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Abstract

Analysis, Detection, and Exploitation of Phase Behavior in
Java Programs

Priya Nagpurkar

The Java programming language offers developers many productivity enhancing

features, including high-level abstractions, extensive libraries, architecture-independent

execution, and type safety. These features are enabled by an intelligent execution en-

vironment that, incrementally and dynamically, compiles and executes compact rep-

resentations of Java programs encoded for a virtual machine. While this necessarily

adds overhead, the ability to compile (and recompile) code at runtime also enables

the execution environment to perform dynamic, performance-enhancing optimizations

based on the runtime behavior of the executing program. There are three primary steps

in developing effective adaptive optimizations for these systems: (1) Development of

a thorough analysis, understanding, and characterization of the performance of Java

programs; (2) Extracting accurate data from programs efficiently at runtime; and (3)

Guiding optimizations using feedback from the extracted performance data.

We address each of these steps in our research by focusing on techniques that cap-

ture and exploit the repeating patterns in program behavior (phases) within virtual ex-

ecution environments, and in particular, those for Java programs. This dissertation can
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be decomposed into two foci: phase analysis and detection tools and techniques and

phase-aware techniques for efficient program analysis and optimization. We first study

the time varying behavior of Java programs, show that Java programs do exhibit phase

behavior, and present tools to extract and analyze this phase behavior. We then in-

vestigate the problem of accurate online phase detection for Java programs, within a

Java virtual machine, the parameters that impact doing so effectively, and evaluate nu-

merous online phase detectors. Finally we demonstrate the potential of phase-based

optimizations by designing and evaluating two phase-based runtime techniques. The

first technique is an accurate, low-overhead profiling scheme for resource-constrained

devices that uses phases to drive when to sample the execution of a program. The sec-

ond technique is a software instruction prefetching mechanism that uses method-level

phase behavior to identify, predict, and prefetch methods that incur a large number of

instruction cache misses for emerging Java workloads like database- and application

servers. These two techniques span two extremes of execution environments used for

Java applications: software for resource-constrained devices at the low end and appli-

cation servers at the high-end.
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Chapter 1

Introduction

The greatest happiness for the thinking person is to have explored the ex-
plorable and to venerate in equanimity that which cannot be explored.

Johann Wolfgang von Goethe (1749-1832)

The Java programming language, and similarly C# and the Microsoft .Net lan-

guages, offer many benefits to programmers such as portability, programmer productiv-

ity through high-level abstractions and extensive libraries, type and memory safety, and

dynamic loading. These features make it easier, not only to develop software, but also

to debug and maintain it. As a result, these languages are very popular with software

developers. Java, in particular, has seen tremendous growth since its inception, a little

over a decade ago, and the trend is predicted to continue [27]. It is estimated that Java

today drives a $100 billion a year software industry, and is deployed on a wide variety

of devices, including millions of desktops, billions of embedded devices (from smart

phones to car navigation systems), and enterprise servers [101, 1].

1
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Chapter 1. Introduction

Year
1993 1998 2003 2008
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Figure 1.1: Programming Language Usage Trends. This figure from [27] uses historic
data, gathered from real users, as well as prediction based on this data to show the long
term trend in programming language popularity.

To enable these features, especially portability (the write-once, run-anywhere model),

these programs are compiled into an architecture-independent intermediate format and

executed within a virtual execution environment on the target host. The execution en-

vironment, a Java virtual machine or .Net runtime, implements a compilation system

that converts the intermediate code to the native format of the underlying machine.

This dynamic compilation necessarily introduces runtime overhead, but at the same

time also exposes opportunities for adaptation – optimizations that we can customize

according to the behavior of the executing program. State of the art Java Virtual Ma-

chines (JVMs) [71, 28, 102, 5, 53] employ adaptive optimization techniques based on

2
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Chapter 1. Introduction

information gathered while the program is executing (feedback-directed optimization).

Monitoring, analyzing, and predicting runtime program behavior are vital to feedback-

directed optimization.

Recent research has shown, for non-Java programs, that program behavior varies

over time, and exhibits repeating patterns [93, 41], and has focused on automatically

characterizing this behavior [94, 95, 66, 35]. Phase analysis of programs is one such

characterization, which isolates distinct behaviors in a program’s execution by group-

ing periods of execution that are similar together in a phase. A program’s execution

can then be seen as a series of phases that might repeat themselves several times. Re-

searchers have used phase behavior to improve program performance via hardware and

software optimization [38, 96, 92, 72] and to reduce simulation time [94, 95] and gen-

erate cycle-close traces [88]. The ability to detect and predict phases at runtime has the

potential of uncovering new opportunities in performing proactive adaptive optimiza-

tions for Java programs. With the ultimate aim of enabling better performance for Java

programs, the thesis question that we explore is this work is:

How can we efficiently detect, track, predict, and exploit repeating pat-
terns in program behavior (phases) in a Java virtual machine to facilitate
runtime analysis and feedback-directed optimization in Java programs?

To answer this question, we focus our efforts on phase characterization and detec-

tion in Java programs, and exploiting repetitions that phases manifest, using optimiza-

3
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Chapter 1. Introduction

tion for a range of devices for which Java Virtual Machines are available. In particular,

we

• investigate and develop offline mechanisms and tools that enable the characteri-

zation, visualization, and manipulation of phase behavior in Java programs,

• develop a modular, pluggable framework for implementing and investigating on-

line phase detection algorithms within a Java Virtual Machine,

• devise and investigate a phase-aware approach to collecting accurate online exe-

cution profiles

• devise and investigate a prefetching scheme (a dynamic optimization) that ex-

ploits repeating patterns in Java server execution.

We take an empirical and implementation-oriented approach to developing phase

detection and exploitation techniques in this thesis. We implement and empirically

evaluate our techniques using a wide range of real programs and open-source Java

virtual machine technologies. From this effort, we have produced a set of tools that

significantly facilitate analysis of repeating patterns in the behavior of Java programs,

and we have designed and evaluated novel techniques for exploiting phases to improve

program profiling and execution performance.

The dissertation is organized as follows. We begin with a discussion of the relevant

background in Chapter 2. This chapter includes techniques that we use in our work, as

4
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Chapter 1. Introduction

well as the state of the art for phase analysis and its uses. We present our framework

and toolkit for understanding and analyzing phase behavior in Java programs in Chap-

ter 3, followed by our framework for the design and analysis of online phase detection

algorithms within a JVM, in Chapter 4. Chapters 5, 6, and 7 focus on the use of phase

behavior to enable two phase-based runtime techniques; Chapter 5 introduces these

techniques and provides an overview, while the following Chapters provide details of

each technique. We end with a summary of the dissertation and a discussion of future

directions in Chapter 8.

5
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Chapter 2

Background

The focus of this dissertation is understanding, analyzing, and exploiting the repeat-

ing patterns, or phases, in the time varying behavior of Java programs. Of particular

interest to us, is the possibility of incorporating phase-awareness in virtual execution

environments, like Java virtual machines, to drive adaptive, feedback-directed opti-

mization of dynamically compiled programs.

Much research has already gone into the characterization, detection, prediction, and

exploitation of phase behavior, especially in the area of computer architecture. In this

Chapter, we present an overview of extant work on phase behavior, and also briefly

describe the process of dynamic compilation for Java.

6
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Chapter 2. Background

2.1 Phase Characterization, Detection, and Prediction

Techniques

Program behavior has commonly been abstracted in the form of profiles gathered

over the program’s execution. Recently, there has been a lot of interest in studying

program behavior during different parts of execution. Many researchers have observed,

through detailed simulations and temporal profiles, that programs exhibit widely vary-

ing behavior during different parts of execution [93, 94, 41]. Program behavior, how-

ever, is not entirely random and often shows significant structure. In [94] and [41], the

authors periodically gathered various hardware metrics, like IPC, cache misses, branch

misprediction rate with the aim of studying low-level program behavior over time and

finding any possible correlation between the metrics. Their findings indicate that, not

only does program behavior change, but it also has periods of stable execution inter-

spersed with transitions. During periods of stable execution, the architectural metrics

measured are relatively stable. What is more interesting is the fact that the metrics

transition in unison, though the nature of the transition might be different (that is the

instruction cache miss rate might go up, whereas the IPC might go down). Recognizing

the importance of automatically characterizing this behavior in order to exploit it for

various purposes (like reducing simulation time, aiding prediction and proactive opti-

mization), various techniques were developed at different levels in the system stack –

7
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