented by using

SOA metadata and data (D). Consumers (C) request services through the service discovery and

communication channel, such as Enterprise Message Bus (ESB) provided by SI. The

orchestration and/or choreography of Service Process (SP) consists of a set of services in S,

which are managed and controlled by SOA Management (SM). Moreover, the SM also manages

SI, S, and C. SM security and policy management and system management rely on SOA Quality

Attributes (SQ). The monitors in SM are monitoring C, SI, S, and SP. The quality attributes and

constraints based on them in SQ are applied to all the other parts. The D is used by all the other

parts.

87

Figure 4.12. ESOA Model for EWS-* Style

4.6 Specifying EWOA

With successful application of Web 2.0 [174] by a lot of new web applications and websites,

such as Google AdSense, Wikipedia, blogging, and the emergence of many new web

technologies, such as RESTful web services, AJAX, RSS, JSON, Rudy, and Mashup, the

Enterprise Web-Oriented Architecture (EWOA) is gaining great attention from both industry and

research community. The traditional SOA [66] is an overall umbrella concept and style for how

to create the web services with WS-* style, SOAP protocol and WSDL language. The ESOA is a

specific style of SOA for enterprise systems [201][204]. However, the web, HTTP protocol, and

web browsers do not directly support SOAP and WSDL specifications, and the design and

implementation of traditional SOA and ESOA requires complex tools and frameworks because

88

of its complexity. The EWOA is really a push back on the complexity of the traditional EWS-*

style ESOA. It is an alternative style for web-centric web services. Figure 4.13 shows what the

SOA core with reach - WOA [92] looks like. The traditional ESOA is service-centric instead of

web-centric and, thus, can be applied to web-centric and desktop applications. However, the

traditional ESOA style does not take advantages of web simplicity for web-centric web services.

That is why it is not widely adopted for web-centric applications.

Figure 4.13. SOA Core with Reach – WOA

 In this section, we call the WOA for a web-oriented enterprise as EWOA. In Section 4.4, the

EWOA is defined as a sub-style of ESOA and a new way to build service-oriented applications

on the web has not been well-defined. To introduce it, we use the definition from Cartner’s Nick

Gall [74]:

“WOA is an architectural style that is a sub-style of SOA based on

the architecture of the WWW with the following additional constraints:

globally linked, decentralized, and uniform intermediary processing of

application state via self-describing messages.”

REST + HTTP(S)

POX, AJAX, JSON, FEED

SOA

WOA
Web-Oriented Architecture

Atom, Mashup

RMI/IIOP

BPEL, WS-CDL

JMS

UUDI
WS-Security

WS-CAF

WS-Trust

WS-Atomic Transaction

WS-Coordination

WS-Reliable Messaging

WS-Policy

SOAP

WSDL 2.0

WSDL 1.1

Complexity

R
ic

h
n

e
s

s

89

Nick Gall also gives an interesting mathematical formula for defining WOA as

 WOA = SOA + WWW + REST (4.20)

The mathematical formula can be depicted by the WOA triangle shown in Figure 4.14.

Figure 4.14. Triangle of Web-Oriented Architecture

 In the WOA triangle, the SOA is the parent architectural style of WOA which is built on

many SOA principles, such as statelessness and loosely coupled-ness. The WWW and REST are

the base of WOA. The WWW is the platform and infrastructure of WOA. It is a mature global

network based on HTTP protocol. The REST (Representational State Transfer) [70] is the

foundation of the WOA architectural style. It is a simple web architectural style which is

developed as “an abstract model of the Web architecture to guide our redesign and definition of

the Hypertext Transfer Protocol and Uniform Resource Identifiers” [70][71]. The model can be

formally defined as the following 4-tuples:

 REST = < Elements, Principles, Constraints, Quality > (4.21)

where

 Elements = {REST Data, REST Connectors, REST Components}

 Principles = {Application states and functionality as resources,

 Representation of a resource, Stateless, Layered, Cacheable} (4.22)

 Constraints = {Web Platform, HTTP Protocol, URI Addressing,

90

 Client-Server, Uniform HTTP Interfaces} (4.23)

 Quality = {Performance, Scalability, Simplicity, …} (4.24)

 We have defined the Enterprise Service-Oriented Architecture (ESOA) as the set of

architectural elements, environments, principles and processes in [201][204]. The EWOA is a

sub-style of ESOA. Thus, EWOA is also defined as the sets of web-based architectural elements,

environments, principles and processes based on [70] and [71]:

 EWOA= QSPSMSISDCS RRRRRRR ,,,,,, , (4.25)

in which

 RS = {sR| sR is a RESTful web service}, (4.26)

 RC = {cR| cR is a web client}, (4.27)

 RD = {dR| dR is a WOA data element}, (4.28)

 IS R
 = {wR| wR is a WOA platform}, (4.29)

 MS R
= {mR| mR is a WOA management}, (4.30)

 PSR
 = {pR| pR is a WOA process}, (4.31)

 QS R
 = {qR| qR is a WOA quality attribute}. (4.32)

 The formula defines EWOA as a substyle of ESOA. It is based on the generic service-

oriented enterprise architectural formula (4.2). We specify the EWOA from Section 4.6.1 - 4.6.7

formally and informally. We discuss the high-assurance EWOA in Section 4.6.8.

4.6.1 RESTful Web Services

The RESTful web services (RWS) is the key element of EWOA. Like a generic service model

defined in [204], formally, we can define a RWS Rs as the following 5-tuple:

91

 Rs =
RRRRR QlRMI ,,,, , (4.33)

where

 RI = {iR| iR is an HTTP interface}, (4.34)

 RM = {sR| sR is an RWS state}, (4.35)

 RR = {rR| rR is a web resource}, (4.36)

 Rl = {uR| uR is a URI}, (4.37)

 RQ = {qR| qR is a service quality attributes}, (4.38)

Formula (4.34) indicates that the RESTful web services have uniform interfaces which are HTTP

GET, POST, PUT, DELETE, HEAD, OPTIONS, TRACE, and CONNECT based on HTTP 1.1.

For most enterprise web applications, the first four interfaces cover almost every operation as

shown in Table 4.8.

Table 4.8. Uniform Service Interfaces

HTTP Interface Semantics in RESTful Web Services

GET Retrieve information from resource

POST Add new information

Show its relation to old information

PUT Update information

DELETE Discard information

Formula (4.35) shows that an RWS has a set of states maintained as part of the content

transferred from client to server and then back to client. The set of states includes Application

state, which is the information for the server to understand how to process the request. The

92

authorization and authentication information are examples of application states. It includes

Resource state, which is the representation of the values of the properties of a resource.

Formula (4.36) indicates an RWS serves a set of resources which are application states and

functionalities of the RWS. Formula (4.37) tells us that an RWS can be described by a set of

URIs each of which is a single string including the service address and the specification of the

resource. For example, a service for browsing all books URI looks like

 http://www.amazon.com/books

Formula (4.38) is a set of RWS service quality attributes which include performance, scalability,

simplicity, etc. The detailed analysis of these attributes is presented in Section 4.6.7.

Algebraic Characteristics of Set (4.24): For any resource r RR, there exists one or many URI

in lR for the resource. If resources r1 and r2 RR, then only one statement will be true: r1 r2 or

r1 r2. It shows that the same resources or the same URIs have the same behavior or result to

the client. Therefore, a non-POST RWS is idempotent.

 We propose an abstract tuple model (4.25) of RESTful web services. Figure 4.15 presents the

relationship between sets in (4.25) and structural and behavioral models of RWS. The

relationship between set (4.35) through set (4.37) can be summarized as follows:

http://www.amazon.com/books

93

Figure 4.15. Relation Model of RWS

 An RWS, with application states, serves resources by processing requests and transfers

resource states from one to another in term of response.

 A resource, which is a conceptual entity, can be represented by many representations which

are concrete manifestation of the resource.

 A resource has one unique URI and many resource states. Each state is maintained by the

resource representation.

 A URI has the resource identifier.

 A resource representation can be located by a URL with network address and other

information which includes the protocol (http or https), hostname, path and extra information

for describing how to get the representation of a resource.

 A resource representation can be represented by multiple formats, such as XML, HTML, and

JSON.

class RWS

RWS

+ DELETE()

+ GET()

+ POST()

+ PUT()

Resource Representation

URI

ResourceIdentifier

ApplicationState URL

Format

NetAddressInfo

ResourceStates

contains
1

has

1

1

maintained by

1

1

has

1..*

1
interconnected

by

1

1

has

1..*

1

represeted by

1..*

1
identified

by
1

Transfers

1has

1..*

1..*

serves

1

94

Figure 4.16. Connection Model of RWS

Figure 4.16 shows the RWS connectional models. We leave the discussion of RWS behavior

model in the next section.

4.6.2 RESTful Web Service Consumers

According to the connection model of RWS in Figure 4.16, any web client can be the consumer

of RESTful web services. For each cR CR, it has the following behaviors:

 Connect to web services by HTTP protocol;

 Send RESTful requests through RESTful interfaces;

 Consume RESTful web services in WWW browsers or any web application.

 There are two interaction models, which describe how web clients consume RESTful web

services:

 Synchronous interaction model

 The Java JDK HttpURLConnection [90], Apache’s HttpClient [17], and Microsoft’s

WebHttpBinding of WCF [69] all provide the client model for accessing RESTful web services

synchronously. The model is based on HTTP request and reply model. The sequence diagram in

Figure 4.17 depicts the model.

cmp Connections

RESTful Web

Serv ice
HTTP Interfaces

Web clients

HTTP Interface

This RESTful web service

exposes an interface for web

clients to use. The interface

is a contract to provide

specific behavior to other

web clients that require that

service.

This component needs the

services of another

component to perform its

required work.

95

Figure 4.17. Synchronous Interaction Model

The UML 2.1 sequence diagram depicts two RESTful web services RWS 1 and RWS 2 which

serve two user requests: GET address and GET product for a shopping page on the web. To best

describe the behaviors of RESTful web services, we create a RESTful profile with the following

stereotypes:

<<user action>>

<<resource>>

<<access resource representation>>

<<resource representation>>

<<information>>

<<response>>

which are helpful in describing the interaction behavior between service consumers and RWS.

They are also used in the UML sequence diagram for describing the following asynchronous

interaction model:

sd RWS Syn Behav iors

User

Web clients RWS 1 Resource 1RWS 2 Resource 2

URIURI

URIURI

request service 1()

«user action»
GET address()

«resource»

process request()

getAddess()

«access rerource representation»

:address

«resource representation»:address

«information»
display address()

«response»

request service 2()

«user action» GET product()

«access rerource representation»

process request()

getProduct()

«access rerource representation»
:product

«resource representation»:product

«information»
display product()

«response»

96

 Asynchronous interaction model

 The EWOA uses HTTP which is a synchronous request/response protocol. The question is

whether the EWOA can support asynchronous interactions for long-running processes. In fact,

there exist some standard asynchronous interaction patterns supported by HTTP, which are

independent of the RESTful web services approach. The patterns are listed in Table 4.9.

Table 4.9. Standard Asynchronous Interaction Patterns

Asynchronous Patterns Description

Reliable one-way messaging (Fire-

and-forget)

Service consumer does not wait for response

Polling Service consumer periodically polls the

request status

Callback Service provider calls consumer back when

service is done

In EWOA, the web clients can interact with RWS asynchronously by using AJAX which is a set

of technologies including the asynchronous JavaScript and XML [174]. The UML sequence

diagram in Figure 4.18 shows such a model.

Figure 4.18. Asynchronous Interaction Model

sd RWS Asyn Behav iors

Users

AJAX Web Clients RWS 1 Resource 1RWS 2 Resource 2

URIURI

URIURI

request service 1()

«user action»
GET Address()

«resource»

process reqest()

request service 2()

«user action»

GET Product()

«resource»

getAddress()

«access rerource representation»

process request()

getProduct()

«access rerource representation»

:address

«resource representation»:address

«information»display address()

«response»
:product

«resource representation»
:product

«information»display product()

«response»

97

The sequence diagram shows that the user can submit two service requests to two RWS almost in

parallel to update web page blocks and without going to the web server and refreshing the page

for each request.

4.6.3 WOA Data Elements

As a RESTful architectural style, the
RD in the model (4.25) plays an important role for

understanding, specifying, and designing WOA systems. The
RD is a finite set which consists of

certain abstract data types supported by the style. They can be informally defined as shown in

Table 4.10.

Table 4.10. WOA Data Elements

Data Elements Specification
Resource The intended conceptual target of a hypertext reference

[9], such as an online address book and a shop invoice

Resource metadata The data for specifying a resource, such as a source

link

Resource identifier URI and URL

Representation The current or intended state of a resource, such as

HTTP document, XML document, and JPEG image

Representation metadata The data for describing the representation, such as

Media type, last-modified time

Service specification WSDL 2.0 RESTful web service specification

WOA metadata The data for describing other metadata, such as

message integrity and service quality contracts

WOA Management data Security policy data

WOA process data Workflow description

Web configuration data Configuration of Web servers, DNS, Server Proxy,

Gateway, Cache

Web container data Configuration of application server web container,

such as weblogic web container

In Table 4.10, the first five rows, such as Resource and Representation, are REST data [70]

which are the base of WOA data elements.

4.6.4 WOA Infrastructure

Unlike other ESOA substyles, EWOA is built on existing web infrastructure in the enterprise.

The IS R in (4.25) can be defined as a set of servers and services:

98

IS R

= {Web servers, Proxy servers, Gateway, DNS, Server connectors,

 Cache servers, Web containers of application servers}. (4.39)

For small and some medium enterprises, the WOA infrastructure is a subset of IS R
. For example,

they may not have application servers, even Proxy servers. Formula (4.39) describes the major

components in a generic EWOA infrastructure. The role and functionality of each infrastructural

component are defined in Table 4.11.

Table 4.11. Role and Functionality of Infrastructural Components
Infrastructural Components Example Role and functionality

Web servers Apache HTTP server, and

IIS

HTTP communication, service request

and response processing, HTTP

security, Cookie, session management

Proxy servers SUN’ SQUID

HTTP server routing, RESTful web

service routing

DNS Round Robin DNS URI addressing

Gateway CGI RESTful web service provider

Web Containers java web container RESTful web service provider

Server connectors Libwww, JDK, NSAPI,

.NET, DNS lookup, Tunnel

(such as SOCKS, SSL)

Make connection between client and

server

Cache service or servers Browser cache, JCache,

Akamai Cache Network

Store short-life data for improving

performance

4.6.5 WOA Management

The EWOA is the WOA for enterprise, so it also includes WOA management MS R
which is a set

of web application system management tools and services for managing RESTful services. The

MS R
includes

 RESTful web services registry;

 Firewalls for network security management, such as Perimeter firewall, NAT firewall, XML

firewall;

 Filters for request and response management, such as Java HTTP filter;

 Security services for application security management, such as authentication, authorization,

REST parameter analysis and XML threat analysis;

99

 Logging services for error and exception management;

 Agents and Monitors for performance management.

We will discuss the importance of WOA management for high-assurance RESTful web service

computing in Section 4.6.8.

4.6.6 WOA Processes

Traditional web service architectures are designed to accommodate simple point-to-point

interactions – there is no concept of a logical flow or series of steps from one service to another.

In an enterprise, the business often requires software systems to have the capacity to process

complex business processes, such as workflow, transaction, online order, and shipping.

Supporting service composition (orchestration and choreography) is fundamental to the web

services vision. Therefore, the service processes are one of the core elements in ESOA

[201][204]. As mentioned in Section 4.5.6, there are two specifications, BPEL and WS-CDL, for

handling the different approaches of orchestration and choreography of SOAP-based web

services in traditional EWS-* style ESOA for various complex business process management.

Although there is no corresponding standard for EWOA processes, RESTful web services

composition, such as client-side or server-side Mashup, have been practiced on the Web. iGoogle

is a good example. The Web is the most complex global enterprise on the business platform. To

meet the increasing number of requests for handling complex web business processing and

services interactions, many software industry vendors and researchers are working on

specification and tools for WOA processes of both RESTful orchestration and choreography.

The Bite is a minimalist choreography language for Web [54]. The Bite runtime architecture is

implemented by IBM Project Zero [97]. An approach to RESTful process choreography based

http://www.google.com/ig

100

on the Asynchronous Services Access Protocol (ASAP) is proposed in [146]. There are several

approaches to RESTful process orchestration [17][176]. A common idea is to extend BPEL for

RESTful web services orchestration. Figure 4.19 depicts how to extend BPEL for two RESTful

web services 1

Rs and 2

Rs orchestration.

Figure 4.19. RESTful Web Services Orchestration by Extended BPEL

4.6.7 WOA Quality Attributes

The quality attribute requirements drive high assurance software architecture design [158]. They

also drive the ESOA and EWOA system design for high assurance. In this section, we define a

set of quality attributes as architectural properties of EWOA style. The REST and the Web are

two bases of WOA. The quality attributes of both WEB and REST are discussed in [70]. We list

the major parts in Table 4.12.

Table 4.12 describes the basic quality attributes of the WOA style. For the EWOA which is an

enterprise-level WOA style, we have to address additional non-functional requirements for

some of the quality attributes, such as security, reliability, manageability, governance. We define

high-assurance EWOA style which can address further enterprise non-functional requirements.

101

Table 4.12. Quality Attributes of WEB and REST Style

Quality Attributes Description for WEB and REST

Performance Network performance which is one of infrastructure performance which can be

improved by interaction style

Efficiency REST is cacheable. Using cache can improve application performance and

network efficiency

Scalability WEB is internet-scale

Using proxy style can increase web scalability

Simplicity REST is very simple style by client-server for separating concerns

Security HTPS, SSL, firewalls provide basic WEB infrastructure security. REST does not

address application security.

Firewall visibility increases security, but visibility may reduce payload level

security.

Evolvability WEB is easy to evolve. REST style can improve web architecture evolvability.

Extensibility REST supports the gradual and fragmented deployment of changes within an

already deployed architecture

Reusability The components defined by REST are reusable

REST style use uniform HTTP interfaces

Sharable proxy and cache style all increase reusability

Reliability REST style can help reliability by avoiding single failure point, enabling

redundancy, using monitoring, or reducing scope of failure to a recoverable

action.

Visibility “Within REST, intermediary components can actively transform the content of

messages because the messages are self-descriptive and their semantics are

visible to intermediaries.”

Modifiability REST style also improves system modifiability through supporting evolvability,

customizability, configurability and reusability.

Customizability It is induced by remote evaluation and code-on-demand style

Configurability WEB Servers and other mediators, such as proxy are configurable.

4.6.8 High-Assurance EWOA

 To achieve high-assurance SOA in the enterprises, specifically for defense, financial

industry, and mission critical business systems, the traditional ESOA style addresses the

enterprise architectural non-functional requirements or quality attributes through the WS-*

standards [235] and governance framework. They are presented in our previous work as a set of

SOA managements [201][204] which can be governed by QoS rules and policies. Therefore, the

system based on traditional ESOA-style is very complex in general. The WOA is a lightweight

approach to SOA at Web, so it greatly reduces the complexities of SOA with its two

fundamental: REST style and mature Web infrastructure. Because of its simplicity, EWOA does

not need WS-* like complicated governance and management. However, to meet enterprise

102

requirements for high-assurance service computing, such as web transaction, e-Business of inter-

organizations and inter-business partners, dynamic web information system integration, EWOA

needs RESTful governance. The SOA governance includes design time governance and runtime

governance. In this chapter, we focus on specifying the EWOA-style runtime governance which

is what we have defined as WOA management in Section 0. In our specification, the RESTful

lightweight governance may include:

 RESTful services registry/repository;

 RESTful security management;

 RESTful application controller, such as a java servlet;

We propose the high assurance RESTful information system architecture as shown in Figure

4.20 based on the EWOA style we have specified.

Figure 4.20. High-Assurance RESTful Information System Architecture

103

The RESTful architecture consists of the following parts:

 A set of web clients which includes any client application by using HTTP client library and

any web site with or without AJAX.

 An EWOA HTTP infrastructure which includes a set of web servers and services, such as

web servers - Apache, IIS and GWS, and services - proxy, gateway, web cache. The EWOA

infrastructure also includes a set of data source connectors, such as Adapters, JMS, and

JDBC.

 A set of RESTful services which can be served by two kinds of resources - individual

resources by GET, PUT and DELETE interfaces and resource collections by GET and POST

interfaces. We define two kinds of RESTful web servers:

 Managed RWS which is registered by the service registry;

 Unmanaged RWS which is for getting public data only;

 The RWS can be deployed in either the web server extension, such as secure cgi-bin, or

web containers, such as weblogic and Tomcat.

 The EWOA management consists of an Application Controller, a Security Manager, and a

Service Registry which includes a repository for storing the description of RWS and policy as

well as configuration data, and server and application monitors. The controller can also act as an

RWS orchestration engine.

 Due to the simplicity of the RWS and the architectural properties of REST style, we point out

Table 4.12, EWOA style system is of higher performance and simplicity compared to traditional

WS-* SOAP style ESOA system. However, the security of RESTful applications for enterprise

should be taken into consideration to achieve high-assurance service computing. As we know,

104

the RWS only support four interfaces GET, POST, PUT, and DELETE. Let us define three sets

of operations:

 A = {a | a is an idempotent and safe operation};

 B = {b | b is an idempotent operation either safe or unsafe};

 C ={c | c is a non-idempotent and unsafe operation};

 O = {o | o is an operation either idempotent or non-idempotent};

Then we have the following security relationship:

Figure 4.21 depicts the relationship and exposes the security concerns.

Figure 4.21. Venn Diagram of RESTful operations

 Except for GET, all the other operations are unsafe. Even GET has some security

vulnerabilities, such as QueryString attack and XML/JSON out attack. Unlike SOAP, at the

message level, RESTful services are using plain text html for request and POX or JSON for

response. Therefore, they do not provide payload-level security for routing RESTful requests

to multiple different servers, such as proxy, gateway, web servers, and web containers. Public

data which can be accessed by the world;

 Internal confidential data which can be accessed by certain people;

105

 Business data which can only be accessed by authenticated and authorized users.

Table 4.13 shows a security and QoS comparison between REST message and SOAP message.

 From the example in Public data which can be accessed by the world;

 Internal confidential data which can be accessed by certain people;

 Business data which can only be accessed by authenticated and authorized users.

Table 4.13, the customer’s credit card information is in the insecure REST payload.

Nevertheless, it can be protected by SOAP envelope at the payload level. In general, the data of

any enterprise can be categorized as:

 Public data which can be accessed by the world;

 Internal confidential data which can be accessed by certain people;

 Business data which can only be accessed by authenticated and authorized users.

Table 4.13. Comparison of REST and SOAP Messages

Message REST POST SOAP POST
Header There is no QoS defined in header Can specify QoS in header

Body Payload in plain text (HTML or XML),

which is visible to cross all traveling

servers

Payload inside SOAP Envelope,

which is visible only for the end

application.

Envelope There is no Envelope for payload There is SOAP envelope for

payload

Example

In our proposed architecture shown in Figure 4.20, the Security Manager includes authentication

which is against identity, and authorization which is against service policy, URI analysis,

response filtering, and logging. For the second and third category of data, we always need to use

POST/HTTP/1.1

Host: http://www.amazon.com

Book: RESTful Web Service

Credit Card: Visa

Number: 123456789

Expire: 11-01-20-12

POST/HTTP/1.1
Host: http://www.amazon.com
Contenttype: application/soap-
xml
Charset=uft-8

<env:Envelope xmlns:env=“

http://www.w3.org/2003/05/

soap-envelope”> <env:Header>

<!--Header information here-->

</env:Header> <env:Body>

<!--Body or “Payload” here,

a Fault if error happened -->

</env:Body> </env:Envelope>

106

a security manager with SSO (Single Sign-On) and ACL (Access Control List) technologies,

where the ACL allows an application to set the data access control for different users. For RWS,

we can set the permission to use different operations for different users. For accessing business

critical data, such as user account information and transaction data, it is better to use SOAP style

web services. However, the RESTful approach has bigger performance and simplicity

advantages than WS-* SOAP approach for accessing the public data, specifically by getting them

by GET. The unmanaged RWS can serve this kind of data in a very cheap way. In the next

section, we discuss the relationship between EWOA and ESOA. Moreover, a hybrid approach is

proposed.

4.7 Comparison of ESOA Styles

 This section compares the major ESOA styles based on (4.2). The EEDA and EGSA are

based on traditional web services in Table 4.14 and Table 4.15 which means the services in

EEDA are web services and the services in EGSA are extensions of web services. We show an

informal comparison of major quality attributes [158] for all five major ESOA styles in Table

4.14 in which “-” means less, “--” means much less, “---” means dramatically lower, “+” means

average, “++” means high and “+++” means dramatically higher. We discuss each of the quality

attributes as follows:

Performance: The performance of SOAP web service in enterprise systems is challenging

because of its heavyweight nature and XML large payload. In general, the services in EEDA are

inefficient [208]. To access web resources, EWOA is more efficient than traditional web services

because of its cache feature. Since EGSA’s SOA Grid infrastructure enables middle-tier caching

layer, it enhances web service performance [39].

107

Transaction: The ACID (atomicity, consistency, isolation, durability) transactions that span

multiple applications are important for enterprise systems. EWS-* and other web service based

styles are addressed by WS-AtomicTransaction which relies on WS-Coordination specification.

ECBS, such as stateless EJB service model, also handles transactions well. EWOA is not good

enough to handle ACID transactions, because of its resource-oriented nature.

Interoperability: It is one of the main goals of web services. WS-I profile addresses web service

interoperability. However, cross-vendor interoperability of traditional web services (like EWS-*,

EEDA, EGSA) is not perfect (only “+”). The interoperability of ECBS is not as good as other

styles, since its components are less standardized. EWOA interoperability is based on web

principles [70].

Scalability: The tier-based ESOA architecture, such as the EWS-* and ECBS architectures, with

traditional middleware, does not scale linearly and does not allow applications to scale on-

demand. The EWOA architecture has better scalability than traditional web service SOA

architecture because of web scalability nature, cache adoption, and unified interfaces. However,

its scalability is also not dynamic and linear. The EEDA also improves the scalability of

traditional SOA because of its event-driven asynchronous nature. The EGSA can provide

predictable and truly linear scalability because grid computing can help ESOA system to

improve the scalability bottlenecks across SOA parts [39].

Security: The security of EWOA is based on HTTP security features and Security Socket Layer

(SSL). The ECBS security is not only based on HTTP security and SSL, but also based on

component security standards, such as J2EE security standards. Other styles based on web

108

services provide more security capacities through WS-* security specifications [235], such as

WS-Security, WS-Trust, and WS-SecureConversation.

Availability: Unlike other styles using redundancy technology for high availability, the EGSA

uses SOA Grid to achieve extremely high availability. SOA grid can provide continuous

availability and reach 100% active-active server failover. It can also prevent single points of

failure and enable automatic service load distribution and a full-range of QoS levels for stateful

services and service orchestration. In addition, it can increase throughput and self-healing

management as well as SLA enforcement.

Reliability: EWOA has less reliability since the style does not address many enterprise

challenges through standards. The styles based on web services are of higher reliability by

implementing WS-* reliability specifications, such as WS-ReliableMessaging.

Simplicity: EWOA is the simplest style of the five styles, since it is protocol dependent and its

RESTful web services have unified interfaces and its infrastructure is built on existing web

infrastructure [202]. Therefore, it is called lightweight SOA. EWS-* is more complex than

EWOA and ECBS because it is protocol independent and based on complicated multiple

specifications [235]. EEDA is more complicated than EWS-* because of its event processing and

its real-time environment. EGSA is the most complex due to its complicated grid environment,

stateful web services, and the complexity of managing states in SOA applications.

Flexibility: The ECBS is less flexible than other styles since it is not based on common standards

and since it has relatively tight couplings. EEDA and EGSA have higher flexibility, since the

event processing is added to EEDA SOA and flexible grid computing infrastructure with

predicable scalability and continuous availability.

109

Business Agility: The ECBA has less business agility than other styles because of its relatively

tight coupling.

Resource Manageability: The resource manageability of EGSA is the best since grid computing

brings maximum resource utilization, such as virtualization, into ESOA architecture.

Consciousness: All ESOA styles guide building enterprise service-oriented software systems.

However, most of the traditional styles systems, such as EWS-*, EWOA, and ECBS systems, are

comatose, meaning they are unaware of their surroundings. They cannot independently act on

conditions without instruction from a central controller or the aid of human administration.

However, EDA of EEDA brings consciousness into the enterprise SOA systems. With the right

mix of smart event processing and rules, the EDA enables the ESOA system to consciously react

to internal and external conditions that affect the business within a real-time context [208].

Loose coupling: EEDA is the most loosely coupled architecture because of its event-driven

nature and asynchronous communication protocol [208].

4.8 Summary

The chapter defines ESOA ontology based on the modeling framework built in Chapter 3.

However, description of the ESOA ontology and specification of its sub-styles are based on the

previous research work [201][202][203][204]. The ACME-Like language defined in Chapter 3

can be used for modeling ESOA as well. Let us replace Infrastructure(t) with SOA

Infrastructure; replace Management(t) with SOA Management; replace Process(t) with SOA

Process; replace QA with SOA QA in (3.1). We can define

ESOA-EAType SOA Infrastructure SOA Management SOA Process

 ConfigurationComponentConnector PortRole SOA QA. (4.39)

110

The Dessertation will not discuss them in detail. Since the Infrastructure, Management and

Process in traditional ESOA are basically static (except EGSA – which introduced dynamism to

SOA), on-premise, and dedicated, that means for a given period of time, the system topology,

management and process are basically static, so they are not constantly varying with time t. The

dissertation defines and describes Enterprise Cloud Service Architecture (ECSA) style which is a

dynamic EAS in the next chapter.

Table 4.14. Major Quality Attributes Comparison

SOA Quality Attributes (SQ)

Style EWS-* EWOA EEDA ECBS EGSA

Performance - + - + +

Transaction ++ - ++ ++ ++

Interoperability + + + - +

Scalability + ++ ++ + +++

Security + - + + +

Availability ++ ++ ++ ++ +++

Reliability ++ + ++ ++ ++

Simplicity - ++ -- + ---

Flexibility + + ++ - ++

Business agility + + + - +

Resource manageability + + + + +++

Consciousness - - +++ - +

Loose coupling ++ ++ +++ - ++

Table 4.15. Comparison of Parts and their Constraints of ESOA Styles
Style Services (S) Consumers (C) SOA Data (D) SOA Infrastructure

(SI)

SOA Management (SM) SOA Process (SP)

EWS-* SOAP-based web services

 Machine-processable description

of services, such as WSDL

 Machine-processable description

of composition of services, such
as BPEL

 Address challenges by WS-*

specifications

 Standards - WS-*[235]

 Connectivity and interaction

o Application protocol – SOAP

o Transport protocols – HTTP,
TCP, SMTP, JMS,MQ,IIOP

o Both RPC-style and messaging

communication
o Both Request-response and

one-way

o Both synchronous and
asynchronous service

invocation

 Request/action driven

 Different applications expose
different interfaces

 Contract-first and contract-last

 Stateless

 Web service
client

applications

 Web

applications

 Metadata of
Web services

 UDDI keys,
data sources

 WSDL
documents

 XML Schema

(XSD)

 Service
description

 Endpoint

schema

 Administrativ

e metadata

 WS-CDL

document

 BPEL,

XLANG

documents

 SLA data

 XACML
documents

 Layered infrastructure
[201][]

o Connection layer
o Communication

layer

o Mediation layer

 SOA enabled

middleware [214]

 Enterprise Service Bus

(ESB) [38]

 Resource
management

 Service and
infrastructure

discovery

 Network and

application monitors

 Policy enforcement

 SLA management

 Exception

management

 Closed-loop
government

 Service lifecycle
management

 Web service
orchestration[169

]

 Web service

chorography[169
]

 Process

coordination
scheduler

required

 Process is
triggered by

consumer

EWOA RESTful web service

 Need to model system as
resources

 Not all challenges are tackled

 Web standards[70]

 Connectivity and interaction
o Application protocol – HTTP

o Transport protocol –

HTTP/REST-style

communication

o Both synchronous and
asynchronous service

invocation

 Request or action driven

 Different applications expose its

resources through the same
interfaces: GET,POST,PUT and

DELETE [202]

 Contract-less
 Stateless

 Web

applications

 Customers

or users who
interact with

services,

such as
Wiki,

directly.

[41] defines
this kind of

SOA as

Consumer-
Centric

SOA

(CCSOA) or
User-

Centric

SOA
(UCSOA).

 Resources

 Resource
metadata

 Resource
representation

 Resource
identifier

 Service

description

 Configuration
data

 Web servers

 Web proxy servers

 Load balancer

 DNS

 Gateway

 Web container

 Server connector

 Cache

 RESTful WS registry

 Firewall server

 Single Sign On
security manager

 Logging service

 System monitor

 RESTful web

service
orchestration,

such as Mashup

 Lack of standard

 Not support
chorography

1
1
1

 Table 4.15 continued
EEDA Traditional SOA

 Web services

 EDA web services[208]

 Standards:
WS-Eventing[227]

 Connectivity and interaction

 Support web service

connectivity

 Both synchronous and

asynchronous
 service invocation

 Event-Driven

 Support real-time business

 Stateless

 Traditional

WS client
applications

 EDA
applications

 Traditional

SOA data

 EDA data

 Event
metadata

 Traditional SOA

infrastructure

 Traditional SOA

message infrastructure
with pub/sub message

queues (ESB)

 EDA infrastructure
o Global Event

Listeners

o Global Event

Processors

o Global Event
Producers

o Complex Events

Processing (CEP)

 Traditional SOA

management

 EDA events system

management

 Event-Driven Web

service orchestration
– support both

traditional

orchestration and
publish/subscribe

 Events-Driven Web
service chorography

 Support both

scheduled and

unscheduled process

coordination

 Process is triggered

by consumer or
producer

ECBS Component-based

 Services

 RPC-style, such as RMI

communication

 Standards:

Service Component Architecture

standards[153]
Java Business Integration[210]

 Connectivity and interaction

 RPC, RMI, JMS

 Request-response

 Both synchronous and

asynchronousservice invocation

 Request or action driven

 Stateless

 Web client

applications

 Desktop

applications

 Wireless

client

application

 Traditional

component
data

 Service
component

metadata

 Policy data

 Configuratio

n data

 Traditional SOA

infrastructure

 Traditional component

infrastructure

 Traditional SOA

management

 Traditional

component-based
management

 Security management

(SSO, ACL)

 Performance

management

 Component service

orchestration

 Component service

chorography

 Process coordination

scheduler required

 Process is triggered
by consumer

EGSA Grid Web services-extension of

traditional web services

 Standards:

WS-Resources [157]

WSRF [157],OGSA[101],

OGSI[160]

 Connectivity and interaction

 Support web service

connectivity

 Request-response

 Request or action driven

 Stateful

 Web service

client
applications

 Grid client

applications

 Traditional

SOA data

 Grid data

 Web service

resource

properties

 WSRF

Specification

 Grid service
registry data

 Policy data

 SLA data

 SOA Grid

infrastructure

 Grid-enabled

middleware

 Grid-enabled ESB

 Grid service registry

 Scheduling service

 Job-submit service

 Data grid

 Enterprise Data Bus

 Visualization resources

 Traditional SOA

management

 Grid management

 State management

 SLA management

 Grid resource
management

 Self-management

 Grid Web service

orchestration

 Grid Web service

chorography

1
1
2

1
1

113

CHAPTER 5

ENTERPRISE CLOUD SERVICE ARCHITECTURE

This chapter introduces and specifies a new enterprise architectural style – enterprise cloud

service architecture (ECSA) based on the framework defined in Chapter 3 and previous research

work in [205][207]. ECSA is a hybrid architectural style with ESOA and ECC. In this chapter,

the combined style is defined and modeled. Since the previous chapter has specified ESOA, this

chapter focuses on modeling ECC. The ECSA quality ontology is defined and analyzed.

5.1 Introducing ECSA

With the globalization of the economic environment, the increasing complexity of business

processes makes the enterprise information systems complicated. Enterprise service-oriented

architecture (ESOA) is designed to tackle the complexity and build better architectures and

solutions for enterprises. Conceptually, the ESOA is an architectural style which defines the

concrete ESOA architecture as a set of well-defined services. It can be further abstracted to

process layers and composite applications for business solutions. The services are deployed and

accessed through SOA infrastructures. They are governed and managed by SOA principles and

management systems [244][62][63][201][204]. The ESOA brings forth the agility aspect to

enterprise architectures, allowing enterprises to deal with system changes using a configuration

mediation layer, rather than constantly having to redevelop these systems. However, ESOA

114

introduces new challenges and issues to enterprise architecture because of its following

characteristics:

 The enterprise owns the data center with ESOA services but the infrastructure is not dynamic

enough to support auto scaling and elastic load balancing [10].

 The enterprise architecture is built behind firewalls.

 Resources are dedicated to each workload.

 Resources are shared only within the enterprise.

Figure 5.1 shows a traditional ESOA data center in which there are three layered infrastructures:

 Web server infrastructure;

 Enterprise application server and service infrastructure which includes application database

and SOA services, application monitors and SOA application management;

 Enterprise information storage and business service infrastructure.

All enterprise services are operating behind firewalls.

Building a data center to support ESOA architecture is expensive and it is not possible for

some small to medium enterprises. For large enterprises, it is not possible to complete some

complex business processes, such as online shopping and shipping, without third party services.

Moreover, many server resources in a large data center are idle or passive, such as during non-

peak time periods, since the plan of resources is based on the highest volume of workload. Thus,

resources are wasted resulting in increasing cost of resources and operations. Many enterprises

view SOA as something that only occurs within firewall. The ESOA faces new challenges from

enterprises – reducing complexity as well as cost and increasing capacity, flexibility as well as

agility. Leveraging cloud computing to support a new paradigm of distributed computing for

115

enterprises brings forth many new ideas, concepts, solutions, and principles to enterprise

architecture and ESOA. Originally, cloud computing evolved from web computing (such as Web

2.0 [83]), service-oriented computing [213][214][244][204][63], grid computing [246], utility

computing [35], and other technologies, including virtualization [95] and virtual applications.

Cloud computing is about moving services, computation and/or data off-site to an internal or

external, location-transparent, centralized facility or contractor for cost and business advantages.

By making services and data available in the cloud, it can be more easily and ubiquitously

accessed, often at much lower cost, increasing its value by enabling opportunities for enhanced

collaboration, integration, and analysis on a shared common platform [52]. The framework is

applied to model and analyze a new architectural style, Enterprise Cloud Service Architecture

(ECSA), which is a hybrid of the ESOA and ECC styles.

Internet

`

Data Center

Web server infrastructure

Application Servers, ESB, Database Clusters

Data Data

Backend Servers and Database Clusters

DataData

Mainframe Mainframe

Figure 5.1. Enterprise SOA Data Center

116

The rest of this chapter is organized as follows: The next section defines ECSA based on the

framework in Chapter 3. Section 5.3 specifies ECSA and defines its quality ontology.

5.2 ECSA Ontology

 This section defines the new ECSA style framework for modeling enterprise service-oriented

architecture [201][204] and the ontology-based framework for modeling EAS styles presented in

Chapter 3. Before defining the new style, we define

 Cloud ={public cloud} {private cloud}, (5.1)

in which the public cloud, such as Google cloud [236] and Amazon cloud (Amazon Web

Services - EC2 and S3) [173], is typically on the Internet or off-premise. The private cloud, such

as cloud-enabled data center, is typically located on-premise.

 Firstly, for some enterprises with both ESOA systems and cloud systems for serving different

businesses and customers, we define architectural style ECSA as a combination of ESOA and

ECC based on (3.17). Secondly, for some enterprises with only service-oriented private cloud

systems, we discuss its refinement form in terms of (3.18).

where

117

 S = IS IIS IIIS , (5.5)

in which

 IS ={s | s is a service not on cloud},

 IIS = {s| s is a service on private cloud},

 IIIS = {s | s is a service on public cloud}.

Let us define

 IVS = {s | s is a service on hybrid cloud},

 VS = {s | s is a service on community cloud}

where IVS IIS IIIS and VS IIIS .

 C = IC IIC , (5.6)

in which

 IC ={c | c is a non-cloud service consumer}

 IIC ={c | c is a cloud service consumer}

 D = ID IID , (5.7)

in which

 ID = {d | d is an SOA data element}

 IID = {d | d is a cloud data element}

 SI = ISI IISI , (5.8)

in which

 ISI ={r | r is an SOA infrastructure}

 IISI ={r | r is a cloud infrastructure}

 SM = ISM IISM , (5.9)

118

in which

 ISM ={m | m is an SOA management}

 IISM ={m | m is a cloud management}

 SP = ISP IISP , (5.10)

in which

 ISP ={p | p is an SOA process}

 IISP ={p | p is a cloud process}

 SQ= ISQ IISQ , (5.11)

in which

 ISQ ={q | q is an SOA quality attribute}

 IISQ ={q | q is a cloud quality attribute}

 SD = ISD IISD IIISD , (5.12)

in which

 ISD ={d | d is a building element of development}

 IISD ={d | d is a service deployment type}

 IIISD ={d | d is a service delivery model}

From the definitions of each element of (5.4), we can see that the ECSA combines both the

ESOA and the ECC styles. The advantages of the combined ontology are (1) it provides more

concepts and descriptions and (2) it covers broader architectural decision choices. For example,

if IIS , IIIS , IIC , IID , IISI , IISM , IISQ , SD are empty, then the style is equal to ESOA. (3) It can be

regarded as a top level style and easy to extend to different sub-styles, such as ECSA-PrC

(Enterprise Private Cloud Service Architecture). The disadvantages of the combination ontology

119

are (1) concept overlapping, such as ISI IISI ø and (2) description overlapping, since there

are a lot of commonalities between ESOA and ECC. Figure 5.2 depicts the relationship of all

parts in (5.4). In the following subsections, we will describe each element defined in formulae

(5.4) to (5.12) in detail formally [200] and informally. Since ESOA has been described in

Chapter 4, this chapter focuses on describing the new concepts in ECC and the relationship

between ECC and ESOA.

Enterprise Cloud Service

Architecture

(ECSA Ontology)

1

1..*

1

1..*

1

1..*

Application (C)

(Service Consumer, Data)

Infrastructure (SI)

(Services, Data)

Management (SM)

(Services, Data)

Process (SP)

(Services, Data)

1

1..*

Quality Attributes (SQ)

(Non-Functional requirements)

1

1..*

1

1..*

m
e

e
t4

1

1..*

3 meet1

1..*

meet4

1

1..*

m
e

e
t4

Performance

Availability

Security

Reliability

Reusability

Interoperability Modifibility

Scalability

Extensibility

Adaptability

Testability

Audidability

Resiliency

*

1
3 inlude

*
1

3 inlude
*

1 3 inlude

*

1

3 inlude

*

1

3 inlude

*

1

3 inlude

*

1

3
 i
n

lu
d

e

*

1

3
 i
n

lu
d

e

*

1

inlude4

*
1

inlude4
*

1
inlude4

*

1

inlude4

*

1
inlude4

Service (S)

1

1..*

1

1..*

m
e

e
t4

Data (D)
1 1..*Development, Deploy

and Delivery (SD)

10..1

Figure 5.2. ECSA Domain Ontology

120

5.3 Specifying ECSA

In the section, ECSA is specified in detail formally and informally. Descriptions of each part in

(5.4) focus on ECC and the relationship between ESOA and ECC.

5.3.1 A 3D Model of Cloud Services

 Compared with the enterprise service-oriented ontology in (4.2), only one new element SD is

added into the ECSA ontology (5.4). We call SD as the 3D model of Cloud Services. The 3D

model with new concepts distinguishes between traditional ESOA services and cloud services as

well as between ESOA style and ECSA style. In the 3D model, ISD is a set of building blocks and

tools for cloud service and enterprise application development, so it is the basis for developing

the services in {PaaS} = {Platform as a Service}. IISD is a set of cloud service deployment types:

IISD ={PrC, PuC, VPC, CoC, HyC}.

Table 5.1. Deployment Types of Cloud Services
Deploy Type Description

PrC Private Cloud [125]

PuC Public Cloud [125]

VPC Virtual Private Cloud [225]

CoC Community Cloud [125]

HyC Hybrid Cloud [125]

Table 5.1 provides a description of each type where the CoC can be managed by the community

or third party and may be on-premise or off-premise. The VPC was first created by Amazon

[225]. It is a private cloud hosted in a public cloud through VPN network. The service consumers

(SC’s) resources are isolated in the public cloud, which provides an online virtual data center to

121

SC. The CoC infrastructure is shared by a community – several enterprises or organizations

which have the same concerns, such as mission, security, and policy requirements.

IIISD is a set of delivery modes of cloud services as follows:

IIISD ={SaaS, PaaS, IaaS, IMaaS, IRaaS, XaaS}.

They are described in the following Table 5.2:

Table 5.2. Delivery Modes of Cloud Services
Delivery Mode Description Resource sharing

SaaS Software as a Service [173] Sharing software

PaaS Platform as a Service [125] Sharing platform

IaaS Infrastructure as a Service [125] Sharing infrastructure

IMaaS Information as a Service [125] Sharing information

IRaaS Integration as a Service [125] Sharing integration

XaaS Other cloud service delivery model [125] Sharing other resources

5.3.2 Services and Cloud Services

 We have formally and informally specified services as self-contained software abstractions of

business, technical functionality, or infrastructure management, defined by a well-defined

interface [62]. We define the kind of enterprise services as functional services which serve

business for completing certain operations, such as shopping transaction web service and hotel

reservation web service. They include composed and process services, such as workflow

services. If a functional service s is not exposed to the Internet (out of enterprise firewall) or it

cannot be accessed from the Internet, then s IS . In this dissertation, we focus on the managed

services (or enterprise services) on the cloud. We define an Enterprise Cloud Service (ECS):

Enterprise Cloud Service (ECS) is a specific managed service with Service Level

Agreement (SLA), elasticity/dynamism, accountability/utility, loosely-coupled, which

can be accessed and delivered from the Internet.

122

 If s is an ECS within the enterprise internal network, then s IIS and s is called a private

cloud service.

 If s is an ECS in an enterprise cloud service provider network, then s IIIS and s is called a

public cloud service.

 Cloud computing extends the ESOA service concept and capacity to a broader area in two

aspects – the vertical and horizontal views as shown in Figure 5.3.

Figure 5.3. View of Cloud Services

We define

ESOAS ={s | s is a traditional SOA service}

and

CloudS ={s | s is a Cloud service}

123

 = I

CloudS
II

CloudS

in which I

CloudS = {SaaS} {PaaS} {IaaS}, which includes three kinds of basic cloud services;

II

CloudS = {IMaaS} {IRaaS} {XaaS}, which includes other types of cloud services.

Thus,
ESOAS CloudS Ø. If a service s

ESOAS CloudS , then s IIS .

 In the ESOA ontology, service is a primary type. However, if the cloud service s
ESOAS , such

as SaaS, PaaS, IaaS, and s is a composed service type, then we call it ECSType, such as

PaaSType or IaaSType or SaaSType. Therefore, we can define its ontology based on our

framework:

To specify an ECSType, let us define the following sets of types of properties:

 Cloud Service Interface Type

typeI ={User Interaction Interface, Web Service Interface, REST Interface, Web Application

Interface, Event Interfaces}

 Cloud Service Access Type

typeA ={a | a is a client access protocol method},

such as Web User Interaction (HTTP), Web Service API (SOAP), REST API (HTTP), Web

Application API, Event Trigger, distributed devices (wireless devices).

 Cloud Service Provisioning Type

typeP ={Applications, Business Operations, Resources, Information, Platform, Integration}

 Cloud Service Control/Ownership Type

typeO ={

ownO ,
thirdpartyO }, in which

124

ownO = Buy/lease and Own,
thirdpartyO = Owned by public cloud provider and pay-as-you-go.

where
ECSI

typeI ,
ECSA

typeA ,
ECSP

typeP ,
ECSO

typeO , II

ECSSD IISD , III

ECSSD IIISD ,

 ECSSQ =
ECSQoS +

ECSSLA SQ

in which
ECSQoS is the ECS Quality of Service and

ECSSLA is the ECS Service Level Agreement

between ECS provider and its consumer. For instance, the Amazon EC2 cloud service [173] can

be specified as

 AmazonEC2 =
22222222 ,,,,,,, ECEC

III

EC

II

ECECECECEC SQPolicySSDOPAI

where
2ECI = {Web service interface, REST interface},

 2ECA ={Web service API, REST API},
2ECP = resources,

 2ECO =
thirdpartyO (owned by Amazon), II

ECSD 2
=PuC, III

ECSD 2
=IaaS, (

2ECPolicy ,
2ECSQ) has two

parts – the documentation can be found in [9] and runtime policy and SLA are managed by

Amazon’s runtime cloud management.

 Using the style syntax defined in Section 3.1, ECSType can be defined as

 ECSType ECSConfiguration (t)

 ECSType hasPart.(ECSComponentECSConnector PortRoleQA)

For instance, in IaaSType, the ECSConfigration (t) = managed dynamic Infrastructure (t),

 ECSComponent ECSType hasInterface.Port

 ECSConnector ECSType hasEndpoint.Role

125

In IaaSType, the major components include web service, service provisioning service,

monitoring agent, and resource virtual instance. The connector is the glue between web service

and virtual server instance through SOAP or REST protocol. The Amazon EC2 is one instance

of the IaaSType.

5.3.3 Cloud Service Consumers

 We have specified the ESOA service consumers IC and part of the consumers of private

cloud services in [204]. The part of ESOA service consumers are also part of consumers of

private cloud services. In this chapter, we focus on specifying the enterprise cloud service

consumers IIC . In Figure 5.4, we show that there are four kinds of enterprises with different

ECSA architectural styles:

 Enterprise A has no data center and it is a consumer of public cloud of the provider

Enterprise B. Most small to medium enterprises typically are or will become this kind of

enterprises.

 Enterprise B is a public cloud provider which provides public cloud services, such as

Amazon cloud [173], Google cloud [236], Saleforce cloud [173], IBM cloud center [97], and

Microsoft Azure cloud [142].

 Enterprise C has data center with private cloud services whose consumers are cloud

applications accessed by internal customers, such as registered users, employees and

partners. The private cloud services can be the consumers of other public cloud services in

SEDC (somebody else’s data center).

 Enterprise D has multiple data centers and hybrid clouds. The consumers of its public cloud

services can be private cloud inside the enterprise, and internal and external cloud

126

applications accessed by external clients that include external end-users and cloud

applications in other enterprises. The consumers of its private cloud services can be internal

applications accessed by internal clients that include internal end-users and the public cloud

services within the collocation. Most large enterprises are or will become this kind of

enterprises.

 The cloud service consumers also depend on the type of the cloud service. If the ECS is in

{PaaS}, such as Google App Engine, then web software developers, IT managers and

application system administrators are the consumers of ECS. If the ECS is in {IaaS}, then the

system and database administrators are its consumers.

Enterprise A

Cloud Applications

Enterprise DEnterprise B

Data Center

Public Cloud

Services

Server Server Server

Data Center

Cloud Applications

Private Cloud

Services

Server ServerServer

Data Center

Cloud Applications

Public Cloud

Services

Server ServerServer

Enterprise C

Data Center

Cloud Applications

Private Cloud

Services

Server Server Server

Cloud Clients

Internal cloud clients External cloud clients

Cloud Clinets

Internal cloud

clients

Figure 5.4. Cloud Service Consumers

127

Specifically, the public or private cloud service consumers have the following characteristics:

 Self-service: Users can access services they provide or directly procure services in the cloud.

Users also manage and monitor cloud services from self-service portals.

 Standard API for accessing cloud services.

 Rapid service provisioning.

 Pay-for-use.

 ESCA service consumers are traded as one of primary component types of EAS ontology in

Chapter 3.

5.3.4 SOA and Cloud Data

The set D in (5.7) consists of two sets of ECSA data elements which are used for building

ECSA style enterprise architecture (EA). The SOA data set ID has been specified in [201][204].

Part of the data and metadata in ID are also used by cloud services, infrastructure and

management, such as various resources and their profiles, basic infrastructure configuration data,

and SOA metadata. However, cloud computing needs some cloud specific data and metadata in

IID as shown in Table 5.3.

5.3.5 SOA and Cloud Infrastructure

The traditional SOA infrastructure ISI is the heart of ESOA. It is the bridge for the

transformation between business and services. For the new ECSA style, the cloud infrastructure

is added. It is easy to show that ISI IISI Ø which means that the infrastructure of the new

style is a hybrid of both the SOA and the cloud infrastructure styles. The traditional ESOA

128

Table 5.3. Cloud Data

Cloud Data Examples from public or private cloud

Virtual resources Virtual instance, virtual server, virtual OS, virtual network, virtual storage

Application metadata Google App Engine application metadata

Cloud policy Security policy, Routing policy, Privacy policy, Access policy (such as Amazon web

services REST/SOAP access control policy)

Cloud SLA Error rate, Monthly update percentage, Service credit, Region Unavailable

Utility model data Pricing (such as EC2 high CPU on-demand instances – Medium UNIX $0.20/per

hour), Billing, Paying for what user used.

Virtualization metadata The virtualization metadata contains all setup and configuration information required

for the virtualization layer to establish a connection and it may also contain additional

information to make some specific operations (examples of metadata are: server name,

database name, user, password, translation fields, etc.). It is usually described by a

XML schema and stored in metadata repositories or database.

Application network

delivery metadata

It includes all setup and configuration information required for application delivery

infrastructure, such as load balancing, acceleration, optimization, and security.

Infrastructure instance

metadata

EC2 instance metadata [11]

Cloud configuration data

and metadata

Types of resources (such as CPU, Storage, OS, Software, Monitoring), Types of

instances (such as Amazon EC2 – Small, large and extra large instances, High-CPU

medium and extra large instances)

infrastructure is not really dynamic and flexible enough. Therefore, it is not adaptable to today’s

on-demand business workloads and real-time B2B requirements. It also uses more resources and

power in enterprise’s data center. The cloud infrastructure IISI is a dynamic IT infrastructure

which consists of elastic web servers, elastic application servers, elastic MQ servers, and elastic

database servers. It has the following three main characteristics:

 It supports elasticity and dynamism – automatic scalability and load-balancing, failover in

terms of virtualization [35][52][86] or other technologies [236].

 It supports resource usage accountability – utility model [35][245].

 It can be a part of cloud service, such as PaaS type services (Google App Engine), or it can

be a cloud service, such as IaaS type service (Amazon EC2).

129

Therefore, the cloud infrastructure brings cost-effective operations and elasticity to current SOA

infrastructures. The traditional SOA infrastructure is now refined with cloud infrastructure’s

dynamism. We can specify a dynamic infrastructure ontology based on the framework in Chapter

3. We assume a typical dynamic enterprise infrastructure Figure 5.5:

IComponents = {INET, DLB, VWEB, PWEB, VAS, PAS, VST, PST, VNET, PNET, IMS, ISS}

in which

INET = Internet;

DLB = Dynamic Load Balancer;

VWEB = Virtual Web Server;

PWEB = Physical Web Server;

VAS = Virtual Application Server;

PAS = Application Server;

VST = Virtual Storage;

PST = Storage;

VNET = Virtual Network;

PNET = Physical Network;

IMS=Infrastructure Management Service;

ISS=Infrastructure Security Service

IConnectors={INET-DLB, DLB-VWEB, VWEB-PWEB, PWEB-VNET, PWEB-VST, PWEB-

VAS,VAS-PAS, PAS-VNET, PAS-VST, VST-PST, PST-VNET, VNET-PNET, IMS-DLB,IMS-

VWEB, IMS-PWEB, IMS-VAS, IMS-PAS, IMS-VST, IMS-PST, IMS-VNET, IMS-PNET, ISS-

130

DLB, ISS-VWEB, ISS-PWEB, ISS-VAS, ISS-PAS, ISS-VST, ISS-PST, ISS-VNET, ISS-

PNET}

Now we can define a dynamic infrastructure by using ACME-like language:

Infrastructure(t) DynInfrastructure = {

 IComponent Type DLB = {

 Ports = {In, Out}};

 IComponent Type VWEB = {

 hasVirtualInterface = true

 Ports = {In, Out}};

 IComponent Type PWEB = {

 hasPhysicalInterface = true

 Ports = {In, Out}};

 IComponent Type VAS = {

 hasVirtualInterface = true

 Ports = {In, Out}};

 IComponent Type PAS = {

 hasPhysicalInterface = true

 Ports = {In, Out}};

 IComponent Type VST = {

 hasVirtualInterface = true

 Ports = {In, Out}};

 IComponent Type PST = {

131

 hasPhysicalInterface = true

 Ports = {In, Out}};

 IComponent Type VNET = {

 hasVirtualInterface = true

 Ports = {In, Out}};

 IComponent Type PNET = {

 hasPhysicalInterface = true

 Ports = {In, Out}};

 IConnector Type INET-DLB = {

 Roles = {request, dynamicLoadReq}};

 IConnector Type DLB-VWEB = {

 Roles = {dynamicLoadReq, provideWeb}};

 IConnector Type VWEB-VNET = {

 Roles = {routRequest, provideRout}};

 IConnector Type VWEB-PWEB = {

 Roles = {requestWebExec, provideWebExec}};

 IConnector Type PWEB-VNET = {

 Roles = {routRequest, provideRout}};

 IConnector Type PWEB-VAS = {

 Roles = {reqAppProcess, provideAppProcess}};

 IConnector Type VAS-VNET = {

 Roles = { routRequest, provideRout }};

132

 IConnector Type VAS-PAS = {

 Roles = {requestTransExec, provideTransExec}};

 IConnector Type PAS-VNET = {

 Roles = {routRequest, provideRout}};

 IConnector Type PAS-VST = {

 Roles = {reqDataAccess, provideDataAccess}};

 IConnector Type VST-VNET = {

 Roles = {routPST, provideRout }};

 IConnector Type VST-PST = {

 Roles = {reqAccessExec, provideAccessExec}};

 IConnector Type VNET-PNET = {

 Roles = {reqRoutExec, provideRoutExec}};

 IConstraint Type scalability = {

 dynamically scale out and scale down, on-demand};

 IConstraint Type availability = {

 SLA-defined, high fault-tolerance};

 IConstraint Type agility = {

 resilient computing, dynamic reconfiguration};

 IConstraint Type security = {

 End-to-End security checking};

 Ownership Type OwnedbyEnterprise = {

 IaaS in PvC enterprise’s datacenetr};

133

 Ownership Type OwnedbyVendor = {

 IaaS in PuC Vendor’s datacenter};

}

In the specification, the management components, End-to-End Infrastructure management

service and End-to-End infrastructure security service, are ignored. They are discussed in the

next section. Figure 5.5 is the high-level graphic description of a typical enterprise layered

dynamic infrastructure.

Laptop Workstation

`

Infrastructure

Web Server Virtualization (VMs, Hypervisor)

Web Server Clusters

Application Server Virtualization (VMs, Hypervisor)

Application Server & ESB Clusters

Storage Clusters

Data DataDataData Data Data

Storage Virtualization (vStorage, Hypervisor)

Network Virtualization (vSwitch, Hypervisor)

Networking Server & Device

E
n

d
-t

o
-E

n
d

 I
n

fr
a

s
tr

u
c
tu

re
 S

e
c
u

ri
ty

 S
e

rv
ic

e

E
n

d
-t

o
-E

n
d

 I
n

fr
a

s
tr

u
c
tu

re
 M

a
n

a
g

e
m

e
n

t
S

e
rv

ic
e

Dynamic Load Balancer

End users Developers

Figure 5.5. Dynamic Enterprise Infrastructure

134

5.3.6 SOA and Cloud Management

 Cloud computing is changing the landscape of ESOA and brings forth new types of services

and dynamic infrastructures into ESOA. An enterprise architecture needs SOA to achieve better

quality by leveraging cloud computing providers [125]. The relatively mature SOA management

or governance ISM is the foundation of cloud management .IISM It is easy to show that ISM

IISM Ø. The SOA management we have specified in Chapter 4, such as network and

application monitoring, identity management, policy enforcement, service-level agreement

management, and service lifecycle management in ISM , are very important for cloud computing.

Thus, they are also in IISM . However, cloud computing extends the SOA management to a new

level from two perspectives, namely, enhancing SOA managements and adding some new cloud

specific managements, since:

 Cloud systems are more dynamic and mostly real-time with automatic runtime governance

compared to services infrastructure.

 Cloud systems request highly automatic policy and SLA management at runtime.

 Cloud systems request an automatic service provisioning management for their utility model.

 Cloud systems need new identity management for cloud service security and trust, such as

the Amazon cloud security process [12].

We specify the refinement ontology of cloud service management with SOA management in

terms of ACME-like language and the framework defined in Chapter 3. Assume

MComponents = {MS, SS, RS, SLM, LM, IM, AM} in which

MS = Monitoring service

SS = Security management service

135

RS = Resource management service

SLM = Service Level Management service [206]

LM = service lifecycle management service

IM = Infrastructure management service

AM=Account management service which includes cloud service consumer’s utility billing

management.

MConnectors ={MS-IC, MS-AC, MS-SC, MS-SPR, SS-IC, SS-AC, SS-SC, SS-SPR, RS-IC,

SC-SLM, SLM-SPR, MS-SLM, SLM-RS, LM-SPR, IM-IC} in which SC = Service consumer,

SPR = Service Provider and AC = Application Component are management service consumers,

IC = Infrastructure Component which include management service consumer and managed

resources.

Management(t) CloudServiceManagement = {

 MComponent Type MS = {

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type SS = {

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type RS = {

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type SLM = {

136

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type LM = {

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type IM = {

 hasInterface = true

 Ports = {In, Out}};

 MComponent Type AM = {

 hasInterface = true

 Ports = {In, Out}};

 MConnector Type MS-IC = {

 Roles = {monitoring, runtime}};

 MConnector Type MS-AC = {

 Roles = {monitoring, runtime}};

 MConnector Type MS-SC = {

 Roles = {monitoring, runtime}};

 MConnector Type MS-SPR = {

 Roles = {monitoring, runtime}};

 MConnector Type MS-SLM = {

 Roles = {report, negotiatingOffering}};

 MConnector Type SS-IC = {

137

 Roles = {protect, resources}};

 MConnector Type SS-AC = {

 Roles = {secure, access}};

 MConnector Type SS-SPR = {

 Roles = {secure, access}};

 MConnector Type SS-SC = {

 Roles = {secure, access}};

 MConnector Type SC-SLM = {

 Roles = {reqService, claimQoS}};

 MConnector Type SLM-SPR = {

 Roles = {offerService, provideService}};

 MConnector Type SLM-RS = {

 Roles = {reportResource, mgrResources}};

 MConnector Type SLM-RS = {

 Roles = {reportResource, mgrResources}};

 MConnector Type RS-IC = {

 Roles = {mgrResources, dynReconfig}};

 MConnector Type LM-SPR = {

 Roles = {mgrLifeCycle, provideDynService}};

 MConnector Type IM-IC = {

 Roles= {mgrInfrastructure, glueSCAndServices}

 Constraint Type CManagedByEnterprise = {

138

 componentsOwnedByEnterprise = true}

 Constraint Type CManagedByVendor = {

 componentsOwnedByVendor = true}

 Constraint Type CManagedByBoth = {

 componentsOwnedByBoth = true}};

}

Private Cloud

Application

Data

Runtime

Networking

Storage

Servers

OS

VM

Consumer

Application

Data

Runtime

Consumer

Application

Data

Public SaaS

Networking

Storage

Servers

Runtime

VM

OS

Application

Data

Public IaaS

VM

OS

Servers

Storage

Networking

Component

Componet

Component

Public PaaS

Runtime

VM

OS

Servers

Storage

Networking

The Component with green color owned, managed

and controlled by enterprise IT

The Component with red color owned, managed by cloud service

provider and controlled by both consumer and provider

The Component with yellow color owned, managed

and controlled by cloud service provider

Figure 5.6. Boundaries of Components

139

Figure 5.6 roughly describes the boundaries of components in different types of cloud services.

From the figure, we can see a remarkable difference between traditional SOA management and

cloud management. Traditional SOA management manages all components in its own data

center, but cloud management manages different sub-sets of components by different component

ownership.

5.3.7 SOA and Cloud Process

 One of the important parts of the ESOA style is its set of SOA processes. The SOA process

or workflow is an abstraction of Business Process Management (BPM). Each process is

composed of multiple services in orchestration and/or choreography for completing a whole or

partial business process or task. The traditional SOA process can be executed by using an ESOA

infrastructure with process engine in the internal network of an enterprise. However, the

traditional SOA processes face many challenges and issues: real-time high performance (such as

automated trading), on-demand scalability, large payloads (10+ MB), memory constraints, and

high availability and reliability. In a distributed SOA environment of an enterprise, the

bottlenecks tend to occur in one or more of the following three places:

 Shared intermediary services;

 The services themselves;

 SOA infrastructure operations.

In most cases, the scalability bottlenecks across all these SOA parts in workflow/process are

caused when disk I/O, memory, or CPU saturation levels are reached. Moreover, the cluster

technology, adopted by traditional SOA, can provide higher availability. However, it depends on

static partitioning, where a single backup server is pre-assigned to service requests from a failing

140

server. The grid-enabled SOA provides a way to improve the performance, scalability, and

availability of SOA processes. Cloud computing shares the same goal as grid computing,

namely, to allow service consumers to obtain computing resources on-demand. However, cloud

computing is a new style of distributed computing, which introduces many new architectural

styles and technologies to SOA. Compared with grid computing, there are four aspects in which

cloud computing differs from grid computing [72]:

 It is massively scalable;

 It can be encapsulated as an abstract entity that delivers different levels of services to the

customers outside of the Cloud;

 It is driven by economies of scale;

 The services can be dynamically configured through virtualization and other approaches and

delivered on-demand.

We describe the ECSA style Business Process Management (BPM) process based on the

framework in Chapter 3 and ACME-like language as follows. Assume in Figure 5.7

PComponent = {BPMB, BPMM, BPME, SPPR, SP, BPMS}, in which

BPMB=BPM Process Buider

BPMM=BPM Process Managment

BPME=BPM Process Engine (Runtime)

SPPR=SOA Process Provider

SP=SOA BPM Process

BPMS=BPM Process Storage

141

PConnector = {SC-BPMM, BPMB-BPMM, BPMM-BPME, BPMM-BPMS, BPMM-SP,

BPME-BPMS, BPME-SPPR, SP-SIN, SP-SOU}, in which

SC=Service Consumer

SIN=Services in enterprise datacenter (on-promise)

SOU=Services in cloud provider’s datacenter

Process(t) CloudServiceProcess = {

 IComponent Type BPMB = {

 hasInterface = true

 Ports = {In, Out}};

 IComponent Type BPMM = {

 hasInterface = true

 Ports = {In, Out}};

 IComponent Type BPME = {

 hasInterface = true

 Ports = {In, Out}};

 IComponent Type SPPR = {

 hasInterface = true

 Ports = {In, Out}};

 IComponent Type SP = {

 hasInterface = true

 Ports = {In, Out}};

 PConnector Type SC-BPMM = {

142

 Roles = {requestProcess, manageRequest}};

 PConnector Type BPMB-BPMM = {

 Roles = {buildProcess, registerProcess}};

 PConnector Type BPMM-BPME = {

 Roles = {sendRequest, runControlProcess}};

 PConnector Type BPMM-BPMS = {

 Roles = {requestInfo, storeProcessInfo}};

 PConnector Type BPME-BPMS = {

 Roles = {accessInfo, storeProcessInfo}};

 PConnector Type BPMM-BPMS = {

 Roles = {accessInfo, storeProcessInfo}};

 PConnector Type BPMM-SPPR = {

 Roles = {monitorControlSP, provideSP}};

 PConnector Type SP-SIN = {

 Roles = {executeSP, provideService}};

 PConnector Type SP-SOU = {

 Roles = {executeSP, provideCloudService}};

 Ownership Type BPMOwnedbyEnterprise = {

 SI=IaaS, BPMB and BPMM in PvC enterprise’s Datacenter; BPMaaS {PvC}};

 Ownership Type SIOwnedbyVendor = {

 SI=IaaS in PuC Vendor’s datacenter; BPMB and

 BPMM in PvC enterprise’s datacenter; BPMaaS {HyC} {IaaS}};

143

 Ownership Type BPMOwnedbyVendor = {

 SI=IaaS, BPMB and BPMM in PuC Vendor’s datacenter;

 BPMaaS {PuC} {PaaS}};

}

Figure 5.7 depicts the typical topology of ECSA PConfiguration (t) virtually.

BPMB BPMM(SM)

SC

BPMS

SOA Infrastructure (SI)

Application Servers

B
P

M
E

S
P

P
R

p
ro

c
e

s
s

Service Provider

Services (SIN)

Cloud
Service Provider 2

Services

(SOU)

Cloud
Service Provider K

Services

(SOU)

Cloud
Service Provider 1

Services

(SOU)

Figure 5.7. Typical Topology of ECSA Process

In Figure 5.7, the SI, BPMB, and BPMM could be provided by cloud service provider. For

cloud, PConfiguration(t) is dynamic, in which dynamic process can be recomposed by choosing

different service providers based on SLA [206]. Therefore service management is also

reconfigured by selected different service providers, and MConfiguration(t) is also dynamically

144

changed. [218] proposed a service-oriented dynamic reconfiguration framework for dependable

distributed computing. [219] presented an approach of ontology-based dynamic process

collaboration in SOA. Their work is of theoretical and practical significance for dynamic process

management in ECSA.

5.3.8 Cloud Quality Attributes

The software architectural quality attributes [158] include not only the principles of system

architecture design, but also the non-functional constraints of structure and behavior of any

software architecture. Therefore, we include the architectural quality attributes as part of ECSA.

We have defined common SOA quality attributes ISQ of ESOA style in Chapter 4. They are also

quality attributes of cloud computing, specifically, private clouds.Therefore, ISQ IISQ Ø.

They both share many commonalities, such as performance, security, scalability, and availability.

However:

(1) The quality attributes of SOA and public cloud have different degrees of maturity. In general,

the maturity of cloud quality attributes is less than that of SOA quality attributes;

(2) The specifications of some of cloud quality attributes are different from traditional ESOA,

such as elastic scalability; and

(3) IISQ includes some cloud-specific quality attributes and properties of cloud services, such as

cloud visibility and subscription.

We have not described ESOA quality ontology in Chapter 4. The next section defines and

describes the ECSA quality ontology based on [167] and Chapter 3. It is an extension of the

description of quality attributes in Chapter 4.

145

5.4 ECSA Quality Ontology

 M. Klein and R. Kazman proposed an Attribute-Based Architectural Styles (ABAS) in

[110], in which the architectural style’s topology is specified and quality attribute response

behavior is used as analysis and reasoning of the style’s topology. C. Pahl, et al., introduced a

quality ontology which extends the style ontology to capture a vocabulary of quality attributes

(non-functional characteristics) and corresponding quality metrics [167][168]. In this

dissertation, the quality ontology is defined as part of the style ontology in Chapter 3. The ECSA

style’s quality ontology [207] is specified based on our framework and (3.11) and (3.12):

CloudSQType PerformanceReliability ScalabilityReusabilityMaintainability

 SecurityCost InteroperabilityAvailability FlexibilityManageabilityAgility

 RecoverabilityResiliencyVisibilityAccountability Portability

 Compatibility

CloudSQ (IISQ) hasTradeoff.(PerformanceReliability ScalabilityReusability

 Maintainability SecurityCost InteroperabilityAvailability

 FlexibilityManageabilityAgilityRecoverability Resiliency

 VisibilityAccountability Portability Compatibility)

We define and specify major quality attributes of cloud service systems in this section.

5.4.1 Cloud Performance (CSP)

The CSP is one of the most important runtime interaction behaviors of the cloud service

architecture. Formally,

CSP hasMetric.(ResponseTimeLatencyThroughput)

 hasImpactFactor.(CloudServiceType CloudServiceProviderAvailability

146

 Security PayService)

where

ResponseTime =),,,,,(CS TTRTTroundtripsbandwidthpayloadRT

 (5.15)

in which
i
,

i
 > 0, N is the number of roundtrips between cloud service consumer and service

providers; RTTi is network Round Trip Time; i

ST , i

CT are cloud service computing time and client

computing time at the ith application turn, respectively.

The cloud application may take multiple network round trips across different enterprise data

centers through Internet and WAN (Wide Area Network), so latency is an important

characteristic of cloud service computing. Latency impacts not only ResponseTime, but also

Throughput. Knowing cloud latency greatly helps with architecture design and analysis.

Latency =),,,,,(SCLPSDPDTSPSI LLLLLLL

 = (5.16)

where ai,,bi,ci,di,ei,hi > 0, which are the ith cloud service provider and its environment related

parameters, and i

SIL is the ith cloud infrastructure latency which includes low level latency, such

as OS, CPU, and Storage I/O latency, high level latency, such as VM, DNS, and Router/Switch

latency, and networking latency, such as Internet and WAN latency. It can be formally described

as

147

where Distancei is the geographical distance between cloud client and the ith cloud service;

Hopsi is the set of “hops” in the network; FML is the first miles latency; BL is the backbone

latency; PL is the peering latency and LML is the last miles latency.

LSP=LSP(LQ,LRMD,LIC,LID) is the Latency of service provisioning (such as IaaS EC2) before

service runtime execution, in which LQ is the latency from task request queuing [222]; LRMD is

the latency from resource management decision program (reject task request because of

insufficient capacity or schedule a job for the task request); LIC is the latency from creating

instance (such as EC2 instance); LID is the latency from instance deployment. Figure 5.8 shows

the cloud performance challenge, in which the public cloud datacenter is like Amazon Web

Service (AWS), and IBM Cloud Datacenter whereas the private cloud datacenter and end users

are the consumers of public cloud services. Since public cloud services are located in cloud

provider’s datacenters, the Distancei plays an important role in WAN latency: the larger the

worse. For example, the load time from Bejing has more than two seconds latency than from

New York on more than 10% uptime based on a report from BitCurrent.com [28]. Moreover, in

(5.16), i

SPL is the ith service processing latency; i

DTL is the data transmission latency; i

SDPL is the

service dependency latency; i

PLL is the propagation latency and i

SCL is the service client latency

which is coming from slow client processing.

 The throughput describes the amount of tasks which can be performed over a given period of

time. Therefore, throughput is another important performance metric. The maximum TCP/IP

networking can be measured by the following formula [237]:

Throughput.Max.metrics =TWS/RTT, (5.17)

148

in which TWS is TCP Window Size and RTT is Round Trip Time. The cloud application

throughput can be described by the following equation in terms of threads and latency:

, (5.18)

where APT is the cloud application processing time in seconds and Latency is the total latency in

seconds. From (5.18), we see that Latency reduces Throughput and reducing Latency can

increase Throughput.

 Cloud Performance can be measured by several metrics which are based on distributed

computing performance metrics. However, the CSP also has cloud factors which impact cloud

performance:

Performance.CloudFactor1=CloudServiceType

 {IaaS, PaaS, SaaS}

To describe the performance impact on the factor, we define a concept, cloud affinity level

(CAL), as an indicator of a close degree of service consumer and other components in the

enterprise architecture. The higher the CAL the lesser is the latency and the better is the

performance. From Figure 5.6, we see that private cloud and SaaS have the highest CAL, IaaS

has the lowest CAL. The BitCurrent report [28] shows that IaaS, such as Amazon EC2, may

have higher latency than PaaS, such as Google AppEngine, or SaaS, such as Saleforce, in terms

of the same resource.

 Performance.CloudFactor2=CloudServiceProvider which can impact performance in two

main aspects: (1) the geographic distance between cloud service consumer and the service

provider datacenter; (2) cloud service provider’s over or under subscription to resources, such as

physical servers, VCPU, may impact the cloud performance.

149

Performance.CloudFactor3=Availability which can directly and indirectly impact performance.

If services are not available (such as outages), then performance = zero. If partial services are not

available and services failed over to other services in other data center, it will reduce cloud

performance.

Performance.CloudFactor4=Security reduces performance normally.

Performance.CloudFactor5=PayService which impacts performance, since when a user pays

more, the user can get more resources and services. For example, paying $0.17/per hour can get a

medium CPU, but paying $0.68/per hour can get an extra large CPU from Amazon EC2 IaaS [9].

Public Cloud Datacenter

Applications

Services

Virtual Infrastructure

Storages

Mainframe

Public Cloud Datacenter

Applications

Services

Virtual Infrastructure

Storages

Mainframe

End User

Laptops

First milesLast miles Backbone

Peering

Private Cloud Datacenter

Applications

Services

Virtual Infrastructure

Storages

Mainframe
Figure 5.8. Cloud Performance Challenge

150

5.4.2 Cloud Scalability (CS)

The CS is another remarkable difference from traditional ESOA scalability. The tier-based

ESOA architecture with traditional middleware does not scale linearly and does not allow

applications to scale on-demand. In terms of framework, we define

CS hasMetric.(ScaleUp ScaleOut ScaleIntoCloud)

 hasImpactFactor.(CloudServiceTypeVMTypeCost),

in which

ScaleUp.metrics=performance (Server, Resources, Demand),

where ScaleUp = Scale Up or Vertical Scale is a traditional way to scale the system. The

performance function increases for a given Server when Demand is increasing and Resources

(CPU, Memory) are added to the Server. When the performance function is linear, either

Throughput is doubled or ResponseTime is cut to half when the resources (CPU, processes, disk)

are doubled for the given server computer. It is an ideal scalability, but it is hard to achieve in

practice.

ScaleOut.metrics= performance (activeServers, onDemandServers, Demand)

ScaleIntoCloud.metrics= performance (activeServers, onDemandServers, Demand)

where ScaleOut = Scale Out or Horizontal Scale is a way to scale the system in the same

enterprise datacenter. ScaleIntoCloud = Scale into Cloud or Global Scale is a new way to scale

out the enterprise system. In the performance function, activeServers is a set of servers in a

cloud system and onDemandServers is a set of passive servers in the server pool or queue which

are waiting to be added to the system. For ScaleOut, the service pool is inside the enterprise

datacenter, but for ScaleIntoCloud, the service pool is in the cloud service provider’s datacenter.

151

The performance function is an increasing function or a non-increasing as well as non-decreasing

function when Demand is increasing and a sub-set of passive servers are activated and added into

the system for the same services, which means that the scale out system can either reduce

ResponseTime or increase Throughput. In other words, it can keep the desired performance

when the requirements of concurrent users are increasing.

 There are several factors that impact cloud scalability. The CloudServiceType impacts the

way and level of cloud system scalability. For IaaS, such as Amazon EC2, its scalability is

through on-demand instances, while for PaaS, such as Google AppEngine, its scalability is

through its auto scalable runtime. VMType (Virtual Machine Type) greatly impacts not only the

way of scalability, but also other quality attributes and cloud system design. Table 5.4 shows the

impacts. Public cloud utility computing nature also impacts scalability through indicator cost

scalability. For example, the Amazon Auto Scaling service uses CloudWatch as the monitoring

mechanism for determining to scale up or down. The cost of using Elastic Load Balancer is from

$0.025 per hour ($18.25 per month).

 Comparing the traditional way with the dynamic way to implement scalability from the

Configuration perspective, the scalability of the traditional style can be described as follows:

 TS =
scaleESOA (resources, connections, deployment, configuration).

Here, all parameters are tied to a workload estimate and are not allowed to be changed

dynamically on-demand. The cloud scalability CS greatly improves TS, which allows

applications to scale on-demand – scale up and scale down resources and network connections

dynamically. The CS can be described as

 CS =
scaleECSA (resources (config), connections(config), deployment(config),

152

 config(t, request, policy))

which means that the resources, such as OS, CPU, memory, and networking capacity and

redeployment, depend on a dynamic reconfiguration operation (config) which depends on time t,

on-demand request, and policy. The CS can be implemented by an SLA-driven IaaS type service

[206]. The CS has elastic scalability, such as Amazon AWS (EC2, S3) and IBM PowerVM

which are all based on the scale-out principle. In the following, we show that the scale-out is a

better way to get cloud scalability.

 If we assume that the cloud system is continuous and that some of its attributes are derivable,

then dynamic scalability can be modeled by a mathematical elastic equation:

 , (5.19)

In (5.19), is a positive constant. Capacity(t) = f(number_of_instances, number_of_threads, t).

The desired system performance is invariant with time t when Demand(t) is increasing or

decreasing with t. Let us suppose both Capacity(t) and Demand(t) are derivable, then taking the

derivative of t on both sides of (5.19), we have:

 , (5.20)

which means that if Capacity(t) and Demand(t) satisfy (5.20), the Performance(t) is invariant

with time t. To satisfy (5.20), changes in the ratio of Capacity(t) with t should be the same as that

of Demand(t) with t. Therefore, this proves that ScaleOut is a better way for achieving cloud

dynamic scalability.

153

Table 5.4. Impacts on Attributes of VMType
VMType Scalability Impacts on other Attributes Service Type and Examples

Instruction

set-based

VM

Through lower

level on-

demand

instance

 Less manageability by service provider

 Less built-in functionality

 More Flexibility

 More Portability

 More service consumer control

IaaS

Amazon EC2 [9]

Managed

runtime-

based VM

Through

bytecode-level

on-demand

platform

 Medium manageability

 Medium Flexibility and Portability

 Medium built-in functionality

PaaS

Microsoft

Azure Service Platform [142]

Framework-

based VM

Through high-

level on-

demand

platform

 Higher manageability by service

provider

 Less Flexibility and Portability

 More built-in functionality

PaaS

Google AppEngine [236]

5.4.3 Cloud Security (CSE)

Security is a common constraint for any enterprise architectural style and a common concern for

any enterprise architecture. Enterprises have even more security concerns on adopting public

cloud services, since they are located in the provider’s datacenters and accessed from the

Internet. The information of companies is stored in the system over which the cloud service

provider has no control. Therefore, for the ECSA architecture, the CSE is a very important

quality attribute for design consideration on public cloud services and cloud service-oriented

systems, as well as a very important checkpoint for evaluating an ECSA architecture. Based on

our framework, CSE is defined as:

CSE hasMetric.(ConfidentialityDataSecurityVulnerability Privacy)

 hasImpactFactor.(CloudServiceTypeCloudControlModel

154

 CloudSecurityManagement)

 hasQualityDependency.(Performance Cost)

in which

Confidentiality.metrics= 100
NSP

NSCG ,

where NSCG is Number of Security Check Gates which includes identity management and

access control (such as role-based access control); NSP is number of security points in the

system from end to end as shown in Figure 5.9.

DataSecurity.metrics=securityLevel(dataClass)

 =

uritylowestrequiresdataifTLDS

uritymediumrequiresdataifSLDS

urityhighestrequiresdataifFLDS

sec,

sec,

sec,

in which FLDS is First Level Data Security, such as data encryption for data (such as credit card

number) requiring the highest security; SLDS is Second Level Data Security, such as data

validation and encoding for data (such as application data) requiring medium security; TLDS is

Third Level Data Security, such as data validation for data (e.g., application data) requiring the

lowest security.

[50] has defined several vulnerability metrics. We choose one of them – Vulnerability Scan

Coverage (VSC) in this chapter:

Vulnerability.metrics=VSC

 =
)Pr___(

)_(

oviderCloudWithinSystemsAllCount

SystemsScannedCount

Cloud security is also impacted by several factors:

155

 CloudServiceType – different types of cloud services have different architectural topology

structures and different security check points.

 CloudControlModel – from Figure 5.6, cloud computing splits the control domain into three

domains, namely, (1) SC domain, (2) a domain shared by both SC and SPR, and (3) SPR

domain. Therefore, different types of cloud services have different system control models.

All the components in a private cloud are controlled by the organization, so it has maximum

security control. However, in a public cloud, service consumers have less control on their

data and operations, so it has less security control and the security is highly dependent on the

SPR’s security provision.

 CloudSecurityManagement – security management is one of the elements in SM
II
. Therefore,

providers must have security management as part of their ECSA architecture. Better security

management can help achieve better Security. Moreover, Security quality attributes also

influence the architectural design of security management. The security management should

provide easy, virtual controls to manage firewall and security settings for applications and

runtime environments in the cloud.

In architectural design, the quality dependency of cloud security should be taken into

consideration. Performance is one of the quality attributes. To guarantee data security across

clouds, some data is needed by using FLDS. However, data encryption reduces router and server

performance. Once data is sent to SC side, the data decryption also reduces client side computing

performance. Moreover, improper security architecture design reduces system performance. Cost

is another quality attribute. To meet both security and performance requirements, SC has to pay a

156

higher price. The tradeoff between security, performance, and cost is an important consideration

of cloud architectural analysis and design.

Cloud

Middle Miles

First Mile Last Mile

Serice

Provider

Security

Server

InternetService

Consumer

Security

Gate

Security

Gate

`

Monitoring

`

MonitoringEnd-to-End Cloud Security Management

Figure 5.9. End-to-End Cloud Security Management

5.4.4 Cloud Service Availability (CSA)

The downtime of cloud service and system directly impacts enterprise business availability. The

cloud provider needs to effectively receive and route incoming requests to the appropriate

virtualized application instance on behalf of its customers. Google and Microsoft replicate each

application instance to multiple physical locations. AT&T Synaptic Hosting spans multiple

locations for its enterprise customers. Therefore, availability is a very important quality attribute.

The term “high availability” is defined by the Institute of Electrical and Electronics Engineers

(IEEE) as: “Availability of resources in a computer system, in the wake of component failures in

the system.” A system can be called highly available if its applications and services are available

even in the case of an error without direct human interaction. The Harvard Research Group

(HRG) [85] classifies the availability as its Availability Environment Classification (AEC) as

shown in Table 5.5:

157

In Table 5.5, the term “Highly Reliable” implies some degree of “Availability”. If a system is not

available, then the “Highly Reliable” is not possible. High availability is defined in enterprise

architecture (EA) and traditional ESOA system by SLA [206]. It is also defined in SLA of public

Table 5.5. AEC and NINES (Number 9s)
AEC * Availability in %

Disaster Recovery (AEC5) 99.99999%

Fault Tolerance (AEC4) 99.9999%

Fault Resilient (AEC3) 99.999%

High Availability (AEC2) 99.99%

Highly Reliable (AEC1) 99.9%

Conventional (AEC0) 99%

* The mapping to NINES is conducted by this paper.

cloud services, such as the availability of Amazon EC2 is defined as 99.95% in its SLA [9].

Amazon’s storage service S3 achieves fault-tolerance level availability. The framework proposed

in Chapter 3 provides a formal way to analyze the CSA which can be defined as

CSA hasMetric.(SUT)

 hasImpactFactor.(CloudServiceTypeCloudAvailabilityManagement)

 hasQualityRelation.(Reliability ScalabilityConsistency Performance Cost)

in which

SUT=Service Up Time=100% - SUA%,

where SUA is service unavailable rate:

 ,

158

in which SDFi is Service Degradation Factor for the ith Outage and 0 SDFi 1, which

indicates the service unavailable degree (such as partial service outage). The N can be a number

of outages in a month or year.

 Traditional Availability is defined based on server up and down times or defined through

Mean Time Between Failures and Mean Time to Repair. In cloud service computing, a single

server failure and repair should not impact the service availability. The CSA can be gained from

cloud dynamic resource and availability management, such as Amazon EC2’s availability zones

which are within the same region and ensures complete and total redundancy for one’s

application [9]. Cloud service availability is impacted by several cloud service architectural style

parts.

 CloudServiceType – Private Cloud Service availability can be achieved by its private IaaS. A

hybrid cloud service availability can be increased by both private IaaS and public IaaS. Both

PaaS and SaaS service availability can be met by using both SPR’s private IaaS and other

public IaaS, such as Amazon’s EC2. Therefore, IaaS type cloud service is a kind of service

for other service availability.

 CloudAvailabilityManagement – CSA requires the service availability (resource)

management (CAM) which is one of the elements in SM
II
 in ECSA style and better CAM can

increase cloud service availability.

 CSA as a quality attribute has relationship with other quality attributes. The relationship

between CSA and cloud service reliability (CSR) can be defined as

159

where CSR(t) = Cloud Service Reliability over a time period t and MTTF=1/λ is "mean time to

failure" and represents the average time until the first failure occurs, and MTTR=1/µ is "mean

time to repair" and represents the average time required for repair, including any time to detect

that there is failure, to repair the failure, and place the system back into operational state. CSR(t)

= e
-λt

, so CSR is a decreasing function of λ. It is easy to show that CSA is a decreasing function

of λ and an increasing function of µ. Therefore, it means less reliability, then less availability.

Consider the triple quality attributes = (Consistency, Availability, Scalability). According to the

CAP principle [130], for a shared data system (most of web application systems and cloud

systems), the strong consistency (ACID-based consistency) could not be reached if the system

wants to meet both high availability and the ability to tolerate network partitions. To achieve

high cloud scalability, the system needs to be partitioned. Hence, in architecture design, one of

the two attributes, Availability or Consistency can be chosen. Therefore, the ECSA architecture

should have a better tradeoff between them. For the checkout process, one always wants to honor

requests to add items to a shopping cart because it is revenue producing. In this case, one can

choose high availability. Errors are hidden from the customer and sorted out later. However,

when a customer submits an order, one favors consistency because several services--credit card

processing, shipping and handling, reporting--are simultaneously accessing the data.

 Availability is related to Performance. Most technologies, such as cluster and resource

redundancy, are helpful at increasing performance. However, the fail-over and replication for

high availability may sometimes increase temporal latency. Moreover, to reach high availability

in the cloud, there are two kinds of cost to service providers: (1) cost of redundancy architecture

160

should be taken into consideration; (2) penalty due to unavailable services, which is a motivation

for SPR to consider higher availability.

5.4.5 Cloud Service Reliability (CSR)

While CSA specifies the cloud service uptime, CSR is defined as an ability to deal with external

failures, while the cloud service continues to perform its functions in the runtime environment.

As one of the cloud service quality attributes, CSR can be formally defined as

CSR hasMetric.(MTBF FailureRate)

 hasImpactFactor.(CloudReliabilityManagement)

 hasQualityRelation.(Availability SecurityCost),

where MTBF = Mean Time Between Failures is a traditional system (hardware and software)

reliability metric. It is used as a metric of cloud service. A cloud service system failure reflects a

cloud service level outage to service consumers that can only be restored through repair or

redundancy. Another typical metric is

FailureRate =
MTBF

1 .

Obviously, CSR requires good cloud reliability management which is part of SM
II

in ECSA style.

As shown in Section 5.4.4, Availability is a function of Reliability, but it is possible for poor

reliability to reach high availability. Moreover, less reliability in cloud service system increases

the risk of security violations. FailureRate is one of the key service level agreements. If

FailureRate > the rate defined in SLA, then cloud service consumer should get service credit

from their billing cycle. For example, Amazon S3 defines the FailureRate as “Error Rate” which

means: (i) the total number of internal server errors returned by Amazon S3 as error status

“InternalError” or “ServiceUnavailable” divided by (ii) the total number of requests during that

161

five minute period. The Cost to service provider, such as Amazon, is to give penalty money back

to consumers.

5.4.6 Cloud Resiliency (CR)

One of the concerns for adopting public cloud service is the potential loss of customer data and

information when failures or disasters occur. Another concern is how cloud computing can

assure guaranteed performance levels under high stress load situations. Cloud resiliency is a new

quality attribute to address these concerns. The notion of resiliency has been studied in

dependable computing but mainly with regard to fault-tolerance. Cloud computing systems

operate in a highly distributed and dynamic environment. The changes are everywhere and at all

times. The changes come not only from single-point failures and security attacks, but also due to

user demands. Therefore, cloud computing requires not only fault-tolerance and security attack-

tolerance, but also high-stress load-tolerance from unexpected operational demands. This

constitutes cloud resiliency and is a very important requirement for cloud computing, especially

for public cloud services to guarantee business continuity in the cloud. Therefore, Resiliency is

one of the key non-functional constraints in ECSA style. This can be described based on our

ontology framework:

CR hasMetric.(Fault-Tolerance SecurityAttack-Tolerance

 HighStressDemand-Tolerance)

 hasImpactFactor.(CloudServiceTypeCloudResilientManagement)

 hasQualityRelation.(ReliabilityAvailability Security Scalability)

Fault-Tolerance.metrics1=Number of single point failure

Fault-Tolerance.metrics1=Duration of Failover

162

Fault-Tolerance.metrics2=Duration of Disaster Recovery (DR)

Fault-Tolerance.metrics3=TimeWinow of Fault Outage

SecurityAttack-Tolerance.metrics=Duration of recovering from attack

HighStressDemand-Tolerance.metrics= How quickly can the system allocate resources and

maintain the desired system performance

 CloudServiceType is a factor that impacts resiliency since different types of cloud services

have different control boundaries as shown in Figure 5.6. The CloudResilientManagement is

another factor that impacts resiliency. Better change, resource, and security management are all

helpful in improving CR.

 Moreover, this attribute has relationships with other attributes. Improvement in any of the

Reliability, Availability, Security, and Scalability attributes can increase resiliency. Conversely,

resiliency can improve system Reliability, Availability, Security, and Scalability, since it

improves failover across a service. Traditional failover is to failover and perform disaster

recovery (DR) from one server to another server at the same location (same data center) or at

different datacenters in the same enterprise. Cloud failover or DR extends this to failover or DR

to cloud. The ECSA style allows failover or DR to be in different datacenters at different

geographic locations. For instance, Amazon EC2 is currently available in four regions or

datacenters: US East (Northern Virginia), US West (Northern California), EU (Ireland), and Asia

Pacific (Singapore). Each region (datacenter) consists of multiple Availability Zones (AZs).

Amazon EC2 is able to place instances in multiple locations - multiple regions and multiple AZs.

AZs are distinct locations that are designed to be insulated from failures in other AZs and

provide inexpensive, low latency network connectivity to other AZs in the same Region. By

163

launching instances in separate AZs, the EC2 consumers’ applications can be failed-over to

different AZs if their applications experience failures in one location. Thus, Amazon’s resiliency

keeps applications from being impacted by the failure of a single location. However, Amazon’s

approach missed a scenario – all AZs could be failed in a region or datacenter. In this case a

single point failure can occur. We discuss this scenario in Section 7.3.4.

In this chapter, we have focused on specifying and analyzing the most important cloud quality

ontology of ECSA. Some of the other quality attributes, such as Cloud Accountability (CAC),

Cloud Flexibility (CF), Cloud Visibility (CV), Cloud Agility (CA), Cloud Interoperability (CI),

Cloud Portability (CP) and Cloud Compatibility (CCP) are not discussed here, but we include

them as part of the ECSA quality ontology. In summary, the cloud specific quality attributes can

be described as

IISQ = {CSP, CS, CSE, CSA, CR, CAC, CF, CV, CA, CI, CP, CCP}.

5.4.7 Public Cloud Service Properties

We define the properties of traditional web services in [201][204]. In this section, we specify the

following major enterprise cloud service properties.

 Abstraction – This is shown in Table 5.6.

Table 5.6. Cloud Service Abstraction
Cloud service type Abstraction

SaaS-type services Abstraction of any computation and application in the cloud

PaaS-type Services Abstraction of underlying hardware, software, tools and application

development environment

IaaS-type Services Abstraction of underlying hardware resources and infrastructure. It decouples

the workloads and payloads of other enterprise datacenters from the physical

infrastructure and manages the abstraction instead of the infrastructure.

164

 Standard service interfaces or contracts

Cloud computing delivers services to consumers through standard ESOA style service interfaces,

such as web service API and SOAP messaging, RESTful service [202] API and HTTP protocol,

event-driven service interface, or other well-defined service interfaces. Figure 5.10. Service

Interfaces of Amazon S3Figure 5.10 depicts the interfaces of Amazon storage service S3.

Cloud

Amazon S3 Storage

Service
Interfaces

RESTful

Web

Service

Web

Service

Cloud Client

Applications

SOAP

REST

Web

Servers

Clinets

`

Figure 5.10. Service Interfaces of Amazon S3

 Loose Coupling

Loose coupling is an important property of traditional ESOA web services. It is also a very

important property of cloud services. This property is one of the service design principles [67]. It

is also a criterion for evaluating an ECSA architecture. The reason why it is important is that

tight coupling results in expensive cloud service agility, reliability, and scalability for enterprise

systems. The loose coupling principles and technologies of ESOA style service, such as

asynchronous messaging and messaging queues, can help cloud services to achieve the property.

 Autonomy

Autonomy represents the ability to self-govern, which is one of the principles of SOA service

design [67]. The principle is also one of the properties of enterprise cloud services. The on-

165

demand self-service is one of the key characteristics of cloud computing, which means that cloud

services should be able to allow consumers to unilaterally provision computing capabilities, such

as server time and network storage, as needed without requiring human interaction with each

service provider. If a cloud service lacks self-government, it is hard for it to be adopted by other

enterprises. For instance, in Amazon S3, a public storage cloud has been designed such that

individual components can make decisions based on local information.

 Reusability

Traditional ESOA services are reused by their owner and owner’s partners. Public cloud services

can be reused by not only the service provider, but also by all service consumers who subscribe

to the services.

 Statelessness

Statelessness is another important property of ESOA services [67]. It is even more important for

enterprise cloud services due to the more dynamic nature of cloud computing. The statelessness

does not mean that there is absolutely no state. Services should keep as little of the computing

states or service activities as possible. “There are different levels of statelessness a service design

can achieve, depending on the frequency of state deferral and the quantity of state data being

deferred. These levels are usually specific to each service capability”[67]. Because the

components in cloud services are becoming increasingly transient, they can not support

persistent state data. Cloud service should be as stateless as possible by pushing the state data out

of the service and separating processing and data as much as possible. For example, Amazon

Alexa cloud web search service uses SimpleDB to store process states [226].

166

 Composability

In Section 5.3.7, we have shown that individual cloud services can be composed, integrated, or

aggregated into high-level service processes or workflows for completing a complex enterprise

task in clouds. Cloud service composability is essentially the extension of one of the SOA

principles into the cloud.

 Discoverability

Discoverability is another extension of ESOA service property to cloud services. The enterprise

cloud services should be discoverable and interpretable for consumers. Many cloud providers

extend SOA discoverability by extending the SOA registry technology, such as IBM WebSphere

service registry and Microsoft Azure’s cloud service registry. We propose the following ECSA

dual triangles architecture shown in Figure 5.11 which shows a cloud registry for cloud services.

In the dual triangles, the first triangle is a traditional SOA triangle and the second triangle is a

cloud service triangle which consists of a cloud service consumer, a cloud gateway for

connecting to public cloud services and a cloud service registry. The two triangles are connected

through two registries and the service consumer. The cloud services can be discovered through

the cloud registry.

 Subscription

The subscription is a property only for public cloud services. Traditional ESOA services and

private cloud services serve internal consumers of the service provider as part of the ESOA

system through internal service contracts without paying fees for services. However, the public

cloud services are serving consumers of other enterprises. The cloud services are executed

through a set of provisioning and subscription services [243].

167

Cloud

Cloud

Service Registry

Service Consumer

UUDI

Service Registry

SaaS IaaSPaaS

Cloud Gateway

Cloud

Services

Cloud

Services

Cloud

Services

Service

Provider

Traditional

Web Services

`

Publish

Register

Publish

Register

Discover and

retrieve contract

Discover and

retrieve contract Exchange

message

Exchange

message

Manage

Registry

Manage

Registry

Figure 5.11. Dual Triangles

In this section, we defined cloud quality attributes and discussed several important quality

attributes for cloud computing systems. We also described the major properties of public cloud

services. The cloud quality attributes and service properties are non-functional constraints of

ECSA architectural style, and provide the basis for designing and evaluating the ECSA

architecture.

5.5 Summary

In Chapter 5, the ECSA style ontology is defined and specified. Specifically, the ECSA quality

ontology is defined and described by using decscription logic and metrices. The ontology-based

168

modeling and analysis are very helpful at understanding complicated enterprise cloud service

architecture and guiding ECSA style system design and analysis.

169

CHAPTER 6

SLA-AWARE ENTERPRISE SERVICE COMPUTING

There is a growing trend towards enterprise system integration across organizational and

enterprise boundaries on the global Internet platform. The Enterprise Service Computing (ESC),

such as ESOA and ECSA we defined in Chapters 4 and 5, has been adopted by more and more

corporations to meet the growing demand from businesses and the global economy. However,

the ESC as a new distributed computing paradigm poses many challenges and issues of quality

of services. For example, how is ESC compliant with the quality of service (QoS)? How do

service providers guarantee services which meet service consumers’ needs as well as wants?

How do both service consumers and service providers agree with QoS at runtime? In this

chapter, SLA-Aware enterprise service computing is first introduced as a solution to the

challenges and issues of ESC. Then, SLA-Aware ESC is defined as new architectural styles

which include SLA-Aware Enterprise Service-Oriented Architecture (ESOA-SLA) and SLA-

Aware Enterprise Cloud Service Architecture (ECSA-SLA). In addition, the enterprise

architectural styles are specified through our extended ESOA and ECSA models. The ECSA-

SLA styles include SLA-Aware cloud services, SLA-Aware cloud service consumers, SLA-

Aware cloud SOA infrastructure, SLA-Aware cloud SOA management, SLA-Aware cloud SOA

process and SLA-Aware SOA quality attributes. The main advantages of viewing and defining

SLA-Aware ESC as an architectural style are (1) abstracting the common structure, constraints

and behaviors of a family of ESC systems, such as ECSA-SLA style systems and (2) defining

170

general design principles for the family of enterprise architectures. The design principles of

ECSA-SLA systems are proposed based on the model of ECSA-SLA. Finally, we discuss the

challenges of SLA-Aware ESC and suggest that the autonomic service computing, automated

service computing, adaptive service computing, real-time SOA, and event-driven architecture

can help to address the challenges.

6.1 Introducing SLA-Aware Enterprise Service Computing

Enterprise Service Computing (ESC) is a new distributed computing and architectural style that

has been adopted by more and more enterprises. ESC primarily includes Enterprise Service-

Oriented Architecture (ESOA) [201][203][204] and Enterprise Cloud Service Architecture

(ECSA) [205]. Because of complicated business requirements and high customer demands, ESC

poses many challenges and issues, such as performance (latency, loss, and jitter) and

dependability (security, trust). The Quality of Service (QoS) becomes crucial for ESC to achieve

its vision and meet business requirements and customer demands.

Nowadays, most enterprises will only invest in IT when there is a clear return on investment,

lower total cost of ownership, and a clear demonstration of cost savings. Investments made in

services, web services and cloud service initiatives offer the opportunity to realize these

requirements, but these investments need to be deployed in a consistent, repeatable, and

manageable fashion. Traditional operation management is incapable of offering the unique

management functionality that can help achieve these requirements as compared to service-

oriented management which is based on QoS.

Service Level Management (SLM) is one of the most important and fundamental service-

oriented management techniques. SLM provides mechanisms and tools for managing individual

171

services and the SOA processes composed of a set of services designed to meet the QoS

requirements and demands of enterprises and their customers. The Service Level Agreement

(SLA) is a specification of service or service process functional provisioning and non functional

goals - QoS which is agreed to by both service providers and service consumers. The Service

Level Objectives (SLO) are key elements of SLA, which are specific and measurable quality

attributes in the SLA, such as availability, throughput, frequency, performance (response time),

and other quality attributes. SLA has been employed in industry such as networking and

telecommunications for several decades. However, adoption of dynamic SLA in ESOA systems

is relatively immature and suffers from lack of standards. Recently, cloud computing and ECSA

have become the next generation enterprise service computing. The SLA and SLM have become

more and more important because of the dynamic service computing environment and

infrastructure. Dynamic and automated SLM provides an SLA-Aware approach in ESOA or

ECSA architecture. An architectural style is a coordinating set of architectural constraints. The

SOA quality attributes are the architectural constraints of ESOA and ECSA. The QoS and SLA

can be part of architectural constraints and contracts at the service level in ESOA and ECSA.

Therefore, at the architectural style level, adding SLA-Awareness to ESOA or ECSA generates a

kind of specific architectural style, which is called SLA-Aware ESOA or SLA-Aware ECSA. At

the ESOA and ESCA system (instance) level, the approach allows SLA to play a QoS role

between each service consumer and service provider, which greatly improves the service

visibility. It also brings service quality control intelligence and capacity into ESOA or ESCA

systems, so that it greatly enhances SOA management capabilities. Therefore, ESC can meet

service or service process functional provisioning and non-functional goals – QoS so that service

172

providers satisfy service consumers with specific services. In addition, enterprises gain revenue

from the services and avoid troubles caused by disputed services.

In this chapter, we first discuss the challenges and issues of ESC. Second, we discuss general

QoS and SLA concepts, their ontology, standards (such as WS-Agreement), languages (such as

WSLA), and classification in enterprise service computing. Third, we define SLA-Aware ESOA

and ESCA architectural styles. The styles include:

 SLA-Aware SOA Quality Attributes

The SLA-Aware quality attributes are fundamental to the design of SLO and SLA for ESC.

 SLA-Aware Services

The measurable SLA quality attributes are the service constraints of which the service

provider is aware in the service at runtime.

 SLA-Aware service consumers

The service consumer is aware of the SLA and can visit it through client-side self-

management portal.

 SLA-Aware service process

The SLA-Aware SOA process consists of a set of SLA-Aware services for executing

business processes. The SOA process itself is also aware of a process-wide SLA.

 SLA-Aware SOA infrastructure

We define an SLA-Aware SOA infrastructure as a set of SLA-Aware infrastructure services

such as SLA-Aware (or QoS-Aware) network services and SLA-Aware storage services.

173

 SLA-Aware SOA management

SLA-Aware SOA management is defined as a set of SLA-Aware management services

which provide SOA system services, including SLA management services, SLA

monitoring/measuring services, SLA negotiation services, and SLA reporting services.

 SLA-Aware Cloud Service Provision and Subscription

SLA-Aware cloud service provisioning and subscription will be discussed. The end-to-end

SLA-Aware cloud service architectural style is also described

Finally, we discuss the extensions of ESOA-SLA and ECSA-SLA. In this chapter, we assume

that all services are web services unless otherwise stated.

6.2 The Concept of SLA and SLA-Awareness

The existence of a quality service level agreement (frequently abbreviated as SLA) is of

fundamental importance for any service delivery. It essentially defines the formal relationship

between the service consumer and the service provider. We define SLA for SLA-Aware

enterprise service computing as follows.

Definition 1: Service Level Agreement is a negotiable QoS contract between service consumer

(SC) and service provider (SP) on the service guarantees for service consumers. The guarantees

include the operations that need to be executed and the promised QoS that should be provided.

Formally, we define SLA as

 SLA= SLA (SC, SP, C(QoS)), (6.0)

in which SC is a service consumer or a service provided by another service provider, and C(QoS)

is the negotiable QoS contract. Formula (6.0) can be simplified as SLA = SLA (SC, SP), where

174

the SP can be a web service or cloud service, such as IaaS [205]. There are two types of SLA

according to its nature as shown in Table 6.1:

Table 6.1. Dynamic SLA vs. Static SLA

Type of

SLA

Description Machine

processing

Measurement

& Monitoring

Execution &

Negotiation

Changing Termination

Dynamic

SLA

Defined by formal

languages, such as
WSLA, WS-

Agreement

Yes Measure by SLA
metrics and auto

measure system

 Monitoring by
SLA monitor

 Dynamic
reporting

Dynamic SLM

controls execution
and negotiation

between service

provider and
consumer

automatically

Executing by

dynamic SLM
automatically

Executing by

dynamic SLM
automatically

Static SLA Specified in a

document

No Measure by SLA

metrics

 Monitoring by

monitor

Traditional SLM is

lack of automatic
control and

negotiation

Executing by

traditional SLM
manually

Executing by

traditional SLM
manually

Moreover, there are two types of dynamic SLA deployment as shown in Table 6.2:

Table 6.2. Vertical SLA vs. Horizontal SLA
Type of

SLA

Definition from network layer prospective Definition from enterprise architecture layer

prospective
Vertical SLA A SLA between two SPs or SC and SP on different OSI

layers, such as a SLA between VoD and its ISP

A SLA between two SPs or SC and SP on different enterprise

layers, such as a SLA between web application in web server

layer and web services in application server layer.

Horizontal
SLA

A SLA between two SPs or SC and SP on same OSI layer,
such as a SLA between two IP domains.

A SLA between two SPs on the same enterprise architecture
layer, such as a SLA between two web services in a workflow

process.

Definition 2: SLA-Awareness is a capacity and design principle to guarantee QoS provided by

services. It uses dynamic SLA binding in a service computing system environment to achieve its

goal. The capacity and quality of an SLA-Aware service computing system is controlled by

dynamic SLAs and managed by dynamic SLM.

6.3 SLA-Aware ESOA and SLA-Aware ECSA

Software architectural style is an abstraction of a family of systems as a pattern of structural

organization. An architectural style is a coordinating set of architectural constraints that restrict

the roles/features of architectural elements and the allowed relationships among those elements

within any architecture that conforms to that style. Therefore, architectural style is a kind of

175

roadmap and guidance for analyzing and designing concrete architectures. We previously

proposed a model of enterprise service-oriented architecture (ESOA) [204]. In this chapter, we

extend the ESOA style to the following SLA-Aware ESOA style:

 ESOA-SLA = QSPSMSISDCS SLASLASLASLASLASLASLA ,,,,,,
, (6.1)

in which

 SSLA = {si | si is a SLA-Aware we service}, (6.2)

 CSLA = {ci | ci is a SLA-Aware service consumer}, (6.3)

 DSLA = {di | di is a SLA-Aware SOA data element}, (6.4)

 SSLAI = {ri | ri is a SLA-Aware SOA Infrastructure}, (6.5)

 SSLAM = {mi | mi is a SLA-Aware SOA Management}, (6.6)

 SSLAP = {pi | pi is a SLA-Aware SOA Process}, (6.7)

 SSLAQ = {qi | qi is a SLA-Aware SOA quality attribute}, (6.8)

Using the notation “ ” defined in Chapter 3 to indicate the style extension relationship, we

have:

 ESOA ESOA-SLA.

The new constraint set SLA is added to its parent style ESOA, and the constraints apply

consistently to the new elements, such as dynamic SLM and machine-processable SLA. The

style extension is a part of the architectural style refinement [168]. We will explore the style,

style refinement analysis, and evaluation in the next Chapter.

In Chapter 5, we presented a new enterprise service architectural style, called Enterprise Cloud

Service Architecture (ECSA), which is a hybrid style of ESOA and cloud computing. Here we

extend this style to the following SLA-Aware style:

176

 ECSA-SLA = DSQSPSMSISDCS SLASLASLASLASLASLASLASLA ,,,,,,,
, (6.9)

in which

 SSLA = {si | si is a SLA-Aware cloud service}, (6.10)

 CSLA = {ci | ci is a SLA-Aware cloud service consumer}, (6.11)

 DSLA = {di | di is a SLA-Aware SOA cloud data element}, (6.12)

 SSLAI = {ri | ri is a SLA-Aware SOA cloud infrastructure}, (6.13)

 SSLAM = {mi | mi is a SLA-Aware SOA cloud management}, (6.14)

 SSLAP = {pi | pi is a SLA-Aware SOA cloud process}, (6.15)

 SSLAQ = {qi | qi is a SLA-Aware SOA cloud quality attribute}, (6.16)

 SSLAD = SSLAD
I

SSLAD
II

 SSLAD
III

, (6.17)

where

 SSLAD
I
 = {d | d is a building element of development}, (6.18)

 SSLAD
II
 = {d | d is a service deploy type}, (6.19)

 SSLAD
III

 ={d | d is a SLA-Aware service delivery model}. (6.20)

Using our notation, we have ECSA ECSA-SLA. Since the ESOA architecture can be regarded

as a part of the ECSA architecture in the private cloud, we will focus on specifying the SLA-

Aware ECSA in the rest of this section.

6.3.1 SLA-Aware SOA Quality Attributes

We have defined SOA quality attributes SQ as constraints of ESOA and ECSA. The SLA-Aware

SOA quality attributes SSLAQ in (6.8) or (6.16) are subsets of SQ, and they are both important to

the services and measurable. They can be measured by monitoring tools and calculated by

service level management service. The core service level quality attributes are classified into

177

several QoS classes shown in Figure 6.1. The quality attributes are fundamental to the design of

KQI, KPI, SLO and SLA (Please see Section 2.4.4).

SLA-Aware QoS Class

Cost & PaymentDepedabilityPerformance Security

Response time

Latency

Round trip time

Scalability

Throughput

Transaction rate

Connect time

Availability

Accuracy

Robustness

Reliable message

Error rate

Security

Trust

Reputation

Cost

Penalty

Service credit

Figure 6.1. SLA-Aware QoS Taxonomy

6.3.2 SLA-Aware Web Services

Traditional web service is a self-contained software abstraction of business, technical

functionality, or infrastructure management, characterized by a well-defined interface that

focuses normally on the descriptions of functional aspects, such as input, output, preconditions

and effects known as IOPE [62][63]. The interface of a web service is defined by the WSDL

language. However, SLA-Aware web service not only focuses on its functional aspects, but also

emphasizes its QoS through the dynamic SLA. We define SLA-Aware web service as follows:

Definition 3: The SLA-Aware Web Service in (6.2) or (6.10) is a web service described by both

WSDL and formal SLA Language. It is managed by the SLM based on the dynamic SLA with its

consumers. Figure 6.2 describes the SLA-Aware web service ontology:

178

SLA-Aware

Web Service

OperationsSLM
SLA

(QoS)

WDSLSLA LanguageSLA Monitor

Service

Registry

Service

Consumer
registered by

has

meet

Managed by

Specified by

Monitored by

Described by

meetBased on

Endpointhas

Defined by

requests

use

Figure 6.2. SLA-Aware Web Service Ontology

As discussed in Section 2.4.1, there are different languages, such as WSLA [129], WS-

Agreement [128], which can be used for specifying SLA.

6.3.3 SLA-Aware Service Consumers

First, we need to extend the concept of service consumer, defined in (6.3) and (6.11) as follows:

 CSLA = CEnd CS, (6.21)

where CEnd is a set of end service consumers in which the element can be any web service client

or cloud web application, such as SaaS [205]; and Cs is a subset of SSLA, in which the element is a

service which consumes other services.

Unlike a traditional service consumer, an SLA-Aware service consumer is not only the service

requestor, but also an SLA negotiator which sends an SLA negotiation request to the SLM of a

179

service provider either directly or through a negotiation broker [87] before sending the service

request. We define SLA-Aware service consumer as follows:

Definition 4: The SLA-Aware enterprise service consumer is a business application or another

service which requests service from service provider(s), can initialize an SLA negotiation with

its SP, and make decisions regarding service class and service request based on both functional

and non-functional (QoS, such as performance, availability, security, pricing as well as penalty)

requirements. The SLA-Aware service consumer should be self-managed through a self-service

portal with a set of dashboards.

Figure 6.3 describes a model of the interaction between the SLA-Aware cloud service consumer

(CSC) and the SLA-Aware cloud service provider (CSP). Moreover, we assume the CSP, such as

Amazon S3 web service, is in the public cloud [205], which is based on a pay-as-you-go business

model for its CSC. Therefore, there is service pricing in the service negotiation, billing service

for handling CSC payment, and billing justification based on usage and agreement. For example,

the SLA of Amazon web service S3 [8] defines the following Service Credit as its billing

justification. Service Credits are calculated as a percentage of the total charges paid by you for

Amazon S3 for the billing cycle in which the error occurred in accordance with the schedule as

shown in Table 6.3:

Table 6.3. Service Credits of Amazon Web Service S3

180

Cluster

SLA-Aware Service Consumer

Service Discovery

Service

registry

SLA-Aware Service Provider

Client-Side SLA Management

or Service Level Mamagement
Service Level Management

SLA-Aware Business Application

or SLA-Aware Web service

Service Delivery

SLA-Aware Web Service

Negotiating

SLA Monitoring

Data

Agents

servers

Request service Claim QoS

invocating

SLA monitoringProvisioning

Find Register

Gathering

data

Gathering

data

Offering

Monitoring Monitoring

Customer

Workstation

SLA Dashboard

Figure 6.3. Model of the Interaction between SLA-Aware CSC and SLA-Aware CSP

In Figure 6.3, the Service Delivery can be middleware with web service containers, such as

Weblogic and WebSphere application servers.

6.3.4 SLA-Aware SOA Infrastracture

The traditional SOA infrastructure is the heart of ESOA. It is the bridge of the transformation

between business and services. However, the traditional enterprise SOA infrastructure is built in

a kind of static data center (without adopting virtualization and other server consolidation

technologies, like agility and alternate sourcing – cloud computing) in which (1) pre-provisioned

resources are used - rigid, server silos and dedicated servers per application; (2) Server CPU

utilization is often in single digits; (3) Scale is through adding hardware, and (4) Resources are

shared within enterprise firewalls. Therefore, it is not adaptable to today’s on-demand business

workload and real-time B2B requirements. It also costs more resources and power within an

181

enterprise’s data center. The SLA-Aware SOA cloud infrastructure is a kind of SLA driven

service-oriented infrastructure which aims at improving the traditional SOA data center, reducing

cost, and adapting on-demand requirements of business and customer.

Definition 5: The SLA-Aware SOA cloud infrastructure in (6.13) is an SLA driven service-

oriented infrastructure with the following main characteristics:

 It is managed by SLA-Aware SOA management.

 It supports elasticity and dynamism – automatic scalability and load-balancing, failover

based on SLA and in terms of virtualization [205] or other technologies [205].

 It supports global resource sharing through the Internet.

 It supports resource usage accountability – utility model [205].

 It can be a part of cloud service, such as PaaS type services (Google App Engine [205]), or

can be a cloud service, such as IaaS type service (Amazon EC2).

Figure 6.4 is the high-level view of SLA-Aware Dynamic Data Center in a cloud service-

oriented enterprise. The SLA-Aware SOA Cloud Infrastructure consists of

 An enterprise SOA and cloud service delivery network (SDN).

 A provisioning service.

 A dynamic virtualized infrastructure: Virtualization Infrastructure as a Service (VIaaS), such

as VMWare.

 A physical resource infrastructure: Physical Infrastructure as a Service (PIaaS).

 Business Applications layer.

 SOA Infrastructure Management which includes SLA management as well as other

management systems.

182

 Monitoring systems.

For an SLA-Aware SOA cloud infrastructure, the VIaaS and PIaaS should be able to manage

resources, such as CPU, OS, networking and storage allocation and can tune and re-purpose

resources to the environment. The SLA management should (1) guarantee the resources to be

allocated dynamically based on demand; (2) guarantee QoS (such as availability, performance,

and security) defined in SLA; and (3) guarantee the pricing and billing agreement. The

Monitoring system should (1) monitor SLA and heartbeats; (2) monitor capacity of VIaaS and

PIaaS; (3) monitor usage; (4) monitor utilization of resources as well as services; and (5) provide

analysis and calculation results to SLA management and provisioning service as well as billing

service.

In Figure 6.4, the other management aspects in SOA management may include service discovery,

policy enforcement, etc. [204].

6.3.5 SLA-Aware SOA Management

The architectural styles ESOA-SLA and ESCA-SLA we have proposed are SLA-aware and

service oriented. The SLA-Aware SOA management in (6.6) and (6.14) is one of the key parts in

(6.1) and (6.9). It is different from the general concepts and approaches for SOA management of

ESOA and ESCA that we have discussed, since it is SLA-Aware and dynamic. The ESOA-SLA

and ESCA-SLA emphasize end-to-end SLA management.

Definition 6: The end-to-end SOA management SLAM can be defined as a set of SLM:

 SLAM = {SLMi | SLMi is a SLM with SLAi for service si}, (6.22)

183

in which si includes functional services, VIaaS, PIaaS, IaaS which are infrastructure services, and

other SOA management services, such as security services and logging services. Figure 6.5

depicts the End-to-End SLA Management in service-oriented enterprise architecture.

SLA-Aware Dynamic Data Center

Enterprise Services Delivery Network

Private Cloud

Services

Other

Services

Virtualized Infrastructure Provisioning Services

Provisioning

Orchestration

Services

Service Policy

Virtualization

Controller

Service SLA

Utility Handler

Dynamic Virtualized Infrastructure

Virtual

Servers
Virtual

Storages

Virtual

Network

Physical Resources

Monitoring

Physical

Resource

Management

Business Applications

Delivery Network

Business Applications

SOA Management

SLA
Management

Other

Managements

m
on

ito
rin

g

m
o
n
ito

ri
n
g

provision

in
v
o

k
e

negotiate

w
at

ch

re
p
o
rt

On-demand

requests

m
o

n
ito

rin
g

monitoring

monitoring

Cloud

Cloud

Workstation
Laptops

Public Cloud

Serices

Figure 6.4. SLA-Aware SOA Cloud Infrastructure

184

Enterprsie Services

(search, ticket negotiation, billing, …)

Enterprise Application

(travel reservation, call center, ….)

SLAi

Internal Service Delivery Network Service

(IP, Ethernet, SAN)

SLMj

External Service Delivery Network Service

(ATM, SDH, Dark Fiber)

SLMk SLAk

SLAj

SLMi
S

e
rv

ic
e

 P
ro

v
id

e
r

In
te

rf
a

c
e

SLA

Monitoring

SLA

Monitoring

SLA

Monitoring

S
e

rv
ic

e
 C

o
n

s
u

m
e

r
In

te
rf

a
c
e

Figure 6.5. End-to-End SLA Management in Service-Oriented Enterprise Architecture

Figure 6.5 shows that the SLM plays a service manager role. We highlight an SLA-Aware SLM

for cloud service, such as the airline ticket reservation service in Figure 6.7. The SLM

architecture can be implemented by WSLA framework [105], WSOL framework [212], or WS-

Agreement standard [87]. For instance, the SLA negotiation and offer between service consumer

and service provider can be implemented by WS-Agreement. Figure 6.6 is the agreement offer

document defined by WS-Agreement for the ticket search service.

185

Figure 6.6. Agreement Offer of WS-Agreement for Search Ticker Service

186

Service Provide

Service Level Management

Services & data

Data Server
DataServer

User

Account

Service

SLA Service

Travel Services

Customer

Workstation

Administrator

Workstation

SLA Compliant

Monitoring

SLA

Data

Access account

Nigotiate/obtain SLA

Invocate

Billing

N
ot

ify

report

Monitor

manage
Usage

report

Monitor

Agents M
e

a
s
u

re

Offer/report

Query

Register

SLA-Aware Cloud Travel Service ProviderSLA-Aware Service Clients

Figure 6.7. SLM for SLA-Aware Cloud Travel Service

A functional service like the travel service, under management of SLM, is different from

traditional services. It must

 query the SLM when it is going to execute an action/operation (search tickets);

 notify the SLM of resource usage in a timely manner; and

 obey the SLM’s instruction to destroy activities.

The user account service is one of the core parts for SLA management, since there is no way to

handle users’ credit and service payment without it. When the user proposes a new SLA, SLM

needs to verify the user’s credit from the account system. When the user uses the travel service,

SLM needs to record the usage into the account service. At the end of each SLA billing cycle,

SLM records the total usages in the user’s account for billing the user. Moreover, when billing an

187

account, if SLM finds that the account is suspended or closed, then the SLA will be suspended or

closed.

6.3.6 SLA-Aware SOA Process

One of the important parts of the ESOA style is its set of SOA processes. The SOA process or

workflow is an abstraction of Business Process Management (BPM). Each process is composed

of multiple services in orchestration and/or choreography for completing a whole or partial

business process or task. The traditional SOA process can be executed by using an ESOA

infrastructure with a process engine in the internal network of an enterprise. However, traditional

SOA processes face many challenges and issues: Real-time high performance (such as automated

trading), on-demand scalability, large payloads (10+ MB), memory constraints, and high

availability and reliability. The SOA process of ECSA style resolves the issues of traditional

SOA processes. Some complex transaction processes and workflows in enterprises may need to

compose multiple services in the cloud for completing the tasks. However, traditional ways lack

end-to-end QoS guarantees for processes. The question is: How can the cloud process service

provider guarantee the quality requirements from the service consumers. In this section, we

specify the SLA-Aware SOA process SSLAP in ECSA-SLA.

188

in which i=0,1,2,…,n, s0 = c is a service consumer which initiates the process. Suppose si is the

first service called by c,

where n ≥ m ≥ 1, SLA01≠Ø , SLA(p) can be empty and SLA(IaaS) ≠Ø, which means there are at least

two SLAs – one is between the process service consumer and the process service, the other is

between the process service and its infrastructure. If n > 1 and n is in the process pSLA, si, i=j1,j2,

….jk are external services in the different clouds, then m=k. The structure of SLA(p) depends on the

process patterns and the way that the SLAij is specified. For instance, Figure 6.8 describes an

SLA-Aware sequence travel reservation workflow with two cloud services. Therefore

 SLA(p) = { SLA12, SLA13}, and

 SLA(IaaS) ={SLA2,IaaS
1
, SLA3,IaaS

2
, SLA4,IaaS

3
}.

Storage

Infrastructure

Data

SLA-Aware Travel

Reservation

workflow

SLA-Aware

Client

Cloud

Cloud

Book airline

service

Book car

service

IaaS
2

IaaS
1

s4

s1

s2

s3

Workstation

SLA01

SLA12

SLA13

SLA2,IaaS1

SLA3,IaaS2

SLA4,IaaS3

S1 is a travel booking service

S2 is a airline booking service

S3 is a rental car booking service

S4 is a data service

BPEL

Engine

Figure 6.8. A SLA-Aware Sequence Travel Reservation Workflow

189

The SLA-Aware SOA Cloud processes, such as service composition, workflow, orchestration

and choreography, are very important for improving customer experience and satisfaction with

enterprises; therefore, this topic has attracted much research interest, including works listed in

Section 6.1 and [242].

6.3.7 SLA-Aware Cloud Service Provisioning and Subscription

We previously defined the enterprise cloud services delivery model in Chpater 5. The extension

of the SLA-Aware cloud service delivery model defined in (6.20) can be specified in the

following Table 6.4:

Table 6.4. SLA-Aware Delivery Models of Cloud Services

Delivery Mode Description Resource Sharing

SaaS-SLA SLA-Aware Software as a Service Sharing software under

dynamic SLA

PaaS-SLA SLA-Aware Platform as a Service Sharing platform under

dynamic SLA

IaaS-SLA SLA-Aware Infrastructure as a Service Sharing infrastructure under

dynamic SLA

IMaaS-SLA SLA-Aware Information as a Service Sharing information under

dynamic SLA

IRaaS-SLA SLA-Aware Integration as a Service Sharing integration under

dynamic SLA

XaaS-SLA SLA-Aware other cloud service delivery

models

Sharing other resources under

dynamic SLA

All the SLA-Aware cloud services in different models are actually delivered through a set of

SLA-Aware cloud service provisioning services [243] by service providers, which are part of the

190

enterprise cloud SOA infrastructure. The SLA-Aware service provisioning in Figure 6.4 has

four interfaces:

 An interface with SLA management (SLM), which accepts SLM control and reports service

usage to SLM.

 An interface with resource management, which allocates resources for services based on the

demand.

 An interface with service scheduling system to provide scheduled services to clients based on

SLA.

 An interface with service consumers, which deliver services to consumers.

In an SLA-Aware SOA cloud service environment, the cloud service subscription [243] from

clients (service consumers) is managed by a set of service provider’s SLA-Aware service

subscription services which process the subscriptions of service consumers with SLA

information.

Zhang and Zhou pointed out that the cloud provisioning and subscription services should be

extendable for supporting different types of resource sharing [243] and service subscription. The

SLA-Aware service provisioning and subscription is a principle for designing ECSA-SLA style

architecture as well as a challenge for both researchers and practitioners in enterprise service

computing.

In summary, Section 6.3 primarily specifies the new architectural style (ECSA-SLA) and its

ontology. The style emphasizes dependability within enterprise service computing through

dynamic SLA mechanisms and SLA management as first-class architecture design

191

considerations. However, we still face a lot of challenges in many aspects, especially in research

and practice. We will discuss those challenges in the next section.

6.4 Challenges of SLA-Aware Enterprise Service Computing

SLA-Aware Enterprise Service Computing is a new enterprise architectural style. Higher

automation, performance and adaptation are required for designing this style-architecture.

Therefore, researchers and practitioners face a number of challenges. The challenges include:

 General Challenges:

o Theoretical foundation of SLA-Aware enterprise service computing

o Formalizing complicated service-oriented enterprise architectural styles

o Verifying complex architectural styles

o Autonomic self-service on the client-side, which can monitor and manage the SLA

execution on the server-side

o Automated service provisioning and subscription

o Automated service discovery and selection

 New Challenges:

o Automated service level management

o Automated SLA monitoring which can monitor SLA execution dynamically

o Adaptive resource management based on SLA and demand

o Adaptive SLA-Aware service execution in SP environment, such as adaptive service

performance and scalability management, change management, dynamic

reconfiguration, exception management, and fault-tolerance

o Adaptive system optimization

192

o Real-Time (RT) or close to RT SLA management, dynamic SOA Infrastructure and

management.

Autonomic computing, automated and adaptive service computing and event-driven and real

time service computing have been researched and adopted for tackling some of the challenges of

SLA-Aware ESC. We have discussed the research work in Section 2.4.5 and Section 2.4.7.

6.5 Summary

In this chapter, we have introduced the SLA-Aware enterprise service computing and specified

two new architectural styles: SAL-Aware ESOA and SLA-Aware ECSA in SLA-Aware ESC.

SLA-Aware architectural styles have two unique characteristics: (1) SLA-Aware SOA

applications require a set of SLM capacities from both service consumers and service providers;

(2) Processing of non-functional requests (SLAs – performance, dynamic scalability, availability,

etc.) of services are considered as the first-class capacity and are executed before functional

operations of service. In this way, the service providers are required to provide not only

functional services but also the QoS to service consumers. Capacity is the key requirement for a

family of systems, for example, real-time online trading systems and online travel reservation

systems. Examples include cloud services such as Amazon web services EC2 and S3, which

require higher performance, availability, and dynamic scalability for satisfying the service

consumers (business customers or their applications). Customers can get services and the

corresponding QoS, such as performance, availability and price, based on the SLA.

To enable the dynamic SLA and SLM in a traditional ESOA stack, representing the SLA in a

standard way is important. We have introduced several standard ways for defining the SLA in

machine-processable languages, such as WS-Agreement, WSLA language, and WSOL. Most of

193

the SLA languages are built on XML language. They support the SLA lifecycle in that they

build, negotiate, execute, and terminate through SLA-Aware SOA management such as dynamic

SLM, SLA-Aware middleware, and broker.

We define SLA-Aware ESC as an architectural style in this chapter. The primary advantage of

viewing and defining SLA-Aware ESC as architectural styles is an abstraction of the common

structure. Constraints of and behavior of a family of ESC systems such as ECSA-SLA style

systems, and defining general design principles for the family of enterprise architectures, are

other advantages. The design principles of SLA-Aware ESC systems are discussed through

specifying our SLA-Aware ESOA or ECSA formula. The principles include:

 Make SLA management and QoS the first-class consideration.

 Represent SLA in standard machine-processable language.

 Manage SLA between service consumer and service provider through a dynamic SLM.

 Enable and execute SLA-based QoS operations ahead of service functional operations.

 Manage SLA between enterprise services and ESOA/ECSA infrastructure providers by SLA-

Aware SOA management which includes SLA monitoring, SLA control, SLA execution,

dynamic reconfiguration, and SLA lifecycle management. The SLA-Aware SOA

management also supports SLA-based dynamic resource management, service provisioning,

subscription and classification (rating or pricing).

 Build SLA-Aware SOA processes and workflows by end-to-end SLA management.

 Adopt autonomic service computing: Self-management, self-service, self-configuration and

self-error handling and recovering.

 Adopt automated and adaptive service computing.

194

CHAPTER 7

ANALYSIS AND EVALUATION

We have specified and described ESOA and ECSA enterprise architectural styles and their

substyles based on the proposed ontology-based modeling framework from Chapter 3 to Chapter

6 in the dissertation. The ESOA architectural style has been applied to guide the design and

development of modern enterprise IT systems since 2003. The new ECSA architectural style is

becoming an important design and development guideline for building more cost-effective

enterprise IT systems. This chapter (1) gives further analysis on ESOA as well as ECSA; (2)

describes their extension, refinement and instantiation; (3) defines the instances of ESOA and

ECSA; (4) evaluates them by evaluating their instances; (5) discusses the lessons learned from

applying ESOA and ECSA styles in enterprises.

7.1 Analyzing ESOA and ECSA Styles

ECSA style is defined as a combination of ESOA and ECC in Chapter 5. Here, we give

further analysis of the ECSA style based on [168][207] and the framework defined in Chapter 3.

7.1.1 Checking Style Consistency

Based on [168], we should show that the two styles ESOA and ECC are conflict-free, that is,

semantically no contradictions should occur. Let us assume that ESOA
l

and ECC
l

are

interpretations of ESOA and ECC, respectively. Then, it is necessary to show that

. Obviously, this is true because:

195

 Both share the Service concept and the ECC style extends some of the concepts from ESOA.

We have shown this in section 5.3.2.

Both styles are complementary with each other and can coexist in an enterprise architecture.

Most enterprises are moving to a hybrid cloud architecture in which two styles are applied for

designing the next generation enterprise architectures. The style consistency can be checked by

another criterion – “A style is consistent if there exists at least one architectural configuration

that conforms to the style” [110]. This means that a style is consistent if there is at least one

instance of the style. We will show that Amazon.com is an instance of the ECSA style in

Subsection 7.4.

7.1.2 Checking Style Extension

ESOA defined in Chapter 4 is a top level style. It is extendable to different substyles [203][204].

Figure 4.4 depicts the hierarchy of its main substyles. ECSA defined in Chapter 5 is also the top

level style which includes abstract service types and other architectural types specified in Section

5.3. It can be extended. We have introduced a notation to denote the style extension

relationship [206]. We have defined ESOA ESOA-SLA, ECSA ECSA-SLA in [206] and

Chapter 6, in which

 ESOA-SLA = QSPSMSISDCS SLASLASLASLASLASLASLA ,,,,,,
,

ECSA-SLA = DSQSPSMSISDCS SLASLASLASLASLASLASLASLA ,,,,,,, .

196

The following Figure 7.1 describes the hierarchy relationship of SLA-Aware ESOA and ECSA

defined in the dissertation:

ECSA-SLA

ESOA

ECSA-EPUC-SLA ECSA-EPRC-SLA

ECSA-EPUC-

SaaS-SLA

ECSA-EPUC-

PaaS-SLA

ECSA-EPUC-

IaaS-SLA

ECSA-EPRC-

SaaS-SLA

ECSA-EPRC-

PaaS-SLA

ECSA-EPRC-

IaaS-SLA

ECSA

ESOA-SLA

EWS-*_SLA

Figure 7.1. SLA-Aware ESOA and ECSA Architectural Styles Family

Moreover, enterprise private cloud ECSA-EPRC, enterprise service-oriented public cloud ECSA-

EPUC, and enterprise service-oriented hybrid cloud ECSA-EHYC can all be defined as the sub-

styles of ECSA. Therefore:

ECSA ECSA-EPRC

ECSA ECSA-EPUC

ECSA ECSA-EHYC

The overall hierarchy of ECSA style and its substyles is depicted as shown in the following

Figure 7.2:

197

ECSA

ESOA ECC

ECSA-EPUC ECSA-EPRCECSA-EHYC

SOA Cloud Computing

1

1

1

1

ECSA-EPUC-

SaaS

ECSA-EPUC-

PaaS

ECSA-EPUC-

IaaS

ECSA-EPRC-

SaaS

ECSA-EPRC-

PaaS

ECSA-EPRC-

IaaS

Figure 7.2. ECSA Architectural Styles Family

In the next two sections, we show the style extension as refinement of its top level style. Without

loss of generality, we take ECSA-EPRC and ECSA-EPUC as examples.

7.1.3 Private Cloud as a Refinement of ESOA

The private cloud defined here is an architectural style – enterprise private cloud service

computing, referred to as ECSA-EPRC, is a refinement of the ESOA style. From (5.5) in Chapter

5,

198

Equation (7.1) means that the dynamic infrastructure concept, structure, and description are

added into the traditional ESOA style. Since ECSA-EPRC is a refinement of ESOA, it can be a

sub-style of ECSA, that is:

 ECSA ECSA-EPRC.

7.1.4 Service-Oriented Public Cloud as Refinement of ECC

Enterprise cloud computing as a new distributed computing style is immature and faces many

challenges, such as security and service governance. Relatively mature ESOA, such as its

standards, service management, and process can help cloud computing to reduce its risks and

adaptation by enterprises. From the architectural style point of view, the immature ECC needs to

be refined in terms of mature ESOA style. Let enterprise public cloud service computing style =

ECSA-EPUC. We show that it is a refinement of ECC with ESOA. From (5.6) in Chapter 5,

199

Let

From (7.2), we can see that some of the specific ESOA service management (or governance)

concepts, structures, and their descriptions are added to the ECC style, so that ECSA-EPUC is a

refinement of ECC with ESOA. That is:

 ECSA ECSA-EPUC

7.2 Instance of ESOA and Case Studies

This section analyzes several enterprise systems in order to check whether they meet the

ESOA model specified in Chapter 4. For an enterprise system to meet the ESOA model

requirement, the system needs to satisfy the following conditions:

(1) The structure and behavior of EA satisfy the enterprise service orientation formula (5.1).

(2) EA is an instance of any of the following styles:

o EWS-* style;

o EEDA style;

o EWOA style;

o ECBS style;

o EGSA style and

o Hybrid style.

(3) The core services in EA satisfy the service properties defined in Sp.

200

We define that an Enterprise Architecture (EA) is an instance of ESOA if it satisfies the above

conditions. An EA evaluation form is designed for evaluating the following different enterprise

architectures.

This section chooses five concrete EA for case studies. Section 7.2.1 is a traditional EAI

integration architecture based on Gartner Research [109]. We show that it is not an instance of

ESOA. Section 7.2.2 is a typical EA of ESOA hybrid style with EWS-* and ECBS. Section 7.2.3

shows that an EA, similar to the EA in Section 7.2.2, is not an instance of ESOA if it lacks SOA

management and security components in design. Section 0 shows that an EA based on open

source ESOA is an instance of ESOA. This will help architects to make decisions on choosing

open source as ESOA building blocks. Finally, Section 0 shows that an EA built on IBM ESOA

products can be an instance of ESOA. It can help architects to make the right decision on

evaluating and selecting vendor’s products when designing ESOA systems.

7.2.1 Traditional EAI

Figure 7.3 depicts a traditional EAI - Spaghetti-like enterprise architecture [109]. It is easy to

see that the enterprise architecture does not satisfy conditions (1), (2) and (3). Thus, it is not an

ESOA style architecture. Table 7.1 specifies why traditional EAI is not an instance of ESOA.

Table 7.1. Evaluation Form for Traditional EAI
EA Evaluation Form

Condition Satisfy Rationale

(1) No Not service oriented, but application oriented

(2) No Traditional EAI style.

 Complex application infrastructure

(3) No Tight coupling between applications.

 Hard to change and adapt to business needs.

 Poor scalability.

 Security is not well addressed.

201

Traditional EAI was developed to solve enterprise integration, such as application integration

and business to business integration (B2B). However, it failed to deliver its promise and resolve

some business issues. The lessons learned from traditional EAI are as follows.

 A data centric EAI approach is not good enough for enterprise architecture which needs to

serve complicated business processes. That is why the SOA process is one of the main parts

in the ESOA style.

 Tight coupling leads to hard to maintain enterprise systems. Loose coupling is a way to

increase business agility.

 ESOA is a better way for enterprise application integration.

Figure 7.3. Traditional EAI – Spaghetti-like Architecture

7.2.2 Hybrid ESOA System

Figure 7.4 describes the typical concrete enterprise architecture (CEA). This example assumes

that stateless Enterprise Java Bean (EJB) Version 3 is chosen as the internal business service

202

component for internal customers and its wrapper of SOAP-based web service as the external

business service for external customers; either Weblogic 10.3 or WebSphere 6.1 is chosen as the

application server; either BEA System’s Aqualogic Service Bus or IBM ESB is chosen as the

Enterprise Service Bus (ESB); and Apache Tuscany is chosen as the service component process

engine. The EA is adopted by some enterprises whose traditional EAI is based on SUN J2EE and

has many existing J2EE applications and services. Table 7.2 shows the EA is an instance of

ESOA with hybrid style.

Table 7.2. Evaluation Form of a Hybrid ESOA System
EA Evaluation Form

Condition Satisfy Rationale

(1) Yes EACEA=

CEACEACEACEACEACEACEA SQSPSMSIDCS ,,,,,,

(2) Yes Hybrid of EWS-* style and ECBS style

 ESB for exposing web server interfaces to outside service consumers: EWS-

* style

 Application server for exposing component-based server interfaces to inside

service consumers: ECBS style

(3) Yes Detail rationalization is specified in last part of the subsection.

In Table 7.2, the parts of the EA can be defined in detail as follows:

 SCEA = { | is a stateless Java session EJB or a Message-Driven EJB or

 SOAP-Based Web Service}

 CCEA = {Inside Services Clients, Outside Services Clients}

 DCEA= {Server metadata, EJB metadata, Web server configuration data,

 Application server configuration data, ESB configuration data}

 SICEA = {Web server infrastructure, Application server infrastructure, ESB}

 SMCEA = {Application Server Management, ESB Management, Monitors,

s s

203

 Security Management, Network Management}

 SPCEA = {EJB-based component workflows} {SCA-based service process}

 SQCEA = {Performance, Scalability, Reusability, Reliability, Security,

 Maintainability} Sp

Figure 7.4. An Enterprise Architecture

One just needs to verify if the EJB-based core services satisfy condition (3).

 Standard Service Contracts – stateless session EJB uses remote and local EJB interfaces of

the component-based contracts. The message-driven EJB provides an onMessage interface

for asynchronous client’s interaction. If all EJB services are designed with enterprise

204

standard interfaces, then the core EJB services have standardized service contracts. We will

discuss how to specify standard EJB interface in an EJB-based service inventory in an

enterprise in our future work.

 Reusability – unlike a public web service, such as the weather service, which has universal

reusability, EJB is a reusable Java component in enterprise business domain.

 Relative Autonomy – An EJB can perform its work independently of most of the other

components or applications. However, an EJB must be executed inside an EJB container.

Therefore, EJB has service-level and contractual autonomy, rather than pure autonomy.

 Statelessness – both stateless sessions EJB and message-driven EJB are stateless.

 Discoverability - EJB uses JNDI (Java Naming Directory Interface) for locating home

interfaces, business methods, and metadata. Therefore, it can be dynamically discoverable.

 Relatively Loose coupling – in the concrete EA, the core services are wrapped by public

services interfaces exposed to outside service consumers. From the view of an outside client,

they are loosely coupled. However, they expose the services to inside service consumers

because EJB plus Remote Method Invocation (RMI) are coupled at both its Java language

and platform. The message-driven EJB supports loose coupling at the service-level by its

asynchronous messaging. The stateless session EJB (before EJB 3.0) is also tightly coupled

with its clients to a certain degree through RMI stub. However, the coupling has been

improved by EJB 3.0. Moreover, the dependency injection supported by EJB 3.x also greatly

reduces the coupling between EJB components and infrastructure. By adopting group

services versioning and the “unit of deployment” for services and service consumers, the

205

tight coupling will benefit execution performance. Therefore, one can say that the design of

core services of the EA achieves a certain degree of loose coupling.

 Abstraction – EJB specification abstracts the non-essential service information through

several types of meta abstraction which are defined in ejb-jar.xml for each EJB. The

annotation metadata model is introduced in the newest EJB 3.0. The container managing the

transaction behaviors is hidden by the tag <container-transaction>. The QoS policy, such as

performance (pool size) and security (run-as-identity-principle), can be defined in EJB meta

XML files.

 Composability – Software component is composable by definition [123]. EJB is a Java-based

component. Therefore, in nature, it can be composable with other components, such as other

EJBs, for executing a business process, such as workflows and transactions.

In conclusion, the EA described in Figure 7.4 is an instance of hybrid ESOA. From the case

study, it is clear that the hybrid style’s core style is ECBS based on components (such as EJB

and .NET). It may have tightly coupled API and, thus, may have to be tightly controlled. Thus,

the style is still inflexible and hard to scale. Although the component services are only used for

internal consumers and other technologies, such as versioning and the “unit of deployment”, can

reduce the bad effort from tight coupling, the maintainability and agility are impacted. The

adoption of the style is based on performance consideration and existing EAI systems for some

enterprises.

7.2.3 An Incomplete ESOA System

If two important components – security and monitor - are removed from the EA in Figure 7.4 by

design, the EA becomes an incomplete ESOA system. Table 7.3 specifies the incompleteness of

206

the EA. The architecture does not satisfy the architecture quality attributes reliability and

performance (part of QoS policy) defined in (4.2) and Section 4.5.7. Therefore, the architecture

does not satisfy ESOA QoS policy.

If the core services use stateful EJB, then they also violate the “statelessness” - one of the service

properties defined in Section 4.5.1. Therefore, the EA is not a complete ESOA system.

However, this system can be changed so that it will be qualified as an ESOA by adding those

missing components and attributes.

From the case study, the proposed ESOA style model is helpful not only in understanding

ESOA, but also in analyzing and evaluating SOA enterprise architecture, and finding the missing

parts in an ESOA system. Moreover, the next section shows that the ESOA style model and its

instance enterprise ESOA style architecture defined in this chapter can help enterprise architects

to make decision on adopting the right open source products in building ESOA architecture.

Table 7.3. Evaluation of the Incomplete ESOA System

EA Evaluation Form

Condition Satisfy Rationale

(1) Partial Without security and monitoring in enterprise architecture, its infrastructure

and services as well as their processes do not satisfy the SOA Management

(SM) defined in (4.2) and Section 4.5.5.

(2) Yes Hybrid style

(3) Partial Moreover without security manager, the architecture does not satisfy the
architecture security attribute;

 Without system monitors in an enterprise architecture, there is no way to
detect failures of service and infrastructure and to measure performance

of services and processes.

7.2.4 FUSE ESB for ESOA System

This subsection shows that the open source FUSE ESB products based on Apache ServiceMix

can be used for building ESOA architecture by using the model and style analysis proposed in

this chapter. Table 7.4 specifies the characteristics of the ServiceMix-based architecture (SMA).

207

Based on SMA as shown in Figure 7.5, one can define the parts of SMA in Table 7.4:

 SSMA = { | is a stateless Java session EJB or a Message-Driven EJB or

 SOAP-based Web Service, RESTful Web Service}

 CSMA = {Internal Services Clients, External Services Clients}

 DSMA = {Web server infrastructure data, Application server configuration data,

 ESB configuration data, jmx.xml, file-poller-su, eip-wiretap-su,

 camel-persist-su, eip-cbr-su, jms-producer-su, …}

in which all *-su are configuration XML files for service unit which provide information of the

service and their endpoints to the component.

 SISMA = {Web server infrastructure, Application server infrastructure, ESB}

 SMSMA = {Service life-cycle management, Service Policy Management, Monitors,

 Security Management, Network Management}

 SPSMA = {ODE-based service process} {SCA-based service process}

 SQSMA = {Performance, Scalability, Reusability, Reliability,

 Security, Transactionability, Scalability, Manageability,

 Interoperability}

Therefore, based on the evaluation of ServiceMix-based EA, such as SMA in Figure 7.5, the

system is an instance of ESOA. However, because the ServiceMix supports only a subset of WS-

* specifications together with limited management and SOA process (see Table 7.5), it can be

used for creating agile and lightweight ESOA systems for small or middle size service

orientation enterprises.

s s

pS

208

Table 7.4. Evaluation of FUSE ESB ESOA Architecture

EA Evaluation Form

Condition Satisfy Rationale

(1) Yes The ServiceMix [179] is built based on SUN’s JBI specification [210]. Its core includes

the ServiceMix Enterprise Service Bus (ESB) based on JBI Normalized Message Route

(NMR) and an OSGi-based ServiceMix Kernel. It is not only an ESB, but also provides a
JMX-based SOA management and many other enterprise capabilities, such as ActiveMQ

for supporting EDA, Apache ODE BPEL engine as a drop-in JBI component for

ServiceMix. Therefore the ServiceMix-based architecture SMA in Figure 7.5
satisfies the service oriented formula:

EASMA=

(2) Yes ServiceMix combines the functionalities of SOA and EDA, as well as supports multiple
types of services; therefore SMA is a hybrid system with

 EWS-* style

 EEDA style

 ECBS style

(3) Yes A subset of WS-* specifications are supporting through ServiceMix’s binding
components as listed in Table 7.5.

 ServiceMix supports SOA security, reliability, manageability and transactionability
through supporting WS-* specifications. Moreover it supports clustering and load

balancing through multiple ServiceMix instances communication via JMS using
ActiveMQ. It also can use lightweight cache binding component for improving

SOA performance.

 The web services in EWS-*, EEDA and ECBS styles satisfy the service properties

defined in .

Figure 7.5. FUSE-ServiceMix for ESOA Style Architecture

SMASMASMASMASMASMASMA SQSPSMSIDCS ,,,,,,

pS

209

Table 7.5. WS-* Specification for ServiceMix

WS-* Spec Purpose Supported by ServiceMix

WS-Security Authentication, Encryption, Digital

Signature

Yes, for HTTP and CXF (An open source service

framework) binding components and subsequent

authentication/authorization

WS-RM Reliable Messaging Yes, for CXF binding component

WS-Address Addressing Yes, for HTTP, JMS (Java Message Service) and CXF

binding components

WS-Policy Policy management Yes, for CXF binding component

WS-Notification Events Yes

WS-TX Transaction No, though WS-TX headers can be passed through as

normalized message headers for services to handle

WSDM Management No, JMS is used instead

WS-Management Management Not directly, JMX (Java Management Extensions) is

used instead; a bridge from JMS to WS-Management is

being developed.

7.2.5 Enterprise Systems based on IBM WebSphere

Many SOA solution providers, such as IBM, SAP, Oracle, and Microsoft, have developed their

SOA models and products for building service-oriented enterprise, such as IBM WebSphere [3],

SAP NetWeaver [214][41], Oracle Fusion Middleware [163] and Microsoft WCF as well as its

products [22]. It is easy to show that the enterprise architecture based on any one of them is an

instance of ESOA. For example, Figure 7.6 illustrates an enterprise system built on IBM SOA

application architecture and is an instance of the hybrid style. Table 7.6 describes the main

characteristics of IBM SOA-based application architecture.

210

Table 7.6. Evaluation of IBM SOA-Based Architecture
EA Evaluation Form

Condition Satisfy Rationale

(1) Yes The EA can be represented in the enterprise service orientation formula (4.2) based on

Figure 7.6 and [3]:

EAIBM=

(2) Yes IBM Enterprise SOA solutions and products support service loose coupling and event-

driven architecture through mediation, such as ESB, and messaging, such as MQ; they

also support RESTful web services through provisioning Web 2.0 Feature Pack; they

also support SCA through provisioning SCA Feature Pack. Therefore an EA based on

IBM ESOA can have multiple ESOA styles – EWS-*, EWOA, EEDA and ECBS.

(3) Yes IBM Enterprise SOA Application Architecture is built on SOA principles. Many
non-functional requirements (or SOA quality attributes) are considered when

designing IBM SOA products, such as WebSphere, and other products. Therefore it

can guarantee an EA built on IBM SOA solution to reach its QoS and SLA goals.

Table 7.7 shows how IBM SOA solution meets the enterprise SOA quality

requirements.

 Moreover the services satisfy the service properties defined in .

In Table 7.6, the parts of the EA can be described in detail as follows:

 SIBM = { | is a Component-based service, SOAP-based Web Service,

 RESTful Web Service or Event-Based Service},

 CIBM = {Web client, event-based client, offline client, web service client},

 DIBM = {Web server infrastructure data, WebSphere server configuration data,

 WebSphere Service metadata, WebSphere policy data,

 WebSphere Process Execution Rules},

 SIIBM = {Web server infrastructure, WebSphere infrastructure,

 WebSphere ESB, WebSphere MQ, WebSphere Service Registry,

 WebSphere Service Integration Bus},

 SMIBM = {IBM Service life-cycle management, IBM Service Policy Management,

IBMIBMIBMIBMIBMIBMIBM SQSPSMSIDCS ,,,,,,

pS

s s

211

 Tivoli Monitors, WebSphere Business Monitor,

 WebSphere Security Management, Tivoli Identity Management,

 IBM SOA Connectivity Management, WebSphere Process Server},

 SPIBM = {WS-BPEL based process} {SCA-based service process},

 SQIBM = {Performance, Scalability, Reusability, Reliability,

 Security, Transactionability, Scalability, Manageability, Testability,

 Interoperability, Maintainability} .

Figure 7.6. EA Built on IBM SOA Products

pS

212

In conclusion, the IBM SOA-based EA is an instance of the hybrid ESOA. From the case study,

it is clear that:

 IBM as an ESOA product vendor can provide a package of products from services, SOA

data, service infrastructure, service management to SOA quality of service. Therefore, IBM

can be chosen as a vendor for building an ESOA system.

 The advantage of a single vendor approach, such as IBM, for building ESOA systems is that

it is easy to manage and maintain the systems because of high comparability among ESOA

parts. However, a single vendor may not guarantee that every product is the best in the

market in pricing and quality, so some large enterprises prefer building ESOA systems based

on diversifying vendor products, such as choosing weblogic as the application server and

Wily product as the application monitor.

7.3 Instance of ECSA and Case Studies

If a concrete EA (CEA) satisfies the following conditions, we call the CEA an instance of ECSA:

(1) The CEA can be described by the ECSA ontology (5.2)-(5.4).

(2) The CEA satisfies any one of the following cloud extensions of ESOA or any of the

enterprise cloud with service orientation:

o Enterprise Private Cloud (EPRC);

o Enterprise Public Cloud (EPUC);

o Enterprise Hybrid Cloud (EHYC).

(3) The cloud extensions should meet the quality attributes and the public cloud services should

satisfy the properties defined in Section 5.4.7.

213

Table 7.7. IBM SOA Quality Attributes
SOA Quality Attributes IBM Solutions & Products

Performance WebSphere DataPower,

Performance Monitoring

Provisioning enhancements of Web Service and EJB 3.0

Scalability WebSphere eXtreme Scale

Security Tivoli Identity Manager

WebSphere Security Management

WebSphere ESB

Interoperability WebSphere Interaction Service

WebSphere MQ

WebSphere ESB

Reliability WebSphere eXtreme Scale

Workload management

Reliable messaging

Availability Failover

High-availability clustering

On-demand routing

Workload management controller

Transactionability WebSphere Process Service

Workflow management

Manageability WebSphere Informantion service

Tivoli Monitoring

Tivoli Infratructure Management

WebSphere ESB

Maintainability WebSphere Adminitraction Services

IBM SOA lifecycle management

Testability WebSphere Test Envirnmrnt & tools

7.3.1 ECSA-EPRC Style Instance

Figure 7.7 describes an ESOA CEA with dynamic infrastructure. We show that the CEA is an

instance of the ECSA style by the evaluation form shown in Table 7.8.

Table 7.8. Evaluating SOA EA with EPRC
CEA Evaluation Form

Condition Satisfy Rationale

(1) Yes Service oriented infrastructure is cloud enabled. It can be described by the (5.2)-(5.4).

EPRCCEA
EPRCEPRCEPRCEPRCEPRCEPRCEPRCEPRC SDSQSPSMSIDCS ,,,,,,,

(2) Yes It is an EPRC.

(3) Yes Infrastructure satisfies cloud quality attributes, such as elasticity, flexibility.

214

It is easy to specify its ESOA architectural components [204]. We just need to show that it also

satisfies EPRC and some specific cloud quality attributes. By the CEA, SDEPRC Ø. Since it

delivers IaaS-type of cloud service, either by internal cloud provider or by third party through

VPC, it is a private cloud. Therefore, SD
II

EPRC Ø and SD
III

EPRC Ø. Moreover, the CEA

satisfies a subset of the cloud quality attributes, such as elastic scalability and flexibility.

Private Infrastructure as a Service

SOA EA with Dynamic Infrastructure

Enterprise Applications and Services

Enterprise SOA Services Network

Enterprise SOA Services ESB

Dynamic Virtualized Infrastructure

Virtual

Servers
Virtual

Storages

Virtual

Network

Physical Resources

Cloud ESOA

Goverance

Management

Security

Monitoring

QoS/SLA

Registry

WorkstationWorkstation

Enterprise SO Business Applications

Workflows Other Applications

Virtualized Infrastructure Management

Services

Virtualization Controller Elastic Load Balancer

ECSOA Client Applications and Service Consumers

`

Figure 7.7. ESOA Style EA with Dynamic Infrastructure

Many existing service oriented enterprises are moving to this kind of ECSA style for building

green IT and smart SOA datacenters.

7.3.2 ECSA-EPUC Style Instance

Figure 7.8 describes a CEA built on the IBM cloud and SOA architecture, which can provide

public cloud services. Table 7.9 shows that the EA is an instance of ECSA.

215

Table 7.9. Evaluating the CEA Built on IBM Cloud
CEA Evaluation Form

Condition Satisfy Rationale

(1) Yes Service oriented and cloud enabled. It can be described by the (5.2)-(5.4).

EPUCCEA
EPUCEPUCEPUCEPUCEPUCEPUCEPUCEPUC SDSQSPSMSIDCS ,,,,,,,

(2) Yes It is an EPUC

(3) Yes It satisfies cloud quality attributes, such as elasticity, flexibility.

In Table 7.9

SEPUC = {traditional services} {public cloud services},

CEPUC = {traditional service consumers} {public cloud service consumers},

DEPUC =D
I
EPUC D

II
EPUC,

where D
I
EPUC is SOA data defined in [202][204] and

 D
II

EPUC = {IBM cloud metadata, cloud SLA data, cloud QoS data,

 IBM virtualization metadata, cloud service registry data},

SIEPUC = {virtualized servers, virtualized storage, virtualized network}

 {physical servers, physical storage, physical network},

 SMEPUC = {Tivoli User Request Manager, Self-service portal,

 service lifecycle manager, Tivoli security manager, performance manager,

 Tivoli monitoring, Usage Accounting service, Provisioning service,

 workflow management, Virtualization management,

 policy management, SLA management},

 SPEPUC = {traditional ESOA business processes} {cloud business process}

 {cloud virtualization orchestration},

216

SQEPUC = {performance, elastic scalability, availability, security,

 accountability, visibility},

 SDEPUC = {Prc, HyC} {SaaS, PaaS, IaaS}.

Public Cloud Provider Datacenter

IBM Tivoli Service Management

User Request Management/Self-service Portal

Service Lifecycle Management

IBM Tivoli Cloud SOA Service Management

Tivoli Security Manager

Service Automation

Tivoli Monitoring

Performance Manager

Usage Accounting

License Management

Provionsing

Availability

Backup

Restore

IBM Cloud ESOA Architecture Based on WebSphere

Web Services

Workload management

Image Developemnt

High-availability

ESB

J2EE

Virtualized Infrastructure – IBM CloudBrust

IBM Platform Management

Physical Platform management Virtualization Management & Controller

Physical Resources

Virtual Resources and Aggregations

Virtual Servers Virtual Storage Virtual Network

End Users

Requests &

Operations

Service

Catalog

Request UI

Operation UI

Monitoring

UI

`

`

Figure 7.8. Public Cloud Built on IBM Cloud

7.3.3 ECSA-EHYC Style Instance and Z Cloud

An ESOA style EA with EHYC in enterprise A is shown in Figure 7.9. We show that it is an

instance of ECSA in the evaluation form shown in Table 7.10.

The following Figure 7.10 describes the EHYC style instance Zynga hybrid cloud service

architecture. Zynga.com is an online game service provider which serves about 250 million

active users a month, with 90 millon of them coming from its CityVille addition [20]. It is using

217

Table 7.10. Evaluating ESOA Style EA with EHYC
CEA Evaluation Form

Condition Satisfy Rationale

(1) Yes Service oriented and cloud enabled. It can be described by the (5.2)-(5.4).

EHYCCEA
EHYCEHYCEHYCEHYCEHYCEHYCEHYCEHYC SDSQSPSMSIDCS ,,,,,,,

(2) Yes It is an EHYC.

(3) Yes It satisfies cloud quality attributes, such as elasticity, flexibility.

Enterprise B

ECSOA

EPUC

Enterprise C

Enterprise A

Service Consumers

Datacenter

Private Cloud

Public Cloud Provider

Public Cloud Provider

ECSOA EA

EPUC

ECSOA EA

EPUC

ECSOA EA

EPRC

ECSOA EA

EPRS

Enterprise D

Public Cloud

Provider

ECSOA EA

EPUC

Inter-Cloud

 Hybrid Cloud

 Hybrid Cloud

`

Figure 7.9. ESOA Style EA with EHYC

Amazon EC2 service, but its business was not impacted by the Amazon 12 hours big EC2 outage

on 04/21/2011[20]. Our quality ontology can give us the reasons why Zynga is not impacted by

EC2 outage. Based on its architecture, its high scalability is obtained from both scaleOut and

scaleIntoCloud (EC2). However, its Availability management is based on failover and fail-

protect between its Z Cloud datacenter and A Cloud in Amazon datacenter. When Amazon EC2

is down, it is easy to route Zynga’s games’ and users’ traffic to its private Z Cloud with high

218

availability. The lessons learned from Zynga is (1) design should consider multiple failure cases;

(2) failover in a single datacenter is not enough; (3) we should consider using multiple ways to

prevent single point failures, which include failures across datacenters and clouds. Therefore,

hybrid cloud service architectures allow enterprises to gain both high scalability and availability.

Zynga

Online Games

Z Cloud Manager

Security, Monitor

A Cloud Manager

Security, Monitor

Controller

Z Cloud

 A Cloud

(EC2, S3)

Controller

Active

Passive

Input info

Input infom
onitoring

Games traffic

m
on

ito
rin

g

monitoring

monitoring

On-demand

When-need, for spikes

or failover

Private Cloud

Public Cloud

Zynga Dynamic Data Ceneter

Smart router

Users traffic

Customers

 Figure 7.10. Zynga Hybrid Cloud Service Architecture

We have evaluated several typical EA and provided the guidelines to check if an EA is an

instance of ECSA. If a cloud-centric architecture does not adopt the SOA, which means that it

does not meet the condition (2), then the cloud architecture is not an instance of ECSA.

7.3.4 Amazon Cloud Architecture (ACA)

ACA is an instance of ECSA shown in this subsection. Figure 7.11 is a simplified Amazon

Cloud Architecture. Let

 SACA= {LBS,EC2,S3,SQS,SDB,EBS,BS}, (7.1)

 CACA={CEC2, CS3, CSQS, CSDB}, (7.2)

219

 SIACA={WEB,RT,ELB,AVM,ASP,VPN,DS}, (7.3)

 SMACA={CWM,ERM,BM}, (7.4)

 SPACA={KVS, PWF}, (7.5)

 SDACA={{PrC, PuC, VPC},{IaaS}}, (7.6)

In (7.1)

 LBS=Load Balance Service

 EC2=Amazon Elastic Compute Cloud Service

 S3=Amazon Simple Storage Service

 SQS=Amazon Simple Queue Service

 SDB=Amazon SimpleDB

 EBS=Elastic Block Storage

 BS=Billing Service

In (7.2), CEC2, CS3, CSQS, CSDB are Amazon Web Services (AWS) consumers. (7.3) includes

major components in ACA infrastructure:

 WEB= Web server infrastructure

 RT=Network Router

 ELB=Elastic Load Balancer

 AVM=Virtual EC2 Instance

 ASP=Amazon Service Provider (AppServer)

 VPN=Virtual Private Network

 DS=Data Storage

(7.4) contains main components of ACA service management:

220

 CWM=Cloud Watch Management

 RM=Resource Management

 BM=Billing Management

(7.5) is Amazon SOA Process:

 KVS=Key Value Store [57]

 PWF=Service Provisioning Workflow

(7.6) includes ACA deployment model and service delivery model.

Therefore, we have

 CEAACA=
ACAACAACAACAACAACAACAACA SDSQSPSMSIDCS ,,,,,,, , (7.7)

And Table 7.11 shows that ACA is an instance of ECSA.

Table 7.11. Evaluating Amazon Cloud Architecture
CEA Evaluation Form

Condition Satisfy Rationale

(1) Yes Service oriented and cloud enabled. It can be described by the (5.2)-(5.4). Please see from (7.1)

to (7.7).

(2) Yes ACA is an EPUC.

(3) Yes It satisfies cloud quality attributes based on analysis in section 5.3.8.

 ACA achieves dynamic scalability through Auto Scaling which allows you to automatically scale your Amazon EC2

capacity up or down according to conditions you define. With Auto Scaling, you can ensure that the number of Amazon EC2

instances you’re using scales up seamlessly during demand spikes to maintain performance, and scales down automatically

during demand lulls to minimize costs.

 ACA also supports multiple location resilience for failure, so it keeps up to 99.95% high availability for each EC2 Region..

 ACA provides several security mechanisms for securing users’ resources [12].

 ACA has high reliability through SLM.

 ACA interoperability through supporting multiple protocol messaging interfaces – SOAP and REST.

 ACA improves its performance through adopting high performance computing (HPC) clusters.

 ACA is of higher flexibility through provisioning multiple types of EC2 instance and multiple options on CPU, OS, and

Storage resources.

 ACA provides mechanisms for higher accountability through its CWS, SLM and Billing Service (BM).

221

Although Amazon cloud satisfies the conditions as an instance of ECSA style, it has its weakness

in its architecture design. The 12 hours-long outage [20] on 04/21/2011 of Amazon’s IaaS

brought many services and websites down. The outage stemmed from a human error in

configuration change for its network upgrade in Amazon’s big data center in Northern Virginia.

Our cloud quality ontology can provide a good reasoning as to why the disaster outage happened

in the Amazon cloud system. First of all, the reliability of the Amazon cloud architecture needs

to be improved. The problem began early on Thursday morning and continued into Friday

04/22/2011. The DR duration is longer than 12 hours, so Amazon cloud reliability and DR

capacity is relative low. Amazon cloud availability is based on its “availability zones” (see

Figure 7.11). However, the availability zones only support failover within the same datacenter. If

a disaster happens, such as the datacenter failure on 04/21/2011, there is no mechanism for

datacenter failover which reduces availability. Moreover, the Amazon cloud service lacks high

visibility to its service consumers. Therefore, consumers have no idea regarding what was

happening. The lessons learned from the Amazon public cloud outage are (1) Cloud also has a

single point failure if the failure control and recoverability is not addressed well by design; (2)

design tradeoffs of cloud architecture among quality attributes are very important. Supporting

failover and DR across datacenters is more expensive than doing that just across availability

zones inside a single datacenter. However, we have to consider multiple ways to handle different

failures to guarantee high availability. (3) One of the goals of cloud computing is sharing

resources. However, cloud consumers and cloud providers need to share risks as well. This

means that they both need to improve their applications to reach higher security and availability.

Some customers of Amazon cloud, such as Zynga and Netflix, were not impacted by the

222

Amazon cloud outage, since they have better architecture design for failure. However, cloud

providers should increase their architecture transparency and system visibility, so that their

consumers can make their DR plan and improve their design for dealing with failures.

Cloud
Amazon US West Data Center

Cloud

Management

EBS

EBS

Amazon US East Data Center

Cloud

Management

EBS

EBS

Cloud

Client Data

Ceneter

Infrastructure

Service

Consumers

`

LBS Clients

`

Clients

Load

Balancer

VPN

Gatway

Auto

Scale

Service

Cloud
AppServer

EC2

AppServer

EC2

AppServer

EC2

AppServer

EC2

Cloud
AppServer

EC2

AppServer

EC2

AppServer

EC2

AppServer

EC2

SDB

Slave DB

EC2 Region

Availability Zone

Availability Zone

S3
Dump Snapshot

config

start
stop

Load

Balancer

VPN

Gatway

Auto

Scale

Service

Cloud
AppServer

EC2

AppServer

EC2

AppServer

EC2

AppServer

EC2

Cloud
AppServer

EC2

AppServer

EC2

AppServer

EC2

AppServer

EC2

SDB

Slave DB

Availability Zone

Availability Zone

S3
Dump Snapshot

start

stop

config

VPN

VPN

LBS

Consumers

Non-LBS

Consumers

Non-LBS

Consumers
LBS

Consumers

watch

watch

Figure 7.11. Amazon Cloud Architecture

7.4 Case Studies of ECSA-SLA

This section discusses two use cases of ECSA-SLA: SLA-Aware Private Cloud Enterprise

Architecture and SLA-Aware Public Cloud Enterprise Architecture.

7.4.1 SLA-Aware Private Cloud Architecture

Figure 7.12 depicts an SLA-Aware private cloud enterprise architecture. In this case, business

services and applications are running in enterprise owned data center(s). Resources and SLA are

223

managed by enterprise IT. The SLA-Awareness is implemented in policy-based SLM. Normally,

automated dynamic negotiation between service consumers and service providers are not

required.

Private Cloud – Managed by Enterprise IT

Clusters

Enterprise Data Center I

SLA

Monitoring

Provisioning

ManagementData

V

M

V

M

ESX

V

M

V

M

ESX

V

M

V

M

ESX

...

Clusters

Enterprise Data Center II

SLA

Monitoring

Provisioning

ManagementData

V

M

V

M

ESX

V

M

V

M

ESX

V

M

V

M

ESX

...

... ...

... ...

Cloud

Laptop

Workstation

Service request

Service request

Service request

Response with

R-T <= SLO

Response with

R-T <= SLO

VMK VMK VMK

VMK VMK VMK

V

M

App

OS

VMM

VM Internal

VMK = VMKERNEL

Figure 7.12. SLA-Aware Private Cloud Enterprise Architecture

7.4.2 SLA-Aware Public Cloud Enterprise Architecture

In public cloud enterprise architecture, service consumer (SC) and service provider (SP) are in

different organizations. The SCs connect to the data center of SPs through the Internet.

Therefore, security, availability, reliability and performance become concerns for SCs. It is very

important to understand the amount that SCs are paying for the quality of services SCs are

receiving. Any discrimination should be immediately attended to. To satisfy SCs’ QoS

requirements becomes a big challenge to design pubic cloud enterprise architecture. Figure 7.13

224

describes ideal SLA-Aware public cloud service enterprise architecture, such as the architecture

proposed by SOA@SOI [190].

Public Cloud – Managed by Cloud Privider

Clusters

Cloud Data Center I

SLA

Management

Monitoring

Provisioning

ManagementData

V

M

V

M

ESX

V

M

V

M

ESX

V

M

V

M

ESX

...

Clusters

Cloud Data Center II

SLA

Management

Monitoring

Provisioning

ManagementData

V

M

V

M

ESX

V

M

V

M

ESX

V

M

V

M

ESX

...

... ...

... ...

Cloud

Laptop

Workstation

Service request

Service request

Service request

Response with

R-T <= SLO

Response with

R-T <= SLO

VMK VMK VMK

VMK VMK VMK

Enterprise A

Workstation

Enterprise B

Workstation

S
L
A

 O
p
e
ra

tio
n
s

S
L
A

 O
p
e
ra

ti
o
n
s

Consumer SLA Operations:
- agreement

- negotiation

- monitoring

 - avaialability

 - performance

 - security

- violation detecting and reporting

Provider SLA Operations:
- agreement

- negotiation

- monitoring

- accounting

- enforcement

V

M

App

OS

VMM
VM

Internal

VMK = VMKERNEL

Figure 7.13. SLA-Aware Public Cloud Enterprise Architecture

As we defined ECSA-SLA in Chapter 6, the architectural style requires systems to:

 Adopt dynamic SLA and SLM;

 Consider SLA management and QoS is the first-class in systems;

 Provision of service based on SLA dynamically.

It is difficult to reach the level of SLA-Awareness in practice, since it requires systems with

higher automation, adaptation and real time (RT) or close to RT monitoring system. It is easy to

show that the main public cloud architectures, such as Amazon cloud, Google cloud and

225

Microsoft cloud are not SLA-Aware cloud service architecture. They all provide SLA for their

service consumers, such as Amazon EC2 SLA [9]. However, the SLA is a static agreement

document and, therefore, their system lacks dynamic SLM. Their systems reach a degree of

SLA-Awareness, such as (1) semi-automated support service credit for SLA violation in their

accounting system; for example, the Amazon EC2 service level is calculated on an annual basis,

whereas the Amazon S3 service level is calculated over a monthly interval; (2) supporting close

RT monitoring as well as automatically and dynamically service provisioning. Their system

design is not directly based on SLA, but indirectly based on SLA, since security, availability and

performance are taken into consideration at system design; otherwise, they will have a lot of

SLA violations. Therefore, one can say that current main public cloud service architectures are

SLA-based cloud service enterprise architectures. Let us define the maturity of SLA-Aware

ECSA architecture as:

 Level 0 – Public Cloud Service Architecture in which SLA is not a constraint. It is not SLA-

Aware, such as iCloud.

 Level 1 - Public Cloud Service Architecture based on SLA, in which SLA is a design

constraint, but SLA is not considered as a first class concern in system. It is indirectly SLA-

Aware, such as Amazon cloud.

 Level 2 - Public Cloud Service Architecture driven by SLA, in which SLA is considered as

one of the most important design constraints and the system supports semi-auto and semi-

dynamic SLM. It is partially SLA-Aware, such as SLA-driven resource provisioning.

 Level 3 – ECSA-SLA style architecture which is fully SLA-Aware (please see Section 6.3),

such as SOA@SOI architecture.

226

7.5 Summary

This chapter analyzes consistency and extension of enterprise architectural styles – ESOA and

ECSA, and defines the instances of ESOA and ECSA and describes and evaluates several case

studies based on architectural styles we defined in Chapters 4 to 6. The lessons learned from

these case studies, such as experiences from Zynga and outage lessons from Amazon, are also

discussed. The case studies and their lessons learned are very helpful in guiding the design of

service-oriented and cloud-enabled enterprise architecture.

227

CHAPTER 8

CONCLUSIONS

This chapter concludes the dissertation and discusses some future work.

8.1 Conclusions

 Research of enterprise architectural styles has become more important to building high

quality assurance and cost-effective enterprise systems. Specifically, research on service-

oriented, cloud enabled enterprise architecture as well as architectural styles is gaining greater

attention. From the beginning of the dissertation, I described the requirements and complexity of

enterprise architectures and elaborated on the importance of modeling and analyzing service-

oriented and cloud-enabled enterprise architectural styles. In this dissertation, several major

service-oriented enterprise architectural styles ESOA and cloud enabled service-oriented

“The soul of an architecture is found in its mechanisms that cut across the components

of the system, thus yielding its essential structures and behaviors.”

 - Grady Booch

“An architectural style, then, defines a family of such systems in terms of a pattern of

structural organization. More specifically, an architectural style defines a vocabulary of

components and connectors, and a set of constraints on how they can be combined.”

- Mary Shaw and David Garlan

228

enterprise architectural styles ECSA are described and analyzed based on the proposed

framework [204] and ontology-based modeling methodology [168].

 Both ESOA and ECSA serve as an integrated set of components (service consumers,

services, processes, infrastructures and management) which outline the structure of service-

oriented enterprise architectures.They also serve as a coordinated set of constraints that attempt

to guide the building of service-oriented service systems to achieve enterprise non-functional

requirements, such as security, performance and availability.

 The following contributions to the field of Information and Computer Science and Software

Engineering are included in this dissertation:

 A framework for modeling and analyzing service-oriented and cloud-enabled enterprise

architectural styles. The framework is based on ontology-based modeling technology. It

gives an insight into the design principles, structures, and behaviors for both functional

and non-functional aspects of ECSA architectures and provides further understanding of

the complex service-oriented and cloud-enabled enterprise architecture through the

architectural styles ESOA and ECSA.

 An ECSA quality attributes tradeoff ontology which provides design principles for

achieving high quality in ECSA style systems.

 A classifications of service-oriented and cloud enabled enterprise architectural styles by

their structural characteristics and architectural properties. It can be applied to

architecture decision making and to enterprise application system design referencing.

 A novel enterprise architectural style, ECSA, which combines both ESOA nad Cloud

Computing. It can be used for understanding the current wave of enterprise architecture

229

movement and applied for designing SOA-centric and cloud enabled enterprise systems

with higher quality.

 A formal analysis of enterprise architectural style consistency, extension and

instantiation.

 A set of case studies for ESOA as well as ECSA style enterprise systems, which includes

their descriptions, analysis and evaluation. Lessons learned from all these case studies

are helpful for building better enterprise architecture practices.

 Many enterprise architectures are instances of ESOA or ECSA. Although concrete enterprise

architectures vary, they share some common components, connectors and constraints and follow

common design principles. Specifically, consisting of service consumers, service processes,

infrastructure, and management, service-oriented enterprise architectures are constrained by a set

of quality attributes and need to follow common SOA design principles. For cloud-enabled

service-oriented enterprise architectures, cloud specific components are added into ESOA style

systems, such as IaaS, PaaS and SaaS. They have more specific constraints, such as elastic

scalability and need to follow particular cloud computing principles, such as dynamic

infrastructure as well as service provisioning, and virtualization. Enterprise architectural styles

emphasize all common components, connectors, constraints, their relationship, and design

principles. Not all instances are 100% in matching the certain style’s properties and quality

attributes. We have introduced a concept of maturity of an instance (an concrete enterprise

architecture) of certain styles in Section 7.4. As a method of classification, each concrete

enterprise architecture can be considered as an instance of an architectural style, such as two

instances of ECSA-SLA: Amazon cloud and Google cloud. There are some differences between

230

them – the Amazon cloud is more mature than the Google cloud, whose SLA is still in beta

stage. Building standard and evaluation methodology for evaluating style instance’s maturity is

one of my future research interests.

 In an ideal Information Technology (IT) world, the implementation of service-oriented

and/or cloud-enabled enterprise architectures should match their design based on architectural

styles. However, in the real IT world, some of the implementation fails to match the SOA and/or

cloud design principles because of legacy experience or improper constraints tradeoff. This

dissertation proposed a framework and defined ESOA and ECSA styles that are helpful for

evaluating some of the broken links between implementation and design.

8.2 Future Work

The service-oriented enterprise architecture is a relevant new distributed computing paradigm,

and cloud computing is an even newer distributed computing model. Their theory, standard and

practices are not mature. However, they bring us large opportunities for future research. The

future work includes, but is not limited to the following aspects:

 Developing more rigorous methods for analyzing and evaluating ESOA and ECSA

enterprise architectural styles;

 Developing concrete methods for analyzing and evaluating style instance maturity;

 Application of the ontology-based framework.

 More in-depth tradeoff analysis of ESOA and ECSA architectural quality attributes.

Studies are never ending. Future work needs to focus more on practical applications of proposed

framework of enterprise architectural styles and extend the framework to broader areas, such as

enterprise wireless service computing.

231

REFERENCES

[1]. van der Aalst, W. M. P. and A. H. M. ter Hofstede, YAWL: yet another workflow

language, Information Systems, Vol. 30, No. 4, 2005, pp. 245-275.

[2]. Abowd, G., R. Allen and D. Garlan, “Formalizing Style to Understand Descriptions of

Software Architecture”, ACM Trans. Software Eng. And Methodology, vol. 4, no. 4, 1995,

pp.319-364.

[3]. Agopyan, A., H. Huebler, T. Puah, T. Schalze, D.S. Vilageliu and M. Keen, WebSphere

Application Server V7: Concept, Planning, and Design, IBM Redbook, Feb. 2009

[4]. Aier, S., Maximilian Ahrens, Matthias Stutz

and Udo Bub, Deriving SOA Evaluation

Metrics in an Enterprise Architecture Context, Lecture Notes in Computer Science,

Volume 4907/2009, pp. 224-233.

[5]. Alberti, M., F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, S. Storari, and P.

Torroni, Computational Logic for Run-time Verification of Web Services Choreographies:

Exploiting the SOCS-SI Tool, WS-FM 2006, LNCS 4184, pp. 58-72, 2006.

[6]. Allen, R., Formalism and Informalism in Software Architectural Style: a Case Study,

Proceedings of the First International Workshop on Architectures for Software System, pp.

1-8, 1995

[7]. Allen, R. and D. Garlan, A formal basis for architectural connection, ACM Transactions

on Software Engineering and Methodology 6(3), pp. 213-249, 1997.

[8]. Amazon Web Services, http://aws.amazon.com/about-aws/

[9]. Amazon, EC2 SLA, http://aws.amazon.com/ec2/

[10]. Amazon, Auto Scaling and load banlance, http://aws.amazon.com/autoscaling/

[11]. Amazon.com, Instance Metadata,

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?AESDG

-chapter-instancedata.html

[12]. Amazon, Amazon Web Services: Overview of Security Processes, 2009.

http://awsmedia.s3.amazonaws.com/pdf/ AWS_Security_Whitepaper.pdf

232

[13]. Amrhein, D., Bringing Cloud Computing to SOA, http://websphere.sys-

con.com/node/981796

[14]. Andersson, J. and P. Johnson, “Architectural integration styles for large-scale enterprise

software systems”, Enterprise Distributed Object Computing Conference, 2001. EDOC '01.

Proceedings. Fifth IEEE International, Sept. 4-7, Seattle, USA, 2001, pp.224-236

[15]. Andrieux, A., K. Czajkowski, A. Dan, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S.

Tuecke and M. Xu, Web Service Agreement Specification (WS-Agreement). Retrieved from

http://www.ogf.org/documents/GFD.107.pdf, 2007

[16]. Anstett, T., F. Leymann, R. Mietzner and S. Strauch, Towards BPEL in the Cloud:

Exploiting Different Delivery Models for the Execution of Business Processes, IEEE 2009

Congress on Services, p.670-685

[17]. Apache ODE RESTful BPEL, http://ode.apache.org/restful-bpel-part-i.html

[18]. Arora, S., Business Process Management, Process is the Enterprise, LuLu Publish, May.

17, 2005

[19]. Baader, F., D. McCuiness, D. Nardi and P.P. Schneider (Eds.), The Description Logic

Handbook, Cambridge University Press, 2003

[20]. Babcock, C., Lessons From FarmVille, p. 29-57, InformationWeek, Issue 1300, May 16,

2011

[21]. Badidi, E., L. Esmahi, M. Adel Serhani and M. Elkoutbi, WS-QoSM: A Broker-based

Architecture for Web Services QoS Management. Innovations in Information Technology ,

pp. 1-5, 2006.

[22]. Bahree, A., S. Cicoria, D. Mulder, N. Pathak and C. Peiris, Pro WCF: Practical Microsoft

SOA Implementation, Apress, 2007

[23]. Baresi, L., R. Heclel, S. Thone and D. Varro, “Modeling and Validation of Service-

Oriented Architectures Application vs. Style”, ESEC/FSE’03, Sept. 1-5, 2003.

[24]. Bass, L., P. Clements and R. Kazman, Software Architecture in Practice, Addison-Wesley,

2003

[25]. Bernardo, M., P. Ciancarini and L. Donatirllo, Architecting Families of Software Systems

with Process Algebras, ACM Trans. on Software Engineering and Methodology Vol. 11

pp. 386 - 426, October 2000.

http://websphere.sys-con.com/node/981796
http://websphere.sys-con.com/node/981796
http://www.ogf.org/documents/GFD.107.pdf
http://ode.apache.org/restful-bpel-part-i.html

233

[26]. Bhoj, P., S. Singhal and S. Chutani, SLA Management in federated environments,

Computer Networks, Vol. 35, pp. 5-24, 2001.

[27]. Bianco, P., R. Kotermanski and P. Merson, “Evaluating a Service-Oriented Architecture”,

Technical Report CMU/SEI-2007-TR-015

[28]. BitCurrent, New report on cloud Computing Performance, 2010,

http://www.bitcurrent.com/new-report-on-cloud-performance/#

[29]. Boreale, M., R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U.

Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos and G. Zavattaro, SCC: A Service

Centered Calculus, WS-FM 2006, LNCS 4184, pp.38-57,2006.

[30]. Brandic, I., S. Venugopal, M. Mattess and R. Buyya, Towards a Meta-Negotiation

Architecture for SLA-Aware Grid Services. Technical Report GRIDS-TR-2008-10, 2008.

[31]. Brodkin, J., Gartner: Seven cloud-computing security risks Data integrity, recovery,

privacy and regulatory compliance are key issues to consider, Network World, 2009 at

http://www.networkworld.com/news/2008/070208-cloud.html

[32]. Broy, M., I.H. Kruger and M. Meisinger, “A Formal Model of Services”, ACM

Transaction Software Eng. And Methodology, vol.16, no. 1, 2007.

[33]. Burke, B. and R. Monson-Haefel, Enterprise JavaBeans 3.0, O’Reilly, 2006

[34]. Butler, J., “Creating a UML Profile from the CBDI SAE Meta Model”, CBDI Journal, Jan.

2008.

[35]. Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility, Future Gener. Comput. Syst., Vol. 25, No. 6. (2009), pp. 599-616.

[36]. Cakic, J. and R. F. Paige, Origins of the Grid Architectural Style, Proceedings of the 11
th

IEEE International Conference on Engineering of Complex Computer Systems, 2006.

[37]. Cesare, P., Z. Olaf; L. Frank, "RESTful Web Services vs. Big Web Services: Making the

Right Architectural Decision", 17
th

 International World Wide Web Conference (WWW),

Beijing, China, 2008.

[38]. Chappell, D.A., Enterprise Service Bus, O’Reilly, 2004.

[39]. Chappell, D. and D. Berry, Next-Generation Grid-Enabled SOA: Not Your MOM's Bus,

SOA Magazine, Issue XIV, 2008

234

[40]. Chappell, D. and D. Berry, SOA – Ready for Primetime: The Next-Generation, Grid-

Enabled Service-Oriented Architecture, SOA Maganzing, Sept. 2007

[41]. Chen, Y. and W.T. Tsai, Distributed Service-Oriented Software Development, Kendall

Hunt Pub Co, 2008

[42]. Choi, Si Won, Jin Sun Her and Soo Dong Kim, “Modeling QoS Attributes and Metrics for

Evaluating Services in SOA Considering Consumers' Perspective as the First Class

Requirement”, in: Asia-Pacific Service Computing Conference, The 2nd IEEE, 11-14 Dec.

2007, pp. 398-405

[43]. Chothia, T. and J. Kleijn, Q-Automata: Modeling the Resource Usage of Concurrent

Components. Electronic Notes in Theoretical Computer Science, Vol. 175, pp. 153-167,

2007.

[44]. Chung, Jen-Yao, K.J. Lin, Richard G. Mathieu, "Web Services Computing - Advancing

Software Interoperability," IEEE Computer, 35-37, October 2003

[45]. Chung, L. and N. Subramanian, Adaptive System/Software Architecture. Journal of

Systems Architecture, 2003.

[46]. Chung, L., B.A. Nixon, E. Yu and J. Mylopoulos, Non-functional requirements in software

engineering, Springer, 2000.

[47]. Ciancarini, P. and C. Mascolo, Analyzing and Refining an Architectural Style, Proceedings

of the 10th International Conference of Z Users on The Z Formal Specification Notation,

pp. 349-368, 1997

[48]. Clarkin, L. and J. Holmes, Enterprise Mashups, The Architecture Journal, 13 (2007)

[49]. Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord and J. Stafford,

Documenting Software Architectures Views and Beyond, Addison-Wesley, 2002

[50]. CIS, The CIS Security Metrics, 2009,

https://www.cisecurity.org/tools2/metrics/CIS_Security_Metrics_v1.0.0.pdf

[51]. Comuzzi, M., W. Theilmann, G. Zacco, C. Rathfelder, C. Kotsokalis and U. Winkler, A

Framework for Multi-level SLA Management. The eighth International Conference on

Service Oriented Computing (ICSOC), 2009.

[52]. Creeger, M., Cloud Computing: An Overview, Acmqueue, 2009

[53]. Curbera, F. and N. Mukhi, “Metadata-driven middleware for Web Services”, WISE 2003,

Proceedings of the Fourth International Conference, 10-12 Dec. 2003 pp. 278 – 283

235

[54]. Curbera, F., M. Duftler, R. Khalaf and D. Lovell, Bite: Wrokflow Composition for the

Web, International Conference on Services Oriented Computing (2007), LNCS 4749, pp.

94-106, 2007

[55]. Dan, A. H. Ludwig, and G. Pacifici (2003). Web Services Differentiation with Service

Level Agreement. Retrieved from http://www.ibm.com/developerworks/library/ws-slafram/

[56]. Davies, J., SOA: BEA, Apress, 2007

[57]. DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pichin, S.

Sivasubramanian and P. Vosshall, Dynamo: Amazon’s Highly Available Key-value Store,

SOSP’07, Oct. 14-17, USA

[58]. Decker, G., F. Puhlmann and M. Weske, “Formalizing Service Interactions”, LNCS 4102,

pp. 414-419, 2006.

[59]. Dillon, T. S.,

Chen Wu

and Elizabeth Chang, Reference Architectural Styles for Service-

Oriented Computing, LNCS 4672, pp. 543-555, 2008.

[60]. DMTF, Open Virtualization Format Specification, 2009,

http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf

[61]. Dobson, G. and A. Sanchez-Macian, Towards unified QoS/SLA Ontologies. Proceedings

of the IEEE Services Computing Workshops, pp. 169-174, 2006.

[62]. Dong, J., R. Paul, and L.-J. Zhang, High Assurance Service-Oriented Architecture, IEEE

Computer, Volume 41, Issue 8, Pages 22-23, August 2008.

[63]. Dong, J., R. Paul, and L.-J. Zhang, High Assurance Services Computing, Springer, 2009

[64]. Dornemann, T., E. Juhnke and B. Freisleben, On-Demand Resource Provisioning for

BPEL Workflow Using Amazon’s Elastic Compute Cloud, The Proceddings of 9th

IEEE/ACM International Symposium on Cloud Computing and the Grid, p. 140-147,

2009.

[65]. Erasala, N., David C. Yen and T. M. Rajkumar, Enterprise Application Integration in the

electronic commerce world, Computer Standards & Interfaces, Vol. 25, Issue 2, May 2003,

Pages 69-82

[66]. Erl, T., Service-Oriented Architecture, Pearson Education, 2005

[67]. Erl, T., SOA Principles of Service Design, Prentice Hall, 2008

[68]. Erl, T., SOA Design Patterns, Prentice Hall, 2008

http://www.ibm.com/developerworks/library/ws-slafram/
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf

236

[69]. Ferguson, D. F., Dennis Pilarinos and John Shewchuk, The Internet Service Bus, The

Architecture Journal, 13 (2007)

[70]. Fielding, R. T., Architectural Styles and the Design of Network-based Software

Architectures, PhD Thesis, University of California, Irvine, 2000.

[71]. Fielding, R. T. and R. N. Taylor (2002-05), "Principled Design of the Modern Web

Architecture", ACM Transactions on Internet Technology (TOIT) (New York: Association

for Computing Machinery) 2 (2): 115–150

[72]. Foster, Ian, Yong Zhao, Ioan Raicu and Shiyong Lu, Cloud Computing and Grid

Computing 360-Degree Compared, Grid Computing Environments Workshop, 2008. GCE

'08 In Grid Computing Environments Workshop, 2008. pp. 1-10.

[73]. Fu, Y., Z. Dong, X. He, An approach to web services oriented modeling and validation,

Proceedings of the 2006 international workshop on Service-oriented software engineering,

pp. 81 – 87, 2006.

[74]. Gall, Nick, Why WOA vs. SOA Doesn’t Matter?

http://www.itbusinessedge.com/item/?ci=47620&sr=1, 2008

[75]. Gamble, M. T. and R. Gamble, Monoliths to Mashup: Increasing Opportunistic Assets,

25(6):71-79, 2008 IEEE Software

[76]. Gao, T., H. Ma, I.-L. Yen, F. Bastani and W.-T. Tsai, Toward QoS Analysis of Adaptive

Service-Oriented Architecture. IEEE International Symposium on Service-Oriented System

Engineering (SOSE) , pp. 219-226, 2005.

[77]. Garlan, D., R.T. Monroe and D. Wile, Acme: Architectural Description of Component-

Based Systems, Book: Foundations of component-based systems, Cambridge University

Press New York, NY, USA, pp. 47-67, 2000

[78]. Garlan, D., Foraml Modeling and Analysis of Software Architecture: Components,

Connectors, and Events, LNCS 2804, pp. 1-24, 2003

[79]. Garlan, D. and B. Schmerl, Architecture-driven modeling and analysis, in Tony Cant (Ed.),

Proceedings of the 11
th

 Australian Workshop on Safety Related Programmable Systems

(SCS’06), Conferences in Research and Practice in Information Technology, Vol. 69, 2006

[80]. Gibbens, R., R. Mason and R. Steinberg, Internet service classes under competition. IEEE

Journal on Selected Areas in Communications, Vol. 18, No. 12, pp. 2490-2498, 2000.

http://www.itbusinessedge.com/item/?ci=47620&sr=1

237

[81]. Giesecke, S., “Middleware-induced styles for enterprise application integration” In

Software Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th

European Conference on 2006.

[82]. Gorton, I. and A. Liu, An Architects’ Guide to enterprise application integration with J2EE

and .NET, Proceedings of the International Conference on Software Engineering, ICSE

2005, pp. 726-727

[83]. Governor, J., D. Hinchcliffe and D. Nickull, Web 2.0 Architectures, Oreilly Media, May

2009

[84]. Guidi, C., R. Lucchi “Formalizing mobility in Service Oriented Computing”, Journal of

Software, Vol. 2, No. 1, 2007

[85]. Harvard Research Group, Availability Environment Classification, Publication # 5968-

6578EUC. http://www.hrgresearch.com/pdf/MarathonHPPAgpl060499d.pdf

[86]. Harvard Research Group, Cloud Computing – Introduction,

http://www.hrgresearch.com/Cloud%20Computing.html

[87]. Hasselmeyer, P., C. Qu, L. Schubert, B. Koller and P. Wieder, Towards Autonomous

Brokered SLA Negotiation, from “Exploiting the Knowledge Economy: Issues,

Applications, Case Studies”, IOS Press, Amsterdam.

[88]. Heisel, M. and N. Levy, Using LOTOS Patterns to Characterize Architectural Styles,

LNCS 1214, pp. 818-832, 1997

[89]. Heiser, J. and Mark Nicolett, Assessing the Security Risks of Cloud Computing, 3 June

2008, http://www.gartner.com/DisplayDocument?id=685308

[90]. Henson, M. D., SOA Using Java Web Services, Prentice Hall, 2007

[91]. High, R., S. Kinder and S. Graham, “IBM’s SOA Foundation: An Architectural

Introduction and Overview”, http://www.ibm.com/developerworks/webservices/

[92]. Hinchcliffe, D., The SOA with reach: Web-Oriented Architecture, 2006 at

http://blogs.zdnet.com/Hinchcliffe/?p=27

[93]. Hirsch, D., P. Inverardi and U. Montanari, Modeling software architectures and styles with

graph grammar and constraint solving, in First Working IFIP Conference on Software

Architecture, Feb., 1999

[94]. Hohpe, G., and Bobby Woolf, Enterprise Integration Patters: Designing, Building, and

Deploying Messaging Solutions, Addison-Wesley, ISBN 0321200683, 2002

http://www.hrgresearch.com/pdf/MarathonHPPAgpl060499d.pdf
http://www.hrgresearch.com/Cloud%20Computing.html
http://www.gartner.com/DisplayDocument?id=685308
http://www.ibm.com/developerworks/webservices/
http://blogs.zdnet.com/Hinchcliffe/?p=27

238

[95]. HP, The Cloud and SOA,

http://www.hp.com/hpinfo/analystrelations/wp_cloudcomputing_soa_capgemini_hp.pdf

[96]. Huhns, M.N. and M.P. Singh, Service-oriented computing: key concepts and principles,

IEEE Internet Computing, Vol. 9, N. 1, 2005

[97]. IBM sMash, http://www.ibm.com/developerworks/ibm/library/i-zero1/

[98]. IBM, Seeding the Clouds: Key Infrastructure Elements for Cloud Computing, Feb. 2009.

http://www-935.ibm.com/services/uk/cio/pdf/oiw03022usen.pdf

[99]. Josuttis Braunschweig, N. M., SOA in Practices, O’Reilly Media, Inc, 2008

[100]. Kacem, M.H., M.Jmaiel, A.H. Kacem and K. Drira, Using UML2.0 and GG for

describing the dynamic of software architectures, Information Technology and

Applications, 2005. ICITA 2005. Third International Conference on 4-7 July 2005

[101]. Karasavvas, K., M. Antonioletti, M. Atkinson, N. C. Hong, T. Sugden, A. Hume,

M. Jackson, A. Krause and Charaka Palansuriya, Introduction to OGSA-DAI Services,

LNCS Vol. 3458, 2005, pp. 1-12

[102]. Kavantzas, N., D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto, Web

Services Choreography Description Language Version 1.0, 2003.

[103]. Kavantzas, N., http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-0008/WS-

CDL-April2004.pdf, 2004

[104]. Keen, M., J. Bond, J. Denman, S. Foster, S. Husek, B. Thompson and H. Wylie, Patterns:

Integrating Enterprise Service Buses in a Service-Oriented Architecture, IBM Redbooks,

2005.

[105]. Keller, A. and H. Ludwig, The WSLA Framework: Specifying and Monitoring Service

Level Agreement for Web Service, Journal of Network and System Management , Vol. 11,

No. 1, pp. 57-81, 2003.

[106]. Kephart, J.O. and D. Chess, The Vision of Autonomic Computing. IEEE Computer (V.

36, N. 1, pp. 41-50, 2010.

[107]. Khare, R. and R. Taylor, Extending the Representational State Transfer (REST)

Architectural Style for Decentralized Systems, Proceedings of the 26th International

Conference on Software Engineering, 428-437, 2004

[108]. Kim, J.S. and D. Garlan, Analyzing Architectural Styles with Alloy, In Proc. Workshop

on the Role of Software Architecture for Testing and Analysis, 2006

http://www.hp.com/hpinfo/analystrelations/wp_cloudcomputing_soa_capgemini_hp.pdf
http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-0008/WS-CDL-April2004.pdf
http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-0008/WS-CDL-April2004.pdf

239

[109]. Klein, J., Architecture for HIPAA Compliance, Gartner Symposium ITxpo 2001 (Gartner

Research)

[110]. Klein, M. H., R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson, Attribute-

Based Architecture Styles, IFIP Conference Proceedings; Vol. 140, 1999, 225-244

[111]. Kopecky, J., T. Vitvar, C. Bournez and J. Farrell, SAWSDL: Semantic Annotations for

WSDL and XML Schema, IEEE Internet Computing, Vol. 11, Issue 6, 2007

[112]. Krafzig, D., K. Banke and D. Slama, Enterprise SOA: Service-Oriented Architecture Best

Practices. Prentice Hall, Englewood Cliffs (2004)

[113]. Kritikos, K. and D. Plexousakis, QoS-Based Web Service Description and Discovery,

from http://ercim-news.ercim.eu/qos-based-web-service-description-and-discovery, 2008.

[114]. Kruchten, P., H. Obbink and J. Stafford, “The Past, Present, and Future of Software

Architecture”, IEEE Software, vol. 23, no. 2, 2006

[115]. Lakshman, G. and P. Manish, How the Cloud Stretches the SOA Scope, p. 36-41, V. 21,

Architecture Journal 2009

[116]. Laliwala, Z. and S. Chaudhary, Event-Driven Service-Oriented Architecture, Service

Systems and Service Management, 2008, pp. 1-6.

[117]. Lara, R., M. Stollberg, A. Polleres, C. Feier, C. Bussler and D. Fensel, Web Service

Modeling Ontology, Applied Ontology, 1(1), pp. 77-106, 2005

[118]. Lankhorst, M., ArchiMate: A Service-Oriented Enterprise Architecture Modeling

 Language, OMG Technical Meeting, SOA WG 12/06/2005.

[119]. Lawson (blog), L., Identifying the Synergy Between SOA and the Cloud Mar 19, 2009.

http://www.itbusinessedge.com/cm/blogs/lawson/identifying-the-synergy-between-soa-

and-the-cloud/?cs=31219

[120]. Leavitt, N., "Is Cloud Computing Really Ready for Prime Time?," Computer, vol. 42, no.

1, pp. 15-20, Jan. 2009, doi:10.1109/MC.2009.20

[121]. Lee, J., et al., “Integrating Service Composition Flows with User Interactions”, Proc. of

IEEE Service-Oriented System Engineering, 2008, pp. 103-108.

[122]. Leymann, F., Choreography for the Grid: towards fitting BPEL to the resource

framework, Concurrency and Computation: Practice & Experience, Vol. 18, No. 10, 2006,

pp. 1201-1217.

http://ercim-news.ercim.eu/qos-based-web-service-description-and-discovery
http://www.itbusinessedge.com/cm/blogs/lawson/identifying-the-synergy-between-soa-and-the-cloud/?cs=31219
http://www.itbusinessedge.com/cm/blogs/lawson/identifying-the-synergy-between-soa-and-the-cloud/?cs=31219

240

[123]. Liang, D., “Servicetizing User Experiences for Complex Business Application”, Proc. of

IEEE Service-Oriented System Engineering, 2006, pp. 147-155.

[124]. Lindsk, E., IBM Brings SOA to Cloud, http://it.tmcnet.com/topics/it/articles/55460-ibm-

brings-soa-the-cloud.htm

[125]. Linthicum, D. S., Cloud Computing and SOA Convergence in Your Enterprise, Addison-

Wesley, Sept. 2009.

[126]. Liu, Y., A.H. Ngu and L.Z. Zeng, QoS computation and policing in dynamic web service

selection. Proceedings of the 13th International World Wide Web conference on Alternate

track papers & posters, pp. 66-73, 2004.

[127]. Lublinsky, B., Defining SOA as an Architectural Style:Align your business model with

technology, http://www.ibm.com/developerworks/architecture/library/ar-soastyle/, 2007

[128]. Ludwig, H., WS-Agreement Concepts and Use: Agreement-Based, Service-Oriented

Architecture, Service-Oriented Computing , pp. 199-228, The MIT Press, 2009.

[129]. Ludwig, H., A. Keller, A. Dan and R. King, A Service Agreement Language for Dynamic

Electronic Services. Electronic Commerce Research ,Vol. 3, pp. 43-59, 2003.

[130]. Lynch, N. and S. Gilbert, Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services”, ACM SIGACT News, Vol. 33 Issue 2 (2002), pp. 51-59

[131]. Mahbub, K. and Spanoudakis, Monitoring WS-Agreements: An Event Calculus–Based

Approach, Test and Analysis of Web Services, 2007.

[132]. Martin, D., M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara,

D. L. McGuinness, E. Sirin and N. Srinivasan, Bringing Semantics to Web Services: The

OWL-S Approach, LNCS Vol. 3387, pp. 26-42, 2005

[133]. Mazzara, M. and S. Govoni, A Case Study of Web Services Orchestration, LNCS 2005,

pp. 1-16.

[134]. McGough, A.S., A. Akram, D. Colling, L. Guo, C. Kotsokalis, M. Krznaric, P. Kyberd

and J. Martyniak, Enabling Scientists Through Workflow and Quality of Service, Grid

Enabled Remote Instrumentation, pp. 345-359, Springer, 2009.

[135]. Mcgovern, J., O. Sims, A. Jain and M. Little, Enterprise Service Oriented Architecture,

Springer, 2006.

http://www.ibm.com/developerworks/architecture/library/ar-soastyle/

241

[136]. Meng, S., QCCS: A Formal Model to Enforce QoS Requirements in Service Composition.

Proceedings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software

Engineering, pp. 389-400, 2007.

[137]. Mecella, M., F. P. Presicce and B. Pernici, “Modeling E-service Orchestration through

Petri Nets”, LNCS 2444, pp.38-47, 2002

[138]. Medvidovic, N., R.N. Taylor, A classification and comparison framework for software

architecture description languages, Software Engineering, IEEE Transactions on

Volume 26, Issue 1, Jan. 2000, pp. 70 – 93

[139]. Le Metayer, D., Software architecture styles as graph grammars, ACM SIGSOFT

Software Engineering Notes, Vol. 21, No. 6, pp. 15-23, 1996

[140]. Michlmayr, A., F. Rosenberg, C. Platzer, M. Treiber and S. Dustdar, “Towards

Recovering the Broken SOA Triangle – A Software Engineering Perspective”, IW-

SOSWE’07, Sept. 3, 2007.

[141]. Microsoft ESB Guidance for BizTalk Server 2006 R2, http://msdn.microsoft.com/en-

us/libray/bb931189.aspx

[142]. Microsoft, Window Azure Platform, 2009, http://www.microsoft.com/azure

[143]. Milner, R., Communication and Mobile Systems: the -calculus, Cambridge University

Press, 1999.

[144]. Misra, J. and WR Cook, Computation orchestration: A basis for wide-area computing,

Journal on Software and System Modeling, pp. 1-26, 2006

[145]. Monroe, R.T., A. Kompanek, R. Melton and D. Garlan, Architectural Styles, Design

Patterns, and Objects, IEEE Software, pp. 43-52, 1997

[146]. zur Muehlen, M., J. V. Nickerson and K. D. Swenson, Developing web services

choreography standards – the case REST vs. SOAP, Decision Support Systems 40 (2005)

9-29

[147]. Mule Galaxy at http://mule.mulesource.org/display/MULE/Home

[148]. De Nicola, R., G. Ferrari, U. Montanari, R. Pugliese and E. Tuosto, A Formal Basis for

Reasoning on Programmable QoS. Lecture Notes in Computer Science, Vol. 2772, pp.

436-479, 2003.

[149]. De Nicola, R., G. Ferrari, U. Montanari, R. Pugliese and E. Tuosto, A Process Calculus

for QoS-Aware Applications. Lecture Notes in Computer Science, Vol. 3454, pp. 33-48,

2005.

http://msdn.microsoft.com/en-us/libray/bb931189.aspx
http://msdn.microsoft.com/en-us/libray/bb931189.aspx
http://mule.mulesource.org/display/MULE/Home

242

[150]. Nurmela, T. and L. Kutvonen, Service Level Agreement Management in Federated

Virtual Organizations. Lecture Notes in Computer Science (Vol. 4531, pp. 62-75, 2007.

[151]. OASIS MOWS V1.1 Specification http://www.oasis-

open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf

[152]. OASIS MUWS 1.1 Specification. http://www.oasis-

open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf

[153]. OASIS SCA http://www.oasis-opencsa.org/sca

[154]. OASIS SOA Reference Model, http://www.oasis-open.org/

[155]. OASIS, Web Services Business Process Execution Language Version 2.0, OASIS, 2007,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[156]. OASIS WSDM 1.1 Specification http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsdm

[157]. OASIS, Web Service Resource Framework (WSRF) – Primer v1.2, 2006,

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

[158]. O’Brien, L., L. Bass and P. Merson, “Quality Attributes and Service-Oriented

Architectures”, Technical Note, CMU/SEI-2005-TN-014.

[159]. O’Brien, L., L. Bass and P. Merson, “Quality Attributes and Service-Oriented

Architectures”, In Proceedings of the International Workshop on Systems Development in

SOA Environments, 2007, pp. 3-7

[160]. OGF, “Open Grid Service Infrastructure (OGSI),

 http://www.ggf.org/documents/GFD.15.pdf, 2003

[161]. OMG, Service-Oriented Architecture Modeling Language, 2008-08-04, 2008,

http://www.omgwiki.org/SoaML/doku.php?id=specification

[162]. The Open Group, SLA Management Handbook, ISBN: 1-931624-51-8, 2004.

[163]. Oracle Application Server 10g ESB

http://www.oracle.com/technology/products/integration/esb/pdf/ds_esb_v10_1_2.pdf

[164]. Oracle, Architectural Strategies for Cloud Computing, 2009,

http://www.oracle.com/technology/architect/entarch/pdf/architectural_strategies_for_cloud

_computing.pdf

http://www.oasis-open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://argouml.tigris.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.ggf.org/documents/GFD.15.pdf
http://www.omgwiki.org/SoaML/doku.php?id=specification
http://www.oracle.com/technology/products/integration/esb/pdf/ds_esb_v10_1_2.pdf
http://www.oracle.com/technology/architect/entarch/pdf/architectural_strategies_for_cloud_computing.pdf
http://www.oracle.com/technology/architect/entarch/pdf/architectural_strategies_for_cloud_computing.pdf

243

[165]. Ouzzani, M. and Athman Bouguettaya, Efficient Access To Web Services, IEEE Internet

Computing, vol. 8, no. 2, 34-44, 2004.

[166]. Pahl, C. and Ronan Barrett, Layered Patterns in Modelling and Transformation of

Service-Based Software Architectures, LNCS 4344, 2006, pp. 144-158.

[167]. Pahl, C., S. Giesecke and W. Hasselbring, An Ontology-Based Approach for Modeling

Architectural Styles, LNCS 4758, pp. 60-75, 2007

[168]. Pahl, C., S. Giesecke and W. Hasselbring, Ontology-based modeling of architectural

styles, Information and Software Technology, 51 (2009) 1739-1749

[169]. Peltz, C., “Web Services Orchestration and Choreography”, IEEE Computer, vol. 36, no.

10, 2003, pp. 46-52.

[170]. Perry, D.E. and A.L. Wolf, “Foundations for the Study of Software Architecture,” ACM

Software Eng. Notes, vol.17, no. 4, 1992, pp. 40-52.

[171]. Piccinelli, G., A. Finkelstein, and S.L. Williams , Service-oriented workflow: the

DySCo framework, Euromicro Conference, 2003. Proceedings. 29th, pp. 291-297, 2003.

[172]. Prescod, P., Roots of the REST/SOAP Debate, Extreme Markup Languages, (2002)

[173]. Reese, G., Cloud Application Architectures, O’Reilly Media, Inc, 2009

[174]. O'Reilly, T., What Is Web 2.0, (2005, Retrieved on 2006) O'Reilly Network.

[175]. Richardson, L. and Sam Ruby, “RESTful Web Services”, O’Reilly, 2007

[176]. Rosenberg, D., Web-Oriented architecture and the rise of pragmatic SOA, blog (2008) at

http://news.cnet.com/8301-13846_3-10031651-62.html

[177]. Rosenberg, F., F. J. Duftler, and R. Khalaf, Composing RESTful Services and

Collaborative Workflows, 12(5):24-31,2008 IEEE Internet Computing

[178]. Schulte, W. and D. Sholler, SOA Overview and Guide to Research, Gartner Research

Report (G00166742), 2009

[179]. ServiceMix, http://servicemix.apache.org

[180]. Shaw, M., Comparing architectural design styles, IEEE Software, 12 (6), 1995

http://servicemix.apache.org/

244

[181]. Shaw, M. and D. Garlan, Formulations and Formalisms in Software Architecture, Lecture

Notes in Computer Science, 1995, Volume 1000/1995, 307-323A

[182]. Shaw. M., Toward higher-level abstractions for software systems. Data & Knowledge

Engineering, 5, 1990, pp. 119-128.

[183]. Shaw, M. and P. Clements, The Golden Age of Software Architecture, IEEE Software,

pp. 31-39, 2006

[184]. Shaw, M. and D. Garlan, The Coming-of-Age of Software Architecture Research,

Proceedings of the IEEE 23rd International Conference on Software Engineering, 2001

[185]. Shaw, M. and D. Garlan, Software Architecture, Prentice Hall, 1996

[186]. Schmid, M. and R. Kroeger, Decentralised QoS-Management in Service Oriented

Architecture. Lecture Notes in Computer Science, Vol. 5053, pp. 44-57, 2008.

[187]. Singh, M. P., A.K. Chopra and N. Desai, Commitment-Based Service-Oriented

Architecture, IEEE Computer, vol. 42, No. 11, 2009, pp 72-79

[188]. Singh, M. P. and M. N. Huhns, Service-Oriented Computing, John Wiley & Sons, 2005.

[189]. Skene, J., D.D. Lamanna, and W. Emmerich, Precise Service Level Agreement,

Proceedings of the 26th International Conference on Software Engineering, 2004.

[190]. SLA@SOI, Empowering the service industry with SLA-aware infrastructures. Retrieved

October 24, 2010, from http://sla-at-soi.eu/research/

[191]. Slomiski, A., On using BPEL extensibility to implement OGSI and WSRF Grid

workflows, Concurrency and Computation: Practice and Experience, Vol. 18, No. 10,

1229-1241, 2005

[192]. Smith, R., Smart Web App Development, (2008) InformationWeek

[193]. Solanki, M., A. Cau, and H. Zedan, ASDL: A Wide Spectrum Language for Designing

Web Services, ACM IW3C2, May 23-26, 2006.

[194]. Song, Y., Y. Li, H. Wang, Y. Zhang, B. Feng, H. Zang and Y. Sun, A Service-Oriented

Priority-Based Resource Scheduling Scheme for Virtualized Utility Computing Lecture

Notes in Computer Science , Vol. 5374, pp. 220-231, 2008.

[195]. SUN, Sun GlassFish Enterprise Service Bus: The Lightweight ESB,

https://www.sun.com/offers/details/Lightweight_ESB.xml?cid=927706

http://sla-at-soi.eu/research/
https://www.sun.com/offers/details/Lightweight_ESB.xml?cid=927706

245

[196]. SUN GlassFish, http://www.sun.com/software/products/glassfishv3_prelude/

[197]. SUN, Introduction to Cloud Computing Architecture, 2009,

http://www.sun.com/featured-articles/CloudComputing.pdf

[198]. Sunbul, A., Abstract State Machines for the Composition of Architectural Styles, LNCS

1755, pp. 54-61, 2000

[199]. Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming. 2nd

ed. Addison-Wesley Professional, Boston

[200]. Tang, L. and J. Dong, “A Survey of Formal Methods for Software Architecture”,

Proceedings of the International Conference on Software Engineering Theory and Practice,

pp. 221-227, 2007.

[201]. Tang, L., J. Dong and T. Peng, A Generic Model of Enterprise Service-Oriented

Architecture, 4
th

 IEEE International Symposium on Service-Oriented System Engineering

(SOSE), pp 1-7, December 2008.

[202]. Tang, L., Y. Zhao and J. Dong, Specifying Enterprise Web-Oriented Architecture, in

High Assurance Services Computing, Springer, pages 241-260, 2009

[203]. Tang, L., J. Dong, T. Peng and W. T. Tsai, A Classification of Enterprise Service-

Oriented Architecture, 5
th

 IEEE International Symposium on Service-Oriented System

Engineering (SOSE), pp. 74-81, 2010

[204]. Tang, L., J. Dong, T. Peng and W. T. Tsai, Modeling Enterprise Service-Oriented

Architectural Styles, Service Oriented Computing and Applications (SOCA), Springer-

Verlag, Vol. 4, p. 81-107, 2010

[205]. Tang, L., J. Dong, Y. Zhao and Liang-Jie Zhang, Enterprise Cloud Service Architecture,

The 3rd IEEE International Conference on Cloud Computing, July 5 – 10, pp.27-34, 2010.

[206]. Tang, L., J. Dong and Y. Zhao, SLA-Aware Enterprise Service Computing, Chapter 2 in

"Performance and Dependability in Service Computing: Concepts, Techniques and

Research Directions, Edited by V. Cardellini, E. Casalicchio, K. C. Branco, J. Estrella and

F.J. Monaco, IGI Global, p. 26-52, July 2011

[207]. Tang, L., F.B. Bastani, W. T. Tsai, J. Dong and L-J. Zhang, Modeling and Analyzing

Cloud Service Architecture, Tech. Rep. UTDCS-26-11, Dept. of Computer Science, Univ.

of Texas at Dallas, Sept. 2011

[208]. Taylor, H., A. Yochem, L. Phillips and F. Martinez, Event-Driven Architecture, Addison-

Wesley, 2009

http://www.sun.com/featured-articles/CloudComputing.pdf

246

[209]. Taylor, R.N., N. Medvidovic and E.M. Dashofy, Software Architecture: Foundations,

Theory, and Practices, Wiley, 2009

[210]. Ten-Hove, R. and P. Walker, “Java Business Integration (JBI) 1.0”, Final Release, Sun

Microsystems, Inc., 2005.

[211]. Tosic, V., K. Patel, and B. Pagurek, WSOL – Web Service Offerings Language. Lecture

Notes in Computer Science , Vol. 2612, pp. 57-67, 2002.

[212]. Tosic, V., B. Pagurek, K. Patel, B. Esfandiari and W. Ma, Management applications of

Web Service Offerings Language (WSOL), Information Systems, Vol. 30, No. 7, pp.564-

586, 2005.

[213]. Tsai, W T., Service-Oriented System Engineering: A New Paradigm, Proceedings of the

IEEE International Workshop on Service-Oriented System Engineering (SOSE), 2005, pp.

3-6

[214]. Tsai, W.T., C. Fan, Y. Chen, R. Paul, and J. Y. Chung, "Architecture Classification for

SOA-based Applications", in Proc. of IEEE 9th International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC), April 2006, pp. 295-

302.

[215]. Tsai, W.T., X. Bai and Y. Chen, Introduction to Service-Oriented System Engineering,

TsingHua University Press, 2008.

[216]. Tsai, W. T., et al., “Semantic Interoperability and its Verification and Validation in C2

Systems”, the 10th International Command and Control Research and Technology

Symposium (ICCRTS), 2005, McLean, VA.

[217]. Tsai, W.T., et al, “Automatic Test Case Generation for GUI Navigation”, Quality Week,

2000.

[218]. Tsai, W.T., W. Song, R. Paul, Z. Cao and H. Huang, Service-Oriented Dynamic

Reconfiguration Framework for Dependable Distributed Computing, in Proceedings of the

28th Annual International Computer Software and Applications Conference, 2004

[219]. Tsai, W.T., Q. Huang, J. Xu, Y. Chen and R. Paul, Ontology-based Dynamic Process

Collaboration in Service-Oriented Architecture, in Proceedings of the IEEE International

Conference on Service-Oriented Computing and Applications, 2007

[220]. Tsai, W.T., X. Sun and J. Balasooriya, Service-Oriented Cloud Computing Architecture.

The Seventh International Conference on Information Technology (pp.684-689).

247

[221]. Tsai, W.T., X. Sun and J. Elston, Real-Time Service-Oriented Cloud Computing. The 6th

World Congress on Services (pp.473-478).

[222]. Varia, J. Cloud Architecture, 2008,

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1632

[223]. Vinoski, S., REST Eye for SOA Guy, 11(1):82-84, 2007 IEEE Internet Computing

[224]. Vitvar, T., J. Kopecky, J.Viskova and D. Fensel, WSMO-Lite Annotations for Web

Services, LNCS Vol. 5021, pp. 674-689, 2008

[225]. Vogels, W. Seamlessly Extending the Data Center - Introducing Amazon Virtual Private

Cloud, Blogs,

 http://www.allthingsdistributed.com/2009/08/amazon_virtual_private_cloud.html

[226]. Vouk, M. A. Cloud Computing – Issues, Research and Implenetations, Proceedings of

the 30th International Conference on Information Technology Interfaces, p. 31-40, June

23-26, 2008.

[227]. W3C, Web Services Eventing (WS-Eventing), http://www.w3.org/Submission/WS-

Eventing/, 2006

[228]. W3C, “OWL-S: Semantic Markup for Web Services”,

http://www.w3.org/Submission/OWL-S/, 2004.

[229]. W3C, Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,

W3C, 2007, http://www.w3.org/TR/wsdl20/

[230]. W3C, Web Services Choreography Description Language Version 1.0, W3C, 2005,

http://www.w3.org/TR/ws-cdl-10/

[231]. W3C, Web Service Management: Service Life Cycle, W3C, 2004,

http://www.w3.org/TR/wslc/

[232]. W3C, “Web Service Description Language (WSDL), Non-normative version with Z

notation”, August 2005.

[233]. Wang, G., C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y.-L. Chen, W. Guthmiller

and J. Lee, Service Level Management using QoS Monitoring, Diagnostics, and

Adaptation for Network Enterprise Systems. Proceedings of the Ninth IEEE International

EDOC Enterprise Computing Conference (pp. 239-250, 2005.

[234]. Wang, H., G. Wang and C. Wang, A. Chen and R. Santiago, Service Level Management

in Global Enterprise Services: from QoS Monitoring and Diagnostics to Adaptation, a Case

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1632
http://www.allthingsdistributed.com/2009/08/amazon_virtual_private_cloud.html
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wslc/

248

Study. Proceedings of the Eleventh International IEEE EDOC Conference Workshop, pp.

44-51, 2007.

[235]. Wikipedia, List of Web Service Specifications,

http://en.wikipedia.org/wiki/List_of_Web_service_specifications

[236]. Wikipedia, Google App Engine, http://en.wikipedia.org/wiki/Google_App_Engine

[237]. Wikipedia, Measure Network Throughput,

http://en.wikipedia.org/wiki/Measuring_network_throughput

[238]. Woods, D. and T. Mattern, Enterprise SOA, O’Reilly, 2006 (SAP)

[239]. Yan, S.S. and H. An, Adaptive resource allocation for service-based systems.

Proceedings of the First Asia-Pacific Symposium on Internetware, 2009.

[240]. Yeom, G., W.-T. Tsai, X. Bai and D. Min, Design of a Contract-Based Web Services

QoS Management System. Proceedings of the 29th IEEE International Conference on

Distributed Computing Systems Workshops, pp. 306-311, 2009.

[241]. Zdun, U., C. Hentrich and W.M.P. van der Aalst, “A Survey of Patterns for Service-

Oriented Architectures”, International Journal of Internet Protocol Technology, vol. 1, no.

3, 2006, pp. 132-143.

[242]. Zeng, L., B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-

Aware Middleware for Web Services Composition. IEEE Transactions on Software

Engineering, Vol. 30, No. 5, pp. 311-327, 2004.

[243]. Zhang, Liang-Jie and Qun Zhou, CCOA: Cloud Computing Open Architecture, IEEE

International Conference on Web Services, p. 607-616, 2009.

[244]. Zhang, Liang-Jie, Jia Zhang and Hong Cai, Services Computing, Springer, Oct. 2007

[245]. Zhang, Liang-Jie, Carl K. Chang, E. Feig and R. Grossman, Keynote Panel, Business

Cloud: Bringing the Power of SOA and Cloud Computing, pp. Xix, 2008 IEEE

International Conference on Services Computing (SCC 2008), July 2008.

[246]. Zhang, Liang-Jie, Haifei Li and Herman Lam, Towards a Business Process Grid for

Utility Computing, IT Professional, V. 6, N. 5, P. 63-64, 2004.

[247]. Zhang, Z., D. Dey and Y. Tan, Price and QoS competition in communication services.

European Journal of Operational Research, Vol.186 i2, pp. 681-693, 2006.

http://en.wikipedia.org/wiki/List_of_Web_service_specifications
http://en.wikipedia.org/wiki/Google_App_Engine
http://en.wikipedia.org/wiki/Measuring_network_throughput

249

[248]. Zhao, Y., J. Dong, and T. Peng, Ontology Classification for Semantic Web Based

Software Engineering, IEEE Transactions on Services Computing. vol. 2, no. 4, pp. 303-

317, Oct.-Dec. 2009.

[249]. Zhou, C., L.-T. Chia and B.-S. Lee, DAML-QoS Ontology for Web Services,

Proceedings of the IEEE International Conference on Web Services (ICWS'04), pp.472-

479, 2004.

[250]. Zhou, J. and E. Niemela, Toward Semantic QoS Aware Web Services: Issues, Related

Studies and Experience. Proceedings of the 2006 IEEE/WIC/ACM International

Conference on Web Intelligence, pp. 553-557, 2006.

VITA

Longji Tang was born in Hunan Province, China. After graduating from Hunan University with a

Bachelor of Engineering degree in Electrical Engineering in 1980, he worked as an associate

research fellow at the Hunan Computing Center from 1980 to 1992. He began graduate studies

at Penn State University in 1992 and graduated in 1995 with a Master of Engineering degree in

Computer Science & Engineering and a Master of Art degree in Applied Mathematics. He has

published more than 20 research papers from numeric analysis to computer applications in

Journal of Computational Mathematics, Acta Mathematica Scienia and other publications. From

1995-2000, he worked as an information system and software engineering consultant at

Caterpillar and IBM. Currently, he serves as a senior technical advisor at FedEx’s information

technology division and has undertaken his PhD studies in Software Engineering as a part-time

student at the University of Texas at Dallas since June, 2002. He obtained PhD degree from

Computer Science of UTD in 2011. At FedEx he has served as a tech lead and/or architect on

several critical eCommerce projects and is currently a lead project manager for FedEx.com’s

data center modernization project. His research interests include software architecture and

design, service-oriented architecture, service-oriented cloud computing and application, and

system modeling and formalism.

