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“Abstract

The popularization rof .high—throughput biologiéal techniques has produced a signi_ﬁ—
cant bottleneck bétween protein identification and functional annotation. To allevi-
ate this- proBlem, researchers often apply computational rhéthods for. protéin function
‘recognitior‘l; however, existing tools are not as effective when the proteins are struc-
turally novel. Structural genomics projects in particular are generating rﬁany novel
protein stpuctufes with little associated functional knowledge, and.sq new function
'characterizat:ion'methods that do not rely on strict sequence or structuré,l similarity
“are needed. Thanks to improvements in sequen‘cing'technologies,‘ we are also now
discovering new proteins at a faster rate. These proteins may contain novel biological
functions, but existing approaches are ill-equipped to discover them.

In this dissertation, I present sevéral me‘.chodsi for protein function characterization
that ¢an be combined into pipelines .both for superviséd modeling of known functicb)nali |
 sites and for unSuperviSed discovery of pbtentia;lly novel functional sites. Bach pipeline
takes advantagev of an existing framework called FEA‘TURE7 which models functiondl
sites in protein struct‘ures. The first method, SeqFEATURE, uses sequence vmotifs Vto
seed 3D models which ar.e more robust‘to réductiohs in sequence identity compared
to other sequerice;bésed methods. ' The models' are also more sensitive than other

; structure-based methods when tested on proteins with low structural similarity to
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known proteins. Using SeqFEATURE, I éreated and validated a large library of 3D
functional site models and scanned all structures in the Protein Data Bank with each
model, inc_luding structures with unknown function from sﬁructural genomics projects.
The data and ‘mc;dels afe publicly available.
To ’identify and chara,ctefize‘ botehtially no_vel»bi(.)logical functions, we combine a
. numbgr of clustering techni(iues with knowledge-informed apprbaches. FEATURE
Vgenerate_s descriptive vectors of protein micrdenvironments, which we cluster using
k-means to identify eﬁvironments that recur across different protein structures. Each -
cluster represents a ,potential,biologicbalv site of interest, but is likely to be noisy and
: ,tHerefore difficult to. interpret. To select candidate clusters for analysis, I used hier-
“archical clustering in conjunction with a scoring function that takes ihto a,céount the
functional and internai coherence of sub-clusters. To annotate resulting candidate
clusters, I'dévelopeda set of methods for ranking imbortaht terms found in the lit;
erature and in database records associated with the pr.otein.s'comprising the‘clu‘ster.
We applied these methods to a novel data set of cysteine-based protein microenvi-
ronments, rediscovering knoﬁn functional sites and sub-classes of functional sites inv
addition to making several novel bredictions.

This dissertation extends existing ’frameworks‘to be relevant in the context of
structural genomics. I demonstrate and validate an approach fér rapivd‘ creation of
- robust functional site models that can be applied in high—thréughput, ‘and define a
pipeline by which novel ’bi(})log’y can be discoyefed and characterized. The work pre--
sented demonstrates significant contributions towards the characterization of protein

function — both known and novel — using computational methods.
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Chapter 1
Introduction

Knowledge of protein function is essential for understanding biological processes, and
is important for treating diseasé'aﬁd engineering beneficial outputs such as biofuelsv
[171, 134]. Detailed knowledge of fuhction — and, increasingly, structure — is especially
relevant f’of drug development since speéiﬁc targeting of prdfeins based on these data.
helps to increase efficacy and reduce side.effects [42, 35]. Informétion about the func-
| tion of proteins is usually deduced through biologiical‘ assays probing their expfession
and regulatioﬁ, cellular localization, and interaction par,tner's; among other data. This

is often a trial and error process, and so is extremely time and resource-intensive.

Motivating automated profein function annotation

With the advent of high—throughput technology, we now have many proteins lacking
’functi_onal annotation,rand it is clear that manualy annotation efforts are‘ insufficient
[13]} At first, the flood came from’ protein sequences aﬁsing from the many genome
projects. The 2001 Pr'otein Structure Initiative (PSI) [91], however, spurred techno-
logical advdnces in structure determination, and solving protein structures has now .

also become a high-throughput endeavor [23, 27, 103];' This fact, combined with the

1



CHAPTER 1. INTRODUCTION

overall goal of structural genomics (SG) of enhancing coverage of structure space,

 has resulted in the rise of a new claSs of proteins: those with solved structures but

‘virtually no functional information (see Figure 1.1) [62, 93]. Given the difficulty of

assaying function experimentally, computational methods for function prediction are

' necessary to provide preli.minary'annotations and to guide functional studies.

7000

6000 - )
5000 ] B SG <30% ID
4000
30007 - '

2000

# of structures reléased_

-~ 1000
J e

0P
1990 1995 2000 2005
: Year

™ e T

Figure 1.1: Proteins from structural
genomics projects in the Protein Data
Bank (PDB). The number of protein struc-
tures released in the PDB [15} each year is
increasing, as is the number of proteins in the
PDB that are from SG centers. The number
of novel proteins solved by SG centers com-
prises a significant portion (about 40%) of the
structures released. Data from the PDB and
TargetDB websites {117, 148].

Numerous tools exist for predicting func-
tion using both Seqﬁencé and structuré, and
élmost' all rely on‘thve similarity of the query
pfotein to knowﬁ sequencés or structures.
These methods tend to have good -perfor-

mance when homology is present and the

matching proteins are well-characterized, but

'Athey are less helpful when the structure —

and, therefore, sequence — is novel 81]. A
study examining the usefulness of a suite
of sequence and ‘structure—based tools f01;
predictihg function on structural genomics‘
targets found not only that structure-based

tools were most successful, but that no one -

method was always successful [159]. This underscores the importance of structure-

based methods for function prediction as well as the need for different and comple-

" mentary tbols‘ [133]

In 2003, the PSI announced supplemental grants for functional studies on struc-

tural genomics targets [142], acknowledging that a structure with characterized func-

tion is more desirable than an uncharacterized structure. Given the emphasis placed
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on eluc1dat1ng the function of these thousands of unannotated protein structures it is
important to develop and make avallable tools that allow efficient and comprehenswe
scanmng of function on a large scale, and provide intuitive 1nterpretat10ns of the re-
sulting predictions. Another consideration is the possibility that the proteins possess
functions that have not previously been seen. Existing function prediction rnethods
~‘are predominantly t)uilt for known functions and require traiuing sets of examples.
_There‘is thus a need to develop methods for discovering novel protein functions so
‘that we can model them for recogmtlon tasks.

This d1ssertat10n builds largely upon an existing framework for modehng func-
tionalvs1tes in prote1n structures, called FEATURE (162, -59]. Rather than using strict
- sequence or structure matching, it represents sites as a sphere of physical and chemi-
cal properties derived from the structure 8]. FEATURE is ﬂex1ble and intuitive, but
historically was not well-suited for analyzing structural genomics proteins because of
the searcity of models. My diSSGI‘tafi'OIleOI‘k‘ foeuses on extending the FEATURE
framework ir1 two ways. One is by extending and validating an approach for rapid
construction of robust functional site v'models that can be applied in high—threughput |
te structural genomics targets. The other defines a pipeline through which previously

unknown biological functions can be discovered and characterized.

Automated generation of 3D models from 1D moti_'fs

In the first part of this dissertation, I 'describe an approach that builds upon earlier
| tvork [95], called SeqFEATURE, which allows automatic generation of training sets
from sequence motifs for use in deﬁuing models. We have usedeeqFEATURE to
construct a large Hbrary of 136 functiorral site models and have validated it internally

as well as through a comparison to existing sequence and structure-based methods -
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[165]. In particular, SeqFEATURE models are more robust than other methods when
the query protein exhibits low sequence and structural similarity to known proteins
(Figure' 1.2). As sequence identity is reduced%SeqFEATURE’s sensitivity stays con-
stant, while the sepsitivity of secilience—based methods exhibits a definitive decline.
Similarly, SeqFEATURE maintainsvrelatively high sénsitivity when tested on proteins
with 10w structural similarity to anwn proteins, compared to the best performing
structure-based method. We have used the library to scan the entire PDB [136];
including structures in the TargetDB repository for strucfural genomics tafgets [29],
‘and have made the data available through a web server, called WebFEATURE [166].
Users may also scan structures éf interest with all of the mddels in the SeqFEATURE

Alibrary and interactively view results through WebFEATURE.

o Sequence-based : - SeqFEATURE
1.0 - —
0.8

2> 0.6
2
.}%’
-
0 0.4
0o —J Gene3D —I—-SF-QS
) =+~ ptam —+ sF99
1 =f= Panther — SF-100

<35 - <30 <25 <35 . <30 <25
% sequence identity to SeqFEATURE training set =

Figure 1.2: Performance of sequence-based methods compared to SeqFEATURE at
low sequence identity. Sensitivity of the three sequence-based methods decreases as the sequence -
identity of the query to known proteins is reduced. In contrast, the sensitivity of SeqFEATURE (at
three different specificity-based score cutoffs) remains robust to sequence identity. Note: this is also
Figure 3.6. : '
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Towards a protein function recognition pipeline

In addition to creating a comprehensive and well—validated Hbrary of 3D models for
function prediqtic;n, I have explored the utility of the FEATURE frarﬁeWork’ to dis—
cover and model potentially novel fUI‘ICt’iQIlS.‘ A previous study clustered microen-
vironments over a non-redundant subset of the ‘PDB [169], and we have developed
more effective’ ciustering and cluster analysis methods to produce clusters‘that are
biologically significant and more easily interpretable. I contribute to this work in two '
~ways: by adapting and developing methods to identify smaller, fuhctionally coher-
“ent spb—clustt?rs frorﬁ larger, coarse-grained clustering results; and by 'iﬁcorporating
: knowledge from databases and scientific literature to géneré,te detailed annotations.
To prioritize vandl refine protein clusters for annotation, I have adaptea the neigh-
' bor divergence per gene (NDPG) [129, 130] algorithm which determines the functional
‘coherence of clusters. Our teéts indicate that fuhctibnal protein clusters have much
iygrea_ter functional coherence than .’ ¢0mpletely random clusters, an'd-vthat functional
coherence decreases with the amount of functional signal in the cluster. Using hier-
| archical clustering with a scoring function combining functional cohefence, internal’
R cohefence, and cluster size allows us to refine a largé cluster of protein microenvifdn— '
ments into Smaller, more coherent sub-clusters. |

To help cﬁaracteriz’e the resulting sub-clusters, I have i/nCOrporated knowledgéb\from
literature and other databases to produce ranked lists of téi"ms. To score. and rank
potential literature terms, we employ scoring functions based on the hypergeometric ,
distribution as W‘ell. as the concept of entropy f;orﬁ information theory. Database terms
are scored acc_o,fding t(-)"_che hypergeometric distributibn only. We present the top
ranked terms’ in a summary HTML page containing links to more detailed information

for each term category, including the proteins that contributed to each term.
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Figure 1.3: Four distinct sub-classes Vof zinc binding sites. Using unsupervised clustering
techniques in combination with literature-based functional coherence filtering, we are able not only
to rediscover zinc binding sites, but to distinguish between sub-types of zinc binding. Here, we show
representative microenvironments from four distinct zinc binding sub-clusters. Note: this is also
Figure 5.11. . ’

- Using these methods, we identify a number of clusters that recapitulate known
functions and show that we can distinguish sub-classes of sites with similar functions ,
(see Figure 1.3). In-addition, we present intriguing examples of potentially new
functional sites, including novel annotations for individual proteins and entire sub—
clusters that may represent novel motifs or functions. Annotated clusters can then
be used to train additional functional models to expand the existing library, creating
an iterative pipeline for discovering and modeling protein functional sites.

In the remainder of this document, I review the background relevant to my work
in more detail in Chapters 2 and 4, present the methods and results for the Seq-
FEATURE study in Chapter 3, and describe the methods I have developed for cluster
prioritization and annotation and results of their application in Chapter 5. I discuss

“the implications and contributions of this work as well as future research directions

in Chapter 6.



_Chapt'er 2

A review of protein function

p‘rediction vv

Protein function prediction is a multi-faceted problerrl and many: different approaches
~exist. The most obvious distinction between methods arises from the type of infor-
mation used to model the function; for our purposes we wiH consider the two most
common and direct forms, sequence data and structure data Another difference is
the granularlty of the function modeled —e.g. the method may produce an annotation
" to a blologlcal process class1ﬁcat10n into a proteln family, labehng of sub- domams
or identification of spec1ﬁc binding sites. Flnally, we can contrast the methods them-
selves based on the algorithms used.

Most methods perform well under speciﬁo ciroumstances but few can be applied

with good results in all situations, making a diversity of tools desirable [133]. As

Portions. of this chapter have appeared in the following papers: Wu S, Liang MP, Altman RB.
(2008) The SeqF EATURE library of 3D functional site models: comparison to existing methods and
applications to protein function annotation. Genome Biology 9:R8; and Halperin I*, Glazer DS*, Wu'
© 5%, Altman RB. (2008) The FEATURE framework for protein functlon annotation: modeling new
functions, improving performance, and extending to novel applications. BMC Genomics 9(Suppl
2):52. *Contributed equally.
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technology ‘continues‘ to improve and the rate of p"rotein discbvery increaseé, func-
~ tion annotation tools that make high-quality predictions in high-throughput will be-
come a necesSity. This chapter will discuss a representative samplé of the_seQuence_
} and structure-based function prediction tools available, and, 1n particular, will de-
scribe é vversativlev framewbrk for modeling functiohé,l sites in protein structures, ca!led '

- FEATURE, which provides the foundation for this dissertation work.

2.1 Se(juenc_e-ba_sed function prediction methods

The majority of predictors use priméry sequencev, and‘ the simplést method is to use
a sequence alignment algorithm such as BLAST .[3]A, since high sequence sirhilarity is
.‘almostbalways indicative of bevolutiohary - and,‘ therefore, functional — coﬁsérvation. o
Wilson et al. [163] showed that precise function can be transferred reliably above
40% and broad functional class above 25% sequenée identity. New proteins can thus
theorétically be annotated with the functions of their close sequence neighbors. In
addition, mény tools take advantage of curated databases, such as the manually
inspected profile-Hidden Markov Models (HMMS) contained in the.Pfam database of
protein families [141], and PROSITE, which consists 'of manually curated sequence
patterns and profiles (69]. Many functions such as binding sites or enzyme active sites
are conserved‘ vin sequence, and sequence motifs like the ones above can be used to

~detect them in new sequences. |
Both Pfam and PROSITE are cont.ained within ‘Inte_rPro»[’i'l, 109], a corhpre-
' 'hensive, infegratéd resoﬁrce for protein sequence . information that provides many

databases and tools for protein function and domain recognition. Among the tools
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offeréd are other HMM-based m@thods [12] such as HMMTigr, built on the TIGR—
FAMs database [58], and HMMPanther, built on the PANTHER database [149], both
of which focus on function-based classiﬁvé'ation.‘ Superfamily [101], another HMM-
- based tool hosted on IntefPro, claésiﬁes sequences using manually curated models
built from the Structural Cldésiﬁcatibn‘ of Proteins (SCOP) [110]. As a complement‘
to Superfamily; Gene3D [25] is a semi-manually curated set of Ihodels built using the -
CATH protein structure classification [57].

The collection of sequence-based functig)nal vmotifs., domains, and families, and
their acclompa,ny.ing prediction tbols mentioned above are considered the state of the |
art in sequence-based function predictioh. Given the ubiquity of sequence informa-
tion, these tools perform extremely well under most circumstances. Because they rely
én sequence similarity to characterized proteins or domains, howei/er, they are fy_pi-
cally unable to provide useful re'sults_for proteins lacking that similarity — a scenario
that is becoming mor:e and more common. Structure is known to be more conserved
than sequence [31], so structure-based prediction methods are needed. These will be
more effective even at sequehce identities too low for reliable aﬁnotatibn_ transfer by

sequence-based methods [159].

2.2 Structure-based function _prediction_ methods

Sequence—based todls often provide useful information about fﬁnctibn, but they may
be less suit_ed'»to cases where seciuencevidentity is low. Under these circumstances,
structuré-based tools may detect functional signals that sequence-based methods. are
unable to captﬁre due to sequencé divergence [81]. Since a protein’s structure é_md

function are inexorably linked, structure-based tools can abstract out those elements - |
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that are necessary for defining a particular function independént of the linear se--
quence, lending a degree of sensitivity and specificity that may improve over ;éequehce- ;
based tools. The abstractions can range in scale from »en.tire 'secondary struCture ele- |
‘ments to residue or atom-based featufés-. Function annotation based on structure is.
usually limited to récognition of eithé‘r general foldé or. low-,level‘ molecular functions
sﬁch as binding sites and éctive sites; it is' unlikely routineiy to .p-rfedict the overall
biological pathways and procesées in which a protein participates. However, a com-
plete understanding of st.ruct'ural énvironments and ’biinding and active s’ité properties
provides a pyramid of evidence for the functional roles of a protein.

Protein structure is compvlex‘, S0 simpliﬁéd representations are used to capture rel-
evant featlires in a WAy that is @:ombﬁtationally tractable. Methods such as CASTp ,
[16] “employ gedmetric abstractibns to describe the shape, area, and volume of surface
pocketS‘ and internal cavities, which are often correlated with functional Sifes. Geom-
etry can also be used to determine the relative position of several aminQ acids to each
other. Other representations involve ca‘lculatingb values for physicochemical properties
-asso.ciated with locations or elements ih the structure, such as sol'venf accessibility, hy-
d_rophobicity,-elect‘rostatic pot‘ential,v the presence of residues or secondary structure,
 conservation or the presence of chemical groups [59, 158, 86, 121‘, 170, -87].. Jambon
et al. [75] use a representation that combines both geometry and'pr.opert’y-based
components. | | |

Séme methods for structure-based protein function prediction rely on expert
' knoWledge for defining the features useful for classifying a particular functional site,
while others learn the important features‘ through supervised ‘machine learning ap—v
proaéhes. An exarhple of the former is Fuzzy Functional Forms (FFFs) [45], which

are three-dimensional descriptions of functional sites based on conserved geometry,
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protein cor_iformatiori, etnd residue identity. ‘The descriptions are built by hand us-_v
ing information from solved‘ crystal structures and published literature. FFF’s were
ebie to .helr) identify functional sit.es‘ in structures whose sequence similarity to known
proteins was low __erioug‘hto‘ render sequence-based tools ineffective [46].

Constructing models manually is time-eonsuming, hOwever, and several more .
tractable methods have since been developed. ProKnow [116] uses features extracted ‘
from sequence' or structure via established tools such PSI—BLAST [4],,DALI“ [66],
 PROSITE, and the Databese of 'Interacting‘ Proteins (DIP) [168] to map proteins to
functional terms in the Gene Ontology (GO) [54]. An alternative method by Polacco
“and Babbitt [122], called Genetic :Al:gorit}llm Search for Patterns in Structures, or =~
GASPS, constructs short three-dimensional motifs of functional sites consisting' of
conserved residues through an iterative ’mutation and selection process. Secondary |
Structure Matehing' (SSM) uses a graph—based‘representatio'n ef secondary structure
to find similar structural matches to a query structure from the PDB [85] . Laskwoski
et all.‘ [89] presented a prediction tool based on 3D templates, which are spatial ar-
rangements of three residues rei)resentative of functional sites or ligend—bihding sites.
These can be built from known examples and matched to the query, or the'query

structure itself can be broken into ‘reverse templates’ and matched against the PDB.

2.3 Other types of function predietion methods

In addition to sequence and structure, there are tools that incorporate indirect infor-
mation from scientific literature and association networks. Jaeger et al. [73] predicted
‘functions for unannotated proteins using conserved protein interaction networks and

supported the predictions using information from literature. Gabow et al. [50] showed
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that including .informstipn.about protein co-occurrence in abstracts improved perfor-
mance of a protein-protein interaction network-based function prediction algorithm.
| There are also intégrated servers that Wrap several or even dozéris of methods
- séqﬁence—based, stfucture—based, and bthers - ihto bne tobl. One s_uCh server is
ProFunc [90], which includes BLAST searches, PROSITE, Pfam, SUPERFAMILY,‘
SSM, and 3D templates, among others. A recent study tested ProFunc’s usefulness
in pfedicting function for structural genomics targets and found that the str‘l.lcture— :
based SSM and 3D templates were most effective [159]. ProFAT is another web-based
tool that integrates sequence datébase search, structural fold recognition, and text
mining to pfedict. function for protein sequences [21]. JVAF“A, like ProFunc, aggregates
and reports the results from several other programs [47]. |
Despite thé advances made in protein function prediction and the vast array of
available tools, the field still faces many Challenges. One is the fact that ﬁhe- number of
'pro‘teins with unknown fﬁhctidn thaf bear little resemblénce in sequence and structure
to knowfl proteins is growing rapidly [27]. Function prediction methods that.rely on
sequence or fold similarity to known prdteins will thus be of limited value; indeed,
oftsn times the only results feturned from these methods are matches to other proteins
“with unknown function. An(‘)thef importan'tr problem is the difficulty of going from
prediction to experimental validétion [48]. Function is multifacéted and often cannot
be placed neatly into the various classiﬁcations we devise. The output of a tobl may
be as broad as a functional family from Pfam,vay match to‘.a particular ‘protein or
fold, enzymatic classification such as én EC number [34], or a specific location in the
protéin structure as from 3D temvplates or FEATURE (described in Section 2.4).‘ This -
makes it very difficult to compare predictions and assess the accuracy of predictions.

Therefore, it is important to have met‘hods that do not depend on direct sequence
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or structure matcliing and that employ descriptive representations of function for

" guiding further investigation.

2.4 The ‘FE'AT.URE frameWork for protein func-
tion annotation | |

This dissertation work bpilds upon a robust function recognition algorithm ce'lled
FEATURE [162,-59] which examines 3D environments of molecules in a way that is
neither strictly sequenee— nor fold-based. The FEATURE system can be broken down
into three major components: the way iﬁ vl(rhich Sifes, or local protein microenviren—
ments, are represented; model building and supervised machine learning methods;
and site scoring and model eveluetion. FEATURE is flexible in the sense that each.

of these three components is 'adaptable to the specific needs of an application.

2.4.1 Microenvironment representation

One of the most important aspects of any structure-based protein function modeling
system is how infofmatio_n about a protei'n is represehted and calculated. FEATURE
models a local pfotein microenﬁ}ironment usi'ng a large number of physicochemical
‘properties calculated at varying distances from the site (see Figure 2.1A for a sim-
plified exa‘rnple-)‘:. A site is defined as a 3D location 1n a protein structure, and its
microenvironment is defined as a sphere centered on that loeation’. In the ty'pical use
of FEATURE, 80 physicochemical propeiﬁes (ljsted in Table. 2.1) are computed in
each.of six 1.25 Arthick spherical shells — from 0 to 1.25, 1.25 to 2.5, 2.5 to 3.75,

. etc, up to 7.5 A. A FEATURE vector thus represents a site as a vector of 480 vahies

(see Figure 2.1B for a simplified example). The FEATURE method has also’bveen
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Figure 2.1: Simplified exam-

ple for building a FEATURE
model. A. An example posi-
tive site (left) and negative site
(right), and their respective mi-
croenvironments. Properties are
calculated in concentric spherical
shells centered on each site (star
symbol). B. FEATURE vectors
calculated from A, with oxygen
atom count being. the first prop-

‘B. 00150712} [0 18161 erty, and carbon atom count the
: second. The vectors are divided
Properties Ishell 1|shen 2]shens| No statistical significance - by shell for clarity. C. An ex-

ample of a visualized FEATURE
model, or fingerprint, is shown,
Atomis C Statistically significant depletion hased on A and B. :

Atom is O . Statistically significant enrichment

tested successfully on other segmentations of volume, such as a cubic lattice 8, 9].
The concentri;: spherical shells representation has advantages and disadvantages. One
diéadvanfage is that information about orientation and the relative position of atoms
is discarded. Even so, discrete shells are favorable because they allow statistics to bé
gathered over the relevant volumes and calculation ié relatively efficient, which allows
FEATURE to serve as an initial filter for mbre expensive structure-based function
predi(:tion methods. Further advanfages 'ofv this representation include uhambiguous .
definition of a~éite as"a single point in d protein stfucture, accdrate dapture of prop-
érties of a cumulative nature such as partial charge, and corﬁputational efficiency:
The use of a single central point for each site meahs that models can be‘bhilt with
minimal prior knowledge of the geometry of the site — in other words, there is no need
to establish other conserved points with which to define a non-spherical coordinate
systexﬁ. Importantly, the use of comprehensible physical and chemical features make

the resulting models straightforward to interpret.
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Atom-based

Residue-based

.Secondary structure-based

ATOM-TYPE-1S-C
ATOM-TYPE-IS-CT
. ATOM-TYPE-IS—Ca
ATOM-TYPE-IS-N
ATOM-TYPE-IS-N2
ATOM-TYPE-IS-N3
" ATOM-TYPE-IS-Na
ATOM-TYPE-IS-0
ATOM-TYPE-IS-02
ATOM-TYPE-IS-OH
ATOM-TYPE-IS-S
ATOM-TYPE-IS-SH
'ATOM-TYPE-IS-OTHER
ATOM-NAME-IS-ANY
ATOM-NAME-IS-C
ATOM-NAME-IS-N
_* ATOM-NAME-IS-0

© ATOM-NAME-15-§

_ ATOM-NAME-IS-OTHER
HYDROXYL
AMIDE
AMINE
CARBONYL
RING-SYSTEM
PEPTIDE

RESIDUE—NAMEjIS-ALAn

RESIDUE-NAME-IS-ARG
RESIDUE-NAME-IS-ASN
RESIDUE-NAME-IS-ASP
RESIDUE-NAME-IS-CYS
RESIDUE-NAME-IS-GLN

RESIDUE-NAME-IS-GLU

RESIDUE~NAME-IS-GLY:
RESIDUE~NAME-IS-HIS
RESIDUE-NAME-IS-ILE
RESIDUE-NAME-IS-LEU
RESIDUE-NAME-IS-LYS
RESIDUE-NAME-IS-MET

" RESIDUE-NAME-IS-PHE

RESIDUE-NAME-IS-PRO
RESIDUE-NAME-IS-SER
RESIDUE-NAME-IS-THR
RESIDUE-NAME-IS-TRP
RESIDUE-NAME-IS-TYR
RESIDUE-NAME-IS-VAL
RESIDUE-NAME-IS-HOH

RESIDUE-NAME-IS-0THER
CLASS1-IS-HYDROPHOBIC

CLASS1-IS-CHARGED
CLASS1-IS-POLAR

. CLASS1-IS-UNKNOWN

CLASS2-IS-NONPOLAR
CLASS2-IS-POLAR |
CLASS2-IS-BASIC
CLASS2-IS-ACIDIC
CLASS2-IS-UNKNOWN
PARTIAL-CHARGE
VDW-VOLUME

CHARGE -
CHARGE-WITH-HIS

NEG-CHARGE

POS-CHARGE
HYDROPHOBICITY
MOBILITY

SECONDARY-STRUCTURE1-IS-3HELIX
SECONDARY-STRUCTURE1-1S-4HELIX
SECONDARY-STRUCTURE1-IS-4HELIX
SECONDARY-STRUCTURE1-IS-BRIDGE

- SECONDARY-STRUCTURE1-IS-STRAND

SECONDARY—STRUCTURE1—IS—TURN
SECONDARY-STRUCTURE1-IS-BEND
SECONDARY-STRUCTURE1-IS-COIL

vSECONDARY4STRUCTUEE1—IS;HET

SECONDARY-STRUCTURE1-IS~UNKNOWN
SECONDARY-STRUCTURE2-IS-HELIX

- SECONDARY-STRUCTURE2-IS~BETA

SECONDARY-STRUCTURE2-IS-COIL
SECONDARY-STRUCTURE2-IS-HET
SECONDARY-STRUCTURE2-1S-UNKNOWN

SOLVENT—ACCESSIBILITY

Table 2.1: Physichochemical properties used by the FEATURE algorithm. FEATURE
represents local microenvironments by determining the values of physicochemical properties in each
of six concentric, spherical shells centered on the site of interest. Properties mclude those at the
atom level, re51due level, and secondary structure level.
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2.4.2 Model building by Supervised machine learning

FEATURE uses supervised machine learning to combine significant properties into
a model that can classify functional sifes. "To build a model, or description of a
functional site, FEATURE requires_'two training sets: positive_fsites,‘ which are 3D :
| locations associated with positive\examples“of the function to be modeled; and neg—d
‘ative sites, which are 3D» locatiorls not known to be associated with the ‘function.
Negative sites can be chosen m.anually, or randomly sampled frorn the ‘PDB to have ’
a similar range of atom derrsities compared to the positive sites. FEATURE vectors
are calculated for each site in each treirling set. | |

Given a set. of FEATURE vectors, a distribution of values is then collected for
each property in each shell (Flgure 2. 1B) We determme whether a property is signif-
icantly enriched, 51gn1ficantly depleted, or not significantly different in positive sites |
compared to negative sites in a-‘given shell using the poSitive arld negative training
set distributions. The significance of a property for distinguishing sites from negati\}e ,
sites is calculated ove.r all properties in all shells and naive Bayes‘ [40] is used to
weight the propertles most informative for dlstlngulshmg the positive and negatlve
sites. FEATURE models are visualized usmg “ﬁngerprmts , Wthh are color-coded
grids that deplct the significance of each property in each shell (Figure 2.1C). The )
choice of negative sites is important. as it defines the, 'ba,ckground dlstrlbutlon and
thus deterrnines}which features will be considered usefol in identifying sites. Different

models can result based on different strategies for defining negative sites.

2.4.3 Site scoring and internal model evaluation

In order to determine performance statistics and score cutoffs for classification, the

. training sets are scored with the model, and sensitivity and specificity are estimated
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(

through. k-fold cross-validation. Scores are Calculated using a naive Bayes scetlng
function, which operates on the assumption that the probability of a site belonging |
to a particular class is conditioned on the individual probabilities of observed, ‘inde-
| pendent features. In the cas'e of FEATURE, the features'correspond to the physico-
chemical propert1es calculated in each shell, and their probabilities are der1ved from
the training set distributions. A site’s score is then the sum of the probab1l1t1es of
‘thammgv an _observed feature value given that the site is a p051t1ve site, taken over

all significant features v; in the model:
szte|1/,)
= lo
Score = Z [ P(site) ]

Score cutoffs are usually basecl on desired'performance, and, as a default, are set
.te achieve 99% specificity on the training sets, as determined by cross-validation. In |
k-fold cross—validation, thetraining set is divided into &k groups, ancl a model ls trained :
on all but one of the groups and tested on the left out groﬁp. Once a model is built
- and score cutoffs defined, potential sites can be scored using that model. FEATURE
vectors are calcﬁla-ted for candldate sites in the same way as was done for training
sites during model building, and scorecl' usihg the same naive Béyes scoring function.
The resulting scores indicate the Iikelihoodjthat the potential site is a posit_ive site,
dependiﬁg on the score cutoff for that model./ When possible, the validity of every

new model is assessed with an independent test set.

2.4.4 - FEATURE in practice

Creating a new model involves a typical workflow (see Figure 2.2) that begins by

‘choosing a function of interest and defining a biologically reasonable definition of
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the Carfesian center point for that function (e.g. the central position’in a binding

site or the position of a key atom in an active site). Positive and negative training

sets are then created and used to train the model. Cross-validation of the model

on the training sets allows definition of score cutoffs based on desired perfofmance,

and whenever an independerit test set is available, model pefformance can be further

: assésséd. _Onée a model is built and a score cutoff has been deﬁried, FEATURE can

- predict funétional sites in structures of interest.

An especially important step in model
training is the selection of sites for the pos-

itive training set, and, in order to tune per-

formance, the negative training set. The

training sets for the first FEATURE models

were built and verified by hand using pub-

Function of Interes

o Trainin‘g
- Sets

lished literature; these include the calcium-

binding [161] and ATP-binding [162] site
models. The calcium-binding model has es-

: pécially good performance, and is currently

- being used in multiple ongoing projects vt‘o A

expand FEATURE’S capabilities and ap-
vplicability. The recently published zinc-
binding model [43], which involved a inix—
ture of. nianual and automated approaches,
is the.best pe'rfvorming zinc-binding predictor
curi"ently available. >We have also applied

FEATURE to function prediction in RNA

Model
Validation

Manual Curation

| Training SeqFEATURE: 1D Motifs
Sources )
Hetero-groups
‘.
e Models
PDB

3D structures
NMR ensembles
LoopTK ensembles
MD ensembles
" TargetDB
Decoys

L Applications
of models

Function Prediction

Figure 2.2: The FEATURE framework.
To build a FEATURE model, one must first .
define the function of interest and create pos-
itive and negative training sets from the ap-

propriate data sources.

Then, the model is

trained and  evaluated on the training sets.

- The validated model can be used for function

prediction in a variety of ways. -
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structnres with twe magnesium—binding models, one for diffuse binding and one for
site-specific binding [10]. - | \

From its manually—curated beglnnlngs FEATURE has expanded to 1nclude auto-
matic generatlon of tralnlng sets using sequence motifs [95, 165] PDB annotations, |
and even a clusterlng of FEATURE vectors encompassing a non—redundant subset of
the entire PDB [169]. In addition, FEATURE can be applied to many problems in
 structural biology such"as modeling dynarnics of functional sites [53]' and decoy end :

loop filtering for structure prediction.

2.5 Protein function resources

Many of the tools already mentioned are coupled with databases describing the func-
tional motifs or protein families, such as Pfam and InterPro. In additro‘n, there ere ,
compendia of specific types of functional sites or annotations, specialized databeses
for particular organisms or types of pro_teins, and comprehensive Rnov&ledgebase_s.
Uniprot is .the largest protein knowledgebase, containing informat‘ion from primary
literature annotations and predictions from other detabases‘ and free 'text comments
[155]. The manually reviewed and unrev1ewed portlons are known as Swiss-Prot [17]
-and TrEMBL, respectlvely. Organ1sm—spec1ﬁc 1nformat10n is available in the Hu-
man Protein Reference Database [125] and FlyBase [164], among others. Databases
containing biological pathway information include KEGG [80] and BioCyc [26], and
pretein-protein interaction data can be found in DIP and STRING [76]. The Cat-
: alytlc Slte Atlas contains descrlptlons of enzyme catalytic sites [124] and Pegg et al.
[118 119] have created a database of enzyme structure- function linkages. PDBsum

contains structural and functlonal analyses and predlctlons for PDB structures [88].



Chapter 3

The SeqgFEATURE library of 3D

‘functiOnzﬂ site models

Althougil,many 'sequence-based function prediction methods exist, the rapidly in-
creasing number of novel protein structures containing very little sequence similarity
" to known proteins creates a negd for methods that incorporate ofher types .(/)f informa-
tion. Structure—baSed methods are available, bﬁt most-rely' on structural similarity,
which ’SG structures also tend to lack. FEATURE (see Section 2.4) is especialiy suited
fOr_this problem since it is structure-based, but not dependent on exact matches;‘how-
ever; building functional site models requires identiﬁcation of Ii)ositi've= and negative ,
trainiﬁg examples. Previously, this was a manual and often time-consuming brocess.

To address this, We developed a method called SeqFEATURE which automatically
vselects »traiﬁi»ng sets using 1D sequence motifs. The training sets are then used to

build functional site models which can be used to scan protein structures for function

The work presented in this chapter builds upon work by Mike P. Liang [95]. Portions of this chap-
ter also appeared in the following paper: Wu S, Liang MP, Altman RB. (2008) The SeqFEATURE
library of 3D functional site models: comparison to existing methods and applications to protein
function annotation. Genome Biology 9:R8.

20
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(see Figure 3. 1) This approach was first conceptualized by Mike Liang (95], and is
’ | expanded 1mplemented and validated here Using this approach, we bu11t a library of
3D functional site models, cross-validated and characterized their performance, and
then compared their performance to_a suite of state-of-the-art function prediction
tools, both Sequence; and structure-based. ‘W'e showthat SeqFEATURE models
produce fewer false positive and false negative predictions than their 1D counterparts,
are generally competitive with other methods, and, most' importantly, are.more- robust
‘than other methods when sequence identity and structural similarity are low. We have
also scanned the entire PDB with the library, 1nclud1ng SG structures with unknown
‘function resulting in 1nterest1ng predictions.

-This chapter describes the methodology and results for the creation of the Seq-

. FEATURE library, 1nclud1ng its validation, comparison and application.

3.1 - Methods

3.1.1 Training set selection

SeqFEATURE adds to the FEATURE framework by using one-dimensional sequence

‘motifs as seeds for generatlng training sets of structural examples. This method was
first introduced in a single application to calcium binding by EF- hand motifs [95] |
~ and is extended and applied here into a full library of functional site models.

To build the library of models, we extracted structural examples of PROSITE
functional site patterns from the ASTRAL40 compendium [22], which is a nonredun-
dant subset of protein domains ,inthe PDB. PROSITE patterns are regular expres-
sions that specify the amino acids permitted at each position of the ‘motif.‘ We deﬁned :

—functional site centers to be the_‘functional atom(s) of annotated functional residues
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Figure 3.1: Overview of the SeqFEATURE pipeline. SeqFEATURE forms training sets
by (a) extracting sequence motifs from PROSITE and identifying the annotated functional amino
acids. (b) We extract examples of the sequence motif with known three-dimensional structure in the
PDB and center FEATURE training sites on each functional atom of each functional amino acid -
annotated in the PROSITE pattern. We choose negative sites matched for atom density randomly
from the PDB that do not contain the function. (c) FEATURE then creates a model of the sites.
by summarizing the chemical and physical features found in concentric shells around the functional
atom center. (d) The resulting fingerprint specifies the properties that are in relative abundance
or paucity in the site, representing the model. (e) Sites in a protein of interest are converted into
feature vectors and scored with the model using a naive Bayes scoring function, and predictions
- are made using score cutoffs, which can be based on desired performance statistics. The scores are
calibrated into Z-scores using the training set used to derive each model.
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in each batterﬁ; e.g. the gamma oxygen ‘orf serine, or SER.OG. Floi‘ patterns with mul-
tiple functional residues or multiple functional atoms, we buﬂt multiple fnodels for
-the same PROSITE p\at'tern. For example, the PROSITE pattern EGF_1 has func-
tional cysteine residues at posi‘tions i, 3, and 7, so there are three models centered on
;che three functional atomé in this pattern - EGF_l.l.dYS.SG, EGF_1.3.CYS.SG, and
EGF_1.7 ;CYS.SG. MQdels derived from PROSITE are ﬁlways named usiﬁg a four-part
naming scheme specifying the motif, the positioh in the motif, the residue at that
position, and the atom within that residue upon which the model is centered. - See

Table 3.1.1 for a complete list of SeqFEATUREv models. .

Table 3.1: SéqFEATURE models built from PROSITE motifs.

PROSITE Pattern Positions Residue At'om(s)
2FE2S_FERREDOXIN 1, 6, 9 cYs - SG
4FE4S_FERREDOXIN 1, 3,5, 7 cYs . SG
AA_TRANSFER_CLASS_1 4 ' LYS NZ
AA_TRANSFER_CLASS.2 4 LYS . NZ
AA_TRANSFER_CLASS_3 19 LYS NZ
ADH_SHORT .3 TYR OH .
ADH_ZINC 2 HIS ND1, NE2
ADX - 6, 9 CYS se
ALDEHYDE_DEHYDR_CYS 6 CYS ' SG
ALDEHYDE _DEHYDR_GLU 2 GLU OE1, DE2
ASP_PROTEASE 4 ASP © 0D1, 0D2
ASX_HYDROXYL 3 ASN ND2, OD1
- BETA_LACTAMASE_A 5 SER o6
BETA_LACTAMASE B_1 4, 6 HIS ND1, NE2
' 8 - ASP 0D1, 0D2
BPTI_KUNITZ_1 4, 8 CYs s -
C_TYPE_LECTIN_1 v 1 cYs SG
CARBOXYLESTERASE. B_1 11 SER . 06
CARBOXYLESTERASE B_2 3 -CYS s¢
CHITINASE_18 9 - GLU . DOE1, OE2
COPPER_BLUE 7 cYs SG
: 11 HIS - ND1, NE2
CYTOCHROME_P450 8 CYs sG -
EF_HAND 1, 3,5, 9 ASP 0D1, 0OD2
: 3, 5,9 ASN ND2, 0D1
5,9 . 'SER " 06
7, 9 "THR - 0G1
7, 12 TYR OH

-
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7 GLU OE1, OE2
. 7 LYS NZ
EGF_1 1, 3,7 CYs - S6
EGF_2 1, 3, 8 cYs SG
GLYCOSYL_HYDROL.FS 7 GLU OE1, OE2
GLYCOSYL_HYDROL_F10 7 GLU OE1, OE2

-HIPIP 1,7 cYs SG
HMA_1 5, 8 CYs : SG
IG_MHC 3 cYs v sG :
IMP_1 4 - ASP - . 0D1, OD2
KAZAL 1,3,7,9 cYs sG
LIPASE_SER 7 SER - . 06
LIPOYL 9 LYS ©.NZ :
PA2 HIS 4 HIS ND1, NE2
PEROXIDASE._1 8 HIS ND1, NE2
PEROXIDASE_2 8 HIS ND1, NE2
PHOSPHOPANTETHEINE 6 . SER 0G ‘

- PROTEIN_KINASE.ST 5 ASP oD1, 0D2
PTS_HPR_SER 5 SER - 0G -
RNASE T21 4 HIS ND1, NE2
SHIGA RICIN 5 GLU OE1, OE2

‘ 8 ARG .~ NE, NH1, NH2
SMALL.CYTOKINES_CC 1, 2, 11, 17 = CYS SG - '
SNAKE_TOXIN 2, 4,7,8 CYs - S6
SUBTILASE_ASP 5 Asp oD1, 0D2
THIOL_PROTEASE_ASN 6 ASN ND2, 0D1
THIOL _PROTEASE.HIS 3 , HIS ND1, NE2
THIOREDOXIN 8, 11 ~CYs - SG
TRYPSIN.HIS 5 ' HIS ND1, NE2
TRYPSIN_SER 6 . SER 0G
TYR_PHOSPHATASE._1 3 CcYs . SG
UBIQUITIN.CONJUGAT1 10 cYs SG
ZINC_FINGER_C2H2_1 1, 3 cYs SG

. : 7,9 HIS ND1, NE2:
ZINC_PROTEASE - 3,7 HIS ND1, NE2
4 GLU OE1, OE2

Positive training sets consist of PDB coordinates of functional atoms as described
above, extracted from structures containing that particular patterﬁ (see Appendix
A.2). We required training sets to havéz a minimum of five sfrucfural examples. We
-selected negative training sets randomly»‘from‘identica‘l residues in thevrest of the
PDB whose afom compositions and densities are similar to fhe,positive sites. In‘

order to define the background distribution of the functional site environments, we
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used a thousand times as many negative sites as positive sites for each model, when

possible, but never less than 4,000.

3.1.2’ Model cross‘-validation‘rand evaluation

We internally évaluated each model using five-fold cross validation by partitioning the
positive and negative trainingr sets randomly into five blocks. For each run, we used B
four blocks to build the model and tested performance on the remaining block. To
compare results. acrosé runs, we transformed the scores into Z-scores by Standafdizing
to the mean and standard deviation of the negative score distribﬁtion.

To méasure.perforﬁlancé, we use receiver operating char_acteristié (ROC) curves,
‘which plot'the true positive rate (sensi‘pivity, or the ratio of true 'positive predictions
to all tvvrue positives) against the false positive rate (lfspeéiﬁcity, or the ratio of false
positive predictions to all true positives) 'at varying Z-score cutoffs. We also plot
positive predictive value (PPV) against s'e.nsitivity to gauge t'he performance of a

“model. Sensitivity, specificity, and PPV are calculated as follows:

# of true positive predictions

Sensitivity =
y total # of true positives

# of true negative predictions
total # of true negatives

Specificity =

# of true positive predictions

" Positive predictive value =
, P! - total # of positive predictions

The AUC estimates the probability that a random positi\}e site will be scored
higher than a‘_ratnd‘om_ negative site, and provides a summary measure of the perfor-
mance of the model. The final modéls used all of the training examples, and include

. score cutoffs calculated for 95%, 99%, and 100% specificity based on-cross-validation.
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3.1.3 Procedure for cbmpariSon to other methods

The manually curated PROSITE record for each pattern contains known true posi-
tives, false positives, and false negatives prediéted by that pattern, listed using Swiss-
" Prot identifiers. We treated each Swiss-Prot ID as a uniqué protein. Using existing o
mappings between Swiss-Prot and the PDB, we converted each list into a list of corre-
' sponding PDB structures to use as iripﬁt to SeqFEATURE and other struétufe—based
methods. Thus, our positive test set consisted of Swiss—Prot IDs ahd PDB structures
for proteins annotated as true positives and false negatives 1n PROSITE, and our neg-
ative test set consisted of Swiss-Prot IDs and PDB structu'res forbproteins annotated
as false posritives.‘ We rérﬁoved all positive training set structures from the test sets
and filtered the test structures to ensure that they contained the functional regions

described by the relevant PROSITE pattern.

Déﬁning function for evaluation purposes

~ Using thése test sets, we compared performance between PROSITE, Pfarﬁ, Gene3D,
HMMPanther, SSM, 3D templates (reVefSe templé,té type), and SeqF‘EATURE (see
Chapter 2 for a description of these other methods). In order to ensure consistency
acrosé the comparisons, we festricted thé analysis to PROSITE pafterns that had
at leasf one ‘Seq.FEATURE model with an AUC >0.75 and thé,t also mapped unam- E
biguously to classifications used by the tool being compafed, using publicly available
mappings‘. | |

Unambiguous assignments were those for whi‘ch either 100% of the tré,inihg set,
mapped td the same Pfam‘far‘nily, or for which the Pfam family clearly matc'hed"
the PROSITE pattefn (for example, PROSITE pattern GLYCOSYL_HYDROL_FlO
and Pfam family ‘Glyco_hydro_IO’). Forty¥two PROSITE motifs had both an AUC



CHAPTER 3. THE SEQFEATURE LIBRARY o 27

>0.75 and a positive test set independent of the training set (TRYPSIN_HIS was
“excluded due to it being nearly identical to TRYPSIN_SER), and,.‘ of these, 31 mapped

unambiguously to Pfain, 12 to Panther, and 29 to Gene3D.

Comparihg seqhence-based»methods to SeqFEATURE

Because structufe—based methods such as 3D templates and SSM are more 'computa— '
tlionally’ expensive to run than SeqFEATURE and the sequence-based methods, we
split the comparison into two parts. The first part ‘compared the sequence-based
methods — PROSITE, Pfam, HMMPanther, and Gen‘e3D — to SeqFEATURE, and
covered the unambiguous portions of the test sets in their ent.irety. PROSITE’S pre-
“dictions came'directly from its annotations.. For the other sequence—based methods,
we analyzed the tesvt set, proteins using each tool and marked a protein as a posi—
tive predlctlon if at least one of its predictions matched the unamblguous a551gnment
for the pattern being tested. HMMPanther and Gene3D were run from the Inter-
* Pro servers using the stand-alone downloadable Perl client [127]. Pfam’s predictions
were taken directly‘ from their pabiicly available mapping ﬁle For SeqFEATURE

we cla551ﬁed a protein as pos1t1ve if at least one of its mapped PDB structures scored | _
above the spe01ﬁed cutoff for at least one model derived from that pattern. Since
SeqFEATURE cutoffs are- varlable we tested performance at 95%, 99%, and 100%

spec1ﬁc1ty cutoffs.

Comparing structure-based methods to SeqFEATURE

To conipare SSM, 3D templates, and SeqFEATURE,' we limited our test sites to those
derived from PROSITE _pat;cernsithat inapped to EC numbers. Since 3D templates

(reverse template type) and SSM both return protein structures rather than a named
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function as output, we used EC numbers to evaluate pred_ictions made by SSM and |
3D templatesL We determined the set of EC nuxhbers corresponding t‘o each pattern’s
| training set .aﬁd randomly sampled 29 positive sites and 15 negative sites from the’
EC-compatible subset of test sites. We then took the top prediction below 95%
sequence identity to the query er each test siteffom SSM and 3D templates that had
- an EC number, and considered.ita positive prediction if the EC number matched
| any of the EC nﬁmbers assigned to the' relevant PROSITE pattern. We determined-
SeqFEATURE predictions by evaluating whether each st‘rﬁctufe scored above the
'95%‘, 99%, and 100% cutoffs for at leest one model derived from the'lapprepria,te

. pattern.

3.1.4 Evaluating performance at low sequence identity and
structural similarity

- We also compared the seqpence—baSed methods to SeqFEAT.URE. using low sequence
identity test sets. We eemputed all paifwise sequence alignments ’between.structures
in the positive test set and the training set for each pattern using.' JAligner, a tfree;ly
evailabvle Smith-Waterman alignment software package [74], and constructed a new
test set consisting ef those test structures that had le_ss than 35% sequence identity to
struetures in their corresponding training set. We broke down the test set according
_ to sequence 1dent1ty thresholds dlfferlng by 2% (<35%, <33%, and so on, down to
<25%) To prevent any pattern from domlnatlng the test set, we further filtered the

test set so that no pattern had more than one s1te in each sequence identity range
‘ by selecting one at random when multiple sites were preseﬁt. We then looked up the
predictions from the sequence-based methods for the low sequence‘identity‘test set

at each of these thresholds.
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o 'Frorﬁ the -lov&} sequenée'identity tést'set, we conduc.te‘d pairwise structurél similar-
ity searches between each structure and the structures in the Acorresp(:)nvdirig training
 sets using DALI, a freely-available tool for ~caléulating structuralllsimilarity [36]. We

- discarded any structure that matched a trainif;g set structure with a DALI Z-score
greater than 10.0. The remaining structures all had no significant rhatches, or only
low-confidence matches, to theirvpo‘sitive trainirnyg sets. ‘We then looked‘ up the: pré—
diCtiohs' from 3D templates, SSM, and SeqFEATURE (at the three diﬁefent cutoffs)

for the low structural similarity test set.

3.1.5 Protein Data Bank scan procedure

Any PDB st.fu-ctﬁre can be scanned with any Se(iFEATURE médél to genérate a
list of predictions. We conducted a full scan Qf fhe M@rch 2006 version of the PDB,
which cointained about 35,600 structures, about 95% of which wefe protéins. | ‘We
} extracted lists of each of the ‘relevant potential functioﬁal atoms ‘from each protein-
structure (ARG.NE, ASP.OD1, ASP.OD2, CYS.SG, and so on), incl‘udin‘g all chains.
This resulted in 90,'919,770 ‘pot'ential sites. We then scored all of these sites with
the corresponding models that were built On that particular type of functional atom.
The‘ entire scan (ektracting and scoring) took about one day to complete on fourteen
parallel pfocessorsfﬁ To analyze the scan data, we filtered out redundant scores from

proteins with multiple, identical chains.

3.1.6 TargetDB prediction analysis

We focused our scan analysis on structures listed in TargetDB,'the database for tar-
gets from structural genomics centers [29].- Using the headers of released PDB files,

we filtered for those that lacked functional annotation; for example, ‘STRUCTURAL
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GENOMICS,” ‘UNKNOWN FUNCTION’, ‘HYPOTHETICAL PROTEIN’,'and soon. We

30

' v‘sca_nned these structures with the entire library of SeqFEATURE models and exam-

ined the predictions for those hits that satisfied the following two conditions:

1. The prediction was for a model t-hat hasah AUC >0.85; and

2. The hit scored above the 100% specificity cutoff or well within the positive

Z-score distribution for that model. -

‘We then compared each prediction to the results of PROSITE Pfam, HMMPan—

ther, Gene3D, SSM, and 3D template searches on those structures and prioritized

cases where the sequence-based methods produced no.s1gn1ﬁcant pred1ct10r1s.

3.2 Results

3.2.1 The SeqFEATURE model library
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The SeqFEATURE library consists of 136 models dérived from 53 PROSITE
pétterns (Table 3.1.1)_. Of these models, 105 (77%) have an AUC greater than 0.8,
and 64 (47%) have an area under the curve (AUC) greater than 0.95 (Figure' 3.2a).
‘S'ensitivity at the default 99% speci_ﬁéity cutoff is slightly more variable, but 82% of
the models have sensitivity greater than 0.5 and 59% ha\}e sensitivity greater than

0.75 (Figure 3.2b).

ROC curves from cross-validation and Z-scére_ distributions of the final models
cé,h be used together to evaluate the ability of the model to distinguish true sites
from the background. We visualize the separation between the positive é,nd negative -
sites by plotting the distributions of Z-scores for the positive and negative training
.examples.' Plots of PPV versus senéitivity, also knoWn ras precision—récall curves,
give the proportion of total hits to the models that are true positiv‘esv as a function -
of sensitivity. Representative examples of ROC curves, precision-recall ‘curves, and
Z-score distributioﬂs for a range of model performances are shown in Figure 3.3.
The sensitivity of the top-performing models (ranked by AUC) is very high in gen-
eral, especially at the default 99% specificity Z-score cutoffs. Even at 100% specificity
a significant proportion of models have greatef than 0.75 sensitivity. A wide range of
PROSITE patterns is‘also ‘represented in the top-ranked models, indicatihg that the
method performs well for many different types of functional sites. See Appendix A.1

for a full list of model performance statistics.

3.2.2 Performanc'e’compared to other methods

In order to get a more realistic estimate of the library’s performance, we cdnstructed‘
a specialized test set from the P‘ROSITE records for each pattern, which contain -

~ manually curated annotations of true positives, false‘positives, and false negatives.
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Figure 3.3: EXamplé performance plots for SeqFEATURE models. Plots for three models »
are shown as representatives of excellent, good, and satisfactory performance. On the left are ROC

" curves, with blue lines indicating the performance of a random classifier.

The middle plots show

precision-recall curves, and the rightmost plots show the distribution of normahzed Z-scores for
positive sites (red) and negative sites (blue) used in training.

The test sets consisted, therefore, of structures that the associated PROSITE pattern

is known to detect C(')rlfectly,. falsely predict, and altogéther miss.

| - Importantly, we cQuld diréctly compare if and where SeqFEATURE outperforms -

the originating PROSITE pattern. kFigure 3.4 shows the numbers of true positives,

1
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Comparison of SeqFEATURE to PROSITE, # of TP, FN, and FP predictions
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Figure 3.4: Performance on PROSITE-derived test set. We show the number of true positive
(TP), false negative (FN), and false positive (FP) predictions for SeqFEATURE at three different
specificity-based score cutoffs compared to PROSITE on test sites derived from the corresponding
PROSITE patterns. Each dot represents a comparison for one PROSITE pattern, and the PROSITE
* values represent the maximum possible for each category (solid line). Note that not all patterns had

. afalse negative or false positive test set. In addition, most of SeqFEATURE’s incorrect predictions

~ at 95% and 99% specificity cutoffs arise from poor performance on a small subset of patterns.

false negatives, and false positives predicted by SeqFEATURE at varying specificity-
b'a,'sedsco,re cutoffs compared fo the corresponding PROSITE pattern. Figure 3.5
shows overall numbers of predictions in eé,ch category. Since the test sets were derived
from PRQSITE, the PROSITE values represent the maximum that could pos‘sibly be
: obtained for each fype ‘of prediction. The three different cutoffs show tradeoffs in
the numbjers of true positive, false positive, aﬁd false negative predictions made by
SeqFEATURE;/ one cvan therefore adjust the cutoff to fit désired perforrria,nce.

When we compa,_red performance between SeqFE_ATURE, Pfam, HMMP’antheg,
and Gene3D, we found Gene3D to be the best perforniing method by fdr, with sen-
sitivity just over 98%, speciﬁcify at 85.4%, and PPV at'99% (Table 32) Pfam was |
the second most sensitive method at 93.7%; since it predicted all hegative examples
(PROSITE false‘ positives) correctly, Pfam had a PPV of 100%. HMMPanther scored
slightly below Pfam on its limited test set with a sensitivity of 91.9%; there were not

enough examples to evaluate specificity. SeqFEATURE had a se,nsitiviAtyv of 86.2% at
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Figure 3.5: Shmmary performance on -
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, : - At the same cutoff, SeqFEATURE also pre-
200 ' ~ dicts about 78% fewer false negatives than
100k l PROSITE, and about 60% fewer false posi-
: _ﬂ. tives. o
o - -l L
TP FN

‘.ou_r‘ most lenient cutoff, and sbeciﬁcity_ and PPV comparable to Pfam and Gene3D at
our ﬁlore stringent cutoffs. Interestingly, all of the sequence-based methbds show a
marked decreasé in sensitivity when evaluated only oh positive examples that did not
éontaih the PROSITE motif (fhat is, PROSITE false negatives). 'SeqFEATURE, on
the other hand, is not as significantly affected_ by whether the test proteins contain -
the canonical sequence motifs. A‘

" On the randomized vsampl.e test set, we were able to compare SeqFEATURE to
, 3D templates and SSM (Table 33) Here, SeqFEATURE’s best sensitivity increased

to0 93%, though its best speciﬁcity dropped to 93%. PPV decreased slightly to 94%

Gene3D Pfam HMMPanther SeqF 95 SeqF_99 SeqF_100

TP sensitivity 0.998 0.937 0.919 0.862 0.821 0.492
FN sensitivity . 0907 0.704 0.532 0.831 0.775 0.282
Overall sensitivity 0.983 0.898 1 0.831 0.857 . 0.814 0.457
(FP) Specificity - 0.854 1.000 — 0.452 0.603 0.973
Pos pred value - 0.990 1.000 — 0.948 0.960 0.995

Table 3.2: Comparison of SeqFEATURE to Gene3D, Pfam, and HMMPanther. We
‘evaluated SeqFEATURE at three different specificity-based score cutoffs. SeqFEATURE is com-
petitive but the best sequence-based methods, particularly Gene3D and Pfam, clearly outperform
_in general. Interestingly, SeqFEATURE performs relatively better on harder cases (false negative
“sensitivity and false positive specificity). The best two values are bolded in each row.
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- at the most stringent cutoff. 3D templates performed most well out of the structure-
based metheds, with 90% _sensitiyity, 100% specificity, and a PPV of 100%. SSM
performed similarly to SeqFEATURE.

3D templates SSM SeqF 95 SeqF_99 SeqF_100

Sensitivity 0.897 0724  0.931 0.862 0.552
Specificity , 1.000  0.933  0.600 0.667 0.933
Pos pred value -~ 1.000 0.955 0.818 . 0.833 0.941
- LSS-sensitivity o 0.200 0267  0.533 0.467 0.133

Table 3. 3 Comparison of SeqFEATURE to 3D templates and SSM. SeqFEATURE (at
three spec1ﬁc1ty-based score cutoffs) is again competitive but the other structure-based methods
“tend to perform better in general The real gain arises when structural similarity of the target to -
known proteins is reduced; SeqFEATURE provides robust performance while the other methods
perform much less well. The best two values are bolded in each row. ‘

3.2.3 Performance at low sequence identity and strljctural
similarity
- Since the .goal of many function prediction methods, including .SeqFEATURE, is to aid
in annotation of solved ’structural genomics targets, we also compared SeqFEATURE -
to the sequence—based methods using low sequence identi‘ty‘testv‘se.ts to mimic the
51tuat10n in which a newly solved structure has low sequence 1dent1ty to proteins of
~ known functlon As shown in Flgure 3.6, the range of error increases as we reduce
“the sequence identity, making it difficult to derive any deﬁmtlve conclusions, but the
_ seqUence-based methods perform slightly less well o(zerall, particularly on sequences
filtered at 30% and 25% identity. Of the sequence-based methods, Gene3D maintains -
the most consistent performance. In contran, SeqFEATURE’s performance is much
more robust to decreases in sequence identity. Note that the test sets were additionally

filtered to reduce bias from over—represente_d PROSITE patterns; some patterns on
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Figure 3.6: Sehsitivity trends of SeqFEATURE and sequence-based methods at low se-
quence identities. We compared the sensitivity of SeqFEATURE at three specificity cutoffs against
the sensitivity of Gene3D, Pfam, and HMMPanther on test sets filtered for low sequence identity
with respect to the SeqFEATURE training sets. As sequence identity decréases, the sequence-based
methods show ‘a trend towards lower sensitivity. In contrast; SeqFEATURE at all three cutoffs
shows no such downward trend, indicating robust detection of function even when sequence identity
is very low. ' ’ '
which SeqFEATURE performs very well dominated in the lower identity ranges and -
were filtered out. o

To determine whether the degree of structural similarity affects how well different
methods predict function, we also constructed a low structural similarity test set
using DALIL. Although relatively small (1‘5 examples), the low structural similarity
test set allows us to approximate the situation of function prediction on novel folds.
As shown in Table 3.3, Se qFEATURE performs better at the 95% and 99% specificity
cutoffs than the other structure-based methods; its low structural similarity (LSS)-

sensitivity is 53% and 47%, respectively, while the LSS-sensitivity values. for SSM and

3D templates are both less than 30%.
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As observed in a recent study of function prediction for structural genomlcs tar-
gets, it is rare for a single method to outperform others in all cases; 11kew1se most
methods will have their pa.rtlcular niche in which they tend to show the better per-
formance. For this reaéon, we exarﬁined.fhe ineorrect predictions to see if there were
differences between the methods we compared. Tables 3.4 and 3.5 present the fraction

“of false predictions in each teet cafegory from each of the sequence»and structure-be,sed
function prediction methods that were eorrectly classified by SeqFEATURE at the 1
default 0.99‘speci_ﬁcity cutoff. In general, SegFEATURE makes the correct predie- .
- tion 65% of the time when the sequence-based methods make false predictiens, with
especially marked improvement for certain categories over certain metheds, suchv as
false negative predictions made by Gene3D.

A rsimilar improvemenﬁ is seen when we examine the low sequence id_entity set
alone, but the greatest improvement occurs in the lowest sequence identity category,
with 96% of false predictions correctly cla,smﬁed Recovery of false predlctlons made
by structure—based methods is not as substantlal but still 31gn1ﬁcant with 45% of |
missed pos1t1ves cerrectly classified by SeqFEATURE. No improvement over this re-

~ covery rate is observed in the low structural similarity test set. -

3.2.4 Predictions of function for structural genomics targets -

As of November 2007, TargetDB contained about 5,250 tafge’ps Wlith'structures‘re-
leased in the PDB; of these, about 1,500 were labeled oﬁly With‘ ‘structural genomics’,
‘unknown fuhctiqn’, or ‘hypothetical protein’ invthe PDB file heeder. Using the cri-
teria described in Section 3.1.6, we found 35 potential functional sites. We added
one more predicted functional site that did not quite satisfy the criteria bﬁt had sev-

eral such hits for multiple models for the same function, resulting in a total of 36
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Gene 3D Pfam ‘ HMMPanther Total -

TP \ 1/1 (100%) 23/35 (66%)  2/3 (67%)  26/39 (67%)
FN ©9/10 (90%) 24/34 (T1%)  13/22 (59%)  46/66 (70%)
FP 0/5 (0%) — — S 0/5 (0%)

| - ~ 72/110 (65%)
30-35% ID 2/2/(100%). 816 (50%) 5/13 (38%) 15/31 (48%)
25-30% ID 1/2 (50%) 4/8 (50%) 2/4.(50%) 7/14 (50%)
20-25% ID 6/6 (100%) 8/8 (100%) 8/9 (89%) 22/23 (96%)

44/68 (65%)

Table 3.4: Recovery of false predictions from sequence-based methods by Seq-

FEATURE. For each method, we show the fraction of false predictions made by each method

in each category that SeqFEATURE (at the default 99% specificity cutoff) classifies correctly. Note

that SeQFEATURE has. an especially good recovery rate of 96% in the lowest sequence identity
range.

, SSM 3D templates Total

Positive set - O 4/8 (50%) 1/3 (33%) 5/11 (45%)
- Negative set 0/1 (0%) 0/3 (0%) ~ 0/4 (0%)

Low-SS = 4/11 (36%) = 5/12 (41%) 9/23 (39%)

Table 3 5: Recovery of false predictions from structure-based methods by Seq-
FEATURE. Although the recovery rate is not as high as for the sequence-based methods, Seq-
FEATURE is able to classify correctly about 40% of the incorrect predictions made by SSM and 3D
templates

~ high-confidence predi'ctions Since publication of the SeqFEATURE work, we have
updated our TargetDB predlctlons with 191 structures with unknown functlon added
after November 2007, resulting in 12 addltlonal predictions (see Appendix B for all
predictions)' We compare our predictions to those of PROSITE, Pfam, Gene3D,

HMMPanther SSM and 3D templates for the same structures.

~ In examining these structures, we found that some of them, though labele"d as ‘un-

known function’, actually had some functional annotation and, thus we could deter-

| mine the plausibility of our predlctlon For example PDB Structure 1XRI is described



CHAPTER 3 THE SEQFEATURE LIBRARY" . 39

as a putative phosphatase, and had a high scoring hit for the TYR_PHOSPHATASE-
_1.‘3.CYS.SC modcl. All of the other methods also detected phosphatase activity.
Another examplc is 2E72 described as a iinc—ﬁngcr containing protein which hit our .
" ZINC_FINGER_C2H2.1. 1.CYS.SG model and for which Pfam, Gene3D HMMPanther,
SSM, and 3D templates all predicted zinc finger motifs.. More 1nterest1ng, however,
are predictions for structures that fail to garner any high-confidence predictions from '
PROSITE, Pfarn, Gene3D, or HMMPanther. Table 3.6 presents four intriguing cases.
In all of these céses, only SeqFEATURE ‘gives.a high—conﬁdence 'prediction, though
' 3D:templates and SSM sometimes offer matches to putative fnnctions or have low-
| confidence predictions. In contrast, the SeqFEATURE predictions ha\re relatively

‘high Z-scores compared to the training set distributions.

PDBID SeqFEATURE model Site Z-score Other predictions ‘

3BJQ ZINC.PROTEASEA.GLU.OEI GLU96:A = 3.774 SSM: bacteriophage pro-
' ’ ‘ ' head II; 3D -templates:
. .o . ' _ zinc-finger C2H2

V2EJQ ZINC_PROTEASE.4.GLU.OE1 GLU123:F 4.574 3D templates: Probable

‘ _ . _anthrax toxin lethal factor.
20GF EF_HAND.9.THR.OG1 THR17:D  4.675 SSM: Aminopeptidase

, (Z-score = 2.7)
20X6 EF _HAND.9.ASN.OD1 ASN8:B 4.102 3D templates: Probable
' ' B Zn enzyme

Table 3.6:. Predicted functions for TargetDB structures with unknown function. The'
SeqFEATURE model that produced the high scoring hit is shown along with the location of the
predicted site and the Z-score that the site received from the model. The best predictions from the
other sequence and structure-based methods, when a prediction was available, are also. shown for
_ comparison. No sequence-based methods produced any ‘significant predictions.

We selected one of these predictions for further investigation (seé‘ Figure 3.7).
3BJQ is a phage-related protein isolated from Bordatella bronchiseptica, a species
- of pathogenic bacteria. There is a page devoted to this protein [150] on The Open

Protein Structure Annotation Network (TOPSAN) chsite [1‘51], where it is noted
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CYS-126

HIS-124

(b) | (©)
, Figﬁrev3.7 : Analysis of 3BJQ. 3BJQ forms a decameric channel-like structure in solution through -
stacking of two pentamers (a). In (b), one of the subunits is shown with the predicted zinc protease
residue highlighted in red. Zinc binding sites {grey spheres) are predicted in each subunit as well,
in close proximity to the predicted zinc protease active site residue. In (c), we show the predicted
~ site — a glutamate residue (in red) — flanked by two histidine residues and a cysteine in the local
" ‘microenvironment surrounding the predicted zinc sites (grey spheres). Studies suggest that a typical

zinc protease active site contains several histidines coordinating azinc ion with a catalytic glutamate,
and cysteines are also knowr to coordinate zinc ions. : , :
that thep.rotein shares similar structural features with viral envelope and capsid
proteins and forms a decamer with negative surface charge in solution. In our scan,
“we identified very high scoring sites for the ZINC_.PROTEASE.4.GLU.OE1 model at
GLU123 in three of the ten subunits (the other subunits did not score above the
‘stringent cutoff). Zinc proteases typically contain three histidines and a glutamate in
the active site, with the histidines coordinating a zinc ion and the glutamate acting
as the catalytic residue. Our prediction is centered on a glutamate and inspection of
the region surroundirig it reveals two histidines. We also scanned the structure with -
a previously published zmc F EATURE model [43] 1dent1fy1ng a likely zinc b1nd1ng»
site near each predicted zinc protease site.

Because the TOPSAN page suggests a viral origin for 3BJQ and similarity to

viral proteins, we reviewed the literature [88, 89] and confirmed that proteases are

often involved in the maturation of structural proteins in viruses, cleaving a long

polypeptide into functional proteins such as the viral envelope. Furthermore, there
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-are known examples: of auto-catalytic protedses — 4 e. the protease itsel‘f is encoded in
the polypeptide which it cleaves to form the mature proteins. It is th’erefore plausible '
that 3BJQ could be-a 'z_iné proteasé of viral ofigin with agtoprbteolytic capability,

| a prediction that is compatible with existing analyses of the struéture. Even mdre
plausible is the simpler hypothesis that 3BJQ binds zinc in thdt“location, given the

_presence two histidiﬁes and a cysteine, all of which are known to coordinate zinc ions
in proteihs. The case of 3BJ Q, in addition to SeqFEATURE’s signiﬁcémt predictions

for other TargetDB structures with unknown function, warrants further study. |

3.2.5 Protein Data Bank scan résults

We additionally scanned every structure in the PDB - about 100 million potential sites
— with every SeqFEATURE model. When we consider only those scores that came
from models with an AUC of at least 0.95, and were greater than the 99% spec1ﬁc1ty ‘

cutoff defined for that model, 440,460 scores fit these criteria, or about 0.5% of the
total number of scores generated. Filtéring' out redundant scores from proteins with
_mulf_iple chains results in 298,870 hits in 29’,668 structures. The raw data from the
scan are available for download [136] on WebFEATURE (see Section 3.2.6); further
analysis of these predictions is beyond the scope. of this thesis. To access the full
librafy scéun for one struétur_e, the usef may query by PDB ID; alternatively, one can

~ access all results by querying for a specific SeqFEATURE model.

3.2.6 The WebFEATURE function prediction server
All of the models may be used to scan any protéin struct_ﬁre on Web‘FEATURE, our

web-accessible function predictioh server (see Figure 3.8) [96, 166]. In particulér, users

may scan their input structure with the full SeqFEATURE library simultaneously.
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WebFEATUERE _ ~ Results of WebFEATURE Scan

in protein

Scan a structure for function

fFor assistance, onse xue oo debeitd intomiiaal

$20p 1 Choase » girurture . :
Souenaw; P06 OF or Usfeod (D8 format) | R o e

Stap 2: Choass & typa of alte to cean bor

Name: ¥F_HAND.5. ASNND2
CiniE 2036492262 B
Descpeion: Bl from EF_HAND

e pazern B on A0 ceniered
on ASNGND? 1 passem position 5.
Prrformanec=0.6417197 18 AUC).

" Stz 1 Subemd) and visw resum

pe 3 an Al
04315, At2.0369¢92762 ecor ol
sperificy=0.990 und scustiviy=0.6,

e tifo:

[sedm ] Ce form

[ — 2rvch brva 5 5 ion  maos. Do o) i Kove v

g s 49 RaR, ML, B0 e

© smammaz: i
o= £OmD Denatpiion Fustire
© Caten bangng 532 I iotetngs Coichum Siding Broiein 8 sees
& BT tootiog she P —— Sases
€ CMoigefing I | 16 Tisrue PasminogEa cturmy Koge 2 - e
£ Dz bend Mgt REA Dt $30 Smocs ber Grou | inen 5 secy
€ GmbowndWgte RIA 1z 5096 BNA RiboTvrme Doman wrom Growp L es B0 sec
£ i ot Reofamtse) b Wi e Gn 2 fn Sk Vo 3 rvs

Modek
; EF.HAND.5 ASN.ND2 ]

i eanmy Do |

Priveipst inveagaton: Russ A0SR

Figure 3.8: Screenshots of WebFEATURE, the web-accessible version of FEATURE.
Users may specify PDB IDs or provide their own PDB-formatted files and scan them with any
published FEATURE model (a). Scan results may be viewed interactively on the browser (b).

An interactive structure viewer is provided for visualizing scan results. Data from our

PDB scan, including predictions on TargetDB structures are also available for down-

load. WebFEATURE is available at http://feature.stanford.edu/webfeature.

3.3 Discussion

3.3.1 SeqFEATURE improves over other methods

‘SeqF EATURE extends earlier work on characterizing functional sites in protein struc-
tures by automating training set selection. We have used it to build a library of
three-dimensional functional_ site models, 77% of which have an AUC greater than
0.8. When tested on untrained but known true positives, false positives, and false
negatives from their correspending PROSITE patterns, many models correctly clas-
sified all of the true positives and some of the false negatives, and had fewer false
positive predictions than the pattern. Even when a model failed to recapitulate every

PROSITE true positive, it often correctly classified PROSITE’s false predictions.


http://feature.stainford.edu/webfeature
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Furthermore, we show that‘although SeqFEATURE demonstrates slightly Iesséf
performance thaﬁ the seqﬁenc‘e-bdsed methods overall, it exhibits useful performance
trends as seqbuence‘ idenﬁity to proteins of» known function decreases. SéqFEATU‘RE,:’
and perhaps struct'uré-baéed methods in general, shouldvbe most valuable in these .
scenarios; since they sense three—dimehsional atomic environments rather than the
sequences that fold to create those ehvirqnments. -We observe thaf this .'adv'a(ntage is
strongest- when the sequence idenfity is less than 30%, which is well-documented as
~ the ‘twilight zone’ of sequence analysis [31]. | |
‘When we further 1nvest1gate this region of low 1dent1ty, we see that SSM and 3D
‘templates do not perform as well as SeqFEATURE on the low structural 31m11ar1ty :

test set. SSM is essentlally a fold-matching algorithm, and at low structural similar-
ities the folds of the test structures likely differed significantly from those folds‘most
representative of pfoteiné with the funcfion in question. Theoretically, the 3D tem-
plate method is more similar to SeqFEATURE, but in reality it performed similarly
to SSM. It is possible that the residue triads that 3D templétes defect were depen-
dent on éxact conservation of sequenée featureé. In contrast, SequEAT.URE was less
affected by the reduction in structural similarity be,cause. itv depends less on specific
| sequences or arrangements of residues, and instead incorporates abstract physical and
chemical properties in a locally defined region. | | 7
| An ixhportant observation is that different methods often complement each other.
When we examine the false predictions made by the sequence and Struc‘turé—bvdse_d
~methods, we discover that SeqFEATURE is abie to claSSify a significant fraction of
them correctly. This is especially useful at very lbw sequence identities, where Seq-
FEATURE corrects over 95% of the positive test examples missed by :sequéncve-based

methods. Coﬁversely, ‘cases where SeqFEATURE is incorrect are often recovered by
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the other methods. It is not uncommon>to see instanceé where the correct classifica-
tion is unanifnously achieved, but, at the same time, it very rare to have an instaﬁce
‘where no method prodUCes‘ the correct classification. These observations underscore
the need to have many different types of tools involved in function prediction to,build
consensus. Because SéqFEATURE uses a microenvironment representation ‘phat is
neither strictly sequen'ce;n_or st‘ruct,ure-based, it is uniquely cdmplementéry to exist-

ing tools.

- 3.3.2 Challehges 1n comparing prediction methods

Determining how different methods compare in predicting funétion is a challehgiﬁg
task, aﬁd so neither our procedure for éomparing methods nor thé interpretation of
the results-is straightforward. Function itsélf is broadly deﬁned and does not lend
itself easily to simple or computable classiﬁcatioﬁ schemes. Many classifications are
applicable only to speciﬁc types of functions and can differ in the Scope of their de-
scriptions, ranging from whole domain labelé,dn sequehce (for exafnple, Pfam) to
exact locations in sfructureé (for example, SeqFEATURE or 3D templates). Re-
spondihg to this diversity in desériptiori and- classification, we made several choices
in our comparison of sequence and s;;ruéturé—based methods, each in which carries a
certain amount of bias. |

In comparing Pfam, HMMPanther, and G}ene3D to other methods, for example, we
restricted the evaluation to those functions (PROSITE patterns, 'spe'ciﬁcally):whose
SeqFEATURE positive‘training sets mapped unambiguously to the cdrresponding
‘database assignment. This may have artificially boosted performance of the sequence;

‘based methods, since we, in effect, considered only'patterns with very high ‘sensitivity’ |
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'fdf each method to begin §vith based on‘o,u‘r training sets. Interéstuing,ly, we also inves-
tigated HMMTIGR and Superfamily _aé other methods to include in the comparison,
but these tools made very few predictions over the entire set of training and test
structures, so we excluded fhem from the study. - | |

Our choice of ‘gold standard test sites from PROSITE rmay also be c'ontroversialv
because the test set is limited to those functjonal patterns that have been manually
_characterized. In addition, the results may be dominated by a few patterns with
' many test sites due to the smaH number of test sifes for most patterns. Perhaps most
| obvious is the high prbbability that the negative test sites, by virtue of being defined
as false positives with respect to the PROSITE pattern, are ‘difficult cases’. This
me.ans that SeqFEATURE may be pfedisposed to low speciﬁcity, and épeciﬁcity for
-all methods overall may suffer because the negative: examples are hlghly similar to
the posmve examples on at least the local sequence level.

The different types of input used to tram each method also have some impli-
cations, an important one being that sequence—based methods currently have much
more data available to them than structure-based ones. Althoﬁghthié means that
the best séquence—based methods currehtly outperform structure-based methods on
our unfiltered PROSITE—based test sets, it does not dir’ninish the need for or value of N
structure—baéed methods. Such methods are useful precisely when seque:nce identity
to known proteins is low, as shown in our results on low sequence identity test sets
and our ané,lyses oh interestihg TargetDB prediétions. ‘ |

The two strubture—based methods compared here contain an a,nalogous advantage,
however, in that they match the query against the éntire repos-itory of kno_wn protéin
structures. Thus, if the query has very similar structures (,for example, the same

protein from different species) in the PDB, SSM and 3D template searches will very
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likely result in é,'high confidence hit to these structures. th cases where the qﬁeryv
structure is cbmpletely novel, however, SSM and 3D templates are expected to do
less well, as suggested by their performance on the low structural similarity test set.
- SeqFEATURE, on the other hand, because it does not fel.y on .exactly conserved
geometries dr structural motifs, cdn;inues to show robust performénce even when‘ithe’
’st_ructure does not share significant similarity to known proteins. |

Another potential biaé may come from limiting the structuré—based comparisons tQ“
" those paiterns assoéiatéd with EC numbers. In order to determine the correétness of
predictions‘fr_-om SSM and 3D templates, we required a précise functional classification
system. SCOP is a potential altérnative’evaluatidn rhethod», blit'SCOP isa stfgctural
- classification that does‘ not alwé,yé map directly to ‘funct‘ion,: sovwe chose to use EC
numbers. This, of course, rﬁearis that the results of "t.he.compa,r‘isons rﬁay not be
repres'entat'ive' of how each method performs on non—enzymaticvfunctionAs. The use of
EC humbers is also affecte‘d by how accurately and completely the PDB is a,nnota,t;ed |
and by the grbarvlu'larity of function assigned. Several of the t‘ést structures on which»3vD_
teinplates and SSM performed poorly had matches to 'pfoteins annotated with only
/vslightly different EC numbers. Thus, 3D.templates and SSM should remain valuable
tools for gainingvinsight ihto the potential function of an uncharacterized protein.

Although the set of patterns and the resulting tést séts used here are by no means
fully representative 6r Wit_hout bias, they enabled us to map our ,S_eqFEATURE mod-.
els directly fo test sets, a non-trivial endeavor given the inconsistehcy é,nd variety
of existing function classifications. It alSo allowed us to look specifically at where
SeqFEATURE ifnproves on or fares worse than the Sequencc patterns that genérated

‘the models. We often chose test sets with biases against our method in order to assess
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- its operating characteristics accurately; for example, our use of one-dimensional se-
duence patterns as the gold standard provides a strong advantage to sequence-based
methods.‘ ‘Restricting the eomparison to patterns that mapped coherently to Pfam,. -
Gene3D, and HMMPanther families may also predispose those methods to good per-

forinanee.‘ SeqFEATURE exhibited good performance despite these biases.

3.3.3 Advantages of u‘sing SeqFEATURE

.Because SeqFEATURE focuses on the local microenvironment around functlonal
“sites, it can detect function at finer detall than fold-matching algorlthms such as
‘SSM. Becanse it considers both atom—based and physicochemical properties in ad-
dition -to residue-based ones, [it is also capable of generalizing function av‘vayv from
‘sequence and may be able to detect f_unc’tional'similarities that have converged'from
different ancvestors or that use slightly different 'residues and a different overall fold to
aocomplish similar activities This capability is ‘demonstrated by the fact that Seq—
FEATURE detects ‘many of the posmve examples that the PROSITE pattern misses.
The ability to abstract the properties relevant to function 1ndependent of sequence
or structural homology is one of SeqF EATURE’s biggest strengths ,

Another one of SeqFEATURE’s advantages is that score cutoffs can be adJusted to
reflect the user ’s desired performance criteria — e. g. estimated specificity, sensitivity,
or positive predictive value. The ratio of true positives to false positives and false |
negatives is traded off depending on where the score cutoff is set. There areseveral
additi’onal filters one can use to boost the conﬁdenceof positive predictions. True
hits often manifest themselves as a cluster of high-scoring positive ‘predictions{for the
same or related functional site models. Single, isolated hits in a,_protein, although

potentially interesting, may not have the exact func'ti()nrepresented by the model.
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- The functional ‘fingerprint’ of each moﬁdel (as shown in Figure 3.1) also eillows de-
tailed understending of the,physic‘oche’mical environrnent representative of that type
' ef functional site, and detailed 'inspe'ction of potential positives may boost eonﬁdenee

of positive predictions or help explain the existence of .any.false positives. Even if‘
the SeqFEATURE prediction is not entirely accurate, the ’f'act that it is based on a
representation of the local physical and chemical environment means that we can still
make interesting observatidns'about what properties helped the site achieve a high
" score, and which additionalvproperties may be neceSsery for the site truly to contain
the predicted function. ‘

Most importantly, since' SeqFEATURE is not dependent on sequence or overall "
structural fold, it can be used Wlien veither the sequence or the structure is novel.
This became evident when we 'compar'ed the perfoi‘mance ef the different methods at
low sequence identities and low structural similarities,l and fdund that SeqFEATURE
shows a trend to being niore sensitive than sek.:luence-b'ased methods at_ low sequence |
identities and more sensitive than other structure‘-based ones at low structural simi-
larities. As shown with the analysis of ﬂfalse prediction.s and the TargetDB examples,

-SeqFEATURE is able to predict function Where‘other methods zire not. The ability to
provide useful pr‘edictions on novel structures Will become more and more important
as structural genomics matures, and SeqFEATURE demonstrates robust performance

in this area.



Chapter 4

A review of biological cluster

analysis

Althdugh supervised methods allow us to model kno.wn‘ pheriorhena for ’claséiﬁcatidn
and predictioh, it is also iinportant to be able to discover new biological phenomena.
In these cases, unsupérvised mefhods that make rela‘tivély_ few assumpfions about the
uhderlying structure of the data can help reveal patterns that would be very diﬁi—
cult to detect through manual analysis. Unsupervised methods have been espeéially :
prominent in the .analysis of high-throughput déta sets such as miCrOdrrays (139, 154],
and more recently appliedv to databases like the 'PDBY[7,'v169]. The data in question
typically consist of many-dimensional vectors colvlected over many biological ’objevcts
~such aé genes ori proteins. A common goal of thes'eban'alyses is to identify interesting
groups of genes, proteins, or featurés (e.g. motifs, residues, substfﬁctures) and then
to elucidate the b‘iologbical relevance of these groups. A general workflow for this type
- of problem is to define the parameters for comparison (e.g. vfeatures to compute and
distance m‘easurevs)v, apply a clustering method, énd investigate the resulting cluSters

~ for biological significance.

49
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4.1 Clustering algorithms

The most common way - to identify inferestihg subsets of high—throughput data is -
through clustering [147, 61]. 'Clustering itsélf is an unsupervised method that groups
objects together ba,Sed oﬁ similarity or distance (see Section 4.2). Most clustering
algofithms fall ivnto'oné of two categories: partitional clustering and hierarchical clus-‘ :

tering.

4.1.1 k-means clusterihg and variations

Partitional algorithms determine the entire set of clusters at once, usually through

t

an iterative process. The most widely used partitional method is k-means clustering

[100], where k is the number of clusters. The algorithm prbceeds as follows:

1. Initialize k cluster centers (often randomly).
2. Assign all data points to the closest cluster center.
3. Compute new cluster centers based on assignments.

4. Tterate until centers or assignments are stable (within some threshold). -

~ k-means clusfering is efficient to run on large data sets but the fesults will differ from
run to run due to the random initializatidn step. Another drawback is the fact that &k
" must be specified beforehand; this can be challenging without prior knowledge of the
" underlying structﬁre of the data, but héuriStics can be used. k;means also provides
no_measufe of hov;f strongly é data point ié associated with a cluster. - |
There are, however, statistical methods that allow points to be associated with
clusters. with certaih probabilities. In mixture modeling, we assume that the data
is.generated by a numbér of underlying components, correspbnding_ to fhe number

of clusters we believe is present [51]. Each component is modeled as a distribution
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- Gauséian, in the 'rtnost,‘cvio‘mmon case — and similar data points are treated as a
fandom sample from the same component distribution. This means that we can
provide estimates of confidence for ass_ignménts between data points and clusters. |

Much like kv—mea'ns, ﬁnite' Gaussian mixture models require specification of the
numbef of clusters. Infinite mixture models avoid this' problem by averaging results
over. all possible numbers Qf compdnents. We therefore do not need to make assufnp—
tions about the number of clusters present in therdata set and can prodﬁce “soft”
“clustering assignments [104], which can be much more sensitive to fhe underlying
patterns in the data. But mixture mbdelihg does re’duire estimation of many v(viif—
ferent sets bf-parameters, ‘which iS typically done using expectation maximization
or Gibbs SAmpling-type algorithms; 'Thjs cah be computationally expensive, espe-
cially on high—dimensional data sets [51]. In addition; we are making the assumpti'on'
th@t the clusters can be représented as Gaussian random variables, which may be

reasonable for gene expression analysis but may not be as suitable in other cases.

4.1.2 Hierarchical clust‘ering

. Hierarchical clustering is a process in which the data points are connect.ed based on
similarity‘ to form a bin.ary trée. Thé process can be agglomerative, where individual
paifs of cluster objects (data points or sets of data points) are successively merged,
or divisive, where the entire sét of data points is successively divided; agglomerative
methods are more coinmonly used. The closest pairs of cluster objects are merged
into nodes at each stepof building the tree. There are many ways to compute the
dist‘ancve between a pair of nodes consisting of multiple data points: the vshorte‘st
distance (single linkage), fhe_farthest distance (complete linkage), fhe average distance

(average linkage), and distance between cluster centroids (centroid linkage) are the
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Figure 4.1: Alternative sets of sub-clusters derived from the same hierarchical tree. Any
disjoint set of nodes in a hierarchical clustering can be used to define non-overlapping sub-clusters.
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most common. Any particular node in the tree defines a cluster as the data points
descending from that node. The algorithm is deterministic in that a given data set will
always produce the same hierarchical tree using the same distance metric and linkage
method; however, it can be computationally expensive to run on large data sets.
Another potential problem with hierarchical clustering is that cluster boundaries are
ambiguous; subclusters can be defined by selecting any non-overlapping set of nodes,
as shown in Figure 4.1.

Other clustering methods, such as self-organizing maps (SOMs), are not discussed

here. I refer you to Tamayo et al [146] for a brief description of these other methods.

4.2 Distance measures

The most common rationale for grouping objects together is the similarity or distance
between their corresponding feature vectors. Clustering algdrithms use the computed
distance between vectors to decide whether individual objects belong in the same
cluster, and- also to assess the quality of the clustering. The best distance measure
depends on the type of data being used. Distance between binary vectors, for example,

is often measured with the Hamming distance, which counts the number of dimensions
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in which the vectors differ. A similar metric is the Jaccard coefficient, which'is a ratio
between the number of features that h;ive a value of 1 and the total number of features
that are different or have a value of 1 between the 'two vectors. |

For non-binary Vectbrs, the ﬁlost common distaﬁcé metric is Ekuclibde‘a‘n disfancé,
which represents the Pythagorean distan(':ev between the two points represented by
the vectors in n-dimensional épa,ce. Euclidean distance between two vectors A =

ai,as, ..., a, and B = b1, ba, ...,bn is deﬁned-as follows:

Large distances mean the vectors are vefy different from each other. Another popular
metric for non-binary vectors is the cosine similarity, which measures 44the‘cvos’ine of
‘the angle between two vectors A and B:
. A-B

cosine similarity = cos(f)) = ———

4] =]
Cosine similarity varies from -1 to 1, with -1 indicating that the vectors are exactly
opposite, 1 indicating that the vectors are exactly the same, and 0 indicating that

the vectors have a random association. Cosine similarity is also known as uncentered

correlation, and is equivalent to the Jaccard coefficient when the vectors are binary.

4.3 Cluster e,_valuation

Evaluating the “goodness” of a clustering algorithm or the quality of a 'clustering

result is often done using external data or through internal measures. The former
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¢

‘ involves having a pre-defined set of data where the set of desired clUsters or other
external knowledge is known an(l compared to the actual results obtained through
the clustering method. Internal measures use the data in the vectors themselves
to evaluate how similar the 'cluster members are and how well separated.clusters
are lrom each other. I will refer to these measures as external coherence and internal_
ccherence, respectiVely.‘ An overall clustering result can also be evaluated by summing’

or averaging these measures over all of the clusters.

4.3.1 Internal coherence measures

A basic measure of internal coherence is intracluster dlstance. Generally speaking, -
intracluster distance calculates how “large” the cluster is based on its constituent data
points. There are many variations on irltracluster distance, .with the most popular
~ incorporating either_pairwise distances between all points- to all other points in the
~ cluster, or pair\lvise distances between points and the cluster ‘centro‘id‘. Tlle distances
may be taken as an absolute value or squared, and the final intracluster distance‘may |
~ be the sum,. average, minimum, or maximum of the pairwise distances.

The natural complement to 1ntracluster distance. is 1ntercluster dlstance or the_
amount of separation between clusters. Intercluster. dlstlance can be calculated using
~the distances between cluster centers or the diétances between closest points. Typ-
’ically, we may report the smallest intercluster distance for a ,given'cluster (i.e. the
distance to the closest cluster). We might also be interested in the total intercluster -
| dlstance for an entire clustering, in which case we would report the sum of the squared
intercluster distances‘ between all pairs of clusters. A good clustering will maximize‘
the iriter—cluster distance aud minimize the intra-cluster distance (18]. E

~- One well-known measure that balances both intracluster and intercluster distance
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is the silhouette Width.' The silhbﬁette width for a given point ¢ in a cluster 4 is
~ defined as follow$: ,
) — ald)

(i) — bi) —ald)
maz(a(i), b(z))

where a(i) is the average rdissimila:rity between ¢ and a,li other points iﬁ cluster
‘A, b( z) is the average diSsimilarity of i to-all other points in the closest other cluster
C. The quantity a(i) is the intracluster distance and b(3) is the"intercluster distance,
so thé Silhouetté width represents how large the cluster and well-separated cluster
A is with respect to other clusters. High, positive silhouette values are g(l)odvand
- indicate that the given point is closévto other poiﬁts in the cluster but not to other
clusters, whereas nega_itive values indicate that the given point is closer to points in
other clusters than to points in the same cluster. The silhouette width for :é,n.entire

cluster can be computed as the average of the silhouette widths for the cluster points.”

4.3.2 External coherence measures

Another way to evaluate the quality of a clustering' result is to use iﬁformation known
about vthé 6bjects in the clustering. For example, if the data vpoints‘a.re already
dssbciated with class labels, we can evaluate how many labels are preseht_ in a given
cluster and how many members associated withv_a, given label varebpres_er‘lt in that
cluster. Purity refers to the frequency of the most common la,bél in each cluéter, and
is analogous to 'précisién. Tnverse purity, on the other hand, focuses on the maximum

‘recall for each label. We use the equations for purity and ihverse purity [5], where for

a set of clusters C and a set of labels L, we define:

. 1C: ) |C: N L]
Purzty=z ( N mamj'TlJ ,

i
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(1L LiNG;
Inverse purity = Z: (INl) male__|_2|_1'
Additional external metrics based on class labels exist, ihcluding the Rand statistic
-and Jaccard coefficient, which consider performance taken over pairs of itemsv (for a

 review of these and other metrics, the reader is referred to Amigo et al. [5]).

4.3.3 Functional coherence using neighbor divergence

Interna} coherence measures give some indication of cluster quality but these measures
oftéﬂ do not translate into biological. relevance. Exfernal coherence rﬁeasures are
likely to be more helpful in this regard, but there r;iay not be appropriate pr_e—deﬁnéd
labels or classifications available. In the case of gene or protein clusters, hoWever, it
| maif_be useful tovinCOrporate information from the scientific literature. If there are
commonalities in the shared literature associatedeithmembers of the cluster, it is
. likely that there is some degree of functional coherence. |
Neighbor divergence per ge‘neb(NDPG) is one such method for assessing functional
cohérence -of clusters using literature [129, 1.30]. The algorithm is predicated on the
aséumption that a group of genes sharing a particular function will have documents
in the‘ literaﬁure that refer to genes in the group, and documents éimil_ar to those will
- tend to refer to group genes as well (see Figure 42) Documents in a gene group are
- "scored based on how relevant their semantic neighbors are to group genes, and the
distribution of document scores is comparéd to a theoretical distribufion to produce
a functional coherence score.' NDPG has been demonstrated to identify functionally
important gene groups. It has also been used in concert with hierarchical clust'erihg

to determine optimal sub-cluster boundaries [131]. (

NDPG requires only a corpus of documents and a mapping between documents
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Figure 4.2:  Determining functional coher-
ence in biological clusters. Proteins (circles)
in a cluster are mapped to documents (solid lines),
which, in turn, are associated with a list of similar
documents, or semantic neighbors (dashed lines).
Each document is scored based on how many pro-
teins mapped to its neighbors are present in the
cluster {(e.g. green documents, with central docu-
ment being scored). The distribution of document .
scores for each protein is compared to a theoret-
ical distribution, and the functional coherence of
a cluster is the average divergence between these

. two distributions across all proteins in the cluster.

“and genes (or proteins). Each document is compared to other documents in the corpus

to identify similar documents, or semantic neighbors. To do this, we first convert each

document into a word vector weighted by inverse document frequency, or z'df :

2

(1+ log,(tfi;))idf; if tfi; >0
o

- if tfi,j =0

idf; = log (g) |

where tf; ; is the ffequency Qf term 4 in document j, d; is the number ‘of documents

containing term ¢, and D is the total number of documents in the corpus. Inverse

document frequency is a measure of a word’s significance in a background corpus; more

common words are less significant than rare words. Similarity between documents is.

then computed as the cosine of the angle between their two weighted word vectors.

The 20 most similar documents are considered the semantic neighbors of the original

‘document. -

Note that ‘docu‘ments mappirig only to the same genes as the original document

are excluded from the neighbor list for that document. All documents in the cluster
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- receive a score based on the fractional references, fr, of its 20 semantic neighbors: -

B ‘ Nkp

S’,p = round (Z; friem, J,p) where frk,p = n_kp |
J ’ -

The fractional reference is the propo_rtion of genes the document in question refers

to (nk) that are present in the cluster (nkp) A document’s score is thus an integer

ranging from 0 to 20, and the scores of all documents for a gene form an empirical dis-

tribution. If the genes in the cluster are not related in any way, a Poisson distribution

can be used to estimate the theoretical*distribution of scores:

where A = 20 * ¢, and ¢ is the fraction of all documents in the corpus that refer to
genes in the group. |
Kullback-Leibler (KL) divergence is then used to evaluate the difference between

the empirical and theoretical distributions of document scores for each gene:

gllh) Z g 10g2 ( )

The average KL dlvergence across the genes in the cluster represents the functional

coherence of the cluster

4.4 .Determining biological relevance

Upon obtaining a clustering result, Wetypically want to understand the biological ba-

sis for those genes or proteins sharing similar behaviors. Traditionally, exploration of
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-.a cluster’s potential “bi’ological significance has been a‘ .r’narﬁlual process. This ‘iIVIVOIVGS
collecting information — usually from the scientiﬁc literature — for the individiial mem-
bers bf the cluster and then synthesizitig all of the disparate pieces into a unifying
- theme. The process is often convoluted and time-consuming, an(’iso many compu-

tationalvmethotis for charasterizing biological clusters have been developed. These
take advantage of the "brpad array of information now available for many genes and

-proteins, including annotations in databases and knowledg’e' from the literature.

4.4.1 General methods for cluster annotation

Many c.luster analysis tools make use of available tannotations such as GO terms, bio-
logical 'path.way assignments, transcription factor binding sites, or functional motifs.
Databases like GO, KEGG, and InterPro provide mapping 'ﬁles or query .toolstQ link
genes and proteins to annotations. A commpn approach for idehtify_ing biologically
;élevant information for a cluster, then, is to retrieve the annotations for each gene or
' protein in the cluster and return those terms br annotations that are signiﬁcantly en-
riched. One widely-used scoring method is based on the hypergeometric distribution
produced from »satnpling without replacément from a pool of objects with two pos-
o sivble outcomes. In the case of gevne or protein clusters, the hypergeometric function
computes the probability of seeing a given annotation or term j times in a cluster
of size n giveﬁ that the term occurs M times over all N possible annotated genes or

proteins:
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GO::TermFinder [20], which returns significantly enriched GO terms for a list of genes,

is an example of a tool that uses a hypergeometric scOring function.

4.4.2 Literature-based cluster analysis

‘W‘hile database annbtatibné are useful, there are also many methods that use litera- -
‘ture directly. Literature ds_ a resource for‘cluster annotation is attractive for a number
of reasons. First, the amount of info'rmation present in the literature far surpasses
what is currently available in curated databases, and new articles aré Vbei‘ng indexed
in PubMed [126] — the searchable, online database of biomedical literature containing
over 18 million abstracts — faster than ever. In addition; the field vof natural languagé
proeeésing [102] is mature and yet continually innovating, prbviding m‘any‘ useful tools -
for textyx}ni_nin‘g and literature analysis. NDPG is an example of/ text mining applied
to the biomedical ‘domain, and related app'roache‘s can help shed light onv a cluster’s
biological details. : | | |
Natural language processing (NLP) is becoming more and more popular ‘—inibio—

me.diciﬁe'and' has potential uses in ‘inforrnation retrieval (ideﬁtifying documents rel-
evant to a query) and information extraction (identiﬁcation‘ of assertions or rela-
tionships in text) [137, 33, 8'.4]_. Text mining tools built on NLP concepés enable
researchers to query the literatufe more effectively, build networks of associations
between entities, and even discover hidden relationships [144]. With millions of ne-\.;vv
scientific articles being published every year, thefe is a wealth of knowledge waiting
to be extracted and utilized. At the same time, it is impossible for mahual curation
efforts to keep up with the accelerating rpace of publication [13]. Biomedipé,l NLP, -
~ however, is especially challenging due to thé ﬁature of scientific text, with its ambiguf

. ous and idiosyncratic terminology, unique uses of punctuation, and often intimidafing
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sentence structure. Desp1te these challenges, and the fact that the vast maJor1ty of
tools fall short of human gold standards on performance for most tasks, it is likely

 that text mining-based automation will soon be a necessary endeavor.

Text pre-'-processing '

The first step in most text mining tasks is text pre-processing. The text may be
| ﬁltered for stop words; broken into units, called tokens; normalized into word roots

using stémming; and parsed into parts of speech (POS) Stop words are words that

appear frequently but contain little 1nformat10n such as prepos1tions these are thus o

stripped’ out_of free text prior to analysis. Tokenization is a nontrivial task [78] for
biomedical text, however, where the non-intuiti\re use of punctuation and variabil-
ity in chemical expressions; sequence’s,‘ and entity-names make word and sentence
boundaries ambiguous. .Tokenizers can be as simple as regular expressions that split
up text on whitespace and punctuation, or involve machine learning to train a model
for recognizing word boundaries given labeled input.

To avoid redundancy, tokens are often norrnalized into theirword roots, a process
called stemming. Suffixes and Amorphological variants are rednced so that words that
are ‘semantically equivalent will betreated as such. For exarnple,-‘regulation’, ‘reg.-
ulate’, ‘regulating’, and ‘regulates’ will all become ‘regulat’ or ‘regulate’, depending
on the stemming algorithm used. Although not speciﬁcally optirniZed for biomedical
text, the Porter Stemmer is a widely implernented stemming algorithm [123]. |

For more complex text mining tasks, it is usnally necessary to perform some kind
of part-of-speech tagging, Where the text is structured and labeled into its Syntactic
parts. POS taggers tend to be either rule-based models [24] or probabilistic HMM

models, trained usmg known examples or with an iterative bootstrapp1ng approach
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[137]. In pfaCtice, full parsing is computationally expensive and performance is vari-
able, so shallow paising — tagging ‘of non—overlappihg larger units like noun and verb
’ "phrases ~ is often preferred [137]. POS tagging provides a useful starting poinf for
- more complex tasks, such as named entity recognition (NER) [92] or the identification
of relationships between entitiés. NER and relatidﬁship identification are extremely

helpful for information retrieval and extraction.

Document representation

An important consideration for any text mining task‘ is how the text will be repre-
sented. -Generally, we' maintain docu'menté as units and use the text Within‘thém as
uﬁique representatibns of each dqcument. The moét common way to represent a ddcf
ument is with a word vector like the one used in the NDPG algorithm (desbribed in.
séction 4.3.3), where the dimensions are»t4he possible words and fhe valﬁes ‘are dér_ived
| frdm fhe frequency of that Word in the document -[102]. Usually,' term frequency is
Weighted by the idf of the term to account for its felative significance in the back-
,‘vgrvound corpus. Word vectors are generated after applying pre—processi‘hg steps like
stop word removal and stemming, and the words themselves depend on the tokeniza-
~ tion method. »The word vector representation providés a foundation for comparison
between »dc')cuments, ranking of search results, and document classification, although

more sophisticated methods may employ more complex representations. . -

Free text vs. controlled vocabularies

Given the many steps needed to process free text for analysis, much attention has
been paid to the use of controlled vocabularies in NLP tasks [143]. Controlled vo-

cabularies consist-of manually defined terms representing concepts, as opposed to the



CHAPTER 4. A REVIEW OF BIOLOGICAL CLUSTER ANALYSIS 63

: na,ture,l language terms one might extract from free text. They e,re meant to reduee
'ambiguity between homonyms and synonyms, and can be hierarchically organized
to ceptlire ‘is-.e,’ and ‘part—of’ relationships, which can aid in indexing and retrieval.
"‘They also obviate the need for the pre-processing steps rnentioned above. Examples
of controlled- vocabularies.in biomedicine include Medical Subject Headings (MeSH)
| [105] and GO. While they.are useful for cavteg.orizing and annotating scientific litera; |

~ ture and biological entities, they must also be maintained with care 32).
Despite the advantagesascribed to controlled vocabularies, there is some debate
over their effectiveness. Sve'non.ius [143] ireviewed. the ‘controversy, noting that some -
studies showed free text outperforming vocabularies on recall but not pre,cision,‘ and
- other studies reporting the Opposite. It‘ appeers, however, that a cornbined approach
using both vfree text and controlled vocabularies is better t.han either rnethod alone -
[63, 135]. For the purposes of cluster enalysis, NLP may be employed to identify
enriched terims associated with the genes or proteins of interest. In these cases, an
additionei tradeoff niay be interprete,bility and detail. MeSH might provide terms
that are easier to understand, but free text will likely provide more detailed. and

specific terms which the controlled vocabulary may not be able to 'ea,pture.-

4.4.3 - Examples of cluster analysis tools

" Cluster analySis is a rich area ofj study, and many methods are available that address
slightly different purposes, both literature-based and a,nnotation—ba,sed. But because
most tools were developed specifically for data produced by gene or »protein high-
throughput arrays, they tend to have several limiting characteristics. Most notably,
they are predomiriantly gene—centric, and platform or species-specific. Other cluster :

analysis tools do not examine the entire cluster at once, but instead enable only
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pairwise investigations betWeen members of the cluster. In fact, _therear-e fevs%, if
‘any, tools that }can hand’le"arbitrary groups. of proteins from maltiple species and
- produce ranked lists of s1gn1ﬁcant functional terms from diverse knowledge sources,
including hterature Such a tool would be extremely useful for our intended purpose
of characterlzmg clusters representlng potentially novel functional sites. See Table 4.1

for a survey of tools for biological cluster analysis, with their features and_limitatiohs.

4. 5 Towards an 1ntegrated plpehne for d1scover1ng
novel functlonal sites |

We now have a number of powerful techmques for exploring many-d1£nens1onal data
us1ng unsuperv1sed clustermg and analyzmg the emergent groups using available
 knowledge. Given the detalled, molecular-level . models we can create for protein .
function using FEATURE and the increasing number of novel .proteins being de-
pos1ted in sequence and structure databases the next step is to be able to discover -
and characterize new blologlcal functions. Yet such a plpehne does not, ex1st

This may be due in part to the fact that such a pipeline requires the deVelopment Vor
application ef many disparate methods across many areas of bioinformatics. -But as I
- will describe in the next chapter, we now have a ready source of potentially interesting
biological sites - FEATURE micreenvironments from t_he PDB, specifically — which
require further analysis. In particular, we need ways to prioritize_candidate clusters,
v break large clusters down into more coherent sub-clusters, and characﬁer_ize combelling

clusters using available knowledge. While some _eXisting methods can be used with
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Tool . . Description . - Proteins? Species? Literature?

FatiGO  Identifies enriched GO terms, = X X : X
o - database keywords, biological S
- pathways, sequence motifs, and
- transcription factor binding sites
in a list of genes.

‘GO::TermFinder Identifies significantly enriched i & v X
, © GO terms in a list of genes. A -
g::Profiler Detects  enriched - GO terms, / X X

KEGG pathways, and transcrip-
_ tion factor binding sites in a list
of genes or proteins. '

CoPub Searches the literature for terms X X v
enriched in human, mouse, or rat : :
gene lists.

MarmiteScan - Extracts known gene-bioentity X X v

co-occurrences from literature
for a given list of genes.

GoMiner Identifies and categorizess GO v 4 o X
terms enriched in gene or protein : - '
lists. '

DAVID - Allows browsing of database an- v A X

notations and identification of
enriched functional terms from
arbitrary lists of genes or pro-
teins. ' '

Table 4.1: Comparison of available tools for biological cluster analysis. The criteria on
the right refer to whether the tool can handle protein input, input representing multiple species, and
uses knowledge from the literature. There are many powerful tools that take advantage of literature,
biological databases, and existing annotations to produce lists of enriched terms, pathways, motifs,
and other biological features. Since most tools were developed specifically for gene expression data,
however, they tend to be gene-centric or stipulate a single organism of origin for the input list. In
addition, fewer tools are available that incorporate information from literature. *GO::TermFinder
can be modified for protein input by providing a protein-GO association file.
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little or no modification, others are rendered unsﬁitable based on Tthe natulre of the -
data and our exact needs. As Table 4.1 illustrates, for example, there are few, if any, .
cluster analysis tOols that pfovide anhotation- and literature—’hased term enrichrhent
for protein clusters consisting of mult1ple spec1es

. In the next chapter I describe the methods I have developed to address both the
cluster selection ’and cluster .annotatlon problems, and the functional site discovery

pipeline that these methods make possible.



‘Chapter 5
Discovering novel functional sites

Although many methods exist for_ recognizing known fuhctiOns, fewer tools' are ’a_vail—
able for discovering new functions. As we sequencé more genomes and solve more

novel protein structures, the'ability to identify and characterize new functions will -
become more important. Unsuperviséd. machine learning methods such as cluster-

ing can be used to identify vinteresting‘biol'ogy without prior knowledge. A recent
FEATURE study (describéd bfieﬂy in the next section) applied k-means‘clustelring
to a representative set of protein microenvironments cOmputed from the PDB with
the aim of revealing such interesting groups [v169]‘, and active research continues to
irﬁprove .on thése,methods. Many of the resulting c_llu‘sters .will recapitulate known
functions, but others may represent previously uncharactefiz_ed functions. Our goal is
to characterize microenvironment clusters so that they can be used to train new mod-
els of function. To.do this, I developed methods for 'anno‘qating a cluster of proteins
with descriptive ferms from Swisé-Prot records and PubMed abstracts and adapted

and applied techniques to prioritize clusters suitable for annotation. _

Much of the work presented in this chapter builds upon the previous work of Yoon et al. [169]
and Raychaudhuri et al. {129, 130, 131]. I am also indebted to Tianyun Liu, who provided the CYS,
clustering data presented in Section 5.3.4 for the application of the methods presented here. '
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B 5.1 'Cluster'ing FEATURE vmicroenviron'ments

Ae part of a continuing effort te‘explore protein function through the FEATURE
framework, Yoon et al. [169] publis“hed'a preliminary study c'lustering FEATURE‘
“microenvironments. Using a non-redundant subset of the PDB, they computed
FEATURE vectors for all amino acids centered on either the beta carbon (hydropho-

. bic residues), or the centroid of polar functional groups (polar 'resid_ues). Vectors for
resid'ue's with aror_nat'ic r'ings 'were celcula;ted at the center of the ring‘, and a hypo-
~thetical beta carborr was constructed for glycinee. P’rior to elustering, they cenverted
each vector into a binary form te control for the fact that FEATURE vectors inormally

v‘co'ntlain a mixture ef' data types, which can be difficult te, cluster. They 'also ‘deter- :
mined that a binary representation resulted in higher quality clu‘-st‘ers usirlg training‘

data from 15 SeqFEATURE modele. \ |

o Using this binary representation, they'grouped the approximately 2 million vec-

tors together ﬁsing k—means.clustering. They used a weighted Hamming distance as

the distance metric used to evaluate similarity between two vectors. Since k-means
clustering requires speciﬁca‘pion of k& 'beforehand',i Athey experimented with different
values of k and found that k=4550 produced clusters that best eorrelated with func-
tiorral sites. ‘To analyze the results of this preliminary clustering, they examined all
residues that could be annetafed with a PROSITE pattern. They feund a rrumber
of clusters for whom significant representation of one and only one pattern was con-
tained in the cluster. These_ results suggest thet the clustering is able to recapitulate
known functions. For more details on thelpreliminary cluetering Work, the reader is

referred to Yoon et al [169].
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5.1.1 New developments in clustering microenvironments

The clusters obtained be the: p'ublished clustering work are by no meanvs deﬁnitivé |
There is much room for improvement in terms of optlmal representatlons for microen- -
v1ronments testing of clusterlng algonthms and 1mplementat10ns and vahdatlon of
the approach. For instance, we may be able to 1mprove the clustering results by using
microenvironmen-t‘vectors that have"béen reduced by 'prin(':ipal components analysis,' :
by li_rniting_' the clustering t'o“‘rnicroenvir,onmentsy that are‘miore likely to be involved
in biological 'functidn, and by using clﬁéteri_ng algorithms that are better suited to
the actual space of the data. This is currently an active area of research, and new  '
clﬁstefs (as ’_of the time of this writiﬁg) are available only for vecfbrs centered on
cysteine (CYS) residues. | ‘ |
Unsuperv1sed approaches allow the discovery of potentially novel functions and
present unique opportunities for further research and modehng of function. Interpre-‘
tation 5nd. analysis,‘however, remain challe'ngir‘lg.» In the second:part- of this disser-
_ tation work, I develop and apply tools for prioritizing; refining, and cvhara'cvterizing»

clusters so that unsupervised techniques can be better leveraged.

5.2 | Meth_ods

5.2.1 Ar‘lnotat.ing protein clusters

A common problem in biological cluster analysis is interpretation of clusters - that
is, determining Whé,t biological significance a ‘gr0up of f)roteins or genes has. A
number of methods exist to aid researchers with this problem, but; as discussed
in Section 4.4.3, noné are well-suited to the characterization of clusters of FEATURE

microenvironments. To annotate FEATURE microenvironment clusters, I developed
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* a system for producing significant terms for an arbitrary list of proteins, incorporatingk

information from PDB files, Swiss-Prot records, and the scientific literature.

-Extracting terms from Swiss-Prot, ‘PYDB, and PubMed

There -are many different types of knowleagé ,ava_ilablé about proteins, and each modal-
' ity can provide \useful clues when investigating a protein cluster. For this reason‘, we
use infbrmation from multiple sources, namely PabMed abstracts, Swiss-Prot protein
records, and PDB data files. For the purposes of annotating profein clusters, we /.
used version 56.9 of Swiss-Proﬁ, released in March 2009, containihg 412,525 protein
‘records. PubMed abstracts were downloaded based on mapbings to PubM'ed identi-
fiers (PMIDs) in the Sw1ss-Prot records, and PDB data was also downloaded based on
the non—redundant set of structures used in the or1g1nal FEATURE clustering study.
We ,downloaded all data as XML and extracted the desired information for further
analysis using the Python 1xml package [99]. -

From the PDB files, we extracted labeled ligands (HETATMs) assoc1ated with
_each solved structure.. From Swiss-Prot records, we extracted keywor.ds, GO terms, -
~sequence features such as binding sites, subcellular localization information, and
protein—protéin interactions, in addition to mappings to P.MIDs. .The annotatioﬁs ‘
. were stored olnly if they weré ldetermined experimentally or otherwise verified. PMIDs
pertaining to large—scale studies were excluded, as these tend to map to many pro-
téins and contain little functional information. Note that Swiss-Prot is.the manually
rev1ewed portlon of the larger Uniprot database and we do not cons1der records-
from the unreviewed TrEMBL database. From PubMed abstracts, we extracted the

manuscript titles and abstracts as raw text, and the Medical Sub ject Headings (MeSH -
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terms) associated with each PMID. The raw text is filtered for stop words and tok-
" enized according to whitespace and punctuation, with hyphenated words treated as a-
| single token. We consider both single tokens -(unigranis) and consecutive pairs of to-

kens (bigrams) as terms. See Table 5.1 for a full list of data considered for annotation

_ purposes.
- Table 5.1: Data used in: anno‘tating protein clusters.
, Database ‘Data type ,v ; Examples
PDB HETATM , ‘ “ZN”, “BGC”, “S04”
MEDLINE Raw text - : “bind site”, “ptpase activity” , “brcal” ,
» - MeSH term N " “Microfilament Proteins”, “Tyrosiné”
‘Swiss-Prot Keyword : “Metal-binding”, “Phosphoprotein”
Subcellular location “Cytoplasm”, “Nucleus”
Sequence feature . - “zinc finger region”, “Phosphoserine”
~ Interaction A  “PIKSR1”, “CASP2”
GO term - ' “G0:0005515, MF, protein  binding”,
' “G0:0006470, BP, protein -amino acid :
dephosphorylation”. : :

'Ranking term lists usihg hypergeometric and entropy-based scoring

To produce ranked lists of the term t‘ypes mentioned in Table 5.1 (g.g. .HETATM,
Keyv&yroird, GO term, raw te);t term), we calculate a p—value 'fori each tefm based on
‘the ihypergeometric distribution. This requires ﬁrét collecting counts for each term in |
a category over the entire set of Swiss-Prot records. Given a term, we then compute
the p-value using ‘;he eduation presented in Section 4.4.1. We‘ multiply this p-value
by the number of terms in that category to correct for multiple hypotheses. We use

a corrected p-value cutoff of 0.01: for reporting significant terms in our output.
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Sincé literaturé—based terms are rﬁapped to PMIDS, they can occur multiple tim'e_s“ _
for each pfotein, and the distrjbution of terms across dbcuments an’_d: proteins“iri a -
" cluster ‘may therefore be ihformative.‘ For éxample, a térrﬁ may 'ocvcur in five docu-

ments in a cluster of five proteins, but if all five doéuménts belong to“a singlé_ protein .
then the term"is likely to be relevant only in describing thatz one protein. If thé five
do‘cumenté belOng to different cluster proteins, however, it is more likely that the ter_rh |
is relevant to the entire clustér. In other words., we prefer,‘ terms to be evénly or Tan-
domly distributéd across the proteiﬁ_s in the cluster. To capture this desire_d quality, -
" w'e‘ deVeloped an entfopy-based scoring functioﬁ which rewards a raﬁdoni distributioinv
of term-document occurrences acfoss proteins. We adapt the classic entropy fofmula

from information theory into a nérm_alized and wéighted score as follows: -

Sy

VSCOTC(t) = 'Ldft X W ’

Si=—_ Dyin(Dy,)

P

where Dy is -t'h‘e, Tatio cv)fi the number of documents contdirﬁng the given term in
the 'gi-ven protein p to the numbei" of document‘s containing the term in vthév entire
cluster. Empiricél tests of variations of this scoring function showed that including
additional components, such as the term frequency: Withih documevnltysv and the fraction

of proteins containing the term, did not i'mpfove results.

Evaluating scoi'ing function perfbrmance on literature-based terms

. To test performance of our»hypergeometric and entropy-based scoring functions, we ‘,
devised a set of six test clusters composed of Swiss-Prot proteins associated with spe-

cific PROSITE patterns (see Table 5.2). We extracted the PMIDs for each pi"otein and
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PROSITE pattern ‘ o # of proteins # of abstracts
COPPER_BLUE 6 18
PROTEIN KINASE_ST 9 : 104
ADH.SHORT , 10 ' 55

- 4FE4S_ FERREDOXIN 11 ‘ 45
TRYPSIN_SER o .13 128

EF_HAND B 89

Table 5.2: Test sets used to evaiuate scoring functions and functional coherence. We
derived six test sets from PROSITE patterns using the data from the SeqFEATURE training sets.
These test sets are also used to evaluate the functional coherence method in Section.5.2.2.
the corresponding sets of MeSH and raw text terms for each PMID abstract. We then
,scored and ranked each set of terms using both hypergeometric and entropy-based
scoring. Only hterature-based terms were used to evaluate the scoring functlons
“Because we suspect that clusters of FEATURE-based protein m1croenv1ronments
produced by k-means will not be fully coherent, we also tested the seoring functions
on clnstere cOntaining different proportions ef signal to noise. To do this, we created _
additional clusters that are more dilute than the orlglnal test clusters. Since clusterlng
is based on 51m11ar1ty between objects, we used an ex1st1ng method for ﬁndlng similar
proteln m1cr0env1ronments from the PDB, called S-BLEST [129], to generate lists of

candidate proteins from which to dilute our validation clusters.

S—BLEST is a tool that allows retrieval of a ranked list of protein microenviron-
ments similar to a query microenvironment fr'ond the rest of_the PDB [130]. S-BLEST
- represents protein microenvironments — centered at Spectﬁc residue locatiens‘in PDB
structures — nsing vectors of physiceehemical properties very much like FEATURE. :
We chose four proteins at random from each validation cluster and used the cen-
tral functional PROSIT E rnotif residues as input to S-BLEST; each “seed” protein

produced a ranked list of similar proteins which we then filtered so tha_t no proteéins
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é(’)ntai-ned morve than 40% sequence identity to the others or wére'part of the original
cluster. | |

With an undiluted cnlvu‘ster représenting 100% signal, we then 'successi\}ely added
protve'ins from the filtered list to the cluster to make signal percentages of 90, 80, 75, -
60, 50" 40; 30, 25, 23,’ 21, 19, 17, 15; 13, 11, 9, 7, 5, 3, and 1%. For example, to
make a cluster with 50% Signé,l from an original cluster cOﬁtaini’ng 10 proteihs, we
- add the 10 most similar S-BLEST proteins \frorrn the liét, The incréased resolution
“between 25 and 1% is because we expect this range to be a more realistic reflection of -
the actual clustéfs we will be attempting to annotate. AS 5 control, we also diluted

B clusters using proteins drawn randomly from the rest of our background ‘set. A ,

For each validation cluster, we thus created four sets of dilution clusters using

S-BLEST results seeded from the four randomly chosen members of the cluster, and -
four sets diluted using randomly selected proteins. We generated ranked term lists
for each diluted clustef in each'set using every pairwise combiﬁatio‘n of databtypes
‘and scoring algoritﬁms desbri’bed above as separate experiments. We also input each
‘ éluster inté a locally installed version of GO::TermFinder to output ranked lists of GO
* ‘terms. GO::TermFinder is a well-kriown tool for analyzing gene expression clusters
which uses hypergeometric séoring to producé lists of significantly enriched G’Okt‘erms.
It requires a background associatioh file mapping genes to a,nnota,ti()ns;»for our case, -
we created an association file for proteins using an available Uniprot resource [131].
We computed the F-measure for each experiment on each test cluster using the
term-lists produced from thé original, “100% signal” clusters as a gold standard for

truth. F-measure balances precision and recall, and is computed as follows:

/

(1+ B%)(precision - recall)
32 - precision + recall

F —measure =
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. 4t of signiﬁcant-terms that are true
precision = : —
’ - total # of terms that are significant

# of significant terms that are true
total # of terms that are true

recall =

For the hypergeomefric scoring algorithm, Wé considered a term Signiﬁcant if it
vhéd‘a corrected p-value lower than 0.05. For the entropy-based scoring algorithm, a
term is significant if it scores higher thgn a cutoff. From inspection of the original
. test clustgers, an empirical cutoff of 2.7 pro‘duces terms that are clearly fu_nctionally‘
related. Calculations wer‘e‘aVeraged over the four sets of dilutions for each validation

clustef and over all validation clusters.

Displaying cluster annotation output

' With the ml‘lltiplevtypes of annotation output the above methods produce, it can be a
vchaAllenge to make sense of them all. To facilitate exploration of the annbtation résu'lts,-
we generate a Summary page displaying general information about the cluster along |
with the top ranked. terms in each category. Lin_ks from this page leéd to éxternai
daﬁabases (for PDB IDs, HETATMS, and:Swiss-Prot acceésion mimbers) or to more
detailed pages showing all of the terms scored fqr éaéh category and the lists of
proteiﬁs that c,ontributedi to each term. The detailed literature annotation pages
show the Swiss-Prot proteins and PMIDS associated with each top ranked term, and
clicking on a PMID brings up the title and" text for that abstract, with an external

link to PubMed. See Figures 5.1 and 5.2 for sample screenshots of the output.

5.2.2 Applying functional coherence to protein clusters

When analyzing cluster data, it is desirable to identify clusters which are most likely

to produce coherent results. These will be the clusters that contain some signal that
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Annotation results for CIuster NODE27X
Cluster information

7 sites in 7 PDB structures, 7 mapped to Swiss-Prot
Functional coherence based on literature: 11.8556 (cutoff for coherence = 3)

Literature annotations based on 68 PubMed abstracts

PDBID Site Swiss-Prot Protein name
164u8 [=411:31 74873 tyrosine-protein phosphatase
LYNAA cYsiie P24656 Tyrosine-protein phosphatase
" 1XRIA CYs150 09EVH4 Prabable tyrosine-protein phosphatase Atl1g05040
15C0A cYs2710 235236 fyrosine-protein phosphatase non-receptor type 7
10HCH CYs3lg 060729 bual specificity protein phosphatase CDC14D
: Phosphatidylinoaitol«3,4, S«trisphosphate 3.phosphatase and
AD5RA crsi2e 260484 dual-specificity protein phosphatase PTEM
2C46A CYs126 060942 TRNA guanylyltransf

Significant annotations (hypergeometric) (p < 0.01)

Sequence features Keywords Subceliular locations
6.937e~15 fPhosphocysteine intermediate 0 = 3D-structure No significant terms
1.121e~10 active site b Bydrolase

1.289e-07 Tyrosine-protein phosphatase 2.05e-17 Protein phosphatase

0.0006737 fhosphothreenine 0.0004927 Polymorphism

0.001403 modified residue $.002104 Alternative splicing

0.008883 Phosphosering : .

HETATMS Interactions

0.0035%6  FO4 No terms for this category -

Significant GO terms (hypergeometric) (p < 0.01)

. pfeorr) ID Type Description

Full list

4.495e-14 GO:0004725
1.231e-09  GO10004722
1.946e-08 GO:0006470
0.0003171 €0:D005634

protein tyrosine phosphatase activity
protein serine/threonine phosphatage activity
protein amino acid dephosphorylation

nucleus

AEES

Figure 5.1: Cluster annotation output — summary page. We produce HT'ML output for
cluster annotation results with protein identifiers linked to external databases and lists of the top
15 significant terms of each type. In addition to the keywords, subcellular locations, interactions,
HETATMS, and sequence features shown here, we also show significant GO terms and literature
terms (both MeSH and raw text, ranked both by hypergeometric and entropy-based scoring). Click-
ing on the type of annotation links to a detailed page showing all terms in that category and the
proteins containing that term. For literature annotations, the terms are also linked to the abstracts
containing the term.
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Detailed literature-based annotation results for Cluster NODE27X

<< back to sum resuits

P (corr) ¥eSH Term Boore MeosH Torm
2.021e-11 Frotein Pyrosine 3.407 Protein Tyrosine
fhosphatases Phosphatases
T7.le=-07  PTEN 2.564 Conganavalin &
Phosphohydrolage 2.562 Caerprhabditia
1.079e-05 Concanavalin A elegans
3.868e~05 Vhoxghoggmin ©
Fhoasphatases
0.0001081 mxosmwnzm
JLEM L LEH 0.0001444 Chromosame Banding
5842183 B444848 0.0007464 Protein Structure,
4114 102 Seconda
Sga41l4 10200963 9.0007571 Em&ixgd;ns
16226275 1530918
187 4 10559044 { )} Rawv Text Torm Seore Raw Text Term
P (corr
_%_23_ 15466470 1.874-10 4.63¢  phosphatas activity
1——-—%— 10702794 2.412e~10 phosphatas activity 4.255 phosphatas pth
11801424 8.801e~10 analysi pten 4.217 ptp
m 1 8.801e-08 phosphatase-desd 4.053 phosphatas domain
: 1.083e-08 dephosphoryl 3.942 dephosphoryl
2635567 45101 1.76e-08 tgtosg specif 3.840 phosphatase~dead
M m 1.76e-08 cdeld gene 3.738 analysi pren
2503864 9187108 1,76e-08 deare substrat 3.733  tyrosin phosphatas
86800248 8258433 1.938e~08 phosphatas 3.658 degre substrat
9616128 9331071 3.08e~08 pten pmacl 3.658 tyrosin specif
£140298 9811831 4.363e-08 tyrosin phoaphatas 3.594 phosphatas addit -

| 4.557e-08 phoaphatas ntn 3.488 protels tyrosin ... Lt

""Modulation of host signaling by a bacterial mimic: struciure of the Salmoneila effector SptP bound to
Ract.”

"Salmonella spp. utilize a specialized protein secretion system to deliver a battery of effector proteins into host cells,
Several of these effectors stimulate Cdcd2- and Rac1-dependent cyloskeletal changes that promote bacterial
internalization. These potentially cylotoxic alterations are rapidly reversed by the effector SptP, a tyrosine
phosphatase and GTPase activating protein (GAP} that targets Cdc42 and Rac?. The 2.3 A resolution crystal
structure of an SptP-Rac1 transition state complex reveals an unusual GAP architecture that mimics host functional
homologs. The phosphatase domain possesses a consarved active site but distinct surfacs properties. Binding to
Rac1 induces a dramatic stabilization in SptP of a four-helix bundle that makes extensive contacts with the Switch |
and Switch H regions of the GTPase.™

MeSH terms: Aluminum Compounds, Amino Acid Sequence, Amino Acid Substitution, Bacterial Proteins, Binding
Sites, Crystallography, X-Ray, Dimerization, Evolution, Molecular, Fluorides, GTPase-Activaling Proteins, Guanosine
Diphosphate, Macromolecular Substances, Models, Molecular, Molecular Sequence Data, Mutation, Protein Binding,
Protein Structure, Secondary, Protein Structure, Tertiary, Protein Tyrosine Phosphatases, Recombinant Fusion
Proteins, Salmonelia typhimurium, Sequence Alignment, Signal Transduction, cdc42 GTP-Binding Protein, ract
GTP-Binding Protein

Go to PubMed: 11183217 (PMID)

Figure 5.2: Cluster annotation output: detailed literature page. We display the top 15
significant MeSH and raw text terms ranked both by hypergeometric scoring and entropy-based
scoring. The terms are linked to information about the proteins and PMIDs containing them, and
the PMIDs are linked to the raw text and MeSH terms for that abstract.
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the analysis method is designed to detect; clusters in which the external signal is
obscure or absent will be much more difficult to validate. To annotate FEATURE
clusters, we therefore require methods to determine the coherence of clusters so that
we can apply our cluster annotation pipelihe effectively. Since FEATURE clusters can
be large, having such a method would also allow us to refine FEATURE clusters into
more coherent sub-clusters. We adapt the neighbor divergence per gene algorithm for

this purpose.

Adapting NDPG to protein clusters

As described in Section 4.3.3, neighbor divergence per gene (NDPG) assesses the
functional coherence of gene groups using literature. For our application, we adopt
- the NDPG algorithm with only a minor change in that proteins are the biological
object rather than genes. We determine semantic neighbors for each document as
reported by Raychaudhuri et al. [129]. We used version 55.4 of Swiss-Prot to map

proteins to PMIDs for calculating semantic neighbors and functional coherence.

Although our cluster annotation pipeline uses both MeSH and raw text tokenized

into unigrams and bigrams, we used only raw text unigrams to generate word vec-
tors for each document for NDPG. Initial attempts to use MeSH-based word vectors
showed that MeSH terms produce word vectors that are not descriptive enough and
lead to neighbors that are not truly similar semantically. For example, many ab-
stracts MeSH terms refer to the details of the experimental procedures or materials,
meaning that documents with no functional relationship can be computed as being
similar. Documents that should be semantic neighbors, on the other hand, can have
low similarity due to the fact that the same function or concept can be assigned MeSH

terms at different levels in the MeSH hierarchy, such as “Hydrolase” and “Protease”.
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Given these inconsistencies, we decided to use raw text word vectors to calculate

semantic neighbors for documents. .

Evaluating the functional coherence metric

For the purposes of explorlng the behavior of the functional coherence metric, we used
' the same test clusters as for evaluating the term scoring funct1ons and generated
add1t1ona1 clusters. To create functional clusters with at least 1000 proteins, we -
extracted the full listvof true positive matches to each PROSI’l‘E motif corresponding
toour drlginaltest clusters.. The largest of these was PROTEIN_KINASE_ST with 1303 ,
proteins. We also generated 600 functional clusters of intermediate sizes by randomly
sampling 100 times from each of the six full PROSITE clusters, with the restriction
that the resulting clusters have at least 10 proteins. To create a correspondingv‘set
of corhpletely random clusters, we sampled randomly from the background set of
proteins 600 times such that the resulting clusters had between 10 and 1400 proteins.
Because we created our original dilution cluster sets by adding preteins to achieve
the desired percent signal the sizes of each diluted cluster vary fgreatly», and correspond
to different percent s1gnal depend1ng on the size of the or1g1nal cluster; e.g. a d1luted .
cluster of - size 50 may tepresent 20% signal if the original cluster had 10 proteins,
.or it may represent 60% signal if the original cluster had 30 proteins. Functional
cbherence is slightly affected by cluster size, so we also created a second set of diluted
clusters where the size of the cluster remains constant. To do this, we replaced,
ratherthan added proteins from the original cluster With either S-BLEST-ranked -
similar proteins or w1th random protelns resultrng in diluted clusters of fixed size
w1th varylng amounts of signal. We then applied the NDPG algorlthm to calculate,

the functional coherence of all test clusters. .
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5.2.3 Selecting candidate clusters for analysis

A | Clusters resulting from k-means can vafy widely in size and coherence, and so we
" need methods firs,:t to evaluate the coherence of iclusters, and then to break clusters

down into more coherer‘ltvsub-'clusters if desired. Since we are primarily interested in
~ clusters that we can characterize using eXternal knowledge, we use functional coher-
ence (Section 5.2.2) as our scoring metric. Based on results from évaluation, we use
a cutoff of 3 to designate functionally coherent clusters. |

For clusters of reasonably la,rgé size (e.g. at least 50 vectors), we adapt an ap-
proachi from Raychaudhuri et al. [131] that buﬂds upon the NDPG method. The
approach evaludtes the functional coherence of nodes in a tree produced by hierar- 2
chical clustering. Since cutting a tree at a node produces a sub-clustér fr"om the -
descendants of that nbde, we can define an optimal,‘ disjoint set of nodes using a node
scdring function,\éplitting the tree into a set of disjoint ‘sub-clusiters. Raychaudhuri
et al. Mapplied this approach to gene expression data and showed that ’vthe resulting
sub-clusters repfesented biologically meaningful grodps. |

To do the hierarchical clustering step, we used the freely available Cluster 3.0
program [39] 'which is also part of BioPython, an opén‘source bioinformatics library
for Python (28, 38]. I modified the node scoring function to incorporavtev both internal
and external coherencé measures to balanc_e physicochemical similarity with availabie
' knowledge: o
| S; = logy(ns) - d2 - f;
| where n is the size of the sub-cluster resulfing from cutting the tree at node %, d |
. is‘ the node correlation between the two sub‘-branchves merged to produée that node

(a measure of internal coherence), and f is the functional coherence of the fesulting
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sub-cluster. We evaluate each node in the treé, starting at the leaves and ending with
the ‘root. We select a node for further consideration if its score is greater than the sum
of seores frem its selected descendallts. ,Once a nocle is selected, all of its descendants
are ’desele‘cted.' The set»of selected nodes at the end of this process represents the set
of optimal sub-clusters. i‘For our purposes,- vs_}e speci.fy a.mlnimum subr-,cluster size of
3 during the cluster selection process. Elements not belongirig to a sub-cluster with
three or more-elements_ are considered singletons and are discarded.

To test Whether' this chistef selectionx approach is reasonable, I applied it to a
small cluster of 156 microenvironments correspondmg to the 15 SeqFEATURE-based
*tralmng sets (z e. 15 sub-clusters) used to validate the parameters in the publlshed
: FEATURE clusterlng study The microenvironment vectors were normallzed by the
standard deviation in each feature, and h1erarch1cally clustered using cosine similarity

and single linkage.

Exploring parameters for clus_ter selection

Although the general algorithm for selectiﬂg optimal sub-clusters from a large cluster
is straightforward, there are a number of paramet:ersto‘éet‘ Which depend on the
data vectore being clustered and our goa,ls- for analysis. These parameters are the
:nofmalization used for the \lectors, the distance metric used to compare vectors, end
the linkage method used for the hierarchical clustering.

The clﬁstering bstudy by Yoon et al. [169] used binary feature vectors with a
weighted hamming distance, but the change to binary vectors was done primarily to
improve computational efﬁcie‘ncy. For clustering a smaller number of microenviron-
ments, we decided to use the original microenvironment vectors normalized by the

standard deviation in each feature. These can be further compacted uslng principal
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component an.alysvis» (PCA) te eliminate redundant features.. PCA transforms the '
original set of features into a set of orthogon.al features vcalled principal components.
The ﬁrst principal component explains the most variability in the data, the second
explains as. much of the rernaining variabllity as possible, and so forth. Since PCA
visdesig.ned for handling high-dimensional datasets, I investigated whether different
numbers of pr1nc1pal components might improve the results of our cluster analy51s
For distance metrics, I evaluated cosine s1m1lar1ty and Euclidean d1stance and forv
R linkage methods, I tested s11_1gle, complete, and average l1nkage. |

’ 'To assess thesuitability of each combination of parameters, I created a larger test
set of 1434,micreer1vironrr1ent vectors corresponding to 168 PROSITE patterns from
‘data associate.dv‘with the published FEATURE clustering study,v normalized by the
standard deviation in each feature. I generated four additional test sets by seleeting
'the first 80, 40, 20,' and 10 prineipal eomponents. I then applied‘the cluster selection
algorithm described in the previous section to each test set using every combination

of [cosine’similarity, Euclidean'_d_istance] x- [single linkage, complete linkage, average

linkage]. |
. There -are several ways to evaluate the results of the cluster select1on algorlthm
using. both . 1nternal and external quahty measures as descrlbed in Section 4. 3 I
computed % coverage, i.e. the fraction of 1nput vectors contained in the result1ng
set of thimal sub—clusters, and the average sithuette width for each sub-cluster
as internal measures. For external Quality, I calculated the precision and recall ‘as

described in Section 4.3.2.
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5.2.4 Application to FEATURE clustering data

I applied the cluster selection and annotation methods to 5 new, unpl,lblish\ed set of
- clusters produced froﬁl a k-means clﬁsﬁering of microehvironment vectors centered on
' "the beta carbon of cysteihe (CYS) residues and reduced to 80 priﬁcipal components.
» Based on results from the parameter‘ evaluation, I used ‘cosine ,Similafity_ :With sihgle
| linkage to perform the cluster selection step on the CYS clusters. For the purposes of
| analysis, I generated sign‘iﬁcant/annotatibns using the‘ methods described in Section

'5.2.1 only for clusters or sub-clusters with functional coherence >3.

5.3 Results

5.3.1 Evaluation of literature-based scoring functionsb

We‘appl.iedb the hypergedr‘netricv and entropy-based scoring functions to raw text and
MeSH terms associated with six test clustersderived from PROSITE patterns: Sam-
ple term lists are shqwn in Table 5.3. Both_scoring functions clearly are effective at
‘4rankingvrelevant terms for both raw text ahd MeSH given a high—signal protein clus—i
"ter. There are some interesting things to take into account about the différent term
types and scoring methods.‘]First, many more raw text terms are produced for each
l_cluster than MeSH. Second, MeSH terms tend to be more coarse-grained, whereas '
raw text is able to identify interesting terxﬁs such as ‘catalytic residues. Also, because
' entropy—basedscorin.g takes into account the distribution of terms across documents
- ‘as well as across proteins-,'livt;tends to be more discriminatory and prodsces fewer
| signiﬁcant terms given- a reasonable score cutoff. For the purposes of é'valuatio.n,-we
used a score cutoff of 2.7, which was empirically determ_ined ﬁsing the six Origihal test -

clusters.
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Hypergeometric

i Entropy-based

Cyanogen Bromide

‘»Factor IX

Serine Endopeptidases

Cyanogen B_romide
Factor IX
Serine Endopeptidases

| Factor X : Aspartic Acid
MeSH Cgmplement Actiyating Enzymes Thrombin
. Complement Pathway, Alternative - Epidermal Growth Factor
Blood Coagulation Disorders - Trypsin
Pancreatic Elastase ‘ Serine -
Factor VII Structure—Act1v1ty Relatlonshlp
Epidermal Growth Factor Peptide Hydrolases
serine proteas proteas zymogen :
serin proteinas - ser-195
resolut ‘ asp-102 . .
éhymotrypsin his-57
Raw text serin serin proteinasr

| proteas zymogen

asp-102

1 ser-195

crystal

| his-57

" chymotrypsin’

residu factor
c factor ‘
asp-102 ser-195 -

_‘zZymogen

Table 5.3: Samplé term lists for the TRYPSIN_SER cluster. The top 10 MeSH and raw :
text terms ranked by hypergeometric and entropy-based scoring are shown. Note that MeSH terms
tend to be more coarse-grained than raw text, which is able to identify catalytic re51dues such as
“ser-195”.

To test the behavior of the scoring functions on more realistic clusters, we created
a series of noisy clusters by adding structurally similar and random proteins to the
original test clusters, and then generated list of significant literature terr'ns‘ using
both scoring functions. We also generrate‘d term lists using ,GO::TermFinder with o
a proteln-GO annotation file instead of the default gene-GO annotation file. The
gold standard in each case was the list of significant terms correspondlng to the

orlglnal test-clusters. Figure 5.3 shows the F-measure as a function of % 81gnal for

GO::TermFinder, hypergeometric Scor,ing with literature terms, and entropy-based
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scoring with literature terms, usir}g two d»ifferent'values for 3. Since we are concerned
mostly with how the scoring functions beh'av'e relative to th‘e‘ amount of functional
signal in a-cluster, we do not draw any conclusions about the relative performance -
of the differeﬁt scoring methods to each other. Instead, we observe that all methods
perform very well when the % signal is vhigh, and all methods exhibit a steep drop-
'-of‘f in pérformahce below abdut 40% signal, especially when we consider precision as
more important than recall (3 = 0.01). This drbp—off is mirrored in the acfual term

lists, as shown in Table 5.4.

1.0 — — 1.0 : /4
o : % : |
g 0.6 & 064 -
g e
L 0.4 311 S 044 . .. e
£ g : :
0.2 K + GO::TermFinder ) ool A » + GO:TermFinder
’ —6— Literature+hyper ' —5— Literature+hyper
+ Litefature+ehtropy > —}— Literature+entropy
0-r T T v T ™ T T T ’ 0F— v T T — T v
0 .20 40 60 -80 -~ 100 0 20 40 60 80 100
! % signal ) . . % signal
| (a) =10 o : o (b) 8 =0.01

Figure 5.3: F-measure of all scoring methods drops off below 40% signal. All calculations
are based on the original (100% signal) clusters as the gold standard, and calculations were averaged
- over the four dilution sets generated using S-BLEST matches. When we weight precision and recall
equally (a), hypergeometric methods show better performance. When we weight precision more
_ than recall, entropy-based scoring outperforms hypergeometric scoring on literature terms (b). All
methods show poor performance below 40% signal, suggesting that the amount of functional signal
in a cluster is the most important factor for effective cluster annotation. »
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100% signal - 75% signal 25% signal »

- proteas zymogen proteas zym'ogen proteas zymogen
ser-195 replac method : 's1 specificity
asp-102 ~ ser-195 . 1 resolut ‘
his57 11 . asp-102

" serin proteinas . his-57 . - asp-102 .
chymotrypsin ' insert loop - pocket
residu factor serin proteinas - ‘soly
c factor zymogen ' cleft

. asp-102 ser-195 ’ chymotrypsin his-57
zymogen residu factor - . structur complex

Table 5.4: Degradation of term list coherence with decreasing functiorial signal. Shown
here are raw text term lists for the TRYPSIN_SER test cluster at 100%, 75%, and 25% signal. We

see that a conceptually vague terms (in italics) appear at 75% signal, and many more appear at 25%
 signal. Given that this cluster is somewhat idealized, we can imagine that the term lists derived from
actual data would be even noisier. It is therefore important to ensure as much functional coherence
ina cluster as p0551ble before attempting to annotate it.

5.3.2 - Evaluation of the'functional coherence metric

We compared the functional coherence of random protein clusters and clusters asso-
ciated with the six PROSITE patterhs used for testing the literafui‘e- scoring func-
tions. The functional clusters ranged in size from six proteins to over 1300 preteins.,
As shown in Figure 54, funvctio'nal elusters attain much higher functional coherence
scores than random clusters. We alse'celculated the functienal coherence of the
dilution clusters to see how the amount of signal in a cluster affects its functional co-
herence (see Figure 5.5). Functional coherence clearly decreases as % sigﬁel decreases;
~ when, the size of the cluster is fixed, therelationship is approkimately expenential.
When cluster size is not fixed, however, we can see a slight increase in functionai
coherence at very low % signal. This likely results from the sharp increase in cluster
size at very small percentages when the dilutions are addltlve for random clusters we

observed -that functional coherence increases very slightly with 1ncrea51ng size. Our
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70
. 60 Figure 5.4: Functional coherence
» o - : of random and functional clus-
g 50 ' : , ters. We calculated functional coher-
- ' ‘ ence for the original PROSITE test
.g 40 . clusters, the full versions of the test
o 1 o _ - , 31.03 clusters (i.e. all proteins matching
g 304 - , : : the PROSITE pattern), and random .
'*é e ‘ ————— subsets of the full clusters, as well as
2 204 ‘ 19.02 ' - completely random clusters varying in
o ‘ T ‘ size from 6 to 1400 proteins. Random
30 eé , - ' clusters have a median functional co-
' ' I;:I o ‘ herence of 0.68, which is much lower .
o : than the median functional coherence
Random ~ PROSITE test PROSITE subsets PROSITE full of the PROSITE test clusters.

applications, however, will be limited to clusters small enough that we can ignore
this effect. Based on these observations, we can set an empirical cutoff to distinguish

functional clusters from non-functional clusters.

'5.3.3 Evaluation of the cluster seleCtion approach

To see whethér the cluster selectioh approach is reasonable, we applied it to a small
| test set consisting of 156 mic‘r_oenvironments corresponding to 15 SeqFEATURE mod-

els. Using césine similarity and single linkage‘ for the hierarchical clustering step, and

a minimum sub-CIUStef size of 3, we recover all >15 of the Qrigivna,licl‘usters as distinct
“sub-clusters (Figure 5.6), although two — ZINC_PROTEASE and ADH_SHORT - were
each split into two sub-clusters. The original cluster for ADH.SHORT actually con- .
sists of two types of iniCroenviron_mehts — one centered on the hydroﬁyl bxygen in
the sidechain of the active site tyrosine, and the other on the aromatic ring of th>e
tyrosine.” The two sub-clusters for ADH_SHORT consist exaétly of these two types
é.nd they are immediate neighbors in the ‘hiei‘archical tree.

Since -our goal is to produce clusters with better signal-to-noise, well-separated
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Figure 5.5: Functional coherencé of diluted.clusters. We calculated functional coherence for

. clusters diluted by adding random proteins (a) and structurally similar proteins (b), and for clusters .
diluted by replacing cluster proteins with random (c) or structurally similar proteins (d). In each
case, functional coherence clearly decreases as % signal decreases. '

clusters with high purity are desirable. There are a number of parameters we can

modify, including the distance metric and linkage method used for hierarchical clus-

tering, and the degree of normalization and principal components of the microenvi-

" ronment vectors. We investigated all combinations of [cosine similarity, Euclidean
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Shiga  Thiol * Tyrosine .Glyéosyl
toxin. protease protein hydrolase, F5 -
- ‘ kinase :

gl

Carboxylesterase RNase-T2 - Zinc Alicohol EF-hand Copper ' High

‘Serine protease gty Protease dehydrogenase: blue potential
. i ase Tyrosine .Thioredoxin jron-sulfur

phosphatase protein
'Figure 5.6: Approximate tree of sub-clusters selected from the 15-model test set using
cosine similarity and single linkage. The tree shows relative placements of sub-clusters in the
hierarchy (branch lengths not to scale). The width of the boxes represents the size of the sub-cluster,
and the proportion of the box that is colored represents the proportion of the labeled model captured
by that sub-cluster. For example, the carboxylesterase sub-cluster has 5 microenvironments, which
represent 85% of the total microenvironments for carboxylesterase present in the test set. This figure -

shows that our cluster selection approach is able to redefine the basic separations present in the test
set. ’ : '

distance] + [ayerage linkage, complete linkage, single liflkage] + [no PCA, 80, 40, 20;
and 10 principal components| on a larger tesf set of 1434 microenvironments mapped
to 168 PROSITE patterns. For each combination, we determined the % of the test set
jcaptufed, plotted thé distribution of silhou‘ette:widths (Figure 5.7), ar_ld‘ calculated
the purity and inversé pyurity' of the resulting sub-clusters (Figure 5.8). |

In ge}nveral, cosine similarity produced better silhouette widths and higher values



CHAPTER 5. DISCOVERING NOVEL FUNCTIONAL SITES o 90

no PCA PC 80 PG40  PC20 PG 10

Euclidean Cosine

0 o.‘s_’1io 0 05 10 0 05 10
Silhouette width ’

Figure 5.7: Distributions of silhouette widths for combinations of parameters. We plot’
the distribution of silhouette widths for sub-clusters. derived from each principal component data
set hierarchically clustered using both cosine similarity and Euclidean distance with average (black),
complete (red), and single (blue) linkage. Cosine similarity produces better silhouette widths than
Euclidean distance. Single linkage outperforms average and complete linkage with regard to purity
and silhouette widths. Silhouette widths also improve with the use of fewer principal components.
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Figure 5.8: Purity and inverse purity for combinations of parameters. We calculated purity
and inverse purity for sub-clusters derived from each principal component data set hierarchically
" clustered using both cosine similarity and euclidean distance with complete (CP), average (AV),
and single (SG) linkage. Cosine similarity produces sub-clusters with higher purity but Euclidean
distance produces sub-clusters with better inverse purity. Performance decreases as fewer principal
components are used. Single linkage results in the lowest inverse purity for each set but provides
the highest purity. ' '
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for purity and inverse'purity‘.‘ Decreasing the number of ‘»principalvcomponents also
,produces better silhouette widths, but using no PCA produces better purity and
inverse purity. Purity and inverse purity decrease steadily as fewer principal compo-
nents-are used In addition, although s1ngle linkage captures much less of the test set -
and suffers from poor inverse purlty, 1t produces sub-clusters with the hlghest purity
Given that our goal is to recapture or discover functlonal sites w1th good rehabll—
ity, we value purity above all other conS1derations Cosine S1m11ar1ty, smgle linkage, -

and no PCA are the parameters that perform best with regards to that goal Note
that the ch01ce of d1stance metri¢ and normalization method also affects the initial -
k-means clusteringitself, and so the choices of parameters for clustering and cluster
selection, a‘lthou_gh ideally identical, might necessarily be different to achieve the best

" results in each process.

5.3.4 Applicat'ion to FEATURE clustering data

We applied cluster selection as described in Section 5.2.3 using cosine similarity and
single linkage to_40 unpublished, cysteine—base'd (CYS) clusters; these microeny‘iron-
ment vectors Were normalized to 80 principal components for the purposes of k—means
clustering All sub-clusters with at least five bmicroenvironments were considered for
~ further analysis, since five is the m1n1mum number of sites we have used for training
Y\FEATURE models in the past We chose not to analyze the clusters produced from
the work done by Yoon et al. since there was.ev'idence that ,the newer approaches
produce clusters of higher quality and more reasonable size. | |

From the 40 CYS clusters the cluster selectlon method produced 218 optlmal
sub-clusters with more than 5 m1croenv1ronments. To prlor1t1ze analysis, we focused

on sub-clusters with functional coherence scores >3 (70 sub-clusters, see Appendix ,
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C.2 for a full lisﬁ), and sub-clusters with high internal node correlatibn fr;im the hier-
. archical clustering results. 'We abpliéd the annotation methods described in Section
, 521 to these sub-clusters.

" When we examined sub-clusters with low functional coherence but the highest
intéfnal correlation, we found that many were associated With,structural,artifacts
such as disulﬁde bonds, very exposed regioné, or the presence of -aiternate coordinateé.

" Clusters 9 and 26 seeni to consist predominantly of these types of sub—clustérs; Upon

'éxamvining clusters with higher functional cqherence, however, we see that they alsd
- have emergent theihes—, but this time of a functional sort. Clusters 32 and 33 pértain
to zinc-binding, clusters 22 and 23 are heavily annotated with cytochromes, and
} clusfer 30 contains iron-binding sub-clusters. Although 'the cytcichrome—associated
sub-clusters are cinly found in clusters 22 and 23,‘sub—cluster‘s ir’elatedto métal ion-
binding, phoshatase, and kinaée activity are found in multiple clusfers.

Since cysteine residues are often involved in binding metal ions, it is unsurprising
to see many sub—ciusfers with metal-binding as the dominant functional anndtatiori; :
. We were, however, intrigued by the fact that they did not group into the same k—means
clu‘s‘.cer. To ihVestigate whether ‘k—means was partitioning the clusters ac_:éurately, we
combinéd 15 zinc—binding—associated sub-clusters belonging to four clusters into one
~ large cluster and ran it through thé qluster selection process again. The exact same
sub-clusters were produced (excluding twol microenvironments from one sub-cluster
that were deemed singletons in the new résult‘), indicating fhat the cluster boundaries
from k-means are reasonable Within the parameters given.

. Although many of the zinc-binding sub-clusters differ according to their coordi-
~ nation types — 2 C‘Y‘S and 2 HIS or 4 CYS,,V for example — many seem to bind zinc

- in the same manner. When we examined the sets of principal component vectors for
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Sub—clu‘Sters with identical coordination types, we conﬁrrﬁed that there are indeed -
significant differénces betWe‘en.them. Therefore, while the coordinating residues a;re‘
identiéél, there dre more visually subtle ways — i.e. specific principal components — in ;
which they differ. See Appendix C.1 for more details on our zinc sub-cluster analyses.

| Furt her analysis of some of these functionally coherent Sub—clgsters yiélded encour-
aging results. Sub—gluster 27 in cluster 21 (Clust21-Sub27; sub-clusters are numbered |
by the node to which they correspond inb that cluster’s hierarchical tree) represerits
the active site of tyrosine protein phosphatases. Each central CYS is also annotated
as the active site residue in that protein’s Swiss-Prot record. | Clust‘33-S}ub49 repbre-
sents a copper—binding site, with the majority of its member proteins belonging to.
the blue'chper fdmily (see Figure.5.9) of cyanins. One of the structures is bound
" to zinc rathe'r than copper, but is known to bind copper in that location. All other
structures in Clust33-Sub49 are bound'to copper. The microenvironment contains
- two HIS residues. helping to coordinate the ion, ahd a MET‘ résidue, which is not al-
ways bound but is al_wayé nea;rby. Terms associéted with copper-binding and electron
transport dominate annotjations ‘fdr'this suﬂéluster. ..

Another copper-binding sub-cluster (‘CIIUSt_l—Sub13, see F igu‘re‘ 5.10) is in an en- )
tirely different cluster, and this environment seems fo be associated with the family of
multicopper 6xidés’e‘s. Again, all structures are bound to copper through the central
CYS residue, in addition to two HIS residues. In three out of thé five -microen\}iron— '
ments, a MET reéidue is present but.not bound. Like above, the annotations center
around copper—bind’ing, but with keywords for ‘foxidoreductase” rather than “electfon
7 traﬁsport” , distingﬁishing the function of this sub-cluster fr.bm that of Clust33-Sub49.
‘ 1nterestingly, Both of these copper-binding sub-clusters correspond to the same :

type of copper center — type 1, which is coordinated by CYS, two HIS residues and °
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Figure 5.9: Clust33-Sub49 — Blue copper protein-associated copper-binding sites.
Clust33-Sub49 is a copper-binding sub-cluster associated with blue copper type proteins. Cop-
per ions present in the structure are shown; 1PYO contains zinc instead of copper, though it is
known to bind copper in that location. Coordinating residues are indicated with connecting lines.
‘The central CYS is colored green and labeled. :

a fourth residue [67]. In plastocyanins, the fourth residue is a MET,-While in multi-
copper oxidases it is often substituted by a non—cobrdinating residue [106]. This is
consistent with our observations in these two sub-clusters. Another interesting ob-
servation is that structure 1V10:A in Clust1-Subl3 is thought to have copper oxidase
function based on other computational predictions; our grouping of it'together with
other copper oxidases supports this prediction.

In addition to the previous exax'nples,‘we also identified sub-clusters representing

conserved environments in protein kinases and cytochrome C proteins, as well as
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1VIOA ‘ 1GSK:A

Figure 5.10: Clust1l-Subl13 — Multicopper oxidase-associated copper-binding sites.
Clust1-Subl3 is a copper-binding sub-cluster associated with multicopper oxidases. Copper ions
present in the structure are shown with coordinating residues indicated with connecting lines. The
central CYS is colored green and labeled.
iron, ‘iron-sulfur, and zinc binding sites. Zinc binding is particﬁlarly interesting, as
there are many motifs and catalytic sites known to bind zinc {6]. Figure 5.11 shows
four types of zinc binding-sites present in distinct sub-clusters in our data set. The
first- three types are mononuclear, where a single zinc ion is coordinated by different
- numbers of CYS and HIS residues - 4 CYS, 3 CYS and 1 HIS, or 2 CYS and 2 HIS.
- Zinc-binding of this type is typically for protein structural stability. The fourth type
shown is a cocatalytic dinuclear zinc site coordinated predominartly by HIS residues

- and a water molecule. These types of sites are found in metalloenzyme active sites,

" where the zinc ion is required for catalytic activity.
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1JZQ:A 2C08:A

Figure 5.11: Representative microenvironments from four distinct zinc binding sub-
clusters. From left to right, the representative sites are from Clust32-Sub222, which binds zinc
with four CYS residues; Clust1-Sub118, which binds with 3 CYS and 1 HIS residue; Clust33-
Sub156, which binds with 2 CYS and 2 HIS residues; and Clust1-Sub53, where one or two zinc ions
are coordinated by the central CYS, a number of HIS residues and a water molecule. .

Hlsqaozﬁ

1NYQ:A

iFigu‘re 5.12: Predicted zinc binding sites in Clust1-Sub53. All of the sites contain three
nearby HIS residues which eould potentially coordinate a zinc ion along with the central CYS residue
(green). 1GY8 contains nearby ASP and GLU residues, whigh‘are also kr‘;own to coordinate zinc.
Further inspection of zinc-binding sub-clusters yields some in‘teresting findings.
Strﬁcture 1V70:A in Clust1-Subb2, for example, is the apo form of a zinc-binding -
protein, with our predicted site at CYS116 corfespdnding to the known zinc binding
site. In addition, several proteins in Clust1-Sub53 have not been proven to bind zinc at
the sites speciﬁed (CYSlSl in INYQ:A, CYS98 in 1UC2:A, and CYS‘274 in 1GY8:A),
but have microenvironments highly suggestive of zinc binding. The salient feafures
include the presence of séveral-HIS reéidues and occasionally aﬁ ASP or GLU residue

around the central CYS (see Figure '5.12).' There is evidence, however, that INYQ and-
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'1UC2 may bind ziﬁc af those locations. Others have noted the préséncé of conseﬁzed
HIS and CYS re51dues in 1UCZ correspondlng to those in our site, similar to zinc
| metalloenzymes and tRNA synthetases [114]. INYQ, a threonyl-tRNA synthetase,
is al'ready_known to bind zinc [152], but in the crystal structure zinc is bound at a
location far'frbm our site. VCYSlSl may thus be a novel zinc binding site for INYQ.
The third pro}teivn, 1GYS, is é, UDP—galactos‘e 4’-epimerase -frorh T. brucei [138] that

is not known or suspected to bind zinc.

2AVDA : 2BUJ:A

Figure 5.13: Clust8-Sub25 — A potential structural motif. In Clust8-Sub25, the central CYS‘

(labeled and shown in green) is part of an alpha helix, and its sidechain is surrounded by numerous

a.hphatm hydrophobic residues such as ILE, LEU, and VAL (shown in purple). This microenviron-

ment may have a structural role due to its lack of reactive chemical groups and recurrence across
_ diverse proteins. :
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In addition to ca{ses:where the prediction is clear based on other members of the
sub-cluster, we also have cases wherebthe theme of the sub—duster is 'mofe obscure.
Consider, for eicample_, Clust8-Sub25 (see Figure 5.13). This sub—cluéter' has eleven
microenvironments, all of which are characterized by an alpha helix containing the
central CYS residue, whose sidechain is surrounded by an abundance of hydrophobic,
aliphatic residues ,suchias VILE, LEU, and VAL. Since the microenvironment is not
usually'surfACQ-eXposed, it likely- not associated with an explicit functidn. The chem-
ically neutral makeup of the microenvi'ronmerit, however, as well aé its recurreﬁce
~across diverse proteins, indicates that it may have an important structural role.

Another intriguing example is Clust5-Sub70 (see Figure 5.14). This sub-cluster
contains 12 microenvironments, eight of which are from protein tyrosine kinases. The
site, however, does not cor_resand to the active site, but to a sur‘face—exposedvloop. |
~In ‘the kinases and in one of thei‘oth‘er four sites, a yeast aldose 1-epimerase,‘theré
is a TYR residue 'wyithinvor‘ adjacent to the microenvironment. One or two other
sulfur-containing sidechains are also present. Since the kinases aré all known to be
phosphorylated, it is possible that the TYR in thé microenvironment ,may répresent
a phosphorylativ'on site. In faCf, TYRA416 in ‘1K9A:A is annotéted in Swiss-Prot (ID:
P32577) as a putative autophosphorylation site. The other kinase-associated sites |
are not annotated, but it is conceivable that they may also be_phosphorylation sites,
perhaps by autophosphorylation. Implications for the other four sites are 'ﬁnciear. '

Lastly, we présent Clust36-Sub127, a set of five surface-exposed microenvirdn—
ments (sée Figure‘5.15). In four out of the five cases, the CYS is e;cc,ompanied by an ‘
ASP and a vLYS,,poteni:ially forming a triad. Whether or not this microenvironment
performs a catalytic functioh is unknown, but since all of these residues are known

to participate in chemical reactions, it is possible that it has an active role.
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Figure 5.14: Clust5-Sub70 — A potential TYR phosphorylation site. In Clust5-Sub70, the
central CYS (labeled and shown in green) is on a surface-exposed loop. Eight of the 12 microenvi-
ronments are from TYR kinases, and these microenvironments also contain a TYR residue. One of
these TYR residues is annotated as a putative autophosphorylation site (TYR416 in 1K9A:A). The
other seven kinase-associated microenvironments are not annotated; 1LUF:A is an example. Of the
other four environments, only one — 1245:A, a yeast aldose 1-epimerase — contains a TYR.
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Figure 5.15: Clust36-Sub127 — A putative functional triad. In Clust36-Subl127, the central
CYS (yellow) is accompanied by an ASP (red) and a LYS (blue) in four out of five cases. All of the
microenvironments are surface-exposed. As CYS, ASP, and LYS are all known to be biochemically
reactive, this microenvironment may have an active functional role.
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5.4 Discussion

Protein function i)rediction has traditionally coneentrated on modeling known func-
tional domains and motifs. But just as genomics hes rapidly incfeased‘ the nuxnbers of
known proteins, eo should it inerease the number of known functions. Yet our ability
to annotate new proteins lagsv signiﬁcantly behind our ability to sequence them, and
our ability to identify novel functions is almost nonexistent. In this chapter, 1 have
presented a suite of methods that can be combined into a pipeline to analyze the:. "
results of unsuper\dsed clnstering and produce cornpeliing, functienally chaiacterized

sub-clusters.

541 A generalizable tool for protein cluster annotation

Cluster analysis in biology reached a-fever,piteh:several years ago, spurred by the
popularization of gene expression studies. The intuitive idea .of‘ gronping together
bielogical» entities based on eommon features such as expression values led to a need for
“tools to interpret the significance of the resulting groups. It is, therefore, _unsu'rprising
that most of the tools currently available for cluster anaIySis are not well suited for
4protein mictoenvironment‘clusters spanning mnltiple species.. With metagenomics
data and aggregated data sets becoming more abundant, it is conceivable that more
applications in the future will be similar to ours. A tool that can help characterize
an arbitrary list of .proteins is thus very useful. | |

‘With the methods I have developed and adapted, we are able to incorporate.
information from the PDB, Swiss—Prot,'and PubMed to extract enriched terms for
’Va'cluster of protein rnicroenvirenments. Using internal coherence measures, we can

evaluate how physically similar the microenvironments-are, while external measures
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such as functional coherence allow us to ‘assess the amount of knowledge available to
elucidate the underlying biological details. By presenting tiie extractedi terms in a
: Summary page, ai clear functional signal is immediately obvious when it is present.
In less clear cases, more in-depth exploratlionbecomes straightforward through links
to detailed term iists and outside’ dzitabases. Although we applied the annotation
system to a data set of FEATURE—derived rnicroenvironments, the met}iods could
also be appiied to any list of proteins named as PDB or Swiss-Prot IDs w1th only
minor modifications. ' v

| "Despite these advantages, t}ie methods presented here- can be significantly -ex-
tended. A simple improvement to our methods would be to use hierarchy information
for GO and MeSH terms so that different levels of granularity are not penali‘zedbas' '
. being unique terms. Better filtering of non—functional terms would also improve the
biologic'al'signal of annotations. ‘For analyzing rnicroenvironment-type clusters specif-
ically, another improvement WOuld be to provide a visualization or description of the
- feature vectors and a built-in protein structure viewer. This capability may depend on
choices made for k-means .clustering; for example, dimensions in PCA do not directly
correspond to intuitive piiysicochemical features as in traditiona,l FEATURE vectors,
and so the biological importance of significant features will not be obvious. It is also
important to note that the field of biological text mining is advancing rapidly, and
many powerful techniqiies are available for summarizing information and uncovering
relat_ionships between biological entities and concepts. A more sophisticated anno-
,tation'system might make‘use of named entity recognition, concept recognition, and
: ‘relationship extraction to derive more robust or cornplex associations between cluster
mernbers. | |

Without some way of interpreting biological clusters, the results of unsupervised
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approaches are of little use. A generalizable annotation system that draws from
divérse sources of information, such as the one described here, is an effective way to -
summarize any coherent biological signals present in a cluster and acts as a starting

point for further investigation. ,

5.4.2 Prioritiziﬁg clusters in unsupervised appro_ache_s'for func-
~ tional site discovéry _

One of the drawba‘cks'-of k-_meéné clustering is that we must Sp’ecify the nurnbber‘ of

 clusters beforehand. Althdugh heuristics can provide reasonable esfima,tes, 1t is still

a chall'éngéito sét ’parameters when the true structuré of the data is not known;
Other methods such as mixture modeling may be bétfef ‘suite,dvfo‘r identv‘ifyving under- .
lying patterns but are chputati(;nally mdre expensive andialso require pa,rametér
'ésti’mation. »Ivn this work, we demonstrate a two-step ap'proach'that would allow for
fewer éssumption’s in fhe initial clusteriﬁg andxprov-ide‘ better separation in subsevc‘luentv,
éxﬁalyses. The ability to post-process large clﬁsters into smaller, more coherent sub-
clusters means that we do nét'have to attempt to rdivicie all the objects into the mdsﬁ o

. optimal groups at theldut_set, but can si‘mply, group them into coarse “ballparks;’.
We éan then use more accurate but more éxpensi\(e methods such as hierarchical
clustering to identify finer-grained distinctions within the ldrge groups.

: »>VAIddition‘al parameter' choices are necessary, and thésé are ndf alWays intuitive:

- For instaﬁce, single linkage performed better than avefage and -compléte linkage 1n ‘

producing high purity sub-clﬁsters, even though the opposité has been shc.)wn"[52]. It‘

| ‘, is importaht to note, however, that different linkage methods make fundémentally dif-

ferent assumptions about the underlyingr structure of the data. Avera;gég and coymplete:
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linkage assume spherical, Well—separated clusters, while single linkage maximizes con-
nectivity between 'neighboring points and 1s best suited for chain—iike clusters. Since
- proteins aLhd their functional sites have evolved ovéx t_i'me‘ from common ancestors, it
aCtualiy makes some intuitive sense for similar microenvironmehts to possess a linear, |
chain-like relation'ship.'. | |

A number of different validation measures can élso be-used to prevént bias towards
-~ artificially small or large clusters as can occur when opti‘r'niziﬁg cluster purity or
inverse purity, respectively. | Internal measures can be biased towafds certain types of
clusters — the silhouette Width‘-favors compact and spétially separated CIﬁsters, for
eia_mple,. We chose cluster purity as the measure of int_érest for sub-cluster selection,
mainly becaﬁse we are interested in fine distinctidns between mic.rOenviroméhts and
do not Vview higher level redundancy such as multiple zinc binding site sub-clusters as
a drawback. We also stipulated that sub-clusters have a minimum of five sites, which
reduces some of the bias towards extremely small clusters.

In addition, we use two conceptually different evaluation measures — functional
coherence and internal node correlation - fo choose sub-clusters, providing further
balancé between potential biases. Higher node correlétion favors micfo_environments
that are physicaliy'sirﬁilar,'while higher functional coherence moves towards existiﬁg
evidence and ‘knowledge. Here, we use a scoring function that is fairiy équal in its
- weighting of these two coherence measures, but the function can be easily modified
to suit particular neéds. To recapture iny well-known functional sités, a fupction
heavily .weighted toWards functional coherence would perform bett’er.‘ Weighting t"hve
~ function more towards internal ‘coherenée would produce sub-clusters that are very

physically tight, but may not have clear or meaningful biological significance.
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In eééence, we can modify the scoring functioni to make differént types of discovér— :
iés. .Sub.-c‘lﬁsters that ére already well characterized (as suggested by high functional
coherence) may have one o‘r two members that are not annotated with that particular
function; we can then transfer thé annotation indicated by the sub-cluster analysis to
those members. Sub-clusters that emphaSize internal coherence but have low func-
tional coherence, on the other hand, may represent completely novel functional sites.
Somewhere in between lies a third type of discovery ~ that of a 3-dimensional motif
fora characterized function that din not previously have a defined motif." These three
types of discoveries could be described as “individual protein annotation”, “motif
identification”, and “novel functional site discovéry”, and each one is‘more difficult
to validate thah “the' former. Each type is, however, also more ihteresfing from a
scientific standpoint than the preceding vtype. | |

As reviewed in Handl et al. [60], cluster analysié requifes considerable care in the
selection of paiaméters, algorithms, ‘and validation teéhniques due to many potential
- sources of bias. Because the,underlying data structure is unknown, it is useful to -

evaluate several diﬁérént classes of methods, e.g. a method tﬁat assumes compact
clusteré versus one that assumes connected clusters. (v)urvuse of k-means proVides-
very rough spherical estimates which we then refine based ori,Connéctivify with single »
linkage hierarchical clustering, but evaluating different methods for each phaée may
_help improve performance, or even replace the two phases with one if the method is
suitably accurate ‘and computationally tractable. _PW—k—meéns [153], which incorpo-
rates a weightirig' and penalization schemebt:o incorborate prior inforﬁlation and reduce
the damaging effect of noise points, may be a promising method to investigate. We
currently do this in a discrete fashion — using functional coherence to provide prior

" information and the overall sub-cluster selection process to prune out singletons — but
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PW-k-means covers similar aims in one ihtegrated method and may produce good ‘

!

results on our data set. AsTwill discuss below, however, hierarchical clustering is still |

useful for exploratory reasons, and the discrete steps may make fine-tuning different.
aspécts of the pipeline easier.
Our results indicate that we can 'identify biologically meaningful clusters of pro-

tein microenvironments using a two-step clustering and prioritization approach along

“with text—miningebased annotation methods. ‘We demonstrate this by rediscovéring

known functional sites such as the active site for TYR phosphatases. and bindirig
sites for zinc and cepper. More interestingly, we can distinguish between sub-classes
of functional sites, such as the blue copper and iniilticopper oxidase ‘sub-clusters,
and different modes for zinc binding. In addition, some of these known functional

site clusters yield potentially novel individual protein annotations which would be

interesting to validate experimentally. We also present several examples of putative

novel functional sites; the interpretation of such sub-clusters is challenging, but mer-

its follow—'up, Annotations from' other motif databases such as Pfam, PROSITE, and

Ge_ne3D do not shed light on the putative relationship between these recurring mi-

chenvironments.' ‘Importantly, the majority of potentially novel sub—ciusters contain -
residues that are not contiguous in sequence, but are sepaiated by 50 or more ariline_
acids. Traditional sequence— and structure-based a.lignment a‘lgorithms do not handle
large gaps in the sequence or structure backbene, SO they would not be able to detect

recurring regions in proteins such as these.

5.4.3 Enabling exploration of protein function space

Beyor_id recapitulatirig known functions and identifying potentially novel sites, our’

ciuster analysis approach allows open-ended exploration of protein function spacev as
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described by micro.environments. The hiera,rchical trees that form theb basis of the
- cluster selection process have inherént 'value; we can use them to see how similar
functional microenvironments are to each other and aék interesting questions. In
' our 15 SeqFEATURE model teét set, fof_example, a significant number of sites did
“not map to the groupings we would expect, either because their inciusion negatively
impacted the internal or "external coherehce, or because they were located in ajdifferent
area of the tree. Both cases suggeét that the micfoenvironments for these “sihgletbn”
sites differ in some way from that of the other sites mapped to the same PROSITE
pattern. What makes these sites sb different, and what implications does this have for
their .classiﬁcation? What might this say about the evolution of a particular function?
Inspection of.thé overall tree of sub-clusters c_ah alsb lead to interesting questions,
for we can see how the vmicroelll,vironments bf different fuhctions relate to one én#_
other. If 'Wé again consider the 15 SéqFEATURE test set, we see that zinc protease B
active sites are similar to those of ‘other zinc—containihg enzymes, beta lactamases
and RNases. These group with other hydrolases like alcohol vdehydrog‘enase, Sérine :
“ protease (trypsin—type), and carboxylesterase. Note that the two proteases are less
similar to each other than to other typés of énzymes. In addition, thiol"proteases are
far removed in this trée and not very similar to other énzymes. These observationé
make sense given the diverse origins of prbteases, many of which arose independe_ntly
even while sharing very similar catalytic mechaniéms [112, 11). Other dissimilarities
— or similérities — between different clrcisses of enzymes may be less well known and
" worth in\(éstigatjng. It may also be possible to use hierarchical trees of microenviron-
ments to inform protein engineering applications based on the similarity of functional
sites to one another. |

When we examine the results of cluster selection and annotation on unknown
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data, we can ask more directed questions, such as “Does this‘protein bind copper?”
or “Does this group of preteihs share a protein—binding—related‘ microenvironment?”
Some of these questions will be easier to anSwer than others, but, as mentioned previ-
| ously, the mofe challé_nging cases are also the most interesting. While our text-based
analysis provides some initial clues, more sophisticated text mining methods and mi-

~ croenvironment visualizations will improve our ability to make testable hypotheses.

5.4.4 Building a pipeline for functional site discovery

microenvironments
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‘Figure 5.16: A pipeline for protein functional site discovery. By integrating different unsuper-
vised clustering methods with existing knowledge, we are able to group protein microenvironments
into coarse clusters, refine them into more relevant sub-clusters, and annotate them with useful
information from curated protein databases and scientific literature. -

 With this work, we have demonstrated the feasibility of key components in a
pipeline for discovering novel functional sites in protein structures (see Figure 5.16).

Given unsupervised clustering of protein microenvironments, we can now refine and
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Vpr’ioritiz_e,the resulting la;g‘e clusteré into smaller; more compelling sub-clust,ers.vusing a ‘

combinationk of ﬁnerfgrained hierarchical blu’ster»ing and scoring functions that balance

internal and external coherenée. We can also integrate knowledge from literafure and
other databases to form a picturé of the underlying biologibal feavttul;es salient in each |
sub-cluster. This ‘procedure as a whble thus represents avsemi—aut'om'vated pipeline
| that will enable the prediétion of no’velv annotationé for individual proteins, 3]‘)‘motifs
for known ‘fﬁnctions, and potentially novel functional sites on a scale not previously_

feasible.
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Conclusions and future directions

6 1 | Concdlusion's

The field of pfotein function prediction faces many challenges due to advancing tech-
'nology, producing a need for robust, comprehenswe and efﬁc1ent methods for recog-

mzlng potential functions in protein structures- bearlng httle resemblance to known

'protbelns. There is also a unique problem in that no p1pe11ne exists for. discovering,
, characterizing, and subsequently modeling novel functions, a need that becomes in-
creasingly likely given the rate at which new proteins are being identified. In this
dissertation, I present ‘work on characterlzlng and annotatlng protein function using

automated computational methods The methods | developed build on many exist- |
ing approaches and techmques 1nclud1ng natural language processmg, the nelghbor
d1vergence per gene algorlthm and apphcatlons of the F EATURE framework for

structure- based functional site modeling, and I have 1ntegrated them in novel ways.

109
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6.1.1 The SeqFEATURE library
With the cre'ation of the library of SeqFEATURE models, I contribute a comprehen-
sive, validated‘tool for protein function prediction that is structure-based without -
over-,reliance on fold or residue conservation. The ‘SeqFEA’I\‘URE'aporoach allows the
' construction of large sets of functional site models quickly and automatically from
sequence motifs. In our application,’ we showthat although existing sequence- and :
structure-based methods have better performance in general SeqFEATURE ‘models
perform better when sequence and structural similarity to known prote1ns is low.:
Since this scenario is typical- of many structural genomlcs targets SeqFEATURE '
_should be useful for functional characterlzatlon of these structures. In addition, Seq—
FEATURE often correctly class1ﬁes cases that are incorrectly clas31ﬁed by other meth—
ods, suggesting that, it is useful to include it in functional analyses of new proteins.
We present several examples where our predictions on structural_ genomics targets
support those of other methods, and also an example Where we generate a novel
prediction. The library o‘f models and an interface foreasy scanning of structures
are available via WebFEATURE, where users can also doWnloati full data frorn' our

functional scan of the PDB.

6.1.2 Discovering'novel functional sites

"To address the problem of discovering and characterizing novel functions, I eIanOyed
» techniques from natural language processing and cluster analysis to develop cluster
selection and annotation methods. We use the,neighb‘or‘divergence per gene algorithrn
to assess a cluster’s functional coherence. Functional .clusters derived from PROSITE
achieve a much higher functional coherence than random clusters of similar sizes,

and functional coherence degrades as functional signal decreases, indicating that this
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~measure is a suitable proxy for functional signal. We combine functional coherence
with an internal coherence metric into a scoring function, which we use in concert with -
hierarchical c‘lustering to select optima_l sub-clusters within large, k-means-derived
" clusters. |
Once We have obtained candidate sub—clusters, we use an annotation‘ systern I
developed that incorporates information from literature and other databases to aid in
characterlzatlon Terms from PubMed abstracts, Sw1ss-Prot records, and PDB HET—
ATMS receive scores based on the hypergeometrlc d1str1but10n terms from PubMed
abstracts are addltlonally scored for releyance using a novel entropy-based scoring
 function. Coroparirrg terms from controlled vocabularies such as MeSH to raw text
| demonstrates the tradeoffs betwéen the two types of data; although MeSH terrrls are
oftenrmore conceptoally clear, they can be less -specific and informative than terms
extracted fromraw text. The inclusion of Swiss-Prot dat_a and HETATMs provideslv
‘ additional. facete for analysis. When we evaluate literature and GO-based term lists -
on clusters with decreaeing furlctiorlal sigrral, we see a sharp drop-off in performance
below about 40% signal, _und_erscoring the need to produce reasonably coherent clus-
ters to begin with. We present all of the information produced by the annotation
method in a summary page that is hyperlinked to more detailed 'page's as well as.
external databases.

Applying these methods to a data set built from CYS-centered FEATURE mi-
croenvironrnents yielded promising and interesting results. We redieoovered kn'ow_n‘
sites, such as TYR phosphatase active sites and several metal—bindirrg sites, pre-
dicted novel zinc- blndlng annotations for 1nd1v1dual proteins, and presented a novel
functional sites potentlally related to structural stability, T YR phosphorylatlon and

catalytic activity.
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6.2 .Contributions to informatics

In this dissertation, I explored supervised and unsupe.r‘vised teehnlques for protein
function charaeterization. With’SeqFEA’I»‘URE, I demonstrated that 3D models built
using the FEATURE framewerk are more robuet than methods that rely solely en
sequence and structureconserva,tien, shggesting that this approach will be useful for
cheraeterizing noVel_pfotein structures. The pipeline as a whole illustrates a method
by which a large library of 3D functviona.,l site models can be constructed automatically
from a set of 1D sequence motifs. | | |
| In addition, I have developed methods that can be used in eonjunctibp with large-
~ scale unsupervised clustering studies. These methods allow the refinement and selec-’
~ tion of compelling' sub-clusters within larger, coarse-grained clusters, and the subse-
queht characterization of the_se’ sub—clusters ﬁsing information from external knowl-
edge sources. The eluster'selection prvovcess, when applied to known _functional sites,
a,lsol encourages exploration of protein function space using a flexible, discontinuous
represen’patien, inspiring interesting questions about functional site relatedness, evo-
~ lution, and engineering. Thése methods ta;ken'.v t-ogether repi‘esent a fraﬁlework for

discovering and characterizing potentially novel functional sites in protein strlictures.

6.3 Contributions to biomedicine

Through this dissertation work, I have created a'lafge,' validated library of 3D func-
tional site models which can be used te scan protein structures for funetion. We have
used the library to scan the entire PDB and have made predictions of function fer
unannotated sdtructural .g‘enomics,targets. I have also applied the sub-cluster selec-

tion and characterization methods to a novel data set, recapitvulating many known
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 functional sites as well as uncovering intriguing, potentially novel discoveries: Unsu-
pervised clustering combined with ‘extern'al knowledge sources ‘allows the definition
of biologically relevant sub—classes df functional sites,isuch as different modes df zinc
binding or functional distinctions between coppér—binding proteins, pefhaps_ indicat-
.iﬁg that microenvironmengs aré a useful way to explore and c'oinpartmentalize protein

structure and function space;
6.4 Future directions

6.4.1 Modeling of known functions

_As meritioned above, these fnethods are a promising starting point for more conipre—
hensive studies aﬁd modeling of protein ,fun(-:tionalrsite's. A Stfaightforwa.rd extension
of SeqFEATURE Would be to apply it to additional motvif' databgses. More accurate
models are possible if trdining set construction takes into account false negativeé and
false positives for each motif, adding them to the positive _and negat_ive training sets,
respectively. SeqFEATURE also contains multiple models for many PROSITE pat—‘
tefns, and the humber and location of hits to these models can.be informative. A
compou‘nd mvodeli épprbach where the ‘resulfs for multiple models are considered could
redu»ce‘false‘ positives. | | |

There are many areas where FEATURE ifself could also be improved. Its strengths
are its robustness and deséripti\}e ﬁiicroenvironment representation, but. there is much-
more information ayail’aBlé than FEATURE takes into account. For instance, we .
could determine from multiple seqilence aljgnménts which residues in a functional
site are consérved and which can vbe mutated; this can result in bettér detecti(;n of

functional sites which have either converged from different evolutionary origins, or
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di\V/er’ged‘in areas of the proteiri that are not necessary for function. FEATURE'’s
microenvirOnment vectors are easily amenable to the addition of new prsperties.
Additionalb imptovémehts inslude consideration of site geometry and better mod- -
eling of features as a funstion of distanc_e from the site center. Although spherically
averaged models are computationally ihexpensive_and statistically robust, the felé—
tive location of atoms or fesidues from one another canv often be crucially‘ jmpor_
tant for function. One cquld imagine capturing orientation data indirectly, perhetps
by t:omputing diStancss between pairs bof sidechains, without sighiﬁcantly increasing -
somputational cost. To represent miCroenvironments evén more robustly, we could
describe feature distributions within and across shelis using a continuous, statistical
model. In this way, outliers and empty values in the training set could be smoothed,
~ and deviations from the norm would be weighted according to the learned Iﬁodel.
Because information about protein function ckan be detected and encapsulatsd,
in so many ways, it is unlike‘ly that any one method will oﬁtperfortn all others in
every scenario. In fact, many hybrid techniques exist that apply multiple methods to
improve functional coverage and increase the chances of producing high confidence
" predictions.” We have _beguh to do this with FEATURE in a way, by coupling the
use of FEATURE models with molecular s1mulat10ns to detect function in 31tuat10ns '
where FEATURE by itself falls short A more conventlonal approach however would
be to integrate methods like the ones we used in our comparison W1th SeqFEATURE,

turning the outputs from multiple in silico assays into inputs for an overall classifier.

6.4.2 Cluster analysis and novel site diScovery

Thefe are many ways in which textual knowledge can be leverdged to aid in clus-

 ter analysis. Although neighbbr divérgence per gene is reasonably effective, it may
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be helpful to employ more sophisticated methods for determining semantic similar-
) f ity between documents. Likewise, advanced NLP technidues such as named entity
recognition and relationship extraction may provide more useful literature-based an-
notations for clusters. The information inCorporated into the annotationsystemfcan '
also be expanded to include knowledge from pathways hierarchies of controlled vo-
‘ ,cabularies and ‘homologous proteins to name only a few.

On 1ts own, the literature-based annotation approaches may have additional util—
ity. Neighbor divergence per gene and multi-faceted term enrichment annotation are
relatively straightforward and likely to be widely applicable; I demonstrated their
application to arbitrary lists of proteins. With large amounts of data now available
on genes drugs, proteins, and other interesting biological agents methods that c‘an
help determine the s1gn1ﬁcance of particular groupings — structurally similar drugs
for example — could prove to have great impact. |
| - In the case of FEATURE microenvironment clusters, techniques to visualize the
signiﬁoant properties defining the microenvironments comprising particular clusters

would certainly help interpretation. Currently, we transform the property vectors
~ into principal components for clustering, and while we can easily identify which com-
ponents differ between sub-clusters, it is difficult to'translatethis into an intuitirre’
understanding of the protein microenvironments. Convertingiprincipal oornponents
of interest back into their original physicochemical properties and highlighting the
differences visually — perhaps even in the structures themselves — would be useful for
gaining fuller comprehension of potentially subtle differences.

As discussed in Section 5.4.3, our unsupervised clustering approaches such as hi-
erarchical clustering encourage exploration and hypothesis generation even with well-

characterized data sets. Identification and elucidation of surprising relationships and’
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memberships (or the lack thereof) may help improve our understanding of the associ- .
ation between protein structure and function as well as protein evolution. Currently,
our best protein classification schemes incorporate inforination based on sequence
7 “and structure. homology Ihairily' at the semi-global fold level.  We could imagine,
however, a microenvironment-based classification that considers local,_ discbntinuou_s
regions and only indii‘ectly considers the evohitionary» relationship between protein
© structures. Such a classification may be especially helpf_uli for understanding pro-
tein structure and function from an engineering perspectiVé. Exciting research, both
discovery—fo.cused and descriptive in nature,i is clearly possible from the outputs of
‘unsuper\./ised learning on protein miqroenviifonments. | |

Once additional clustering data sets are available, the cluster selectio‘ri and anni)-
tation methods can be easily applied to produce even more interesting findings and
work towards a comprehenSive description of pr(itein micro“eni/ironment space. With
enough s_upportirig evidenée, clusters also logically serve as training sefs for super-y'
vised modeling of the newly discovered or rediscovered functions, making a complete,

~ semi-automated pipeline for protein functional site discovery and modeling possible.



Appendix A
SeqFEATURE supplementary d‘_atav

‘This section contains performance statistics for the SeqFEATURE libréLry of models,
~ and the data sets required to reproduce the library and carry out the comparison
against o_‘_chef methodéL Note that only positive training sets are listed, as the negative
training sets are generated fandomly as described in Section 3.1.1. Performance
stétistics can also be viewed 6n WebFEATURE by selecting the model in the drop-

- down menu and clicking on “more info.”

A.1 SeqFEATURE model performance

See Table A.1 for a list of performance statistics for the entire library of SeqFEATURE
models. For each model, we ﬁleasufed the area under the ROC curve (AUC) and the
' sensiti{/ity (based on training sets) at each of three specificity-based score cutoffs
(100% speciﬁcity, or ‘100c’; 99% specificity, or ‘99¢’; and 95% specificity, or ‘95¢’).
All score cutoffs are shown as Z-scbres, normalized to the overaH distribution of scores

- for the corresponding training set.
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Table A.1: Performance statistics for SeqPFEATURE models.

Model name ‘ . AUC 100c ° 100-sens 99c. 99-sens 95¢ 95-gens

2FE2S_FERREDOXIN. 1.CYS. SG 0.9600 4.1959  0.7778°  2.3834 0.8889 1.8354  0.8889
2FE2S_FERREDOXIN . 6.CYS .SG 0.8992 5.5715  0.0000 2.5647 0.7778 1.6712  0.7778
2FE2S_FERREDOXIN. 9 .CYS.SG 0.8544 4.9675  0.2222 ~ 2.6517  0.7778 1.6671  0.7778
4FE4S_FERREDOXIN.1.CYS.SG 0.9998 3.1084 - 0.1000  2.0501 1.0000 1.5689  1.0000
4FE4S_FERREDOXIN.3.CYS.SG 0.9991 ~ 3.4191  0.0000. 2.0044 0.9500 1.4919  1.0000
4FEAS_FERREDOXIN. 5.CYS . SG 0.9999 2.7500  0.4000 . 1.5623 1.0000 1.2660  1.0000
' 4FE4S_FERREDOXIN.7.CY/S./SG 0.9054 5.2182 . 0.2500  2.4541 °0.9500 1.5971  0.9500
AA_TRANSFER_CLASS_1.4.LYS.NZ 0.9573  3.8958 0.1667 © 2.6897 - 0.8333 1.8763  0.8333
AA_TRANSFER_CLASS_2.4.LYS.NZ 0.5215 5.0026  0.0000  2.9560  0.0000  1.9219.  0.4000
AATRANSFER CLASS_3.19.LYS.NZ ~  0.9931 4.6946  0.0000  2.8073 0.8000  2.0864  1.0000
ADH_SHORT.3.TYR.OH - 0.9999 5.0745  0.1176  2.2891 1.0000 1.6249  1.0000
. ADH.ZINC.2.HIS.ND1 _ 1.0000 3.4172  1.0000  2.4184 1.0000 1.7128  1.0000
ADH_ZINC.2.HIS .NE2 0.9996 3.8970  0.6667  2.4840 - 1.0000 1.7499  1.0000
ADX.6.CYS.SG 0.9357 5.1797  0.6667  2.8744 10.8333  1.8342  0.8333
ADX.9.CYS.SG 0.8905 _6.6588 - 0.6667 ~2.8548 0.8333 1.7823  0.8333
ALDEHYDE DEHYDR.CYS.6.CYS.SG 0.2667 4.6874  0.0000  2.6893  0.0000 1.5310 -0.0000
| ALDEHYDE_DEHYDR_GLU.2.GLU.OE1 = 0.3238 5.0167  0.0000  2.7511  0.0000  1.8296 ~ 0.4000
ALDEHYDEDEHYDR GLU.2.GLU.OE2 034793 4.7775  0.0000  2.6697 0.0000  1.8642 - 0.2000
ASP_PROTEASE. 4.ASP.0D1 0.9964 4.6587  0.0588  2.3194 - 0.8824 1.7303  1.0000
ASP_PROTEASE. 4.ASP- 0D2 ' 0.9994 3.7837  0.4706  2.2973° 1.0000 ~1.7238  1.0000
ASX_HYDROXYL. 3.ASN.ND2 0.9856 4.6894  0.2000  2.8130  0.6000 , 1.8640  1.0000
_ASX_HYDROXYL. 3. ASN.0D1 0.9681 5.0918  0.2000  2.6115 0.8000 1.8262  0.8000
BETA_LACTAMASE A.5.SER.0G 0.9983 4.0089  0.8000  2.4755 1.0000 1.7438  1.0000
 BETA.LACTAMASE B_1.4.HIS.ND1 0.9993 3.8683  0.8000  2.6032 1.0000 1.8239  1.0000
BETA_LACTAMASE.B_1.4.HIS.NE2 0.9902 4.8795  0.8000  2.8145 0.8000 1.7450  1.0000
BETA_LACTAMASE B_1.6.HIS.ND1 0.9997 5.3466  0.8000  2.7205 1.0000 1.7821  1.0000
»BETA_LACTAMASE_B_I.6.HiS.NE2 0.9949 5.5322  0.0000 . 2.8292 0.6000 1.8709  1.0000
BETA_LACTAMASE B_1.8.ASP.0D1 0.9991 4.6363  0.6000  2.9202 . 1.0000 1.8558  1.0000
 BETA_LACTAMASE B_1.8.ASP.0D2 0.9982 5.4960  0.6000  3.0055 1.0000 1.9485  1.0000
BPTI_KUNITZ.1.4.CYS.SG 0.9943 2.8687  0.1667  2.3079 0.6667 . 1.7660. 1.0000
BPTIKUNITZ_1.8.CYS.SG 0.9999 3.5059  0.8333  2.2843 1.0000 1.7820  1.0000
- CARBOXYLESTERASEB.1.11.SER.0G 1.0000 5.2823  1.0000  2.5415 1.0000  1.7047  1.0000
VCARBOXYLES;I"ERASE_BJ.SV.CYS.SG 0.9837 4.6941 - 0.6667 - 2.6651 0.8333  1.8180  0.8333
CHITINASE.18.9.CGLU.0OE1 0.88%0 5.8069  0.2000  2.9593  0.6000 1.9035  0.6000
CHITINASE_18.9.GLU.OE2 . 0.8423 4.0715  0.6000  2.7903  0.8000 1.8832  0.8000
COPPER_BLUE. 11.HIS.ND1 0.8889 4.4932  0.7273  2.3960  0.9091 . 1.7011  0.9091
COPPER_BLUE. 11.HIS.NE2 0.9144  3.2990. 0.5455  2.0883 0.9091 1.5094  0.9091
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'COPPER_BLUE.7.CYS.SG
CYTOCHROME.P450.8.CYS.SG
C_TYPE_LECTIN.1.1.CYS.SG

EF_HAND.
' EF_HAND.
.EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
~ EF_HAND.
EF_HAND.
EF_HAND.
“EF_HAND.
EF_HAND.
EF_HAND
EF.HAND.
EF-HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EF_HAND.
EGF.1.1.
EGF.1.3.
EGF.1.7.
EGF:2.1.
EGF_2.3.
EGF_2.8.

GLYCOSYL_HYDROL_F10.7.GLU.OE1
GLYCOSYL_HYDROL_F10.7.GLU.0E2
GLYCOSYL_HYDROL_F5.7.GLU.0E1
GLYCOS?L.HYDROL.FS;?.GLU.0E2

1.ASP.0D1

1.AsP.op2

12.TYR.OH

3

3.
3.
.ASP.

.ASN.
ASN.
ASP.

.ASN.
.ASN.
.ASP.
.ASP.
.SER.
.GLU.
.GLU.
.LYS.
.THR.

.ASN.
.ASN.
.ASP.
.ASP.

ND2
0D1
oD1
0D2
ND2
0D1

oD1 .

D2
0c
OE1
0E2
NZ
061

CYS.SG

CYS.SG

CYS.SG

CYS.SG -

CYs.S¢

HIPIP.1.CYS.SC

HIPIP.7.CYS.SG

HMA_1.5.CYS.SG
HMA_1.8.CYS.SG

.9976
.0000
.9759
.8853
.8666
.9836
.7622
.8451
.8558
.9664.
.6417
.5287
.9096
.8905 .
.5918
.6573

7653

.1233
.9687
.9006
.7788
.8631
7061
.4321
.8184
.9198
9433
.9724
.9531

7922
9186
7934
7618

.7614

0000

.9998
.8511
.0000
.9802
.9590

W oW RO W W R W NN RN NN R R WO R BN WO R R R W R W RN W R R W R R

.9485
.1254

1375
9361

.2962
.4758
.9446
.8858
.9395
.6033

1280

.0505
.4184

3269

.2569
.2014
11792
.5667
.6176
.4005
.1066

9062
8989
8412

.4551

7841
7891

.6989
.9954
.1644
.6325

6486
8358

,0324
.8385.
.9203
.5838
.8473
.8045
.0503

HOvOOOOOOOOO0.0000000000000‘O‘OOOOOOOOO

o O » O ©

.5455
.8333
.1667
.2698
.3968

0000
0000
1667

.4706 -
.0294
.0000
.4000
.3784
.1351
.4167
.0000
.0000
.0000
.4545

0000
0000
1667
1875

.0625
.0000
.0000
.3600°
.3333

2609

.1000
L1111

0000

.6667

6667
0000

.8333
.6000
.0000
.0000 - -
.0000

NN R NN

N W N W NN NN NN R

.5586
.4019
.9043
/5044
.3821
.9857
.8989
2276
.4333
.9822

0562

.6283
.4991
.0530
.3425.
.6910
.4665
.4721
.4299
.1812

0109
6925
8871
2793

.0052.
19668
.0501
.0497
.1801
.8328
.0993
.0233
.5048
.6091
.7188 -
.6280
.0376
.7401
.0551
.2761

0.9091
1.0000
0.9167
0.8571
0.8254
0.6000
0.5417
0.7083
0.8529

0.8529.
0.6000
' 0.6000

0.8378
0.7297
0.5833

0.1429

0.1429

0.0000

0.8182
0.0000
0.3333
0.6667
0.6875
0.2500

0.5238

0.4000

0.7600
0.8750 "

0.7826
0.4000
0.4444

0.2222 -

0.6667

. 0.6667

1.0000
1.0000
0.8000
1.0000
0.6667

1 0.7778

[ S S TN S U

[ T T T

[

-

-

e

[y

2.0610

[

.7391
.7526
.6408
.7609
.7175.
.9715
.3919
4801
.5919
.5595
.5011
.7555
7351
.5672
.6453
9192
.8074
.9064
.6725
.9558
.0911
.8499
L6765
.5232
.8453
.8192.
L6619
.7102
.7073
.6361
.7178
.7165
.8222
.9083
.8787
.8757
.8222
.7795

.7066

© O © O O 0O O O O O O .0 O © O 0O O © O O O O O O O O O O +H O O O = M.

-

o ©
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.0000
.0000
.9167
.8730
.8413

0000

.7083
7917
.8824

8824 |
6000

.6000
.9189

8919

.6667
.4286

2857
2000
9091

.5000

6667
6667
7500

.4375

8095

.6000
.8000

8750

.8696
.5000

8889
4444

.6667
.6667
.0000 _
0000
.8000
.0000
.8889
.7778
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IG_MHC.3.CYS.SG

0.9009 4. 59::37 0.0000 2.6080 0.8000 1.6692 0.8000
-IMP_1.4.ASP.0D1 0.9569  4.3603 0.6000 2.5989 0.8000° 1'. 80658 0.8000
IMP_1.4.ASP.0D2 0.9994 : 3.9608 0.6000 2.5508 1.0000 1.8129 - 1.0000
KAZAL.1.CYS.8G . 0.9222  2.0286 0.2000 1.6858 0.4000 1.5563 0.6000
KAZAL.3.CYS.S5G 0.9732 2.1815 0"2000 1.8104 0.8000 1.6138 0.8000
KAZAL.7 .CYS.5G 0.9704 2.2009 0.2000 1.9541 0. 8600 1.6396 0.8000
KAZAL.9.CYS.SG 0.9752 2.0881 0.0000 1.8642 0.4000 1.6227 1.0000
LIPASE_SER.7.SER.0G 0.9995 = 4.7293 : 0.6250 2.5387 1.0000 - 1.7350 1.0000
LIPOYL.9.LYS.NZ O.é463 5.7718 0.0000 2.7817 '0.1429 1.7781 ° 0.2857
'PA2_HIS.4.l'iIS.ND1 0.7397 3.8229 0.6000 1.9125 0.6000 1.4144 ‘0.6600
PA2 HIS.4.HIS.NE2 0.6019 4.8345 0.6000 2.7310 0.8000 1.7391° - 0.8000
PEROXIDASE 1. 8 .HIS.ND1 0.7266 3.8764 0.2857 2.3347 0.7143 1.6333 0.7143
PERdXIDASE_l .8.HIS.NE2 0.5890  5.0036 0.0000 2.5812 0.1429 1.7305 0.4286
PEROXIDASE_2.8.HIS.ND1 ) 0.9999 3.6628 0.8000 ‘ 2.6225 v 1.0000 = 1.7515 1.0000
PEROXIDASEJ .8.HIS.NE2. © 0.9997 3.9233 0.6000 2.57563 1 .‘0000 1.8144 1. OOOO
PHOSPHOPANTETHEINE‘. 6.SER.OG 0.0012 - 5. 3856 0.0000 3.4820 0.0000 1.9401 0.0000
PROTEIN KINASE ST.5.ASP.0D1 0.9456. 3.6536 0. 6506 2.5218  0.8500 1.8006 0. 9000
PROTEIN.KINASE_ST.5.ASP.0D2 0.9700 3.8913 0.5000’ 2. 5?13 0.8000 1.7986 0.9500
PTS_HPR_SER.5.SER.0¢G 0.4289 5.5779 0.0000 2.4075 - 0.1667 A 1.5498 0.1667
’RNASE'.T2_1 .4.HIS.ND1 0.9651 4. 0533 0.2000 2. 5135 0.6000 1.8737 0.8000
RNASE_T2_1.4.HIS.NE2 1.0000 4.0910 1.0000 '2.6209 1. 0600 1.6521 1.0000
. SHIGA_RICIN.S.GLU.OEi 0.9959 = 3.8771 0.5714 2.5391 0.8571 - 1.8446-° 1.0000
SHIGA_RICIN.S.GLU.0E2 0.9893 ’ 3.4547 0.7143 2.5786 0.8571 1.9350 0.8571
SHIGA_RICIN.8.ARG.NE 0.9811 4.6423 0.4286’3 2.3878 0.5714 1.7262 1.0000
SHIGA_RICIN.8.ARG.NH1 0.92567 3.5732 0.1429 2.3931 © 0.7143 - 1.7386 0.8571
SHIGA_RICIN.8.ARG.NH2 0.9914 . 3.6414 0.1429 2.4906 0.8571 1.7443 1.0000 -
SMALL_CYTOKINES_CC.1.CYS.SG 0.9002  2.0993 ' 0.0000 1.7729 0.0000 1. 5961 0.3333
SMALL_CYTOKINES_CC.11.CYS:SG 0.8937 2.1243 0.0000 1.7708 0. 3333‘ 1.5981 0.3333
SMALL_CYTOKINES_CC.17.CYS.SG 0 .‘9704 1.9338 . 0.0000 1.7389 0.4333’3 ‘ 1.6214 0.8333
SMALL_CYTOKI}NES_CC. 2.CYS.SG 0.9611 2.1115 0.0000 1.7919 0.6667 1.6081 ‘ 0.8333
SNAKE.TOXIN.2.CYS.SG 0.9596° 2.4282 0.5000 1.9188 0.5000 1.6438 0.8333
* SNAKE_TOXIN.4.CYS.SG 0.9371 2.4193 0.0000 1.9390 . 0.6667 1.6970 0.8333
SNAKE_TOXIN.7. CYS .8G 0.9777 ~2.4263 0.0000 1.8772 0.8333 1.6479 0.8333
SNAKE.TOXIN.8.CYS.SG 0.9627 2.4496 0.8333 1.9918 0.8333 1.7167 0 8333
SUBTILASE_ASP.5.ASP.0D1 0.7117  4.4043 0.0000 2.5495 0.3333 1.7562 - 0.3333
SUBTILASE_ASP.5.ASP.0D2 0.7510 '5.1560 0.0000 2.6061 0.3333 1.9038 0.5000
THIOL_PRQTEASE_ASN .6.ASN.ND2 1. 0600 3.8379 1.0000 2.5982 1.0000 1.8237 1.0000
THIOL.PROTEASE_ASN.6.ASN.0OD1 1.0000 4.1252 1.0000 2.62565 1( 0000 1.. 7985 1..0000
THIOL PROTEASE_HIS.3.HIS.ND1 0.6356 3 .‘984v5 0.2500 2.5192 0.6250 1.7472. 0.6250
THI(jL_PROTEASE_HIS .3. HiS .NE2 0 6.7784 0.0000 2.6849  0.6250 1.7437 0.6250

.6890
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'

THIOREDOXIN.11.CYS.SG 1060 .7143

0.8033 3. 0.4286  2.3673 0.7143  1.8022 O
THIOREDOXIN.8.CYS.SG 0.7670 4.1475  0.1429  2.4014 0.7143 1.7187 0.7143
TRYPSIN_HIS .5 . HIS . ND1 0.9446 6.6747  0.0588  2.4167 0.8824 1.6437  0.8824
TRYPSIN_HIS.5.HIS.NE2 0.9147 5.3687  0.0588  2.2537 0.8824 1.6162  0.8824
* TRYPSIN.SER.6.SER.0G 0.9998 5.4646 ~ 0.0000  2.1696  1.0000 1.6085  1.0000
TYR PHOSPHATASE.1.3.CYS .56 1.0000 5.4246 - 1.0000  2.7473  1.0000 1.7596 . 1.0000
UBIQUITIN.CONJUGAT_1.10.CYS.SG  0.9929 3.2398  0.6667  2.6153  0.8333  1.7964  1.0000
ZINCFINGER C2H2i.1.CYS.SG  0.9958 5.1093  0.0000  2.7908  0.9375 1.7484  0.9375
| ZINC_FINGER C2H2.1.3.CYS.SG 0.9887 4.0843  0.4375  2.4635 - 0.9375  1:6719° 0.9375
ZINC_FINGER_C2H2_1.7.HIS.ND1 0.7011 3.8728  0.4706  2.3210 0.7647 1.6784  0.8235
ZINC.FINGER.C2H21.7.HIS.NE2 0.8463 6.4856  0.1176  2.4277 0.8824 1.6668  0.8824
ZINC_FINGER_C2H2_1.9.HIS.ND1 0.9141 3.7644  0.1176  1.8198 ~ 0.6471 1.3989  0.7647
ZINC_FINGER_C2H2.1.9.HIS.NE2 0.9150 5.3143  0.0000. . 2.3368  0.8824 1.6398  0.8824
ZINC_PROTEASE. 3.HIS.ND1 0.8814 3.9136  0.3889  2.4831  0.7778  1.7811  0.8333
ZINC_PROTEASE. 3. HIS . NE2 0.8720 4.8449  0.0556 ~-2.5185 0.7778 1.7717  0.8333
ZINC_PROTEASE.4.GLU. OE1 0.8915 3.5562 . 0.5000  2.3600 0.8333 . 1.7335 0.8333
ZINC_PROTEASE.4.GLU.DE2 0.8279 4.2847 0.4444 - 2.5085 0.7778 1.7901 . 0.8333
‘ZINC_PROTEASE. 7.HIS.ND1 0.8638 3.7015  0.0000  2.1759  0.6667 1.6324  0.7222
ZINC_PROTEASE.7.HIS.NE2 0.9115 5.4711  0.0000  2.4483 0.7778 1.6937  0.8889

A.2 Positive training sets

The fable below lists the stitiVe training sets for each‘ SeqFEVAT'UREVmodel.. The
list is Organizedby PROSITE pattern; the model sbeciﬁcatidn indicates the‘position,
residue, and atom-at which the corresponding model'is centered. The site lists specify
the PDB ID and chain VID, and the residue ID of each site used in training that

particular model.

. Table‘ A,2: Positi\}e training sets for SeqFEATURE models.

Model specification Positive sites
2FE2S_FERREDOXIN
1.CYS.SG (1CZP:A, CYS41), (1DOI:_, CYS63), (1F04:A, CYS43),

(1JQ4:A, CYS42), (1KF6:B, CYS57), (1KRH:A, CYS41),
(108R:A, CYS86), (1QLA:B, CYS57), (2PIA:_, CYS272)
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6.CYS.SG ' " (1CZP:A, CYS46), (1DOI:., CYS68), (1F04:A, CYS48),
(1JQ4:A, CYS47), (1KF6:B, CYS62), (1KRH:A, CYS46),

. (108R:A, CYS91), (1QLA:B, CYS62), (2PIA:_, CYS277)
9.CYS.SG  (1CZP:A, CYS49), (1DOI:_, CYS71), (1F04:A, CYS51),
‘ ‘ (1JQ4:A, CYS50), (1KF6:B, CYS65), (1KRH:A, CYS49);
(108R:A, CYS94), (1QLA:B, CYS65), (2PIA:., CYS280)

4FE4S_FERREDOXIN

1.CYS.SG (1FEH:A, CYS147), (1FEH:A, CYS190), (1GTE:A, CYS986),
) - © (1H98:A, CYS39), (1HFE:L, CYS35), (1HFE:L, CYS66),
(1JB0:C, CYS10), (1JBO:C, CYS47), (1JNR:B, CYS47), "
A
B

(1KEK:A, CYS689), (1KEK:A, CYS745), (1KF6:B, CYS148), -
(1KQF:B, CYS133), (INEK:B, CYS149), (1QLA:B, CYS151),
(1VJW:_, CYS10), (1XER:., CYS83), (2FDN:_, CYS8),
(2FDN:_, CYS37), (7FD1:A, CYS39)

3.CYS.SC (1FEH:A, CYS150), (1FEH:A, CYS193), (1GTE:A, CYS989),
' : - (1H98:A, CYS42), ({HFE:L, CYS38), (1HFE:L, CYS69),
(1JB0:C, CYS13), (1JBO:C, CYS50), (1JNR:B, CYS50),
(1KEK:A, CYS692), (1KEK:A, CYS748), (1KF6:B, CYS151),
(1KQF:B, CYS136), (INEK:B, CYS152), (1QLA:B, CYS154),
(1VJW:_, CYS13), (1XER:., CYS86), (2FDN:., CYS11),
, (2FDN:_, CYS40), (7FD1:A, CYS42) ' '
5.CYS.SG¢ ‘(1FEH:A, CYS153), -(1FEH:A, CYS196), (1GTE:A, CYS992),
(1H98:A, CYS45), (1HFE:L, CYS41), (1HFE:L, CYS72),
(1JBO:C, CYS16), (1JB0:C, CYS53), (1JNR:B, CYS53),
(1KEK:A, CYS695), (1KEK:A, CYS751), (1KF6:B, CYS154),
(1KQF:B, CYS139), (1NEK:B, CYS155), (1QLA:B, CYS157),
(1VIW:_, CYS16), (1XER:_, CYS89), (2FDN:., CYS14),
(2FDN:., CYS43), (7FD1:A, CYS45) '

7.CYS.SG , (1FEH:A, CYS157), (1FEH:A, CYS200), (1GTE:A, CYS996),
A, CYS49), (AHFE:L, CYS45), (1HFE:L, CYS76),
(1JBO:C, CYS20), (1JBO:C, CYS57), (1JNR:B, CYS57),
A, CYS699), (1KEK:A, CYS755), (1KF6:B, CYS158),
B, CYS143), (INEK:B, CYS159), (1QLA:B, CYS161),
(1VIW:_, CYS20), (1XER:., CYS93), (2FDN:_, CYS18),
(2FDN:_, CYS47), (7FD1:A, CYS49)

AA_TRANSFER.CLASS.1

4.LYS.NZ (1AJS:A, LYS258), (1GDE:A, LYS233), (1LC5:A, LYS216),
(IM7Y:A, LYS273), (104S:A, LYS234), (1QIS:A, LYS258)

AA_TRANSFER_CLASS 2

4.LYS.NZ ' : (1BSO:A, LYS236), (1DQU:A, LYS473), (1FC4:A, LYS244),
(1FG7:A, LYS214), (1LSS:A, LYS17)
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AA_TRANSFER_CLASS_3

(1GTX:A, LYS329), (1QJ5:A;'LYS274), (2DKB:_, LYS272),

19.LYS.NZ
(2GSA:A, LYS273), (20AT:A, LYS292)
ADH_SHORT v
3.TYR.OH (1B16:A, TYR151), (1BDB:_, TYR155), (1CYD:A, TYR149),
: (1E7W:A, TYR194), (1EDO:A, TYR167), (1FMC:A, TYR159),
(1GCo:A, TYR158), (1GEG:A, TYR152), (1HDC:A, TYR152),
 (1HXH:A, TYR151), (1JA9:A, TYR178), (1JTIV:A, TYR155),
(INSD:A, TYR193), (INXQ:A, TYR155), (100E:A, TYR143),
(1UAY:A, TYR148), (2AE2:A; TYR159) :
ADH_ZINC
2 HIS.ND1, 2.HIS.NE2 (1E3J:A, HIS66), (1F8F:A, HISGS), (1HET:A, HIS67),
: : (1JQB:A, HIS1059), (1JVB:A, HIS68), (1KOL:A, HIS67)
~ADX
6.CYS.SG . (1AYF:A, CYS52), (1AYF:A, CYSS2),'(1B9R:A, CcYsas),
v (1E9M:A, CYS45), (1ESM:A, CYS45), (1I7H:A, CYS48)
9.CYS.SG (1AYF:A, CYS55), (1AYF:A,ACYSSS), (1B9R:A, CYS48),
‘ (1E9M:A, CYS48), (1E9M:A, CYS48), (1I7H:A, CYS51)
ALDEHYDE DEHYDR_CYS _
6.CYS.SG (1AD3:A, CYS243), (1AMU:A, CYS376), (1EUH:A, CYS284),
(1JR2:A, CYS119), (10BZ:A, CYS166), (1QJ4:A, CYS81)"
ALDEHYDE_DEHYDR_GLU ‘
2.GLU.OE1, 2.GLU.DE2 (1AD3:A, GLU209), (1FNA:_, GLU38), (1KQ3:A, GLU244),

(1LW7:A, GLU235), (1004:4, GLU268)

ASP_PROTEASE

4.ASP.

0D1, 4.ASP.0D2

"(1FKN:A, ASP32), (1FMB:_, ASP25), (1HRN:A, ASP32),

(1HRN:A, ASP215), (1J71:A, ASP32), (1J71:A, ASP218),.
(1KZK:A, ASP25), (1LF2:A, ASP34), (1LF2:A, ASP214);
(IMPP:_, ASP32), (IMPP:_, ASP215), (10EW:A, ASP35),

~ (10EW:A, ASP218), (2APR:., ASP35), (2APR:_, ASP218){

(2RSP:A, ASP37), (4FIV:_, ASP30)

ASX_HYDROXYL

3.ASN

.ND2, 3.ASN.0OD1

(1DX5:1I, ASN439), (1EMO:., ASN2144), (1HZ8:A, ASN57),
(1LMJ:A, ASN22), (INZI:A, ASN134)
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BETA_LACTAMASE_A

5.SER.0G

(1BSG:_, SER70), (1CI9:A, SER75),
(1GHP:A, SER70), (1M40:A, SER70)

(1E25:A, SER70),

\

BETA_LACTAMASE.B_1

' 4.HIS.ND1, 4.HIS.NE2.

6.HIS.ND1, 6.HIS.NE2

8.ASP.0D1, 8.ASP.0D2

(1A7T:A, HIS82), (1JJE:A, HIS7T),
(1SML:A, HIS84), (2BC2:A, HIS86) .
(1A7T:A, HIS84), (1JJE:A, HIST9),
(1SML:A, HIS86), (2BC2:A, HIS88)
(1A7T:A, ASP86), (1JJE:A, ASP81),
(1SML:A, ASP88), (2BC2:A, ASP90)

(1M2X:A, HIS116),

(1M2X:A, HIS118),

(1M2X:4&, ASP120),.

BPTI_KUNITZ_1

4.CYS.SG

8.CYS. SC

(1BIKE_, CYsS59), (1BUN:B, CYS40), -
(1G6X:A, CYs38), (1KTH:A, CYS38),

. (1BIK:_, CYS72), (1BUN:B, CYS53),

(1G6X:A, CYS51), (1KTH:A, CYS51),

(1DTX:_, CYS40),
(1SHP:_, CYS36)

(1DTX:., CYS53),

(1SHP:_, CYS49)

CARBOXYLESTERASE B_1

'11.SER.0C

(1DX4:A, SER238), (1EAS:A, SER200), (1LLF:A, SER209),

(1MX1:A3 SER1221), (1QE3:A, SER189

), (2BCE:., SER194)

CARBOXYLESTERASE_B_2

'3.CYS.SG

(1DX4:A, CYS93), (1EA5:A, CYS94),
(1MX1:A, CYS1116), (1QE3:A, CYS82)

(1LLF:A, CYS97),
, (2BCE:_, CYS80)

CHITINASE_18

9.GLU.OE1. 9.GLU.OE2

(1EDQ:A, GLU315), (1EDT:_, GLU132), (1GOI:A, GLU144),

(1ITX:A, GLU204), (1KFW:A, GLU192)

COPPER_BLUE

11 .HIS.ND1,
11 HIS.NE2

7.CYS.SG

(1AAC:_, HIS95), (1BAW:A, HIS92),
(IDFE:A, HIS32), (1E30:A, HIS143),
(1JZG:A, HIS117), (1KDJ:_, HIS90),
(1QHQ:A, HIS127), (2CBP:_, HIS84)
(1AAC:_, CYS92), (1BAW:A, CYS89),
(1DFE:A, CYS27), (1E30:A, CYS138),
(1J2G:A, CYS112), (1KDJ:_, CYS87),
(1QHQ:A, CYS122), (2CBP:_, CYS79)

(1BQK:_, HIS81),
(1JER:_, HIS94), .
(1PLC:_, HIS87),

(1BQK:., CYS78),
(1JER:_, CYS89),
(1PLC:_, CYS84),
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CYTOCHROME_C

_1.CYS.8G

(19HC
(19HC

(19HC:
(1A1V:

(1AQE

(1C75:
(1COT:
(1DIQ:
(1DXR:
(1E29:

" (1E85:

“(1ES6:
(1EXK:
(1EZV:
(1FGJ:
(1FGJ:

" (1FGJ:
(1FsT7:
(1FS7:
(1FT5:
(1GU2:
(1GYO:
(1H21:

(1H29:
(1H29:
(1H29:
(1H29:
(1H29:
(1H32:
(1HH5:
(1180:
(1JGs:
(1JNT:

~ (1Kss:

(1KSs:

(iM1Q:

(iM1Q:

(10AH:

(10AH:

(1Qos:

(1Q08:

(2cys
(3cao
(3CYR

:A, CYS47), (19HC:A,; CYS59), (19HC:A, CYS97),

:A, CYS111), (19HC:A, CYS127), (19HC:A, CYS225),

A, CYS241), (19HC:A, CYS267), (19HC:A, CYS284),

A, CYS289), (1AQE:., CYS38), (1AQE:_, CYs8e6)-,

:-, CYS105), (1BBH:A, CYS121), (1C52:_, CYS11),

A, CYS32),. (1CC5:_, CYS19), (1CNO:A, CYS14),

, CYS15), (1CPQ:., CYS118), (1CTJ:_, CYS15),
CYS615), (1DWO:A, CYS43), (1DXR:C, CYS87),

- CYS132), (1DXR:C, CYS244), (1DXR:C, CYS305),
CYs37), (1E2W:A, CYS21), (1ESD:A, CYS289),
CYS116), (1EEJ:A, CYS98), (1EEJ:A, CYS98),
CYs311), (1ETP:A, CYS119), (1EXK:A, CYS14),
CYS67), (1EXT:A, CYS30), (1EXT:A, CYS30),
CYs101), (1FCD:C, CYS11), (1FCD:C, CYS101),
CYS79), (1FGJ:A, CYS145), (1FGJ:A, CYS172),
CYS229), (1FGJ:A, CYS239), (1FGJ:A, CYS259),
CYS310), (1FGJ:A, CYS360), (1FPO:A, CYS66),
CYS168), (1FS7:A, CYS211), (1FS7:A, CYS295),
CYS326), (1FT5:A, CYS11), (1FT5:A, CYS60),
CYsS88), (IFT5:A, CYS134), (1GKS:_, CYS14),
CYS49), (1GYD:A, CYS36), (1GYO:A, CYS52),
CYS80), (1H10:A; CYS16), (1H10:A, CYS119),

" CYS209), (1H29:A, CYS80), (1H29:A, CYS114),
CYS135), (1H29:A, CYS178), (1H29:A, CYS202), -
CYS225), (1H29:4, CYS244), (1H29:A, CYS308),

€YS319), (1H29:A, CYS349), (1H29:A, CYS362),

A,

A,

L

-

CYS378), (1H29:
CYS519), (1H29:A, CYS536), (1H32:A, CYS76),
CYS177), (1H32:B, CYS42), (1H75:A, CYS11),
CYS26), (1HH5:A, CYS49), (1HH5:A, CYS62),
CYS13), (1IQC:A, CYS39), (1IQC:A, CYS183),
CYS108), (1JJU:A, CYS11), (1JMX:A, CYS12),
CYS58), (1JNI:A, CYS98), (1KBO:A, CYS604);
CYS14), (1KSS:A, CYS36), (1KSS:A, CYS68),
CYS82), (1KSS:A, CYS36), (1KV9:A, CYS591),
CYS15), (1M1Q:A, CYS35), (1M1Q:A, CYS58),
CYS75), (1MG2:D, CYS57), (1MQV:A, CYS113),
CYS188), (10AH:A, CYS230), (10AH:A, CYS317),
CYS349), (1QKS:A, CYS65), (1QL3:A; CYS14),
CYS15), (1Q08:A, CYS36), (1Q08:A, CYS65),

A, CYS79), (1YCC:_, CYS14), (2CCY:A, CYS118),
:_, CYS44), (2CY3:_, CYS92), (2CY3:_, CYS111);
:A, CYS36), (3CAD:A, CYS59), (3CAD:A, CYS96),
:_, CYsS30), (3CYR:_, CYS79), (451C:_, CYS12)
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CYS477), (1H29:A, CYS493),
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4.CYS.SG : (19HC:A, CYS50), (19HC:A, CYS62), (19HC:A, CYS100),
' . (19HC:A, CYS114), (19HC:A, CYS130), (19HC:A, CYS228),
' (19HC:A, CYS244), (19HC:A, CYS270), (19HC:A, CYS287),

C (1A1V:A, CYS292), (1AQE:., CYS41), (1AQE:_, CYS89), -

:  (1AQE:., CYS108), (1BBH:A, CYS124), (1C52:_, CYS14),

(1C75:4, CYS35), (1CC5:_, CYS22), (1CNO:A, CYS17), -

(1COT:., CYS18), (1CPQ:., CYS121), (1CTJ:., CYS18),
(1DIQ:C, CYS618), (1DWO:A, CYS46), (1DXR:C, CYS90),
(1DXR:C, CYS135), (1DXR:C, CYS247), (1DXR:C, CYS308),
(1E29:4, CYS40), (1E2W:A, CYS24), (1ESD:A, CYS292),

" (1E85:A, CYS119), (1EEJ:A, CYS101), (1EEJ:A, CYS101),
(1ES6:A, CYS314), (1ETP:A, CYS122), (1EXK:A, CYS17),
(1EXK:A, CYS70), (1EXT:A, CYS33), (1EXT:A, CYS33),
(1EZV:D, CYS104), (1FCD:C, CYS14), (1FCD:C, CYS104),
(1FGJ:A, CYS82), (1FGJ:A, CYS148), (1FGJ:A, CYS175),
(1FGJ:A, CYS232), (1FGJ:A, CYS242), (1FGJ:A, CYS262),
(1FGJ:A, CYS313), (1FGJ:A, CYS363), (1FPO:A, CYS69),

. (1FS7:A, CYS171), (1FS7:A, CYS214)., (1FS7:A, CYS298),
. (1FS7:4, CYS329), (1FT5:A, CYS14), (1FT5:A, CYS63), .
(1FT5:A, CYS91), (1FTS:4, CYS137), (1GKS:., CYS17),

- (1GU2:A, CYS52), (1GYO:A, CYS39), (1GYD:A, CYSSE),
(1GYO:A, CYS83), (1H10:A, CYS19), (iH10:A, CYS122),
(1H21:A, CYS212), (1H29:A, CYS83), (1H29:A, CYS117),
(1H29:4, CYS138), (1H29:A, CYS181), (1H29:A, CYS205),"
(1H29:4, CYS228), (1H29:A, CYS247), (1H29:A, CYS311),
(1H29:A, CYS322), (1H29:A, CYS352), (1H29:A, CYS365),
(1H29:A, CYS381), (1H29:A, CYS480), (1H29:A, CYS496),
(1H29:A, CYS522), (1H29:A, CYS539), (1H32:A, CYS79),
(1H32:A, CYS180), (1H32:B, CYS45), (1H75:A, CYS14),
(1HH5:A, CYS29), (1HH5:A, CYS52), (1HH5:A, CYS65), °
(1I80:A, CYS16), (1IQC:A, CYS42), (1IQC:A, CYS186),
(1JGS:A, CYS111), (1JJU:A, CYS14), (1JMX:A, CYS15),
(1JNI:A, CYS61), (1JNI:A, CYS101), (1KBO:A, CYS607),
(1KSS:A, CYS17), (1KSS:A, CYS39), (1KSS:A, CYST1),

- (1KSS:A, CYS85), (1KSS:A, CYS39), (1KV9:A, CYS594),
(1M1Q:4, CYS18), (1M1Q:A, CYS38), (1M1Q:A, CYS61),
(1M1Q:4, -CYS78), (1MG2:D, CYS60), (1MQV:A, CYS116),
(10AH:A, CYS191), (10AH:A, CYS233), (10AH:A, CYS320),
(10AH:A, CYS352), (1QKS:A, CYS68), (1QL3:A, CYS17),
(1Q08:A, CYS18), (1Q08:A, CYS39), (1Q08:A, CYS68),
(1Q08:4, CYS82), (1YCC:_, CYS17), (2CCY:A, CYS121),

(2CY3:_, CYS47), (2CY3:_, CYS95), (2CY3:_, CYS114),
(3CAD:A, CYSBQ‘), (3CA0:A, CYS62), (3CAD:A, CYS99),
- (3CYR:_, CYS33), (3CYR:_, CYS82), (451C:_, CYSi5) -
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- 5.HIS.ND1, 5.HIS.NE2

(19HC:
(19HC:
~ (19HC:

(1A1V:
(1AQE:
(1C52:
(1CNO:
(1CTJ:
(1DXR:
(1DXR:
(1E5D:
(1EEJ:
(1EXK:
(1EZV:
(1FGJ:
(1FGJ:
(1FGJ:
(1FS7:
(1FS7:
(1FT5:
(1GU2:
(16YD:
(1H21:
(1H29:
(1H29:
(1H29:
(1H29:
(1H29:
(1H32:
(1HH5:
(1180:
(1JGS:
(1JNI:
(1KSS:
(1KSS:
(1M1Q:
(1MG2:
(10AH:
(1QKS:
- (1Qos:
(1YCC:
(2CY3:
"(3CAD
(3CYR:

L " ¥ S

M
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‘A,

HIS382), (1H29

HIS51), (19HC:A, HIS63), (19HC:A, HIS101),

"HIS115), (19HC:A, HIS131), (19HC:A, HIS229),

HIS245), (19HC:A, HIS271), (19HC:A, HIS288),
HIS293), (1AQE:., HIS42), (1AQE:., HIS90),
HIS109), (1AYF:A, HIS56); (1BBH:A, HIS125),
HIS15), (1C75:A, HIS36), (1CC5:_, HIS23),
HIS18), (1COT:_, HIS19), (1CPQ:_, HIS122),
HIS19), (1DIQ:C, HIS619), (1DWO:A, HIS47),
HIS91), (IDXR:C, HIS136), (1DXR:C, HIS248),
HIS309), (1E29:A, HIS41), (1E2W:A, HIS25),
HIS293), (1E85:A, HIS120), (1E9M:A, HIS49),
HIS102), (1ES6:A, HIS315), (1ETP:A, HIS123),
HIS18), (1EXK:A, HIS71), (1EXT:A, HIS34),
HIS105), (1FCD:C, HIS15), (1FCD:C, HIS105),
HIS83), (1FGJ:A, HIS149), (1FGJ:A, HIS176),
HIS233), (1FGJ:A, HIS243), (1FGJ:A, HIS263),
HIS314), (1FGJ:A, HIS364), (1FPO:A, HIS70),
HIS172), (1FS7:A, HIS215), (1FS7:A, HIS299),
HIS330), (1FT5:A, HIS15), (1FT5:A, HIS64),

'HIS92), (1FT5:A, HIS138), (1GKS:_; HIS18),

HIS53), (1GYQ:A, HIS40), (1GY0:A, HISE6),
HIS84), (1H10:A, HIS20), (1H10:A, HIS123),
HIS213), (1H29:A, HIS84), (1H29:A, HIS118),
HIS139), (1H29:A, HIS182), (1H29:A, HIS206),
HIS229), (1H29:A, HIS248), (1H29:A, HIS312),
HIS323), (1H29:A, HIS353), (1H29:A, HIS366),
:A, HIS481), (1H29:A, HIS497),
HIS523), (1H29:A, HIS540), (1H32:A, HIS80),
HIS181), (1H32:B, HIS46), (1H75:A, HIS15),
HIS30), (1HH5:A, HIS53), (1HH5:A,.HISGG),
HIS17), (1IQC:A, HIS43), (1IQC:A, HIS187),
HIS112), (1JJU:A, HIS15), (1JMX:A, HIS16),
HIS62), (1JNI:A, HIS102), (1KBO:A, HIS608),
HIS18), (1KSS:A, HIS40), (1KSS:A, HIS72),
HIS86), (1KV9:A, HIS595), (1M1Q:A, HIS19),
HIS39), (1M1Q:A, HIS62), (1M1Q:A, HIS79),
HIS61), (1MQV:A, HIS117), "(10AH:A, HIS192),
HIS234), (10AH:A, HIS321), (10AH:A, HIS353),
HIS69), (1QL3:A, HIS18), (1Q08:A, HIS19),
HIS40), (1Q08:A, HIS69), (1Q08:A, HIS83),

. HIS18), (2CCY:A, HIS122), (2CY3:_,. HIS48),

HIS96), (2CY3:_, HIS115), (3CAD:A, HIS40),
HIS63), (3CAD:A, HIS100), (3CYR:_, HIS34),
HIS83), (451C:_, HIS16)
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 CYTOCHROME_P450

(1CPT:., CYS377), (1DZ4:A, CYS357), (1E9X:A, CY839.4)v,

8.CYS.SG
: (1GWI:A, CYS355), (1I07:A, CYS317), (1JFB:A, CYS352),
(1JIP:A, CYS351), (1JPZ:A, CYS400), (1LFK:A, CYS347),
(1N40:A, CYS345), (1N6B:A, CYS432), (IN97:A, CYS336)
C_TYPE_LECTIN_1
1.CYS.SG (1BYF:A, CYS96), (1DV8:A, CYS254),. (1EGI:A, CYS735),
- (1G1T:A, CYS90), (1H8U:A, CYS92), (1J34:A, CYS102),
(1JZN:A, CYS106), (1K9J:A, CYS368), (1GDD:A, CYS115),
(1TN3:_, CYS152), (2AFP:A, CYS101), (2MSB:A, CYS195)
- EF_HAND
. 1.ASP.0D1, 1.ASP.0D2 (1ALV:A, ASP150), (1ALV:A, ASP180), (1AUI:B, ASP30),
(1AUI:B, ASP62), (1AUI:B, ASP99), (1AUI:B, ASP140),
(1CO7:A, ASP28), (1C7V:A, ASP98), (1C7V:A, ASP135),
(1CTD:A, ASP14), (1DAV:A, ASP40), (1DGU:A, ASP108),
(1DGU:A, ASP153), (1EL4:A, ASP30), (1EL4:A, ASP123),
(1EL4:A, ASP159), (1EXR:A, ASP20), (1EXR:A, ASP56),
(1EXR:A, ASP93), (1EXR:A, ASP129), (1FI6:A, ASPS8), .
(1FPW:A, ASP109), (1FPW:A, ASP157), (1GAI:., ASP403),
(1HQV:A, ASP36), (1HQV:A, ASP103), (1IG5:A, ASP54),
(11J5:A, ASP230), (11J5:A, ASP265), (1I1J5:A, ASP295),
(11J5:A, ASP332), (1IRJ:A, ASP67), (1JBA:A, ASP69),
' (1JBA:A, ASP105), (1JBA:A, ASP158), (1JFJ:A, ASP10),
(1JFJ:A, ASP46);, (1JFJ:A, ASP85), (1JFJ:A, ASP117),
(1JJ2:C, ASP9), (1K3I:A, ASP75), (1K8U:A, ASP61),
(1K94:A, ASP132), (1K9U:A, ASP13), (1K9U:A, ASP48),
- (IM1X:A, ASP60), (1MR8:A, ASP59), (10QP:A, ASP111),
(10QP:A, ASP147), (1PG4:A, ASP101), (1PSR:A, ASP62),
(1QLS:A, ASP66), (1REC:_, ASP110), (1SRA:., ASP257),
(1WDC:B, ASP28), (2PVB:A, ASP51), (2PVB:A, ASP90),
(2SAS:_, ASP19), (2SAS:., ASP70), (2SAS:_, ASP115),
_ (2SCP:A, ASP16), (2SCP:A, ASP104), (2SCP:A, ASP138)
3.ASN.ND2, 3.ASN.ODi (1C7V:A, ASN100), (1CTD:A, ASN16), (1DAV:A, ASN42),
' : (1EL4:A, ASN32)., (i1FPW:A, ASN111), (1FPW:A, ASN159),
(1IG5:A, ASN56), (1IJ5:A, ASN232), (1IRJ:A, ASN69),
(1JBA:A, ASN71), (1JBA:A, ASN160), (1JFJ:A, ASN12),
(1JFJ:A, ASN119), (1JJ2:C, ASN11), (1K3I:A, ASN77),
(1K8U:A, ASN63), (1K9QU:A, ASN15), (IMR8:A, ASN61),
(10QP:A, ASN149), (1PSR:A, ASN64), (2SAS:., ASN21),
. (284S

:_, ASN72), (2SCP:A, ASN106), (2SCP:A, ASN140)
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3.ASP.0D1, 3.ASP.0OD2

5. ASN.ND2, 5.ASN.0OD1

_5.ASP.0D1, 5.ASP.0D2

5.SER.0G

7.GLU.OE1, 7.GLU.OE2
7.LYS.NZ

.7.THR.0G1

7.TYR.OH

‘9.ASN.ND2, 9.ASN.OD1 -

(1ALV:
(1AUI:
(1C07:
(1DGU:
(1EXR:
(1EXR:
(1HQV:
(1JBA:
" (1K94:
~(1QLs:
(1WDC:
(2SCP:
(1AUI:

(1EXR:
(1JBA:

(1REC

Bk e > W

W e > o>

By W PR el B

ASP152), (1ALV:A, ASP182), (1AUI:B, ASP32),
 ASP64), (1AUI:B, ASP101), (1AUI:B, ASP142),
ASP30), (1C7V:A, ASP137), (1DGU:A, ASP110),
ASP155), (1EL4:A, ASP125),. (AEL4:A, ASP161),
ASP22), (1EXR:A, ASP58), (1EXR:A, ASP95),
ASP131), (1FI6:A, ASP60), (1HQV:A, ASP38),
ASP105), (11J5:A, ASP267), (1IJ5:A, ASP334),
ASP107), (1JFJ:A, ASP48), (1JFJ:A, ASP87),
ASP134), (1K9U:A, ASP50), (10QP:A, ASP113),
ASP68), (1REC:_, ASP112), (1SRA:., ASP259),
ASP30), (2PVB:A, ASP53), (2PVB:A, ASP92),
ASP18) ’
ASN66), (1C7V:A, ASN139), (1EL4:A, ASN34),
"ASN60), (1EXR:A, ASN97), (1IJ5:A, ASN234),
ASN109), (1JFJ:A, ASN50), (1K3I:A, ASN79),

-

-

-

-

-

-

:_, ASN114)

(1AUI:
Qacrv:
(1DGU:
(1EXR:
(1FPW:
(1JBA:
(1JFJ:
(1K8U:
(1MRS8:
(1QLs:
(2PVB:
(28AS:
(2sCP:
(1ALV:
(1EL4:
(11J5:
(10qp:
(1AUT:
(1JFJ:
(10qP:
(1ALV:
(1K9U:
(1ALV:
(1EL4:
(11J5:
(10QP:
(1AUI:
(1FPW:

(1DAV:
(1EXR:

ASP103), (1AUI:B, ASP144), (1CO7:A, ASP32),
ASP102), (1CTD:A, ASP18), (1DAV:A, ASP44),
ASP112), (1DGU:A, ASP157), (1EXR:A, ASP24),
_ASP133), (1FI6:A, ASP62), (1FPW:A, ASP113),
ASP161), (1IG5:A, ASP58), (1IRJ:A, ASP71),
ASP73), (1JBA:A, ASP162), (1JFJ:A, ASP14),
ASP89), (1JFJ:A, ASP121), (1JJ2:C, ASP13),
ASP65), (1K9U:A, ASP17), (1K9U:A, ASP52),
ASP63), (10QP:A, ASP151),  (1PSR:A, ASP66),
ASP70), (1SRA:_, ASP261), (1WDC:B, ASP32),
ASP94), (2SAS:_, ASP23), (2SAS:_, ASP74),

-

-

-

-

-

-

-

, ASP119), (2SCP:A, ASP20), (2SCP:A, ASP108),

ASP142) ,

SER184), (1AUI:B, SER34), (1EL4:A, SER127),
SER163), (1HQV:A, SER40), (1HQV:A, SER107),
SER299), (11J5:A, SER336), (1K94:A, SER136),
SER115), (1PG4:A, SER105), (2PVB:4, SERS5)

GLU68), (1GAI:_, GLU409), (11G5:A, GLU60) ,
GLUS2), (1JJ2:C, GLU15), (1K8U:A, GLU67),
GLU153) '

LYS156), (1EL4:A, LYS36), (1JFJ:A, LYS91),
LYS19), (1PSR:A, LYS68)

THR186), (1DGU:A, THR114), (1DGU:A, THR159),
THR129), (1EXR:A, THR26), (1EXR:A, THR62),
THR236), (1JBA:A, THR75), (1K94:A, THR138),
'THR117), (1REC:_, THR116)

TYR105), (1CTD:A, TYR20), (1FPW:A,VTYR115),
, TYR163), (1JFJ:A, TYR123), (1SRA:_, TYR263)
, ASN48), (1DGU:A, ASN116), (1DGU:A, ASN161),
, ASN137), (1K8U:A, ASN69), (1MR8:A, ASN67)

-

-

-

-

-

-
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(1AUI:.

, ASP70), (1C7V:A, ASP106), (1C7V:A, ASP143),
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B
(1CTD:A, ASP22), (1EL4:A, ASP167), (1EXR:A, ASP64),
(1HQV:A, ASPi11), (1JBA:A, ASP77), (1JBA:A, ASP113),
(1JFJ:A, ASP54), (1JJ2:C, ASP17), (1K9U:A, ASPS6),
(10QP:A, ASP155), (1PSR:A, ASP70), (1QLS:A, ASP74),
(2SAS:_, ASP123) ‘ o
9.SER.0G (1AUI:B, SER38), (1AUI:B, SER107), (1AUI:B, SER148),
(1CO7:A, SER36), (1EXR:A, SER101), (1GAI:_, SER411),
(1HQV:A, SER44), (1IG5:A, SER62)., (11J5:A, SER238),
(11J5:A, SER303), (11J5:A, SER340), (1IRJ:A, SER75),
"(1JBA:A, SER166), (1JFJ:A, SER18), (1K9U:A, SER21),
(1PG4:A, SER109), (1REC:_, SER118), (1WDC:B, SER36),
. . (28AS:_, SER78), (2SCP:A, SER112), (2SCP:A, SER146)
9.THR.0G1 (1EL4:A, THR38), (1EL4:A, THR131), (1EXR:A, THR28),
‘ (1FI6:A, THR66), (1FPW:A, THR117), (1FPW:A, THR165),
(1JFJ:A, THRO3), (1JFJ:A, THR125), (10QP:A, THR119),
(2SCP:A, THR24)- : ' .
12.TYR.OH (11J5:A, TYR277), (1JBA:A, TYR81), (1K8U:A, TYR73),
(2sAs;:_, TYR82), (2SCP:A, TYR116) :
EGF_1
1.CYS.SG (1AUT:L, CYS78), (1AUT:L, CYS78), (1B6E:., CYS59),
(1EDM:B, CYS71), (1EDM:B, CYS71), (1EDM:B, CYST71),.
(1G1T:A, CYS142), (1G1T:A, CYS142), (1HAE:_, CYS34),
(1HAE:_, CYS34), (1I0X:A, CYS32), (1I0X:A, CYS32),
(1JL9:A, CYS31), (1JL9:A, CYS31), (1KLD:., CYS143),
(1KLO:., CYS143), (1LK9:A, CYS39), (1M1X:B, CYS547), .
(1M1X:B, CYS547), (109A:A, CYS45), (109A:A, CYS45),
(1TPG:., CYS73), (1TPG:_, CYS73), (1XDT:R, CYS132),
(1XDT:R, CYS132) :
3.CYS.SG (1AUT:L, CYS80), (1AUT:L, CYS80), (1B6E:_, CYS61),
' 3 (1EDM:B, CYS73), (1EDM:B, CYS73), (1GiT:A, CYS144),
(1G1T:A, CYS144), (1HAE:., CYS36), (1HAE:_, CYS36),
(1I0X:A, CYS34), (1I0X:A, CYS34), (1JL9:4, CYS33),
(1JL9:A, CYS33), (1KLO:_, CYS145), (1KLD:_, CYS145),
(1LK9:A, CYS41), (IM1X:B, CYS549), (iM1X:B, CYS549),
(109A:A, CYS47), (109A:A, CYS47), (1TPG:_, CYS75),
_ (1TPG:_, CYS75), (1XDT:R, CYS134), (1XDT:R, CYS134)
7.CYS.SG (1AUT:L, CYS89), (1AUT:L, CYS89), (1B6E:., CYS70),
(1EDM:B, CYS82), (1EDM:B, CYS82), (1G1iT:A, CYS153),
(1G1T:A, CYS153), (1HAE:_, CYS45), (1HAE:_, CYS45),
(1I0X:A, CYS43), (1I0X:A, CYS43), (1JL9:A, CYS42),
(1JL9:A, CYS42), (1KLO:_, CYS154), (1KLO:., CYS154),
(1LK9:A, CYS50), (IM1X:B, CYS558), (1094:A, CYS56),
(109A:A, CYS56), (1TPG:_, CYS84), (1TPG:., CYS84),
(1XDT:R, CYS143), (1XDT:R, CYS143)
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- EGF.2
- 1.CYS.SG (1cou:A, CYSS0), (4DX5:I, CYS407), (1EMO:_, CYS2151),
(1EMO:_, CYS2151), (1EXT:A, CYS137), (1FJS:L, CYS109),
(iHZB:A, CYS25), (1HZ8:A, CYS64), (1KLI:L, CYS112),
(INTO:A, CYS146) C . A ‘
3.CYS.$G (1CoU:A, CYS52), (1DX5:I, CYS409), (1EMO:_, CYS2153),
’ (1EXT:A, CYSlSQ),'(lFJS:L, CYS111), (1HZ8:A, CYS27),
(1HZ8:A, CYS66), (1KLI:L, CYS114), (AINTO:A, CYS148)
) 8.CYS.SG» ©- (1c0U:A, CYS64), (1DX5:I, CYS421), (1EMO:_, CYS2164),
(1EXT:A, CYS150), (1FJS:L,_CYSi24), (1H28:A,'CY339),
(1HZ8:A, CYS79), (1KLI:L, CYSi27),'(1NTO:A; CYS161)
| GLYCOSYL_HYDROL_F5
7}GLU.0E1, 7.GLU.QE2 (1BQC:A, GLU128), (1CZi:A, GLU192), (1ECE:A, GLU162),

(1EDG:., GLU170), (1EGZ:A, GLU133)., (7A3H:A, GLU139)

GLYCOSYL_HYDROL_F10

7.GLU.OE1, 7.GLU.QE2 (1CLX:A, GLU246), (1HIZ:A, GLU266), (1I1W:A, GLU237),
- (1L3I:A, GLU158), (1LBA:A, GLU48), (1XYZ:A, GLU754)
HIPIP
1.CYS.SG (1HLQ:A, CYSS4); (1HPI:_, CYSb1), (1ISU:A, CYS40),
(1IUA:A, CYS61), (2HIP:A, CYS48) '
_7.CYS.SG (1HLQ:A, CYS68), (1HPI:., CYS65), (1ISU:A, CYSG5),
' (1IVA:A, CYS75), (2HIP:A, CYS64)
HMA_1
5.CYS.SG (1AFJ:_, CYS14), (1AWO:_, CYS14), (1CC8:A, CYS15),
' (1CPZ:A, CYS11), (1FE0:A, CYS12), (1FVQ:A, CYS13),
_ (1JWW:A, CYS14), (1KOV:A, CYS13), (1MWZ:A, CYS15)
8.CYS.SG " (1AFJ:., CYS17), (1AWO0:_, CYS17), (1CC8:A, CYS18),
(1CPZ:A, CYS14), (1FEO:A, CYS15), (1FVQ:A, CYSiG),
(1JwW:A, CYS17), (1KOV:A, CYS16), (IMWZ:A, CYS18)
IG.MHC
.3.CYS.SG (1FOX:A, CYS492), (1FNG:A, CYS163), (1FNG:B, CYS173),
(1FP5:A, CYS418), (1FP5:A, CYS524), (1GPP:A, CYS75),
(1HDM:A, CYS173), (1HDM:B, CYS167), (1KSN:A, CYS259),
(1K5N:B, CYS80), (1L6X:A, CYS425), (1MV8:A, CYS213),
(1NCW:L,

CYsS194), (3FRU:A, CYS254), (8FAB:A, CYS193)
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- IMP.1
4.ASP.0D1, 4.ASP.0D2 (1GOH:A, ASP81), (1INP:_, ASP153), (1KA1:A,»ASP142),
‘ ‘ (1LBV:A, ASP82), (2HHM:A, ASP90) : -
KAZAL
1.CYS.SG (1LDT:L, CYS6I), (1PCE:., CYS20), (1SGP:I, CYS16),
v (1TBR:R, CYS8), (1TGS:I, CYS16)
3.CYS.SG ) (1LDT:L, CYS14I), (1PCE:_, CYS28), (1SGP:I, CYS24),
o ‘ (1TBR:R, CYS16), (1TGS:I, CYS24) =~
7.CYS.SG (1LDT:L, CYS25I), (1PCE:_, CYS39), (1SGP:I, CYS35),
(1TBR:R, CYS27), (1TGS:I, CYS35) ‘
9.CYS.SG " (1LDT:L, CYS29I), (1PCE:., CYS42), (1SGP:I, CYS38),
(1TBR:R, CYS31), (1TGS:I, CYS38)
LIPASE.SER
7.SER.0G (1BU8:A, SER152), (1CVL:_, SER87), (1G66:A, SER90),
(1HLG:A, SER153), (1JFR:A, SER131), (1MNA:A, SER148),
(1TIB:_, SER146), (3TGL:_, SER144) '
LIPOYL ‘
9.LYS.NZ (1FYC:_, LYS50), (1GHK:_, LYS42), (1GWS:B, LYS78),
(1HTP:_, LYS63), -(1K8M:A, LYS45), (1LAC:_, LYS42),
(1QJ0:A, LYS41) ‘
L_LDH ,
4.HIS.ND1, 4.HIS.NE2  (1EZ4:A, HIS193),.(1HYE;A, HIS178), (1HYH:A, HIS198),
(1LDM:_, HIS193), (iLLD:A, HIS180) ‘
PA2_HIS - 5
4 HIS.ND1, 4.HIS.NE2 (1EN2:A, HIS67), (1G4I:A, HIS48), (1LE6:A, HIS46),
(1MC2:A, HIS1048), (1POC:_, HIS34) .
PEROXIDASE_1
8.HIS.ND1, 8.HIS.NE2 (1ARU:_, HIS184), (1GPE:A, HIS162), (1GWU:A, HIS170),
‘ (1JDR:A, HIS175), (1MWV:A, HIS279), (1N62:C, HIS35),
(10AF:A, HIS163) ‘
PEROXIDASE_2
- 8.HIS.ND1, 8.HIS.NE2 (1ARU:_, HIS56), (1GWU:A, HIS42), (1JDR:A, HISS2),

(1Mwv

:A, HIS112), (10AF:A, HIS42)
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PHOSPHOPANTETHEINE

6.SER.0G

(1AF8:_, SER42), (1DNY:A, SER45), (1G1K:A, SER68),
(1KBO:A, SER65), (1LOI:A, SER36), (1N8L:A, SER38),
(1NW1:A, SER225), (1QQE:A, SER93), (2UAG:A, SER116)"

PROTEIN_KINASE_ST

5.ASP.0OD1, 5.ASP.0D2

(1A06:
(1CSN:
(1GZ8:

(1JKS

(1M2R:
(106L:
(1PHK:

A,
A,
A,
A,

ASP141), (1APM:E, ASP166)
ASP131), (1F3M:C, ASP389)
ASP127), (1H1W:A, ASP205)
ASP139), (1KOB:A, ASP174)
ASP156), (1MUQ:A, ASP256)
ASP275), (106Y:A, ASP138)
ASP149), (1PME:_, ASP149)

, (1B6C:B, ASP333),
, (1GNG:A, ASP181),
, (1HOW:A, ASP294),
, (1KWP:A, ASP186),
, (INVR:A, ASP130),
, (10MW:A, ASP317),

PROTEIN_KINASE.TYR

5.ASP.OD1, 5.ASP.OD2

(1FGK:A, ASP623), (1M14:A, ASP813),

(1QPC:A, ASP364), (1TKI:A, ASP144)

(1p40:A, ASP1105),

PTS_HPR_SER

:A, SER333), (1G61:A, SER2177), (1IUO:A, SER56),

5,SER.0OG (1D8C
(1KSS:A, 'SER446), (1PCH:_, SER46), (1PTF:., SER46)
RNASE_T2_1
4.HIS;ND1, 4 .HIS.NE2 (1BOL:A, HIS46), (1DIX:A,fHIS39);v(1IOO:A; HIS32),
(11IQQ:A, HIS33), (1UCA:A, HIS34) :
SHIGA _RICIN
5.GLU.OE1, 5.GLU.QE2 >(1D6A:A, GLU176), (1DMO:A, GLU167), (1GGP:A, GLU164),
' ‘ (1HWM:A, GLU163), (1IFT:_, GLU177), (1MRJ:_, GLU160), -
_ o (1QI7:A, GLU176) B ' C
- 8.ARG.NE, 8.ARG.NH1, (1D6A:A, ARG179), (1DMO:A, ARG170), (1GGP:A, ARG167),
8.ARG.NH2 (1HWM:A, ARG166), (1IFT:_, ARG180), (1MRJ:_, ARG163),
’ (1QI7:A, ARG179) '

SMALL_CYTOKINES_CC

1.CYS.SG
2.CYS.SG
11.CYS.SG

12.CYS.SG -

(1B3A:
(1ELO:
(1B3A:
(1ELO:
(1B3A:
(1ELO:
(1B3A:
(1ELO:

CYS10), (1CM9:A, CYS14),
CYS11), (1G2T:A, CYS10),
CYS11), (1CM9:A, CYS15),
CYS12), (iG2T:A, CYS11),
CYS34), (1CM9:A, CYS38),
CYS35), (1G2T:A, CYS34),
CYS50),- (1CM9:A, CYS54),
CYS51), (1G2T:A, CYS50),

(1DOK:
(1M8A:
(1DOK:
(1M8A:
(1DOK:
(1M8A:
(1DOK:
(1M8A:

C S S

-

-

-

.

cysi1),
CYS6):
cYs12),
cYs7?)
CYS36),
CYS32)
CYS52),
CYS48)
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SNAKE_TOXIN

2.CYS.SG (1FAS:_, CYS39), (1FF4:A, CYS42), (1JGK:A, CYS43),
» (1TGX:A, CYS38), (2CTX:., CYS41), (3EBX:_, CYS41)

4.CYS.SG (1FAS:_, CYS41), (1FF4:a, CYS46), (1JGK:A, CYS4T),
. (1TGX:A, CYS42), (2CTX:_, CYS45), (3EBX:_, CYS43)

'7.CYS.SG (1FAS:_, CYS52), (1FF4:A, CYS57), (1JGK:A, CYS59),
(1TGX:A, CYS53), (2CTX:_, CYS56), (3EBX:., CYS54)

8.CYS.SG (1FAS:_, CYS53), (1FF4:A, CYS58), (1JGK:A, CYS60),
(1TGX:A, CYS54), (2CTX:_, CYS57), (3EBX:., CYS55)

SUBTILASE_ASP
5.ASP.0D1, 5.ASP.0D2 (1CJY:A, ASP549), (1GCI:_, ASP32), (1IC6:A, ASP39),
' (1MG7

:A, ASP58), (10T5:A, ASP175), (2RSL:A, ASP94)

THIOL_PROTEASE_ASN

6.ASN.

ND2, 6.ASN.0OD1

" (1CS8:A, ASN187), (1DEU:A, ASN200),
(1IWD:A, ASN178), (1ME4:A, ASN175)

(1GMY:A, ASN219),

THIOL_PROTEASE_HIS

3.HIS.

ND1, 3.HIS.NE2

(iCSS:A, HIS163), (1CV8:_, HIS120), (1EZI:A, HISSS),‘
(1GMY:A, HIS199), (1ME4:A, HIS159), (INST:A, HIS731),
(1QNT:A, HIS29), (3GCB:_, HIS369)

"THIOREDOXIN

8.CYS,SG . (1ERV:_, CYS32), (1F9M:A, CYS46), (1FVK:A, CYS30),
(1JFU:A, CYS72), (1KNG:A, CYS92), (1MEK:_, CYS36),
(2TRX:A, CYS32) ' v '
11.CYS.SG (1ERV:_, CYS35), (1F9M:A, CYS49), (1FVK:A, CYS33),
(1JFU:A, CYS75), (1KNG:A, CYS95), (IMEK:_, CYS39),

(2TRX:A, CYS35) ‘ '

TRYPSIN_HIS

5.HIS.ND1, 5.HIS.NE2 (1A0J:A, HISS7), (1BID:_, HIS57), (1BQY:A, HIS57),
' - (1C5M:D, HIS57), (IDLE:A, HISS7), (1EAX:A, HISS7),
g (1EQ9:A, HIS57), (1GDN:A, HIS57), (1GVK:B, HISST7),
(1GVZ:A, HISS57), (1KLI:H, HIS57), (1LTO:A, HIS57),
- (1M9U:A, HIS57), (INN6:A, HIS60), (1QQ4:A, HIS36),

(1SGP:E, HIS57), (2HLC:A, HIS57)
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TRYPSIN_SER

6.SER.0G

(1A0J

(1Gvz
(1M9U
(18GP

:A, SER195), (1BIO:_, SER195), (1C5M:D, SER195),

- (1DLE:A, SER195), (1EAX:A, SER195), (1ELV:A, SER617),
(1EQ9

:A, SER195), (1GDN:A, SER195), (1GVK:B, SER195),
:A, SER195), (1KLI:H, SER195), (1LTO:A, SER195),
:A, SER195), (1NN6:A, SER197), (1QQ4:A, SER143),
:E, SER195), (2HLC:A, SER195) ‘

TYR_PHOSPHATASE. 1

"3.CYS.SG

(1D5R

(1JLN

CYs18

:A, CYS124), (1G4U:S, CYS481), (1I9S:A, CYS126),
:A, CYS480), (1LAR:A, CYS1522), (1LAR:A,
13), (1VHR:A, CYS124), (2SHP:A, CYS459)

UBIQUITIN.CONJUGAT_1

10.CYS.SG

-(1C4Z

(1U9a

:D, CYS86), (1JAT:A, CYS87), (1PZV:A, CYS88),
1A, CYS93), (2AAK:_, CYS88), (2E2C:_, CYS114)

ZINC_FINGER.C2H2 1

1.CYS.SG
3.CYS.SG -
7?HIS.ND1, 7. HIS.NE2.

9.HIS.ND1, 9.HIS.NE2

(111
' (1FN9:
(1PAA:
(1UBD:
(2DRP:

(2GLI

(1A11:
(1FN9:
(1PAA:

(1A11:
(1FN9:
(1NJQ:

(1TF3

(1YUJ;
(2GLI:
(1A11:
(1FN9:
(1NJQ:
(1TF3:
(1YUJ
© (2GLI

:A, CYS107), (1BHI:_, CYS9), (1E53:A, CYS360),
A, CYS51), (INCS:., CYS34), (1NJQ:A, CYSS8),
_, CYS134), (1TF3:A, CYS15), (1TF3:A, CYST75),
C, CYS298), (1UBD:C, CYS327), (1YUJ:A, CYS36),
A, CYS113), (2DRP:A, CYS143), (2GLI:A, CYS106),
:A, CYS202) o ’

A, CYS112), (1BHI:_, CYS14), (1E53:A, .CYS363),
A, CYS54),. (INCS:_, CYS39), (1NJQ:A, CYSi1),

, CYS137), (1TF3:A, CYS20), (1TF3:A, CYS80),

, CYS303), (1UBD:C, CYS330), (1YUJ:A, CYS39),

, CYS116), (2DRP:A, CYS146), (2GLI:A, CYS111),

, CYS207)

, HIS125), (1BHI:_, HIS27), (1E53:A, HIS376),
, HIS67), (1KSS:A, HIS52), (INCS:_, HIS52),

, HIS52), (2DRP:A, HIS129), (2DRP:A, HIS159),
, HIS124), (2GLI:A, HIS220)

, HIS129), (1BHI:_, HIS31), (1E53:A, HIS380),
, HIS71), (1KSS:A, HISS58), (1NCS:_, HISS6),
, HIS28), (1PAA:_, HIS155), (1TF3:A, HIS37),

c
A
A
A
A
A
:A, HIS93), (1UBD:C, HIS316), (1UBD:C, HIS343),
A
A
A
A
A
A, HIS98), (1UBD:C, HIS320), (1UBD:C, HIS347),

:A, HIS57), (2DRP:A, HIS134), (2DRP:A, HIS164),

:A, HIS129), (2GLI:A, HIS225)

, HIS24), (1PAA:_, HIS150), (1TF3:A, HIS33), .
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ZINC_PROTEASE

3.HIS.ND1, 3.HIS.NE2 - (1AST:., HIS92), (1BKC:A, HIS405), (1DI1:A, HIS191),
o ' ' (1DMT:A, HIS583), (1EB6:A, HIS128), (1EPW:A, HIS229),
(1EZM:_, HIS140), (1FX7:A, HIS219), (1HS6:A, HIS295),
. (1I1I:P, HIS474), (1J7N:A, HIS686), (1K9X:A, HIS269),
(1KAP:P, HIS176), (1KEI:A, HIS142), (1KUF:A, HIS144),

(1LML:_, HIS264), (108A:A, HIS383), (3FAP:B, HIS113)

4.CLU.OE1, 4.GLU.OE2  (1AST:., GLU93), (1BKC:A, GLU406), (1DI1:A, GLU192),
: -~ "{  (IDMT:A, GLUS84), (1EB6:A, GLU129), (1EPW:A, GLU230),
(1EZM:_; GLU141), (iFX7:A, GLU220), (1HS6:A, GLU296),
(1I11:P, GLU475), (1J7N:A, GLU687), (1K9X:A, GLU270),
(iKAP:P, GLU177), (1KEI:A, GLU143), (1KUF:A, GLU145),
: © (ALML:., GLU265), (108A:A, GLU384), (3FAP:B, GLU114) -

- '7.HIS:ND1, 7.HIS.NE2' - (1AST:., HIS96), (1BKC:A, HIS409), (1DI1:A, HIS195),
: (1DMT:A, HIS587), (1EB6:A, HIS132), (1EPW:A, HIS233),

(1EZM:_, HIS144), ({FX7:A, HIS223), (1HS6:A, HIS299),
(1I1I:P, HIS478), (1J7N:A, HIS690), (1K9X:A, HIS273),
(1KAP:P, HIS180), (1KEI:A, HIS146), (1KUF:A, HIS148),

(1LML:_, HIS268), (108A:A, HIS387), (3FAP:B, HIS117)

A.3 Test sets for ’method’cdmparison

We generated test sets based on PROSITE for comparlng SeqFEATURE to other

methods as descrlbed 1n Sectlon 3.1.3. ‘The methods we compared were PROSITE ’
Gene3_D, Pfam, and HMMPanther (sequence-based); and SSM and 3D templates
(Structure—based). Below are the full test sets for PROSITE, and the subsets that |

were used to compare against the other methods.

Table A.3: PRbSITE-'derived true positive test set.

2FE2S_FERREDOXIN (033818, 1RM6:C), (P00216, 1E0Z:A), (P00221, 1A70:4),
' “ « (P00235, 1FRR:A), (P00237, 1WRI:A), (P00246, 4FXC:A),
(P00248, 1RFK:A), (P00250, 1FXI:A), (POA3C7, 1FXA:4),
(POA3C9, 1ROE:A), (P11053, 1FRD:A), (P21912, 1Z0Y:B),
(P22985, 1WYG:A), (P27320, 1DOX:4), (P27787, 1GAQ:B),

‘(P56408, 1AWD:A), (Q46509, 1SIJ:A) ‘
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4FE4S_FERREDOXIN -

(P21912,

- (P00208,
(P00193,

170Y:
i),
'1DUR:

1BLU

B),:

D,

. 137

(P07485, 1DWL:A), (Q45560, 1BC6:.),

(P00195,
(P31087,

i1CLF:
1KOT:

A)

-), (P00209, 1F2G: ),

_AA_TRANSFER_CLASS_1

(P18485,

(P00508,
- (P33447,

1IAX:
1AMA:
1BWO:

D,

4),

e

(PO0504,

(Q56232,

2CST
1B50

3TAT:

:A), (P23542, 1YAA:A),
:4), (P04693,

N,

* AA_TRANSFER_CLASS_3

(P22256,
(Q93R93,

18F2:

1VEF;

.
Y

“(Q7RT90,

1Z7D:

1), (Q8DLKs,

2CFB:

A,

ADH_SHORT

(070351,
(P09417,
(P11348,
(P16152,
(P28845,

- (P50172,
(Q12634,"

(Q6QLL4,
(Q949M3,

(Q9BPX1,

1E3W:
1HDR:
1DHR:
1WMA
1XU7:
1Y5M:
1DOH
1XSE
2CDH:
1YDE:

A,
1,
A,

:h),

A,

A) 2
h),
:h),

G,
A),

(075828,
(POASYS,

(P15047,

(P16544,
(P42556,
(P51659,
(Q56840,
(Q6UWP2,
(Q99714,
(QOBUT1,

'2HRB:

1UZN
2FWM:
1WAZ
1P33:
1ZBQ
2CFC:
1XG5
1U7T:
2AG5

A), - (P00334,

:4), (POAEK2,

X), (P15428,

+A), (P22414,

&), (P50162,

:A), (P69167,

4), (Q59787,

1), (Q724w1,

A)., (QoASX2;

:A)

1MG5
1Q7B

2ET6

1AE1:
INFF:
1K2W.:
1WNT:

1XQ1

:A),
1Q7B:A),
2GDZ:

A,

*h),
A) 2
A),

A,
A,

:h),

- ADH_ZINC

(057380,

(P00326,
(P07327,
(P26325,
(P42328,
(Q04894,

.1CDO

1POC:
1HTO:
1HSO:

1RIW:
1PIW:

A,
A),

:A), -
:4),

A)).
A,

(058389,
(P00328,
(P11766,
(P35630,
(P75691,
(QOQYYS,

2D8A:
1EE2:
1M6H
1Y9A:
1UUF:
1E3E

A), (P00325,
A), (P00330,

:4), (P14941,

a), (P40394,
A), (Qoo79se, .

:A)

1DEH

1AGN
1PL6

:4),
2HCY :
1BXZ:

A,
n,

:h),
:4),

ADX

(P00259,

10QQ

:hA)

ASP_PROTEASE

“(P0O0790,

(PO0796,
(P03355,
(P04024,

.. (P04587,

(P07339,

- (P12499,

(P20142,
(P42210,

1FLH
1SMR:
1RW3:
1NSO:
1BDQ:
1LYA:
1HXW:
1AVF:
1QDM:

:A),

n,
D,
A),
A),
A),
D,
B,
R,

(P00791,
(P00798,
(P03366,
(P04584,
(P05896,
(PO7570,
(P14091,

(P28871,

(P56272,

1F34

1APT
1A9M:
1HII
1AZ5
2D4M:
1TZS:
1EAG
1AM5

:4), (P00794,
:E), (P00799,

A), (P03367,

:h), (P04585,
:h), (PO7267,

A), (P12497,
4), (P17576,

:A), (P35963,
:A), (Q12567,

1CMS
2AST

1430
1DP5
4PHV

1K6C

:4),
:4),
1A8G:

D,

:h),
A,
:h),
1WKR:

A,

:hA),
1IBQ:

A)

ASX_HYDROXYL

(P00736,

- (PO8709,

(P07225,
(P10493,

1APQ:
1DVA:
1Z6C:
1GL4:

D),
L,
a,
A)

(P00743,
(000187,
(QOUHX3,

1WHE:
1SZB:
2B02:

), (P00742,
), (P46531,
), (g9IJss,

110E:
1T0Z:

INTO

L),
n,

:hA),

BETA_LACTAMASE_A

(POAD64,
(P00808,

- (47066,

10NG:
1IZS
1BZA:

A4),

:A),

A,

(P30896,
(Q59517,
(POCS5C1,

i1NSB
2CC1
2GDN:

‘1), (P52664,
:a), (P16897,

IV

1HZO
1G68

A),
:h),

BETA_LACTAMASE B_1

- (P26918,

1X8G:

A)
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BPTI _KUNITZ_1 (P25660, 1JC6:4), (P00979, 1DEM:A), (P00981, 1DTK:4),
(043278, 1YC0:1I), (P10646, 1IRH:A), (P48307, 1ZR0O:B),
(P81658, 1BFO0:A)
CARBOXYLESTERASE B_1 (P22303, 1B41:4), (P21836, 1C2B:A), (P19835, 1F6W:A),
: (P06276, 1POI:A), (P12337, 1K4Y:A), (P20261, 1CRL:A),
(P32946, 1GZ7:A), (P22394, 1THG:A)
CARBOXYLESTERASE_B_2 (P22303, 1B41:A), (P21836, 1C2B:A), (P19835, 1F6W:A),
: (P06276, 1POI:A), (P12337, 1K4Y:A), (P20261, 1CRL:A),
(P32946, 1GZ7:A), (P22394, 1THG:A)
CHITINASE_18 (P54196, 1D2K:A), (P07254, 1CTN:A), (P11797, 106I:4),
(Q13231, 1HKJ:A), (P23472, 1KQY:A)
COPPER_BLUE (P22365, 1ID2:A), (P04377, 1PAZ:A), (P04171, 1PMY:A),
(P80401, 1ADW:A), (P56547, 1RKR:A), (P56275, 1DYZ:A),
(P12335, 1CU0:A), (P00280, 1A4A:A), (P80546, 1J0I:A),
(P34097, 1NWO:A), (P80728, 1WS7:4), (P46444, 1TU2:4),
(Q3MOH8, 1FA4:A), (P18068, 2PLT:A), (P07465, 7PCY:A),
(P17341, 1PLA:A), (P00287, 9PCY:A), (P50057, 1B3I:A),
(P0O7030, 1BY0:A), (P00289, 1AG6:4), (P55020, 1BXU:A),
(P21697, 1JXD:A), (P56274, 1IUZ:A), (P42849, 1X9R:A),
(Q8RMH6, 2AAN:A), (P00281, 2IAA:A), (POC178, 2GIM:A)
CYTOCHROME_P450 (PO0178, 1P05:A), (P08684, 1TQN:A), (P10632, 1PQ2:4),
(P10635, 2F9Q:4), (P11509, 1Z10:4), (P11712, 10G2:4),
(Q8RNO3, 1UED:A)
C_TYPE_LECTIN (093427, 1UMR:C), (P06734, 1T8C:A), (P07897, 1TDQ:B),
(P08427, 1R13:A), (P08661, 1BV4:A), (P11226, 1HUP:A),
(P16109, 1G1Q:A), (P22029, 1FVU:4), (P23807, 1BJ3:4),
(P35247, 1B08:A), (QO06141, 1UVO:A)
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EF_HAND

(014815,

(095843,
(P02609,
(P02625,

'(P02632,

(P04353,

(P05044,

(P06495,
(P07164,

© (P08053,

(P17655,
(P24480,
(P28583,
(P30801,
(P41208,
(P61602,
(P62152,
(P62161,

(P63099,

(Q02818,
(Qo9196,

. (QSTHR3,

(Q8NFHS8,
(Q9NZT1,
(P97571,

1Z1IV:
2GGZ:
1M8Q
1633
1CB1
1QS7:
1GJY:
1NYA
1SL8:
2BLO:

“1KFU:

ANSH:
1S61:
1403
1M39:
1BJF:
1MXE:
1G4Y:
1TCO
1SNL:
1GGW:

1WLZ:

11Q3:
2B1U:
1KXR:

4),

b,
b,

:B),
:h), .
:hA), .

A,
A,

:4),

A,
B),
L).’
A),
A,

:4),

B,
b,
b,
A)’

:B),

A),
L,

a),
A),
A),

.(P62155;,

(016305,
(P02586,
(P02618,
(P02628,
(P02638,
(P04631,

(P05094,

(PO6704,
(POT171,

(P09860,

(P17928,
(P26447,
(P30563,
(P32930,
(P56503,
(P62144,

(P62166,
(P63316,
(Qo6850,
(Q25088, .

(Q64537,

(Q8R426,
(Q9sSDJo,
(P02588,

1007 :.
1A2X:

1B8C

1MHO
1DT7
1833
2D0Q

1VRK
1M31

S5PAL
1TTX:

1BU3
2BE6

1681
1AP4
2440

1AJ5

1AVS

N,
n,

:h),
1PVA:

A),

:h),
:A),
:A),
:4),
2F33:
1AJ4:

A),
A),

(),
),
:A),

A,

A),
:B),
"1CFF:
:B),.
:A),

:A),

1YX7:
1A,
1S6C:
1QTX:
:A)

A,

A,

A,
A,

(043745,
(P02592,
(P02621,
(P02631,
(P04271,
(P04632,
(P05938, -
(PO6787,
(P07384,
(P10688,
(P20472, .
(P27482,
(P30626,
(P35467,,
(P61023,
(P62149,

2BEC:

1EJ3
1A75

1UW0

2HQ8
1F55

iDJG

1GGZ:

1JUO
1K2H
2CT9
1AHR

(P62157, 1429

(P62204,
(P63317,
(Q07009,
(Q39419,
(Q84v3s,
(QoNzZI2,
(Q9SRPS,

131D
1DFO
1H4B

1S1E:
1TIZ:

139

A,

A,
:A),
10MD:

A),

:hA),
1KFU:

S),

:4),
:4),
1ZCM:

A) ’

:4),
1RJV:

A),

A),

:A),
),
:A),
:A),
:A);
1QIW:

A),

A,
A), .
tA),

1PMZ:

A,
A)':‘
N,

" EGF_1

. (Q01594,

(P00742,
(P16293,
(P01135,
(Q02763,

1LK9:

1XKB:

1X7A:
3TGF:
2GY5

J,
A,
0,
A),

:A)

(PO1132,
(P08709,
(P16109,
(P00T749,

1A3P

1FSB

A,

:4),
1URK:

b,

(P00741,
(P46531,
(014944,

:A), (P00743, 1WHE:
1FAK:

1PFX
1T0Z
1X36

A,

:L),
:4),
:4),

EGF_2

(PO0736,

(P00743,
(P16293,
(Q60675,

(000187,

(P01135,
(014944,

1APQ
1KIG:
1X7A:
1DYK:
1SZB:
1MOX:
1K36

:4),

0,
c),

A) 3

A),
c,

:A),

(P01133,
(P00741,
(Q14393,
(P16581,
(P46531;
(P35442,
(Qo2763,

1IV0
1PFX

2GY5

:0),
:L),
1H30:
1G1T:
1TOZ:
1Y08:
:A)

A)y
A,
A),
A),

(P01132,
(PO0O740,
(Q99075,
(P16109,
(P07225,
(P35070,,

1EGF :
1EDM:
1XDT:
1G1R:
126C:
110X:

A,

B),

R),

a),

A);

A),.

GLYCOSYL_HYDROL_F5

(PO6565,
(P23776,

1E5J
1H4P:

:4),

A)

(PO7985,

1CEC:

A,

(P19424,

1Go1

:4),

GLYCOSYL_HYDROL_F10

(P07986,

1EXP:

A,

(P56588,

1BG4:

A),

(P26514,

1EOW

:A)

 HIPIP

(P00260,

1BOY:

A,

(P59860,

3HIP

tA)

HMA_1

(P35670,
(Q60048,

2EW9:

A),
A)

(P73241,

2GCF :

A),

(Q48271,

1YGO

-A) >

2AJ0:
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IG.MHC - : (P30443, 1W72:A), (P05534, 2BCK:A), (P10316, 1AQD:F),
SRR .- (P18464, 1E27:A), (P61770, 2BVO:B), (P30504, 1IM9:4), -
(P28078, 1K8I:A), (P01903, 1A6A:a), . (P01888, 1BMG:A),
(P61771, 1C16:.), (P01887, 1BII:B), (P61770, 2AV1:B),
(P01864, 1BOG:B), (P01865, 1EGJ:H), (P01867, 1CIC:B),
(P01904, 1KTD:A), (P01909, 1S9V:A), (P04225, 1JK8:A),
(P14483, 1LNU:B),- (P04228, 1IAC:A), (P01910, 1D9K:C),
(P06344, 1K2D:B), (P01876, 10W0:a), (P01861, 1ADQ:A), .
(P01837, 1AHW:A), (P01843, 1JNH:A), (P01842, 1JVK:A),
(P25311, 1T7V:A), (P01880, 1ZV0:C) :

- IMP1 .~ - (014732, 2FVZ:A), (P20456, 2BJI:A), (QOZ1N4, 1JP4:A)

CKAZAL (096790, 1KMA:A), (P00995, 1CGI:A), (PO1001, 2BUS:A),
' (P01003, 10V0:4), (P67954, 1IY5:A), (Q9NQ38, 1HDL:A),
(P68436, 1M8B:A) : .

LIPASE_SER - . ' (042807, 1USW:A), (P00591, 1ETH:A), (P06857, 1RP1:A),
: (P16233, 1LPA:A), (P22088, 1HQD:4), (P26876, 1EX9:A),
(P29183, 1HPL:4), (P61870, 1TIA:A), (P61871, 1LGY:4),

. (P61872, 1TIC:A), (P80035, 1K8Q:A)

PEROXIDASE_2 ~ (P48534, 1APX:A), (059651, 1ITK:A), (Q08129, 1SJ2;A),
o (P49012, 1LGA:A), (P11542, 1QPA:A), (P06181, 1B80:A),
(Q02567, 1MN1:A), (P22195, 1SCH:A), (Q42578, 1Q04:.),

(Q39034, 1QGJ:A), (Q42578, 1PA2:A), (P28314, 1LY8:4)

PROTEIN KINASE.ST - (005871, 1RWI:A), (008679, 1ZMU:A), (043293, 1YRP:4A),
‘ : ' (043318, 2EVA:A), (075582, 1VZO0:4), (075716, 2BUJ:A),

(094804, 2J7T:A), (096017, 2CN5:4), (P00517, 1Q24:A),

(PO5771, 2I0E:A), (P06244, 1FOT:A), (P06782, 2EUE:A),

(PO6784, 2BYH:C), (POA5S5, IMRU:A), (P11309, 1XQZ:A),

-(P15056, 1UWH:A), (P15442, 1ZY4:A), (P16892, 2FA9:A),

(P19525, 2A19:B), (P30291, 1X8B:4), (P36507, 1S9I:A),

(P36887, 1CTP:E), (P41743, 1ZRZ:A), (P43250, 2ACX:A),

(P45983, 1UKH:A), (P49759, 1Z57:4), (P49761, 2EU9:A),
(P50613, 1UA2:A), (P51955, 2JAV:A), (P53779, 1PMV:A),

(P54646, 2H6D:A), (P63086, 1ERK:A), (P68400, 1JWH:4),

(P78368, -2C47:4), (QO0534, 1G43N:A), (QO0535, 1H4L:A),
- (Q02750, 1S9J:A), (QO4759, 1XJD:A), (QO6486, 1CKI:A),

(Qo7785, 10B3:4), (Q16659, 2I6L:A), (Q28021, 2F2U:A),

(Q96SB4, 1WBP:A), (Q99683, 2CLQ:A), (QOH2G2, 2J51:A),

(QOHBH9, 2AC5:A), (QOHCPO, 2CMW:A), (Q9JIH7, 1TAH:A),

(Q9JLS3, 1USQ:A), (QOPOL2, 2HAK:A), (QOP1W9, 2IWI:A),

(QOUIK4, 1WMK:A), (Q9Y6M4, 2CHL:4)

SHIGA-RICIN (PO6750, 1RZD:A), (P11140, 1ABR:B), (P16094, 1AHA:4),
: -(P22851, 1INIO:A), (P23339, 1GIK:A), (P24476, 1LP8:A),
(P24817, 1CF5:A), (P33185, 1BRY:Y),  .(Q03464, 1APA:A),

(Q40772, 1LLN:A), (QOM6E9, 2Q3N:A) ' :
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'SMALL_CYTOKINES.CC . .

(089093,
(P51671,

. (P80098,

1HA6

:A),
1EOT:
1B0O:

a),
ISH

(P10147,

(P55773,

(Q16663,

1B50
1691
2HCC

:A), (P13236,
:A), (P80075,
:A), (Q92583,

1HUM:
1ESR:
1NR2:

4),

A,

A

-, SNAKE_TOXIN

(P01379,

“"(P01391,
.- (P01416,
- (P01441,

(P01451,

(PO7525,

(P60301,
(P60770,

(P80245,

(P83346,

1LST
1YI5

ANTX:

1CB9
1RL5

1CHV:
1HOJ;
:h),
1UG4 :
:h),

1VeP

1vYC

:4),
:h),
4y,
8,
:4),
S),

A),

A,

(P01382,

(P01398,,
(P01426, .

(P01442,

(P01452,

(POC170,
(P60304,

- (P60775,
(P80958,

(Q98959,

ANTN:

1KBA
1IQ9
1CRE

1B41

2CDX:

1QKD:
:A), (P82849,

:h) o

10NJ
1102

A), (P01386;

:A), (P01414,
:A), (P01427,
:4), (P01443,
1CDT:

4), (P01467,

:B), (P59276,

A), (P60616,
A), (P62375,

1TXA
1TFS

1KBS
1JE9

1HCO
1KXI

:A),
‘A),
1NOR:

8,

:4),
2CCX:
1),
:A),
:A),
1G6M:

4),

A,

 SUBTILASEASP =

(P15926,
(q99405,

(PO7518, "

(P29599,

1XF1

.1WSD
1MEE:

1ST3

),
:4),

n,

:h),

(P27693,
(P00782,

(P04189,

(POO781,

1AH2
1DUT
1sCJ
1BH6

:A), (P23188,
:A),. (POO780,
:A), (P04072,
:h), (Q45670,

1P8J

1DBI

1 (A,
1SBC:
1TEC:

K),
E),

tA)

THIOL PROTEASE_ASN

(046427,
(PO0784,
(P05994,

" (P10056,
(P25774,

(P53634,

i1NB3:
th4),

1BP4

1GEC;
1MEG:
1GLO:

1K3B

A),

E),
",
A,

:A),

(060911,
(P00785,
(P07688,
(P14080,
(P43235,
(P80067,

1FHO:

1AEC
1ITO
1YAL
1ATK
1JQP

A), (065039,

:h), (P0O787,
:A), (P08176,
:A), (P25250,
), (P43236,
:A), (P83654,

1S4V:

1CPJ

2F05

A,

:A),
1XKG:
:h),
2F7D:
100E:

A),

n,
A

THIOREDOXIN

(043396,

(POT591,
(POAA30,
. (POAEG?,

(P22803,
(P30101,
(P52230,
(P80028,

" (QTKQLS,
- (QQH3N1,

1GH2

1FB6
2AJQ

1GOT:
1A,
2DMM:
1TO0O:
:h),
1SYR:
1X5E:

2FA4

1EP7

;A);
:A),
:B),

n,

4),
»,

n,
A,

(077404,

(P08003,
(POAEGS5,

(P17967,

(P23400,
(P35160,
(P55059,
(P80579,
(Q922R8,
(Qov429,

1073
2DJ1
1U3A

1DBY

1ST9
2DJJ

1XW9

:A), (095881,
:4), (POA61S6,
:A), (POAEGS,
2B5E:
:h), . (P29448,
:4), (P36655,
:4), (P58162,
ANSW;
2DML:

A), (P20857,

A), (Q15084, -
A), (Q99757,

:A), (QoD840,

1SEN:
2I1U:
A,
1THX:
A,

14),

A,
1X5D:
1W4V:

1EEJ
1XFL

1VRS
10C7

1WMJ

A),
A,

A,

n,
A,

:A)
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TRYPSIN_SER

(000187,

(P00736,
(POO743,
(P00750, -

- (P00759,
(PO0763,
" (P00770,

(POO776, -
(P04070,
(P0O6681,
(POTATT,
(P08311,
(P10144,
(P18291,
(P35031,
(P80219,
(Qo4756,.
(Q7S1G3,
(Q9I8X1,

1Q3X:
1GPZ:
1KIG:

1BDA:

1TON:
1J16
3RP2
18GC:
1AUT
216Q:
1TRN:
1AU8
1FQ3:
1FI8
1BIT:
1EUF:
1YBW:
1ELT:
10PO

A,
A),
H),

A,

A),

:A),
(A,

A,

:C),
p;

A),

th),

A,

:h),

4),
L,
),
L,

‘h),

(P00734,

(P00740,
'(PO0747,

(PO0O752,
(P00760,
(POO766,
(POO771,
(P03951,
(P0O5805,
(P0O6870;
(P08001,
(P08419,
(P12544.,
(P20231,

'(P41140,
(P98072,

(Qo7006,
(Q928786,
(Q9YsK2,

1B7X

1RFN:
A,
:h),

1BUI
1HIA

1AQ7:
:A)’
:h),
1XX9:
(),
:h),
1FIZ:
1BRU

1AB9
1AZZ

1FON
1SPJ

10P8

1EKB

1HPG:
:4),
:A)

1GVL
2BDG

tA)

A),

A,

A,

a),

:P),

h),
1A0L:
2SFA:
:4),

A),
A),

A),

(P00735,
(P00741,
(P00749, -
(P00756,
(P0o0761,
(POOT767,
(POO775,
(P03952,
(PO5981,
(P07338,
(P08246,
(P09872,
(P16293,
(P24158,
(P49863,
(P98119,
(Q61955, -
(Q9GL10,

1UCY:

1PFX

1C5W:
1SGF:
:h),
:4),

:A),-
2ANW:
128G:

1AKS
1AFQ
10S8

1KDQ

2ATP
1X7A
1FU0J
1MZA
1A51

A),

:L),
n,

G),
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I
B,

:hA),
1BOF:

A),.

1A),
:h),
1A,
A,
(A,
1NPM:
1FIW:

A,

Ay,

" TYR_PHOSPHATASE_1

(060729,

(P15273,
(P18052,
(P24656,
(P29350,
(Q05923,
(Q13614,
(Q15678,
(Q8NEJO,
(Qoyews,

10HC:
1PA9:
1P15
1YN9
1GWZ:
1M3G:
1LW3:
2BZL
2ESB"
1Z7ZW:

4,
A,

),
:4),

b,
A),
a),

:4),

A))
w,

(060942,

(P177086,
(P23467,
(P26045,
(P35236,
(Q12913,
(Q15256,

(Q16827,

(Q9BVJI7,
(Q9ZVN4,

2C46
1L8K
2AHS
2B49
1ZCo

'2CFV

2A8B
2G59
2IMG
1XRI

:4),
:4),
14),
:4),
(A)
:A),
‘h),
:h), .
tA),
:hA)

(PO8575,
(P18031,
(P23470,
(P28827,
(P54829,
(Q13332,
(15262,
(Q16849,
(Q9H1R2,

1YGR:
1BZC:
2NLK:
1RPM:

2B1J
2FH7
2C7S
211Y
1YZ4

A),
A):
A,
A)r

:4),
:hA),

:4),
:A),
:h),

UBIQUITIN_CONJUGAT-1

(000762,
(P156731,
(P50623,
(P60604,
(P61085,

(P62253,
. (P63279,
(Q5VVX9,

117K:
1Qcq
2GJD
2CYX
2BEP
2AWF
1A3S:
1YRV:

a),

:4),
:h),
1A),
(h),
:A),

A),
4),

(014933,
(P21734,

(P51668,
(P61077,

(P61086,
(P62837,
(P63283,
(Q96LRS,

1WzZV

1X23

2ESK
1KPS
1Y6L

v th), -
1FZY:
2C4P:

A,
A,

th),
1YLA:

A),

:h),
:C),
tA),

(P06104,
(P35129,
(P52478,
(P61081,
(P61088,
(P63146, -
(Qo2159,
(QONPDS,

1AYZ

1Z2U:
:A),
:hA),

1Q34
1Y8X

2C2V:
A,
1A,
:A)

1JAS
2UczZ
1YH2

:A),

A),

n,

- ZINC_FINGER C2H2_1

(Q922H1,
(Q60980,
(P08045,
(P15822,
(060281,
(Q96JIM2,
(P17028,
(Q07230,

1WIR:
1P7A:
1ZNF:
1BBO:
1X3C
1X6F:
1X6E:
2I3L:

A,
A,
A)»
A)»

(),

A),
b,
A)

(P49711,

(P08047,

(P47043,
(QONPAS,
(QoULJ3,
(Q9BME7,
(Q63HKS,

1X6H
1SP1
1Zw8

1WJP
2CTD

2DMI

1h), .
:h),

),
1X5W:
th),
:h),
:A),

A),

(035615,
(P19544,
(043298,
(P08048,
(Q9H4T2,
(000488, .
(QOBU19, -

1SRK
1XF7
2CSH

TZNF :

2C0T
1ZR9

b,

A,
:hA),
:h),
A),
:h),
:h),
2DLK:




"APPENDIX A. SEQFEATURE SUPPLEMENTARY DATA 143

Table A.4: PROSITE-derived false negative test sét.‘

2FE2S_FERREDOXIN ~ (PO7014, INEK:B), (P19915, 1FFU:A), (P19921, 1NSW:A),

- . (P21149, '1L5P:A), (P29166, 1C4A:A), (Q56223, 2FUG:3)

AFE4S_FERREDOXIN (Q8GC87, 1HOH:B), (P00210, 1FXR:A), (P10245, 1IGZ:A),

- ‘ : (P29603, 1SIZ:A) . - o

AA_TRANSFER CLASS1 (P95468, 1AY4:A), (P77806, 1U08:A)

ADH_SHORT . (093868, 1H5Q:A), (P97852, 1GZ6:A), (Q16698, 1WSU:A),
s (Q8NBQ5, 1YB1:A), (QOBY49, 1YXM:A), (QORPT1, 2B4Q:A) -

' ASPPROTEASE =~~~ (P54958, 1YG9:A) |

'BETALLACTAMASELA -~ (P52663, 1BUE:A).

BPTI_KUNITZ.1 -~ _(POC1X2, 1Y62:A), (P56409, 1TOC:R)

CHITINASE18 - = (P30922, 10WQ:A), (Q7YS85, 1SV8:A), (Q8SPQO, 1ZBW:A),

(P36222, 1HIV:A), (Q29411, 1XHG:A), (Q6TMGE, 1SRO:A);,‘
- (P49347, 1CNV:A), (P36911, 2EBN:A), (P36913, 1EOM:A),"
(Q8L5C6, 1TE1:A) ‘

CYTOCHROME_P450, (031440, 11Z0:4), (Q16647, 2IAG:A), (Q9KIZ4, 1PKF:A)

C_TYPE_LECTIN_1 - (054709, 1HQ8:A), (093426, 1UMR:A), (P20937, 1Q03:C),
- ’ ~ (P22030, 1FVU:B), (P26718, 1KCG:A), (P78380, 1YPO:A),
(P81397, 1SB2:4), (Q07108, 1E87:4), (Q13241, 1B6E:4),

(Q64329, 1P4L:D), (Q6QLQ4, 2BPD:A), (Q9PRS8, 1GZ2:A)

EF_HAND B (070200, 1WY9:A), (081223, 1VIF:A), (P25815, 1J55:4),
o : . (P33764, 1KS0:A), (P53141, 1M45:4), (P55008, 2G2B:A),
(P80511, 1E8A:A), (P97352, 2CXJ:A), (Q7G188, 1PXY:B),

(Q8LAS7, 1UHN:A), (Q99584, 1YUT:A), (Q99653, 2E30:A)

- EGF.1 : (P00736, 1APQ:A), (P09871, INZI:A), (QOUHX3, 2B02:A),
’ (P01130, 1HJ7:A), (D00187, 1SZB:A), (Q9JJS8, 1INTO:A),
(P05979, 1CQE:A), (QO5769, 1CVU:A), (P07204, 1DX5:4),
(P35442, 1Y08:4)

CEGF2 (Q01594, 1LK9:A), (P09871, INZI:A), (QOUHX3, 2B02:A),
| | . (P05979, 1CQE:A), (QOS5769, 1CVU:A) .
GLYCOSYLHYDROLF5  *  (Q8WPJ2, 2COH:A)
GLYCOSYL_HYDROLF10 - (Q00177, 1TA3:B) |
CHMAL (014618, 2CRL:A), (P40202, 1JK9:B)
IG_MHC S (P42081, INCN:A), (P22301, 1LK3:A), (P18464, 1E28:A),

(P01868, 1AHW:B) -
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KAZAL © (P16895, 1Y1B:A), (P19883, 2BU0:C), (P21674, 1LR9:A)
PEROXIDASE.2 /. (P80025, 2IPS:A), (P05164; 1CXP:A) ‘
* PROTEIN_KINASE.ST (096013, 2CDZ:A), (P47811, 1LEW:A), (P53778, 1CM8:A),

- (P72001, 2H34:A), (Q16539, 1DI9:A), (Q8WZ42, 1TKI:A),
(QONQUS, 2C30:A), (QONWZ3, 2NRU:A), (QOP286, 2F57:A)

SHIGARICIN -~ (P81446, 1M2T:A), (P84786, 2B7U:A)

SMALL_CYTOKINES_CC (000175, 1EIG:A) .

SNAKETOXIN ~ ~ ~ (P28375, 1DRS:A), (P81782, 1F94:A), (QOYGJO, LMRG:A)
THIOL_PROTEASEASN (014815, 1ZIV:A), (PO7384, 1ZCM:A), (POC1S6, 1PXV:A),-

(P17655, 1KFU:L), (P81297, 1CV8:4), (P82474, 1CQD:A),
(P84346, 2BDZ:A), (P97571, 1KXR:A), (Q01532, 1A6R:A),
(Qo7009, 1MDW:A), (Q13867, 1CB5:A), (Q9UBX1, 1M6D:A)

THIOREDOXIN L -(P32557, 1BED:4), (P45111, 1T3B:A),‘(P77202, 1V67:4),
: (QQBRA2,.1WOU:A),v(QQCQMS, 1VOW:4). - :

) TRYPSIN_SER S .(P00757, 1SGF:A), (P20160, 1AE5:A), (P35030, 1H4W:A),
(P36368, 1A05:A), (Q91516, 1BQY:A) ’ '

TYR_PHOSPHATASE 1 (075365, 1R6H:A), (Q12923, 1WCH:A), (Q16667, 1FPZ:A),
- (Q16828, 1MKP:A), (Q78EG7, 1X24:A), (Q93096, 1RXD:B),
(QONRW4, 1WRM:A) ,, |

UBIQUITIN_CONJUGAT  (P25604, 1UZX:A), (P53152, 1JAT:B), (Q15819, 1J74:4),
: ‘ (Q8N2K1, 2F4W:B), (Q8WVN8, 1ZU0:A), (Q99816, 1KPP:4) -

ZINC_FINGER_C2H2.1 (QOVPQE, 1FU9:A), (QOUKY1, 2DJ0:A):

Table A.5: PROSITE-derived false positive test set.

2FE2S_FERREDOXIN (Q02747, 1GNA:A)

" ADH_SHORT ' (060547, 1T2A:A), (POA114, 1GGV:A), (POA115, 1DIN:A),
© (POA7S9, 1P6G:M), (POA7T1, 2GY9:M), (POAC88, 1DB3:A),
(P26391, 1G1A:A) v :

- ASP_PROTEASE _ (029844, 2F6U:A), (P00808, 1I2S:A), (P11938, 1IGN:A),
' ‘ (P32797, 1KXL:A), (P37617, 1MWY:A), (Q9SBE2, 2D2X:A)

COPPER_BLUE ~© (P42230, 1Y1U:A), (P80256, 1DFE:A), (Q13133, 1UHL:B),
(Q5SHR2, 1YL3:9), (Q92673, 2DM4:A), (QOZOY9, 2ACL:B)

C_TYPELECTIN (Q69ZL1, 1WGQ:A)
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EF_HAND (000105, 1WMR:A), (014561, 2DNW:4), (P12735, 1JJ2:C),
(P69249, 1EJ7:8), (QO01745, 1GOF:A), (Q14764, 1Y7X:A),
(Q8ZKF6, 1PG3:A)

EGF_1 (Q13241, 1B6E:A), (P06820, 1ING:A), (P05803, 1NCD:N)

EGF_2 (P56682, 1CCV:A), (Q12830, 2F6J:A), (P25777, 1FWO:A),
(Q80TJ7, 1WEP:A), (P0O7174, 1SG1:X), (P19438, 1EXT:A),
(P26942, 1CZZ:D), (P20334, 1D0J:G)

GLYCOSYL_HYDROL._F5 (Q8K1R3, 1WHU:A)

GLYCOSYL_HYDROL.F10 (026249, 1L3B:A)

HMA_1 (P00118, 1F1F:A)

IG_MHC (P11759, 1MFZ:4), (P78560, 3CRD:4), (P06149, 1F0X:A),
(QOUNA1, 1UGV:A), (Q8WZ42, 1G1C:A), (P17255, 1DFA:A)

LIPASE_SER (059893, 1BS9:A), (P07174, INGR:A), (P40363, 1PV1i:A)

PEROXIDASE_2 (075534, 1WFQ:A), (043172, 1MZW:B)

SUBTILASE_ASP (P77335, 1Q0Y:A), (P47712, 1BCI:A), (Q23229, 1MG7:A)

ZINC_FINGER_C2H2_1 - (Q8MQJ9, 1Q7F:A), (P35555, 1APJ:A), (QOHVOO, 2FIY:A),
(QO7WU7, 1E39:A), (P0C278, 1KSS:4), (Q8K310, 1X4D:A),
(Q13133, 1UHL:B), (Q13888, 1Z60:A), (Q13049, 2CT2:4),
(P15024, 1EJ6:B), 2CSE:D), (Q9FKP8, 1WH5:4)
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Table A.6: Patterns tested for sequence-based methods. We compared SeqFEATURE
to three sequence-based methods on a subset of the PROSITE-derived test set, according to the
procedure described in Section 3.1.3. We performed the comparison for Pfam in March 2007 and
for Gene3D and Panther in October 2007, corresponding to version 21.0 for Pfam, 6.0 for Gene3D,

and 6.1 for Panther.

HMMPanther

COPPER_BLUE
C_TYPE_LECTIN
CYTOCHROME _P450
EF_HAND
GLYCOSYL_HYDROL_F5
HIPIP ‘
HMA_1

IMP_1

KAZAL

LIPASE_SER

PROTEIN KINASE_ST
SHIGA_RICIN
SMALL_CYTOKINES_CC
SNAKE_TOXIN
THIOL_PROTEASE_ASN
THIOREDOXIN
TRYPSIN_SER ,
TYR_PHOSPHATASE_1
UBIQUITIN_CONJUGAT_1

CHITINASE_18
COPPER_BLUE
CYTOCHROME_P450
C_TYPE_LECTIN_1
EF_HAND
GLYCOSYL_HYDROL_F5
GLYCOSYL _HYDROL_F10
HIPIP

HMA_1

IMP_1

PEROXIDASE_2
PROTEIN_KINASE_ST
SHIGA_RICIN -
SMALL_CYTOKINES_CC
SNAKE_TOXIN
THIOL_PROTEASE_ASN
THIOREDOXIN
TRYPSIN_SER
TYR_PHOSPHATASE_1
UBIQUITIN_CONJUGAT_1
ZINC_FINGER_C2H2_1

. Gene3D Pfam
2FE2S_FERREDOXIN 2FE2S_FERREDOXIN AA_TRANSFER_CLASS_3
AA_TRANSFER_CLASS_3 4FEAS_FERREDOXIN ADH_SHORT
ADH_SHORT AA_TRANSFER_CLASS_3 ADH_ZINC
ADH_ZINC ADH_SHORT BPTI KUNITZ_1
ADX ADH_ZINC CARBOXYLESTERASE B_1
ASP_PROTEASE ASP_PROTEASE CHITINASE_18
BETA_LACTAMASE B_1 BETA_LACTAMASE_A CYTOCHROME_P450
BPTI _KUNITZ_1 BETA_LACTAMASE B_1 IMP_1
CARBOXYLESTERASE_B_1 BPTI_KUNITZ-1 SMALL_CYTOKINES_CC
CHITINASE_18 CARBOXYLESTERASE B_1 THIOL_PROTEASE_ASN

TYR_PHOSPHATASE_1
UBIQUITIN_CONJUGAT.1
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Table A.7: Test sets for structure-based method comparison.

Positive set Negative set
PROSITE Pattern PDB ID | PROSITE Pattern PDB ID
AA_TRANSFER_CLASS_1 1AMA ADH_SHORT 1DB3
AA_TRANSFER_CLASS_1 1YAA ADH_SHORT 1T2A:A
ADH_SHORT 1HDR ADH_SHORT 1G1A
ADH_SHORT 1YDE ADH_SHORT 1GGV:A
ADH_ZINC 1HSO ADH_SHORT 1DIN
ADH_ZINC 1E3E ASP_PROTEASE 1128
BETA_LACTAMASE_A 1N9B ASP_PROTEASE 1IGN
BETA_LACTAMASE B_1 1X8G ASP_PROTEASE 1KXL
CARBOXYLESTERASE B_1 1GZ7 ASP_PROTEASE 1IMWY
CARBOXYLESTERASE B_1 -1K4Y ASP_PROTEASE 2F6U
CHITINASE_18 1XHG GLYCOSYL_HYDROL_F10 1F38
CHITINASE_18 . 1HJIV GLYCOSYL_HYDROL_F5 1WHU
CYTOCHROME_P450 2TAG PEROXIDASE_2 1MZW
GLYCOSYL_HYDROL_F5 1H4P PEROXIDASE_2 1WFQ
IMP_1 1JP4 PROTEIN_KINASE_ST 1LUF
IMP_1 } 2FVZ
PEROXIDASE_2 1LGA
PEROXIDASE_2 ' 11LY8
SHIGA_RICIN 1LLN
SHIGA_RICIN , : 1LP8
THIOL_PROTEASE_ASN 100E
THIOL_PROTEASE_ASN 1CQD
THIOREDOXIN 1EEJ
THIOREDOXIN 1Vow
THIOREDOXIN 2B5E
THIOREDOXIN 1EP7
TRYPSIN_SER ) 1KDQ
UBIQUITIN_CONJUGAT_1 1WZV
UBIQUITIN_CONJUGAT_1 1Y8X




Appendix B

Predictions for TargetDB
structures

This section contains predictions for structural genomics targets with unknown func-
tion registered in the TargetDB repository up to August 2008. All predictions listed
scored higher than the 100% specificity cutoff for the named model, éxcept for one
case mentioned in the text of Section 3.2.4. The table lists the PDB ID of the solved
structure, the model for the predicted functional site, the z-score of the predicted site
hit, and the residue ID of the site hit. Where hits were identified in identical protein

chains, only the highest scoring chain for each model or residue ID is shown.

Table B.1: Predictions for structural genomics targets with unknown function.

PDB ID Model name Z-score Residue ID Chain

- 1DFC EF_HAND.3.ASN.ND2 3.136 ASN1077 A
1DQZ A LIPASE_SER.7.SER.0G 4.817 SER124 A
1F8I LIPASE_SER.7.SER.QG 5.237 SER317 B
1F05 HMA_1.5.CYS.SG 3.629 CYsi13 A
1IA1 RNASE_T2_1.4.HIS.ND1 3.982 HIS44 B
1IL0 HMA_1.5.CYS.5G 3.549 Cysi1 A
1IW7 PROTEIN_KINASE_ST.5.ASP.0D2 4.129 ASP74 K
1J03 EF_HAND.9.THR.0G1 5.062 THR74 A
13172 PROTEIN_KINASE_ST.5.ASP.0D2 4.259 ASP34 D

148



APPENDIX B. PREDICTIONS FOR TARGETDB STRUCTURES 149

1J20 PROTEIN_KINASE_ST.5.ASP.0D2 .279 ASP34
1J21 PROTEIN_KINASE.ST.5.ASP.0D2 .318 ASP34
1J6U EF_HAND.7.THR.0G1 .599 THR110
1K1E PROTEIN_KINASE_ST.5.ASP.0D2 .137 ASP16
1K77 RNASE_T2_.1.4.HIS.ND1 .063 HIS202
1KH2 PROTEIN_KINASE_ST.5.ASP.0D2 .423 ASP34
1KH3 PROTEIN_KINASE_ST.5.ASP.0D2 .26 ASP34
1KOR ~ PROTEIN_KINASE_ST.5.ASP.0D2 .54 ASP34
i1M33 LIPASE_SER.7.SER.0OG .681 SER82

1MRU PROTEIN KINASE_ST.5.ASP.0D2
1NF2 EF_HAND.3.ASN.ND2

.448 ASP138
.178 ASN716

105U EF_HAND.7.THR.0G1 .598 THR37
10NO RNASE_T2.1.4.HIS.ND1 .2 HIS61
10YZ HMA_1.8.CYS.SG .955 CYS106
1PG6 EF_HAND.7.THR.0G1 .8 THR206
1RVK COPPER_BLUE. 11.HIS.NE2 .362. HIS24
1S9U EF_HAND.12.TYR.OH .085 TYR175
1SFS KAZAL.7.CYS.SG .372 Cys21
1801 PROTEIN_KINASE_ST.5.ASP.0D2 .139 ASP224
1SYR  THIOREDOXIN.11.CYS.SG .158 CYs41
1SYR  THIOREDOXIN.8.CYS.SG .03 CYs38
1T03 HMA_1.5.CYS.SG .637 Cs167
1TU9 EF_HAND.12.TYR.OH 071 TYR25
1UG2  HMA_1.5.CYS.SG .609 CYsS8s8
1V5N ZINC_FINGER _C2H2.1.3.CYS.SG .141 CYS53
1VKA EF_HAND.12.TYR.OH .187 TYR44
1VLY RNASE_T2.1.4.HIS.ND1 .036 HIS62
1WIL ZINC_FINGER_C2H2_1.3.CYS.SG .845 CYs21
1WJJ EF_HAND.7.THR.0G1 .753 THR72
1X5W ZINC_FINGER_C2H2.1.3.CYS.SG .972 CYS15
1X6F ZINC_FINGER_C2H2_1.3.CYS.SG .316 CYSs31
1XHS EF_HAND.7.THR.0G1 .798 THR71

1XKQ ADH_SHORT.3.TYR.OH
1XRI TYR_PHOSPHATASE_1.3.CYS.SG

971 TYR162
.553 CYS150

1Y12 EF_HAND.7.THR.0G1 .933 THR20
1Y1X EF_HAND.1.ASP.0OD1 .197 = ASP37
1Y1X EF_HAND.1.ASP.0OD2 .636 ASP37
1Y1X EF_HAND.3.ASP.0D1 .51 ASP39
1Y23 ZINC_FINGER_C2H2.1.1.CYS.SG .413 CYs7

1YDG PROTEIN_KINASE_ST.5.ASP.0D2 .136 ASP54

1YDW  PEROXIDASE_ 1.8.HIS.NE2
1YI7 PROTEIN_KINASE_ST.5.ASP.0D2
1YJE HMA_1.8.CYS.SG

.672 HIS133
.116 ASP526
.951 CYS550

B NP NERNERWER DR O WS W W W W R R W W W N W WD W DR W
POQQWEEP@EOEOEPTQPEPPOI>O0O>eEeEErmQRPEEREREREEQEPPQEEXRR>OQUT

1284 ZINC_FINGER_C2H2_1.1.CYS.SG .713 CYsée3
1284 ZINC_FINGER.C2H2_1.9.HIS.ND1 . 847 HIS83
1ZKP BETA_LACTAMASE B_1.4.HIS.ND1 .557 HIS59
1ZKP BETA_LACTAMASE B_1.4 .HIS.NE2 .458 HIS59
1ZKP BETA_LACTAMASE B_1.6.HIS.ND1 .415 HIS61
1ZKP BETA_LACTAMASE B_1.8.ASP.0D1 .952 ASP63
1ZR9 ZINC_FINGER C2H2 1.1.CYS.SG .423 CYS45
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2420 = EF_HAND.12.TYR.OH 169  TYRS8

2AZ4  BETA_LACTAMASE B_1.4.HIS.NE2 .448°  HIS92
2AZ4 . BETA_LACTAMASEB.1.6.HIS.ND1 .762 HIS94
2474  BETA_LACTAMASE B_1.6.HIS.NE2 .632  HIS404
‘2474 - BETA_LACTAMASE B.1.8.ASP.0D1 .086  ASP96
2B67 .~ PROTEIN_KINASE_ST.5.ASP.0D2. .458 ASP126
2C0T  ZINC_FINGER.C2H2.1.1.CYS.SG .516 CYS49
2CQ7 - KAZAL.1.CYS.SG o .873 - CYS27
2CUQ  ZINC-FINGER_C2H2.1.1.CYS.SG .444  Cys18
2D9H - - ZINC_FINGER_C2H2_1.1.CYS.SG .415 CYS10
2DCL - EF_HAND.3.ASN.ND2 .221. 'ASN19 -
2DIP  ZINC_FINGER C2H2_1.3.CYS.SG .218°  CYS52
2E72  ZINC_FINGER_C2H2.1.3.CYS.SG .796 -~ CYS380
2EJQ. = ZINC_PROTEASE.4.GLU.OE1 .547 GLU96

2EQO0  ZINC_FINGER_C2H2:1.1.CYS.SG
2EQ0 . ZINC_FINGER_C2H2_1.1.CYS.SG
2EQ0  ZINC_FINGER.C2H2.1.3.CYS.SG
2EQO0  ZINC_FINGER_C2H2.1.3.CYS.SG
2EQ0 - ZINC_FINGER.C2H2.1.3.CYS.SG -
2EQ0  ZINC_FINGER_-C2H2.1.3.CYS.SG
2F9C  EF_HAND.7.THR.0G1
2FH7 . TYR_PHOSPHATASE.1.3.CYS.SG
2FH7  TYR_PHOSPHATASE.1.3.CYS.SG
2659  TYR_PHOSPHATASE_1.3.CYS.SG
/2GB3 PROTEIN_KINASE ST.5.ASP.0D2
2GLZ  ZINC_FINGER_C2H2_1.1.CYS.SG
"2HRZ  ADH_SHORT.3.TYR.OH
2HY3 = TYR_PHOSPHATASE_1.3.CYS.SG
2I1Y - TYR_PHOSPHATASE_1.3.CYS.SG

.088 CYS459
.233 CYS414
.915 CYS462
.918 CYS490
.049 CYS686
.082 . CYS417
.895 THR220
.719 - CYS1880
.943 - CYS1589
.776 CYS225
.265 - ASP2
.381  CYS19
.056  TYR159
.231 CYS1060
.912  CYS909

2NVP  SHIGA RICIN.S5.GLU.QE1 .131 GLU71
20GF - "EF_HAND.9.THR.0G1 .675  THR17
20X6 . EF_HAND.9.ASN.0OD1 .102 ASNS8

.657 GLU113
.196.  LYS157

2P7H ZINC_PROTEASE.4.GLU.QE1 ‘
2P0Z AA_TRANSFER_CLASS_1.4.LYS.NZ

2QRU PROTEIN KINASE_ST.5.ASP.0D1 .82 ASP164
2QYE - AA_TRANSFER. CLASS_1.4.LYS.NZ .483 LYS165
2RD9 ZINC_FINGER.C2H2.1.9.HIS.ND1 .893 HIS-7
2YS4 - UBIQUITIN_CONJUGAT.1.10.CYS.SG .342  CYS64
3BIJ EF_HAND.9.ASN.ND2, .218 = ASN93

.774 - GLU123
.666 . GLU249
.534 - GLU401
.635 GLU401 -
.174 GLU209
,881 GLU26 -
.693 GLU154

3BJQ.. ZINC_PROTEASE.4.GLU.OEL.
3C2Q  ZINC_PROTEASE.4.GLU.OE1

3CE2  ZINC_PROTEASE.4.GLU.OE1

3CE2 . ZINC_PROTEASE.4.GLU.QOE2

3CLW  GLYCOSYL_HYDROL_F5.7.GLU.OE2
3D19 .- SHIGARICIN.5.GLU.OE2 -
3D19  SHIGARICIN.5.GLU.DE2 -

WWORB VWSO WRDWEEEN~NOBESTNNROONONWEBRNDWEDR DD 0N
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Appendix C

CYS clustering supplementary

data

C.1 Zinc sub-cluster analysis

We combined zinc-binding sub-clusters from four coarse clusters and repeated the
cluster selection process. The output corresponded almost exactly to the original sub-
_clusters (see Figure C.1), with the only exceptions being two microenvironments that
became singletons. This indicates that the coarse k-means clustering is partitioning
the microenvironments reasonably well.

We also examined the principal component vectors for sub-clusters representing
the same type of zinc binding (e.g. C2H2, 4 CYS, etc). There are real differences
between the microenvironments despite their binding zinc in the same fashion (see Fig-
ures C.2-C.5). Although principal components do not correspond directly to physic-
ochemical properties, we can map them back to their major constituent properties to

get a more intuitive understanding of the microenvironment differences.
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101 ‘ 82 | 68 66 58 H 4 118 126 | % I 11‘3 I | | I

C2H2, mixed, mixed,
C3H1 C2H2 C3H1 C2H2+H C3H1+H C2H2, C2H2, C2H2 C3H1 C3H1 C4 C4 C3H1

Clust33- Clust33- Clustdd- Clust33-  Clusta3s- C3H1  C3H1  clusti- Clustt- Clust33- Clust32- Clust32- Ciust32- Clust29- Clust32-
Sub237 Sub156 Sub109  Subg9 SUDB3  ust33. Clustss. SUPS2 Subl1@ Sub343 SubS2 Sub222 Sub382 Sub110 Sub208

Subé3 Subg0

Figure C.1: Hierarchical tree from combined zinc sub-cluster analysis. Each sub-cluster
is shown as a yellow box, with the width proportional to the size of the sub-cluster. We label each
sub-cluster with the new node name inside the box, and the original sub-cluster ID below. We also
indicate the type of zinc-binding represented by the sub-cluster.

svenrasnnnderiensbaeng o
53R85320000000RI00000ES  Zinc, 4OYS
g Tanis  clust32
isazascraies O USIOZ-
sub62
clust32-
sub208

clust32-
sub222

I 3 ) B . ' ) H : BRI ; . 1320A#CYS181
| m e H O %
% W J! [Eﬁl . . . i weoazcrsid  clust32-

sub382

Figure C.2: Comparison of principal component vectors for sub-clusters binding zinc
with 4 CYS.
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Zinc, 3CYS+1HIS

clust33-
sub109

clust33-
sub237

’

clust33-
sub343

clust33-
. sub156

AFCYS.
Z@m ?;:m:mo C|u$t33'
"1 laaecIseTs sub83

Flgure C.3: Comparlson of pr1nc1pal component vectors for sub-clusters binding zinc
with 3 CYS and 1 HIS.

Zin¢, 2CYS+2HIS

clusti1-
sub118
1caznacys 'clust29'
inragcrstte sub110

Lmucxsu

Figure C.4: Comparison of prmc1pal component vectors for sub-clusters bmdmg zinc
w1th 2 CYS and 2 HIS.

Zinc, mixed 3CYS
%1 +1HIS, 2CYS+2HIS

; clust33-

- h : i R ; ; sub60

?7;‘ £ f i : - ‘..... . .
=l e B

-‘. . .I.lil Ihlﬁ* " h- bt -Lu.wcxsss sub63 :

Figure C.5: Comparison of prmc1pal component vectors for sub-clusters binding zinc
with either 3 CYS and 1 HIS or 2 CYS and 2 HIS. :
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c.2 Summlary information for CYS jsub-‘cl’u"sters' |

‘Thi/s section contains summary information for each sub—'c_luSter produeed from the 40 -
CYS—.based k‘-means‘clusters ‘using- the metho‘ds deseribed in Section 5.2.3. Detaivl‘ed
annotations are. avallable online [167] | | » | |

‘ Sub-clusters for each coarse—gralned cluster are contalned in the same table. The
sub-cluster ID (based on the node label fr(_)m hlerarchl_cal clu‘sterlng), list of .PDB -
IDs, s'ite‘residue'IvD:s and UniProt IDs are shown for each suh—cluster in addition toi
a brief descrlptlon of themes emerglng from annotatlon and v1sual 1nspect10n of the

'env1ronment Note that only Sw1ss—Prot records are used to generate annotatlons

' though the Un1Prot ID for each proteln is listed. here If no table is present for a

cluster, there were no sub—clusters returned by the cluster selectlon process containing

“at least 5 sites that had a functlonal coherence greater than 3.

Table C.1: Functionally coherent sub—clu‘sters for Cluster 1

" Potential annotation v " Sub-cluster ID - PDB ID Residue ID. UniProt ID

' ‘ ' NODE118X 2CUPA . CYS94 - - Q13642
2CTOA CYS42 = Q8swv22
: , , 1XWHA CYS322 043918
Zine-binding, LIM domain, 3 . A 1WIGA CYS31 - Qensql
CYS + 1 HIS coordination ) ‘ 1R79A CYS70 Q16760
: A . : 1V6GA cYs41 . Q6H8Q1
: IWEMA - CYS44 Q8C9B9
2C08A CYS42 © Q8TDZ2
1BSTA  CYS142 P67966
CYS34 . B

L ) NODE13X 1ZPUA CYS484 P38993
Copper-binding, multicopper 1GSKA . = CYS492 PO7788
‘oxidase proteins. 1 CYS + 2 : o 1vi0a CYS452 Q6H9H7
HIS coordination. 7 1PF3A CYs500 P36649
‘ » 1A0ZA . CYS507 P37064
NODE257X ~ 2FH7A CYS1790 . Q13332
) ) ; : S 2B494A CYS754- P26045
Associated with TYR ) : 2FH7A CYS1501 Q13332
phosphatases, adjacent to active - 24HSA  CYS1812 P23467
site CYS v ' v 1BZCA CYs121 " P18031
- : : 1YGRA CYS1047 P08575

2B30A - CYS361 < P29350
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2BJ1A

CYS97

15

. 058316

. : , 'NODES2X . .

. e STTo - 1J6WA “CYS128 - - P44007
_finger/multi-HIS type, 1V70:A 1X6HA cYs18 P49711
= putative novel annotation 1X6FA Cys28: Qo6JM2

' : : 1K6YA CYs43 - . P12497
1WEEA CYS19 Q9C810

NODES3X 2BI4A . -CYS362: _ P.OAQSl

_ : : 1UC2A - CYs98 059245
o ‘ - 1T3IA CYs372 Q55793
Zinc-binding, 1 CYS + 1GY8A CYS274 Q8TBE9"
multi-HIS + ASP/GLU, 1JF9A CYS364 P77444
di-nuclear zinc active sites, i%ggﬁ CCYYSSi4812 ggggg?{
LGY8:A/IUCZA/INYQ:A = 1BC2A - CYS168 . P04190

. 'put-atlve novel annotations - 1XFIA CYS114 o Q9AAV3
’ 1T8HA CYS125 P84138

“1RVOA CYsi118 - - Q9KO0AS8

1INYQA CYsi181 Q8NW68

CYs1i64 P25910

1A7TA

Table C.2: Functionally coherent sub-clusters for Cluster 2

Pptenti‘al annotation

Sub-cluster ID 'PDB ID . Residue ID. UniProt D

. . NODE14X 1XFKA CYS319 Q9KSQ2
. T 1K2WA - CYS69 Q59787
surrounded by neutral, 1U6GC CYS233 " Q86VP6
‘ non-polar residues. 1C0JA CYS114 Q9X6W9
Uflknown' _fvunction.v'Helical CYS . NODE26X ‘ fsﬁgﬁ gz:z%; 8;?532 R
with one or more o 1XMIA CYS590 P13569
sulfur-containing residues 1VR9A -CYS23 QoWZZ4
nearby. " 1H6PA CYS106 Q15554
: 1DCFA CYS43 P49333

Table C.3: Functionally coherent sub-clusters for Cluster 3

Potential annotation

Sub-cluster ID PDB ID Residue ID UniProt ID

Unknown function, possibly "

structural. Mixed secondary

structure CYS, often with a
. TYR nearby.

NODE93X

2NAPA

1KQFA

2FA1A

2C24A
1FFTA
1L5JA
2A3LA
1RXXA
1L7CA

CYs282
CYS380

CYsi144-

CYs162
CYS234
CYS607

CYS676 -

CYS409
CYS626

P81186
P24183
P16684

P71140

POABJ6
P36683

080452
P13981

P35221
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Table C.4: ‘thctionally coherent sﬁb-c‘lﬁstérs for Clust‘erv4

Potential annotation ' . Sub-cluster ID PDB ID  Residue ID UniProt ID

Unknown function, probably NODE2SX  ioQeA  Cisi0  peaais

“structural. Extended beta sheet S CYS86
+ ILE/LEU/VAL. . : : CYS165 ‘

Table C.5: Functionally coherent sub—.clu‘stefsfor Cluster 5 ‘

Potential annotation © - - Sub-cluster ID .PDB ID Residue ID UniProt ID

TYR kinase-associated site NODE70X 2B7AA CYS1094 060674

S . L ) . 1U464A - CYS356 .- Q07912
- potentially autocatalytic. . {ROPA  CYS1308 P08581
phosphorylatl.on site (based on {MP8A . CYS647 Q05397
1K9A:A). 3 sites are from » ~ 1QCFA cYsas87 - P0O8631
unicellular enzymes, another is L : - 1K9AA - CYS411 P32577

~ a viral coat protein. The . o 1LUFA ~ CYS826 (62838
environment is characterized by - . . 1XBAA . CYS597 = P43405

a loop-based central CYS with a ‘ ‘ gﬁgﬁ : g¥§;22 gggg?;
“nearby MET, and a TYR in the 1AUYA CYS132 - - P03608

case of TYR kinases. o o 1J32A . CYS315 . Q8RR70

Table C.6: Functioné,lly coherent Sub—clustérs for Cluster 6

- Potential annotation ' Sub-cluster ID - PDB ID Residue ID UniProt ID
' NODE240X 2DIEA CYS162 - Q55891

Unknown function, possibly

. e . 1U6LA CYs15 Q02334
ligand-binding. 4/5 sites. : : 10RRA . CYS10 gi 4169
adjacent to ligand(s). 1U6L:A ‘ 1U2ZA CYS405 - Q04089

near several selenomethionines. ’ o - 1TVBA CYs233 - Q08210

Table C.7: Functionally coherent sub-clusters for Cluster 7

Potential annotation . Sub-cluster ID PDB ID Residue ID UniProt ID

~Unknown function, potentially i NDDE287XA 2APGA - CYs217 - P95480

: , . . 1KCZA CYS69 Qos514
structural, possibly related to ) {DCIA cYsisi Q62651
Iigand—binding. 2 proteins are ' 1VPLA ’ CYS201 ° Q9W214

“mitochondrial. - o ' ' 1HZDA ~ CYS194 Q13825
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Table C.8: Functionally coherent sub-clusters for Cluster 8

157

Potential annotation

Sub-cluster ID PDB ID Residue ID UniProt ID

. : N 25 2BUJA YS133 7571
Unknown functlo_n, likely ODE25X 1YQ7A gYS 159 g 1 4322
structural. Proteins cover a 1HOSA CYS90 POA4ZE
broad range of enzymatic and 1SNYA CYS126 QOW3H4
other functions. Environment is 1W66A CYS117 Q10404
characterized by a helical CYS 1L1QA CYS140 Qo67M2
with an abundance of neutral, 1HUSA CYS698 P09186
non-polar residues (specifically iggglg’: g¥2§;g gggggé
iifmﬁfgmx ‘j“L) surrounding 24VDA CYS198 Q86VUS
1VRWA CYS249 Q9BH77
. . NODE325X 2GSAA CYS72 P24630
Unknown functlon, pOSSlbly 2EW2A CYS103 (831Q5
structural. Usually helical CYS, 1GSOA CYS222 088554
always in the vicinity of HIS 1SW6A CYs473 P09959

and multiple ILE/LEU/VAL. CYS354

, 1PXYA CYS201 Q7G188

Table C.9: Functionally coherent sub-clusters for Cluster 10

Potential annotation

Sub-cluster ID PDB ID Residue ID UniProt ID

NODE26X 1YQ3B CYs70 Q9YHT2

Iron-binding (2FE2S) and ﬁggﬁ 35225 i%\gg;
zinc-binding (4 CYS). Presence CYS56

of 4 sulfur atoms in each case. 1E7PB CYS62 P17596

1KWGA CYS106 069315

1VD4A CYS132 P29083

NODE162X 1THKA CYS134 P31371

) ] 1G5HA CYS308 Q9QzZM2

Unknown fUnCthI]. 2 protems 1IJTA CYS155 P08620

are growth factors, 2 are 1X4ANA CYS46 Q91WJs

nucleotide-binding. 1A34A CYs147 P17574

' ' 1I2DA - CYS509 Q12650

1RQ5A CYS783 QE6RSN8
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Table C.10: Functidn’ally' coherent sub-clusters for Cluster 11

Potential annotation Sub-cluster ID PDB ID° Residue ID = UniProt ID
- N S : . NODE33X 2FG5A - CYS120 Q13636
Unknown f}lnctlonz p(_?551bly ‘ v LUKVY CYS123 P01123

. related to ligand-binding. -~ . 17064 CYS150 - - 035963
- Environment is usually helical g - 175VA CYS392 . P23258-
“and contains several of _ o 1TXUA-  CYS225 QoUJ41
[ASP/GLU/ASN/GLN/ARG]. 1UWCA  CYS235 -~ 042807
; o E : 1A6ZA CYS127: Q30201
‘ g ST S NODE48X "~ 1MBEX . CYS287 . Q9SPV4
Unknowvn function. H.alf are v IE1HA CYS133 Q45894
acyltransferases. Environment is o 1DQ8A -~ CYS827 P04035
mlxed Secondary structure: Wlth ' o ‘1GODA ) CYSi38 » P52181
~.a PRO + several of - ’ o - “1EVUA  © CYS188 . P00488
[ASP/GLU/ASN/ARG]. » ' o 1KV3A CYS143 P21980
‘ ’ NODE136X QFEAA  CYS121 - 031667
- v . . = '1Q0SA  CYS33 - 'P04392
Unknown function, possibly : 2F8LA ~ CYS127 Q71Z85
related to ligand-binding. 6/15 . _ , 1;?:132 ' gzgfg ' 82;322
pr}i)tims a(rie methyltransferases 1RT4A  eYSEE Q14749
which DI : : L © 1Y8CA CYs47 Q97GJ5
S-adenosyl- L—methlonme ‘ ~ . 1P91A - - CYS94 P36999
Others bind other ligands. The. 109GA CYS60 ~ QOF5KS
environment is usually adjacent : 1IMBA . CYS64 P43985 -
to the ligand. ‘ ' 1F38A - CYS1142 026249
i ' : : 1K9YA CYS159 P32179
© 1V8BA CYS52 P50250
“1A7AA CYss3 P23526
ivJUuA-  CYS176 P84155
Table C.11: Functionally coherent sub-clusters for Cluster 15
Potential annotation ' Sub-cluster ID PDB ID Residue ID UniProt ID
- o . ‘NODE152X 2C46A CYS91 060942
‘ Unknownvfunctlor%. All proteins - 4 2C354 CYS104 D15514
.are enzymes. Environments v - 1ZY9A CYS68 033835 -
characterized by multiple ARG - » ’ 1YQQA CYS227 P45563
residues and occasionally a HIS. - 1TCUA CYS233 Q9BMI9
L ’ : - 1FXUA - CYS231 P55859
NODE279X 1YIRA CYS350 QOHW26
Unknown functlon _ ~1XCAA CYs130 ~ = - P29373
Environments chara.cterlzed by ' 1P4EA.  CYS189 P03870
the presence of a MET, an ‘ ; igg%g ggzgg gggigi
ARG, and a PHE residue. 1GCZA - CYS56  P14174

1DPTA CYss6. . P30046
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Table C.12: Functlonally coherent sub-clusters for Cluster 16

159

Potential annotation

Sub-cluster ID PDB ID " Residue ID Un1Prot ID

Unknown function. NODE42X 2A70A CYST72 - QOBYW2

" Environment characterized by - 1ZXEA CYS791 . P15442
"1JSWA - CYS89 POAC40'

multiple occurrences of [TYR, " 1{RYUA . CYS106 ' 014497
LYS, ARG, GLU], but - IME7TA . CYS221 P50097
otherwise somewhat sparse. 17854 CYS130 Q9X1A0.

Sub-cluster contains two 1XJ54A CYS104 Q9ZUB3

- uncharacterized SG proteins. ‘ 1QYIA © - CYS18. Q8NW41

' NODE78X ~ 2AF7A CYsss 026336

R ) 10B8A - CYS563 Q97YX6

~ Unknown function. ‘A mixture 1J2ZA CYS245 . 025927
of enzyines and DNA—bmdmg or 1PHZA CYS334 P04176 .

: .sugar—bmdmg protelns 1TS0A €YS29 ) 029877

~10F3A CYS75 Q9RIK9

1E1CB CYS68 P11652

.1JIMSA CYsS188 . P09838.

Table C.13: Functiona]ly coherent sub-clusters for Cluster 18 ‘

Potential annotation

Sub-cluster ID - PDB ID Residue ID UniProt ID

: ) NODE134X 1YAFA CYS135 . P25052
proteins are huceo 1Q32A°  CYS535 P38319
protein-binding and are 1VPRA CYS929 077206
oncogenes. Environment 1MR1C CYS224 P12755
characterized by multiple TYR 1PYOB CYS219 P42575

" and PHE residues. ‘ - 1J5WA ~ CYS239 QoWY59
. : 1K4sA- CYS300 .P,l 1387
NODE22X 2A7LA CYS91 Q96B02
1Q1sC CYS419 P52293 .
Unknown function. 1HNOA CYSIQO _ Q05871
Env1rgnment ge:nerally con31sts LEEMA Ccysiiz- P78al7
> 1FVAA - CYS107 P54149
of helical central CYS Wlth a’ lELWA . CYS62 . P31948
TYR and often a GLN or ASN. 1YUEA. CYS255 . 'P19896
Many proteins are enzymes or 1WASB CYS214 Q02821
protein binding.’ 1LC5A CYsS285 P97084
‘ 1ELQA CYS306 Q9ZHG9
s 1LTUA CYS52 - © P30967
1U6GC CYS506 Q86VP6
CYS36 :

1Y0DA'
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; ‘Table C.14: Functionaliy cohereht sub-clusters for CiuSter 19

Potential annotation . Sub-cluster ID PDB ID  Residue ID . UniProt ID.
o NODE16X 2CW9A . CYS319 043615
) “ 1RT8A CYS149 059945
Unknown function, possibly 2c46Aa CY5110 060942‘
- ; . ) . 1VGYA . - CYS113 Q9JYL2
:G,tructural.. Central CYS'is )  1svoa CYS66 . Q01842
- inward facingon . o E 10MWA CYS72 P21146.
surface-exposed helix. 5 - S “{WEXA CYS67- Q921F4
proteins are known to be ’ 1ZB6A CYS209 - Q4R2T2
phosphorylated. , 1E20A CYS39 - . Q9SWES
: ’ . : 1XTPA cYS183 S Q4Q7M2
1E15A - . CYS127 - Q54276
1BYWA - CYs108 Q12809

IWLZA . CYS274 QSTHR3

~ ‘Table C.15: Functionally coherent sub-clusters for Cluster 20

- Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID

~Unknown function, possibly - NODE83X 1XT9A cysed Q96LD8
enzyme-related. Central CYS : ﬁf‘fséﬁ %YYSSIB298 " gi’gggg
on surface-exposed helix with a - T 1T3QC CYS89 P72222
LYS sidechain nearby:. - 1D27ZB CYS53 P22812

Table C.16: Functionally cohereht sub-clusters fof Cluster 21

Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID
] ’ : - . NODESX 2AHSA CYS1904 P23467
TYR protein phosphatase active _ ‘ 9BZLA CYS1121 - Q15678
site environment. Mixed - ‘ . -2B49A CYS842 P26045
receptor and non-receptor type. o 2FH7A CYS1589 -~ 13332
e N o . CYS1880 .
A ‘ -NODE17X 1T3QA CYS107 P72223 -
Iron-binding site, 2FE2S type . 1RM6C CYS100 033818
- with additional CYS. Somewhat 1F04A - CYS113 P80457
sparse, strand environment. . © 1DGJA CYS100 Q9REC4
' ’ ' : o 1N5WA CYsi102 P19921.
ST \ s ‘ NODE27X 2C46A CYS126 - 060942
TYR pr_oteln phosphatase active . 1zc0A CYS270 P35236
site environment. Non-receptor : 1G4US © cYsasi P74873
and secreted types, dual ' , 10HCA CYsS314 060729
specificity and multifunctional. ~ ' . .1YN9A CYS119 - P24656
proteins. ‘ B 1XRIA CYS150 Q9ZVN4 -

1D5RA CYs124 - = P60484
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NODE48X  1VYHC  CYS281  P63005

WD-repeat-associated
D-repeat-associated 1P22A . CYS475 - Q9Y297

environment. The environment o . Cysaszs ,
 is characterized by beta sheets- - o . CYS272 '

and the presence of another , S ~ CYS312 o

CYS (sometimes belonging to . ' 1K8KC -~ CYS13 -Q58CQ2
. an adjacent microenvironment - o CYS101 .
from this sub-cluster). . ~ 1ERJA..  CYS349. P16649

ANROA . CYS541 . Q11176

Table C.17:‘ Functionally coherent sub-clusters for Clustef.22

. Potential annotation - - ~ Sub-cluster ID PDB ID - Residue ID- UniProt ID
NODE159X 10KGA CYS278 . Q7K9GO

Tron-binding site, 4FE4S type.

Usually a LYS and PRO nearby. s oveave . possra
10KG is not annotated as - . S 1KQFA cYso2 P24183

' binding iron. , , - - '1HOHA CYS54 ©  Q934F5.

"Table C.18: Functionally coherent sub-clusters for‘ Cluster 23

Potential annotation _ Sub-cluster ID PDB ID Residue ID UniProt ID
) : NODE44X 1SP3A CYS101- Q8E9WS8
Cytochrome C-associated ' : 13(1)183£ . gggig - 82?2[4){2
adjacent heme C/heme binding™ S 1D4CA CcYs18 P83223
sites.. Strand or slight helical » , 10FWA ~ CYS287 . Q9RN68
environment with 2 CYS and ) 10AHA . CYS320 Q8VNU2 -
2+ HIS. e ; . 1GWSA  CYS508 P24092
' - 1M1PA CYsS61 - Q8EDL6
'1FS9A . CYS298 Q9S1ES
1GU6A - CYS285 POABK9
NODE46X 3CAQA CYS39 P94690
: 2BQR4A CYS56 P94691
1GYDA ~CYSb2 - -Q9R638
- . 10FWA CYs241 - Q9RN68
Cytochrome C3 and higher : “ 1GWSA CYS462 P24092
molecular weight o 1GMaA CYS46 Q9L915
cytochrome-associated mixed 1GWSA CYS350 :P24092
heme C and heme-binding site 1GYOA - CYS80 - Q9R638
- heme-b : 1GWSA CYS150 - P24092
Strand or Sllght hellcal ' T 1EHJA ’ CYS29 . P00137
" environment. : : ) i 10FWA CYS50 Q9RN68
) ' 1GM4A CYS33 Q9L915
1GYDA - CYS39 Q9R638
1GM4A CYS79 - . Q9L915
1GWSA CYS280 - P24092
1QNOA © CYS83 ' P00133

10FWA CYsi3o Q9RN68
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NODE80OX  3CADA. - CYS82 . P94690

Cytoch C-associated
ytochrome C-associated | 10FWA  CYS267  QORN6S
adjacent heme C/heme binding ‘ " 1GusA CYSass P24092
sites. Helical environmental o . 1WTOA CYS92 Q6XCI5-
with 2 CYS and 2 HIS. o . 1GWSA cYss3 P24092 -
Cytochrome C-associated mixed NODE83X . 2BGVX . cYsis Q00499
, 1 . , - 1ZRTD .CYS37 “P08501
-heme C and heme binding site. ( ~ 1DVVA CYS15 P00099
Environment characterized by .- . ‘ © U iQN2A - CYS1T Q7SIAd
presence of [CYS/MET/LYS] = = . 1JDLA- CYS18 - P81154
and 14 PRO, and only 1 HIS. =~ . “ .- 1C7TMA - - CYS17 P54820

1ETPA CYS17 . Q52369

: Table C.19: Funcfionally coherent sub-cluStérS for Cluster 24

Potential annotation _  Sub-cluster ID PDB ID Residue ID- UniProt ID

, Unknowﬁ function. NODE17X 2A2CA CYS303 ‘ Q01415
Environment contains ASP and _ 7 ilv)i,syAA* CCYYSS&SO S gggfg?
GLU and usually 1 or more - - 1FJIE  CYS84 P14013
LYS. *1VPJA is.now 2ISBA. : _ 1N524 CYS36 . Q09161

Table C.20: Functionally coherent sub-clusters for Cluster 25

Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID

" Sugar kinase—associatéd sité. NODE19X , giﬁﬁ gzggg P;‘;gég
Not the active site. Beta-sheet i 1EOTA cYss : go AD61.
‘environment with multiple - : i ' 1BG3A - CYS704 PO5708
sulfur-containing residues. = : v _ 1BG3A . CYS256 ' PO5708

Table C.21: Functionally coherent sub-clusters for Cluster 27

" Potential annotation Sub—c}lus’ter' ID PDB ID Residue ID UniProt ID
Unknown function. 2 have NODE24X 1Z00B : CYS852 92889

" beta-sheets, the other 2 have ' i LTDPA CYS34 - P38582

. ) : 1JMSA - CYS404 P09838
hellCeS-. 3/4 ’have a MET or . 1WIOA CYS159 P0O1730

_ CYS (one disulfide). ) _ ' CYS130
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Table C 22 Functlonally coherent sub clusters for Cluster 28

.Potential annotatlon B Sub cluster ID PDB ID Residue ID UniProt ID
o NODE122X 2AZEA CYS314 "~ Q14186
Unknown function.  1MDAH CYS183
Environment may be : : v CYS167 »
characterized by the presence of . . 1AORB CYS317 ~ P62871
MET and several neutral, ~ _ C2AYNA-  CYS104 P54578
" non-polar residues such as LEU - 1Z6ZA CYS130. - . .P35270
: ILE or\O&L R R S 1QCOA- CYS315 P35506
NODE178X = 2B3HA - CYS340 - P53582
‘ : ' ‘1YJ8A - CYS277 . Q8I5P5
:UnknmwhfunCﬁon.k' 1GWNA CYS177 . P61588
: o - 1HUXA CYS17 P11568
1W6JA. CYS636 - 'P48449
1JXQA CYS285 P55211

Table C.23: Functionally coherent sub-clusters for Clusfer 29

Potential annotation - R Sub-cluster ID PDB ID . Residue ID UniProt ID

Zinc binding site with 3 CYS + NODE110X 2CSVA CYs4s . Qiaisa
1 HIS coordination. 10X7is a - fgggﬁ: gzggg gggggg
dinuclear site; 10X7 vand 2A8N ‘ : 1Y8FA CYS608 . Q62768
are coordinated by just 2 CYS ' 2A8NA CcYS86 A9CK16
but have a nearby MET. : _ 10x7A, - CYS94 Q12178

' NODE113X 2AYVA CYS85 : ‘ .
S e 1DUPA CYsS36 P0O6968
Unknown function. - ) . : 1Y65A° CYs273 - Q9KU37
: . 1WF6A CYS49 Q92547
1AORB CYs271 P62871

Table C.24: Function:illy coherent sub—clusters for Cluster 30

" Potential annotation e Sub cluster ID PDB ID Res1due ID Un1Prot ID . -
NODE15X 1T3QA - CYS142. P72223

Iron binding site, oxidoreductase

2FE2S type. Coordination by ' ﬂ{g‘iﬁ 55212; ' gégig% :
.is usually nearby. Little : - 1JROA CYS134 . 054050
secondary structure. _ , 1RM6C €YS135 033818
Iron binding st oxdoreductace | WOPEZX {134 Cisito  prams
2FE2S type. Coordination.by 4 {RMGC CYS103 033818
CYS. Sometimes an additional ’ ' 1JROA CYS106 ' 054050 ’
MET/CYS nearby Some hehcal , 1F04A . - CYS116 P80457

structure. : h 1DGJA CYS103 " " Q9REC4
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NODES7X. - 10QQA. v:.CYSSG - P00259

1ron binding site, ferrédoxin | ,
2FE2S type.. Coordination by . ggﬁﬁ gzzgg ggg;gé
34 CYS. Little secondary » ' . 1E6EB CYS92. . P00257
- structure. R : _ 1I7HA ' CYS87 - POASR4
- Iron binding site, ferredoxin .NODE110X . ilc(]g?{: gzgig ' ggg???
2FE2S type. Coordination by 4 1FOMA . cYsas 80306
CYS with occasional MET/CYS I . “1I7HA © CYS51 . POA9R4
.. nearby. Little secondary » v 1CZPA CYS49 . P0OA3CS
' structure. : : : 1E0ZA CYs71 P00216
" Iron binding site, ferredoxin 'NODE122X igggg gzggg ' ggggg?/ ‘
2FE2S type. Coordination by 4 1EGEB CYS46 P00257
CYS with CYS/MET nearby. - 1KRHA CcYS4a6 POTTT1.
Little secondary structure. - o 7 1I7HA CYS48 = 'POA9R4
- , : - NODE160X 1T3Q4 CYS144 P72223
Iron binding site, , : . 1FD4A CYS150- P80457
oxidoreductases. Mixed 4FE4S - - 1RM6C cysis7 - 033818
and 2FE2S. Coordination by 4 : o 12&32 gzgigg ' ggggg
CYS with 1 or 2 CYS/MET : INSWA © CYS139 P19921 -
- nearby. Little secondary , . o '1HFE_L ~ CYS378 .P07598"
‘structure. - ‘ ' 1C4AA CYS499 P29166
1H2AS CYS114 P21853

1CC1s CYS126 P13063

~ Table C.25: Functionally coherent sub-clusters for Cluster 31

" Potential .annotation . Sub-cluster ID PDB ID Residue ID UniProt ID
: ’ NODE14X 2EXEA.. . CYS362 P49761
SER/THR protein ' ' o 1VYWA CYS191 " P24941°
. ’ . L - 1BL6A CYs211 Q16539
}“njse a.ssolc}‘(at.ed S‘ttel' Located S {UKHA  CYS213 P45983
in domain 1A In catalytic - ' 1Q3DA CYS245 = P49841
domain near substrate : 1BI7A CYS207 Q00534 °
recognition site. 3 ) 1WBPA = CYS539 Q965B4
: 1HOWA - CYS592 Q03656
- 10KYA CYS270 015530
U function. possibl NODE18X  2COEA  CYS99 . P04053
‘ nl:“.owé’. iy Bt .7 1IMOA  CYS912 P49916
protein-binding. Environment 1WF6A CYS112 Q92547
- characterized by helical CYS - 1WLMA CYS46 - QOCRB6

with opposing TRP. ‘ 1IJAA . CYS126 Q95446
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Table C.26: Functionally coherent sub-clusters for Cl'uster 32

Potential annotation ‘Sub-cluster 'ID . PDB ID - Residue ID UniProt ID

Strand-based, multi-nuclear zinc NODE46X 1MVHA CYS307 060016
~binding site. IML9 and 1MVH o 1MLOA —~ CYS128 (8X225
o : N - s 1JJDA CYS54 - P30331
are tri-nuclear coordinated by 7 : o cYsa7 o
- 'CYS. 1JJD is four-zinc site E S CYS32
- coordinated by 9 CYS and 2 , , N o CYS16
HIS. - . . o CYS36 ~ N
Strand—based; single zinc » NODE62X » 1WFKA - CYS15 ‘Q9DAZ9 -
binding site coordinated by 4 : : 1I3JA CYS163 - - P13299
‘ > 2 K A ) - 1B8TA CYS166 - .~ P67966 .
.. CYS. Environment is relatively ) 1BSTA CYSS8 . P67966
_ sparse. ‘ : ‘ : L . 1VYXA - CYS53 - P90495
: o » : - : NODE208X .1YOPA CYs28 = Q3E840
Strand-based, single zinc . ‘ - "1WGEA - CYS36 ~ Q8KOW9
binding site coordinated by 4 1MA3A , CY5153 030124
CYS. . T 1RYQA ) CYS21 ) Q8U440
‘ : . : 1T8HA CYS183. P84138
1F4LA CYS148 P0O0959 .
-NODE222‘X4 1ZH1A CYS59 T QOWMX2 -
. ~ 1NNQA CYS160 QOUWP7 -
L | , 1 ' CYS145 '
- Metal-binding site with 4 CYS - . ‘ , . gzgigg
(S:Z:)(I)‘I(lig;?;(;{clrizt(}ui‘l?lgite is | - . BT Y89 - su4a0
: t . . 1B71A CYsi61 . P24931
mononuclear and usually a zinc, » 1E4UA CYS33 095628
though 1YUX and 1B71 are. 1YUXA  CYS189 ~ P30820
-iron-binding. ' , g CYS174 ' ;
: : . . ' : : 1EE8SA CYs238 ) 059606’
CYS258 . S
1L1TA - CYS269 P84131
1JZQA CYsis1 . P56690
) 1K82A CYS263 . P05523
Strand-based, Siﬁgle zinc o _NODE382X . ‘2CT2A _ cysis. Q13049
binding site coordinated by -4 ‘ - 1M7A cysaa - P38398
; : : 1WEQA CYS19 QOSWW6
. CYS. Environment is not - : . . " 1E4UA . cYsSi4 095628
especially sparse, and usually : 2B9DA . CYS5?2 P06465
contajns at least one GLU and - 1WEPA CYS30 " Q80TJI7 .

sometimes an ASP. : 1WESA "CYS25 - 081488
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Table C.27: Functionally coherent sub-clusters for Cluster 33

Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID
NODE109X 2C08A CYS68 Q8TDZ2
2AP1A CYS179 Q8ZPZ9
1WIGA CYS37 8
1 HIS coordination. 1BSTA CcYS1i21 P67966
) 1WEUA CYs4i Q8COD7
1WEMA CYs21 Q8C9B9
1WEPA - CYs17 Q80TJ7
NODE156X 2DRPA CYS116 P17789
1Z3IX CYS675 Q7ZV09
Zinc binding site, C2H2 type. : CYSe78
1F2IG CYS1140 P08046
1NJQA CYs11 Q38895
1NYPA CYs11 P48059
NODE237X 2CUQA CYS18 Q13643
1WIGA CYS34 Q6H8Q1
: 1B8TA CYsS118 P67966
Zinc binding site coordinated by CYS10
3 CYS + 1 HIS (except for 1X61A CYss8 Q15654
INYP). , 1FPOA cYs28 Q13263
1RUTX CYSs23 - P70662
1X684A CYS8 Q5TD97
1WESA CYS9 081488
1NYPA CYS8 P48059
NODE343X 2C08A CYs21 Q8TDZ2
o _ , 1WE9A CYS12 081488
Zinc binding site coordinated by 1X3HA cYsa1 060711
3 CYS + 1 HIS. . 1VYXA CYs12 P90495
1RQGA CYS176 Qovo11
.. . . NODE49X 1PYOA CYS78 P04377
Copper blndlng site Wlth 2 CYS 1OV8A CYS122 P27197
+ 2 HIS coordination. All are 1ID2A CYS93 P22365
blue copper type except for ' 1BAWA CYS89 Q51883
1AQS8. 1B3IA CYs82 P50057
1AQ8A CYS136 P38501
NODE60X 2DRPA CYS146 P17789
1X6HA CYs21 P49711
2CUPA CYS72 Q13642
CYSi1
1X63A CYsS21 Q13642
2CSHA CYS1i5 043298

Zinc binding site with either 2

CYS + 2 HIS or 3 CYS + 1 HIS gzzz;
coordination. 2C0TA CYS24 QOHA4T2
CYS52
1TF6A CYS112 P03001
1WIGA CYS11 Q6H8Q1
1DSQA CYS34 P11284

1B8TA CYS13 P67966
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" 1A1TA CYS18 Q75677 .

INYPA - CYS37 'P48059
‘ - NODE63X 2CT1A CYs21 P49711
Zinc binding site with either 2 “9CORA cYS21 P48059
CYS +2HISor3CYS + 1 1YUIA CYS39 . Q08s0s
HIS. Sparse énvironment. - : ' 1X4SA. CYs32  Q9UHR6
‘ : : - 1X4JA CYS66 .-~ Q9HOFS
NODE83X "2AB3A .. CYSH . ) .
¢ ’ o 1UBDC - CYS365 P25490
- . - 1TF6A - . " CYS107 -~ . P03001
Jine binding site, C2H2 type. A o posoar
coordination indicated in the - : . "1W06A . CYS10 - Q92793
- structure, but in all cases there , ‘ . .1WOBA - CYS10- - Q92793
is an additional HIS within . : 1WO3A = - CYS10 Q92793
range that could potentially =~ . - " CCYY88253 o o
cpordmate the zinc ion. 1W04A CYs23 Q92793
. cysto -
1WO7A CYs23 Q92793
1Y23A - CYS10 007513
= CYS7 o .
‘ 1MM2A CYS35 Q14839
NODE99X 2DRPA  CYS143 P17789
: ) 2CT1A CYS48 © P49711 .
Metal-binding site with 3 or : 1F2IG  CYS1107 P08046 -
more HIS in the environment. 1UBDC CYS298 ~ P25490
Zinc binding is usually of C2H2 . ' . 2CTDA CYS65° - - Q96ME7
" type with additional HIS - : ‘ 2AMUA CYS115 - QowZCe
nearby. Iron binding is with 1 ~ 1Yo7A CYs119 . 083795
CYS and 4 HIS. * 2JWO 1V2Gh . CYSLI6 - Q26495
; ' o 1GUPA CYSh5 P09148
replaced 2A23. , . 1CUPA -~ CYSB52 P09148 -
‘ . 17844 - CYs216 - . Q9FKb51 .
2A23Ax . - CYS446 P21784
CYS478 - '

Table C.28: Functionally coherént sub-clusters for Cluster 35

Potential annotation ‘ Sub-cluster ID PDB ID Residue ID UniProt ID
Unk function. ' - - NODE181X =~ 1TO06A CYS133 (J81BA8
B o v solvent 1M20A  CYS69 P15303
nvironment is usually solvent  1STIA CYS42 P05094
exposed or in an unstructured 1EM6A CYS495 " POBT3T

part of the protein. . ‘ 108UA - CYS74 - Q93TU6
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Table C.29: Functionally coherent sub-clusters for Cluster 36
Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID
Unknown function, potentially NODE127X 1XM9A CYS273 Q13835
bindin talytic. Solvent 1FQVA CYsi23 - 413309
nding or catalytic. So! 1BG3A  CYS368 P05708
exposed envu‘onr.nent with an 1KPPA CYS73 Q99816
ASP and LYS with the CYS. 1AROP CYS510 P00573
Table C.30: Functionally coherent sub-clusters for Cluster 39
Potential annotation Sub-cluster ID PDB ID Residue ID UniProt ID
Associated with viral proteins. NODESSX ng}gi 332233 P ;?ggg
Environment is sparse, with a 1TTUA CYS% a1 89.”“
TRP, ARG, TYR, and THR. 1FPN1  CYS246 P04936
1TTU is an outlier. 1AL21 CYS270 P03300
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