
A CONTROL-THEORETIC DESIGN AND ANALYSIS FRAMEWORK FOR RESILIENT
HARD REAL-TIME SYSTEMS

by

PRADEEP M. HETTIARACHCHI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2015

MAJOR: COMPUTER SCIENCE

Advisor Date

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 3723517

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

ProQuest Number: 3723517

ACKNOWLEDGEMENTS

My journey of PhD would not be a success without a few key people.

Prof. Nathan Fisher, my PhD advisor who did not restrict his guidance on academics but extended

to a great deal helping me as a person. I am very fortunate and blessed to have him as my advisor. The

difference I see in my academic life from the time I joined the PhD program to date is mainly because of

the constructive guidance given by Dr. Fisher. I managed to stand on my feet and continue my graduate

studies while facing substantial life challenges during the last five years mainly because my advisor’s kind

support. I convey my heartfelt gratitude and sincere thanks to Dr. Fisher.

During this challenging exercise, I got continuous support and advice from Dr. Le Yi Wang from

Electrical Engineering Department. Also, comments and suggestions given by Dr. Weisong Shi and Dr.

Monica Brockmeyer were extremely valuable. Furthermore, my CoPaRTS lab mates were always a critical

factor for my success. I am very thankful to all of them.

This dissertation was supported by an NSF CAREER Grant (CNS-0953583), an NSF CSR Grant

(CNS-1116787), an NSF CRI Grant (CNS-12-5338), and a grant from Wayne State University Office

of Vice President of Research. Also, I must thankful for the Wayne State University Computer Science

Department for accommodating and facilitating me for six year.

I am always grateful to the key persons who encouraged me to peruse graduate studies and opened the

path in the United States, Eng. Samarasiri and Prof. Herath. Furthermore my loving appreciation to my

parents, in-laws and sisters who helped and always encouraged me to achieve this goal. My special thanks

to Malitha, my wife, and children, Induvari, Vidushani, Dushyanth, and Ravindu who partnered with me

in this journey for always being patient, supportive and encouraging.

Finally, I thank anyone if I missed to mention here.

ii

TABLE OF CONTENTS

Page

Acknowledgements . ii

dedication . ii

List of Tables . viii

List of Figures . ix

1 Chapter 1: Introduction . 1

1.1 Overview . 1

1.1.1 Real-time Systems . 1

1.1.2 Motivation . 1

1.2 Objectives . 3

1.2.1 Thesis . 4

1.3 Summary of Contributions . 4

1.4 Organization . 5

2 Chapter 2: Related Work . 7

2.1 Thermal-Aware Design for Uniprocessor Systems . 7

2.1.1 General (Non-Real-time) Thermal-Aware System Design 7

2.1.2 Real-Time Thermal-Aware System Design . 7

2.2 Thermal-Aware Design for Multicore Processor Systems 8

2.2.1 Control-Theoretic Based Designs . 8

2.2.2 Proactive Methods . 9

3 Chapter 3: Models and Definitions . 13

3.1 Real-Time Systems Model . 13

3.1.1 Jobs and Tasks . 13

3.1.1.1 Periodic Task Model . 13

3.1.1.2 Sporadic Task Model . 14

3.1.1.3 Online and Offline Algorithms . 14

iii

3.1.2 Scheduling Algorithms . 15

3.2 Modeling of Uniprocessor Systems . 15

3.2.1 System Hardware Models . 15

3.2.2 Periodic Resource Model . 16

3.2.3 Software Model . 17

3.2.4 Performance Modes . 18

3.2.5 Mode Change Semantics . 18

3.2.6 Selection of the Scheduling Algorithm . 18

3.2.7 Power/Thermal Model . 19

3.3 Modeling of Multicore Processor Systems . 20

3.3.1 System Hardware Model . 20

3.3.2 Software Model . 21

3.3.3 Performance Modes . 22

3.3.4 Power/Thermal Model . 23

3.3.5 Generalized Model . 25

3.3.6 Generalized System Software Model . 25

3.4 Control Systems Basics . 26

3.4.1 Basic Control Terminology . 27

3.4.2 The Phase and Gain Margins . 28

3.5 Classical Control Theory . 29

3.5.1 Proportional Integral Derivative Controllers . 30

3.5.2 Anti-Windup Controller . 31

3.6 Modern Control Theory . 31

3.6.1 Optimal Controllers . 33

3.6.2 Model Predictive Controllers (MPC) . 34

3.7 Summary . 35

4 Chapter 4: Thermal-Resiliency on Uniprocessor Systems . 36

4.1 Introduction . 37

iv

4.2 Methodology Overview . 38

4.3 Models . 40

4.3.1 The Testbed . 41

4.3.2 Power/Thermal Derivations . 44

4.4 Controller Design . 45

4.4.1 Continuous Power Modes . 46

4.4.2 Active/Inactive Power Modes . 50

4.5 Thermal-Resiliency Calculation . 52

4.6 Validation . 57

4.6.1 Simulations . 57

4.6.2 Experiments upon Hardware Testbed . 61

4.7 Summary . 62

5 Chapter 5: Thermal-Resiliency on multicore processor Systems 65

5.1 Introduction . 66

5.2 Models . 68

5.2.1 Power/Thermal Derivations . 69

5.3 Controller Design . 71

5.3.1 State-Space Controller Details . 71

5.3.2 Continuous Power Modes . 72

5.3.3 Stability Analysis and Optimal State Feedback 72

5.3.4 Continuous Power Emulation with Active/Inactive Power Modes 74

5.4 Thermal-Resiliency Calculation . 77

5.5 Validation . 79

5.5.1 Simulations . 79

5.5.2 Testbed Details . 80

5.5.3 Results . 82

5.5.4 Experiments upon Hardware Testbed . 85

5.6 Summary . 91

v

6 Chapter 6: A Generalized Design Framework for Adaptive Real-Time System Resiliency 92

6.1 Introduction . 92

6.2 Methodology Overview . 95

6.3 System Models . 96

6.3.1 System Hardware Models . 96

6.3.2 System Software Model . 96

6.4 Controller Model and the Design . 97

6.4.1 System Constraints . 97

6.4.2 Control Integration of Design Objectives . 98

6.5 System Resiliency Calculation . 99

6.6 GSR Framework Case Study . 100

6.6.1 System Hardware Model . 100

6.6.2 Hardware Testbed Details . 103

6.6.3 System Software Model . 103

6.6.4 Controller Design . 104

6.6.5 System Constraints . 105

6.6.6 Resiliency Calculation . 107

6.6.7 Discrete-Time Controller . 108

6.7 Validation . 109

6.7.1 Simulations . 109

6.7.2 Results . 110

6.8 Conclusions . 112

7 Chapter 7: Conclusion and Future Work . 114

7.1 Future Works Beyond the Thesis . 115

7.1.1 Multi-Mode Physiological Control-Systems . 116

List of Publications . 118

APPENDIX . 120

vi

A APPENDIX A:

Details of Practical System Implementation on Testbeds . 120

A.1 The Temperature Calculations . 120

A.2 Calculation of State-Space Parameters Using Testbed Results 124

APPENDIX . 127

B APPENDIX B:

Further Details on Multicore Processor Model . 127

B.1 Multicore Thermal Model . 127

B.2 The Testbed Parameters . 132

B.3 The Tcpu Temperature Calculation . 134

B.4 GSR Details:Run Time of the System . 137

B.5 Temperature Calculation of the System . 138

B.6 Testbed Details . 140

B.7 System-Resiliency . 141

B.8 Load Requirements . 143

References . 145

Abstract . 155

Autobiographical statement . 157

vii

LIST OF TABLES

1.1 The Contribution of each Chapter . 6

2.1 Thermal-aware researches and their contributions . 12

4.1 Testbed parameters for uni-processor simulations . 59

5.1 Testbed parameters for multicore processor simulations 80

B.1 Testbed parameters for generalized system resiliency simulations 141

viii

LIST OF FIGURES

3.1 The sampling and mode change in the thermal control system (uni-processor systems). . . 17

3.2 The basic equivalent circuit for a working CPU and its working environment 20

3.3 The sampling and mode change in the thermal control system (multicore processor system). 22

3.4 The thermal model of the CPU and its working environment. 24

3.5 A control system with a feedback . 27

3.6 The phase margin and the gain margin of a system . 29

3.7 The root locus of transfer function G(s) . 30

4.1 The implementation details of the testbed. 42

4.2 The physical testbed preparation steps. 43

4.3 The basic equivalent circuit for a working CPU and its working environment 44

4.4 The thermal control design with state feedback and integral actuator 46

4.5 The simplified power and modulation relationship . 51

4.6 Fixed Tair for Simulation. Left plots represent TCUB and right plots represent TCRB. . . . 59

4.7 Simulation comparison under varying Tair. 60

4.8 Thermal resiliency over modes and Tref. 61

4.9 The testbed behavior under different Tenv values. 62

4.10 Simulated Thermal Resiliency Comparison with Testbed Data. 63

4.11 The Thermal Forcing System (A) and the Thermal Cabinet (B). 63

5.1 The sampling and mode change in our thermal control system. 69

5.2 The multicore equivalent electrical circuit. 70

5.3 The thermal control design with state feedback and integral actuator 71

5.4 The simplified power and modulation relationship . 75

5.5 The block diagram of the testbed implementation . 81

5.6 The controller capability over Tenv temperature variation. 83

5.7 The mode variation of cores under different environment temperatures. 84

ix

5.8 The controller tracking capability. 87

5.9 The controller behavior under Tenv temperature variations. 88

5.10 Thermal Resiliency for the system for all the possible Tenv and Tref values. 88

5.11 Thermal resiliency when a task is statically pinned to a core. 89

5.12 The inverse resiliency. 90

6.1 GSR Framework Methodology. 95

6.2 The RAS controller. 104

6.3 The testbed CPU power variation. 106

6.4 The effect of the reference temperature, Tref, on CPU current Icpu. 111

6.5 The mode variation over external temperature,Tenv and reference current, Iref 111

6.6 The mode variation over reference temperature,Tref and CPU current, Icpu 111

6.7 The calculated and measured external current comparison. 112

A.1 The voltage variation of shunt resister for random workload. 126

B.1 The effect of the reference temperature, Tref on CPU current Icpu from testbed. 142

B.2 The CPU impedance variation of the testbed. 142

x

CHAPTER 1: INTRODUCTION

1.1 Overview

1.1.1 Real-time Systems

Real-time systems include the notions of both logical and temporal correctness [7]. There are two main

type of real-time systems: the soft-real-time systems, such as video decoding, can tolerate occasional

deadline misses; the hard-real-time systems, such as avionics and radar control systems, can not tolerate

deadline misses and have strict temporal requirements. Real-time systems work as a functional man-

ager in consumer electronics and cyber-physical systems. Today’s standard computing platform [40, 41]–

multicore processors–are often the underlying computing architecture of these systems. Furthermore, their

correct functionality upon various conditions is extremely important. For example, in the automobile in-

dustry, the modern vehicle braking system consists of hard real-time computer and electro mechanical

actuators; the accuracy of the vehicle braking action in various environmental conditions determines the

safety of the driver. Therefore, the system designer should assure the correct functionality of the real-time

computer and mechanical parts for all the operating conditions of the system.

1.1.2 Motivation

Today, multicore processors with advanced capabilities and high clock frequencies are common [60, 38].

Also, many manufacturers offer complete embedded computers, which include a powerful processor, I/O

interface, and communication interfaces in a single compact printed circuit board [61]. These modern

embedded computers are ideal for contemporary hard-real-time system development as they have higher

computing capabilities and reliability, and are less expensive. Despite these advantages, modern real-time

systems face many physical challenges and hardware constraints at design and during runtime. For ex-

ample, the excessive processor thermal dissipation and high power consumption [3] due to higher clock

rates, high leakage current [52], and increased chip package density–dark silicon [82, 25] issues–are com-

mon problems in modern microprocessor based systems. As a solution to the excess thermal dissipation

and larger power consumption, these real-time systems may set to operate at a lower clock frequency or

1

2

dynamically adjust the processor clock frequency [84, 85]. However, lower clock frequency degrades the

performance of the system, arbitrary clock frequency reduction may affect the underlying real-time system

and fail to achieve its essential task deadlines. Therefore, the system designer needs to analyze multiple

system constraints towards any remedial solution (a tradeoff) for excessive thermal dissipation and should

choose the best possible solution. Furthermore, as an example of an embedded system where thermal-

stress analysis is essential, consider microprocessors found in implantable medical devices (IMDs). IMDs

are increasingly being used to treat various diseases and medical conditions (e.g., pacemakers for heart

disease or neural implants to restore hearing/vision). However, recent studies [53, 55] have shown that the

heat dissipated from IMDs due to the microprocessor activity is non-negligible. Thus, designing IMDs

with minimum thermal dissipation is critical as medical research has shown that a temperature increase

of even 1◦C can have long-term effect on tissue [54] and, in the extreme, death may even result from

excessive tissue heating [70]. Complicating the safe thermal design of IMDs, body temperature naturally

fluctuates over time and varies depending on location [50]. An IMD designer must balance (under temper-

ature fluctuations) the real-time computational requirements of the device with the non-harmful thermal

operating limits. In the presence of an increased surrounding temperature, an IMD will have to reduce its

computational load to prevent tissue damage due to heat1. However, as the correct and safe functioning of

the IMD is an absolute requirement, the system designer requires techniques to formally verify the effect

of different body temperatures on the correct operation of the IMD. Similarly, as a less safety-critical ex-

ample, consider how the quality of audio/video decoding may degrade in a hand-held device as the system

reacts to increases in temperature by reducing computational processing (e.g., via instruction fetch tog-

gling). Ideally, a system designer would like to determine how much the performance will degrade under

different thermal operating conditions.

Until the last decade, real-time systems were mainly constrained by the CPU processing power, as the

CPU processing power was the most scarce resource. Also, the cost of real-time hardware was substan-

tially high, compared to the cost of software design and testing altogether [76]. For the past couple of

years, the cost per tera flop has been reduced exponentially [51]. By now, the modern real-time system

manufacturers face different challenges; today, real-time software engineering has grown as a different

discipline [18]. The real-time software design, development, and testing cost is the highest portion of the
1As IMD microprocessors typically do not have DVS capabilities, an IMD may have to reduce non-essential tasks such as

communication with other nodes in a body-area network [83].

3

system development cost due to its size and complex nature. For example, resource, energy, and thermal

efficient real-time multicore processor systems design and development process are hard and need many

design hours. Lack of proper frameworks and the difficultly involved in streamlining the real-time design

process can explain this higher cost. Furthermore, real-time system designers have to concentrate more

on the software design and the implementation issues, when systems experience physical and hardware

constraints. Thus, designing a reliable system (provisioning) for different hardware and physical con-

straints has become a central issue in real-time system design paradigm. Furthermore, the optimized CPU

resources allocation on each task on a real-time task system is fundamentally hard question. Also, under

various physical constraints, the real-time system design needs to gracefully degrade the quality of service,

without interfering the essential real-time services on the system.

Modern real-time systems operate on multi-inputs and multi-output environments. They need to adapt

to various physical and logical constraints that are dynamic in nature. These systems need to dynamically

allocate the resources for the essential activities at a given time. Over the years, control-theoretic based

methods have shown to be the best, as they have the capability to analyze and control multiple inputs and

outputs precisely at run-time.

There are many important previous results on thermal-aware and power-aware real-time system de-

signs (see Chapter 2). But, none of them addresses the issues of hard-real-time performance guarantee

upon multiple unpredictable physical and hardware-constraints for multi-modal system. Therefore, in this

thesis, we try to fill this gap. We propose a generalized control-theoretic system-resiliency framework.

In the rest of this chapter, we first discuss the objectives as well as the contributions of our work. Then

we will outline the rest of the thesis in the end of this chapter.

1.2 Objectives

In this thesis, we introduce a new metric called system-resiliency which characterizes the maximum prior

unknown unpredictable external stresses that any hard-real-time performance mode can withstand. Our

proposed system-resiliency framework addresses resiliency determination for real-time systems with phys-

ical and hardware limitations. Furthermore, our framework advises the system designer about the feasible

trade-offs between different system resources. For example, in a solar-powered device, a sunny day bene-

fits the device’s battery charging-level, but may negatively affect the performance of the CPU (by raising

4

the environmental temperature and forcing the CPU to run a lower power level to reduce thermal dissipa-

tion). Therefore, finding a balanced trade-off between these two external factors for a better system design

is essential.

The runtime efficiency is also an important factor to consider during the design process. Therefore,

we study the effective scheduling of real-time tasks with intra-task parallelism to reduce the energy-

consumption of multiprocessor platforms. Furthermore, we investigate the potential temperature rise of

a uniprocessor due to task execution. We show the thermal effect of periodic resource due to different

resource capacity and investigate the influences of the peak-temperature of a uniprocessor.

The concept we introduce as system-resiliency closely resembles the stress test in materials engineer-

ing. Thus, our design framework and analysis may be classified as a system-stress-analysis for real-time

systems.

1.2.1 Thesis

The thesis of this document is:

Our newly introduced metric, system-resiliency defines the maximum external stresses that

any hard-real-time system mode can withstand before violating timing constraints. A care-

fully designed control-theoretic framework effectively facilitates the ability of the system de-

signers to quantify the system-resiliency. Furthermore, we consider effective scheduling of

real-time tasks with intra-task parallelism to reduce the energy consumption of multiproces-

sor platforms, to maintain the energy-efficiency of the system design.

1.3 Summary of Contributions

The main contributions of this thesis are listed as the follows:

1. As a proof of concept, we propose a subset of system-resiliency, a new metric, called thermal-

resiliency which characterizes the maximum external thermal stress that any hard-real-time perfor-

mance mode can withstand (see Chapter 4). We show how to solve some of the issues and challenges

of designing predictable real-time systems that guarantee hard deadlines even under transitions be-

tween modes in an unpredictable thermal environment where environmental temperature may dy-

5

namically change, using our new metric. In our framework, the system designer specifies a set of

hard-real-time performance modes under which the system may operate automatically adjusts the

real-time performance mode based on the external thermal stress.

2. We extend the derivation of thermal-resiliency, that was proposed for uniprocessor systems to mul-

ticore systems and determines the limitations of external thermal stress that any hard-real-time per-

formance mode can withstand (see Chapter 5). Our control-theoretic framework allows system

designer to allocate asymmetric processing resource upon a multicore processor and still maintain

thermal constraints.

3. We introduce the generalized system-resiliency (GSR) design framework that predictably quanti-

fies the real-time performance level attainable under unpredictable dynamic external conditions (see

Chapter 6). We show how the designer derives the optimal supported-modes for a multi-constrained

system under various processing resources allocations while maintaining maximum system con-

straints.

4. The fine-grain power and energy consumption of a task system is essential for balanced and op-

timized task partitioning on a multicore processer. Therefore, we investigate the potential utility

of parallelization for meeting real-time constraints and minimizing energy. We consider malleable

Gang scheduling of implicit-deadline sporadic tasks upon multiprocessors.

5. Verifying theoretical results is essential in real-time system design. Therefore, we implemented a

testbed to verify our theoretical results upon the testbed runs (see Appendix A and Appendix B).

1.4 Organization

The following table gives the details of each chapter:

6

Table 1.1: The Contribution of each Chapter

Chapter # Contribution

Chapter 3 Models and definitions used in rest of the thesis

Chapter 4 Thermal-resiliency calculation details on uniprocessor systems

Chapter 5 Thermal-resiliency calculation details on multicore processor systems

Chapter 6 Generalized system-resiliency calculation details

Chapter 7 Conclusion and future work beyond the final dissertation of this thesis

Appendix A Details on practical implementation, such as

temperature calculation, control parameter derivations,

and system-identification details

Appendix B Further details on multicore processor model

and multicore processor testbed details

CHAPTER 2: RELATED WORK

In this chapter, we present prior research on thermal and power-aware real-time systems design techniques.

Also, we briefly present some of the works related the energy estimation on parallizable workloads and

the maximum temperature estimation of a uniprocessor upon real-time task execution.

2.1 Thermal-Aware Design for Uniprocessor Systems

In this thesis, we introduce the system-resiliency framework that addresses resiliency determination for

real-time systems with physical and hardware constraints. Toward this final goal, first we present the

thermal-resiliency framework for uniprocessor in Chapter 4 and the multiprocessor thermal-resiliency

framework details in Chapter 5. Furthermore, to properly understand the importance of our results (ex-

plained in the Chapter 4 and Chapter 5), in this subsection, we give a brief, high-level overview of previ-

ous research in both general (non-real-time), thermal-aware system design and real-time-specific thermal-

aware design.

2.1.1 General (Non-Real-time) Thermal-Aware System Design

For non-real-time systems, Brooks and Martonosi ([12]) investigated major components of any dynamic

thermal management scheme and suggested policies and mechanisms for implementing dynamic thermal

management for current and future high-end CPUs. They evaluated the benefits of using dynamic ther-

mal management to reduce the cooling system costs of CPUs and developed an architectural-level power

modeling tool called Wattch. For the micro-architecture level of thermal modeling, Skadron et al. ([78])

proposed a compact, dynamic, and portable thermal model and a tool called HotSpot for use at the archi-

tecture level for micro-architectures.

2.1.2 Real-Time Thermal-Aware System Design

For real-time systems in the online setting, Bansal and Pruhs [6] explored algorithms for minimizing both

peak-temperature and energy efficiency for online jobs with deadline constraints. In the off-line setting,

previous work on scheduling under thermal constraints has followed two main approaches: reactive and

7

8

proactive schedulers. In a reactive scheduler, the processor speed is reduced in response to a thermal

trigger. Wang et al. [89] studied schedulability analysis under the reactive setting. In the proactive setting,

the speed schedule for the processor is determined at design time. Chen et al. [16] addressed proactive

scheduling for the periodic task model. Quan and Zhang [68] consider feasibility analysis of leakage-

aware periodic tasks under temperature constraints. However, previous work on both settings assumed

either simple task models or the existence of “ideal” processor speeds. Also, they have not addressed the

issues related to multicore processor based systems. Recent dynamic temperature management strategies

also exist for multiprocessor real-time systems [15, 13, 31]; however, most of these focus upon static

speed-assignment approaches and not a proactive schedule. Thermal analysis has also been studied in the

context of web servers [26], but hard deadlines are not guaranteed. The work by Y. Fu et al. [37] and X. Fu

et al. [36] address handling unpredictable thermal events; however, the results do not provide any a priori

guarantees that may be used to equate real-time performance and thermal resiliency.

2.2 Thermal-Aware Design for Multicore Processor Systems

Multicore processor-based systems that operate under external temperature constraints are an important

focus in real-time systems research. In this subsection, we overview the prominent work and previous

research on thermal-aware, real-time thermal-aware system design, and multicore real-time systems at

high-level. Furthermore, we discuss the work on scheduling under thermal constraints, under two main

approaches: reactive and proactive schedulers. Although there are many scattered individual works that

address the thermal-aware design, power-aware design, and real-time multicore processor systems design,

no prior work suggested a generalized design framework for graceful degradation of quality of service of

a real-time system.

2.2.1 Control-Theoretic Based Designs

Ghosh et al. [42] proposed a framework for mapping, the level of service and resource requirements for

dynamic environmental conditions. They presented an integrated QoS optimization, which is performed

using Q-RAM [69]. Lu et al. [62] proposed adaptive utilization based multi-processors real-time design for

constrained MIMO systems. Fu et al. [34] proposed a control based solution for simultaneous thermal and

timeliness guarantees for distributed real-time embedded systems running in unpredictable environments.

9

In contrast to these work, that rely on mapping techniques to adopt the varying environmental conditions,

we provide the system designer real-time and performance guarantee.

Yao et al. [93] discussed an online adaptive mechanism, based on the utilization control, for multipro-

cessor real-time settings with online system identification and LQ controllers for a system with multiple

constraints. Fu et al. [33] suggested a solution, that integrates core-level feedback control with processor-

level optimization to minimize dynamic and leakage power consumption of a multi-core real-time embed-

ded system. Theis research may offer accurate control solutions suitable for soft real-time systems that

needs to adjust the utilization by means of task rate adjustments at runtime. However, their methods have

limited applicability for systems that need hard real-time and multi-mode capabilities. Seo et al. [71] stud-

ied energy-efficient multicore real-time scheduling using processor-wide DVFS; however, their results do

not provide any hard real-time or performance guarantee. Further, each of these prior results do not pro-

vide a mechanism to specify the graceful degradation of the system’s operating modes in an unfavorable

environment.

2.2.2 Proactive Methods

In this subsection, we give the previous work on thermal-aware real-time systems design focused on proac-

tive scheduling based techniques. In a reactive scheduler, the processor speed is reduced in response to a

thermal trigger (e.g.,the maximum system operating temperature is reached). In the proactive setting, the

speed schedule for the processor is determined at design time. Chantem et al. [14] made an interesting

observation for maximizing work load under thermal constraints. While working with proactive schedul-

ing, the authors show that the scheduler which maximizes workload under thermal constraints must be a

periodic. The authors determined a speed schedule such that the peak temperature constraints were met

and total work completed was maximized using a DVFS control policy for processors with discrete speed

levels.

Wang et al. [87, 88, 89] studied temperature-constrained real-time systems and performed schedu-

lability analysis of a task system. They computed upper bound on the worst-case delay for tasks with

arbitrary job arrivals for both first-in-first-out (FIFO) and static-priority (SP) scheduling algorithms, and

also showed that this simple reactive speed control decreased the response time of tasks compared with any

constant-speed scheme. However, the previous aforementioned work on proactive and reactive schemes

10

assumes either simple task models or the existence of “ideal” processor speeds which may not be feasible

even by using the recent top-of-the-line microprocessors.

There has been extensive research work on finding an optimal feasible speed for minimizing energy

consumption as well as temperature minimization. Finding an optimal speed is always possible under

the assumption that the processor can run at any speed. Yao et al. [92]. formulated speed scaling prob-

lems as scheduling problems to minimize energy consumption. The authors developed an optimal off-line

greedy polynomial-time algorithm, and also two online algorithms. Bansal et al. [6] explored algorithms

for minimizing both peak temperature and energy efficiency, and proposed an algorithm with constant

approximation ratio with respect to the optimal algorithm for managing temperature. Hung et al. [49].

investigated both power-aware and thermal-aware approaches and found a power-aware approach alone is

not able to address the temperature challenge; furthermore, many low-power techniques have insufficient

impact on chip temperature because they do not directly target the spatial and temporal behavior of the op-

erating temperature. DTM strategies also exist for multiprocessor real-time systems [15, 14, 31]; however,

most of these focus upon static speed-assignment approaches and not on a proactive schedule. Real-time

thermal analysis has been studied in the context of web servers [26], but hard deadlines are not guaran-

teed. Real-time scheduling under thermal constraints has also been evaluated for multi-function phased

array radar systems via energy minimization [43, 42]. Numerous results exist for the periodic resource

model without thermal settings. Shin and Lee [73, 74] obtained linear-time algorithms for determining

the capacity of aperiodic resource (given a periodic task system); however, the allocation may potentially

over-provision the amount of capacity needed by the task system leading to wasted processor resources.

Easwaran [23, 24] devised an exact algorithm for capacity determination and for determining the best pe-

riod of repetition. While these exact algorithms ensure that no processing resources are wasted, they may

require exponential-time in the worst case. Bini et al. [10] studied minimization of energy consumption

using periodic-resource considering discrete speed DVFS processor. Fisher and Dewan [28] developed a

polynomial-time approximation algorithm which permits a system designer to choose a trade-off between

accuracy and response time based on their requirements for non-thermal settings. In a related publica-

tion, Fisher [29] proposed a polynomial-time approximation for determining the period of repetition in

aperiodic resource.

The Table 2.1 shows the summary of previous results. Note that
√

and x indicate wether a particular

research contribute to a given category or not respectively.

11

The analysis of the previous work does not answer the following: is there any framework, that quan-

tifies the impact of real-time timing properties upon unpredictable external constraints and advises the

designer about the trade-offs between various physical and hardware constraints? Due to lack of an an-

swer to this question, we introduce a metric called system-resiliency which characterizes the maximum

external stresses that any hard-real-time performance mode can withstand. This is a generalized framework

for hard-real-time system design process. This proposed framework addresses resiliency determination for

real-time systems with physical and hardware limitations. Also, it serves as a design tool that predicts the

QoS or mode degradation due to external constraints.

Our system-resiliency framework provides a powerful model of cyber and physical system behavior.

Theocratically, the correctness of the system-resiliency is explainable; however, it is too abstract to demon-

strate the finer behavior of real-time system under multi-constrained environment. Therefore, we derive

the system-resiliency for a sub-domain (lower-dimension) to demonstrate its correctness in practice. Our

previous work [46, 48] introduces thermal resiliency – a design metric that quantifies the external thermal

constraints. Finally, we introduce the generalized system-resiliency to complete our work.

12

Table 2.1: Thermal-aware researches and their contributions

Research Real-
Time

Multi-
Core

Control-
Theoritic

Deployment Contribution

Brooks et al. [12] x x x - Framework (DTM triggers, re-
sponses, init policies)

Chen et al. [15]
√

x x Proactive -

Zanini et al. [94] x
√ √

(MPC) x -

Cohen et al. [17] x x
√

(Optimal) x -

Fu et al. [35]
√ √ √

(Robust) x DRE, simultaneous thermal-
timeliness optimization (MIMO)

Ma et al. [63] x x x - Microcode implementation

Skadron. [79] x x x CPU archi-
tecture

Hybrid architectural DTM

Wang et al. [90] x
√ √

(MPC) x Simultaneous power-frequency
optimization (MIMO)

Wang et al. [88]
√

x x - Framework (task degradation
analysis)

Fu et al. [37]
√

x
√

(Classical) x Anti-windup

Skadron et al. [78] x x x - Framework (Hotspot)

Coskun et al. [19] x
√

x O/S OS level implementation

Ferreira et al. [27]
√

x x - Framework (System wide RC
model)

Skadron et al. [77] x x
√

(Classical) x Localized DTM techniques

Hettiarachchi et
al. [46]

√
x

√ √
Hard-real-time, thermal-
resiliency

Hettiarachchi et
al. [48]

√ √ √ √
Hard-real-time, thermal-
resiliency

CHAPTER 3: MODELS AND DEFINITIONS

In this chapter, we will introduce a basic overview on notations, concepts, and models used in the thesis.

However, we only provide a very concise yet complete overview on the concepts and theories and details

can be found in relevant textbooks.

3.1 Real-Time Systems Model

In next sub sections we present real-time models, notations, and definitions.

3.1.1 Jobs and Tasks

Any real-time system can be considered as a set of concurrent tasks. Each task generates an infinite number

of jobs. The jobs from a same task obey sequential order of execution.

Definition 1 (Job). A real-time job j = (A,E,D) is characterized by three parameters, an arrival time

A, an execution requirement E, and a deadline D, with the interpretation that this job must receive e units

of execution over the interval [A,D).

3.1.1.1 Periodic Task Model

In the periodic task model [7], a task Ti is completely characterized by a 4-tuple (ai, ei, di, pi), where

1. the offset ai denotes the instant at which the first job generated by this task becomes available for

execution.

2. the execution requirement ei specifies an upper limit on the execution requirement of each job gen-

erated by this task.

3. the relative deadline di denotes the temporal separation between each jobs arrival time and deadline.

A job generated by this task arriving at time-instant t has a deadline at time-instant (t+ di).

4. the period pi denotes the temporal separation between the arrival times of successive jobs generated

by the task.

13

14

That is, Ti = (ai, ei, di, pi) generates a potentially infinite succession of jobs, each with execution-

requirement ei, at each instant (ai + kpi) for all integer k ≥ 0, and the job generated at instant (ai + k.pi)

has a deadline at instant (ai + kṗi + di) [7].

3.1.1.2 Sporadic Task Model

The sporadic task model differs from the periodic task model because of its inability to express job arrival

time until the run-time moment. A sporadic task system is comprised of a finite collection of sporadic

tasks [7].

Definition 2 (Sporadic Task). A sporadic task τi = (ei, di, pi) is characterized by a worst-case execution

requirement ei, a (relative) deadline di, and a minimum inter-arrival separation pi. Such a sporadic task

generates a potentially infinite sequence of jobs, with successive job-arrivals separated by at least pi time

units. A sporadic task system τ
def
= {τ1, . . . , τn} is a collection of n such sporadic tasks.

The utilization indicates the amount of time that system becomes busy due to tasks in a task model.

Formally, the the utilization Ui of a periodic or sporadic task Ti is defined to be the ratio of its execution

requirement to its period: Ui = ei
pi

. The utilization U(τ) of a periodic or sporadic task system τ is

defined to be the sum of the utilizations of all tasks in τ : U =
∑

Ti∈τ Ui. for any task system under

any known uni-processor scheduling algorithm, the utilization should not exceed 1 and cannot schedulable

otherwise; however, this does not necessarily say that a system is scedulable if the utilization is under 1.

This dissertation primarily focuses upon real-time work generated under the more general sporadic task

model.

3.1.1.3 Online and Offline Algorithms

In offline scheduling algorithms, all scheduling decisions are made before the system begins executing.

These scheduling algorithms select jobs to execute by referencing a table describing the pre-determined

schedule. Usually, offline schedules are repeated after a least common multiple (LCM) period. The offline

schedulers require the full knowledge of the job before the they execute.

In online scheduling algorithms, scheduling decisions are made without specific knowledge of jobs

that have not yet arrived. These scheduling algorithms select jobs to execute by examining properties of

15

active jobs. Online algorithms can be more flexible than offline algorithms since they can schedule jobs

whose behavior cannot be predicted ahead of time.

3.1.2 Scheduling Algorithms

The job execution selection in a CPU is done by the scheduler. The scheduler uses a scheduling algorithm

to achieve this task. Typical examples of scheduling algorithms are earliest deadline first (EDF), least

laxity first (LLF), rate monotonic (RM), deadline monotonic (DM), etc. In EDF algorithm at each time-

instant t schedule the job j active at time-instant t whose deadline parameter is the smallest [7]. Similarly,

in LLF algorithm, the job with the smallest laxity has highest priority at all times. One very well-known

fixed priority scheduling algorithm is the RM algorithm. In this algorithm, the task period is used to

determine priority [58]. Tasks with shorter periods have higher priority. In DM algorithm, the deadline is

used to determine the the priority. Tasks with shorter deadline have higher priority [58].

Depending on the requirement, a system might employ online or off-line scheduling algorithms. For

example, if system has a well predefined task set and there are no runtime task modifications expected,

then an off-line algorithms might be suitable. The off-line scheduling algorithms are suitable for systems

with sufficient resources. However, an off-line scheduling algorithm cannot be used to withstand contin-

uously varying dynamic task/job management. Sometimes, an online scheduling techniques which take

the dynamics of the task into account is implemented [58]. Usually online scheduling algorithms of above

kind use either control-theoretic or heuristic methods based approaches.

The primary intention of this document is to review work that analyzes the effects of resilient behavior

on a real-time system. Therefore, this document describes the outcomes of the research on different

scheduling techniques as applicable.

In next subsections, we give details on the system hardware model related to the uniprocessor systems.

3.2 Modeling of Uniprocessor Systems

3.2.1 System Hardware Models

We consider a single processor system with rudimentary DPM capabilities of only active and inactive

power modes. At any time t > 0, we denote the instantaneous CPU power as Pcpu(t). The processor

16

dissipates thermal power at a constant rate Pcpu(t) = Pact in the active mode and Pcpu(t) = Pinc in the

inactive mode and these power dissipation corresponds to the current of the equivalent electrical circuit.

While the processor is active, it dissipates heat at a constant rate Pcpu(t) = Pact. For the inactive mode, we

will assume that the processor still continues to dissipate a small amount of power Pcpu(t) = Pinc. Also,

we assume that processor consumes eact amount of energy to activate from inactive mode and einc amount

of energy to deactivate from the active mode. Even though the processor may be minimally active while

in the low-power state, we will assume (as a pessimistic assumption for the purpose of schedulability

analysis) that the processor is unavailable for task execution during this interval. If the aforementioned

assumption does not hold, the system will behave “better” than the analysis and our results will continue

to be valid. We believe this model of active/inactive modes is a very general model, applicable to a large

number of available embedded processors with rudimentary DPM capabilities1.

Furthermore, the active/inactive mode setting can model processing platforms that have limited thermal

management capabilities. For example, in a processor with a single power-mode, we may say that the

processor is active when running normal computational processes and inactive when running a “dummy”

idle process. For ideal processors with continuous power modes, Pcpu(t) may be selected from the range

[0,Pact].

3.2.2 Periodic Resource Model

Our control system for the active/inactive processor will enforce strict periodic mode changes. For this

purpose, we employ a recently proposed thermal-aware periodic resource [5] model, which is an extension

of the well-known periodic resource model proposed by [74] for compositional real-time systems. In the

thermal-aware periodic resource model, the processing resource is characterized with a two-tuple (Π,Θ).

The parameter Π is called the resource period and Θ is called the resource capacity. We will assume

that Π is a non-negative integer (likely subject to the system tick granularity). The interpretation is that

processor will be active for Θ amount of time at the beginning of each successive Π-length intervals2. The

ratio Θ/Π is called the resource bandwidth. Within each processor allocation, an arbitrary uniprocessor

scheduling algorithm (e.g., EDF or RM) may be employed to schedule the underlying task system. See
1Practically, we implement a system with Pact and Pinc power modes from any CPU with clock modulation feature, which

is standard for many low end CPUs. Also, if the CPU has DVFS capabilities, Pact and Pinc power modes can be emulated by
switching the CPU frequency between the highest and lowest available CPU frequencies.

2For system with clock modulation or DVFS capabilities, CPU active interval is Θ and inactive for Π−Θ interval.

17

Θ(i)

Π

Mode Change

Θ(i) Θ(i) Θ(j)

Mode Change

Θ(j) Θ(j)

Figure 3.1: The sampling and mode change in the thermal control system (uni-processor systems).

The blocks indicate time periods during with the processor is active under the thermal-aware periodic
resource model. Sporadic tasks are scheduled within the activation blocks.

Figure 5.1 for an illustration of the thermal-aware periodic resource.

3.2.3 Software Model

For the uniprocessor case, we assume each performance mode Mi is characterized by a sporadic task

system3 [64] with ni tasks and the resource capacity Θ(i). That is, Mi =
({
τ

(i)
1 , τ

(i)
2 , . . . , τ

(i)
ni

}
,Θ(i)

)

where each τ (i)
j ∈ Mi is a sporadic task characterized by a three-tuple (e

(i)
j , d

(i)
j , p

(i)
j) and Θ(i) is the

minimum capacity required to meet the deadlines of the tasks ofMi. (Note that we are abusing notation by

allowingMi to represent the set of tasks and the two-tuple of the mode’s task system and required resource

capacity.) In this three-tuple representation for a task, e(i)
j is the worst-case execution requirement, d(i)

j is

the relative deadline, and p(i)
j is the minimum inter-arrival separation parameter (historically called the

“period”). A sporadic task τ (i)
j may produce a (potentially infinite) sequence of jobs, where each job has

an execution requirement of e(i)
j time units and must complete d(i)

j time units after its arrival. The first job

of τ (i)
j may arrive at any time after system-start time; however, successive jobs of τ (i)

j must arrive at least

p
(i)
j time units apart. Further, throughout this thesis, unless we explicitly mentioned, we assume that the

resource period Π is identical in all modes. For mode Mi, a resource capacity of Θ(i) is provided every

resource period. Figure 3.1 illustrates the processing-time allocation in two different modes.
3Note, we will be assuming the sporadic task model throughout our objectives, but the results could be extended to other task

models without much change.

18

3.2.4 Performance Modes

We will assume that there is an ordering of real-time performance modes based on their “computational

requirements” to meet all of a mode’s deadlines. The relation Mi � Mj indicates that Mi is more com-

putationally intensive than Mj . For notational convenience, we will assume that mode M0 represents the

mode with no tasks and Θ(0) equal to zero. Furthermore, we assume that the modes are well-ordered and

have been indexed in increasing order of computational requirements; i.e., M0 �M1 �M2 � . . . �Mq.

While there are many possible ways to define the � relation, the only ordering required from the perspec-

tive of our thermal control is that Mi � Mj , if and only if, Θ(i) ≤ Θ(j); i.e., to reduce the temperature of

the system, we need to decrease the processing-time allocation.

3.2.5 Mode Change Semantics

Our model does not require any particular mode-change semantics to be adopted. Some potential options

for dealing with incompletely-executed jobs upon a mode change are:

1. aborting any incomplete jobs;

2. delaying the release of jobs in the new mode until all jobs of the old mode have completed;

3. allowing jobs of the new mode to be released, as soon as legally allowable, while jobs of the old

mode are still active.

For the purposes of our hardware testbed and simulations, we assume option 3.

3.2.6 Selection of the Scheduling Algorithm

The scheduling of real-time performance modeMi upon the thermal-aware periodic resource may be done

by any uniprocessor real-time scheduling algorithm (e.g., earliest-deadline-first or rate-monotonic [57]).

However, Θ(i) must be sufficiently large for the scheduling algorithm to correctly schedule all jobs of the

task set of Mi (i.e., {τ (i)
1 , τ

(i)
2 , . . . , τ

(i)
ni }) and (potentially) any jobs from the previous mode that have not

completed by the mode change. To obtain a proper resource allocation, Θ(i), for each mode, we use our

recently-developed hard-real-time schedulability test (for EDF scheduling under hardware/software mode

changes in the periodic resource model) to search for a safe value of Θ(i) for each mode [30] to ensure

19

that deadlines are always met. The multi-modal schedulability analysis ensures that for any valid sequence

of mode changes and valid set of job arrivals under the sporadic task model that the EDF scheduler will

always meet all deadlines. The analysis works by determining the maximum workload carried from one

mode to another and testing whether this “carry-in” will cause a deadline miss. Furthermore, any other

online scheduling algorithm can also be used (e.g., fixed priority).

3.2.7 Power/Thermal Model

For the uniprocessor case, we use the duality principle in electrical and thermal circuits to describe the

dynamics of the power dissipating source using electrical resistance/capacitance (RC) circuits. Therefore,

we represent the CPU thermal model with a single RC circuit. Figure 3.2 shows the basic equivalent

circuit for the CPU and its surrounding environment. We assume that total dissipated power of the CPU

Pcpu is equal to the sum of the power due to dynamic current Pd
cpu and power due to leakage current P`cpu.

Furthermore, we assume that the temperature-dependant leakage power may be closely approximated by

a linear function of CPU temperature [59].

Let Vcpu(t), Venv(t), and Vair(t) represent the equivalent voltages for temperatures of the CPU, envi-

ronment, and air (room) respectively. Let Tcpu be the instantaneous relative temperature of the CPU with

respect to the immediate environment (e.g., CPU casing), Tenv be the relative temperature of the immediate

environment with respect to the room air temperature, and Tair be the (absolute) room air temperature. For

example, if Tair is 20◦C, Tenv is 10◦C, and Tcpu is 15◦C, then the absolute temperature of the CPU is 45◦C.

We assume Pd
cpu(t), P`cpu(t), and Penv(t) represent, respectively, the dynamic CPU, leakage CPU, and

environment power dissipation. LetRd
cpu, Rl

cpu,Renv, Cd
cpu, C l

cpu, and Cenv represent the dynamic and leak-

age thermal resistance, environment resistance, CPU dynamic and leakage capacitance, and environment

capacitance. Finally, we let σ1
def
= 1

Cd
cpu+Cl

cpu
and kT and kC represent processor-dependent constants used

in approximating the temperature-dependant leakage current.

Next, we give the details on the system hardware model related to the multicore processor case as follows.

20

Vcpu(t) = Tcpu(t)

Venv(t) = Tenv(t)

Vair(t) = Tair(t)

Pd
cpu

P l
cpu

Penv

Figure 3.2: The basic equivalent circuit for a working CPU and its working environment

3.3 Modeling of Multicore Processor Systems

Similar to the uniprocessor case, we develop our power model to represent a wide range of embedded

processors with minimal amount of power management capabilities.

3.3.1 System Hardware Model

We will assume that the multicore processor consists of m number of active cores and each core has ac-

tive and inactive power modes 4. We denote the instantaneous CPU power of C’th core as PCcpu(t), (C ∈
{1 . . .m}) and assume it dissipates thermal power at a constant rate Pact and Pinc in the active and in-

active modes, respectively. Also, the power of each core, PCcpu(t) ∀C ∈ {1 . . .m} may vary from the

range [0,Pact]. Further, our model supports the processor to emulate the active and inactive power modes

with dynamic voltage and frequency scaling (DVFS) if the processor does not have the real active and

inactive implementation. Also, we assume that processor consumes eact and einc amount of energy to acti-
4Most of the modern CPUs do not support DFVS capability at the core granularity [1]. Therefore, in order to emulate

active and inactive power level at the core granularity, the resource capacity Θ of each core should be changed along with clock
modulation or DVFS.

21

vate/deactivate from inactive/active modes. Further, during this interval, the processor is inactive while in

the low-power state and unavailable for payload task execution. If the processor is minimally active instead

of unavailable during inactive interval, the system will behave better than the analysis and our results will

continue to be valid.

Our control system for the active/inactive processors will enforce strict periodic mode changes. For this

purpose, we employ thermal-aware periodic resource [5] model. In the thermal-aware periodic resource

model, the processing resource is characterized with a two-tuple (Π,ΘC). The parameter Π is called the

resource period and ΘC is called the resource capacity of the C’th core. We will assume that Π(> 0) is

subject to the system tick granularity. The interpretation is that processor will be active for Θ amount of

time at the beginning of each successive Π-length intervals. Within each processor allocation, an arbitrary

uniprocessor scheduling algorithm (e.g., EDF or RM) may be employed to schedule the underlying task

system. See Figure 5.1 for an illustration of the thermal-aware periodic resource.

3.3.2 Software Model

We will assume that each CPU core has specific number of possible performance modes. Also, the task

migration at runtime is not permissable and the tasks are statically partitioned within the available pro-

cessors. We assume each performance mode MC,i of the C’th core is characterized by a sporadic task

system5 [64] with ni tasks and the resource capacity ΘC,i, where ΘC,i represents the minimum resource

capacity required for i’th mode. That is,MC,i =
({
τC,i1 , τC,i2 , . . . , τC,ini

}
,ΘC,i

)
where each τC,ij ∈MC,i is

a sporadic task characterized by a three-tuple (eC,ij , dC,ij , pC,ij) and ΘC,ij is the minimum capacity required to

meet the deadlines of the tasks of MC,i. (Note that we are abusing notation by allowing MC,i to represent

the set of tasks and the two-tuple of the mode’s task system and required resource capacity.) In this three-

tuple representation for a task, eC,ij is the worst-case execution requirement, dC,ij is the relative deadline,

and pC,ij is the minimum inter-arrival separation parameter. A sporadic task τC,ij may produce an infinite

sequence of jobs, where each job has an execution requirement of eC,ij time units and must complete dC,ij

time units after its arrival. The first job of τC,ij may arrive at any time after system-start time; however,

successive jobs of τC,ij must arrive at least pC,ij time units apart. We assume that the resource period Π

is identical in all modes. For mode MC,i, a resource capacity of ΘC,i is provided every resource period.
5Note, we will be assuming the sporadic task model throughout our objectives, but the results could be extended to other task

models without much change.

22

Θ
1(i)

Π

Mode Change (Core #1)

Θ
1(i) Θ

1(i) Θ
1(j)

Mode Change

Θ
1(j) Θ

1(j)

. . .

Θ
C(i)

Π

Mode Change (Core #C)

Θ
C(i) Θ

C(i) Θ
C(j)

Mode Change

Θ
C(j) Θ

C(j)

. . .

Θ
2(i)

Π

Mode Change (Core #2)

Θ
2(i) Θ

2(i) Θ
2(j)

Mode Change

Θ
2(j) Θ

2(j)

. . .

..
.

..
.

Figure 3.3: The sampling and mode change in the thermal control system (multicore processor system).

The blocks indicate time periods during with the processor is active under the thermal-aware periodic
resource model. Sporadic tasks are scheduled within the activation blocks .

Figure 3.3 illustrates the processing-time allocation in two different modes.

3.3.3 Performance Modes

Similar to the uniprocessor case, we assume that there is a partial ordering of real-time performance modes

based on their “computational requirements” to meet all of a mode’s deadlines. The relation MC,i �MC,j

indicates that MC,i is more computationally intensive than MC,j . For notational convenience, we will

assume that mode MC,0 represents the mode where with no tasks and ΘC,0 equal to zero. Furthermore,

we assume that the modes are well-ordered and have been indexed in increasing order of computational

requirements; i.e., MC,0 � MC,1 � MC,2 � . . . � MC,q. While there are many possible ways to define

the � relation, the only ordering required from the perspective of our thermal control is that MC,i �
MC,j , if and only if, ΘC,i ≤ ΘC,j ; i.e., to reduce the temperature of the system, we need to decrease

the processing-time allocation. Furthermore, we do not define any relationship with modes on different

processors. For example, the relationship MCp,i to MCq ,i, Cp, Cq ∈ {1 . . .m} is not defined. Our system

allows jobs of the new mode to be released, as soon as legally allowable, while jobs of the old mode are

still active.

23

The scheduling of real-time performance mode MC,i upon the thermal-aware periodic resource may

be done by any real-time scheduling algorithm (e.g., earliest-deadline-first or rate-monotonic [57]). Note

that we do not consider the task migration within cores, thereby we can carry out the schedulability test on

each core individually. However, ΘC,i must be sufficiently large for the scheduling algorithm to correctly

schedule all jobs of the task set of MC,i (i.e., {τC,i1 , τC,i2 , . . . , τC,ini }) and (potentially) any jobs from the

previous mode that have not completed by the mode change. To obtain a proper resource allocation, ΘC,i,

for each mode, we use our hard-real-time schedulability test (for EDF scheduling under hardware/software

mode changes in the periodic resource model) to search for a safe value of ΘC,i for each mode [30] to

ensure that deadlines are always met.

3.3.4 Power/Thermal Model

The thermal architecture (model) of a multicore processor should contain the component to represent

each CPU core as well as inter-core thermal effects. For multicore processor thermal model, we extend

the RC circuit that we developed for the uniprocessor case. Therefore, we describe the dynamics of the

power dissipating source using electrical resistance/capacitance (RC) circuits. Figure 3.4 shows the basic

equivalent circuit of a multicore CPU and its surrounding environment. We assume that total dissipated

power of C’th CPU core, PCcpu is equal to the sum of the power due to dynamic current Pd
cpu

C
and power

due to leakage current P`cpu

C
of C’th core. Also, we assume that the leakage and the dynamic current parts

within different cores are approximated with single component.

Let V Ccpu(t) and V Cenv(t) represent the equivalent voltages for temperatures of the C’th core of the CPU

and environment (room) respectively. Let T Ccpu be the instantaneous relative temperature of the C’th core

of the CPU with respect to the immediate environment (e.g., CPU casing), T Cenv be the relative temperature

of the immediate environment.

Let Penv(t) represents, the environment power dissipation. LetRd
cpu(i,j), R

`
cpu(i,j), Renv, Cd

cpu(i,j), C
`
cpu(i,j),

and Cenv represent, respectively the dynamic and leakage thermal resistance, environment resistance,

CPU dynamic and leakage capacitance, and environment capacitance between i’th and j’th cores, i, j ∈
{1 . . .m}.

24

Tenv

P1
cpu

Core#1

Core#2
Core#3

Core#4

P3
cpu

P2
cpu

P4
cpu

I11
I44

I33 I22

I12

I23

I34

I41

Tcpu11

Tcpu22

Tcpu33

Tcpu44

Tcpu12

Tcpuij = Tcpujj − Tcpuii ∀i, j ∈ {1 . . . 4}

Tcpuii, ∀i, j ∈ {1 . . . 4} (i’th CPU Temperature W.R.T. Environment)

P l
cpu

Pd
cpu

Figure 3.4: The thermal model of the CPU and its working environment.

The basic equivalent electrical circuit of the thermal model of the CPU and its working environment. (for
simplicity, the figure shows the structure with 4 adjacent cores) Arrow direction shows the current (A)
direction of the equivalent electrical circuit.

25

3.3.5 Generalized Model

System designers use differential equations to construct mathematical models of physical systems [11].

They are widely used in industry. Furthermore, there are mathematical techniques to convert higher-

order differential equations to system of first-order differential equations. Since the system of first-order

differential equations characterizes a state-space model, in this research, we use the following state-space

model to describe the underlying physical capabilities and dynamics of a generalized system,

Ẋcpu = AXcpu + Bρcpu,

Ycpu = CXcpu, (3.1)

where, Xcpu, Ẋcpu, Ycpu, and ρcpu represent the state-space variable, the first derivative of the state-space

variable, system output, and the control input, respectively. The dimensions of the these variables depend

upon the number of physical capabilities (such as controllable parameters of the system) and observable

states (parameters that can be measured or defined according to the designer’s need) that are modeled

in the system. For a system with ` capabilities and o observable states, the state-space variable is a o-

dimensional vector and the control input is a `-dimensional vector. Also, A, B, and C are state-space

parameters. A more detailed description about state-space model and its derivations can be found in a

standard texts [21][65][66].

3.3.6 Generalized System Software Model

An adaptive real-time system requires a specification of how the underlying real-time software is affected

by changes in the processor state due to changing environmental conditions (e.g., how are deadlines af-

fected by reducing processing frequency or durations?). Our software model assumes that each core has

specific performance modes and no runtime task migration is allowed – i.e., tasks are statically partitioned

within the available processors. In our notation, the i’th performance mode of the C’th core, MC,i is

characterized by a sporadic task system6 [64] with ni tasks and the resource capacity ΘC,i, where ΘC,i

represents the minimum resource capacity required for i’th mode. Therefore, using abused notation,
6Note, we will be assuming the sporadic task model throughout our objectives, but the results could be extended to other task

models without much change.

26

MC,i can be used to represent the two-tuple of the mode’s task system and required resource capacity,

MC,i =
({
τC,i1 , τC,i2 , . . . , τC,ini

}
,ΘC,i

)
, where each τC,ij ∈ MC,i is a sporadic task characterized by a

three-tuple (eC,ij , dC,ij , pC,ij) and ΘC,i is the minimum capacity required to meet the deadlines of the tasks

of MC,i. Furthermore, we use Mrt to denote a mode-vector, Mrt =
[
M1,i1 M2,i2 . . . Mm,im

]T

that represents the modes of all the cores of the system at a given time, where MC,i1 . . .MC,im represents

different possible modes in each core and T denote the matrix transpose operation. (An alternative to

resource capacity–for future work–could potentially be CPU core frequency, f i to represent processing

resources for i’th performance mode). In this three-tuple representation for a task, eC,ij is the worst-case

execution requirement, dC,ij is the relative deadline, and pC,ij is the minimum inter-arrival separation pa-

rameter. A sporadic task τC,ij may produce an infinite sequence of jobs, where each job has an execution

requirement of eC,ij time units and must complete dC,ij time units after its arrival. The first job of τC,ij may

arrive at any time after the start of mode MC,i; however, successive jobs of τC,ij must arrive at least pC,ij

time units apart.

Similar to multicore processor case, for the generalized model, we employ the thermal-aware periodic

resource [5] model. For mode MC,i, a resource capacity of ΘC,i is provided every resource period; each

core’s resource capacity can be viewed as a variable that controls one of the ` physical capabilities of the

processor.

3.4 Control Systems Basics

Control theory gives a theoretical guarantee about the stability and the expected behavior of a system.

The designer determines timeliness guarantee of a system (e.g., in thermal-aware system, how quickly the

temperature settles back to the desired temperature), and an analysis of the maximum deviation of a system

from its normal operation using control theory. These are very useful in developing a real-world systems

as engineers can design a safe system without risking an actual emergency.

Often real-time systems integrate with control theory to produce sophisticated real-world systems. For

example, consider the operation of a computer numerical controlled (CNC) machine that cuts metal in a

three dimensional surface. The final metal cutting quality and the safety (of the operator and the machine

itself) depend on the calculation and temporal accuracy of the real-time computer as well as the accuracy

of the controller. The machine determines its next servo action with respect to multiple calculations and

27

Figure 3.5: A control system with a feedback

actuate multiple servo systems. A typical CNC machine continuous the above operation 2000 times per

second. A complex system such as described above will not work as expected if they are not hard real-

time control systems. Therefore, studying the integration of the control systems with real-time systems

is important. Also, studying correct methodologies to applying the control systems theory within the

real-time frame work is a valuable design experience.

There are several classes of controllers available. Depending on the design requirements, the most

appropriate class of application can be used. For example, the classical control theory is very mature

and it has the ability to analyze the system behavior and the relative stability through phase and gain

margins [32, 67] explained below. However, classical theory has a disadvantage that it does not support

multi-input, multi-output (MIMO) systems. If any MIMO system has to be analyzed with classical control

systems, it has to be done in several iterations, one control loop at a time. To address the limits of classi-

cal control theory, a modern control theory techniques were developed. With modern control theory, the

MIMO systems can be handled elegantly. However, in modern control theory, some concepts such as the

relative stability and gain and phase margin (explained below) are not fully developed.

3.4.1 Basic Control Terminology

In the rest of this chapter, the details of different control theory classes are described. The following

definitions and terms are widely used in explaining control systems and their applications. These terms

are equally applicable for both classical and modern control systems.

28

Definition 3 (Control Variable and Manipulated Variable). The controlled variable is the quantity or con-

dition that is measured and controlled. The manipulated variable is the quantity or condition that is varied

by the controller [67].

Normally, the controlled variable is the output of the system. When a control system uses its output to

investigate the status of the systems, it is commonly known as a feedback control system. In a feedback

control system, the controlled variable (output) is compared with the desired output (reference) of the

system. The feedback control systems are also known as closed loop systems. On the other hand, system

without a feedback is known as open loop system. Further, the difference between the reference to the

controlled variable is commonly known as the error. The desired action of any control system is to reduce

the error.

Definition 4 (Plant). A plant may be a piece of equipment, perhaps just a set of machine parts functioning

together, the purposes of which is to perform a particular operation [67].

In this survey, active thermal model of the CPU was considered as the plant.

Definition 5 (Transfer Function). The transfer function of a linear system is the ratio of the Laplace

Transform of the output to the Laplace Transform of the input [67].

3.4.2 The Phase and Gain Margins

The intuitive meanings of the gain and phase margin [67, 21, 65] are as follows. Gain and phase margins

are measures of stability for a feedback system. Gain margin is the difference between unity and open loop

gain (see Section 3.4.1) when the phase plot is −180◦. A system with greater gain margin can withstand

greater changes in system parameters before becoming unstable in closed loop. Also, the phase margin is

equal to the phase difference between open loop phase and−180◦ when 0dB is the frequency in magnitude

plot [67, 22, 65, 21]. The phase margin also measures the system’s tolerance to time delay. The gain and

phase margins are the relative stability and robustness indicators7 of any control systems. Unfortunately,

with modern control theory it is not possible to derive these important parameters easily [21, 67]. The

following Figure 3.6 shows gain and phase margins in a Bode plot.
7A controller is considered as robust if it can withstand a higher different level of tolerance (deviation from the particular set

of parameters that was originally designed). High-gain (negative) feedback is an artifact of a basic robust control method. With
the help of sufficiently larger gains, the effect of input variations can be nullified in most stable controllers [8].

29

−100

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

−270

−180

−90

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 13.3 dB (at 5.48 rad/sec) , Pm = 101 deg (at 1.85 rad/sec)

Frequency (rad/sec)

Figure 3.6: The phase margin and the gain margin of a system

3.5 Classical Control Theory

Classical control theory is appropriate if the plant model is (nearly) exactly known. A wealth of theories

and common knowledge are particularly helpful for application engineer to solve issues for such plants. In

classical control theory, the stability analysis of the system is done mainly with the help of plant transfer

function (see Definition 5). The poles and zeros of a transfer function are the values for which the output of

the transfer function becomes infinity or zero respectively. By analyzing the zeros and poles of the closed

loop transfer function, the stability the system can be determined. However, due to computational difficulty

of the closed loop transfer function, usually the stability is analyzed using root locus [21] techniques.

Further, the relative robustness (refer to Section 3.4.2) is analyzed using frequency plots [21]. The above

Figure 3.7 shows the root locus of transfer function G(s) = −2.006s3−4.99s2−6.69.9s−2.4534
s3+3.18S+3.2s+1.07

.

Following are the lemmas to analyze the stability of a control system under classical methods.

Lemma 1 (from [67]). A linear time invariant (LTI) system is asymptotically stable if and only if its all

poles lie left half of the complex plane.

Also, for discrete-time LTI which is given as follows:

Lemma 2 (from [66]). A discrete-time linear time invariant (LTI) system is asymptotically stable if and

30

−4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 3.7: The root locus of transfer function G(s)

only if its all poles lie strictly inside the unit circle.

3.5.1 Proportional Integral Derivative Controllers

Proportional integral derivative (PID) controllers are considered as the most basic and easy to design and

implement in classical control theory. Equation 3.2 below shows the basic PID equation in a typical plant:

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

d

dt
e(t), (3.2)

where, KP , KI , and Kd denotes the proportional, integration, and derivative controller gains. e(t)

denotes the the error (the difference between the reference and the output signal), and u(t) denotes the

plant input. The PID controller takes the error signal (e(t)) as input signal and modify it according to the

Equation 3.2, so that the output of the (PID) controller can be used as an input to a given plant.

The PID controllers are easy to adjust to a particular application with its there parameters. For ex-

ample, if a particular application require a rapid response, then the proportional constant of the controller

needs to be increased. Depending on the requirement, sometimes application developers select PI, PD, P

controllers. By refereing to the step response plot, the designer can get a clear idea about the overshoot,

steady state error, peak time, and other important parameters [44] of the controller dynamics For a detailed

treatment of the above parameters can be found in any classical control theory theory text (please refer

to [67, 21, 65]).

31

3.5.2 Anti-Windup Controller

There are situations in classical control systems that should be handled with special care. In any control

system, the manipulated variable (plant input) has its limitations and the input value should not exceed

given boundary values. For example, when any control system manipulates the utilization as the plant

input, it should not exceed the utilization bounds of the underlying scheduling algorithm of the system

(say umax). This means, when the controller calculates any input value higher than umax, there should

be extra control mechanisms to correct this situation. Similarly, when the input value passes certain lower

bound, it should be corrected. The control mechanism that corrects the input saturation situation is called

anti-windup controller [65, 21].

Therefore, the system input, uc(t) is modified to u(t) with anti-windup correction as follows:

u(t) =





−umax, for uc(t) < −umax;

uc(t), for uc(t) ≤ umax;

umax, for uc(t) > umax.

(3.3)

Meanwhile, a similar input saturation situation is handled by the optimal controllers differently. In

optimal controllers, the input saturation is defined as a constraint for the controller (input constraints) and

therefore, there is no need to modify the control structure. Therefore, optimal controller techniques solves

the optimality of the system to meet the constraints. Standard texts in optimal control theory (please refer

to [56]) give elaborative explanation about this problem formulation.

3.6 Modern Control Theory

The modern control theory uses a state-space model. This makes it easy to implement and analyze using

computers. Because it allows to analyze MIMO systems, larger systems with highly complex nature can

be analyzed easily. Also, the modern control theory utilizes the time-domain analysis, which make it

more easy to interpret at the design time. In state-space model, the following equations/notation is used to

denote the basic control structure [67].

32

ẋ(t) = A(t)x(t) +B(t)u(t) + f,

y(t) = Cx(t), (3.4)

where x(t), u(t), and y(t) represent the state vector, the input vector, and the output vector, respectively.

A(t), B(t), and C represent the system matrices and f represents a constant vector. All the state matrices

can be constant vectors and time-invariant quantities or they can be time-varying quantities. If A and B

are linear and time-invariant, the system can be analyzed as linear time invariant (LTI) system. Otherwise,

different system theories can be applied to find the system stability (non-linear, optimal control theory

etc.).

Also, for discrete time state-space model the following equations are commonly used [32].

x((k + 1)Ts) = Gx(kTs) +Hu(kTs) + f̃ ,

y(kTs) = C̃x(kTs), (3.5)

for LTI case we can find the inter-relation of state space matrices [32] as G = eATs , H =
∫ Ts

0 eAtdtB,

C̃ = C. eATs , and f̃ =
∫ Ts

0 eAtfdt, can be computed by L−1{(sI −A)−1}t=Ts , where L−1 is the inverse

Laplace transform. We abuse the notation by representing x(kTs) as x(k), x((k + 1)Ts) as x(k + 1),

u(kTs) as u(k), and y(kTs) as y(k). The above definitions may be found in any textbook on discrete-time

control theory [66].

Stability is a broad concept in control systems. Depending on the type of the system, (whether non-

linear or time-variant) the correct stability analysis should be used. The most commonly used control

systems in thermal-aware scheduling can be analyzed with the following criteria. For the asymptotic

stability for a continuous LTI system, the following lemma is used:

Lemma 3 (from [67]). A linear time invariant (LTI) system is asymptotically stable if and only if its all

eigenvalues of A lie left half of the complex plane.

Also, for discrete-time LTI, stability is given as follows:

Lemma 4 (from [66]). A discrete-time linear time invariant (LTI) system is asymptotically stable if and

33

only if its all eigenvalues of G lie strictly inside the unit circle.

The controllability of a system is a critical factor to consider in any state-space model.

Lemma 5 (from [21]). The system of Equation (3.4) is completely controllable if there exists an uncon-

strained u(t) such that it can control any initial state x(t0) to any desired final state xf in a finite time,

t0 ≤ t ≤ T . The property of completely controllable can be determined by examining the algebraic

condition

rank[B AB A2B ... Am−1B] = m, (3.6)

where, A is m×m and B is m× r matrix.

Generally, the concepts of controllability and observability [66, 32] play an important role in modern

control systems design. In many real world situations, one or more state variables might not be possible to

measure physically. For example, the output temperature of a plant might be a combination of several state

variables. Although it is possible to measure the plant output temperature, the individual state variables

might not be separately measurable. To overcome this infeasibility, control theory provides technique

called observer. The observer provides an estimate of state variables from input and output parameters.

Observer design is not possible in every control system. If the plant meets the observability criteria, it

is observable [21, 65, 66] and an observer can be designed. Also, the controllability of a plant is a very

important factor to analyze. If the plant does not meet the controllability criteria (given in Lemma 5), it is

not possible to develop a stable controller to the plant. Therefore, in the controller design, the first step is

to inspect the controllability [21]. If controllability fails, it is not recommend to design a controller directly

to the plant [32].

Since the full exposition of classical control theory is beyond the scope of this dissertation, proofs of

the above results are not provided and they can be found in any standard text on control theory [21, 65, 66].

3.6.1 Optimal Controllers

Optimal control theory is used to handle relatively non-aggressive systems. The control goal is to optimize

the performance of the system for a defined time frame. The theoretical derivations for optimality can be

done using Pontryagin’s maximum principle (a necessary condition), or by solving the Hamilton-Jacobi-

Bellman equation (a sufficient condition) [56]. The optimal control solves the problem of finding a control

34

law for a given system while certain physical constrained are met. In optimal control problem, normally

a cost function is formed. The cost function consists of state vectors and system inputs. Depending on

the importance given by the designer to each state vectors, system inputs, or system outputs, the weight

matrices can be decided (adjusted) for each entity. The optimal control problem can be reduced to set of

differential equations describing the paths of the control variables that minimize the cost function.

3.6.2 Model Predictive Controllers (MPC)

Model predictive controllers (MPC) are classified as advanced optimal controls, that gives some advantage

over non accurate plant model. In MPC, the predictive horizon means the entire time windows that the

problem is defined and the control horizon defines the time window that input controls could manipulate.

MPC is based on iterative, finite horizon optimization of a given model. In MPC, similar to optimal control

system, a cost function is formed. The cost function consists of state vectors and system inputs. Depending

on the importance given by the designer to each state vectors, system inputs, or system outputs, the weight

matrices can be decided (adjusted) for each entity. In each sampling interval, the cost function is calculated

and it is minimized for the entire predictive horizon. This calculation is carried out online to find the next

position of the plant trajectories. Although in each sampling interval, the complete control trajectory is

calculated for the entire control horizon, only the first step of the control strategy is implemented. Then the

plant state is sampled again and the calculations are repeated in the next sampling interval. In this process

the prediction horizon keeps being shifted forward the prediction horizon. Therefore, sometimes MPCs

are also known as receding horizon control.

MPC controller calculates the entire input trajectory online at each sampling interval; when the pre-

diction and control horizons are large, the online optimization calculation might require substantial CPU

resources. Since the optimization calculation process is repeated for entire predictive horizon, the MPC

require a substantial amount of calculation in each sample time. Therefore, a hard real-time system that

does not have sufficiently large additional resources for online MPC calculation will suffer from delay

effects [75, 91] due to calculation delay. On the other hand, if the highest priority is given to the MPC cal-

culations, other hard real-time tasks will suffer. Therefore, MPC should be used for hard real-time systems

with certain restrictions [56, 67, 32].

35

3.7 Summary

In this chapter, we briefly explain the models, notations, and theories used in the rest of the chapters. In

the next chapter, we will extend our discussion to present the thermal-resiliency on uniprocessor systems.

CHAPTER 4: THERMAL-RESILIENCY ON

UNIPROCESSOR SYSTEMS

In this chapter, we introduce a new metric called thermal-resiliency which characterizes the maximum ex-

ternal thermal stress that any hard-real-time performance mode can withstand. We show how to solve some

of the issues and challenges of designing predictable real-time systems in an unpredictable thermal envi-

ronment where environmental temperature may dynamically change (e.g., implantable medical devices).

Towards this challenge, we propose a control-theoretic design methodology which permits a system de-

signer to specify a set of hard-real-time performance modes under which the system may operate. The

system automatically adjusts the real-time performance mode based on the external thermal stress. We

show (via analysis, simulations, and a hardware testbed implementation) that our control-design frame-

work is stable and control performance is equivalent to previous real-time thermal approaches, even under

dynamic temperature changes. A crucial and novel advantage of our framework over previous real-time

control is the ability to guarantee hard deadlines even under transitions between modes. At the end of the

chapter, we show how our system design permits the calculation of a new metric called thermal resiliency

which characterizes the maximum external thermal stress that any hard-real-time performance mode can

withstand. Also, we show how our design framework and analysis may be classified as a thermal stress

analysis for real-time systems.

This chapter presents a methodology for designing and analyzing single core, thermal-resilient hard-

real-time systems. Section 4.1 gives a brief introduction and Section 4.2 presents a high-level overview

of our methodology. Section 4.3 overviews the hardware, real-time, and thermal models used throughout

the chapter. Section 4.4 details the design of our thermal-resilient controller. Section 4.5 derives thermal-

resiliency function Λ for control system. Section 4.6 describes the results of our comparison with previous

control systems via simulation and implementation upon testbed hardware. In the next chapter, we pro-

vide formal derivations and proofs necessary to establish the hard-real-time system guarantees. Finally,

Section 4.7 gives a summary of this chapter.

36

37

4.1 Introduction

Modern computer-controlled systems are often deployed in dynamic and unpredictable thermal operat-

ing environments. From the hardware-design perspective, material scientists and computer engineers use

rigorous thermal-stress analysis techniques (e.g., see [72]) to determine how the underlying physical hard-

ware will withstand applied internal and external thermodynamic forces. Unfortunately, equivalent anal-

ysis does not exist for determining the effects of (unpredictable) thermal stress on the performance of

the systems software. While hardware capabilities such as dynamic power management (DPM) permit

a computing system to reduce its power dissipation at run-time, many embedded systems have real-time

constraints which may be adversely affected by unexpected changes in processor speed.

Unfortunately, no current formal real-time design and analysis framework fully addresses the above

setting. Recently-proposed control-theoretic frameworks exist for regulating processor temperature for

soft-real-time systems (i.e., systems where jobs are permitted to “occasionally” miss computational dead-

lines) in an unpredictable thermal environment [37, 36]. While their results successfully show that it is

possible to obtain stable and responsive thermal behavior and system utilization control, a system designer

cannot use their approaches to a priori determine the amount of system-performance degradation due to

changes in the thermal environment. Instead, the level of degradation can only be indirectly inferred via

simulations of the system for different operating conditions. Furthermore, hard timing guarantees cannot

be made in these frameworks. Techniques also already exist for permitting a trade-off between real-time

QoS and processing resources (e.g., the QoS-based resource allocation model (QRAM) [69]); however,

while such techniques may guarantee real-time deadlines under a fixed level of resources, they cannot guar-

antee deadlines when a system must dynamically switch between real-time modes (due to the uncompleted

execution remaining at mode transitions). Furthermore, none of these previously-proposed techniques can

be used to obtain a precise, formal quantification of the thermal stress that the system can withstand.

In this chapter, we address the challenge of determining the real-time guarantees in the presence of

unpredictable dynamic environmental conditions. Towards this goal, we propose a framework and mecha-

nisms for thermal-stress analysis in real-time systems. Our objective is to develop techniques that permit a

system designer to specify, a priori, a precise quantification of the hard-real-time performance degradation

due to external thermal events, via a new system design metric called real-time thermal resiliency. Infor-

mally, real-time thermal resiliency is a prediction of the maximum external operating temperature at which

38

a specified real-time performance mode (e.g., quality-of-service) may be guaranteed in the system steady-

state (i.e., a time at which system properties have converged and do not change). To illustrate, consider

a system with q different (system designer-defined) hard-real-time performance modes M0,M1, . . . ,Mq

where modes are ordered in increasing levels of real-time performance with Mq guaranteeing the highest

level and M0 the lowest. The real-time thermal resiliency of any mode Mi, denoted as Λ(Mi, Tref), is the

predicted maximum external operating temperature for which the system will continue to operate (in the

steady state) at performance mode Mi or higher and maintain a CPU reference temperature of Tref. Fur-

thermore, if the external temperature exceeds Λ(Mi, Tref), then the system should automatically degrade

to the next lowest performance mode Mi−1. The capability to define (at system-design time) thermal-

resilient, real-time performance modes allows the system designer to specify how a system will gracefully

and predictably degrade under external thermal stress; furthermore, the ability to accurately determine the

real-time thermal resiliency of a performance mode provides a real-time system designer with a thermal-

stress analysis framework analogous to stress analysis techniques in physical sciences and engineering.

In the IMD example above, the thermal-resiliency function Λ may be used to determine (at design time)

the body-temperature that a given set of tasks may safely operate at without doing damage to surrounding

tissue.

4.2 Methodology Overview

We now describe at a high level the major steps of our thermal-resilient design and analysis methodology.

1. System Hardware Specification: In the first step, the system designer must specify the processing

and DPM capabilities of the system. Throughout this paper, we will be illustrating and validating

our methodology upon an Intel Pentium IV 3.0 GHz single-core processor testbed. To match the

rudimentary DPM capabilities often present in embedded processors, our testbed possesses the abil-

ity to only modulate the power modes of the system between active and inactive states. Section 3.3.1

gives more detail on the hardware model and our testbed implementation details.

2. System Software Specification: The system designer must specify the set of valid software modes

M0,M1, . . . ,Mq for the system. In Section 3.3.2, we discuss using the sporadic task model [64] as

a model for real-time workload of each software mode.

39

3. Real-Time Mode Resource Allocation: After the HW/SW specification steps, the designer must

determine the minimum resource allocation under which the multi-mode system is schedulable. We

discuss in Section 3.3.2 how recent techniques for schedulability analysis of hard-real-time systems

where both the hardware and software change modes may be used in allocating sufficient processing

time to each mode.

4. Power/Thermal Model Evaluation: Given the processing platform, we need an accurate power

model in order to derive formal guarantees on the thermal resiliency of the system. Due to the

duality between electrical and thermal circuits, we model the thermodynamics of our processing

system using the resistance/capacitance (RC) circuits. We use system identification (SI) to identify

the system parameters and evaluate the efficacy of our power-model choice. The details on the

derived parameters for our hardware testbed are explained in the Section A.2 of the appendix.

5. Control System Design: We design a control structure based on optimal control theory. In this

process, we use the SI parameters (determined in the previous step) to design the feedback gain

parameters. We present details on our controller design in Section 4.4.

6. System Simulation: We build a system simulator which implements the real-time scheduling algo-

rithm and control algorithm and simulates the real-time and thermal behavior of the system based

on the resource allocations and power model derived in Steps 3 and 4. The details of our simulator

are provided in Section 4.6.

7. Thermal-Resiliency Function Calculation: Given the real-time mode resource allocation, power

model, controller, and simulator observations obtained from Steps 3, 4, 5, and 6 we can obtain a

quantification of the thermal-resiliency function Λ. We give details on the derivation of this function

in Section 4.5.

8. System Validation: We finally validate our system simulator and thermal-resiliency calculations in

Section 4.6 by comparing directly with observations from our hardware testbed. Our comparison

shows that the system simulator closely models the actual testbed behavior. Furthermore, we validate

that our predicted thermal-resiliency Λ function is accurate by observing that it closely tracks the

actual hardware testbed behavior.

40

While most of the steps above are standard practice in control system design, we would like to empha-

size that our ability to ensure the hard-real-time schedulability of each mode in Step 3 and obtain a priori

guarantees on thermal resiliency in Step 7 distinguishes our approach from previous thermal control for

real-time systems.

Importantly, our proposed control framework may be considered a proactive scheduler; however, we

attempt to remove some ideal assumptions by working with only two power modes and the more general

sporadic task model. Also, we consider the ambient temperature changes and analyze the effects on the

task system due to its variation.

4.3 Models

We consider a single processor system with rudimentary DPM capabilities of only active and inactive

power modes as explained in the Subsection 3.2.1.

In the Introduction Section (4.1) of this chapter, we proposed a system model of real-time performance

modes M1, . . . ,Mq. We will assume that there is an ordering of real-time performance modes based on

their “computational requirements” to meet all of a mode’s deadlines. The relation Mi � Mj indicates

thatMi is more computationally intensive thanMj . As we defined in the Subsection 3.2.3, for the purpose

of this uniprocessor case, we will assume each performance mode Mi is characterized by a sporadic task

system. Figure 3.1 illustrates the processing-time allocation in two different modes.

In our uniprocessor case, the scheduling of real-time performance mode Mi upon the thermal-aware

periodic resource may be done by any uniprocessor real-time scheduling algorithm (e.g., earliest-deadline-

first or rate-monotonic [57]). However, Θ(i) must be sufficiently large for the scheduling algorithm to

correctly schedule all jobs of the task set of Mi (i.e., {τ (i)
1 , τ

(i)
2 , . . . , τ

(i)
ni }) and (potentially) any jobs from

the previous mode that have not completed by the mode change.

To obtain a proper resource allocation, Θ(i), for each mode, we use our recently-developed hard-

real-time schedulability test (for EDF scheduling under hardware/software mode changes in the periodic

resource model) to search for a safe value of Θ(i) for each mode [30] to ensure that deadlines are always

met. The multi-modal schedulability analysis ensures that for any valid sequence of mode changes and

valid set of job arrivals under the sporadic task model that the EDF scheduler will always meet all dead-

lines. The analysis works by determining the maximum workload carried from one mode to another and

41

testing whether this “carry-in” will cause a deadline miss.

We use the thermal/power model defined in the Subsection 3.2.7. As we previously mentioned, our

model uses the duality principle in electrical and thermal circuits to describe the dynamics of the power

dissipating source using electrical resistance/capacitance (RC) circuits. Figure 4.3 shows the basic equiv-

alent circuit for the CPU and its surrounding environment. We assume that total dissipated power of the

CPU Pcpu is equal to the sum of the power due to dynamic current Pd
cpu and power due to leakage current

P`cpu. Furthermore, we assume that the temperature-dependant leakage power may be closely approximated

by a linear function of CPU temperature [59].

4.3.1 The Testbed

As a case study of our methodology, we have built a hardware testbed using an Intel Pentium IV 3.0 GHz

single core processor running a modified Linux kernel (2.6.33.7.2-rt30 PREEMPT RT). The low power

CPU on our testbench does not have a System Developer Interface to measure the on-die temperature 1

directly. We follow the procedure given in the Intel Documentation [4] and install a T-type thermocouple

on the CPU die2. We use Phidgets 4-port temperature sensor board to measure the environment, air, and

the on-die temperature through the USB driver and allows us to directly interface the sensors with the

testbed software.

We develop a loadable kernel module to activate and vary the frequency modulation level at run-time.

We use Model Specific Registers (MSR) to control the frequency modulation ratio in the clock and select

the higher and the lowest frequency modulation indices to emulate the low and the higher power levels.

We use 12.5% and 87.5% modulation ratios in the IA32 CLOCK MODULATION MSR for active

and inactive power mode emulation.

We develop a multi-threaded application using Linux native posix thread libraries (NTPL). Our ap-

plication consists of a scheduler simulator and a thread activator where the schedule simulator selects the

EDF based jobs from the local ready-queue and dispatches them into a thread activator. The thread ac-

tivator consists of a very high priority thread (priority is set to higher than the threaded IRQ handlers),

emulates the schedule tick in the Linux kernel in higher level abstraction. Similar to the Linux kernel
1The Intel documentation says that a on-die sensor is present, however, they have not provided a system developer interface

to measure the on-die temperature by means of software methods as opposed to latest CPU families.
2We mount a T-type thermocouple on the CPU die using a small penetration made by a precise milling machine as recom-

mended by the Intel.

42

ControllerTair

PWM Driver
Tcpu

CPU

Sensor

Modulation

Scheduler

Θ
Tenv

Π

Mode Selector

Frequency

MSR

Temp.

Mi

Figure 4.1: The implementation details of the testbed.

Note that the scheduler is responsible for EDF selection of jobs, activation of task threads to fill Θ and
activation of idle thread during Π−Θ, and thereby emulating the PWM cycle.

scheduler tick, the thread activator sleeps until it wakes up accurately in the scheduling boundaries. Our

thread activator wakes up in unequal tick intervals to schedule jobs, raises the appropriate thread which

should have the priority, and goes back to the sleeps. The jobs are selected by the schedule simulator

according to EDF. This process repeats and the amount of time allocates to each job depends on EDF and

the total time depends on the Θ given by the optimal controller.

Figure 4.1 provides a high-level overview of the workflow for the different components of our frame-

work. The controller after sampling the temperatures determines the capacity. The capacity is given to the

PWM controller and the real-time performance mode selector. The PWM modulates the frequency of the

CPU via the MSR and an OS Scheduler (EDF) determines how to schedule the selected performance mode

within the PWM duty cycle. Our temperature sensors sample the temperatures and the process iterates ad

infinitum.

43

(A)

(D)

(C)
(B)

(F)
(E)

Figure 4.2: The physical testbed preparation steps.

We selected low power Intel Pentium P4 processor that has minimal power saving features. In the figure,
Part A) shows the tiny impression (a hole) made on the processor heat spreader, B) shows T-type thermo-
couple has been mounted on the processor with heat resistant adhesive (silicon grease is shown in white
color on the processor heat spreader), C) shows the processor is mounted in ZIF socket, D) shows the
minimal heat-zink that we initially used to run the experiment (but failed to withstand the heat dissipation
of the processor and later we changed to the regular heat sink), E) shows the Phidget 4 port thermal sensor
board along with the environment temperature sensor of the testbed, and F) shows the testbed and the NI
DAQ board in action.

44

Vcpu(t) = Tcpu(t)

Venv(t) = Tenv(t)

Vair(t) = Tair(t)

Pd
cpu

P l
cpu

Penv

Figure 4.3: The basic equivalent circuit for a working CPU and its working environment

4.3.2 Power/Thermal Derivations

We apply the Kirchhoff’s circuit laws for our RC thermal model (in Figure 4.3) and get the following

equations for Tcpu(t),

Tcpu(t)

Rd
cpu

+ Cd
cpu

d

dt
Tcpu(t) = Pd

cpu(t) (4.1)

Tcpu(t)

Rl
cpu

+ C l
cpu

d

dt
Tcpu(t) = P`cpu(t) (4.2)

= kT
(
Tcpu(t) + Tenv(t)

)
+ kC .

Adding (4.1) and (4.2), and solving for d
dtTcpu(t),

d

dt
Tcpu(t) = σ1

(
kT −

1

Rl
cpu
− 1

Rd
cpu

)
Tcpu(t) + kTσ1Tenv(t) + σ1Pd

cpu(t) + σ1kC . (4.3)

We obtain the following equation for Tenv(t),

Tenv(t)

Renv
+ Cenv

d

dt
Tenv(t) = Pcpu(t) + Penv(t) = Pd

cpu(t) + P`cpu(t) + Penv(t). (4.4)

45

Solving (4.4) for d
dtTenv(t),

d

dt
Tenv(t) =

kT
Cenv
Tcpu(t) +

1

Cenv
Pd

cpu(t) +
1

Cenv
Penv(t) +

(kT
Cenv

− 1

RenvCenv

)
Tenv(t) +

kC
Cenv

.(4.5)

If we know the temperature of the environment and CPU at some initial time t0 ≤ t, then we can

derive following Equations3 from (4.3) and (4.5):

Tcpu(t) =

∫ t

t0

σ1Pcpu(s)e−(t−s)β1ds+ Tcpu(t0)e−(t−t0)β1 , (4.6)

Tenv(t) =

∫ t

t0

σ2

(
Penv(s) + Pcpu(s)

)
e−(t−s)β2ds+ Tenv(t0)e−(t−t0)β2 . (4.7)

where

β1
def
= (

1

Rd
cpu

+
1

Rl
cpu
− kT) · 1

(Cd
cpu + C l

cpu)
,

β2
def
=

1

RenvCenv
− kT
Cenv

, and

σ2
def
=

1

Cenv
.

According to the Figure 4.3 shown above, the absolute CPU temperature can be calculated as Tcpu(t)+

Tenv(t) + Tair(t).

4.4 Controller Design

In this research, we use the standard state-space model to represent continuous-time (ideal) system intro-

duced in the Section 3.6. Our design process is two fold. In Section 4.4.1, we design a thermal controller

assuming that an ideal system with continuous power modes; this assumption is not practically viable.

Therefore, in Section 4.4.2, we will extend the controller design to a processor with only active/inactive

power modes, which is more practical and can be implemented in a real-world system.
3Assume that the leakage current mostly depends on the Tcpu and Tenv effect on the leakage current is negligible.

46

z−1
+

+
C

G

K

H+

-

∫
+

-
γI

ve(k) x(k)
y(k)

Tref(k)− Tair(k)

u(k)

f

Figure 4.4: The thermal control design with state feedback and integral actuator

4.4.1 Continuous Power Modes

As a first step towards our goal of designing a control-theoretic framework for thermal stress analysis, we

employ linear quadratic (LQ) optimal control for real-time thermal management. Our design consists of

an optimal state feedback and an integrator that regulates the dynamics of the system. An LQ controller

enables us to design an efficient and low-overhead controller, derive the feedback parameters before run-

time (used in thermal-resiliency analysis), and smoothly track our reference input. In the future, we plan

on applying more complex and robust controllers (e.g., H∞ controllers) to decrease the controller’s sen-

sitivity to modeling inaccuracy and noise. However, as observed in the simulations and experiments of

Section 4.6, our current LQ design is appropriately responsive to changes in environmental temperature.

In our system model, we specify the thermal power of the CPU as the control to the system. The

controller is designed to follow the temperature reference, Tref. In our design, we consider Tcpu(t) as

one of the variable to be controlled and Pd
cpu(t) as a manipulated variable (equivalent to y(t) and u(t),

respectively, in continuous state-space model). The basic control structure is given in Figure 5.3.

From Equations (4.3) and (4.5), the continuous-time state space model can be written as


Ṫcpu(t)

Ṫenv(t)


 =


−β1 kTσ1

kTσ2 −β2




Tcpu(t)

Tenv(t)


+


σ1

σ2


Pd

cpu(t) +


 0

σ2


Penv(t). (4.8)

47

While our analysis below is in the continuous-time domain, a discrete-time control system approach

would be applied in an actual computer implementation. Therefore, we now note that we may easily

convert the continuous-state space model to the discrete-time sampled system, x(k + 1) = Gx(k) +

Hu(k) + f from the continuous-time state matrices A =


−β1 kTσ1

kTσ2 −β2


 and B =


σ1

σ2


 where k is

the sampling index, Ts is sampling interval, and G and H can be calculated as described in Section 3.6.

Furthermore, the matrices A and B satisfy the condition of Lemma 5 implying that the continuous system

is completely controllable. For our given system, x(k) ≡


Tcpu(k)

Tenv(k)


 and u(k) ≡

[
Pcpu(k)

]
where we are

again abusing notation for the T and P functions.

To eliminate steady state tracking error, we design our control system with an integrator. Define an

additional error vector ve(t) in continuous time as,

ve(t)
def
=

∫ t

0
(Tref − T (t)− Tair(t))dt

v̇e(t)
def
= Tref − Tair(t)− T (t) (4.9)

= −C


Tcpu(t)

Tenv(t)


+ Tref − Tair(t)

where C = [1, 1].

Then, the system input is calculated with a gain Ko = [γ1, γ2] and integral constant γI in the following

equation.

Pd
cpu(t) = −Ko


Tcpu(t)

Tenv(t)


+ γIve(t) (4.10)

= −
(

(γ1)Tcpu(t) + (γ2)Tenv(t)
)

+ γI

∫ t

0
(Tref − Tair(t)− Tcpu(t)− Tenv(t))dt.

We employ standard techniques from optimal control theory to derive Ko and γI and prove stability.

In our derivation of system stability, we use the following two results which can be found in any standard

text on control theory [21, 65, 66].

We derive the augmented model that is used to obtain the optimality of the system. Consider an

instance where system is completely stable and has reached steady state. We denote the input, states,

48

and the integrator error (described in Equation (4.9)) of this special instance of the system by Pcpu(t∞)),

Tcpu(t∞), Tenv(t∞) and ve(t) respectively. Therefore,


Ṫcpu(t∞)

Ṫenv(t∞)


 =


−β1 kTσ1

kTσ2 −β2




Tcpu(t∞)

Tenv(t∞)


+


σ1

σ2


Pd

cpu(t∞) +


 0

σ2


Penv(t∞). (4.11)

From the Equation (4.8) and Equation (4.11) we get,


Ṫcpu(t)− Ṫcpu(t∞)

Ṫenv(t)− Ṫenv(t∞)


 =


−β1 kTσ1

kTσ2 −β2




Tcpu(t)− Tcpu(t∞)

Tenv(t)− Tenv(t∞)


+


σ1

σ2


 (Pd

cpu(t)− Pd
cpu(t∞)). (4.12)

Also, from the Equation (4.9), we get,

v̇e(t)− v̇e(t∞) = −C


Tcpu(t)− Tcpu(t∞)

Tenv(t)− Tenv(t∞)


 . (4.13)

Now, combining the Equation (4.12) and (4.13), we define our higher order system as,

ė(t) = Âe(t) + B̂ue(t), (4.14)

where,

e(t) =




Tcpu(t)− Tcpu(t∞)

Tenv(t)− Tenv(t∞)

ve(t)− ve(t∞)


 ,

ue(t) = Pd
cpu(t)− Pd

cpu(t∞),

Â =


 A 0

−C 0


 , and

B̂ =
[
B 0

]T
.

49

We select the feedback gain γ̂ such that,

ue(t) = −K̂e(t), (4.15)

where,

K̂ =


Ko

−γI



T

. (4.16)

The above state-space and the control gain parameters are valid for a continuous-time controller. So,

we may obtain the discrete-time state-space matrices for the augmented model (i.e, G and H) from Â and

B̂ via the transformation described after Equation (3.5). In LQ optimal control, the objective is to design

the controller to minimize some performance index. A standard LQ performance index is given by

J
def
=

1

2

∞∑

k=0

(
e(k)TQe(k) + uTe (k)Rue(k)

)
, (4.17)

where Q and R are arbitrary symmetric matrices of size m ×m and r × r such that Q ≥ 0 (positive

semi definite), R > 0 (positive definite). (In our system given in Equation (4.8), m is two and r is one). It

is easy to show that for a Linear Time Invariant (LTI) system, (Refer to [66]), the optimal state feedback

can be obtained as,

ue(k) = −K̂e(k), (4.18)

where K̂ is the feedback gain defined as

K̂ = (R+HTPH)−1HTPG, (4.19)

and where P is the positive definite solution of the algebraic Riccati equation below,

P = Q+GTPG−GTPH(R+HTPH)−1HTPG.

From the above, it may be shown [66] that the optimal performance index can be calculated as Jmin =

1
2e
T (0)Pe(0).

It is well known [66] that the feedback control (i.e., K̂) results in an asymptotically stable closed-loop

50

system according to Lemma 2. Obviously, stable choices of Ko and γI for the original (non-augmented)

system can be immediately obtained from the derived K̂.

4.4.2 Active/Inactive Power Modes

Since the CPU power cannot be varied continuously, the controller designed in the previous section cannot

be directly applied to the setting of discrete active/inactive power modes. In this section, we extend the

design of the continuous power modes controller described in the previous section to the active/inactive

power mode setting by applying pulse-width modulation (PWM) techniques. Recall in Section 4.3 that

we stated the active/inactive power modes will be modeled via the thermal-aware periodic resource model

with parameters Π and Θ. Thus, to control the system via this model, we must choose the appropriate

values of Π and Θ. The Π value is a design parameter which may be chosen at controller design-time

and will be assumed fixed throughout controller execution. Typically, a smaller value of Π will increase

the system schedulability; however, a larger value of Π will decrease the overhead potentially incurred by

switching between the active and inactive power modes. (See [5] for algorithms for determining Π in the

thermal setting). The only constraint that our framework places on the chosen value of Π is that it must

evenly divide the sampling interval length Ts (i.e., Ts = κΠ for some κ ∈ N+).

Since we have only two power modes, we cannot arbitrarily set the power level. However, we may

change the assigned resource capacity between sampling periods to approximate arbitrary power levels.

Therefore, the assigned resource capacity will be the manipulated variable in our PWM system. The

periodic resource capacity (Θ(k)) and resource period (Π) can be respectively viewed as the pulse duration

and duty cycle of the PWM. Let Θ(k) denote the value of the resource capacity over the k’th sampling

period. For determining the Θ(k) value, we use a method based on the principle of equivalent areas (PEA)

for converting any arbitrary input signal into an equivalent PWM signal [39]. First, note that in a discrete-

time system using zero-order hold (ZOH), the input signal is held constant over the sampling period.

Specifically, for the k’th sampling interval, the input Pd
cpu(k) is held over the Ts-length interval, resulting

in a total energy dissipation of Ts · Pd
cpu(k) over the interval. To get the equivalent area (i.e., energy) as

the (ideal) system with continuous power modes, we must set Θ(k) such that the periodic modulations

between the power modes of Pact and Pinc dissipate the equivalent amount of energy over the Ts-length

interval. Figure 4.5 illustrates the area equivalence between the continuous and PWM controllers. It is

51

Θ(k)

Π

Θ(k) Θ(k) Θ(k + 1) Θ(k + 1) Θ(k + 1)

kth Sample (k + 1)th Sample (k + 2)th Sample

kth Sample
(k + 1)th Sample (k + 2)th Sample

time

time

P (k) P (k + 1)
P (k + 2)

Π

Figure 4.5: The simplified power and modulation relationship

easy to see that a smaller Ts gives a better PWM approximation. However, our controller needs to follow

a system with relatively slower (thermal) dynamics. Thus, for efficiency, we select relatively larger Ts

and higher κ value. Also, even under varying air and environmental conditions, the the resource capacity,

Θ does not change rapidly due to slower system dynamic. Therefore, the same mode will continue to

hold over several sampling periods before change occurs. Furthermore, in the steady state (when the

environment or air temperature does not change much), the system will change modes very infrequently.

More formally, we may derive the following relationship between Pd
cpu(k) and Θ(k),

κΠPd
cpu(k) = κ

(
eact +

∫ Θ(k)

0
Pactdt+ einc +

∫ Π

Θ(k)
Pincdt

)

⇒ Pd
cpu(k) =

(Pact − Pinc

Π

)
Θ(k) + Pinc +

1

Π
(eact + einc). (4.20)

The PWM controller pseudocode is presented in Algorithm 1. The controller proposed here consists

of two integrated operations: the thermal controller and the PWM modulator. The first step is to obtain

the CPU temperature at t` (Line 3 of Algorithm 1). The error is then calculated by taking the difference

between the reference temperature and the CPU temperature (Line 4). The error is integrated into the error

vector and added to vector sum of the integrated error in the next line (Line 5). After which, the power

52

Algorithm 1 Control Algorithm

Require: Reference Temperature Tref; Feedback Gain K ≡ [γ1, γ2]; Integral Constant γI ; PWM Period
Π; Number of PWM periods in a sampling period κ.

1: while At beginning of sampling period [t`, t`+1) : t` ≡ κ`Π do
2: Sample Tcpu(t`) + Tenv(t`) + Tair(t`).
3: v̇e(t`) = Tref − (Tcpu(t`) + Tenv(t`) + Tair(t`))

4: Tot v̇e(t`) = Tot v̇e(t`−1) + γIκΠ

(
v̇e(t`)+v̇e(t`−1)

)
2

5: Pcpu(t`) =
(
Tot v̇e(t`)−

(
γ1Tcpu(t`) + γ2Tenv(t`)

))

6: Θ(t`) = min
(

Π× (Pcpu(t`)−Pinc)
Pact−Pinc

,Π
)

7: i = max{j ∈ Zq+1 | Θ(j) ≤ Θ(t`)}
8: Update real-time performance mode to Mi.
9: Set PWM to operate at period of Π and width of Θ(t`).

10: end while

input is calculated (Line 6) and the equivalent Θ is calculated from the property of Equation (4.20) (Line

8). Finally, the appropriate mode is selected (Line 9), the mode change is performed (Line 11), and the

pulse-width modulator is invoked for the next κ Π-length intervals (Line 12). It is important to note that

Θ(t`) calculated in Line 8 does not have to be equal the Θ(j) for the selected mode; we must only select

the highest mode with Θ(j) ≤ Θ(t`). (If Θ(t`) is larger, we are only giving the mode more processing

than it requires.) It should also be observed that all operations, except for finding the appropriate mode,

may be done in O(1) time. Finding the highest real-time performance mode that may execute can be done

in O(lg q) time (via binary search) where q is the number of real-time performance modes.

4.5 Thermal-Resiliency Calculation

In this section, we explain how to derive the real-time thermal resiliency Λ(Mi, Tref) for a given real-time

performance mode Mi and reference temperature Tref. Assuming a steady-state error of zero, we will

now briefly outline how to obtain a solution for Λ(Mi, Tref).4 Assume that we have reached the steady-

state by the (k − 1)’th sampling period. Therefore, Tcpu(k) = Tcpu(k − 1), Tenv(k) = Tenv(k − 1),

Tair(k) = Tair(k − 1), and Θ(k) = Θ(k − 1). Substituting the temperature equalities into Equations (4.6)

and (4.7) allows us to solve for Tcpu(k) and Tenv(k) to obtain a function of Tair(k), Tref, and Θ(k). Since

4The approach may be generalized when there is bounded steady-state error. However, the approach will be similar, and we
omit the details due to space.

53

we are interested in obtaining Λ(Mi, Tref), we may fix Tref and Θ(k) = Θ(i) Since the steady-state error is

zero, we also have

Tref = Tcpu(k) + Tenv(k) + Tair(k). (4.21)

Combining Equation 4.21 with the function of Tair(k) obtained from Tcpu(k) and Tenv(k) allows us to

solve for Tair(k). Thus, solving the entire system results in a value for Tenv(k) + Tair(k) (i.e., value

of Λ(Mi, Tref)). The resulting expression is quite complicated as it requires solutions to second-order

inhomogeneous equations.

We first calculate the Tcpu as follows,

Tcpu((ζκ+ κ)Π) = Tcpu(ζκΠ) +
κ−1∑

i=0

2∑

j=1

(
C(j)inc

((ζκ+ i)Π + Θ)(er(j)(Π−Θ) − 1)

+ C(j)act((ζκ+ i)Π)(er(j)Θ − 1)
)
. (4.22)

At the stability, Tcpu(ζκΠ) stays at a steady value and therefore, Tcpu((ζκ + κ)Π) and Tcpu(ζκΠ) are

the same. Further, if the CPU does not vary the temperature within a single sampling period, the CPU

should maintain the same temperature in each resource period Π intervals (For same Θ, same Tcpu and Tenv

temperature at successive stages). Therefore, we consider the CPU temperature for two adjacent resource

periods and conclude,

2∑

j=1

(
C(j)inc

(ζκΠ + Θ)(er(j)(Π−Θ) − 1) + C(j)act(ζκΠ)(er(j)Θ − 1)
)

= 0, (4.23)

because, T inc
cpu ((ζκ + 1)Π) = T act

cpu(ζκΠ) as per to the above argument. Then we further simplify the

Equation (4.23) as follows,

⇒ Tenv(ζκΠ + Θ)
(
P4(Θ)

)
+ Tcpu(ζκΠ + Θ)

(
P3(Θ)

)
+ Tcpu(ζκΠ)

(
P1(Θ)

)

+ Tenv(ζκΠ)
(
P2(Θ)

)
+ PA(Θ) = 0 (4.24)

54

where,

P4(Θ) =
(
G4(er1(Π−Θ) − 1) + G8(er2(Π−Θ) − 1)

)
,

P3(Θ) = Tcpu(ζκΠ + Θ)
(
− G3(er1(Π−Θ) − 1)− G7(er2(Π−Θ) − 1)

)
,

P1(Θ) = Tcpu(ζκΠ)
(
−G1(er1(Θ) − 1)− G5(er2(Θ) − 1)

)
,

P2(Θ) = Tenv(ζκΠ)
(
G2(er1(Π−Θ) − 1) + G6(er2(Θ) − 1)

)
, and

PA(Θ) = GA(er1Θ − 1) + GB(er1(Π−Θ) − 1) + GC(er2Θ − 1) + GD(er2(Π−Θ) − 1).

In Equation (4.24), we use the definitions of C for ζκΠ and (ζκΠ + Θ) time instances as shown below

for i ∈ {1, 2}. Define ī = 3− i (equal two if i equals one and one if i equals two).

Ciact(ζκΠ) =
(−1)(i)

r2 − r1




rīC3inc(ζκΠ)

+σ1 (Pact + kC + kTTenv(ζκΠ))

− (β1 + rī) Tcpu(ζκΠ)




=
(−1)(i)

r2 − r1

(
GAi + GBTenv(ζκΠ)− GCiTcpu(ζκΠ)

)
,

Ciinc(ζκΠ + Θ) =
(−1)i

r2 − r1




rīC3inc(ζκΠ + Θ)

+σ1 (Pinc + kC + kTTenv(ζκΠ + Θ))

− (β1 + rī) Tcpu(ζκΠ + Θ)




=
(−1)i

r2 − r1

(
GAi + GBTenv(ζκΠ + Θ)− GCiTcpu(ζκΠ + Θ)

)
, (4.25)

where,

GAi = rīC3inc(ζκΠ) + σ1 (Pact + kC) ,

GB = σ1kT , and

GCi = β1 + rī.

Similarly, from the Equation (A.10) in Appendix A, we can show that 5,
5Derivation of the Equation A.10 is not shown here, given in the appendix to keep the focus of the discussion.

55

⇒ Tenv(ζκΠ + Θ)
(
J4(Θ)

)
+ Tcpu(ζκΠ + Θ)

(
J3(Θ)

)
+ Tcpu(ζκΠ)

(
J1(Θ)

)

+ Tenv(ζκΠ)
(
J2(Θ)

)
+ JA(Θ) = 0 (4.26)

where,

J4(Θ) = GB
(
(er1(Π−Θ) − 1)(

r1 + β1

kTσ1
) + (er2(Π−Θ) − 1)(

r2 + β1

kTσ1
)
)
,

J3(Θ) =
(
− GC1(er1(Π−Θ) − 1)(

r1 + β1

kTσ1
)− GC2(er2(Π−Θ) − 1)(

r2 + β1

kTσ1
)
)
,

J1(Θ) =
(
−GC1(er1(Θ) − 1)(

r1 + β1

kTσ1
)− GC2(er2(Θ) − 1)(

r2 + β1

kTσ1
)
)
,

J2(Θ) = GB
(
(er1(Π−Θ) − 1)(

r1 + β1

kTσ1
) + (er2(Θ) − 1)(

r2 + β1

kTσ1
)
)
, and

JA(Θ) = GA1(
r1 + β1

kTσ1
)(er1Θ + er1(Π−Θ) − 2) + GA2(

r2 + β1

kTσ1
)(er2Θ + er2(Π−Θ) − 2).

Furthermore, we consider a CPU temperature for (ζκΠ, ζκΠ + Θ] within the stability region and find

the following relationship from the Equation (A.7) in Appendix A6,

T act
cpu(ζκΠ + Θ) = T act

cpu(ζκΠ) + C1act(ζκΠ)(er1Θ − 1) + C2act(ζκΠ)(er2Θ − 1) (4.27)

Substituting values for the constants from Equation (4.25), we get,

⇒ Tcpu(ζκΠ + Θ) = T act
cpu(ζκΠ)

(
P7(Θ)

)
+ Tenv(ζκΠ)

(
P8(Θ)

)
+ P9(Θ),

where,

P7(Θ) = 1− (er1Θ − 1)GC1 − (er2Θ − 1)GC2 ,

P8(Θ) = (er2Θ − 1)GB + (er1Θ − 1)GB, and

P9(Θ) = (er1Θ − 1)GA1 + (er2Θ − 1)GA2 .

6Derivation of the Equation A.7 is not shown here, given in the appendix to keep the focus of the discussion.

56

Also, considering the environment thermal behavior and substituting values for the constants from

Equation (4.25), we get,

⇒ T act
env(ζκΠ + Θ) = Tcpu(ζκΠ)

(
P10(Θ)

)
+ Tenv(ζκΠ)

(
P11(Θ)

)
+
(
P12(Θ)

)
, (4.28)

where,

P10(Θ) = −r1 + β1

kTσ1
GC1(er1Θ − 1)− r2 + β1

kTσ1
GC2(er2Θ − 1)

P11(Θ) = 1 +
r1 + β1

kTσ1
GB(er1Θ − 1) +

r2 + β1

kTσ1
GB(er2Θ − 1)

P12(Θ) =
r1 + β1

kTσ1
(GA1(er1Θ − 1) +

r2 + β1

kTσ1
GA2(er2Θ − 1).

Therefore, applying the Equations (4.24), (4.26), (4.28), and (4.28), in Equation (4.21), we may finally

express our thermal-resiliency function in terms of the fixed thermal constants and input Tref and Θ(i)

(which comes from the input mode Mi) as follows,

Λ(Mi, Tref) = Tref −
E1(Θ(i))

EN (Θ(i))
− E2(Θ(i))

EN (Θ(i))
, (4.29)

57

where,

E1(Θ) = JA(Θ)P2(Θ) + J4(Θ)P12(Θ)P2(Θ) + JA(Θ)P11(Θ)P4(Θ)− J2(Θ)P12(Θ)P4(Θ)

+ JA(Θ)P3(Θ)P8(Θ) + J4(Θ)P12(Θ)P3(Θ)P8(Θ)− J3(Θ)P12(Θ)P4(Θ)P8(Θ)

− J2(Θ)P3(Θ)P9(Θ)− J4(Θ)P11(Θ)P3(Θ)P9(Θ) + J3(Θ)P11(Θ)P4(Θ)P9(Θ)

− J4(Θ)P11(Θ)PA(Θ)− J3(Θ)P8(Θ)PA(Θ) + J3(Θ)P2(Θ)P9(Θ)− J2(Θ)PA(Θ),

E2(Θ) = −JA(Θ)P1(Θ)− J4(Θ)P1(Θ)P12(Θ)− JA(Θ)P10(Θ)P4(Θ) + J1(Θ)P12(Θ)P4(Θ)

− JA(Θ)P3(Θ)P7(Θ)− J4(Θ)P12(Θ)P3(Θ)P7(Θ) + J3(Θ)P12(Θ)P4(Θ)P7(Θ)

+ J1(Θ)P3(Θ)P9(Θ) + J4(Θ)P10(Θ)P3(Θ)P9(Θ)− J3(Θ)P10(Θ)P4(Θ)P9(Θ)

+ J4(Θ)P10(Θ)PA(Θ) + J3(Θ)P7(Θ)PA(Θ)− J3(Θ)P1(Θ)P9(Θ) + J1(Θ)PA(Θ),

EN (Θ) = J2(Θ)P1(Θ) + J4(Θ)P1(Θ)P11(Θ)− J1(Θ)P2(Θ)− J4(Θ)P10(Θ)P2(Θ)

+ J2(Θ)P10(Θ)P4(Θ)− J1(Θ)P11(Θ)P4(Θ)− J3(Θ)P2(Θ)P7(Θ) + J2(Θ)P3(Θ)P7(Θ)

+ J4(Θ)P11(Θ)P3(Θ)P7(Θ)− J3(Θ)P11(Θ)P4(Θ)P7(Θ)

+ J3(Θ)P1(Θ)P8(Θ)− J1(Θ)P3(Θ)P8(Θ)− J4(Θ)P10(Θ)P3(Θ)P8(Θ)

+ J3(Θ)P10(Θ)P4(Θ)P8(Θ).

4.6 Validation

In this section, we evaluate our control framework both in simulations and upon an experimental hardware

testbed.

4.6.1 Simulations

In the simulations, we simulate the execution of a single-core processor which consists of a thermal con-

troller, PWM frequency controller loop, and scheduling algorithm. The following task parameters are used

in our simulations:

• Each sporadic task τj = (ej , dj , pj) has a period pj uniformly drawn from the interval [5, 15]. (A

small period range is used to keep LCM of periods from becoming too large). The execution time

requirement ej set to the task utilization times pj , where task utilization is calculated using the

58

UUnifast algorithm[9]. For each task, dj equals pj . The tasks are scheduled by EDF.

• The total number of tasks is eight; each task τj has three different real-time performance modes

where τ (2)
j = (ej , dj , pj); τ (1)

j = (.2ej , dj , pj); and τ (0)
j means that task is not selected. From set

of all possible combinations of tasks, we have selected fifteen modes with utilizations ranging from

zero to one.

We refer to the controller described in Algorithm 1 as Temperature Regulated Capacity Bound (TRCB).

In our simulations, we closely compare the performance of our proposed method with [37] referred to

as Thermal Control Utilization Bound (TCUB). TCUB has been chosen due to its low controller time

complexity of O(1). TCUB works by attempting to track a reference temperature and adjusting system

utilization as needed by changing task modes via a mode assignment heuristic. The major difference

between TCUB and TRCB is that TCUB does not have predefined modes. Therefore, TCUB may differ

in the assigned modes from run to run for the same system temperature. Furthermore, TCUB does not

use multiple power levels. TRCB on the other hand has predefined modes which permit the derivation of

thermal resiliency for each mode. TCRB also utilizes a low-power mode (if available).

In our simulation, we use the same system parameters as our testbed (Intel Pentium IV 3.0 GHz). The

pertinent power and control parameters are given in Table 4.1. Extensive testbed runs were carried out

to generate the remaining system parameters using SI. We use the SI tools provided by Matlab to derive

the system state-space parameters. Also we use the system parameters, generated from our testbed as the

simulation parameters. We observe a matching of our testbed readings and the simulation. More details

on this process are contained in the technical report [45].

In Figure 4.6, the system response and the utilization has been shown for both TRCB (right graphs)

and TCUB (left graphs) given a stable air temperature Tair temperature equal to 5◦C. The behavior of

both controllers in this stable environment is nearly identical for thermal and utilization behavior. (The

difference is due to the fact that TRCB uses EDF and TCUB uses RM scheduling). For TRCB, we also

display the achieved modes at any given time in the simulation in the lower right graph.

Figure 4.7 shows the behavior of both TRCB and TCUB when Tair is dynamically changed over time.

In the top two graphs of the figure, the absolute CPU temperatures over time obtained by TCUB and

TRCB, respectively, are plotted along with the Tair. The two bottom graphs of Figure 4.7 present the

achieved utilization for each controller; additionally, the bottom right graph displays the active mode at

59

Table 4.1: Testbed parameters for uni-processor simulations

Parameter Variable Value
CPU Active Power Pact 73 W
CPU Idle Power Pinc 20 W
Server Period Π 20 ms
Sampling Time Ts 100 ms
Optimal Feedback Ko

[
.5725 0

]

Q matrix in Performance Index Q
[
1 0
0 1

]

R matrix in Performance Index R
[
1
]

Integral Gain γI 0.00042

0 2000 4000 6000 8000 10000
0

20

40

60

80
TRCB

Time

T
em

p
er

at
u

re

CPU Temperature
Reference Temperature
Air Temperature

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

U
ti

liz
at

io
n

Time

Instantaneous Modes

0 2000 4000 6000 8000 10000
0
2
4
6
8
10
12
14
16

M
o

d
e

0 2000 4000 6000 8000
0

20

40

60

80

Time

T
em

p
er

at
u

re

TCUB

0 2000 4000 6000 8000
0

0.5

1

Time

U
ti

liz
at

io
n

CPU Temperature

Utilization Utilization
Mode

Figure 4.6: Fixed Tair for Simulation. Left plots represent TCUB and right plots represent TCRB.

60

0 2000 4000 6000 8000 10000
0

20

40

60

80
TRCB

Time

T
em

p
er

at
u

re

CPU Temperature
Reference Temperature
Air Temperature

0 2000 4000 6000 8000 10000
0

0.5

1

U
ti

liz
at

io
n

Time

Instantaneous Modes

0 2000 4000 6000 8000 10000
0

10

20

M
o

d
e

Utilization
Mode

0 2000 4000 6000 8000 10000
0

20

40

60

80
TCUB

Time

T
em

p
er

at
u

re

0 2000 4000 6000 8000 10000
0

0.5

1

Time

U
ti

liz
at

io
n

Utilization

Air Temperature
CPU Temperature

Figure 4.7: Simulation comparison under varying Tair.

Dynamically varying Tair for simulation. Left plots represent TCUB and right plots represent TCRB.

any point in time for TRCB. Observe that both controllers are able to track the reference temperature Tref

despite the sharp changes in Tair. For both controllers, the utilization appropriately tracks the changes in

air temperature. When the air temperature increases, both controllers decrease the system utilization and

increase the utilization again when the air temperature drops. Similarly, the mode plot in the lower right

graph tracks the temperature changes.

Regarding the real-time performance, figures displaying deadline miss ratios have been omitted as no

deadline miss was experienced for either controller in all the simulations. TCUB uses a safe utilization

bound of approximately 67% to make deadline misses improbably for rate-monotonic scheduling [57].

However, TCRB guarantees that no deadlines are ever missed due to verification using a multi-modal

schedulability test [30] as described in Section 3.3.2.

Thus far, the empirical performance of TRCB and TCUB may appear similar. However, we believe

the distinguishing feature of TRCB is the ability to guarantee hard deadlines and to calculate thermal

resiliency levels during design time. Thermal resiliency calculation provides a non-destructive thermal

stress analysis for real-time performance modes in an unpredictable operating environment. Our approach

has achieved the ability to calculate the thermal resiliency by forcing the system to execute in a very

61

30

32

34

36

38

40

55

60
65

70
75

80
85

90
0

5

10

15

Tenv + Tair
° C

Thermal Resiliency Function

Tref ° C

M
o

d
e

Figure 4.8: Thermal resiliency over modes and Tref.

predictable manner (i.e., periodic executions from PWM). To evaluate and illustrate our thermal resiliency

calculation, we have used the technique in Section 4.5 to calculate the thermal resiliency levels for our

randomly-generated multi-mode system. Figure 4.8 displays the thermal resilience Λ(Mi, Tref) for a range

of modes and reference temperatures. Observe that the thermal resiliency increases with decreasing modes

or increasing Tref.

4.6.2 Experiments upon Hardware Testbed

To further confirm the validity of the theoretical results, we have run a task system with eight tasks, each

with three modes (identical to the simulation setting), on our hardware testbed. Each task performs numer-

ical calculations while executing on the system. Our hardware testbed behaves similar to the simulations

of the previous subsection. Figure 4.9 presents testbed runs for a fixed air and environment temperature.

62

0 50 100 150 200
0

10

20

30

40

50

Time, s

Θ
, M

o
d

e,
 T

em
p

er
at

u
re

 ° C

Testbed Behavior @T
env

=40 °C

0 50 100 150 200
0

10

20

30

40

50

60
Testbed Behavior @T

env
=45 °C

Env Temp, °C

CPU Temp, °C
Θ
Mode

Figure 4.9: The testbed behavior under different Tenv values.

The testbed running at different Tenv values and Tref = 55◦C showing the Θ and Mode change over the
time.

Finally, we validate our thermal resiliency calculation. Figure 4.10 shows the comparison of the ther-

mal resiliency. The upper left and right graph show the simulated results and the actual testbed observa-

tions of the resiliency respectively. The lower figure shows comparison of the resiliency of the system.

Figure shows the calculated thermal resiliency tracks the actual behavior of the testbed and provides a

safe upper bound on Tref in a large majority of the cases which validates the effectiveness of the resiliency

function. Our equipment supports 1◦C accuracy in temperature measurements. Furthermore, for a better

accurate experiments, the environmental temperature chamber (Thermal Cabinet) needs an extensive insu-

lation methods. However, even under given conditions, using our framework, the designer can accurately

calculate thermal constraint for a given mode.

4.7 Summary

In this chapter, we discussed the problem of obtaining performance guarantees in an unpredictable ther-

mal environment. Towards this challenge we presented a control-theoretic framework for thermal stress

63

30 40 50 60

30
40

50
0

5

10

15

Ref. Temp°CEnv. Temp°C

M
o

d
e

40 45 50 55 60

30
40

50
0

5

10

15

30 40 50 60

3035404550
0

5

10

15

Simulation Results Testbed Results

Simulation Results
Testbed Results

Figure 4.10: Simulated Thermal Resiliency Comparison with Testbed Data.

Figure 4.11: The Thermal Forcing System (A) and the Thermal Cabinet (B).

64

analysis in real-time systems. Our proposed method employs a nested feedback control system, which is

based on optimum control theory. Our thermal controller nests with a faster PWM based CPU-modulation

driver; the thermal control system dynamically controls both processor temperature and CPU utilization

through an underlying periodic resource. We have shown this design has bounded deviation from ideal

system with continuous power modes. Furthermore, for our system, we derive strong thermal-resiliency

and hard-real-time guarantees for any real-time performance mode. Our method has the distinct advantage

of being able to verify the real-time thermal resiliency of a system before it is put into operation. In ad-

dition, we show via simulations that our framework performs as well as previous approaches which have

no formal guarantee on the thermal resiliency. Our implementation upon a hardware testbed validates our

proposed model and control framework.

In future work, we plan to extend our framework to control designs that are more robust to model inac-

curacies (e.g.,H∞ or model-predictive controllers). As a initial step in designing a framework for thermal

stress analysis, our current design uses two RC circuits (for dynamic and leakage currents) to model the

CPU temperature. We plan on extending our model to permit multiple RC circuits for heterogeneous ther-

mal distributions and generalizing our thermal equations for more complex RC circuit layouts. We hope to

derive a general-theoretic design framework that captures “resiliency” metrics for other system properties

(e.g., energy, noise, etc.) and extend our analysis to other hardware settings (e.g., multicore, DVS).

CHAPTER 5: THERMAL-RESILIENCY ON

MULTICORE PROCESSOR SYSTEMS

In the previous chapter, we introduced the thermal resiliency for uniprocessor systems. In this chapter, we

extend the thermal resiliency for multicore processor systems, which characterizes the maximum external

thermal stress that any hard-real-time performance mode can withstand.

Multicore hard real-time systems have been widely using in an increasing number of real-time and

embedded systems. These systems need to operate under various physical and design constraints, including

ensuring that the system is operating within safe thermal constraints. In this chapter, we discuss a control-

theoretic framework to ensure hard-real-time deadlines on a multiprocessor platform in a dynamic thermal

environment. We use real-time performance modes to permit the system to adapt to changing conditions.

Also, we show how the system designer can use our framework to allocate asymmetric processing resource

upon a multicore CPU and still maintain thermal constrains. We show the simulations and physical testbed

results at the end of the chapter to confirm that our algorithm predicts how a system will gracefully and

predictably degrade under external thermal stress.

This chapter presents a methodology for designing and analyzing thermal-resilient multicore hard-real-

time systems. Section 5.1 presents brief introduction and overview of this research. Section 5.2 overview

the hardware, real-time, and thermal models used throughout the chapter. Section 5.3 details the design

of our thermal-resilient controller. Section 5.4 derives thermal-resiliency function Λ for control system.

Section 5.5 describes the results of our simulations and implementation upon testbed hardware. In the next

chapter, we provides formal hard-real-time system guarantees through formal derivations and proofs by

extending the model that we developed in the previous chapter earlier. Finally, Section 5.6 gives a chapter

summary.

65

66

5.1 Introduction

Designing a real-time and thermal-aware multicore system is not straightforward; the CPU cores are

closely packed inside the CPU die, and each core potentially has different thermal characteristics. There-

fore, each core needs separate thermal model and interaction between cores also needs to be considered.

Further, if the system is operating in an environment with changing temperatures, the thermal-control

needs to be designed very carefully to take into account the system’s timing constraints. Modern embed-

ded systems are extremely complex and therefore, identification of some of the system limitations through

testing are limited. Furthermore, due to pressure to minimize the size and cost of the system, a system

designer is often compelled to consider the trade-offs between performance and the physical constraints

of the system (e.g., temperature). For a smooth, robust design phase and for a reliable final product, the

system designer must be equipped with appropriate design-frameworks to carefully consider the implica-

tion of the tradeoff. The proposed methods in this paper help the system designer to analyze the trade-offs

between the real-time performance and environmental constraints of a hard real-time system.

Although many modern CPUs are manufactured with built-in dynamic thermal management (DTM)

capabilities, they cannot be freely utilized in hard real-time system designs; a complicated hard real-time

system might compromise its timing constraints if DTM features are utilized improperly. Therefore, it is

essential to develop a framework that considers all external system capabilities such as DTM and real-time

requirements. Further, a useful framework should also permit the system designer to predict the behavior

of the system even if the operating environment is not a priori known or predictable.

There are already available frameworks for permitting a trade-off between a real-time level of service

and resource requirements. For example, Ghosh et al. [42] proposed a framework for mapping the level of

service and resource requirements for dynamic environmental conditions. These techniques might guar-

antee the real-time deadlines for a previously-determined level of resources, but they do not address the

scenario where requirements can dynamically change (resulting in a real-time mode change). They can-

not guarantee hard real-time deadlines when a system may dynamically switch between real-time modes.

Furthermore, none of these previously-proposed techniques can be used to obtain a precise, formal quan-

tification of the thermal stress that the muticore system can withstand.

In this chapter, we extend the concept of real-time thermal resiliency to multicore platforms. Real-time

thermal resiliency is a system design metric that quantifies the maximum external operating temperature

67

that the system can withstand for a specified real-time performance mode. To define thermal resiliency

for a multicore processor, let us assume the C’th core of a multicore system with q different hard-real-

time performance modesMC,0,MC,1, . . . ,MC,q where modes are ordered in increasing levels of real-time

performance with MC,q guaranteeing the highest level and MC,0 the lowest. For this system, the real-

time thermal resiliency for the i’th mode of the C’th processor MC,i, denoted as Λ(MC,i, Tref), represents

the predicted maximum external operating temperature for which the system will continue to operate at

performance mode MC,i or higher and maintain a CPU reference temperature of Tref.

In recent years, we find many real-time researches on multicore systems. They address important is-

sues related to thermal-aware and power-aware design. Further, each of these prior results do not provide

a mechanism to specify the graceful degradation of the system’s operating modes in an unfavorable envi-

ronment. In contrast to these work, that rely on mapping techniques to adopt the varying environmental

conditions, we provide the system designer real-time and performance guarantee. While no previously-

proposed techniques exist for obtaining a formal quantification on a muticore system, in this chapter, we

proposed the idea of thermal resiliency multicore processor systems.

Towards this goal, we design a framework to calculate and verify the real-time guarantees of a multi-

core system in the presence of unpredictable dynamic environmental conditions. Thus, we are proposing

a thermal-stress analysis mechanism for multicore real-time systems. Using our proposed method, the

system designer can specify, a priori, a precise quantification of the hard-real-time performance degrada-

tion of multicore system due to external thermal events. Furthermore, our thermal analysis framework

explains how the modes degrade gracefully and predictably under externalthermal stress. Therefore, using

our framework, the system designer can predict the thermal resiliency of a performance mode. Finally, our

framework addresses the issue of allocating asymmetric mode request from different cores in a multicore

CPU.

This chapter discusses the the following important contributions:

• We propose a controller for a multicore system with rudimentary power-control mechanisms (e.g.,

cores can be active or inactive). Our objective is to ensure that the maximum core temperature

tracks a given reference temperature Tref. We show that our controller is able to maintain system

stability and controllability. Furthermore, using the system specification, we can obtain a closed-

form quantification of the thermal-resiliency for each operating mode for each core of the system.

68

• The proposed mechanism is also helpful to analyze multicore system under certain capacity con-

straints. Often times system designer assigns a mission-critical hard-real-time task to a specific core

and resources for other real-time tasks allocated from rest of the cores in the system. For example,

assume the designer wants a fixed resource capacity from a specific core that needs to run the cru-

cial real-time task in a system and other cores contribute to the system with multi-mode capabilities;

under this situation, the designer needs to know the the modes that the system could expect from

the other cores under various external thermal conditions. We provide support and analysis for this

setting.

• We empirically evaluate the efficacy of our control algorithm and associated analysis upon a mul-

ticore CPU. We show (through simulations and testbed runs) that our model and characterization

of thermal resiliency closely predicts the system’s thermal behavior even in a dynamic operating

environment.

5.2 Models

We develop our power model to represent a wide range of embedded processors with minimal amount

of power management capabilities. As explained in the Section 3.3, we assume a multicore processor

system with active and inactive power modes. We denote the instantaneous CPU power of C’th core as

PCcpu(t), (C ∈ {1 . . .m}) and assume it dissipates thermal power at a constant rate Pact and Pinc in the

active and inactive modes, respectively. Also, we assume that processor consumes eact and einc amount

of energy to activate/deactivate from inactive/active modes. The complete multicore model is given in the

Section 3.3.

As we explained in the introduction, we consider each core of the multicore processor has a specific

number of possible performance modes. Also, the task migration at runtime is not permissable and the

tasks are statically partitioned within the available processors. Further, the complete description is given

in the Section 3.3.

We furthermore assume that within each processor allocation, an arbitrary uniprocessor scheduling

algorithm (e.g., EDF or RM) may be employed to schedule the underlying task system. See Figure 5.1 for

an illustration of the thermal-aware periodic resource.

69

Θ
1(i)

Π

Mode Change (Core #1)

Θ
1(i) Θ

1(i) Θ
1(j)

Mode Change

Θ
1(j) Θ

1(j)

. . .

Θ
C(i)

Π

Mode Change (Core #C)

Θ
C(i) Θ

C(i) Θ
C(j)

Mode Change

Θ
C(j) Θ

C(j)

. . .

Θ
2(i)

Π

Mode Change (Core #2)

Θ
2(i) Θ

2(i) Θ
2(j)

Mode Change

Θ
2(j) Θ

2(j)

. . .

..
.

..
.

Figure 5.1: The sampling and mode change in our thermal control system.

The blocks indicate time periods during with the processor is active under the thermal-aware periodic
resource model. Sporadic tasks are scheduled within the activation blocks .

5.2.1 Power/Thermal Derivations

Our thermal architecture is based on the model we explained in the Section 3.3. We explained how the

thermal architectural model of a multicore processor is organized and showed the arrangement of different

RC components to represent individual cores of the multicore processor as well as inter-core thermal

effects.

Figure 5.2 shows the basic equivalent circuit of a multicore CPU and its surrounding environment. For

clarification, we have shown a multicore processor with four cores.

We use the following state-space thermal model for the rest of the design process,

Ṫcpu(t) = ATcpu(t) + BPcpu(t), (5.1)

where, Ṫcpu(t) =
(
Ṫ Ccpu(t)

)
m×1

, Tcpu(t) =
(
T Ccpu(t)

)
m×1

,Pcpu(t) =
(
PCcpu(t)

)
m×1

, andA = (A)m×m,B =

(B)m×m are state-space parameters. The detailed derivations definitions of these matrices are given in the

Appendix of the thesis.

70

Tenv

P1
cpu

Core#1

Core#2
Core#3

Core#4

P3
cpu

P2
cpu

P4
cpu

I11
I44

I33 I22

I12

I23

I34

I41

Tcpu11

Tcpu22

Tcpu33

Tcpu44

Tcpu12

Tcpuij = Tcpujj − Tcpuii ∀i, j ∈ {1 . . . 4}

Tcpuii, ∀i, j ∈ {1 . . . 4} (i’th CPU Temperature W.R.T. Environment)

P l
cpu

Pd
cpu

Figure 5.2: The multicore equivalent electrical circuit.

The basic equivalent electrical circuit of the thermal model of the CPU and its working environment is
shown. (for simplicity, the figure shows the structure with 4 adjacent cores) Arrow direction shows the
current (A) direction of the equivalent electrical circuit.

71

z−1
+

+
C

G

K

H+

-

∫
+

- γI

ve(k) x(k)
y(k)

Tref(k)− Tenv(k)

u(k)

f

MAX(Y)

Figure 5.3: The thermal control design with state feedback and integral actuator

5.3 Controller Design

First, we design a thermal controller assuming that an ideal system with continuous power modes. In

Section 5.3.4, we will extend the controller design to a processor with only active/inactive power modes.

We need our controller to accurately follow the reference temperature, Tref. Also, to eliminate steady

state tracking error, we design our system as a servo with an integrator. Define an additional error vector

ve(t) in continuous time as,

ve(t)
def
=

∫ t

0
(Tref − Tcpu(t)− Tenv(t))dt

v̇e(t)
def
= Tref − Tcpu(t)− Tenv(t) (5.2)

= Tref −max
([
Tcpu(t)

])
− Tenv(t).

Then, the system input is calculated with a gain Ko and integral constant γI in the following equation.

Pcpu(t) = −Ko

[
Tcpu(t)

]
+ γIve(t), (5.3)

where, K0 = (Kij)m×m. We employ standard techniques from optimal control theory to derive Ko

and prove stability. Details are presented in an appendix of an extended version of this paper [48].

5.3.1 State-Space Controller Details

We use the standard state-space model to represent continuous-time (ideal) system, and the state matrices

and constant vector are time-invariant quantities as explained in the Section 3.6.

72

Since we have a computer-controlled discrete-time system, we use the state-space mode for the discrete-

time controller for active/inactive modes as given in the Section 3.6.

5.3.2 Continuous Power Modes

As a first step towards our goal of designing a control-theoretic framework for thermal stress analysis, we

employ linear quadratic (LQ) optimal control for real-time thermal management. Our design consists of

an optimal state feedback and a servo that regulates the dynamics of the system. An LQ controller enables

us to design an efficient and low-overhead controller, derive the feedback parameters before runtime (used

in thermal-resiliency analysis), and smoothly track our reference input. In the future, we plan on applying

more complex and robust controllers (e.g.,H∞ controllers) to decrease the controller’s sensitivity to mod-

eling inaccuracy and noise. However, as observed in the simulations and experiments of Section 5.5, our

current LQ design is appropriately responsive to changes in environmental temperature.

In our system model, we specify the thermal power of the CPU as the control to the system. The

controller is required to work as a servo and should follow the temperature reference, Tref. In our design,

we consider Tcpu(t) as one of the variable to be controlled and Pd
cpu(t) as a manipulated variable. The basic

control structure is given in Figure 5.3.

5.3.3 Stability Analysis and Optimal State Feedback

In our derivation of stability for our system, we will use the Lemma 5 and Lemma 4 in the Section 3.6,

which two results also can be found in any standard text on control theory [21, 65, 66].

Now we derive the augmented system model that is used to obtain the optimality of the system. Equa-

tion (B.11) can be used to describe the system dynamics at any time instance. Consider an instance where

system is completely stable and has attained to the steady state. We denote the system input, system states,

and the servo error (described in Equation (5.2)) of this special instance of the system by Pcpu(t∞)),

Tcpu(t∞), Tenv(t∞) and ve(t) respectively. Therefore, we get,

[
Ṫcpu(t∞)

]
=

[
A
] [
Tcpu(t∞)

]
+
[
B
]
Pcpu(t∞). (5.4)

Then, from the Equations (B.11) and (5.4) we get,

73

[
Ṫcpu(t)− Ṫcpu(t∞)

]
=

[
A
] [
Tcpu(t)− Tcpu(t∞)

]

+
[
B
]

(Pcpu(t)− Pcpu(t∞)).

(5.5)

Define e(t),

e(t) =
[
Tcpu(t)− Tcpu(t∞)

]
, (5.6)

then we get,

ė(t) = Ae(t) +Bue(t). (5.7)

We select the feedback gain γ̂ such that,

ue(t) = Pcpu(t)− Pcpu(t∞) (5.8)

= −K0e(t). (5.9)

The above state-space and the control gain parameters are valid for a continuous-time controller. So,

we may obtain the discrete-time state-space matrices for the augmented model (i.e, G and H) from Â and

B̂ via the transformation described after Equation (3.5). In LQ optimal control, the objective is to design

the controller to minimize some performance index. A standard LQ performance index is given by

J
def
=

1

2

∞∑

k=0

(
e(k)TQe(k) + uTe (k)Rue(k)

)
, (5.10)

where Q and R are arbitrary symmetric matrices of size m×m and r × r such that Q ≥ 0 (positive semi

definite), R > 0 (positive definite). The ue(k) is the difference of the feedback value and it becomes zero

at the steady state (when Tcpu(t) becomes Tcpu(t∞) at the steady state).

It is easy to show that for a Linear Time Invariant (LTI) system, (Refer to Ogata [66]), the optimal state

feedback can be obtained as,

ue(k) = −K̂e(k), (5.11)

74

where K̂ is the feedback gain defined as

K̂ = (R+HTPH)−1HTPG, (5.12)

and where P is the positive definite solution of the algebraic Riccati equation below,

P = Q+GTPG−GTPH(R+HTPH)−1HTPG.

From the above, it may be shown [66] that the optimal performance index can be calculated as

Jmin =
1

2
eT (0)Pe(0). (5.13)

It is well known [66] that the feedback control (i.e., K) results in an asymptotically stable closed-loop

system according to Lemma 2. Obviously, stable choices of Ko for the system can be derived.

5.3.4 Continuous Power Emulation with Active/Inactive Power Modes

In this section, we explain how the resource capacity, ΘC is manipulated to produce the control input value

PCcpu. Any modern CPU has a discrete set of operating frequencies. The power dissipation (consumption)

for each operating frequency is not a variable and it is fixed.1 However, the control design we proposed

requires a continuous input, Pcpu(t) for its proper functionality. Since the CPU power cannot be varied

continuously, the controller designed in the previous section cannot be directly applied to the setting of

discrete active/inactive power modes. Therefore, the design of the continuous power modes controller

described in the previous section needs to be modified to accomodate the active/inactive power mode set-

ting by applying pulse-width modulation (PWM) techniques. As we explained earlier in the Section 5.2

(and the details in the Section 3.3 of Chapter 3), the active/inactive power modes will be modeled via the

thermal-aware periodic resource model with parameters Π and Θ. This could be achievable via choosing

the appropriate values of Π and Θ. The Π value is a design parameter which may be chosen at controller

design-time and will be assumed fixed throughout controller execution. The only constraint that our frame-

work places on the chosen value of Π is that it must evenly divide the sampling interval length Ts (i.e.,
1Under experimental conditions and due to the variation of the workload, we may find slight variation on the power con-

sumption value for a specific operating frequency for different workload executions; however, the average value of the power
consumption is very closer.

75

kth Sample (k + 1)th Sample (k + 2)th Sampletime

P 1(k) P 1(k + 1)
P 1(k + 2)

Θ1(k)

Π

Θ1(k) Θ1(k) Θ1(k + 1) Θ1(k + 1) Θ1(k + 1)

kth Sample
(k + 1)th Sample (k + 2)th Sample

time
Π

. . .

. . .

kth Sample (k + 1)th Sample (k + 2)th Sampletime

P C(k)
P C(k + 1)

P C(k + 2)

ΘC(k)

Π

ΘC(k) ΘC(k) ΘC(k + 1) ΘC(k + 1) ΘC(k + 1)

kth Sample
(k + 1)th Sample (k + 2)th Sample

time
Π

. . .

. . .

..
.

..
.

Figure 5.4: The simplified power and modulation relationship

Ts = κΠ for some κ ∈ N+).

Let ΘC(k) denote the value of the resource capacity over the k’th sampling period on C’th core. For

determining the ΘC(k) value, we use a method based on the principle of equivalent areas (PEA) for con-

verting any arbitrary input signal (PCcpu(k)) into an equivalent PWM signal [39] and assume the zero-order

hold (ZOH), the input signal is held constant over the sampling period. Specifically, for the k’th sampling

interval, the input PCcpu(k) is held over the Ts-length interval, resulting in a total energy dissipation of

Ts ·PCcpu(k) over the interval. To get the equivalent area (i.e., energy) as the (ideal) system with continuous

power modes, we must set ΘC(k) such that the periodic modulations between the power modes of Pact and

Pinc dissipate the equivalent amount of energy over the Ts-length interval. Figure 5.4 illustrates the area

equivalence between the continuous and PWM controllers.

More formally, we may derive the following relationship between PCcpu(k) and ΘC(k),

κΠPCcpu(k) = κ
(
eact +

∫ ΘC,i(k)

0
Pactdt

+ einc +

∫ Π

ΘC,i(k)
Pincdt

)

⇒ PCcpu(k) =

(Pact − Pinc

Π

)
ΘC,i(k)

+ Pinc +
1

Π
(eact + einc),

(5.14)

76

where ΘC,i(k) the resource capacity of the C’th CPU for i’th mode and PCcpu(k) denotes the relevant

power of C’th CPU, C ∈ {1. . . .m}. Note that, the above Equation 5.14 gives us a way to calculate the

total power consumption of any real-time task by using the time it takes to complete the task and the Θ

value.

Algorithm 2 Control Algorithm

Require: Reference Temperature Tref; Feedback Gain K; Integral Constant γI ; PWM Period Π; Number
of PWM periods in a sampling period κ.

1: while At beginning of sampling period [t`, t`+1) : t` ≡ κ`Π do
2: Sample Tcpu(t`) + Tenv(t`).
3: v̇e(t`) = Tref − Tenv(t`)−max(Tcpu(t`))

4: Tot v̇e(t`) = Tot v̇e(t`−1) + γIκΠ

(
v̇e(t`)+v̇e(t`−1)

)
2

5: for C = 1 to m do
6: PCcpu(t`) =

(
Tot v̇e(t`)γA −

(
[KC,r]Tcpu(t`)

))
; r ∈ {1 . . .m}

7: ΘC,i(t`) = min

(
Π× (PCcpu(t`)−Pinc)

Pact−Pinc
,Π

)

8: i = max{j ∈ Zq+1 | ΘC,j ≤ ΘC,i(t`)}
9: Update real-time performance mode to MC,i.

10: Set PWM to operate at period of Π and width of ΘC,i(t`).
11: end for
12: end while

The PWM controller pseudocode is presented in Algorithm 2. The controller proposed here consists

of two integrated operations: the thermal controller and the PWM modulator. The first step is to obtain the

sample CPU temperature (Line 3 of Algorithm 2). Then, we select maximum temperature from the Tcpu

vector and calculate the error for the integrator (Line 4).

Next, we calculate control signal for each input of the system as follows: we calculate the target state

feedback gain for each input and subtract it from the integrator error we calculated in the previous step

(Line 6). Next, we calculate the equivalent ΘC from the property of Equation (5.14) (Line 8). Finally,

the appropriate mode is selected (Line 9), the mode change is performed (Line 11), and the pulse-width

modulator is invoked for the next κ Π-length intervals (Line 12). We repeat these steps (Line 6 to 12) for

each CPU core (which is corresponding to the number of control inputs, according to our model).

It is important to note that ΘC(t`) calculated in Line 8 for a C’th Core does not have to be equal the

ΘC,j for the selected mode; we must only select the highest mode with ΘC,j ≤ ΘC(t`). (If ΘC(t`) is

larger, we are only giving the mode more processing than it requires.) It should also be observed that

77

all operations, except for finding the appropriate mode, may be done in O(m) time. Finding the highest

real-time performance mode that may execute can be done in O(m lg q) time (via binary search) where q

is the number of real-time performance modes.

5.4 Thermal-Resiliency Calculation

In this section, we explain how to derive the real-time thermal resiliency Λ(MC,i, Tref) for a given real-

time performance mode MC,i and reference temperature Tref. Assume the system is in the steady-state.

Therefore, the error value from the integrator output become zero. Then we get the following:

Tref = max(Tcpu(k)) + Tenv(k). (5.15)

The the maximum allowable Tcpu(k) value is processor-specific and in Intel processors, it is 100 ◦C.

Furthermore, at the steady state, we do not observe any temperature increment from the CPU. Assume that

the system has reached the steady-state by the (k−1)’th sampling period. Therefore, T Ccpu(k) = T Ccpu(k−1),

Tenv(k) = Tenv(k − 1), and ΘC(k) = ΘC(k − 1). We can calculate the ΘC(k) at steady state. Further, in

Chapter B we show that we can calculate the CPU temperature, T Ccpu(k) for a given ΘC(k) values. Since

we are interested in obtaining Λ(MC,i, Tref), we may fix Tref and ΘC(k) = ΘC,i.

Now now briefly outline how to obtain a solution for Λ(MC,i, Tref).2 We can calculate the steady-

state CPU temperature using feedback gain equation of the controller. As we know that the steady-state

ΘC , C ∈ {1 . . .m} for a given external temperature is fixed, we calculate the ΘC for various modes and

will derive the thermal-resiliency. Therefore, from our schedulability analysis, we calculate the (Θi)m×1

vector, for a given mode set and the we can derive the power of the system from Equation 5.14. Our

extended version of this paper shows that the feedback value can be calculated as K0 and

(
Pcpu(t)C

)
m×1

= −K0

(
T Ccpu(t)

)
m×1

+ γIve(t),

2The approach may be generalized when there is bounded steady-state error. However, the approach will be similar, and we
omit the details due to space.

78

and therefore,

⇒
(
T Ccpu(t)

)
m×1

= −K0
−1(

(Pact − Pinc

Π

)(
ΘC(k)

)
m×1

+ Pinc +
1

Π
(eact + einc)) +K0

−1γIve(t),

(5.16)

is obtained and it can be easily solvable. Then, we use the Equation 5.15 to calculate the thermal

resiliency.

⇒
[
Tenv(t)

]
= Tref(t) +K−1(

(Pact − Pinc

Π

)(
Θi(C)

)
m×1

− Pinc +
1

Π
(eact + einc))−K0

−1γIve(t),

(5.17)

and therefore,




Λ(M1,i, Tref)
...

Λ(Mm,i, Tref)


 = Tref +K−1(

(Pact − Pinc

Π

)



Θ1,i(k)
...

Θm,i(k)




− Pinc +
1

Π
(eact + einc))−K0

−1γIve(t).

(5.18)

The ΘC,i(k) represents the minimum capacity of i’th mode on C’th core. We will see later, from our

simulations and the testbench runs, that the thermal resiliency of different cores on the same CPU does

not vary too much; this is self explainable: due to the closely-coupled thermal architecture of the CPU,

there is no provision on one CPU to exhibit substantially higher temperate values from rest of the cores.

Therefore, we cannot necessarily expect the thermal resiliency to be a variable value for different cores.

79

Further, assume that we assign a predetermined capacity value to one of the cores, ΘCa ∀Ca ∈
{1 . . .m}, 0 < ΘCa < Π and calculate the rest of the ΘC values. Assume the final capacity vector as

ΘCf . As explained earlier, we can calculate the Tcpu values using ΘCf , and the the final resiliency value

vector also can be calculated. In this case, we generate the resiliency value for the system while a fixed

capacity was assigned (by design) to a specific core.

5.5 Validation

Our evaluation of the proposed method is carried out in two steps. We first generate actual system pa-

rameters from the testbed and use them in our simulations. Also, we implement our algorithm in the

experimental testbed and compare the simulation results with testbed observations.

5.5.1 Simulations

We use simulations to demonstrate the validity of our proposed framework. In our simulations, we consider

a system with 8 CPU cores. In our simulation, we calculate the temperature vector of cores, Tcpu and select

the peak temperature from the core CPU temperature vector. Then, we calculate the control input of the

system as described in our algorithm. The following task parameters are used in our simulations:

We use a partitioned scheduling. The total tasks of the system are divided into cores statically. During

runtime, we consider the task migration is not possible within the cores.

• Each sporadic task τC,ij = (eC,ij , dC,ij , pC,ij) has a period pC,ij uniformly drawn from the interval [5, 15].

The execution time requirement eC,ij set to the task utilization times pC,ij , where task utilization is

calculated using the UUnifast algorithm [9]. For each task, dC,ij equals pC,ij . The tasks are scheduled

by EDF in each core.

• The total number of tasks is eight for each core; each task τCj has three different real-time perfor-

mance modes where τC,2j = (eC,2j , dC,2j , pC,2j); τC,1j = (.2eC,1j , dC,1j , pC,1j); and τC,0j means that task

is not selected. From set of all possible combinations of tasks, we have selected fifteen modes with

utilizations ranging from zero to one. In order to accurately distinguish hotspots on the processor,

the same tasks/modes are present on all cores.

80

We refer to the controller described in Algorithm 3 as Multicore Temperature Regulated Optimized

Capacity (M-TROC). In our simulations, we do not compare the performance of our proposed method

with any other algorithm, as we do not know of any other research that considers the adaptive thermal-

aware scheduling on multicore hard real-time systems.

Table 5.1: Testbed parameters for multicore processor simulations

Parameter Variable Value
CPU Active Power Pact(Θmax) 65 W
CPU Idle Power Pinc(Θmin) 20 W
Server Period Π 20 ms
Sampling Time Ts 200 ms
Integral Gain γI 0.1

The power and control parameters are given in Table 5.1. For G, H , Optimal Feedback, Ko, and Q

and R matrix (in performance Index) refer to the Chapter B. We primarily use the testbed to generate the

system parameters with the help of System Identification (SI). We use the SI tools provided by Matlab to

derive the system state-space parameters. We use the Predictive Error Method (PEM) in SI toolbox, as it

found to be better in MIMO system parameter generation process. Also we use the system parameters,

generated from our testbed as the simulation parameters. We observe a matching of our testbed readings

and the simulation. More details on this process are contained in the extended version of the paper [48].

5.5.2 Testbed Details

To prove our theoretical results through experiments, we have built a hardware testbed using an Intel i7-

950 multicore processor running a modified Linux kernel (2.6.33.7.2-rt30 PREEMPT RT). Our testbed

consists of 8 CPU cores, 4 of them are physical cores and each physical core consists of 2 hyper threads3.

The on-die temperature of the testbench CPU is measured through model specific registers (MSR) direly.

Our software interact with the Phidgets 4-port temperature sensor board to measure the environment tem-

perature. We develop a loadable kernel module to activate and vary the frequency modulation level of the

CPU at run-time. We use to control the frequency modulation ratio in the clock and select the higher and

the lowest frequency modulation indices to emulate the low and the higher power levels. We use 12.5%

3We consider this system as 8 core processor because each processor core has their own individual MSR and allow us to
measure the individual temperature values.

81

and 87.5% modulation ratios in the IA32 CLOCK MODULATION MSR for active and inactive power

mode emulation.

Temp Driver
(MSR)

Thread Activator

τ1 . . . τ8τ2

nanosleep Timer

Scheduler Simulator
(Real-Time Loop)

EDF Mode

ControllerFM Drv

Phidget Drv
(MSR)

. . . .

Core#8

Frequency Mod

Thread Activator

τ1 . . .
τ8

τ2

nanosleepTimer

Scheduler Simulator
(Real-Time Loop)

EDF Mode

Core#1

LTP LTP

τidl
τidl

ΘC

ΘC

Θ1,iτ1,ij Θ1Θ1,i

M1,i

Θ8,iτ8,ij Θ8,i Θ8

M8,i

Figure 5.5: The block diagram of the testbed implementation

We develop a multi-threaded application using Linux native posix thread libraries (NTPL). Our appli-

cation consists of a parallel scheduler simulator (PSS) and a thread activator. Our PSS is such that it has

multiple instances of a scheduler simulator code; further, a scheduler simulator only manages a specific

CPU core. Each scheduler simulator is in-charge for its own task threads (equal to number of tasks running

in that core) and can access and controls these task threads; we call these task threads as local thread pool

(LTP). Further, these task threads in LTP are allowed to run on a specified CPU core only. Figure 5.5

shows essential components of the implementation of our testbed.

The real-time loop runs in a very high-priority thread; the priority is set to higher than the threaded

IRQ handlers. A single iteration of the real-time loop as works follows: the scheduler simulator invokes

82

the optimal controller. Then, the optimal controller reads all the CPU core temperatures, environment

temperature, and calculates the optimal
(
Θi
)
m×1

vector for the next period. The calculated ΘC , C ∈
{1 . . .m} values are applied to each scheduler simulator to select and activate their corresponding job

threads from LTP. First, the scheduler simulator selects the appropriate mode corresponding to the ΘC

value; then, schedule simulator selects the jobs (threads) based on EDF from its LTP (to sufficiently fill

the Θ) and dispatches them into a thread activator contiguously. During this the entire Θ period, the CPU

core is set to the highest power level. If no job (thread) is available to dispatch during Θ time interval

(according to EDF), the idle task (thread) is selected. During the Π − Θ period, the idle job (thread) is

executed, and the CPU core is set to the low power level.

The scheduler simulator emulates the schedule tick functionality in the Linux kernel in a higher level

abstraction. Similar to the Linux kernel scheduler tick, the scheduler simulator, with the help of thread

activator, sleeps (uses nanosleep() in Linux) until it wakes up accurately in the scheduling boundaries.

Our thread activator wakes up in unequal tick intervals to schedule jobs, raises the appropriate thread (from

LTP) which should have the priority, and goes back to the sleeps. This process repeats and the amount

of time allocates to each job depends on EDF and the total time depends on the ΘC given by the optimal

controller. Also, the scheduler simulator (with the help of a thread activator) in each core complete the

above process in parallel. When κ×Π is passed, the scheduler simulator invokes the optimal controller to

calculate the ΘC value again.

5.5.3 Results

In Figure 5.6, the M-TROC thermal response, the utilization, and the instantaneous modes have been

shown for a given fixed reference temperature Tref temperature (equal to 83◦C) and linearly varying envi-

ronment temperature, Tenv, from 20◦C to 32◦C. The behavior of controller in this environment is stable

and with a minimum effort the controller achieves its goal. (note the enlarged windows of the third graph)

Our control algorithm selects the maximum core temperature from all the CPU cores to regulate to the

reference temperature, Tref. However, the temperature graph of the simulation (and the testbed results as

well) shows that the temperature values of all the CPU cores try to converge to a (nearly) same temperature

value. As we mentioned early, the normal operation of a CPU does not allow to formulate substantially

larger hotspots and always core temperatures normalize.

83

0 1000 2000 3000 4000 5000 6000
0

5

10

15

Time (x 200ms)

M
o

d
e

#

System Mode Variation with Tenv

0 1000 2000 3000 4000 5000 6000
0

0.5

1

Time (x 200 ms)

U
ti

liz
at

io
n

System Utilization Variation with Tenv

0 1000 2000 3000 4000 5000 6000
20

40

60

80

100

Time (x 200 ms)

T
em

p
er

at
u

re
 °

C

CPU Thermal Behavior with Tenv

Tcpu1+ Tenv

Tcpu2+ Tenv

Tcpu3+ Tenv

Tcpu4+ Tenv

Tcpu5+ Tenv

Tcpu6+ Tenv

Tcpu7+ Tenv

Tcpu8+ Tenv

Tenv

Max Offered U
Selected U

Mode

0 1000 2000 3000 4000 5000 6000

82

83

Figure 5.6: The controller capability over Tenv temperature variation.

The controller is capable to maintain the Tref over considerable Tenv temperature variation. This simulation
shows the Tref = 83◦C stays fixed and the Tenv varies over 22 to 32 ◦C linearly. The utilization and the
modes are shown for a single core and found to be the same for all other cores (The utilization values are
also the same for all the processor for last two decimal places).

84

0 1000 2000 3000 4000 5000 6000
0

5

10

15

Time (x 200 ms)

M
o

d
e

System Mode Variation with Tenv with Core #1 Mode Fixed

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time (x 200 ms)

U
ti

liz
at

io
n

System Utilization Variation with Tenv when Core #1 Utilization is Fixed

0 1000 2000 3000 4000 5000 6000
20

40

60

80

100

Time (x 200 ms)

T
em

p
er

at
u

re
 °

C

CPU Thermal Behavior with Tenv

Fixed Mode (Core #1)
Compromized Mode (with Core #1 Fixef)
Regular Mode

Max Offered U Selected U Fixed U (Core #1) Regular U

Core #1 #2 #3 #4 #5 #6 #7 #8 Tenv

Figure 5.7: The mode variation of cores under different environment temperatures.

The mode variation of cores at Tref = 83◦C with respect to the environment temperature is shown. We
have fixed a mode on core #1 and rest of the cores were controlled to seek the best possible mode The
utilization and the modes are shown for a single core and found to be the same for all other cores (The
utilization values are also the same for all the processor for last two decimal places).

85

Figure 5.7 shows the behavior of M-TROC when Tenv is dynamically changed over time. The differ-

ence of this graph over the Figure 5.6 is that the Tenv varies stepwise. Further notice that, we have assigned

a fixed mode to the core #1. Observe that controller is able to track the reference temperature Tref de-

spite the sharp changes in Tenv. For both controllers, the utilization appropriately tracks the changes in

environment temperature. When the environment temperature increases, controller decreases the system

utilization and increase the utilization again when the environment temperature drops.

Regarding the real-time performance, figures displaying deadline miss ratios have been omitted as no

deadline miss was experienced for controller in all the simulations. This is because we select the possible

mode with available Θ so that the deadline missing does not occur. We have develop techniques to obtain

the minimum safe resource capacity in the presence of mode changes and used here in calculating the

anticipated mode at each mode change instance. Also, M-TROC guarantees that no deadlines are ever

missed due to verification using a multi-modal schedulability test [30] as described in Section 3.3.2.

5.5.4 Experiments upon Hardware Testbed

To further confirm the validity of the theoretical results, we have run a task system with eight tasks, each

with three modes in each CPU core (identical to the simulation setting), on our hardware testbed. Regard-

ing our real-time tasks, we assign each task to perform heavy numerical calculations while executing on

the system. Our hardware testbed behaves similar to the simulations of the previous subsection. Figure 5.9

presents testbed runs for a fixed environment and and varying reference temperature, Tref settings. As sug-

gested from the simulations, we clearly see the ability of our testbed to reach the stable stage in a shorter

period. Figure 5.8 shows how the testbed behaves when the Tref is varied comparatively slowly. Also, note

that the control signal shown below shows that it reaches a steady state, which is corresponding to the Θ

of a corresponding CPU core. Observe that there is a momentary drop in performance mode; however, the

system soon stabilizes.

Finally, we validate our thermal resiliency calculation. Figure 5.10 shows the predicted thermal-

resiliency function for our system, Figure 5.11 shows the function when Core #1 is assigned a fixed mode

of 15. Notice that when either Tref decreases or Tenv increases, the predicted mode decreases as the system

is becoming more thermally constrained. Unfortunately, we do not have test equipment to accurately vary

the environment temperature. Thus, we consider the environment temperature to be fixed at the room tem-

86

perature, Tenv = 24◦C. Instead, we indirectly analyze the thermal resiliency function via the inverse of

the thermal resiliency function Λ−1(MC,i, Tenv) = min{Tref | Tenv ≤ Λ(MC,i, Tref)}. Intuitively, a lower

value of Λ−1(MC,i, Tenv) means the system can operate at a lower temperature and thus is more resilient

than a higher value of the function. We have calculated this function multiple runs of the hardware testbed

(to ensure that minor fluctuations of the air temperature do not affect the system). Figure 5.12 shows a

plot of the thermal resiliency of the testbed runs when the Tref is changed. The upper figure shows that the

calculated inverse resiliency of the system increases with increasing operating mode. Most importantly,

the calculated thermal resiliency tracks the actual behavior of the testbed and provides a safe upper bound

on Tref in a large majority of the cases which validates the effectiveness of the resiliency function. The

lower figure shows that the calculated inverse resiliency of the system increases with increasing operating

mode while a fixed mode is assigned to core #1.

87

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

20

40

60

80

100

Time (x 200 ms)

T
em

p
er

at
u

re
, C

° /C
o

n
tr

l I
n

p
u

t,
 Θ

Testbed Behavior (All the Cores Shown)

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

20

40

60

80

100

Time (x 200 ms)

T
em

p
er

at
u

re
, C

° /C
o

n
tr

l I
n

p
u

t,
 Θ

Testbed Behavior (Core #1)

Tref

Control Input, /Theta
Tcpu +Tenv

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

Time (x 200 ms)

T
em

p
er

at
u

re
, C

° /C
o

n
tr

l I
n

p
u

t,
 Θ

Testbed Behavior (Core #1 (zoomed))

Tref

Control Input, /Theta
Tcpu +Tenv

Figure 5.8: The controller tracking capability.

The controller is capable to track the Tref over considerable range. This testbed result shows how the
controller behaves when the reference temperature, Tref varies from 60◦C to 80◦C. The Tenv stays stable
over the test run.

88

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

80

Time, (x 200 ms)

T
em

p
er

at
u

re
, C

° /C
o

n
tr

l I
n

p
u

t,
 Θ

Testbed Bevarior at 22 C°

Tref

Tcpu +Tenv

Control Input, Θ

Figure 5.9: The controller behavior under Tenv temperature variations.

The controller is capable to maintain the Tref over considerable Tenv temperature variation. The Tref =
80◦C stays fixed and the Tenv varies over 22 to 32 ◦C randomly.

80
82

84
86

88
90

92

22
24

26
28

30
32

0

2

4

6

8

10

12

Tref C
°

Mode Variation over Tenv and Tref

Tenv C
°

M
o

d
e

(
@

 Π
=2

0)

Regular Mode

Figure 5.10: Thermal Resiliency for the system for all the possible Tenv and Tref values.

89

80
82

84
86

88
90

92

20

25

30

35
0

5

10

15

Tref C
°

System Performance, when Mode is Fixed on a Selected Core

Tenv C
°

M
o

d
e

(@
 Π

=2
0)

Compromized Mode (with Core #1 Fixed)
Regular Mode
Fixed Mode (Core #1)

Figure 5.11: Thermal resiliency when a task is statically pinned to a core.

The available Thermal Resiliency of the system when Core #1 is assigned a fixed mode is compared with
the regular thermal resiliency values for various Tenv and Tref values. This is generated from simulation
results.

90

76 78 80 82 84 86 88 90
0

5

10

15

20
Prediction vs Tesbed Observations @ 22 ° C Tenv

Tref ° C

C
ap

ac
it

y/
M

o
d

e

76 78 80 82 84 86 88 90
0

5

10

15

20
Prediction vs Tesbed Observations @ 22 ° C Tenv (Core #1 Mode Fixed at Highest Mode)

Tref ° C

C
ap

ac
it

y/
M

o
d

e

Sim Capacity (@Π=20) Testbed (@ Π=20) Sim Mode Testbed Mode

Figure 5.12: The inverse resiliency.

Due to practical difficulty to control the environment temperature accurately, we calculate
Λ−1(MC,i, Tenv) = min{Tref | Tair ≤ Λ(MC,i, Tref)}, which is the inverse of the thermal resiliency func-
tion. The upper figure shows the available Thermal Resiliency of the system when no restriction on core
mode/capacity is enforced. The lower figure shows the available Thermal Resiliency of the system when
Core #1 is assigned a fixed mode. Each figure shows a comparison of our testbed observations with simu-
lations results.

91

5.6 Summary

In this chapter, we have addressed the problem of obtaining performance guarantees of multicore systems

in an unpredictable thermal environment. Towards this challenge we have presented a control-theoretic

thermal-stress framework using nested feedback control system, which is based on optimum control theory.

The proposed framework is ideal to validate readiness of the modern hard-real-time systems for a wide

range of uncertainties in system and environmental conditions.

For our system, we derive strong thermal-resiliency and hard-real-time guarantees for any real-time

performance mode. Our method has the distinct advantage of being able to verify the real-time thermal

resiliency of a system before it is put into operation as previous approaches which have no formal guarantee

on the thermal resiliency. Further, our proposed mechanism also quantifies the thermal resiliency on

multicore systems under certain capacity constraints on selected cores.

In future work, we plan to extend our framework to control designs that are more robust to model inac-

curacies (e.g.,H∞ or model-predictive controllers). As a initial step in designing a framework for thermal

stress analysis, our current design uses two RC circuits (for dynamic and leakage currents) to model the

CPU temperature. We plan on extending our model to permit multiple RC circuits for heterogeneous ther-

mal distributions and generalizing our thermal equations for more complex RC circuit layouts. We hope to

derive a general-theoretic design framework that captures “resiliency” metrics for other system properties

(e.g., energy, noise, etc.) and extend our analysis to other hardware settings (e.g., DVFS).

CHAPTER 6: A GENERALIZED DESIGN

FRAMEWORK FOR ADAPTIVE REAL-TIME

SYSTEM RESILIENCY

In the previous chapter, we explained the thermal-resiliency framework for multicore processor sys-

tems. This chapter, introduces the generalized system-resiliency (GSR) design framework that predictably

quantifies the real-time performance level attainable under unpredictable dynamic external conditions.

Our hard-real-time-ready control-theoretic framework predicts the performance-level in terms of system

operating-modes. We show how the designer derives the optimal supported-modes for a multi-constrained

system under various processing resources allocations while maintaining maximum system constraints.

The system resiliency, an extension of our previously-proposed thermal-resiliency concept, determines

the maximum-withstanding limits of external stresses for a hard-real-time performance mode. This pro-

posed framework is based on rigorous control-theoretic model and theoretically quantifies the system’s

graceful and predictable degradation under external stress. Finally, at the end of the chapter, we confirm

our results with simulations and extensive hardware testbed runs.

This chapter presents a methodology for designing and analyzing system-resilient hard-real-time sys-

tems. Section 6.1 gives a brief introduction and Section 6.2 presents a methodology overview. Section 6.3

presents the hardware and real-time models used throughout the chapter. Section 6.4 details the design of

our controller. Section 6.5 derives system resiliency function Λ for our control system. Section 6.6 gives

the details of our framework applied to a case study. Section 6.7 gives the simulation and testbed results

and details of the experimental setup. Finally, Section 6.8 concludes this chapter. An appendix contains

supplemental information on the details of our case study and its system-resiliency calculation.

6.1 Introduction

Modern hard-real-time systems are faced with various external physical constraints. Despite hardware,

functional, and design complexities, the proper system design should be temporally predictable even un-

der varying external dynamic conditions; that is, a system designer should be able to predict the timing

92

93

properties of the system as a function of the current state of the environment (e.g., what tasks can meet

their deadlines might be determined by the current environmental temperature [46, 48]). Furthermore,

often the system designer must balance system performance and the physical constraints for optimized

design needs. For example, in a solar-powered device, a sunny day benefits the device’s battery charging-

level, but may negatively affect the performance of the CPU (by raising the environmental temperature

and forcing the CPU to operate a lower power level to reduce thermal dissipation). Therefore, finding a

balanced trade-off between these two external factors for a better system design is essential. Unfortunately,

no design framework exists to support a smooth, robust design-phase and a reliable final product, while

simultaneously carefully utilizing the system management capabilities and evaluating the implication of

the trade-offs. In this work, we introduce a framework to predict the behavior of the system for prior

unknown and unpredictable operating environment.

Our previous research (Hettiarachchi et al. [46, 48]) quantifies the trade-off between a real-time level-

of-service and resource requirements, and formally defines the thermal-resiliency–the maximum external

temperature for a given level-of-service–for both uniprocessor and multicore processor systems. However,

our previous work lacks the support for a system under multiple dynamic external physical constraints.

In this chapter, we propose a method for a system designer to analyze the multiple trade-offs between

the performance and external constraints of a hard-real-time system. The framework we propose is a

generalization of our previously-proposed thermal-resiliency framework [46][48] to a broader scope.

As an example where system-resiliency analysis is essential, consider a mission-critical real-time, so-

lar and battery-powered surveillance robot. These systems are regularly deployed in many applications,

such as surveillance, data collection, and safety-critical tasks too difficult or dangerous for humans. While

a battery-powered robot has many payloads and servicing tasks, the robot’s functionalities largely depend

on the battery state (available energy) and the charging rate of the battery. Therefore, the battery state,

the charging rate, decides the feasible processor speed and thereby the best-mode-offered by the system

at any time. Therefore, system designers may consider battery state along with the schedulability analysis

for predictable system design. During the design process, the system developer analyzes the real-time ca-

pability degradation with respect to the available instantaneous charging rate along with the other external

factors and defines the system resiliency. In this example, the system resiliency might return the minimum

charging rate required to support the most safety-critical tasks.

The abstract concept we introduce in this chapter, the real-time system resiliency is a system-design

94

metric that quantifies the maximum external forces (constraints) that the system can withstand for a speci-

fied real-time performance mode. Towards this goal, we develop the generalized framework that calculates

the real-time guarantees of a system in the presence of unpredictable external dynamic conditions. We

highlight the sufficient characteristics of any system model for the system-resiliency derivation. Using our

proposed method, the system designer can specify, predict a priori, and precisely quantify the graceful

degradation of hard-real-time performance of a system due to external constraints.

The outcome of this research is orthogonal to robust control design, and it is fundamentally different.

Robust controllers address the problem of designing an accurate controller in the presence of significant

plant uncertainties, robust stabilization, sensitivity optimization, or other aspect of controller improve-

ments [20]. Our control-theoretic design framework guides the controller to bring the system to a desired

operating point upon unpredictable external conditions. Furthermore, our framework decides the best op-

erating mode for the system under that external conditions. Although, the control system robustness does

not affect the best operating mode selection decision process (which is purely based on the unpredictable

external condition); the robustness of the controller helps to eliminate design-time errors.

This chapter gives the following contributions:

• We formally provide the conditions and requirements for system-resiliency for a system with multi-

ple constraints.

• The proposed generic controller framework ensures the tracking of the given primary reference

condition xref and does not violate system constraints. We derive the quantification of the system

resiliency.

• Our framework guides the system designer the options and parameters for a predictable hard-real-

time system design to achieve the performance goals.

• We used the proposed framework to design a case study and implemented this system upon our

thermal/power hardware testbed.

95

H/W Capabilities

S/W Capabilities

System

Control

State-Space

Design

RT-Aware Controller

System Resiliency Function

System Identification Methods

Model

Real-Time
Multi-Mode

System

Multi-Modal Schedulability

Physical Constraints

Performance Objectives

Figure 6.1: GSR Framework Methodology.

6.2 Methodology Overview

In this section, we outline the hard-real-time system design process to show the benefits of the proposed

framework.

1. System Hardware Capabilities Specification: In this stage, the designer precisely specifies the

processor and other system component capabilities (e.g., the processor’s ability to adjust its fre-

quency or voltage). The designer selects entities from the system capabilities and forms them into

system input and output metrics to obtain a system state-space that describes the physical dynamics

of the system. Next, the designer uses model-based design techniques such as system identification

(SI) to derive the system parameters of the system. Section 6.3.1 gives more details on this step.

2. System Software Capabilities Specification: In this stage, the system designer determines the

processing requirements of each task of the system, ranks the criticality of each task towards the

system functionality, and classifies tasks into valid software modes. Next, the designer allocates

resources for real-time modes and determines the minimum resource allocation under which the

multi-modal system is schedulable. In a multi-modal system design, the allocation for each mode

depends on potential mode-change overhead–such as carry-in processing power–as well as tasks in

each mode. The research by Fisher et al. [30] details the sufficient schedulability analysis for such a

multi-modal real-time system. Section 6.3.2 gives more details about this step.

3. The Controller Design: The system developer designs the controller upon completing the previous

steps. First, the system designer defines the constraints faced by the system. These constraints

characterizes the boundary conditions of the system. Section 6.4.1 gives more details on this step.

96

4. The System Resiliency Calculation: Given the real-time mode resource allocation, system model,

and controller design, the designer can obtain a quantification of the system resiliency function Λ as

given in the Section 6.5.

Figure 6.1 illustrates the overall design process. Our proposed multi-mode system design ensures the

hard-real-time schedulability of each mode and obtain a priori guarantees on system resiliency by-design,

that distinguishes our approach from previous system control for real-time systems.

6.3 System Models

6.3.1 System Hardware Models

In this chapter, we use the state-space model introduced in Chapter 3.3.5 to describe the underlying phys-

ical capabilities and dynamics of the system. The designer selects the system properties (control-input

and output) according to the system resiliency requirements. For example, if the designer wants to de-

rive the system resiliency in terms of external temperature and external load-current, then she needs to

select the corresponding system parameters: the CPU temperature and the CPU load-current as outputs

and processor active and inactive durations or CPU frequency as the control-input.

When the details of the dynamics of the system are not available, the state-space parameters can be

determined using grey-box or black-box modeling techniques (system identification methods [2]). We

illustrate this process in our GSR case study (Section 6.6). Also, the system designer might derive single

or several such models (to represent each factor of the system resiliency) and combine them into a single

state-space model. While many physical systems are non-linear in nature, a designer can often identify

a piecewise linear operating regions [80] in any physical system. Thus, in this research, our focus is

designing a controller for a such a linear region as evident by many research. In the future, we will focus

on hybrid systems [86] that covers the complete operating space.

6.3.2 System Software Model

An adaptive real-time system requires a specification of how the underlying real-time software is affected

by changes in the processor state due to changing environmental conditions. In this chapter, we use the

system software model described in Chapter 3.3.6. Furthermore, we use the performance mode definition

97

as described in Chapter 3.3.3.

6.4 Controller Model and the Design

In this research, we use the state-space model introduced in the Chapter 3.3.5 by Equation 3.1 to represent

the controller model. We may choose more than one physical model to characterize the properties of the

system. However, for the control design, we select only one model and calculate the feedback values

accordingly. Furthermore, this controller tracks xref, the control objective. Therefore, the control-input is

calculated as,

ρcpu = −KfbXcpu + V,

⇒ Xcpu = −K−1
fb (ρcpu − V), (6.1)

where, Kfb is the state-feedback matrix and V is a vector representing the independent terms from Xcpu

of the feedback equation. Furthermore, the controller must also determine how the real-time performance

modes change as the system changes. Therefore, we assume that there is a surjective function φ : ℘ 7→ M
that maps a given control-input ρcpu to a real-time performance modeMrt (where ℘ is the set of possible

control-input vectors andM the set of specified real-time performance modes).

6.4.1 System Constraints

Before we go into more details of the system design, we introduce a realistic assumption on the con-

troller model that is required for our GSR framework. In our system, Xref is an o-dimensional vector of

reference values for each observable system state. The variable xref represents the primary system con-

straint/objective (i.e., main dimension that we wish to optimize with respect to); xref is assumed for the

sake of convenience to be the first element in vector Xref. For our framework, we require that the system

constraints be linearly and additively related to the real-time state-variables. This assumption holds for

many realistic physical constraints (e.g., temperature, electrical current, etc.) Furthermore, we have shown

the validity of this assumption for thermal constraints in our previous research [47]. The variable Xcpu

(e.g., the CPU temperature, Tcpu) and to a vector of external factors Xext (e.g., the environment tempera-

98

ture, Tenv) are related to Xref as follows:

Xref − αXcpu − βXext − γ ≥ 0, (6.2)

where, α and β are o-dimensional square matrices and γ is o-dimensional vector of positive constants

(determined by the physical dynamics of the system).

6.4.2 Control Integration of Design Objectives

Our controller design should meet the following goals: We design a controller that automatically adjusts

the ρcpu, the control-input, ensuring the non-violation of the constraints–factors of the system-resiliency.

In systems where the primary target objective, xref is related to other physical constraints (e.g., if CPU

current is the primary target dimension, this is also related to other potential secondary constraints such

as CPU temperature), we may include the following addition to the controller. We define the following

error vector: Xerror def
= Xref − αXcpu − βXext − γ. Here Xerror[j] represents the error with respect to the

j’th system constraint (i.e., the j’th entry in the error vector). If the integrated error value
∫
KjXerror[j]dt

is negative (where Kj is an integration constant), then the current system state has exceeded the j’th

constraint and we may have to adjust the primary objective to bring the system into a state where the

j’th constraint is satisfied. The primary objective (xref) reduction also reduces the control-input, ρcpu and

adjusts the system-states accordingly. We denote this adjusted constraint as xref and calculate it as follows:

xref = xref +

o⊕

j=2

[
min(0,

∫
K1[j]Xerror[j]dt)

]
, (6.3)

where
⊕

is a mathematical operator that determines the reduction in the primary reference for a system

with multiple constraints (e.g.,
⊕

could be the max operator or weighted summation). The mathematical

operation
⊕

is determined by the control design and applied for all the constraints other than primary

system constraint/objective.

99

6.5 System Resiliency Calculation

We are now prepared to define the real-time system-resiliency metric and outline the process by which it

may be calculated.

Definition 6 (System-Resiliency). The system-resiliency,

Xext
def
= Λ(Mrt,Xref), (6.4)

is the maximum external stress that a given hard-real-time performance mode,Mrt can withstand on the

processor for a given reference vector, Xref. The variable, Xext represents the maximum external forces.

System resiliency can be calculated from the state-space equations and system constraint inequalities.

Unfortunately, due to the complexity of the systems, it is not always possible to solve a multiple-constraints

system to a closed-form. In such cases, we use the difference-form of the equations to solve the system for

an exact answer. At the steady-state, control input or state variables remain stationary. (We may also relax

this assumption to account for a small steady-state error). Assume that the system reached the steady-state

by the (k− 1)’th sampling period, then instantaneous CPU states becomes, Xcpu(k) = Xcpu(k− 1). Also,

from the difference-form of the Equation 3.1, we get, ρcrl(k) = ρcrl(k − 1). Therefore, we may calculate

Xcpu(k) for a given ρcrl(k) value from Equations 3.1 and 6.1. At this stable state, the Λ(MC,irt ,Xref) is

solved as follows:

1. We fix Xref, the reference constraints, as specified in the system resiliency function parameter.

2. We fix control-input, ρcrl(k) by inverting the φ function for the given mode defined in Section 6.4.

(Here we use the minimum value of ρcrl that maps to the modeMrt).

3. After fixing the above terms, the resulting system of difference equations (explained above) may be

solved using standard techniques and tests for uniqueness of solutions [81].

This completes the GSR framework description. The next section will illustrate how to apply some of

the abstract concepts introduced in the first half of this paper to an actual hardware implementation and

illustrate how to use difference equations to obtain an exact solution for system resiliency.

100

6.6 GSR Framework Case Study

In this section, we design and implement on hardware a predictable system (utilizing our proposed GSR

framework) with multiple physical constraints executing under varying external conditions. The physical

constraints upon our system are the battery load and external temperature denoted as Iext and Tenv re-

spectively. Our goal is to evaluate the system’s ability to track the primary system objective and satisfy

the secondary constraints. Furthermore, we also validate our framework’s ability to accurately predict

the real-time performance degradation with respect to different external load conditions and temperature

conditions (i.e., the system resiliency). Our hardware implementation and the associated constraints might

potentially be applicable to settings such as the surveillance-robot example in the introduction where the

device has to operate under changing battery (i.e., change the load to prolong battery life) and changing

temperature conditions.

6.6.1 System Hardware Model

In our case study, we leverage our previously-developed platform for thermal-resiliency calculation [46,

48] and extend it to support the primary objective of tracking a given load reference point Iref subject

to thermal constraint Tref. Our platform utilizes only two power modes Pact and Pinc (active and inactive

power, respectively) and uses pulse-width modulation (PWM) to approximate any specified power level.

The PWM uses period of length Π with a power-active period (duty cycle) of Θ (i.e., resource capacity)

and power-inactive period of Π − Θ for each cycle. Throughout the paper, we assume that Θ and Π are

expressed in seconds. We also set Π equal to 20 seconds. In the following, we show how to formulate

the resource capacity, Θ, as the control input. We denote the Icpu(t) as CPU load current, Pcpu(t) as the

instantaneous CPU power, XĪ(t) as a state variable to represent CPU-load state at time t. Also, the CPU

power can be used to control the CPU current. Therefore,

ẊĪ(t) = AIXĪ(t) + BĪPcpu(t),

I ¯cpu = CIXĪ . (6.5)

101

Since, the instantaneous power can be represented by means of resource capacity, Θ and resource period,

Π, We get,

Pcpu(t) =
PactΘ(t) + Pinc(Π−Θ(t))

Π
. (6.6)

Therefore, from Equation 6.5, we get,

ẊĪ(t) = AIXĪ(t) + BĪ(
PactΘ(t) + Pinc(Π−Θ(t))

Π
).

(6.7)

To simplify the state-space expression, we wish to reformulate the system dynamics to remove the power

constants and have the control input depend only upon Θ. Towards this goal, we observe the system at a

special time instance, t∞, which denotes a stable point of the system. As we have showed in our previous

work [47], we derive the feedback parameters for an stable optimal controller. From Equation 6.7,

ẊĪ(t∞) = AIXĪ(t∞)

+ BĪ(
PactΘ(t∞) + Pinc(Π−Θ(t∞))

Π
),

I ¯cpu(t∞) = CIXĪ(t∞). (6.8)

We then redefine our system equations in reference to the system load state at time t∞. Thus, define

XI(t) def
= XĪ(t) − XĪ(t∞), Θ(t)

def
= Θ(t) − Θ(t∞), Icpu def

= I ¯cpu(t) − I ¯cpu(t∞), and BI def
= BĪ

(Pact−Pinc)
Π .

Then Equations 6.7 and 6.8 give,

ẊI(t) = AIXI(t) + BIΘ(t).

Icpu(t) = CIXI(t). (6.9)

We use the above load-current model as the main controller. We apply the same normalization for the

temperature subsystem1,
1We have shown in our previous work [46] that the temperature can be controlled by means of power consumption of the

system.

102

ẊT (t) = ATXT (t) + BT Θ(t),

Tcpu(t) = CTXT (t), (6.10)

where, XI/T represents the current/temperature state-variables and AI/T ,BI/T , and CI/T represent

state-space parameters for the current and thermal models.

Therefore,


ẊI(t)

ẊT (t)


 =


AI 0

0 AT




XI(t)

XT (t)


+


BI 0

0 BT


Θ(t),

⇒ Ẋcpu = AXcpu + Bρcrl, (6.11)

.

where, Xcpu
def
=


XI(t)
XT (t)


, ρcrl

def
=


Θ(t)

Θ(t)


, A def

=


AI 0

0 AT


, and B def

=


BI 0

0 BT


 can be derived.

Furthermore,


Icpu(t)

Tcpu(t)


 =


CI 0

0 CT




XI(t)

XT (t)


 ,

⇒ Ycpu = CXcpu, (6.12)

where, Ycpu def
=


Icpu(t)

Tcpu(t)


 and C def

=


CI 0

0 CT


.

We assume that no further details of the dynamics of the system are available; thus, the state-space

parameters are determined using system identification methods, as briefly described in Section 6.7.1. Fur-

thermore, we have shown the thermal model derivation for the processor using first principles (white-box

modeling) in our previous work [47].

103

6.6.2 Hardware Testbed Details

The implementation of the model described in the previous subsection and used in the experiments of

Section 6.7 is upon our custom-built hardware testbed based on Intel i3-4130 processor with modified

Linux kernel (PREEMPT RT). Unlike our previous testbed implementations, in this research we measure

and control processor temperature and current using our control algorithm. We use model specific registers

(MSR) to measure the processor core temperatures and Phidgets temperature sensor board to measure the

environment temperature. We control the frequency scaling level and select the higher and the lowest

frequency scaling indices to emulate the low and the higher power levels of the CPU; this was done by

dynamically updating the MSR with correct frequency scaling parameters for the active and inactive power

mode emulation. We measure the CPU power consumption using MSR PKG ENERGY STATUS MSR

and external load power and total power consumption by NI PXIe-1082 (6363) data acquisition system.

We use the 3, 10Ω resistors in parallel as our load; this load represents some external current draw Iext
that may reduce the amount of current that our CPU may draw (and thus reduce the mode we are able to

support). We are unable to measure the individual core power consumption in our testbed. Therefore, for

simplicity, we configure our testbed to emulate a single-core system by executing same resource capacity,

Θ(t), on all cores simultaneously at any given time. Further testbed details are available in the appendix

of this paper.

6.6.3 System Software Model

We allocate resources for real-time modes and determines the minimum resource allocation under which

the multi-modal system is schedulable as explained in Section 3.3.2. Furthermore, once we define the

modes and their criticality, we also find the relation of the modes of the system,Mrt–the modes vector–

and the resource capacity vector. We can then derive

Mrt = φ(ρcrl) = φ(Θ),

⇒ Θ = φ−1(Mrt), (6.13)

where, φ function maps different control-inputs (in this case Θ) to modes. Section 6.7.1 gives the pa-

rameters of the task systems that comprise M. For the remainder of this section, we just need to know

104

z−1
+

+
C

G

K

H+

-

∫
+

-
γI

ve(k) x(k)u(k)

H z−1
+

+
C

G
x(k)u(k)

f

+

-

γT

∫

Current Model

Thermal Modelmin(o,Serror)

Serror

Tcpu
Tref(k)− Tenv(k)

Iref (k)

Icpu

Figure 6.2: The RAS controller.

In this control design, load-current-states are in the main controller and thermal-states are used to adjust
the main reference as auxiliary adjuster.

that φ essentially partitions the range [0,Π] into intervals. For instance, φ assigns MC,i1 to the interval

[ΘC,i1 ,ΘC,i2), MC,i2 to the interval [ΘC,i2 ,ΘC,i3), and so on.

6.6.4 Controller Design

As shown in Figure 6.2, our controller should be able to reduce its reference value, Iref upon the sys-

tem’s attempt to violate constraint thermal constraint, Tref. Therefore, we design a structure with this

characteristic and call it a reference self-adjust (RSA) controller. First, we define thermal error, Terror and

accumulated thermal error, Serror as follows.

Terror(t)
def
= Tref(t)− Tcpu(t)− Tenv(t),

Serror def
= γT

∫
Terror(t)dt, (6.14)

where, Tcpu denotes the CPU temperature. In this design, to maintain the non-violating reference points,

we adjust the current reference, Iref by adding min(0,Serror) when it is negative. We can then calculate

the feedback of the system as,

105

Θ(t) = −KsfbXI(t)

+

∫
Kifb(−CIXI(t) + Iref + min(0,Serror))dt,

(6.15)

where, Ksfb denotes the state feedback and Kifb denotes the integral feedback values of the primary

system. (The detailed derivations of the above state feedback parameters satisfying the system stability

can be obtained by following techniques used in our previous paper [48]).

6.6.5 System Constraints

We now identify the constraints of the system. First, from Kirchhoff’s current law, we get (load-current

constraint),

Iext = Iref − Icpu, (6.16)

where Iref is the total battery current.

Next, we denote the instantaneous CPU power consumption byWcpu, the equivalent CPU impedance

by rcpu, and external load impedance by rext. The CPU resistance, rcpu and power consumption,Wcpu are

dependent upon the resource capacity, and we determine their correspondence using cftool in Matlab and

given in the appendix. We select sinusoidal approximation for processor power and higher order polyno-

mial approximation for processor resistance to optimize the matching function selection. Furthermore, we

confirm the relationship of CPU impedance with resource capacity, Θ, through our testbed observations.

Figure B.2 in the appendix shows the CPU impedance variation over the resource capacity. Observe that

when Θ is increased, the CPU impedance decreases. This result is justifiable, as for a system to consume

a larger power, under fixed voltage, the CPU internal impedance should be reduced. Similarly, Figure 6.3

shows the power and Θ variation of the testbed. We use this CPU impedance values in our simulations.

Furthermore, the CPU impedance and the external load impedance are arranged in parallel. Therefore, we

derive the battery-load-resiliency, the maximum external load, Iext that can be tolerated by the system for

a given mode as the following Equation 6.17:

106

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

25x Θ

Θ
/W

The CPU Power Variation over Resource Capacity, Θ

Resource Capacity, Θ
CPU Package Power Consumption (W)
Curve Fitted Power Consumption (W)

Figure 6.3: The testbed CPU power variation.

The power variation of the testbed CPU over the resource capacity, Θ for fixed 3.33Ω external load, rext.

Iext =
Wcpu

Vbat
· rext + rcpu

rext
− Wcpu

Vbat
,

=
1

Vbat · rext
· rcpu · Wcpu,

=
1

Vbat · rext
· rcpu(Θ) · Wcpu(Θ). (6.17)

We proceed to the thermal constraints analysis to complete the system resiliency. At stability, the

system meets the thermal-constraint:

Tref ≥ Tcpu + Tenv. (6.18)

To calculate the system temperature, Tcpu, we have to calculate CPU state variable, XT . Due to the

complexity of the differential equations, we cannot derive a closed-form solution for the XT . However,

a system of difference equations will lead to a solution. Therefore, we start with following equivalent

difference equations from the previously-derived equations. We assume sampling time as Ts and used

abused notation to represent kTs interval by k. Also, we denote GT/I and HT/I as discrete state-space

parameters. From Equation 6.9 and Equation 6.10, we obtain

107

XI(k + 1) = GIXI(k) +HIΘ(k),

Icpu(k) = CIXI(k),

XT (k + 1) = GTXT (k) +HT Θ(k),

Tcpu(k) = CTXT (k). (6.19)

Furthermore, from Equation 6.14, we obtain

Terror(k) = Tref(k)− Tcpu(k)− Tenv(k),

Terror(k) = Tref(k)− CTXT (k)− Tenv(k),

Serror(k) = Serror(k − 1) + γTTsTerror(k), (6.20)

and, from Equation 6.15,

Ierror(k) = −CIXI(k) + Iref (k) + min(0,Serror(k)),

Θerror(k) = Θerror(k − 1) + TsKifbIerror(k),

Θ(k) = Θerror(k)−KsfbXI(k). (6.21)

From the above difference equations, we may obtain Tenv by fixing Tref, Iref , and Θ. Let ψcpu(Xref,Θ)

represent this solution.

6.6.6 Resiliency Calculation

The following expression for system resiliency is derived from Equation 6.17 and the solution to the system

of Equations 6.19, 6.20, and 6.21.

108

Λ(Mrt,Xref)

=


Iext
Tenv


 ,

=




1
Vbat·rext

· rcpu(Θrt) · Wcpu(Θrt)

ψcpu(Xref,Θrt)


 ,

=




1
Vbat·rext

· rcpu(φ−1(Mrt)) · Wcpu(φ−1(Mrt))

ψcpu(Xref, φ
−1(Mrt))


 . (6.22)

6.6.7 Discrete-Time Controller

The controller pseudocode is presented in Algorithm 3. The controller proposed here performs servo

action of the load-current controller and load-current reference adjustment action on behalf of the thermal

model. At the beginning, the controller initializes the state-variable and integrated error values once.

The first step is to obtain the sample CPU temperature and CPU load-currant (Line 3 of Algorithm 3).

The error is then calculated by taking the difference between the reference temperature and the CPU

temperature plus environment temperature (Line 4). This error is integrated into the error vector and added

to vector sum of the integrated error in the next line (Line 5). Next, if the previously calculated integrated

error is negative, the load-current reference is lowered by adding this error value and load-current error is

formulated (Line 6). This load-current error values is integrated into the error vector and added to vector

sum of the integrated error to formulate the load-current integrated error (Line 7). Finally the Θ value is

calculated with previously calculated integrated error (in Line 7) and with the current state-feedback value

(Line 8). Next, the appropriate mode is selected (Line 9), the mode change is performed (Line 11), and

the resource capacity is set for the next Π-length intervals (Line 12). It is important to note that Θ(t`)

calculated in Line 8 does not have to be equal the Θ(j) for the selected mode; we must only select the

highest mode with Θ(j) ≤ Θ(t`). (If Θ(t`) is larger, we are only giving the mode more processing than

it requires.) It should also be observed that all operations, except for finding the appropriate mode, may

be done in O(1) time. Finding the highest real-time performance mode that may execute can be done in

O(lg q) time (via binary search) where q is the number of real-time performance modes.

109

Algorithm 3 Control Algorithm

Require: Reference Current Iref ; Reference Temperature Tref; Feedback Gain Ksfb; Integral Constant
Kifb,Ki; PWM Period Π.

1: Initialize XI , T ot v̇e, T ot İe
2: while At beginning of sampling period [t`, t`+1) : t` ≡ `Π do
3: Sample Tcpu(t`) + Tenv(t`), Icpu(`).
4: v̇e(t`) = Tref − (Tcpu(t`) + Tenv(t`))
5: Tot v̇e(t`) = Tot v̇e(t`−1) +KiΠv̇e(t`)
6: İe(t`) = Iref − (Icpu(t`)−min(0, T ot v̇e(t`)))
7: Tot İe(t`) = Tot İe(t`−1) +KifbΠİe(t`)
8: Θ(t`) = Tot İe(t`)−KsfbXI(t`)
9: i = max{j ∈ Zq+1 | Θ(j) ≤ Θ(t`)}

10: XI(t`+1) = GIXI(t`) +HTΘ(t`)
11: Update real-time performance mode to Mi.
12: Set resource period of Π and resource capacity of Θ(t`).
13: end while

6.7 Validation

In this research, we evaluate the proposed method using simulations and verified the results on our hard-

ware testbed.

6.7.1 Simulations

We implemented a discrete-event simulation in Matlab that uses the system parameters/model derived

from our testbed. At each time tick, the simulator calculates the CPU load-current consumption, Icpu,

the feedback, the target resource capacity, Θ (control-input), and the Tcpu value. If the temperature of

the system, Tcpu causes a violation of the reference temperature, Tref, then an error value is calculated, as

explained earlier in Equation 6.14. This error value is added to the CPU load-current reference, Iref if the

error is negative. This action effectively brings down the load-current into feasible lower value that does

not cause a Tref violation. After a couple of control cycles, the system become stable at a point that does

not violate any constraints.

The simulation methodology used in this experiment is the same as the previous. During simulation,

the following task parameters are used:

• Each sporadic task τC,ij = (eC,ij , dC,ij , pC,ij) has a period pC,ij uniformly drawn from the interval [5, 15].

The execution time requirement eC,ij set to the task utilization times pC,ij , where task utilization is

110

calculated using the UUnifast algorithm [9]. For each task, dC,ij equals pC,ij . The tasks are scheduled

by EDF.

• The total number of tasks is eight; each task τCj has three different real-time performance modes

where τC,2j = (eC,2j , dC,2j , pC,2j); τC,1j = (.2eC,1j , dC,1j , pC,1j); and τC,0j means that task is not selected.

From set of all possible combinations of tasks, we have selected fifteen modes with utilizations

ranging from zero to one. Each mode has a schedulable Θi value set by running the multi-modal

schedulability analysis in [30].

We refer to the controller described in algorithm as Generalized System Resiliency (GSR). We do not

compare the performance of our proposed method with other algorithms as we are unaware of any research

that addresses combined load/thermal constraints for hard-real-time systems.

The load-current and control parameters, GI/T , HI/T are all generated from the testbed using Matlab

System Identification (SI) tools with the Predictive Error Method (PEM). The state feedback, Ksfb, inte-

grator values, Kifb,Ki, Q, and R are derived for system optimality using Riccati Equation as shown in

our previous work [46, 48]. These testbed parameters are also used as the simulation parameters for the

controller. The values of these parameters are shown in a table in the appendix.

6.7.2 Results

Figure 6.4 shows the GSR behavior over different reference temperature (Tref) values generated from

simulations. As Tref is lowered, the Icpu is also lowered accordingly. Furthermore, when the external

temperature is increased, Icpu reaches its full value, 1.66 A.

Figure 6.5 shows the mode variation (i.e., the resiliency function Λ) over external temperature, Tenv

and external current, Iref . Clearly when Iref is increased, the mode is decreased to maintain fixed load-

resistance value; a reverse trend is observable for Tref.

Figure 6.6 shows the mode variation over reference temperature, Tref and CPU current, Icpu while

external temperature, Tenv is fixed at 19◦ C. This figure gives the system designer an indication as how

modes will degrade with changing environmental conditions. Clearly, as either Tref or Icpu is increased, a

larger Θ can be supported (i.e., the system is less constrained with respect to the power) and a higher mode

can be supported. Finally, Figure 6.7 shows the load resiliency comparison of the system, load-current

variation of the load, Iext with respect to the resource capacity (mode) at Tref = 45◦ C and Tenv = 19◦ C.

111

0 100 200 300
0

5

10

15

20

Time, s

12
x

C
u

rr
en

t,
 A

/Θ

T
ref

=35 oC/ T
env

=19 oC

0 100 200 300
0

10

20

30

40

50

Time, s

T
em

p
er

at
u

re
 o C

/M
o

d
e

0 100 200 300
0

5

10

15

20

T
ref

=45 oC/ T
env

=19 oC

0 100 200 300
0

10

20

30

40

50

T
cpu

+T
env Mode

I
ref Θ I

cpu

Figure 6.4: The effect of the reference temperature, Tref, on CPU current Icpu.

2.8
3

3.2
3.4

3.6

18
20

22
24

26
8

10

12

14

16

I
ref

, AT
env

, ° C

M
o

d
e

Mode @ T
ref

 > 55° C

Figure 6.5: The mode variation over external temperature,Tenv and reference current, Iref .

15
16

17
18

19
20

35
40

45
50

55
0

5

10

15

12x I
cpu

, A
T

ref
, o C

M
o

d
e

Mode Variation w.r.t T
ref

 and I
cpu

Figure 6.6: The mode variation over reference temperature,Tref and CPU current, Icpu .

112

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4
The Battery Resiliency Comparision

2.5x Θ

C
u

rr
en

t,
 A

I
ext

 Measured

I
ext

 Simulated

I
ext

 Simulated with Curvefitted r
cpu

 Value

Figure 6.7: The calculated and measured external current comparison.

The external current Iext comparison on calculated and testbed measured values when Tref = 45◦ C and
Tenv = 19◦ C.

In this graph, x-axis shows the 2.5 times scaled resource capacity, Θ. We plot the Iext measured load

testbed-values versus the load resiliency calculated from Equation 6.17. In this experiment, we calculate

the rcpu in discrete points and later use these values to calculate a function (using curve fitting techniques)

of rcpu in terms of resource capacity, Θ as shown in the appendix. The figure shows that the calculated

load resiliency is a close match with the observed values from the testbed; the differences at high and low

values of Θ are likely due to modeling inaccuracies.

6.8 Conclusions

This chapter addresses the problem of obtaining performance guarantees of multi-constrained real-time

systems in an unpredictable external conditions. Our control-theoretic generalized system-resiliency (GSR)

framework provides the system designer with a general methodology for obtaining predictable and stable

hard-real-time control systems. In particular, the GSR framework is able to derive strong guarantees on

the physical conditions under which a hard-real-time for any real-time performance mode may operate.

Our framework provides the designer a means to verify the real-time system resiliency of a system before

it is put into operation–as previous approaches which have no formal guarantee on the system resiliency

and can only be verified through extensive experimentation. Furthermore, we have validated our GSR

framework and its techniques on a hardware testbed with current as the primary control objective and

temperature as a secondary constraint.

In future work, we plan to extend our case study to multiple secondary constraints. Furthermore, we

will focus on the generation of automated design tools for the GSR framework. In such tools, the system

113

designer might need to only express the basic physical properties/capabilities of the system and a high-

level specification of the controller objectives/constraints; the tools would ideally then automatically derive

the appropriate control models, system parameter, and resiliency calculation. We also hope to validate on

other “resiliency” non-power-related system properties (e.g., noise level of a device in a hospital setting).

CHAPTER 7: CONCLUSION AND FUTURE

WORK

In this thesis, we introduce a new metric called system-resiliency which characterizes the maximum ex-

ternal system stresses that any hard-real-time performance mode can withstand by given constraints. This

framework addresses resiliency determination for real-time systems with physical and hardware limita-

tions. Our method advocates the system designer about the feasible trade offs between different system

resources for a multi parametric resiliency. The system-resiliency concept we introduced closely resem-

bles the stress test in materials engineering. Thus, our design framework and analysis may be classified as

a system stress analysis for real-time systems.

As a proof of concept, we introduce a new metric called thermal-resiliency, a subset of system re-

siliency which characterizes the maximum external thermal stress that any hard-real-time performance

mode can withstand. We show how to solve some of the issues and challenges of designing predictable

real-time systems that guarantee hard deadlines even under transitions between modes in an unpredictable

thermal environment where environmental temperature may dynamically change using our new metric. In

our framework, the system designer specifies a set of hard-real-time performance modes under which the

system may operate automatically adjusts the real-time performance mode based on the external thermal

stress. We extend the derivation of thermal resiliency to multicore systems and determines the limitations

of external thermal stress that any hard-real-time performance mode can withstand. Also, we show how

asymmetric processing resource allocation upon a multicore processor still maintain thermal constraints.

We investigate the peak temperature elevation of a hard-real-time system due to various task systems

on uniprocessor systems. The system designer can use these temperature elevation information upon task

allocation for various cores of multicore based system to avoid the peak temperature violation on a system

that the periodic resource with proper capacity allocation on each core. Furthermore, we contribute to de-

velop an efficient schedulability analysis framework for multi-modal real-time systems that are scheduled

by Fixed Priority algorithm. We investigate the potential utility of parallelization for meeting real-time

constraints and minimizing energy by considering the malleable Gang scheduling of implicit-deadline

sporadic tasks upon multiprocessors. We use our real-time thermal-aware testbed to verify all these theo-

114

115

retical results upon the testbed runs.

7.1 Future Works Beyond the Thesis

Real-time system design upon multiple unpredictable physical and hardware constraints is a well-recognized

research area. There are many growing number of career opportunities in cyber-physical systems design

that need the broader understanding on real-time systems. Our research involves on thermal-aware and

power-aware real-time system design. Towards our main research, we investigated many less-documented

and hidden details of the processor architecture. Furthermore, we developed several system software mod-

ules and could gather many invaluable system development experiences. Most importantly, our research

results along with theoretical modeling experience give us the strength and the training to handle many

industry challenges. Therefore, we hope to pursue a research-oriented career in a closely related area with

great confidence.

In the future, I will address following unsolved questions.

External Constraints with Dynamic Priorities: The dynamic external conditions of a real-time systems

might have different priorities on various occasions. Furthermore, a multicore system design–with a dy-

namic external constraints, criticality of the external conditions are dynamically variable–is an open prob-

lem. In my future research, I will propose a framework to analyzes and predicts best modes of operation

upon multiple dynamic constraints where external constraints priorities are dynamically variable.

Dynamic Core Activation: The multicore processors are becoming the industry standard for the embedded

and real-time system development. However, dark silicon issue prevents activating a larger, fix number

of cores all the time. Therefore, the processor forces to activate variable number of cores conditionally,

thus the dynamic task allocation to cores with possible dynamic task migration is essential. However, task

migration is costly and dynamic task allocation has many associated issues in a real-time design. In my

future research, I address this issue with real-time control-theoretic dynamic core activation framework.

Robust Design: My proposed system-resiliency framework provides the predication and quantification of

system degradation upon unpredictable external conditions. At this time, it does not safeguard the system

against modeling and uncertainty errors. Therefore, I will broaden my framework to cover this aspect: the

robust system design issue. Furthermore, in the future, the framework will analyze the system operations

under noise and environmental disturbances as well. Finally, I will extend my research on learning-based

116

control-theoretic framework to automate system design process.

Efficient Thermal and Power Plan: Multicore processors are increasing in cores per processor and are

also becoming increasingly power hungry. On the other hand, they face the dark and dim silicon issues and

majority simultaneous core activation is impossible. Furthermore, each activated-core acts as a thermal

dissipating agent. Therefore, the active core floor plan and number of active cores at a given time is

important to design an energy and thermal efficient real-time system. In the future, I will enhance my

design framework to address these multicore design issues.

7.1.1 Multi-Mode Physiological Control-Systems

If opportunity permits, we would like to pursue research on the following areas: the idea is essentially

design the tools to identify the multi-mode behavior of a physiological system of a human with a medical

conditions under different constraints.

Often time, scientists try to understand physical systems through mathematical models. In the past, a

little or no research exists in the area of physiological control systems. However, in recent years, scientist

find many important research areas in physiology that can be govern/control by control systems. The

human body is essentially a real-time system with larger time constants. Furthermore, it’s time constants,

the response times (for various activities, medicines etc) are varying; therefore, the human body dynamics

can not be easily modeled unlike most of the physically-made systems that we have studied so far. On the

other hand, the human body can be considered as a system–plant–with many input and output parameters.

Intuition suggests, the human physiology can be mathematically modeled by taking all these factors into an

account. In such research, first, the human body parameters variation should be modeled; the variable time

constants should be identified. Although these objectives are not trivial, after formal design and analysis

process (that may take many years and might need substantial amount of data for model verification),

we should be able to answer a question such as follows: what would be the minimum respiratory rate to

maintain the 95% Oxygen Saturation of a particular person (with Xa medical condition, say), thus what

amount of exercise, he should not exceed? or, when a particular person is on Xb medication, what should

be the maximum amount of sugar intake that he can tolerate without unconscious? or when a particular

person is on Xi, i ∈ {1 . . . n} medications (medical-resiliency), what should be the maximum amount of

sugar, exercise, alcohol, or Yj , j ∈ {1 . . .m} medicines (external constraints) intake that he can tolerate

117

at his marginal-unconscious, partially-active, or wide-awake states (different models)?

LIST OF PUBLICATIONS

JOURNAL

Published

(a) Pradeep Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and

Weisong Shi. The Design and Analysis of Thermal-Resilient Hard-Real-Time Systems.

ACM Transactions on Embedded Computing Systems, ACM TECS., 13(5s):146:1-146:25,

July 2014.

(b) Masud Ahmed, Nathan W. Fisher, and Sangquan Wang, and Pradeep Hettiarachchi. Min-

imizing Peak Temperature in Embedded Real-Time Systems via Thermal-Aware Periodic

Resources Sustainable Computing: Informatics and Systems . 1 (13), pp. 226-240, 2011.

CONFERENCE & WORKSHOP

Published

(a) Masud Ahmed, Pradeep Hettiarachchi, and Nathan Fisher. Real-Time Multi-Modal Analy-

sis for Fixed-Priority Scheduled Systems with Non-Preemptible Regions. IEEE Real-Time

and Embedded Technology and Application Symposium (RTAS 2015)

(b) Nathan Fisher, Masud Ahmed, and P. Hettiarachchi. Open Problems in Multi-Modal

Scheduling Theory for Thermal-Resilient Multicore Systems 5th Real-Time Scheduling

Open Problems Seminar (RTSOPS), Spain, 2014. (The most wanted problem award)

(c) Antonio Paolillo, Joel Goossens, Pradeep Hettiarachchi, and Nathan Fisher. Power Mini-

mization for Parallel Real-Time Systems with Malleable Jobs and Homogeneous Frequen-

cies. The 20th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA 2014).

(d) Pradeep Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and

Weisong Shi. The Design and Analysis of Thermal-Resilient Hard-Real-Time Systems.

Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-

posium, Beijing, China. April 2012. (23%; 30 full papers accepted out of 127)

118

119

(e) Pradeep Hettiarachchi, Nathan Fisher, and Le Yi Wang. Achieving Thermal-Resiliency for

Multicore Hard-Real-Time Systems. 25th Euromicro Conference on Real-Time Systems

(ECRTS13) July 9-12, 2013 Paris, ECE, France.

Papers to be Submitted

1. Pradeep M. Hettiarachchi and Nathan Fisher. A Generalized Design Framework for Adaptive

Real-Time System Resiliency IEEE Real-Time and Embedded Technology and Application

Symposium (RTAS 2016).

APPENDIX A:

DETAILS OF PRACTICAL SYSTEM

IMPLEMENTATION ON TESTBEDS

A.1 The Temperature Calculations

In this section, we calculate the CPU temperature precisely. Therefore, we need to consider the CPU

leakage current effects on temperature calculation as well. Using our thermal model with the leakage cur-

rent effect, we calculate the CPU temperature, which is based on the solution of second order differential

equation. From Equation (4.3), we get the first derivative of Tenv(t) as follows,

d

dt
Tenv(t) =

1

kTσ1

(d2

dt2
Tcpu(t) + β1

d

dt
Tcpu(t)− σ1

d

dt
Pd

cpu(t)
)

=
1

kTσ1

(d2

dt2
Tcpu(t) + β1

d

dt
Tcpu(t)

)
. (A.1)

In this analysis, we consider a system that can be described according to the model shown in the

Section 4.3. Therefore, in the above Equation (A.1), we consider the system behavior for discrete time in-

tervals and the input is considered to be constant in each sampling interval (the input value at the sampling

time continue to hold for the rest of the period, until the next sampling time). This assumption is realistic

because we implement our system as a discrete-time control system, in which the ZOH functionality means

for holding the input value for inter-sampling times periods. Let us consider any such general time period

where the input is held constant; therefore, for time instant t in this range, d
dtPd

cpu(t) can be considered as

zero. Thus, we can substitute Equation (4.2) and (A.1) to the Equation (4.5) to get the following,

d2

dt2
Tcpu(t) + V d

dt
Tcpu(t) + BTcpu(t) = Fact/inc/cont, (A.2)

where,

120

121

V def
= (β1 + β2),

B def
= (β1β2 − k2

Tσ1σ2),

Fact/inc/cont def
=

(
β2σ1 + σ1σ2kT

)
(Pact/inc/cont + kC) + σ1σ2kTPenv(t),

Pact/inc/cont =





Pact, active;

Pinc, inactive;

(Pact − Pinc)
Θ
Π + Pinc, continuous.

(A.3)

The Equation (A.2) is a second-order inhomogeneous equation andF is a constant (Pd
cpu(t) and Penv(t)

are unchanged over two sampling periods). As we already discuss, the CPU can operate in two power

modes. Depending on the operating mode of the system (active or inactive CPU operation), we can derive

two different F values. Also, we assume, when the CPU power is represented in terms of the resource

capacity, Θ, the corresponding F is denoted by Fcont.1. Therefore, the complete solution for Tcpu and Tenv

over any continuous interval is given by,

T act/inc
cpu (t) = C1act/inc

er1t + C2act/inc
er2t + C3act/inc

, (A.4)

where,

r1/2 = −1

2

(
V ∓

√
V2 − 4B

)
, and

C3act/inc/cont
=
Fact/inc/cont

B .

In the Equation (A.4), the r1 and r2 terms are negative because
√
V2 − 4B is positive and less than V .

From Equation (4.5) and (A.4), we can find the Tenv(t) for active and inactive CPU operations as

follows,
1We justify the need for Fcont in the Tech report) under PWM Error Calculation

122

T act/inc
env (t) =

1

kTσ1

(
C1act/inc

r1e
r1t + C2act/inc

r2e
r2t − σ1(Pact/inc + kc)

)

+
β1

kTσ1

(
C1act/inc

er1t + C2act/inc
er2t + C3act/inc

)
. (A.5)

We consider the system operates in interleaved active and inactive power modes over given interval

size; the initial temperature of given period is the final temperature of the previous period. Given Tcpu(tb)

and Tenv(tb), fixed Pd
cpu and Penv, we may obtain C1, C2 by solving Equations (A.4) and (A.5), where tb is

the initial time of the interval. Further, we derive the C as follows,

C1act/inc/cont
(tb) =

1

r1 − r2

(
r2C3act/inc

+ σ1 (Pact/inc/cont + kC + kTTenv(tb))− (β1 + r2) Tcpu(tb)
)
,

C2act/inc/cont
(tb) =

1

r2 − r1

(
r1C3act/inc

+ σ1 (Pact/inc/cont + kC + kTTenv(tb))− (β1 + r1) Tcpu(tb)
)
,

C3act/inc/cont
(tb) =

(β2σ1 + σ1σ2kT) (Pact/inc/cont + kC) + σ1σ2kTPenv(tb)

β1β2 − k2
Tσ1σ2

. (A.6)

Note that, here we replace the initial power settings Pd
cpu(t) with Pact. We use the Equation (A.4) and

(A.5) to derive the temperature of the system at the end of each period. Therefore, consider the CPU

temperature at any active period, (nΠ, nΠ + Θ] and adjacent inactive (nΠ + Θ, (n+ 1)Π] period (details

given in the tech report).

T act
cpu(nΠ + Θ) = T act

cpu(nΠ) + C1act(nΠ)(er1Θ − 1) + C2act(nΠ)(er2Θ − 1) (A.7)

T inc
cpu ((n+ 1)Π) = T act

cpu(nΠ) + C1inc(nΠ + Θ)(er1(Π−Θ) − 1) + C2inc(nΠ + Θ)(er2(Π−Θ) − 1)

+ C1act(nΠ)(er1Θ − 1) + C2act(nΠ)(er2Θ − 1) (A.8)

123

Therefore, we can derive the equation for the period (nΠ, (n+ ς)Π] is as follows.

T inc
cpu ((n+ ς)Π) =

ς−1∑

i=0

C1inc
((n+ i)Π + Θ)(er1(Π−Θ) − 1) +

ς−1∑

i=0

C2inc
((n+ i)Π + Θ)(er2(Π−Θ) − 1)

+ T act
cpu(nΠ) +

ς−1∑

i=0

C1act((n+ i)Π)(er1Θ − 1) +

ς−1∑

i=0

C2act((n+ i)Π)(er2Θ − 1),

= T act
cpu(nΠ)

+

ς−1∑

i=0

2∑

j=1

(
C(j)inc

((n+ i)Π + Θ)(er(j)(Π−Θ) − 1) + C(j)act
((n+ i)Π)(er(j)Θ − 1)

)
.

(A.9)

Please note that the above Equation (A.9) is inductively defined, as the constants for the boundary condi-

tions can be derived from the Equation (A.6) which are in terms of previous values of Tcpu and Tenv.

Now we use the same approach to derive the environment temperature Tenv (the details given in the

tech report) and derive the following for the period (nΠ, nΠ + ς] is as follows,

T inc
env ((n+ ς)Π) = T act

env(nΠ) +

ς−1∑

i=0

C1inc
((n+ i)Π + Θ)(er1(Π−Θ) − 1)

r1 + β1

kTσ1

ς−1∑

i=0

C2inc
((n+ i)Π + Θ)(er2(Π−Θ) − 1)

r2 + β1

kTσ1
+

ς−1∑

i=0

C1act
((n+ i)Π)(er1Θ − 1)

r1 + β1

kTσ1

+

ς−1∑

i=0

C2act((n+ i)Π)(er2Θ − 1)
r2 + β1

kTσ1

= T act
env(nΠ) +

ς−1∑

i=0

2∑

j=1

(
C(j)inc

((n+ i)Π + Θ)(er(j)(Π−Θ) − 1)
r(j) + β1

kTσ1

+ C(j)act
((n+ i)Π)(er(j)Θ − 1)

r(j) + β1

kTσ1

)
. (A.10)

In the Equation (A.10), the constants for the boundary conditions can be derived from the Equation (A.6).

The CPU and environment temperature calculation equations (Equation (A.9) and (A.10)) gives a

possible way to calculate the temperature states of the system, provided that we know a single boundary

condition. Therefore, when we calculate the thermal resiliency and the PWM error for second-order

thermal model, Equation (A.9) and (A.10) are used.

124

A.2 Calculation of State-Space Parameters Using Testbed Results

The state-space parameter generation process needs input and output data collected over sufficiently larger

period. Unlike the testbench output (Tcpu+Tenv reading–measured using T-type thermocouple as explained

in the Section 3.3.1), the testbed input, the equivalent CPU thermal input power cannot be measured

directly. Instead, we measure the CPU input power, the closest measurable parameter. We assume the

electrical power consumed by the CPU totally converts to thermal energy and measure the CPU input

power and consider it as the equivalent thermal power2.

We install two shunt resisters in series with the 4-pin ATX power connector and measure the voltage

(and calculate the current drawn) drop across it using National Instrument data acquisition interface, NI

9205. Since The NI 9205 does not have a Linux USB driver, we create an application interface in a

Windows computer to connect with the testbed using the Ethernet. The testbed measures the CPU and

environment temperature and sends a sync signal to Windows computer with NI 9205 interface to record

the ATX current readings. We calculate the the total power fed to the CPU, as the current drawn by CPU

(through the NI measurements) and the voltage of the 4 wire ATX interface are known.

We run a random workload for a longer time period to generate thermal effects on the CPU and record

input (power) and output (CPU temperature) data. We collect two sets of data from the testbed, one set

to generate the model parameters and the other set validates them. We use standard tools provided by

system-identification toolbox in Matlab to derive the state-space parameters (SSP) with the test data. 3 We

use these SSP in the rest of the simulations and in the controller design.

We observe that when we do the SI process, the thermal output of the CPU is not sufficient enough

to make a accurately measurable temperature difference in the environment. Therefore, for the parameter

generation purpose, we consider the following: we use a first order CPU thermal-model, for the parameter

generation, considering that the system environmental temperature stays stable and the the thermal model

of the system is considered as a differential model. In other words, the leakage power of the testbed is

a constant for a given temperature and, therefore when we consider the differential model (the difference

between any steady point to the current point), the leakage power component need not to be considered
2This assumption is realistic because in the CPU (any electrical circuit) the desired objective is to operate its switches. How-

ever each gate (in switches) consume energy and generate heat. There is no any other energy transformation in an ordinary
electrical circuit.

3We use Predictive Error Method (PEM) algorithm implementation in Matlab.

125

for closer operational points.

When we consider the environment temperature is nearly stable over a sufficiently larger time period,

we may get a normalized thermal model of the CPU as follows,

d

dt
Tcpu(t) = σ1

(
kT −

1

Rl
cpu
− 1

Rd
cpu

)
Tcpu(t) + kTσ1Tenv(t) + σ1Pd

cpu(t) + σ1kC . (A.11)

Consider an another test-point (at tE) during our SI process and assume the same environmental tem-

perature, then we get, the following differential system model,

d

dt
T̄cpu(t) = AT̄cpu(t) +BP̄d

cpu(t), (A.12)

where, T̄cpu(t) = Tcpu(t) − Tcpu(tE), and P̄d
cpu(t) = Pd

cpu(t) − Pd
cpu(tE). Therefore, the final system

that we used in the controller design and the parameter generation may be considered as the above model.

In our parameter generation process, we use the discrete form of the above state-space Equation (A.12).

As we shown earlier, the continuous-time state-space model can converted to discrete-time state-space

model and the following discrete model is obtained,

T̄cpu(k + 1) = GT̄cpu(k) +HP̄d
cpu(k). (A.13)

This parameter generation can be considered as linearization of our model at the operating points

(at a particular environment temperature point). In our future work, we will generate linearized system

parameters for a smooth operating regions and will implement a gain scheduled controller.

126

Figure A.1: The voltage variation of shunt resister for random workload.

The voltage variation of shunt resister for random workload in our testbed, at high and low frequency
modulation values during the SI process shown by NI LabView (prominent high and low voltage values
(square wave) correspond to high and low frequency modulation coefficient and the short voltage spikes,
within the square wave correspond to the software workload variation. Also, note that the white and red
color voltage traces correspond to two ATX channels).

APPENDIX B:

FURTHER DETAILS ON MULTICORE

PROCESSOR MODEL

B.1 Multicore Thermal Model

To simplify the analysis, we consider a processor with 4 adjacent cores. We apply the Kirchhoff’s circuit

laws and get the following equations. We assume that the heat (power dissipation in the equivalent system)

distribution from core i to core j as Iij . It is easy to see that PCcpu(t), C ∈ {1 . . .m} (in this case m = 4)

the individual core power dissipation, distributes in the own core and to the adjacent cores as follows:

P1
cpu(t) = I11 + I12 + I13 + I14,

P2
cpu(t) = I21 + I22 + I23 + I24,

P3
cpu(t) = I31 + I32 + I33 + I34,

P4
cpu(t) = I41 + I42 + I43 + I44.

(B.1)

Therefore, we get the thermal distribution for the 4 core system as,

127

128

I11 = Cd
cpu11(t)

d

dt
Tcpu11(t) +

Tcpu11(t)

Rd
cpu11

+ C`cpu11(t)
d

dt
Tcpu11(t) +

Tcpu11(t)

R`cpu11
,

I22 = Cd
cpu22(t)

d

dt
Tcpu22(t) +

Tcpu22(t)

Rd
cpu22

+ C`cpu22(t)
d

dt
Tcpu22(t) +

Tcpu22(t)

R`cpu22
,

I33 = Cd
cpu33(t)

d

dt
Tcpu33(t) +

Tcpu33(t)

Rd
cpu33

+ C`cpu33(t)
d

dt
Tcpu33(t) +

Tcpu33(t)

R`cpu33
,

I44 = Cd
cpu44(t)

d

dt
Tcpu44(t) +

Tcpu44(t)

Rd
cpu44

+ C`cpu44(t)
d

dt
Tcpu44(t) +

Tcpu44(t)

R`cpu44
.

(B.2)

Also, we can show that the thermal distribution between cores as,

I21 = Ccpu12(t)
d

dt
(Tcpu22(t)− Tcpu11(t)) +

(Tcpu22(t)− Tcpu11(t))

Rcpu12
,

I31 = Ccpu13(t)
d

dt
(Tcpu33(t)− Tcpu11(t)) +

(Tcpu33(t)− Tcpu11(t))

Rcpu13
,

I41 = Ccpu14(t)
d

dt
(Tcpu44(t)− Tcpu11(t)) +

(Tcpu44(t)− Tcpu11(t))

Rcpu14
,

I32 = Ccpu23(t)
d

dt
(Tcpu33(t)− Tcpu22(t)) +

(Tcpu33(t)− Tcpu22(t))

Rcpu23
,

I42 = Ccpu24(t)
d

dt
(Tcpu44(t)− Tcpu22(t)) +

(Tcpu44(t)− Tcpu22(t))

Rcpu24
,

I43 = Ccpu34(t)
d

dt
(Tcpu44(t)− Tcpu33(t)) +

(Tcpu44(t)− Tcpu33(t))

Rcpu34
.

(B.3)

129

Therefore, we get systems of first order differential equations,

(Ccpu12 + Ccpu13 + Ccpu14 + Cd
cpu11 + C`cpu11)

d

dt
Tcpu11(t)

− Ccpu12
d

dt
Tcpu22(t)− Ccpu13

d

dt
Tcpu33(t)− Ccpu14

d

dt
Tcpu44(t)

+ (
1

Rcpu12
+

1

Rcpu13
+

1

Rcpu14
+

1

Rd
cpu11

+
1

R`cpu11
)Tcpu11(t)

− Tcpu22(t)

Rcpu12
− Tcpu33(t)

Rcpu13
− Tcpu44(t)

Rcpu14
= P1

cpu(t), (B.4)

− Ccpu12
d

dt
Tcpu11(t)

+ (Ccpu12 + Ccpu23 + Ccpu24 + Cd
cpu22 + C`cpu22)

d

dt
Tcpu22(t)

− Ccpu23
d

dt
Tcpu33(t)− Ccpu24

d

dt
Tcpu44(t)− Tcpu11(t)

Rcpu12

+ (
1

Rcpu12
+

1

Rcpu23
+

1

Rcpu34
+

1

Rd
cpu22

+
1

R`cpu22
)Tcpu22(t)

− Tcpu33(t)

Rcpu23
− Tcpu44(t)

Rcpu24
= P2

cpu(t), (B.5)

− Ccpu13
d

dt
Tcpu11(t)− Ccpu23

d

dt
Tcpu22

+ (Ccpu13 + Ccpu23 + Ccpu34 + Cd
cpu33 + C`cpu33)

d

dt
Tcpu33(t)

− Ccpu34
d

dt
Tcpu44 −

Tcpu11(t)

Rcpu13
− Tcpu22(t)

Rcpu23

+ (
1

Rcpu13
+

1

Rcpu23
+

1

Rcpu34
+

1

Rd
cpu33

+
1

R`cpu33
)Tcpu33(t)

− Tcpu44(t)

Rcpu34
= P3

cpu(t), (B.6)

and

130

− Ccpu14
d

dt
Tcpu11(t)− Ccpu24

d

dt
Tcpu22(t)− Ccpu34

d

dt
Tcpu33(t)

(Ccpu14 + Ccpu23 + Ccpu34 + Cd
cpu44 + C`cpu44)

d

dt
Tcpu44(t)

(B.7)

− Tcpu11(t)

Rcpu14
− Tcpu22(t)

Rcpu24
− Tcpu33(t)

Rcpu34

+ (
1

Rcpu14
+

1

Rcpu24
+

1

Rcpu34
+

1

Rd
cpu44

+
1

R`cpu44
)Tcpu44(t)

= P4
cpu(t). (B.8)

To simplify the analysis, we define the following,

131

X11 = Ccpu12 + Ccpu13 + Ccpu14 + Cd
cpu11 + C`cpu11,

X12 = X21 = −Ccpu12,

X13 = X31 = −Ccpu13,

X14 = X41 = −Ccpu14,

Y11 =
1

Rcpu12
+

1

Rcpu13
+

1

Rcpu14
+

1

Rd
cpu11

+
1

R`cpu11

Y12 = Y21 = − 1

Rcpu12
,

Y13 = Y31 = − 1

Rcpu13
,

Y14 = Y41 = − 1

Rcpu14
,

X22 = (Ccpu12 + Ccpu23 + Ccpu24 + Cd
cpu22 + C`cpu22),

X23 = X32 = −Ccpu23,

X24 = X42 = −Ccpu24,

Y22 =
1

Rcpu12
+

1

Rcpu23
+

1

Rcpu34
+

1

Rd
cpu22

+
1

R`cpu22
,

Y23 = Y32 = − 1

Rcpu23
,

Y24 = Y42 = − 1

Rcpu24
,

X33 = Ccpu13 + Ccpu23 + Ccpu34 + Cd
cpu33 + C`cpu33,

X34 = X43 = −Ccpu34,

Y33 =
1

Rcpu13
+

1

Rcpu23
+

1

Rcpu34
+

1

Rd
cpu33

+
1

R`cpu33
,

Y34 = − 1

Rcpu34
,

X44 = Ccpu14 + Ccpu23 + Ccpu34 + Cd
cpu44 + C`cpu44,

Y44 =
1

Rcpu14
+

1

Rcpu24
+

1

Rcpu34
+

1

Rd
cpu44

+
1

R`cpu44
,

(B.9)

and

132

X = (Xij)4×4,

Y = (Yij)4×4,

A = (Aij)4×4,

B = (Bij)4×4,

A = −X−1Y,

B = X−1.

(B.10)

Therefore, we can simplify the system as,

XṪcpu(t) + YTcpu(t) = Pcpu(t),

⇒ Ṫcpu(t) = ATcpu(t) + BPcpu(t), (B.11)

where, Ṫcpu(t) =




˙Tcpu11(t)

˙Tcpu22(t)

˙Tcpu33(t)

˙Tcpu44(t)




, Tcpu(t) =




Tcpu11(t)

Tcpu22(t)

Tcpu33(t)

Tcpu44(t)




, and Pcpu(t) =




P1
cpu(t)

P2
cpu(t)

P3
cpu(t)

P4
cpu(t)



.

B.2 The Testbed Parameters

We run 20000 testbed intervals to generate IO data required for the SI process. During SI process, the a

random ΘC value is generated, and each CPU was allowed to execute a workload for a duration specified

133

by ΘC C ∈ {1 . . . 8}We found the following parameter values:

G = 


0.984 0.035 0.019 −0.019 0.018 0.235 0.204 −0.545

0.115 1.070 −0.068 −0.102 0.056 0.269 −0.902 0.803

0.065 −0.166 0.842 0.179 0.050 0.313 0.276 0.960

0.109 0.156 −0.037 0.814 0.061 0.564 −0.796 0.041

−0.029 0.012 0.051 −0.029 0.951 −0.370 −0.127 0.005

−0.112 0.029 0.120 −0.027 −0.066 0.507 0.330 −0.804

0.063 0.129 0.014 −0.160 0.006 −0.120 0.026 0.426

−0.034 0.089 0.068 −0.086 −0.012 −0.016 −0.030 0.321




H = 10−3 ×


0.035 0.012 0.024 0.022 0.017 0.032 0.019 0.025

−0.132 0.244 −0.175 0.102 −0.026 0.117 −0.094 0.046

0.097 0.269 0.019 −0.267 −0.023 0.194 −0.062 −0.251

−0.124 0.245 −0.181 0.180 −0.002 0.133 −0.083 0.120

−0.045 −0.150 0.003 0.059 −0.002 −0.119 0.022 0.059

0.017 −0.322 0.096 0.077 0.024 −0.202 0.092 0.104

−0.177 0.029 −0.156 0.209 −0.017 −0.041 −0.048 0.153

−0.026 −0.106 0.002 0.126 0.018 −0.066 0.036 0.118




K0 = 10−3 ×


0.357 0.096 0.153 0.047 0.006 0.430 0.150 −0.543

0.328 0.317 0.160 0.172 −0.074 0.218 −0.386 0.652

0.319 −0.129 0.140 −0.201 0.139 −0.044 0.407 −0.289

0.316 0.294 −0.172 0.005 0.079 0.134 −0.237 −0.205

0.315 0.011 0.080 0.103 0.070 0.276 0.086 −0.398

0.381 0.466 0.136 0.085 −0.039 0.379 −0.353 0.279

0.202 0.043 0.061 −0.151 0.057 0.042 0.184 −0.180

0.244 0.462 −0.202 0.052 0.047 0.361 −0.354 −0.463




(B.12)

Also, the Q and R are 8× 8 identity matrices.

134

B.3 The Tcpu Temperature Calculation

In this section, we solve the Equation B.11 to calculate the temperature of the individual CPU cores.

We assume that the system is stable and should have 4 real solutions for the Equation B.11. Taking

the eigenvalues of the system as λi, i ∈ {1 . . . 4}, the general solution for the system of equations

(considering the homogeneous system) can be found as follows,

Tcpu(t)c = c1V1e
λ1t + c2V2e

λ2t + c3V3e
λ3t + c4V4e

λ4t

, (B.13)

where, Vi =




v1,i

v2,i

v3,i

v4,i




i ∈ {1 . . . 4} are eigenvectors of the system.

Also the fundamental matrix is given by,

φ(t) =




v1,1e
λ1t v1,2e

λ2t v1,3e
λ3t v1,4e

λ4t

v2,1e
λ1t v2,2e

λ2t v2,3e
λ3t v2,4e

λ4t

v3,1e
λ1t v3,2e

λ2t v3,3e
λ3t v3,4e

λ4t

v4,1e
λ1t v4,2e

λ2t v4,3e
λ3t v4,4e

λ4t




(B.14)

.

We can further simplify the solution as,

Tcpu(t)c = φ(t)C,

⇒ Tcpu(t)c = φ(t)φ(t)−1Tcpu(0)c. (B.15)

Also, the particular solution is given by,

135

Tcpu(t)p = φ(t)

∫
φ(t)−1BPcpu(t)dt. (B.16)

Therefore, the general solution is,

Tcpu(t) = Tcpu(t)p + Tcpu(t)c. (B.17)

Assume that the controller calculates four capacities Θ1,Θ2,Θ3, such that Θ4, Θ1 > Θ2 > Θ3 > Θ4.

Then, we can calculate the temperature as follows,

Tcpu(Θ4) = φ(t)φ(t)−1Tcpu(0)c + φ(t)

∫ Θ4

0
φ(t)−1BPcpu(t)1dt,

Tcpu(Θ3) = φ(t)φ(t)−1Tcpu(Θ4)c + φ(t)

∫ Θ3−Θ4

0
φ(t)−1BPcpu(t)2dt,

Tcpu(Θ2) = φ(t)φ(t)−1Tcpu(Θ3)c + φ(t)

∫ Θ2−Θ3

0
φ(t)−1BPcpu(t)3dt,

Tcpu(Θ1) = φ(t)φ(t)−1Tcpu(Θ2)c + φ(t)

∫ Θ1−Θ2

0
φ(t)−1BPcpu(t)4dt,

Tcpu(Π) = φ(t)φ(t)−1Tcpu(Θ1)c + φ(t)

∫ Π−Θ1

0
φ(t)−1BPcpu(t)5dt,

136

⇒ Tcpu(Π)) =
(
φ(t)φ(t)−1)5Tcpu(0)c

+
(
φ(t)φ(t)−1)4φ(t)

∫ Θ4

0
φ(t)−1BPcpu(t)1dt+

+
(
φ(t)φ(t)−1)3φ(t)

∫ Θ3−Θ4

0
φ(t)−1BPcpu(t)2dt,

+
(
φ(t)φ(t)−1)2φ(t)

∫ Θ2−Θ3

0
φ(t)−1BPcpu(t)3dt,

+
(
φ(t)φ(t)−1)1φ(t)

∫ Θ1−Θ2

0
φ(t)−1BPcpu(t)4dt,

+ φ(t)

∫ Π−Θ1

0
φ(t)−1BPcpu(t)5dt.

Therefore,

⇒ Tcpu(nΠ)) =
(
φ(t)φ(t)−1)5Tcpu((n− 1)Π)c

+ κ
((
φ(t)φ(t)−1)4φ(t)

∫ Θ4

0
φ(t)−1BPcpu(t)1dt+

+
(
φ(t)φ(t)−1)3φ(t)

∫ Θ3−Θ4

0
φ(t)−1BPcpu(t)2dt,

+
(
φ(t)φ(t)−1)2φ(t)

∫ Θ2−Θ3

0
φ(t)−1BPcpu(t)3dt,

+
(
φ(t)φ(t)−1)1φ(t)

∫ Θ1−Θ2

0
φ(t)−1BPcpu(t)4dt,

+ φ(t)

∫ Π−Θ1

0
φ(t)−1BPcpu(t)5dt

)
,

where,

137

Pcpu(t)1dt =




Pact

Pact

Pact

Pact



,

Pcpu(t)2dt =




Pact

Pact

Pact

Pinc



,

Pcpu(t)3dt =




Pact

Pact

Pinc

Pinc



,

Pcpu(t)4dt =




Pact

Pinc

Pinc

Pinc



,

Pcpu(t)5dt =




Pinc

Pinc

Pinc

Pinc



.

(B.18)

B.4 GSR Details:Run Time of the System

For our case study that involved a battery-operated system, using the conservation of energy rules, we can

calculate the time period tbat that system may be stable as follows,

138

tbat =
Ebat

rcpu·Wcpu

rext
+Wcpu

, (B.19)

or with the charging source with Icrg rate,

tbat =
Ebat

rcpu·Wcpu

rext
+Wcpu − Vbat · Icrg

, (B.20)

where, Ebat is the initial energy of the battery.

B.5 Temperature Calculation of the System

In this section, we show how to calculate the temperature of the system when the term, Serror of
∫
Kifb(−CXI+

Iref)+min(0,Serror)dt is zero at the stability. This corresponds to a system with reasonably high thermal

constraint, and the thermal constraint is not violated by current-tracking action. In this case, the Θ is not

excess enough to reduce the Iref , thus Θ(t) becomes, Θ(t) = −KsfbXI(t) +
∫
Kifb(−CXI + Iref)dt.

Therefore, we can solve the current state-variable XI(t) as follows,

ẊI(t) = AIXI(t) + BI(−KsfbXI(t)

+

∫
Kifb(−CXI + Iref)dt),

⇒ ẌI(t) − (AI − BIKsfb)ẊI(t)

+ KifbBICIXI(t) = BIKifbIref ,

⇒ ẌI(t) + V1ẊI(t) + V2XI(t) = V3, (B.21)

where, V1
def
= −(AI − BIKsfb), V2

def
= KifbBICI , and V3

def
= BIKifbIref

This is a second order inhomogeneous differential equation. Therefore the solution is,

139

XI(t) = C1er1t + C2er2t + C3, (B.22)

where, r1/2
def
=
−V1±

√
(V2

1−4V2)

2 and C3
def
= V3
V2 . Furthermore, C1 and C2, and are constants.

Therefore,

Θ(t) = −KsfbXI(t) +

∫
Kifb(−CIXI(t) + Iref)dt,

= −Ksfb(C1er1t + C2er2t + C3)

+

∫
Kifb(−CI(C1er1t + C2er2t + C3) + Iref)dt,

= −Ksfb(C1er1t + C2er2t + C3)

+ tIrefKifb − CIKifb(
1

r1
C1er1t +

1

r2
C2er2t + C3).

(B.23)

Now we solve the thermal point of the system for calculated control input Θ(t) as follows from Equa-

tion 6.10,

ẊT (t) = ATXT (t) + BT (−Ksfb(C1er1t + C2er2t + C3)

+ tIrefKifb − CIKifb(
1

r1
C1er1t +

1

r2
C2er2t + C3)).

(B.24)

This can be solved for XT ,

XT (t) =
1

e
∫
AT dt

(∫
e
∫
AT dtBT (−Ksfb(C1er1t + C2er2t + C3)

+ tIrefKifb − CIKifb(
1

r1
C1er1t +

1

r2
C2er2t + C3))

)
dt.

(B.25)

140

B.6 Testbed Details

We develop a Linux native posix thread libraries (NTPL) based multi-threaded application. Our application

consists of a scheduler simulator (SS) and a thread activator. To simplify the testbed implementation, our

SS runs a Θ resource period and makes it idle for Π − Θ period in each processor. The real-time loop

runs as a high-priority thread (the priority is higher than the threaded IRQ handlers). First, the scheduler

simulator invokes the optimal controller. Then, the optimal controller reads the CPU energy consumption

and calculate the instantaneous CPU load-current value, and calculates the optimal Θ for the next period.

The calculated Θ, value is applied to SS to select and activate the corresponding Θ. During this the

entire Θ period, the CPU core is set to the highest power level. During the Π − Θ period, the idle job

(thread) is executed, and the each CPU core is set to the low power level. The controller measures the

CPU temperature and the external temperature in each control cycle. In case the Θ value causes to violate

the temperature constraint, Tref, the Θ value is dynamically adjusted in terms of CPU target load-current

value.

The scheduler simulator emulates the schedule tick functionality of the Linux kernel in a higher level

granularity. Similar to the Linux kernel scheduler tick, the scheduler simulator, with the help of thread

activator, sleeps until it wakes up in the Θ boundaries. Our thread activator wakes up to schedule resource

capacity, Θ in different cores simultaneously, raises the appropriate thread of the core which should have

the priority, and goes back to the sleep. This process repeats for the Θ given by the optimal controller. Also,

the scheduler simulator (with the help of a thread activator) in each core completes the above process in

parallel. When control period is passed, the scheduler simulator invokes the optimal controller to calculate

the Θ value again.

In this experiment, we use curve fitting techniques to derive power function and determine the follow-

ing,

Wcpu(Θ) = 30.81 sin(0.16055Θ− 0.2251)

+ 45.05 sin(0.26075Θ + 2.404)

+ 26.77 sin(0.295Θ + 5.323). (B.26)

141

Table B.1: Testbed parameters for generalized system resiliency simulations

Parameter Value

GI




0.034 0.063 0.022 0.040
0.210 0.799 −0.352 −0.135
−0.081 −0.228 0.541 −0.296
−0.041 0.101 0.057 −0.284




GT




0.979 0.051 0.008 0.010
0.199 0.232 −0.767 0.027
0.016 −0.092 0.433 −0.042
−0.009 −0.007 0.180 −0.987




HTI
[
0.007 −0.002 −0.000 −0.001

]

HTT
[
0.000 −0.0043 −0.0006 0.0011

]

Ksfb
[
5.078 13.423 −1.336 2.128

]

Kifb 0.6021
γT 0.878

Furthermore, we derive CPU resistance as,

rcpu(25Θ) = p1Θ9 + p2Θ8 + p3Θ7 + p4Θ6 + p5Θ5

+ p6Θ4 + p7Θ3 + p8Θ2 + p9Θ + p10, (B.27)

where, p1 = 1.315x10−021, p2 = −2.07x10−018, p3 = 1.168x10−015, p4 = −2.811x10−013, p5 =

3.777x10−011, p6 = −7.016x10−009, p7 = −3.247x10−006, p8 = 0.003028, p9 = −0.7726, and p10 =

81.55.

Figure B.1 confirms that the behavior of our controller in this environment is stable, and with a mini-

mum effort the controller achieves its goal. Also, Figure B.2 shows the CPU impedance variation over the

resource capacity. It shows Θ is inversely proportional to the CPU impedance.

B.7 System-Resiliency

§Multiple System Constraints. We can seamlessly add more constraints to the system design, and no

changes in the framework are needed to handle the additional constraints. As a summary, to calculate the

system resiliency for multi-constrained system, the following steps needs to be followed:

142

0 50 100 150 200 250 300
0

5

10

15

20

Time, s

12
x

C
u

rr
en

t,
 A

/Θ
T

ref
=35 oC/T

env
=19 oC

0 50 100 150 200 250 300
0

5

10

15

20

25
T

ref
=45 oC/T

env
=19 oC

0 50 100 150 200 250 300
0

10

20

30

40

Time, s

T
em

p
er

at
u

re
, o C

/M
o

d
e

0 50 100 150 200 250 300
0

10

20

30

40

50

T
cpu

 + T
env Mode

I
cpu Θ

Figure B.1: The effect of the reference temperature, Tref on CPU current Icpu from testbed.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

25x Θ

Θ
/Ω

CPU Resistance Variation Over Θ

Resource Capacity Θ
CPU resistance r

cpu

Curve Fitted CPU resistance r
cpu

Figure B.2: The CPU impedance variation of the testbed.

The CPU impedance variation of the testbed over resource capacity, Θ for 3.33Ω fixed external load, rext.

143

1. Define the real-time performance modes.

2. State the modes as a function of the controllable variable(s), e.g., modes as a form of the CPU

frequency/resource capacity.

3. Combine all the physical constraints in the CPU system to a system-of-equations.

4. Solve this system in terms of controllable variable(s)–in this case study, the CPU resource capacity .

5. Substitute different controllable-variable-values corresponding to different modes to above step to

obtain the system resiliency.

B.8 Load Requirements

The external load and the CPU impedance are parallel loads. Also, the CPU impedance depends upon the

resource capacity, Θ. Therefore, when system operates at various points (Θ values), the load impedance

also should be modified by introducing additional resistances. For example, in a system design domain,

suppose the designer wants to run the load with Ie load-current-requirement (specification) at Θ1 resource

capacity. Under this situation, a designer should introduce a parallel impedance compensation, ra as

follows.

1

re
=

1

rext
+

1

ra
, (B.28)

and from Equation 6.17, we get,

re =
1

Vbat · Ie
· rcpu(Θ1) · Wcpu(Θ1), (B.29)

where, re is the modified load impedance of the load seen by the battery. If the designer can modify the load

impedance to re, then load will operate at Ie current point while resource capacity is at Θ1. Furthermore,

from Equation B.28 and from Equation B.29, we can calculate the parallel impedance compensator, ra,

144

ra = rext ·
rcpu(Θ1) · Wcpu(Θ1)

Vbat · Ie · rext − rcpu(Θ1) · Wcpu(Θ1)
. (B.30)

Therefore, the load impedance, rext should be changed to re, or in other words, additional impedance

specified by ra should be introduce to the load internally to run the Ie load at correct specification.

REFERENCES

[1] Intel 64 and IA-32 Architectures Software Developer Manuals. Intel Corp.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html.

[2] Matlab system identification tools. Available at http://www.mathworks.com/products/sysid/.

[3] Measuring processor power (TDP vs. ACP). http://www.intel.com/content/dam/doc/white-paper/resources-xeon-

measuring-processor-power-paper.pdf.

[4] Intel Pentium 4 processor in the 423-pin package thermal design guidelines,. Intel Corp., 2000.

[5] Masud Ahmed, Nathan Fisher, Shengquan Wang, and Pradeep Hettiarachchi. Minimizing peak tem-

perature in embedded real-time systems via thermal-aware periodic resources. Sustainable Comput-

ing: Informatics and Systems, 1(3):226 – 240, 2011.

[6] Nikhil Bansal and Kirk Pruhs. Speed scaling to manage temperature. In Symposium on Theoretical

Aspects of Computer Science, 2005.

[7] Sanjoy Baruah and Joel Goossens. Scheduling real-time tasks: Algorithms and complexity. In Joseph

Y.-T Leung, editor, Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC

Press LLC, 2003.

[8] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel. Robust Control: The Parametric Approach.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.

[9] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In Proceedings of the 16th

Euromicro Conference on Real-Time Systems, pages 196–203. IEEE Computer Society, 2004.

[10] Enrico Bini, Giorgio Buttazzo, and Giusepe Lipari. Speed modulation in energy-aware real-time

systems. In 17th Euromicro Conference on. Real-Time Systems (ECRTS 05), 2005.

[11] Robert L Borrelli. Differential Equations: A Modeling Perspective (2nd ed.). John Wiley & Sons,

Inc., Crosspoint Blvd., IN, USA, 2004.

145

146

[12] David Brooks and Margaret Martonosi. Dynamic thermal management for high-performance micro-

processors. In International Symposium on High-Performance Computer Architecture, 2001.

[13] Thidapat Chantem, Robert P. Dick, and X. Sharon Hu. Temperature-aware scheduling and assign-

ment for hard real-time applications on MPSoCs. In Design, Automation and Test in Europe, 2008.

[14] Thidapat Chantemand, Hu X. Sharon, and Robert P. Dick. Online work maximization under a peak

temperature constraint. In ISLPED ’09: Proceedings of the 14th ACM/IEEE international symposium

on Low power electronics and design, pages 105–110, New York, NY, USA, 2009. ACM.

[15] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization of the instantaneous temper-

ature for periodic real-time tasks. In IEEE Real-Time and Embedded Technology and Applications

Symposium, 2007.

[16] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive speed scheduling for frame-based real-

time tasks under thermal constraints. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2009.

[17] Aviad Cohen, Finkelstein Finkelstein, Avi Mendelson, Ronny Ronen, and Dmitry Rudoy. On esti-

mating optimal performance of cpu dynamic thermal management. IEEE Comput. Archit. Lett., 2(1),

2003.

[18] Jim Cooling. Software Engineering for Real-Time Systems. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1st edition, 2000.

[19] A.K. Coskun, T.S. Rosing, and K. Whisnant. Temperature aware task scheduling in mpsocs. pages 1

–6, apr. 2007.

[20] P. Dorato. A historical review of robust control. Control Systems Magazine, IEEE, 7(2):44–47, April

1987.

[21] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 2000.

[22] John Comstock Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback Control Theory.

Prentice Hall Professional Technical Reference, 1991.

147

[23] Arvind Easwaran. Compositional Schedulability Analysis Supporting Associativity, Optimality, De-

pendency and Concurrency. PhD thesis, Computer and Information Science, University of Pennsyl-

vania, 2007.

[24] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositinonal analysis framework using EDP

resource models. In Proceedings of the IEEE Real-time Systems Symposium, Tuscon, Arizona, De-

cember 2007. IEEE Computer Society.

[25] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger.

Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011. ACM.

[26] A.P. Ferreira, D. Mosse, and J.C. Oh. Thermal faults modeling using a rc model with an application

to web farms. In Proceedings of the Euromicro Conference on Real-Time Systems. IEEE Computer

Society, July 2007.

[27] Re P. Ferreira and Daniel Moss. Thermal faults modeling using a rc model with an application to

web farms. In In Proceedings of RTS, 2007.

[28] N. Fisher and F. Dewan. Approximate bandwidth allocation for compositional real-time systems. In

Real-Time Systems, 2009. ECRTS ’09. 21st Euromicro Conference on, pages 87–96, July.

[29] Nathan Fisher. An FPTAS for interface selection in the periodic resource model. In Proceedings of

17th International Conference on Real-Time and Network Systems, Paris, France, October 2009.

[30] Nathan Fisher and Masud Ahmed. Tractable real-time schedulability analysis for mode changes

under temporal isolation. In Proceedings of the 9th IEEE Symposium on Embedded Systems for

Real-Time Multimedia (ESTImedia). IEEE Computer Society, October 2011.

[31] Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Thermal-aware global real-

time scheduling on multicore systems. In Proceedings of the 15th IEEE Real-Time and Embedded

Technology and Applications Symposium. IEEE Computer Society Press, April 2009.

[32] Gene F. Franklin, Michael L. Workman, and Dave Powell. Digital Control of Dynamic Systems.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

148

[33] Xing Fu and Xiaorui Wang. Utilization-controlled task consolidation for power optimization in multi-

core real-time systems. In Embedded and Real-Time Computing Systems and Applications (RTCSA),

2011 IEEE 17th International Conference on, volume 1, pages 73 –82, aug. 2011.

[34] Xing Fu, Xiaorui Wang, and E. Puster. Dynamic thermal and timeliness guarantees for distributed

real-time embedded systems. In Embedded and Real-Time Computing Systems and Applications,

2009. RTCSA ’09. 15th IEEE International Conference on, pages 403 –412, aug. 2009.

[35] Xing Fu, Xiaorui Wang, and Eric Puster. Dynamic thermal and timeliness guarantees for distributed

real-time embedded systems. Real-Time Computing Systems and Applications, International Work-

shop on, 0:403–412, 2009.

[36] Xing Fu, Xiaorui Wang, and Eric Puster. Simultaneous thermal and timeliness guarantees in dis-

tributed real-time embedded systems. Journal of Systems Architecture, 2010. To Appear.

[37] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D. Koutsoukos, and Hon-

gan Wang. Feedback thermal control for real-time system. In Proceedings of the Real-Time and

Embedded Technology and Applications Systems Symposium, Stockholm, Sweden, April 2010. IEEE

Computer Society Press.

[38] David Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, May 2005.

[39] Arkadii? Khai?movich Gelig and 1953 Churilov, Alexander N. Stability and oscillations of nonlinear

pulse-modulated systems / Arkadii Kh. Gelig, Alexander N. Churilov. Boston : Birkhauser, 1998.

Includes bibliographical references (p. [343]-359) and index.

[40] P. Gepner and M.F. Kowalik. Multi-core processors: New way to achieve high system performance.

In Parallel Computing in Electrical Engineering, 2006. PAR ELEC 2006. International Symposium

on, pages 9–13, Sept 2006.

[41] Pawel Gepner, DavidL. Fraser, and MichalF. Kowalik. Evaluating performance of new quad-core

intelxeon5500 family processors for hpc. In Roman Wyrzykowski, Jack Dongarra, Konrad Kar-

czewski, and Jerzy Wasniewski, editors, Parallel Processing and Applied Mathematics, volume 6067

of Lecture Notes in Computer Science, pages 1–10. Springer Berlin Heidelberg, 2010.

149

[42] Sourav Ghosh, Ragunathan Rajkumar, Jeffery Hansen, and John Lehoczky. Integrated qos-aware

resource management and scheduling with multi-resource constraints. Real-Time Syst., 33(1-3):7–

46, July 2006.

[43] Sathish Gopalakrishnan, Marco Caccamo, Chi-Sheng Shih, Chang-Gun Lee, and Lui Sha. Finite-

horizon scheduling of radar dwells with online template construction. In RTSS, 2004.

[44] Newport Innovative Product Hardware. Hot spot: How modern processors cope with heat emergen-

cies. http://www.newport.com/store/genContent.aspx/Control-Theory-Terminology/178319/1033,

September 2010.

[45] Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and Weisong

Shi. The design and analysis of thermally-resilient hard-real-time systems (extended version).

Technical report, Wayne State University, 2011. Available at http://www.cs.wayne.edu/

˜fishern/papers/thermal-control-rtas2012.pdf.

[46] Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and Weisong

Shi. The design and analysis of thermal-resilient hard-real-time systems. In IEEE Real-Time and

Embedded Technology and Applications Symposium, pages 67–76, 2012.

[47] Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang, Shinan Wang, and Weisong

Shi. A design and analysis framework for thermal-resilient hard real-time systems. ACM Trans.

Embed. Comput. Syst., 13(5s):146:1–146:25, July 2014.

[48] Pradeep M. Hettiarachchi, Nathan Fisher, and Le Yi Wang. Achieving thermal re-

siliency for multicore hard-real-time systems (extended version). Technical report, Wayne

State University, 2013. Available at http://www.cs.wayne.edu/˜fishern/papers/

ECRTS-2013-Thermal-TR.pdf.

[49] W. L Hung, Y. Xie, N. ViJ’aykrishnan, M. Kandemir, and M.J. Irwin. Thermal-aware task allocation

and scheduling for embedded systems. In Design, Automation and Test in Europe, 2005. Proceedings,

pages 898–899 Vol. 2, March 2005.

150

[50] G. Kelly. Body temperature variability (part 1): a review of the history of body temperature and its

variability due to site selection, biological rhythms, fitness, and aging. Alternative Medicine Review,

11(4):278–293, 2006.

[51] Hideaki Kikuchi, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Fuyuki Shimojo, and Subhash

Saini. Scalability of a low-cost multi-teraflop linux cluster for high-end classical atomistic and quan-

tum mechanical simulations. In IPDPS ’03: Proceedings of the 17th International Symposium on

Parallel and Distributed Processing, page 66.2, Washington, DC, USA, 2003. IEEE Computer Soci-

ety.

[52] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, and

V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):68–75, Dec

2003.

[53] Sohee Kim, P. Tathireddy, R.A. Normann, and F. Solzbacher. Thermal impact of an active 3-d mi-

croelectrode array implanted in the brain. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 15(4):493–501, December 2007.

[54] Joseph C. LaManna, Kimberly A. McCracken, Madhavi Patil, and Otto J. Prohaska. Stimulus-

activated changes in brain tissue temperature in the anesthetized rat. Metabolic Brain Disease,

4(4):225–237, 1989.

[55] G. Lazzi. Thermal effects of bioimplants. IEEE Engineering in Medicine and Biology Magazine,

24(5):75–81, September - October 2005.

[56] Symos L. Vassilis Lewis, Frank L. Optimal Control. John Wiley and Sons, Inc., New York, MA,

USA, 1995.

[57] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.

Journal of the ACM, 20(1):46–61, 1973.

[58] Jane W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458,

2000.

151

[59] Yongpan Liu, Robert P. Dick, Li Shang, and Huazhong Yang. Accurate temperature-dependent

integrated circuit leakage power estimation is easy. In Proceedings of the conference on Design,

automation and test in Europe, pages 1526–1531, Nice, France, 2007.

[60] Advantech Co. Ltd. Advancech product hardware. http://www.advantech.com/products/, September

2013.

[61] Analog Devices Co. Ltd. Linux industrial input-output subsystems.

http://wiki.analog.com/software/linux/docs/iio/iio, July 2012.

[62] Chenyang Lu, Xiaorui Wang, and X. Koutsoukos. Feedback utilization control in distributed real-

time systems with end-to-end tasks. Parallel and Distributed Systems, IEEE Transactions on,

16(6):550 – 561, june 2005.

[63] M. Ma, S.H. Gunther, B. Greiner, N. Wolff, C. Deutschle, and T. Arabi. Enhanced thermal manage-

ment for future processors. pages 201 – 204, jun. 2003.

[64] A. K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Environ-

ment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, 1983.

Available as Technical Report No. MIT/LCS/TR-297.

[65] Norman S. Nise. Control Systems Engineering. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[66] Katsuhiko Ogata. Discrete-time control systems (2nd ed.). Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1995.

[67] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA,

2001.

[68] G. Quan and Y. Zhang. Leakage Aware Feasibility Analysis for Temperature-Constrained Hard

Real-Time Periodic Tasks. In Proceedings of the 2009 21st Euromicro Conference on Real-Time

Systems-Volume 00, pages 207–216. IEEE Computer Society, 2009.

[69] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for qos man-

agement. In Proceedings of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages 298–,

Washington, DC, USA, 1997. IEEE Computer Society.

152

[70] P.S. Ruggera, D.M. Witters, G. von Maltzahn, and H.I. Bassen. In vitro assessment of tissue heating

near metallic medical implants by exposure to pulsed radio frequency diathermy. Physics in Medicine

and Biology, 48(17):2919–2928, 2003.

[71] Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. Energy efficient scheduling of

real-time tasks on multicore processors. Parallel and Distributed Systems, IEEE Transactions on,

19(11):1540 –1552, nov. 2008.

[72] Jerry Sergent and Al Krum. Thermal Management Handbook for Electronic Assemblies. McGraw-

Hill Professional, 1998.

[73] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In Pro-

ceedings of the IEEE Real-Time Systems Symposium, pages 2–13. IEEE Computer Society, 2003.

[74] Insik Shin and Insup Lee. Compositional real-time scheduling framework with periodic model. ACM

Transactions on Embedded Computing Systems, 7(3), April 2008.

[75] K.G. Shin and Xianzhong Cui. Computing time delay and its effects on real-time control systems.

Control Systems Technology, IEEE Transactions on, 3(2):218 –224, jun. 1995.

[76] Joseph Sifakis. Modeling real-time systems - challenges and work directions. In In Proceedings

of the 1st International Workshop on Embedded Software (EMSOFT), Lecture Notes in Computer

Science, pages 373–389. Springer Verlag, 2001.

[77] K. Skadron, T. Abdelzaher, and M.R. Stan. Control-theoretic techniques and thermal-rc modeling

for accurate and localized dynamic thermal management. pages 17 – 28, feb. 2002.

[78] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan. Temperature-

aware microarchitecture. In International Symposium on Computer Architecture, 2003.

[79] Kevin Skadron. Hybrid architectural dynamic thermal management. In DATE ’04: Proceedings of

the conference on Design, automation and test in Europe, page 10010, Washington, DC, USA, 2004.

IEEE Computer Society.

[80] Eduardo D. Sontag. Nonlinear regulation: The piecewise linear approach. Proceedings of the IEEE

Transactions on Automatic Control, 26(2):346–358, Apr 1981.

153

[81] Selmo Tauber. Existence and uniqueness theorems for solutions of difference equations. The Ameri-

can Mathematical Monthly, 71(8):859–862, October 1964.

[82] Michael B. Taylor. Is dark silicon useful?: Harnessing the four horsemen of the coming dark silicon

apocalypse. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages

1131–1136, New York, NY, USA, 2012. ACM.

[83] N.F. Timmons and W.G. Scanlon. An adaptive energy efficient mac protocol for the medical body

area network. In 1st International Conference on Wireless Communication, Vehicular Technology,

Information Theory and Aerospace Electronic Systems Technology, 2009, pages 587 –593, May 2009.

[84] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing power in high-

performance microprocessors. In Design Automation Conference, 1998. Proceedings, pages 732–

737, June 1998.

[85] D. Vilcu. Real time scheduling and cpu power consumption in embedded systems. In Automation,

Quality and Testing, Robotics, 2008. AQTR 2008. IEEE International Conference on, volume 1,

pages 261–266, May 2008.

[86] Le Yi Wang, Pramod P. Khargonekar, and Ali Beydoun. Robust control of hybrid systems: Perfor-

mance guided strategies. In Hybrid Systems V, pages 356–389, London, UK, 1999. Springer-Verlag.

[87] S. Wang and R. Bettati. Delay analysis in temperature-constrained hard real-time systems with

general task arrivals. In IEEE Real-Time Systems Symposium, 2006.

[88] S. Wang and R. Bettati. Reactive speed control in temperature-constrained real-time systems. In

Euromicro Conference on Real-Time Systems, 2006.

[89] S. Wang and R. Bettati. Reactive speed control in temperature-constrained real-time systems. Real-

Time Systems Journal, 39(1-3):658–671, 2008.

[90] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control for chip multipro-

cessors with online model estimation. SIGARCH Comput. Archit. News, 37(3):314–324, 2009.

154

[91] Dan-Li Wen and Guang-Hong Yang. Quantized h∞ control for networked control systems with

random delays. In CCDC’09: Proceedings of the 21st annual international conference on Chinese

Control and Decision Conference, pages 643–647, Piscataway, NJ, USA, 2009. IEEE Press.

[92] F. Yao, A Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Foundations of

Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 374–382, Oct 1995.

[93] Jianguo Yao, Xue Liu, Zonghua Gu, Xiaorui Wang, and Jian Li. Online adaptive utilization control

for real-time embedded multiprocessor systems. Journal of Systems Architecture, 56(9):463 – 473,

2010.

[94] Francesco Zanini, David Atienza, Luca Benini, and Giovanni De Micheli. Multicore Thermal Man-

agement with Model Predictive Control. In Proceedings of the 19th European Conference on Circuit

Theory and Design (ECCTD 2009), volume 1, pages 90–95, New York, 2009. IEEE Press.

ABSTRACT

A CONTROL-THEORETIC DESIGN AND ANALYSIS FRAMEWORK FOR RESILIENT
HARD REAL-TIME SYSTEMS

by

PRADEEP M. HETTIARACHCHI

August 2015

Advisor: Dr. Nathan Fisher

Major: Computer Science

Degree: Doctor of Philosophy

We introduce a new design metric called system-resiliency which characterizes the maximum unpre-

dictable external stresses that any hard-real-time performance mode can withstand. Our proposed system-

resiliency framework addresses resiliency determination for real-time systems with physical and hardware

limitations. Furthermore, our framework advises the system designer about the feasible trade-offs be-

tween external system resources for the system operating modes on a real-time system that operates in a

multi-parametric resiliency environment.

Modern multi-modal real-time systems degrade the system’s operational modes as a response to unpre-

dictable external stimuli. During these mode transitions, real-time systems should demonstrate a reliable

and graceful degradation of service. Many control-theoretic-based system design approaches exist. Al-

though they permit real-time systems to operate under various physical constraints, none of them allows

the system designer to predict the system-resiliency over multi-constrained operating environment. Our

framework fills this gap; the proposed framework consists of two components: the design-phase and run-

time control. With the design-phase analysis, the designer predicts the behavior of the real-time system for

variable external conditions. Also, the runtime controller navigates the system to the best desired target

using advanced control-theoretic techniques. Further, our framework addresses the system resiliency of

both uniprocessor and multicore processor systems.

155

156

As a proof of concept, we first introduce a design metric called thermal-resiliency, which characterizes

the maximum external thermal stress that any hard-real-time performance mode can withstand. We verify

the thermal-resiliency for the external thermal stresses on a uniprocessor system through a physical testbed.

We show how to solve some of the issues and challenges of designing predictable real-time systems that

guarantee hard deadlines even under transitions between modes in an unpredictable thermal environment

where environmental temperature may dynamically change using our new metric.

We extend the derivation of thermal-resiliency to multicore systems and determine the limitations of

external thermal stress that any hard-real-time performance mode can withstand. Our control-theoretic

framework allows the system designer to allocate asymmetric processing resources upon a multicore pro-

cessor and still maintain thermal constraints.

In addition, we develop real-time-scheduling sub-components that are necessary to fully implement our

framework; toward this goal, we investigate the potential utility of parallelization for meeting real-time

constraints and minimizing energy. Under malleable gang scheduling of implicit-deadline sporadic tasks

upon multiprocessors, we show the non-necessity of dynamic voltage/frequency regarding optimality of

our scheduling problem. We adapt the canonical schedule for DVFS multiprocessor platforms and propose

a polynomial-time optimal processor/frequency-selection algorithm.

Finally, we verify the correctness of our framework through multiple measurable physical and hard-

ware constraints and complete our work on developing a generalized framework.

AUTOBIOGRAPHICAL STATEMENT

Pradeep Hettiararachchi received a B.S. degree in Electronics and Telecommunication Engineering from

University of Moratuwa, Sri Lanka, and the M.S. degree in Computer Science from St. Cloud State

University, MN, in 2000 and 2008 respectively. He worked with Sumathi Global Consolidated Group,

Sri Lanka, from 2001 to 2005 as a systems Engineer, and as an IT Manger. Furthermore, he worked for

Milltronics CNC Machines, MN, as a software developer from 2006 to 2008.

Pradeep started his PhD in Computer Science in 2009 at Wayne State University, MI, under the su-

pervision of Dr. Nathan Fisher and did research on control-theoretic technique based constrained-aware

real-time systems design, and he completed his PhD in 2015.

157

