
UNIVERSITY OF CALIFORNIA
Santa Barbara

Analysis, Detection, and Exploitation of Phase
Behavior in Java Programs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Priya Nagpurkar

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Timothy Sherwood

Professor Tobias Hollerer

September 2007

PREVIE
W

UMI Number: 3283656

3283656
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

PREVIE
W

The Dissertation of
Priya Nagpurkar is approved:

Professor Timothy Sherwood

Professor Tobias Hollerer

Professor Chandra Krintz, Committee Chairperson

August 2007

PREVIE
W

Analysis, Detection, and Exploitation of Phase Behavior in Java Programs

Copyright © 2007

by

Priya Nagpurkar

iii

PREVIE
W

Dedication and Gratitude

I dedicate this dissertation to my parents, Ashok and Rekha Nagpurkar, who never
cease to amaze me with the perfect balance between independence and guidance that
they have always struck in influencing my life. Their faith, encouragement and support,
further reinforced by that of my brother, Ravindra, has played an important role in my
decision to pursue, and in successfully completing this work.

My advisor, Chandra Krintz, played an equally important role, by recognizing and
bringing out my potential for research. Her energy and enthusiasm for both research,
and teaching were, and will continue to be, a constant inspiration. She has been a
model guru, by being a good friend, philosopher, and guide. Many thanks also to
Tim Sherwood, and Tobias Hoellerer for their guidance as members of my dissertation
committee, and to our collaborators from the I.B.M. T.J. Watson Research Center for
their valuable advice. Michael Hind, Peter Sweeney, Trey Cain, Mauricio Serrano, and
Jong-Deok Choi were all excellent mentors.

I would like to express deep gratitude towards all my friends, old and new. Special
thanks to my close friends, Rekha, Shilpa, Puja, Nicole, and Martina for being my
extremely reliable support structure in times of need; to Lingli and Ye, for being great
colleagues and neighbors; to Selim for great evenings in the climbing gym; and to
Hussam for all the cups of tea; These and other members of the RACE lab made it a
great place to work or to hang out. Visits to the CS office were always pleasant, thanks
to Amanda, Greta, Julia, Beejay, and the rest of our very cheerful office staff. Finally,
playing ultimate with the CS team was always something to look forward to – thanks
to all of you on the ultimate team for your camaraderie!

iv

PREVIE
W

Acknowledgements

The text of Chapter 3 is in part a reprint of the material as it appears in the proceedings
of Elsevier Science of Computer Programming – Special Issue on Principles Practices
and Programming in Java, Vol. 59. The dissertation author was the primary researcher
and author and the co-author listed on this publication ([82]) directed and supervised
the research which forms the basis for Chapter 3.

The text of Chapter 4 is in part a reprint of the material as it appears in the pro-
ceedings of the Fourth Annual International Symposium on Code Generation and Opti-
mization (CGO). The dissertation author was the primary researcher and the co-authors
listed on this publication ([80]) directed and supervised the research which forms the
basis for Chapter 4.

The text of Chapter 6 is in part a reprint of the material as it appears in the pro-
ceedings of ACM Transactions on Architecture and Code Optimization (TACO),Vol.
3, Number 1. The dissertation author was the primary researcher and author with sig-
nificant contribution from one of the co-authors, Hussam Mousa. The remaining co-
authors listed on this publication ([84]) directed and supervised the research which
forms the basis for Chapter 6.

The text of Chapter 7 is in part a reprint of the material as it appears in the proceed-
ings of the Sixteenth International Conference on Parallel Architectures and Compila-
tion Techniques (PACT). The dissertation author was the primary researcher and author
and the co-authors listed on this publication ([79]) directed and supervised the research
which forms the basis for Chapter 7.

v

PREVIE
W

Curriculum Vitæ

Priya Nagpurkar

Education

2007 Doctor of Philosophy in Computer Science,
University of California, Santa Barbara.

2007 Master of Science in Computer Science,
University of California, Santa Barbara.

2001 Bachelor of Engineering in Computer Engineering,
Pune University.

Professional Experience

2006 Summer Intern,
I.B.M. T.J. Watson Research Center.

2003 – 2007 Graduate Research Assistant,
University of California, Santa Barbara.

2001 – 2003 Graduate Teaching Assistant,
University of California, Santa Barbara.

2000 Intern,
VERITAS Software India Ltd. (now Symantec), Pune, India.

Professional Activities

2007 Program Committee Member, International Conference on Prin-
ciples and Practices of Programming in Java

2006 Program Committee Member, UCSB Graduate Student Re-
search Conference

2006 Submissions Chair, International Conference on Principles and
Practices of Programming in Java

2006-2007 Graduate Student Representative, Colloquium Committee
2005-2006 Graduate Student Representative, Graduate Admissions Com-

mittee

vi

PREVIE
W

Publications

Priya Nagpurkar, Harold W. Cain, Mauricio Serrano, Jong-Deok Choi and Chandra
Krintz: “Call-chain Software Instruction Prefetching in J2EE Server Applications,” In
the Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT07)

Lingli Zhang, Chandra Krintz, and Priya Nagpurkar: “Language and Virtual Machine
Support for Efficient Fine-Grained Futures in Java,” In the Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT07)

Lingli Zhang, Chandra Krintz, and Priya Nagpurkar: “Supporting Exception Handling
for Futures in Java,” In the Proceedings of the International Conference on the Princi-
ples and Practice on Programming in Java (PPPJ07)

Priya Nagpurkar, Harold W. Cain, Mauricio Serrano, Jong-Deok Choi and Chandra
Krintz: “A Study of Instruction Cache Performance and the Potential for Instruction
Prefetching in J2EE Server Applications,” Tenth Workshop on Computer Architecture
Evaluation Using Commercial Workloads (CAECW-10)

Priya Nagpurkar, Michael Hind, Chandra Krintz, Peter Sweeney, and V.T. Rajan: “On-
line Phase Detection Algorithms,” In the Proceedings of the International Symposium
on Code Generation and Optimization (CGO06)

Priya Nagpurkar, Chandra Krintz, and Timothy Sherwood: “Phase-aware Remote Pro-
filing,” In the Proceedings of the International Symposium on Code Generation and
Optimization (CGO05)

Priya Nagpurkar and Chandra Krintz: “Visualization and Analysis of Phased Behavior
in Java Programs,” In the Proceedings of the International Conference on the Principles
and Practice of Programming in Java (PPPJ04)

Priya Nagpurkar, Hussam Mousa, Chandra Krintz, and Timothy Sherwood: “Effi-
cient Remote Profiling for Resource-Constrained Devices,” In the Proceedings of ACM
Transactions on Architecture and Code Optimization (TACO),Vol. 3, Number 1, March,
2006, pages 1-32

vii

PREVIE
W

Priya Nagpurkar, and Chandra Krintz: “Phase-Based Visualization and Analysis of
Java Programs,” In the Proceedings of Elsevier Science of Computer Programming –
Special Issue on Principles Practices and Programming in Java, Vol. 59, Number 1-2,
January 2006, pages 64-81

Selim Gurun, Priya Nagpurkar and Ben Zhao: “Energy Consumption and Conservation
in Mobile Peer-to-peer Systems,” The first International Workshop on Decentralized
Resource Sharing in Mobile Computing and Networking (MobiShare06)

Field of Study: Computer Science

viii

PREVIE
W

Abstract

Analysis, Detection, and Exploitation of Phase Behavior in
Java Programs

Priya Nagpurkar

The Java programming language offers developers many productivity enhancing

features, including high-level abstractions, extensive libraries, architecture-independent

execution, and type safety. These features are enabled by an intelligent execution en-

vironment that, incrementally and dynamically, compiles and executes compact rep-

resentations of Java programs encoded for a virtual machine. While this necessarily

adds overhead, the ability to compile (and recompile) code at runtime also enables

the execution environment to perform dynamic, performance-enhancing optimizations

based on the runtime behavior of the executing program. There are three primary steps

in developing effective adaptive optimizations for these systems: (1) Development of

a thorough analysis, understanding, and characterization of the performance of Java

programs; (2) Extracting accurate data from programs efficiently at runtime; and (3)

Guiding optimizations using feedback from the extracted performance data.

We address each of these steps in our research by focusing on techniques that cap-

ture and exploit the repeating patterns in program behavior (phases) within virtual ex-

ecution environments, and in particular, those for Java programs. This dissertation can

ix

PREVIE
W

be decomposed into two foci: phase analysis and detection tools and techniques and

phase-aware techniques for efficient program analysis and optimization. We first study

the time varying behavior of Java programs, show that Java programs do exhibit phase

behavior, and present tools to extract and analyze this phase behavior. We then in-

vestigate the problem of accurate online phase detection for Java programs, within a

Java virtual machine, the parameters that impact doing so effectively, and evaluate nu-

merous online phase detectors. Finally we demonstrate the potential of phase-based

optimizations by designing and evaluating two phase-based runtime techniques. The

first technique is an accurate, low-overhead profiling scheme for resource-constrained

devices that uses phases to drive when to sample the execution of a program. The sec-

ond technique is a software instruction prefetching mechanism that uses method-level

phase behavior to identify, predict, and prefetch methods that incur a large number of

instruction cache misses for emerging Java workloads like database- and application

servers. These two techniques span two extremes of execution environments used for

Java applications: software for resource-constrained devices at the low end and appli-

cation servers at the high-end.

x

PREVIE
W

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract ix

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Background 6
2.1 Phase Characterization, Detection, and Prediction Techniques 7
2.2 Applications of Phase Analysis . 16
2.3 Dynamic Compilation and Adaptive Optimization in Java 20

3 Phase Behavior in Java Programs 23
3.1 Phase Analysis Framework . 25

3.1.1 Data Generation . 26
3.1.2 Data Processing . 29

3.2 Phase Analysis Toolkit . 31
3.2.1 Phase Visualizer . 31
3.2.2 Phase Finder . 33
3.2.3 Phase Analyzer and Code Extractor 36

3.3 Analysis . 37
3.3.1 Visual Analysis . 38
3.3.2 Efficient Identification of Optimization Opportunities 44

xi

PREVIE
W

3.3.3 Cross-Input Analysis . 49
3.3.4 Other Opportunities for Exploiting Phase Behavior 51

3.4 Summary . 53

4 Phase Detection for Java Programs 55
4.1 Online Phase Detection Framework 56

4.1.1 Window Policy . 61
4.1.2 Model Policy . 63
4.1.3 Analyzer Policy . 64

4.2 Evaluating Phase Detectors . 65
4.2.1 Phase Detection Baseline 66
4.2.2 Accuracy Scoring Metric 69

4.3 Analysis . 71
4.3.1 Methodology . 73
4.3.2 Window Policy . 77
4.3.3 Model Policy . 81
4.3.4 Analyzer Policy . 84
4.3.5 Additional Analysis . 85

4.4 Summary . 90

5 Phase-based Runtime Techniques 91
5.1 Phase-aware Profiling . 92
5.2 Instruction Prefetching . 94

6 Phase-aware Remote Profiling 97
6.1 Phase-aware Sampling: Deciding When to Sample 101
6.2 Profiling Support for Toggling Profile Collection 106

6.2.1 Dynamic Instruction Stream Editing (DISE) 108
6.2.2 Hybrid Profiling Support using DISE 110

6.3 Evaluation . 118
6.3.1 Phase-aware Profiling for General-purpose Programs 119
6.3.2 Phase-aware Profiling for Embedded Devices 133

6.4 Extending Phase-aware Profiling to Multiple Users 139
6.5 Related Work . 143

6.5.1 Efficient Profiling . 143
6.5.2 Monitoring Program Behavior for Bug Isolation and Test Cov-
erage . 145

6.6 Summary . 147

xii

PREVIE
W

7 Phase-based Instruction Prefetching 149
7.1 Characterization of Instruction Cache Behavior 150

7.1.1 Methodology . 151
7.1.2 Stall Cycles . 152
7.1.3 Method-level Analysis . 154

7.2 Method-level Phase Behavior . 158
7.3 Call-chain Instruction Prefetching 161

7.3.1 Design and Implementation 161
7.3.2 Experimental Methodology 165
7.3.3 Evaluation . 167
7.3.4 Discussion: Potential Improvements 174

7.4 Related Work . 175
7.5 Summary . 178

8 Conclusion 179
8.1 Dissertation Summary . 180
8.2 Impact and Future Directions . 187

Bibliography 191

xiii

PREVIE
W

List of Figures

1.1 Programming Language Usage Trends. 2

3.1 JVM phase analysis framework and toolkit 25
3.2 Architecture of the data generation framework 27
3.3 Phase Visualizer . 32
3.4 Similarity graph for Mtrt input size 10. 39
3.5 Phases for Mtrt with similarity threshold 0.8 40
3.6 Similarity graphs for the SpecJVM benchmarks with input size 100 . . 42
3.7 Similarity graphs for the SpecJVM benchmarks with input size 10 . . 43
3.8 Code extracted using the phase framework and toolkit 47
3.9 Hand-optimized basic block exposed via phase analysis 48
3.10 Analysis of cross-input similarity 50

4.1 Illustrated view of the phase detection framework 57
4.2 Basic operation of the phase detection framework 58
4.3 Online phase detection framework 62
4.4 Evaluation of skip factor and Fixed versus Adaptive windowing 80
4.5 Unweighted vs. Weighted similarity models 82
4.6 Constant vs. Adaptive window policy 84
4.7 Slide vs. Move resizing . 88
4.8 Accurate detection of phase boundaries 89

6.1 Run-time power usage . 98
6.2 System overview . 100
6.3 Overview of the phase-aware profiling scheme 102
6.4 The Hybrid Profiling Support (HPS) system 107
6.5 HPS extensions to DISE . 112
6.6 HPS pattern and replacement specification grammar 113

xiv

PREVIE
W

6.7 Pattern and replacement productions for different profile types 118
6.8 DISE vs. HPS for performance sampling 122
6.9 Evaluation of representative selection policies 125
6.10 Average error in code region profiling 127
6.11 Efficacy across profile types . 130
6.12 Evaluation of phase-aware sampling using the StrongARM environ-
ment and benchmarks . 136
6.13 Distributed profiling across multiple executions 140

7.1 Commit Stall Cycle Categorization 152
7.2 Icache misses per 100 committed instructions 153
7.3 Per-method Contribution to Total icache Misses (cumulative distribution) 154
7.4 Method-level phases in WebSphere (running specjAppServer2001) . . 157
7.5 Correlation between method-level phases and phases in icache misses. 159
7.6 Overview of phase-based prefetching in a JVM. 160
7.7 Example call chain . 162
7.8 Trace-based Analysis Methodology 166
7.9 Prefetch accuracy . 170
7.10 Effect of miss distance on coverage and interference 172

xv

PREVIE
W

List of Tables

3.1 Description of the benchmarks used. 38

4.1 Benchmark Characteristics . 72
4.2 Window size comparison . 74

6.1 Select benchmark statistics relevant to the profiles collected 120
6.2 Sampling overhead at 5% error . 132
6.3 StrongARM methodology . 134

7.1 Prefetch Target Characteristics. 156
7.2 Coverage achieved . 171
7.3 Improvement in IPC . 173

xvi

PREVIE
W

Chapter 1

Introduction

The greatest happiness for the thinking person is to have explored the ex-
plorable and to venerate in equanimity that which cannot be explored.

Johann Wolfgang von Goethe (1749-1832)

The Java programming language, and similarly C# and the Microsoft .Net lan-

guages, offer many benefits to programmers such as portability, programmer productiv-

ity through high-level abstractions and extensive libraries, type and memory safety, and

dynamic loading. These features make it easier, not only to develop software, but also

to debug and maintain it. As a result, these languages are very popular with software

developers. Java, in particular, has seen tremendous growth since its inception, a little

over a decade ago, and the trend is predicted to continue [27]. It is estimated that Java

today drives a $100 billion a year software industry, and is deployed on a wide variety

of devices, including millions of desktops, billions of embedded devices (from smart

phones to car navigation systems), and enterprise servers [101, 1].

1

PREVIE
W

Chapter 1. Introduction

Year
1993 1998 2003 2008

P
e
rc

e
n

t
o

f
re

sp
o

n
d

e
n

ts

Figure 1.1: Programming Language Usage Trends. This figure from [27] uses historic
data, gathered from real users, as well as prediction based on this data to show the long
term trend in programming language popularity.

To enable these features, especially portability (the write-once, run-anywhere model),

these programs are compiled into an architecture-independent intermediate format and

executed within a virtual execution environment on the target host. The execution en-

vironment, a Java virtual machine or .Net runtime, implements a compilation system

that converts the intermediate code to the native format of the underlying machine.

This dynamic compilation necessarily introduces runtime overhead, but at the same

time also exposes opportunities for adaptation – optimizations that we can customize

according to the behavior of the executing program. State of the art Java Virtual Ma-

chines (JVMs) [71, 28, 102, 5, 53] employ adaptive optimization techniques based on

2

PREVIE
W

Chapter 1. Introduction

information gathered while the program is executing (feedback-directed optimization).

Monitoring, analyzing, and predicting runtime program behavior are vital to feedback-

directed optimization.

Recent research has shown, for non-Java programs, that program behavior varies

over time, and exhibits repeating patterns [93, 41], and has focused on automatically

characterizing this behavior [94, 95, 66, 35]. Phase analysis of programs is one such

characterization, which isolates distinct behaviors in a program’s execution by group-

ing periods of execution that are similar together in a phase. A program’s execution

can then be seen as a series of phases that might repeat themselves several times. Re-

searchers have used phase behavior to improve program performance via hardware and

software optimization [38, 96, 92, 72] and to reduce simulation time [94, 95] and gen-

erate cycle-close traces [88]. The ability to detect and predict phases at runtime has the

potential of uncovering new opportunities in performing proactive adaptive optimiza-

tions for Java programs. With the ultimate aim of enabling better performance for Java

programs, the thesis question that we explore is this work is:

How can we efficiently detect, track, predict, and exploit repeating pat-
terns in program behavior (phases) in a Java virtual machine to facilitate
runtime analysis and feedback-directed optimization in Java programs?

To answer this question, we focus our efforts on phase characterization and detec-

tion in Java programs, and exploiting repetitions that phases manifest, using optimiza-

3

PREVIE
W

Chapter 1. Introduction

tion for a range of devices for which Java Virtual Machines are available. In particular,

we

• investigate and develop offline mechanisms and tools that enable the characteri-

zation, visualization, and manipulation of phase behavior in Java programs,

• develop a modular, pluggable framework for implementing and investigating on-

line phase detection algorithms within a Java Virtual Machine,

• devise and investigate a phase-aware approach to collecting accurate online exe-

cution profiles

• devise and investigate a prefetching scheme (a dynamic optimization) that ex-

ploits repeating patterns in Java server execution.

We take an empirical and implementation-oriented approach to developing phase

detection and exploitation techniques in this thesis. We implement and empirically

evaluate our techniques using a wide range of real programs and open-source Java

virtual machine technologies. From this effort, we have produced a set of tools that

significantly facilitate analysis of repeating patterns in the behavior of Java programs,

and we have designed and evaluated novel techniques for exploiting phases to improve

program profiling and execution performance.

The dissertation is organized as follows. We begin with a discussion of the relevant

background in Chapter 2. This chapter includes techniques that we use in our work, as

4

PREVIE
W

Chapter 1. Introduction

well as the state of the art for phase analysis and its uses. We present our framework

and toolkit for understanding and analyzing phase behavior in Java programs in Chap-

ter 3, followed by our framework for the design and analysis of online phase detection

algorithms within a JVM, in Chapter 4. Chapters 5, 6, and 7 focus on the use of phase

behavior to enable two phase-based runtime techniques; Chapter 5 introduces these

techniques and provides an overview, while the following Chapters provide details of

each technique. We end with a summary of the dissertation and a discussion of future

directions in Chapter 8.

5

PREVIE
W

Chapter 2

Background

The focus of this dissertation is understanding, analyzing, and exploiting the repeat-

ing patterns, or phases, in the time varying behavior of Java programs. Of particular

interest to us, is the possibility of incorporating phase-awareness in virtual execution

environments, like Java virtual machines, to drive adaptive, feedback-directed opti-

mization of dynamically compiled programs.

Much research has already gone into the characterization, detection, prediction, and

exploitation of phase behavior, especially in the area of computer architecture. In this

Chapter, we present an overview of extant work on phase behavior, and also briefly

describe the process of dynamic compilation for Java.

6

PREVIE
W

Chapter 2. Background

2.1 Phase Characterization, Detection, and Prediction

Techniques

Program behavior has commonly been abstracted in the form of profiles gathered

over the program’s execution. Recently, there has been a lot of interest in studying

program behavior during different parts of execution. Many researchers have observed,

through detailed simulations and temporal profiles, that programs exhibit widely vary-

ing behavior during different parts of execution [93, 94, 41]. Program behavior, how-

ever, is not entirely random and often shows significant structure. In [94] and [41], the

authors periodically gathered various hardware metrics, like IPC, cache misses, branch

misprediction rate with the aim of studying low-level program behavior over time and

finding any possible correlation between the metrics. Their findings indicate that, not

only does program behavior change, but it also has periods of stable execution inter-

spersed with transitions. During periods of stable execution, the architectural metrics

measured are relatively stable. What is more interesting is the fact that the metrics

transition in unison, though the nature of the transition might be different (that is the

instruction cache miss rate might go up, whereas the IPC might go down). Recognizing

the importance of automatically characterizing this behavior in order to exploit it for

various purposes (like reducing simulation time, aiding prediction and proactive opti-

mization), various techniques were developed at different levels in the system stack –

7

PREVIE
W

