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Abstract 
Recent advances in the speed and sensitivity of mass spectrometers and analytical 

methods, the exponential acceleration of computer processing speeds, and the availability 

of genomic databases from an array of species and protein information databases have led 

to a deluge of proteomic data. Unfortunately, this enhancement in data acquisition has not 

been accompanied by a concomitant increase in the availability of tools allowing users to 

rapidly assimilate, explore, and analyze this data and adapt to a variety of experimental 

workflows with minimal user intervention. Often the manual aggregation and analysis of 

proteomic data in current proteomics software distract investigators from the biological 

meaning of their data, leading to the all-too-frequent deposition of proteomic data into the 

scientific literature with little or no biological or clinical interpretation.  

We seek to fill the gap by providing a flexible platform for high-throughput 

autonomous proteomic analysis with the following critical components: liquid 

chromatography/mass spectrometry (LC/MS) acquisition control module, tandem mass 

spectra (MS/MS) database search, peptide spectral validation, peptide quantitation, 

quantitative data exploration tool within a relational database, cached public protein 

information databases and protein network exploration tool. The LC/MS control tool 

integrates lab information management system (LIMS) to provide automated multi-

dimensional sample analysis, as well as captures meta-data during analysis and associates 

them with sample preparation protocols and experiment results in a relational database. 

Instrument acquired raw data are streamlined through a customized proteomic pipeline 

for database searching followed by peptide validation. The logistic spectral score we 
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developed for high-throughput statistical validation of peptide sequence assignment to 

MSMS spectra outperforms standard tools already available in the proteomics field such 

as Sequest and X!Tandem to obtain the highest yield of confident peptide assignments. 

The logistic spectral score outperforms SEQUEST XCorr (242% more peptides identified 

on average) and the X!Tandem E-Value (87% more peptides identified on average) at a 

1% false discovery rate estimated by decoy database approach. Peptide identifications, 

along with data-dependent calculation results are directed into a relational database for 

organization of expansive proteomic data sets, collation of proteomic data with available 

protein information resources, and visual comparison of multiple quantitative proteomic 

experiments. This platform provides flexible adaptation to diverse workflows for the 

unique requirements of the individual proteomics lab, enabling proteomic scientists to 

modify the presentation of the proteomic data, implement extra data-dependent analysis 

tasks, process additional input formats and control new types of instruments.  

The utility of this system is illustrated through analysis of insulin signaling pathway 

important to liver cancers. We explored changes in phosphorylation profile quantitatively 

in hIRS1-transfected NIH3T3 cells in response to insulin stimulation. In a SILAC-labeled 

NIH3T3-hIRS1/NIH3T3-hIRS1 Y1180F timecourse, we discovered a total of 2201 

phosphorylation sites at 1% false discovery rate, among which 1862 (84.6%) were on 

Serine, 299 (13.6%) were on Threonine and 40 (1.8%) were on Tyrosine. Using a label-

free/SILAC hybrid quantitation approach, different phosphorylation patterns were 

identified in wild type and mutated cell lines. 
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1.1 MASS SPECTROMETRY-BASED PROTEOMICS 

As an analog to genomics, the term ‘proteomics’ was first introduced in the late 

1990s [1] to describe the large-scale study of protein identifications, structures and 

functionalities [2-4]. Although great progress in the human genome project leads to a 

huge leap in understanding human beings, it is still challenging to effectively decipher 

and treat various diseases based on the genomic data [5]. Some critical information, such 

as protein-protein interaction, relationship between protein structure and function, and 

dynamic post-translational modification processes, is not encoded in genes and has to be 

investigated at the protein level. Representing a bridge between genes and physiological 

functions, proteins are well recognized as the key molecules to elucidate the molecular 

basis of a particular cellular state. 

The early stage of proteomics can be dated back to 1970s when two-dimensional gel 

electrophoresis was used to separate and analyze protein complex [6, 7]. By loading 

protein mixtures on the SDS gel, proteins were first separated by molecular weight in the 

first dimension, and then separated by isoelectric point in the second dimension. Initial 

proteomic analyses were primarily relying on silver staining to visualize protein map and 

Edman degradation [8] to sequence proteins, until biological mass spectrometry gained 

its popularity in the early 1990s [9-13]. Compared to traditional methods, the mass 

spectrometry-based proteomic analysis approach is more efficient, sensitive and precise 

[14-16]. Proteins or peptides are ionized via either electrospray [17] or MALDI [18, 19] 

and their mass over charge are measured. Isolated peptide ions are further fragmented to 

the amino acid level to provide sequence information via tandem mass spectrometry 

process. 
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Two complementary approaches are developed for proteomic analysis using mass 

spectrometry: the top-down and bottom-up approaches. Top-down proteomics directly 

analyzes samples at the protein level to provide direct information about the protein 

molecular weight. In the following fragmentation stage, ions are fragmented at the amide 

bond to yield fragment pieces that contain protein sequence information, using various 

approaches, notably electron capture dissociation (ECD) [20] and electron transfer 

dissociation (ETD) [21]. However, mass spectrometers with limited scan range and 

resolving power provided challenges for the analysis of large molecular weight, highly 

charged proteins. MS/MS spectra acquired on protein fragments are typically very 

complicated due to the large number of possible ways to break up protein backbones, 

resulting in significant difficulty to determine the protein sequence. Furthermore, the 

wide range of protein hydrophobicity limited the choice of possible mass spectrometry-

compatible buffers that are able to dissolve samples without severe loss of certain 

components. On the other hand, a "bottom-up" approach focuses on analyzing small 

peptides, i.e. pre-cleaved protein fragment pieces, to identify proteins and determine 

details of their sequence and posttranslational modifications. Commonly used proteases, 

such as trypsin [22], Lys-C [23], and chemical reagents, such as cyanogen bromide 

(CNBr) [24], are able to digest protein primary structure at specific amino acid residues, 

yielding a mixture of short peptides. Although cleavage of proteins increases the number 

of molecules that must be analyzed, the bottom-up approach provides distinct advantages 

over top-down approach for certain types of analysis. First of all, most digested peptides 

are water-soluble, and compatible with common liquid chromatography solvents. 

Complex peptide mixtures can be resolved by coupling liquid chromatography directly to 
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mass spectrometry (LC-MS). Secondly, MS/MS spectra acquired on short peptides are 

much easier to interpret than those generated by proteins. Sufficient evidence regarding 

the sequence and post-translational modification usually could be observed on a single 

MS/MS spectrum.  

Distinctive MS/MS spectra are produced according to the selected precursor peptide 

sequences and the method to generate fragment ions. Theoretically, substitution of one 

amino acid in the peptide sequence results in half of fragment ion masses being shifted 

accordingly, which would generate a totally different spectrum. On the other hand, 

different spectra for the same peptide could be generated due to different fragmentation 

methods that break different chemical bond and produce unique fragment ions (Figure 

1.1) based on the internal mechanisms. For instance, collision-induced dissociation (CID) 

[25] usually predominantly produces b and y ions, plus a few a ions [26], while ETD 

produces c and z ions instead [21]. A typical CID type MS/MS spectrum is illustrated in 

Figure 1.2.  
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Figure 1.1: Nomenclature of peptide fragment ions. [27] a) a, b, c and x, y, z ions are defined according 
to the bond it breaks and the charge location. Charged N-terminal fragments are categorized as a, b, c ions 
and Charged C-terminal fragments are categorized as x, y, z ions. b) Ions are labeled consecutively from 
the original amino terminus 
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Figure 1.2: An MS/MS spectrum generated using CID fragmentation. Fragment ions are assigned to 
singly or doubly charged b and y ions. 
 
 

Several programs are available to reconstruct peptide sequences based on MS/MS 

spectral information. Based on the sequencing principle, they can be divided into three 

classes: de novo [28-30], database matching [31-39], and hybrid [40-42]. Lutefisk [28] 

and PEAKS [29] are developed based on the de novo peptide sequencing concept which 

basically assembles the target sequence using fragment information available in the 

MS/MS spectra. More popular sequencing programs including Sequest [31], Mascot [33] 

and X!Tandem [36, 43] are based on database searching. Theoretical fingerprint spectra 

are generated for all possible peptides contained in a genomic protein database and 
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matched to the examined experimental spectra. Quality scores are computed to indicate 

the matching confidence between the theoretical and experimental spectra.  Recently, a 

hybrid class of sequencing algorithm that combines de novo and database search is 

developed, represented by InsPecT [40]. With InsPecT, a short sequence tag is learned de 

novo from experimental MS/MS spectra and used to filter the broader genomic protein 

database to generate candidate peptides. Then a refined database search is performed on 

those peptides to yield the final matched sequence and modifications. 

 

 

1.2 PHOSPHOPROTEOMICS  

Mass spectrometry-based proteomics has been applied in many biological research 

areas to identify proteins, discover protein modifications and investigate protein-protein 

interactions. One promising work is to study cellular protein phosphorylations. 

Phosphorylation is one of the most important protein post-translational modifications 

(PTMs), which is involved in almost all cellular processes in living organisms. It is 

estimated that at least 30% of proteins are phosphorylated in mammalian cells, many of 

which are enzymatically active and regulate key physiological functions such as cell 

growth, apoptosis, proliferation, differentiation, and inter-/intra- cellular communication. 

Reversible phosphorylation results in a change in protein secondary structures, causing 

significant alteration of the binding affinity or activation state [44]. (Figure 1.3) Recently, 

many drug discovery efforts for cancers are targeted at the inhibition of enzymes called 

kinases and phosphatases with the ability to add or remove these modifications to 
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substrate proteins. Understanding the relationship between protein phosphorylation and 

cellular behavior and phenotype is of the first priority. 

 

 
Figure 1.3: Phosphorylation induced protein conformation change. (Figure from 
http://www.scq.ubc.ca/?p=372) 
 
 

Not too long from the first time phosphoproteomics was developed to study protein 

phosphorylation, milestones have been accomplished in every aspect of this field, 

including separation technology, mass spectrometry and bioinformatics. However, 

investigators still face a lot of challenges to understand protein phosphorylations 

thoroughly because of the lack of instrument sensitivity and method specificity in 

detecting phosphopeptides. This is especially true for phosphotyrosine. In normal 

growing cells, about 90% of phosphorylation occurs on serine, 10% on threonine and 
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0.05% on tyrosine [45]. Due to the low abundance of many phosphorylated proteins and 

substoichiometric nature of the phosphorylation of proteins, it is still not possible for the 

currently available instruments to resolve total phosphoproteome comprehensively. 

Phosphoproteomics is progressively moving forward to expand the percentage of the total 

phosphoproteome surveyed. 

A typical phosphoproteomics analysis workflow includes several stages, among 

which phosphopeptide enrichment, LC/MS analysis and bioinformatics data processing 

are the key steps for method optimization. 

As mentioned earlier, phosphopeptides are present at extremely low levels and are 

barely detectable without enrichment prior to MS analysis. Several enrichment strategies 

have been developed in the past few years. One class of enrichment methods are based on 

the high affinity chelation effect of phosphate group to certain metal ions, represented by 

Fe3+-immobolized metal affinity chromatography (IMAC) [46], Ga3+-IMAC [47], TiO2 

[48] and Nb2O5 [49]. Because of the chemically similar carboxyl functional group found 

on Asp and Glu residues, non-phosphopeptides having multiple acidic amino acids are 

competitive binders to phosphopeptides. Additional steps are required to prevent 

undesired contaminants in phosphopeptide enrichments. Using peptide methylation for 

IMAC [50] or additional organic competitor such as dihydroxybenzoic acid (DHB) for 

TiO2 [48] significantly reduces non-phosphorylated peptide binding. Another enrichment 

strategy for phosphotyrosine is based on immunoaffinity binding between tyrosine 

phosphorylated protein or peptide and anti-pTyr antibody [51, 52]. Antibodies are 

conjugated to Protein G agarose beads and selectively capture phosphotyrosine-

containing sequence from a large mixture of proteins or peptides, enabling specific 
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enrichment.  Some phosphopeptide enrichment strategies based on chemical properties of 

phosphopeptides have also shown promise, such as strong cation exchange (SCX) [53] 

and hydrophilic interaction chromatography (HILIC) [54].  These methods enrich for 

phosphopeptides based on their charge state and hydrophilicity, respectively. The 

combination of several enrichment methods can provide enhanced selectivity in 

enrichment for phosphopeptides. 

Improvement of sensitivity and reliability in phosphoproteomics analysis also 

depends on the development in mass spectrometry design. Not only because of the low 

abundance nature, but also due to the negatively charged phosphate group, 

phosphopeptides typically have poor ionization efficiency compared to non-

phosphorylated peptides when the mass spectrometer is operated in positive ion mode for 

optimal fragmentation in MSMS experiments. Besides the sensitivity and mass accuracy, 

improvement in peptide fragmentation methods is equally important. O-P bond between 

serine/threonine residue and phosphate group is one of the most labile bonds among the 

phosphopeptide. With collisionally induced dissociation (fragmentation) methods (CID 

and CAD), energy deposited in a peptide ion is re-distributed along the whole molecule 

prior to backbone dissociation [25], often breaking this O-P bond and leading to neutral 

loss of phosphate group. (Figure 1.4 A) Dominant neutral loss peaks in MS/MS spectra 

significantly decreases spectral quality resulting in low signal to noise of the remaining b 

and y type ions. To overcome this problem, neutral-loss-triggered MS3 [53] and pseudo-

MS3 (multi-stage activation) [55] have been developed to further fragment the neutral 

loss peak. (Figure 1.4 B) New fragmentation methods have been implemented as well to 

eliminate the neutral loss of phosphate. Phosphopeptides fragmented by ECD [56] and 
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ETD [21] contain less abundant neutral loss peaks because energy generated by charge 

neutralization is localized on a certain bond and rapidly followed by bond dissociation. 

 

 
Figure 1.4: Acquired MS/MS spectra on the precursor ion m/z=1031.42. A) MS2 only; B) pseudo MS3. 
Predominant neutral loss peak (M2+-OPO3, m/z: 982.62) significantly decreases the quality of MS/MS 
spectrum, while pseudo-MS3 approach gives more sequence-related information. 
 
 

With the ever-growing phosphoproteomic datasets, bioinformatic analysis becomes 

an integral part of data analysis. In a single LC/MS experiment, 10,000 MSMS spectra 

can be collected in a single hour of data acquisition.  Many tools have been developed to 

improve prediction, verification and description of phosphorylation sites. Notably, 

Scansite searches for motifs and interaction domains that are likely to be phosphorylated 

based on the protein sequence motifs [57]. Search engine assigned phosphorylation sites 

can be validated by ascore [58, 59] in a high-throughput mode. Characterized 

phosphorylation sites are deposited in databases such as Phosphosite (including both 

high-throughput, or HTP, e.g. discovered by mass spectrometry data and low-throughput, 

or LTP, e.g. discovered by traditional biochemical method data) [60] and HPRD (LTP 

data only) [61], providing a good resource for phosphoproteomic research. 
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1.3 QUANTITATIVE APPROACH TO UNRAVEL SIGNALING NETWORKS 

Most frequently, it is not only enough to identify the phosphopeptide and localize the 

phosphorylation site, but it is also critically important to resolve the temporal change of 

phosphorylations in response to external stimulations, or differential activation states 

between normal and diseased tissues. Phosphorylation and dephosphorylation events that 

occur in signal transduction networks are transient and dynamic, which requires a 

quantitative approach to capture the intermediate states. Absolute quantification is not 

very feasible currently, since it requires synthesis of heavy isotopic version of every 

peptide detected [62], which is laborious and expensive. Relative quantification is a good 

alternative for the purpose of quantitative comparison of several samples. 

Label-free method is a cost-effective and straightforward quantitation approach [51]. 

To minimize experimental error, stable isotopes are also used to label different sample 

states and compare their intensities within a single LC/MS run. Isotopically heavy atoms 

can be incorporated either through chemical labeling or metabolic labeling. Chemical 

labeling relies on reaction of isotopic reagent with peptide functional terminals, such as 

cysteine, amine, or carboxylic acid groups. Peptide quantitation can be done at the MS 

level (ICAT [63], GIST [64], ICPL [65]), or MS/MS level (iTRAQ [66]). The advantages 

of the iTRAQ method is the multiplex capability (8 cellular states can be quantitatied in a 

single MSMS spectra) and the quantitation is performed in the MSMS scan. Peptides 

from different samples look identical in the MS scan and are distinguished and quantified 

in the MS/MS stage via a reporter group dissociated from the isobaric mass tag. 

Metabolic labeling with isotopically labeled amino acids is even more accurate than 

chemical labeling since it normalizes technical error from the very beginning of sample 
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preparation steps. Stable Isotope Labeling with Amino acids in Cell culture (SILAC) is a 

promising approach to study signaling pathways [59]. Generally, cells are cultured in 

special media that contains several types of amino acids that are completely replaced by 

their heavy isotopic versions. Lys and Arg are usually substituted because trypsin is used 

to digest protein in most bottom-up style proteomics experiments. Both SILAC and 

iTRAQ are widely used, whereas it depends on experiment condition, sample type, 

instrument, and budget to choose which is preferable. 

It is worth mentioning that when choosing isotopic reagents, 15N, 14C and 18O are 

more favorable than 2H. This is because of the deuterium effect that leads to 

chromatography shift in retention time [67]. For relative quantitation of peptide 

abundance between different cellular states, co-elution of stable isotope labeled peptides 

provides the most accurate results and simplifies computational analysis. 

 

 

1.4 OVERVIEW OF OUR FINDINGS 

The primary goal of this thesis project is to provide a high-throughput solution for 

phosphoproteomic analysis as illustrated in Figure 1.5.  To reach this goal, We have 

developed a flexible platform for high-throughput autonomous proteomic analysis with 

the following critical components: LC/MS acquisition control tool (Chapter 2), MS/MS 

database search (Chapter 2), peptide spectral validation (Chapter 4), peptide quantitation 

(Chapter 3), data exploration tool within a relational database (Chapter 3), cached public 

protein information databases (Chapter 3) and protein network exploration tool. 

(Summarized in Figure 1.6) The LC/MS control tool integrates lab information 
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management system (LIMS) to provide unmonitored multi-dimensional sample analysis, 

as well as capture meta-data during analysis to be associated with sample preparation 

protocols and experimental results in a relational database. Instrument acquired raw data 

are automatically assembled into a customized interface for database searching followed 

by peptide validation. The logistic spectral score we developed for high-throughput 

statistical validation outperforms both XCorr (242% more peptides identified on average) 

and the X!Tandem E-Value (87% more peptides identified on average) at a 1% false 

discovery rate (FDR) estimated by decoy database approach [68]. Peptide identifications, 

along with data-dependent calculation results are directed into a relational 

FileMaker/MySQL database for organization of expansive proteomic data sets, collation 

of proteomic data with available protein information resources, and visual comparison of 

multiple quantitative proteomic experiments. This platform provides flexible adaptation 

to diverse workflows for the unique requirements of the individual proteomics lab, 

enabling proteomic end-users to modify the presentation of the proteomic data, 

implement extra data-dependent analysis tasks, process additional input formats and 

control new types of instruments. The ultimate purpose of this system is to allow users to 

focus on extraction of biological meaning from vast data sets instead of routine data 

manipulation tasks. 

We implement these new bioinformatic tools in the analysis of insulin signaling 

pathway in hepatocellular carcinoma. Using a hybrid quantitation approach combining 

label-free and SILAC, we were able to quantify a total of 2201 phosphorylation sites at 

1% false discovery rate. Several groups of phosphorylation sites were identified based on 

the quantitative data processed through the high-throughput proteomic pipeline.  
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Figure 1.5: A hybrid approach in combination of label-free and SILAC quantitation methods to 
study phosphoproteomics in signaling pathway. Two cell lines, such as wild type and mutant, or normal 
and diseased are cultured in light media and heavy media separately. Then, these cells are stimulated for 
different time length and combined light and heavy SILAC labeled samples in 1:1 ratio to generate a 
SILAC timecourse. 
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Figure 1.6: Overview of the high-throughput autonomous proteomic pipeline for phosphoproteomics.  
Each piece of the pipeline is described in greater detail in the indicated thesis chapter. 
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2.1 INTRODUCTION 

Dramatic progress has recently been made in expanding the sensitivities, resolving 

power, mass accuracy, and scan rates of mass spectrometers that can fragment and 

identify peptides through tandem mass spectrometry (MS/MS) [1-4].  Unfortunately, this 

enhanced ability to acquire proteomic data has not been accompanied by increased 

availability of tools able to assimilate, explore, and analyze these data efficiently.  The 

typical proteomics experiment can generate tens of thousands of spectra per hour, and the 

use of multidimensional LC/MS, as with the MudPIT technique [5], can generate even 

larger datasets.  

Computational tools for the collection and analysis of proteomic data lag far behind 

analytical methods for proteomic data creation [6].  In a typical experiment, collection 

and analysis of data is a fully manual process requiring repetitive and laborious sample- 

and data-processing steps with much unnecessary user intervention [6].  Proteomic 

datasets are expansive; adequate systems for the initial storage of proteomic data and its 

relationships to data from other external protein knowledge sources are inflexible and not 

integrated with the software used in data acquisition. 

There are two options for handling the massive and diverse workflows in the modern 

proteomics lab: either provide a completely integrated software platform that is malleable 

to the users’ needs, or provide independent software tools that require extensive user 

intervention to complete a total analysis of the data.  Great progress has been made in 

providing independent software tools such as software focused on a single aspect of the 

proteomic pipeline.  However, proteomic end users are left to fend for themselves in 

passing data amongst the various software tools and in modifying the individual software 
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tools to provide the processing and analysis needed for interpretation of their specific 

data.  For example, one software tool is used for data acquisition, (such as Xcalibur or 

Analyst).  A second tool interprets tandem mass spectra (such as X!Tandem [7, 8], 

Mascot [9], SEQUEST [10], OMSSA [11]) or statistical validation of database search 

results (such as Peptide/Protein Prophet [12], or Ascore [13]).  A third tool provides 

quantitation of proteomic data (such as Xcalibur XDK, or MSQuant [14]), and a fourth 

provides a relational database for data warehousing (such as PRIME [15] or PeptideAtlas 

[16]) or a database graphical user interface for visual analysis of proteomic database 

search results (CPAS [17]).  An assortment of web-based protein knowledge resources 

such as Swiss-Prot [18], HPRD [19], Genbank [20], OMIM [21], BLAST [22], IPI [23], 

and STRING [24] provide rich annotation of the proteins revealed in high-throughput 

proteomic experiments.  These web-based metadata tools do not permit users to organize 

these external information sources relationally within the expansive proteomic datasets or 

to archive user observations.  Although each of these tools provides essential 

functionality, they have not necessarily been engineered to adapt to diverse proteomic 

workflows or to work together efficiently.  

Recent progress has been made in developing integrated systems for post-acquisition 

processing of data from high-throughput proteomic analysis.  Notably, the Trans-

Proteomic Pipeline [25] (TPP) integrates many critical aspects of post-acquisition 

proteomic analysis, including user initiated MS/MS sequence assignment, validation, 

quantitation and interpretation.  To further expand the concepts driving the creation of 

workflow automation systems for proteomics such as TPP, we have now integrated 
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sample management, data acquisition, post acquisition analysis, and data visualization as 

integral components of a fully autonomous analysis pipeline called HTAPP. 

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Overall Scheme 

The overall scheme of HTAPP is illustrated in Figure 2.1.  While each individual 

component of the integrated system can provide critical functionality independently, it is 

the interoperability of the components that provides a complete technology platform 

integrating data collection, storage, and visualization.  In parallel with the development of 

HTAPP we have also developed a new relational database for proteomic analysis called 

PeptideDepot (see Chapter 3).  HTAPP automatically directs the incoming data stream 

into PeptideDepot where a user may then interact with the processed proteomic data. 
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Figure 2.1: Overview of the HTAPP proteomic pipeline. HTAPP streamlines the collection and 
autonomous analysis of proteomic data.  This system performs automated LC/MS data generation, 
identification, validation, quantitation, and integration with external protein information databases and 
enables protein network exploration. Blue arrows indicate actions that are performed automatically and 
black arrows describe tasks that require users’ intervention. 
 
 
2.2.2 Parallel Processing 

To accelerate data processing and enhance system performance through parallel 

processing, the system components of HTAPP reside separately on several computers 

running Windows Server 2003 or Windows XP (Figure 2.2). The separate computers 

exchange data via TCP/IP protocol and Windows file-sharing network.   
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Figure 2.2: Diagram showing intercomponent data flow and communication scheme for HTAPP. 
HPLC: high performance liquid chromatography system; MS: mass spectrometer; PC-1: Data acquisition 
component; PC-2: transfer raw data files and perform SEQUEST or Mascot database search; Cluster: 
perform clustered SEQUEST or Mascot search; PC-3: autonomous post-acquisition analysis such as 
spectral validation, peptide quantitation, and upload proteomics data into PeptideDepot database; PC-4: 
database server (PeptideDepot) for visualization of proteomic data.  Once data is deposited into 
PeptideDepot, it is incrementally backed-up offsite daily.  
 
 

The modular design of HTAPP allows increased throughput as each component of the 

analysis workflow is performed simultaneously on separate computers.  Through use of a 

distributed system, parallel processing enables the complete analysis of a proteomic data 

set within the acquisition time of the next proteomic sample.  For example, an experiment 

containing 10,000 total MS/MS spectra in which ~1,000 spectra are high-quality (as 

defined by user determined thresholds) requires 1.5 hours to acquire the raw data on the 

mass spectrometer coupled to PC-1, 1 hour to perform a clustered SEQUEST search on 

PC-2 and the database search cluster, and 1.5 hours to complete the post-processing tasks 

including loading of data into the PeptideDepot relational database.  Since SEQUEST 
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search and post-processing can be quite CPU-intensive, sequential processing of the data 

on a single computer requires approximately 4 hours per sample.  However, with the 

distributed system the overall time is reduced to a total of 1.5 hours per sample.  

 

2.2.3 Data Acquisition Software Module 

An automated data acquisition tool developed in Microsoft Visual Basic 6.0 (VB6) 

runs on PC-1 to organize the predefined sample queue for analysis and to control a set of 

instrument manufacture software using Visual Basic (Figure 2.2, and Figure 2.3D).  The 

extensibility of this tool is derived from flexible instrument control using Visual Basic 

SendKeys commands allowing the autonomous operation of any instrument control 

software.  This central component of the automated acquisition of LC/MS data controls 

the unmonitored separation of peptides in, at most, three dimensions of chromatography 

and a simplified version has been described previously [26].   

Here, we expand this data acquisition tool to integrate it within a data analysis 

pipeline that includes a relational database organized sample queue, MS/MS database 

searching, validation, and quantitation pipeline that automatically deposits the proteomic 

data and associated analysis within a relational database called PeptideDepot.  An ODBC 

connection (Figure 2.3E) between the sample queue in PeptideDepot (Figure 2.3C) and 

the Visual Basic data acquisition software (Figure 2.3D) allows retrieval of selected 

sample information from the PeptideDepot database (FileMaker, version 9.0.3, FileMaker 

Inc., Santa Clara, CA).  During the run, real-time instrument status information such as 

HPLC pressure profiles (Figure 2.4D), automated evaluation of selected ion 

chromatogram peak areas of peptides from standard mixes (Figure 2.4F), and screen 
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captures (Figure 2.4E) are archived in the MySQL (version 5.1.16-beta-nt; MySQL Inc., 

Cupertino, CA) component of PeptideDepot using a VB6 program.  This data is available 

remotely through a website (Figure 2.4D-F) driven by Apache 2.2.4 (The Apache 

Software Foundation, Los Angeles, CA) and PHP 5.2.1 (http://www.php.net/).   

 
Figure 2.3: Integration among relational database component, data acquisition control, and fully 
autonomous post-acquisition analysis of HTAPP. A) A sample-generating user enters the protocol used 
in sample creation, B) the location of the sample, and any critical post-acquisition parameters into a C) 
sample queue located within our FileMaker database. D) The mass spectrometer operator then selects the 
sample for analysis with the acquisition control software component of our integrated system, which 
resides on the mass spectrometer control computer. All preferences for post-acquisition analysis, such as 
database search parameters and quantitation choices, are passed automatically to the acquisition control 
software from the sample queue and may be optionally modified by the instrument operator. When ‘run 
sequence’ is clicked, the acquisition control software communicates directly with data acquisition software 
provided by the instrument manufacturers via flexible VB SendKeys controls. E) Immediately after data 
acquisition is complete, the acquisition control software initiates automated data analysis, including 
MS/MS database searching, quantitation of relative peptide abundance, validation of peptide sequence 
assignments, loading of resulting data into FileMaker/MySQL, and caching of relationships between newly 
collected proteomic data and existing protein knowledge imported from external protein information 
databases and located internally within FileMaker/MySQL. 
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Figure 2.4: Automated analysis and troubleshooting within the HTAPP LC/MS data acquisition 
module. A) Designation of automated SEQUEST search and database deposition parameters for proteomic 
samples; B) Post-acquisition data pusher for initiation of autonomous post-acquisition analysis; C) 
Thresholds set for automated real-time monitoring of selected ion chromatogram peak heights or areas of 
bovine serum albumin (BSA), alpha casein peptides and user-selected masses in users' proteomic samples 
that triggers email alerts and/or halts the automated acquisition queue; D) Historical archive of HPLC 
gradient and pressure profile monitoring for multiple pumps displayed in a web browser; E) A webpage to 
monitor the live running status of LC/MS; F) Historical archive of three selected BSA peptide ion 
chromatogram peak areas from automated standard runs. 
 
 
2.2.4 Automated Post-Processing Software Modules 

Once a sample tagged as ‘Autoload’ is acquired on PC-1, a VB6 program running on 

PC-2 is notified via TCP/IP communication on port 40002 and transfers raw data files 

from PC-1 through Windows file sharing (Figure 2.2).  MS/MS spectra are extracted 

from Thermo RAW files using extract_msn.exe (version 4.0; Thermo Scientific, 

Waltham, MA) or extracted from mzData, mzXML and mzML format using 
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ExtractMSMS.jar (in-house developed in Java 1.6.0; Sun Microsystems, Santa Clara, CA) 

to generate DTA files.  A SEQUEST cluster (version 27; Thermo Scientific) or Mascot 

cluster (version 2.2.1; Matrix Science) MS/MS database search is initiated via a 

networked computer cluster.   

After completion of SEQUEST or Mascot searching, proteomic data is transferred 

using Windows file sharing to a third computer, PC-3, which is reserved for a variety of 

post-processing tasks (Figure 2.2).  On PC-3, a variety of independent calculations are 

performed on the proteomic data.  A VB6 program called "AutoLoad" orchestrates the 

initiation and transfer of data amongst these separate software tools.  A peptide 

quantitation tool and SILAC calculation tool are created in Visual Basic 6 using the 

Xcalibur XDK.  A phosphosite localization tool that calculates Ascore as described 

previously [13] is written in Java 1.6.0, and MS/MS validation tool implementing a new 

user-trainable logistic regression algorithm that more than doubles peptide identifications 

at a user selected false discovery rate compared to XCorr [27] is implemented in R 2.4.1 

(The R Foundation, http://www.r-project.org/).  Once the calculations are finished, 

proteomic data are immediately uploaded to a FileMaker/MySQL relational database 

called PeptideDepot hosted on the remote server PC-4 using FileMaker script and PHP5 

scripts.   The proteomic data is then accessible from a graphical FileMaker client (version 

9.0.3) running on Mac or Windows.  The database files are synchronized daily without 

user intervention to an offsite server for the incremental backup using either the 

commercial software tool Retrospect 7.5 (EMC Insignia; Pleasanton, CA) or the 

Carbonite backup service (http://carbonite.com; Boston, MA). 
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2.3 RESULTS 

2.3.1 Automated Acquisition Control  

To create a robust infrastructure capable of high-throughput analysis of proteomic 

samples, we sought tight integration between the bioinformatic tools used in analyzing 

proteomic data and the software involved in acquiring mass spectral data.  This system 

can flexibly automate projects ranging from simple LC/MS of in-gel digested proteins to 

more complex proteomic analyses, such as 2D nano-LC/MS experiments or protein post-

translational modification analyses.  

 

2.3.2 Sample Queue Management and Automated Workflows 

A sample queue capability within the FileMaker component of PeptideDepot 

relational database integrates sample creation, and metadata annotation with data 

acquisition control and automated post-acquisition analysis (Figure 2.3A-D; Figure 

2.4A,B).  This system provides unparalleled flexibility to the user by 1) letting any user 

tailor the sample queue in FileMaker for automation of any lab-specific post-acquisition 

analysis task or association of any experimental meta-data with the nascent proteomic 

data, 2) providing flexible control of any mass spectrometer using a system that employs 

Visual Basic SendKeys to manage data acquisition software from any instrument 

manufacturer, and 3) providing an array of choices for post-acquisition analysis for the 

automated or manual interpretation of proteomic data.   

The laboratory information management system (LIMS) components of the 

PeptideDepot database are created in the user-friendly FileMaker environment, allowing 

proteomic end-users to tailor the associated fields and layouts to their specific needs 
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(Figure 2.3A-C).  For example, users wanting to store a new piece of information within 

the system to be automatically associated with the analyzed proteomic data may quickly 

add a field for this data in FileMaker and position it precisely within user-defined layouts 

with FileMaker’s WYSIWYG layout tools (such as illustrated for the protocol library and 

sample storage inventory in Figure 2.3A-B).  With this flexibility, the end-user need not 

wait for a programmer or database engineer to add the desired functionality; it may be 

implemented directly. 

 

2.3.3 Automation of Post-Acquisition Data Analysis 

Although sample metadata may vary dramatically from lab to lab, the processing of 

proteomic data after acquisition most commonly involves some combination of database 

searching, quantitation, validation of database search results, and storage of proteomic 

data within a relational database.  A variety of software tools are used in each step of this 

standard analysis pipeline (summarized in Figure 2.1).  For database searching, our 

automated system currently supports SEQUEST, Mascot, or any other algorithm that 

exports to pepXML.  For quantitation, our automated system currently uses the ICIS 

algorithm available in the Xcalibur XDK to calculate peak areas for label free or isotopic 

labeling methods such as SILAC from any Thermo Scientific Xcalibur (RAW) file.  For 

validation, our system currently automates the analysis of reversed database searches 

[28], performs peptide validation using a recently developed logistic spectral score that 

more than doubles peptide yield at a fixed FDR [27], and phosphorylation site 

localization using the Ascore algorithm [13].  Our relational database PeptideDepot also 

provides unique tools, namely SpecNote for database-integrated manual validation and 
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annotation of spectra [27].  Our current system provides for unmonitored import of 

proteomic data and proteomic analyses into our flexible PeptideDepot relational database 

that utilizes a FileMaker generated user interface.  

 

2.3.4 Flexible Workflow Support 

Although the software tool that performs automated data acquisition currently 

incorporates a Thermo Scientific hybrid Linear Ion Trap–Fourier Transform mass 

spectrometer (LTQ-FTICR) and Agilent 1100 HPLC pumps, our control software is 

adaptable to any mass spectrometer and chromatography system through the use of 

flexible Visual Basic SendKeys controls [29].  In its current implementation, SendKeys 

works through Xcalibur and Chemstation software to control the automated acquisition of 

data.  Using SendKeys controls, our software sends keyboard commands to any currently 

running software.  By using SendKeys, control of additional mass spectrometer data 

acquisition software systems can be rapidly implemented to provide critically important 

extensibility to our automated platform.   

HTAPP also supports the analysis of any additional mass spectrometer MS/MS data 

that may be converted to the standard proteomic data formats, i.e. mzData [30], mzXML 

[31] and mzML [32] (Figure 2.5).  Tools to convert manufacturer-specific raw data to 

standard formats are publicly available 

(http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML).  For Thermo 

Scientific RAW files, the analysis pipeline is fully automated.  If a user desires to analyze 

data from other types of mass spectrometers, the user first converts the data to either 

mzData, mzXML or mzML format using publicly available software prior to autonomous 
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analysis through HTAPP.  We have implemented a Java program in HTAPP to convert 

MS/MS spectra from standard formats and initiate autonomous data analysis.  This 

software was verified with publicly available proteomic datasets acquired on Agilent, 

LCQ-Deca, LTQ and QSTAR mass spectrometers [33].   

 

 
Figure 2.5: Flexible workflows through support of standard proteomic data exchange formats. In the 
figure, mzML, mzXML and mzData are standard XML formats for MS/MS data. DTA is the generic 
format for SEQUEST input. MGF is the Mascot Generic Format. pepXML is the standard XML format for 
database search output. OUT is the generic format of SEQUEST search output. Conversions indicated with 
solid arrows are accomplished autonomously within HTAPP while the dashed lines indicate the tasks that 
require user intervention. Post-processing of additional mass spectrometer specific raw data formats is 
provided through support of mzML, mzXML and mzData formats. Database search engines beyond 
SEQUEST and Mascot can be implemented by converting DTA to a particular format for that search 
engine and exporting search output in pepXML format, as is illustrated for Mascot here. 
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After data acquisition, the peptide sequences are assigned through a SEQUEST or 

Mascot cluster, peptides quantitated, uncertainties of peptide and phosphorylation site 

placement are accessed, and proteomic data are deposited into a networked relational 

database (Figure 2.3E).  If a user's workflow includes additional analysis tasks beyond 

the core functionality already available within HTAPP, these additional calculations may 

be automated through FileMaker scripts which export the proteomic data in standard 

formats, trigger external analysis software, and import the analysis results back into the 

PeptideDepot database into user-defined fields that are displayed on user-configured 

layouts.  

 

2.3.5 Sample Tracking Database and Protocol Library 

We have also created a sample tracking database and protocol library (Figure 2.3A,B) 

that organize information about sample preparation and storage and associate this 

information with the nascent proteomic data.  This tool enhances the ability to find 

correlations between proteomic results and the conditions used to prepare and store 

samples while facilitating post-acquisition analysis by specification of data processing 

parameters prior to data acquisition.  These tools are dynamically integrated within our 

data acquisition and automation tools to facilitate the automation and documentation of 

samples awaiting proteomic analysis.  By requiring the entry of sample protocols before 

data acquisition, critical experimental conditions and metadata are captured, organized, 

and associated with complex proteomic datasets.  Also, the protocol library allows 

assimilation of all protocols used in the lab within a lab-based relational database and 
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provides a mechanism by which protocols can be reviewed and optionally approved by 

other researchers.  

 

2.3.6 Automated Monitoring and System Troubleshooting 

To promote efficient troubleshooting of fluctuations in system performance, the 

automated data acquisition includes the capability to store and analyze metadata captured 

during spectral acquisition in a fully automated fashion.  Information such as the pressure 

profiles and chromatography gradients are all automatically archived in the MySQL 

component of the PeptideDepot relational database that is linked to the raw data and 

SEQUEST results and accessible through a web-based PHP interface (Figure 2.4D).  

Selected ion chromatogram (SIC) peak areas of either Bovine Serum Albumin (BSA) or 

α-casein peptides from automated standard runs, or of user-selected standard peptides 

incorporated into user samples, are monitored automatically.  If any selected peptide falls 

below a user-defined threshold, the operator is optionally alerted via email or instant 

SMS and the acquisition queue can be set by the user to halt (Figure 2.4C).  A user may 

also explore all the historical BSA and α-casein SIC data acquired on the instrument in 

an interactive web browser layout driven by PHP (Figure 2.4F) or in a VB6 program to 

track and troubleshoot instrument sensitivity over time.  Remote access capabilities allow 

any operator to monitor the status of the system in real time (Figure 2.4E) and to control 

the system through an encrypted network connection.   

 

2.3.7 Relational Database for Proteomic Data Exploration 
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Proteomic results are automatically imported to a networked relational database 

called PeptideDepot (see Chapter 3).  Tight integration of external protein information 

sources is a critical aspect of this system.  Once newly acquired data are deposited into 

the PeptideDepot database, many data-mining calculations are triggered automatically by 

querying externally available protein information databases such as PDB [34], IPI [23], 

HPRD [19], Swiss-Prot [35], STRING [24], Phosphosite [36] and Scansite [37] by 

peptide sequence across locally cached databases.  All possible protein names associated 

with a given peptide sequence are collated from the locally cached external protein 

information databases.  This capability overcomes the limitation of alternative protein 

naming by allowing for users to "deep search" the data sets across an index of all possible 

protein names in every database.   

After automated analysis and deposition of the data within PeptideDepot, users may 

explore the data with flexible FileMaker WSIWYG layouts.  PeptideDepot features an 

extensive collection of predefined data filters that enable users to limit false-discovery 

rates estimated by reversed database search while focusing on specific peptide qualities 

such as tyrosine phosphorylation, etc.  Comparative analysis views, useful in comparing 

peptides observed in different cellular states such as disease versus healthy tissue, are 

provided to facilitate quantitative comparison among samples using either label-free or 

stable-isotope incorporation quantitation strategies such as SILAC. 

 

 

2.4 DISCUSSION 
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One of the largest impediments to truly high-throughput proteomic methods is the 

lack of automation after the acquisition of spectra and lack of capture of critical 

acquisition-specific metadata.  In addition, there is a fundamental need not only to 

acquire data more quickly but also to increase the quality of data acquired.  An ideal 

high-throughput proteomic pipeline would provide for the thorough documentation of a 

sample’s provenance: the protocol used in sample preparation, sample storage 

information, environmental conditions such as temperature and humidity during the 

analysis, and HPLC gradients and pressure profiles.   

 

2.4.1 Integrative Approach to Proteomic Analysis 

One of the fundamental goals of the work described here is to provide truly high-

throughput multidimensional acquisition of spectra coupled to automated database 

searching, data archiving, data filtering, visualization, analysis, quantification, and 

statistical validation of spectra.  The software described here uses an integrative approach 

in which all information concerning a proteomic experiment is archived automatically 

along with the raw data and database assignments.  All components of analysis are 

integrated within a lab-centric relational database.  Capturing a myriad of experimental 

metadata in addition to spectral acquisition enables the organization and documentation 

of complex experiments and facilitates troubleshooting.  Unlike other currently available 

proteomic software, our integrated platform utilizes a sample queue in which post-

processing parameters and user-provided proteomic sample annotation are passed directly 

to data acquisition control software and are associated automatically with proteomic data 

as it is collected and processed within a lab’s relational database.  This tight integration 
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greatly increases efficiency by automating labor-intensive post-processing tasks and 

reduces the chances that critical connections between newly collected proteomic data and 

experimental metadata will be lost. 

This work provides an integrated yet extensible technology platform for the 

automated processing, storage, and visual analysis of expansive proteomic datasets.  

Instead of trying to patch together a variety of preexisting software tools that fit together 

awkwardly, match analytic needs only marginally, and lack critically important 

functionality, we have created from the ground up an optimized set of integrated tools 

that provides automated acquisition, processing and visual analysis of proteomic data.  

Although many aspects of our software implementations are both unique and essential for 

a thorough analysis of these types of data, the main novelty of our approach is the direct 

software integration of the collection, quantitative processing, and visual analysis of 

proteomic data.  No publicly available software tool currently available provides this 

level of integration.  Current proteomic end-users must either develop their own 

proteomic pipeline software systems in each lab or else perform tedious data 

manipulation steps manually to extract biological meaning from the immense datasets.   

 

2.4.2 Extensibility 

The HTAPP software is designed to provide critical flexibility and functional 

extensibility for users to implement alternative proteomic workflows as needed.  For 

example, if a user wants to acquire data on a new instrument, the SENDKEYS commands 

in our software could be changed to the series of timed keystrokes necessary to control 
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any instrument manufacturers data acquisition software, without altering the whole 

proteomic workflow.   

Although the analysis of MS/MS data acquired on ThermoScientific mass 

spectrometers is fully automated, data generated by other instruments can be processed 

manually within HTAPP as well by converting the data to the standard mzML, mzXML 

or mzData formats before automated HTAPP analysis. 

To support flexible expansion for future software to interact with the automated 

pipeline, samples awaiting analysis reside in two independent flat-file formatted sample 

queues.  The first sample queue resides on the data acquisition component (PC-1; Figure 

2.2) while the second queue resides downstream of the database search component on the 

data loader (PC-3; Figure 2.2).  By adding, removing, or altering the text formatted 

sample queues, a user can integrate their own software within the HTAPP pipeline.   

To incorporate a new database search engine such as X!Tandem for MS/MS 

interpretation, the proteomic researcher only need to configure the database search 

program to export the results in the standard pepXML [25] format and trigger existing 

pepXML import scripts that are already available in HTAPP (Figure 2.5).  Once imported 

to FileMaker, the parsed database search results would be integrated into user-defined 

flexible layouts.   

To accomplish any additional post-acquisition data analysis task, the sample queue 

table within FileMaker has a unique counter field that is transferred throughout the data 

analysis pipeline and stored with the analyzed proteomic data.  Using this counter field, 

proteomic end users may add any post acquisition preferences to the sample queue, and 

optionally trigger the execution of external software tools using FileMaker scripts that 
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export the proteomic data from PeptideDepot, trigger the external program and import the 

results of the external analysis back into FileMaker for display on user-defined custom 

layouts. For fully automated post-acquisition analysis, the existing FileMaker data import 

script can then optionally trigger these external calculations. 

 

2.4.3 Overall Benefit 

The laboriousness of current proteomics software manual implementations distracts 

the proteomics investigator from the biological meaning of the data, leading to the all-

too-frequent deposition of data into the scientific literature with minimal biological or 

clinical interpretation.  Instead of treating individual steps in the proteomic pipeline as 

separate events whose integration depends on end-user intervention, we let the user focus 

on the interpretation of the data through automation of routine data manipulations and 

caching of comparisons between newly collected proteomic data and external 

bioinformatic resources within a lab-based relational database. 

 



Chapter 2: HTAPP 

 43 

2.5 REFERENCE 

1. Chernushevich, I.V., A.V. Loboda, and B.A. Thomson, An introduction to 
quadrupole-time-of-flight mass spectrometry. J Mass Spectrom, 2001. 36(8): p. 
849-65. 

2. Schwartz, J.C., M.W. Senko, and J.E. Syka, A two-dimensional quadrupole ion 
trap mass spectrometer. J Am Soc Mass Spectrom, 2002. 13(6): p. 659-69. 

3. Syka, J.E., et al., Novel linear quadrupole ion trap/FT mass spectrometer: 
performance characterization and use in the comparative analysis of histone H3 
post-translational modifications. J Proteome Res, 2004. 3(3): p. 621-6. 

4. Yates, J.R., et al., Performance of a linear ion trap-Orbitrap hybrid for peptide 
analysis. Anal Chem, 2006. 78(2): p. 493-500. 

5. Washburn, M.P., D. Wolters, and J.R. Yates, 3rd, Large-scale analysis of the 
yeast proteome by multidimensional protein identification technology. Nat 
Biotechnol, 2001. 19(3): p. 242-7. 

6. Topaloglou, T., Informatics solutions for high-throughput proteomics. Drug 
Discov Today, 2006. 11(11-12): p. 509-16. 

7. Craig, R. and R.C. Beavis, A method for reducing the time required to match 
protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom, 
2003. 17(20): p. 2310-6. 

8. Craig, R. and R.C. Beavis, TANDEM: matching proteins with tandem mass 
spectra. Bioinformatics, 2004. 20(9): p. 1466-7. 

9. Perkins, D.N., et al., Probability-based protein identification by searching 
sequence databases using mass spectrometry data. Electrophoresis, 1999. 20(18): 
p. 3551-67. 

10. Eng, J.K., A.L. McCormack, and J.R. Yates, An Approach to Correlate Tandem 
Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein 
Database. J Am Soc Mass Spectrom, 1994(5): p. 976-989. 

11. Geer, L.Y., et al., CDART: protein homology by domain architecture. Genome 
Res, 2002. 12(10): p. 1619-23. 

12. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem 
mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58. 

13. Beausoleil, S.A., et al., A probability-based approach for high-throughput protein 
phosphorylation analysis and site localization. Nat Biotechnol, 2006. 24(10): p. 
1285-92. 



Chapter 2: HTAPP 

 44 

14. Andersen, J.S., et al., Proteomic characterization of the human centrosome by 
protein correlation profiling. Nature, 2003. 426(6966): p. 570-4. 

15. Ulintz, P.J., et al., 4th Siena 2D Electrophoresis Meeting. 2000, Siena, Italy. 

16. Desiere, F., et al., Integration with the human genome of peptide sequences 
obtained by high-throughput mass spectrometry. Genome Biol, 2005. 6(1): p. R9. 

17. Cottingham, K., CPAS: a proteomics data management system for the masses. J 
Proteome Res, 2006. 5(1): p. 14. 

18. Wu, C.H., et al., The Universal Protein Resource (UniProt): an expanding 
universe of protein information. Nucleic Acids Res, 2006. 34(Database issue): p. 
D187-91. 

19. Peri, S., et al., Development of human protein reference database as an initial 
platform for approaching systems biology in humans. Genome Res, 2003. 13(10): 
p. 2363-71. 

20. Benson, D.A., et al., GenBank. Nucleic Acids Res, 2007. 35(Database issue): p. 
D21-5. 

21. McKusick, V.A., Mendelian Inheritance in Man and its online version, OMIM. 
Am J Hum Genet, 2007. 80(4): p. 588-604. 

22. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): 
p. 403-10. 

23. Kersey, P.J., et al., The International Protein Index: an integrated database for 
proteomics experiments. Proteomics, 2004. 4(7): p. 1985-8. 

24. von Mering, C., et al., STRING: known and predicted protein-protein 
associations, integrated and transferred across organisms. Nucleic Acids Res, 
2005. 33(Database issue): p. D433-7. 

25. Keller, A., et al., A uniform proteomics MS/MS analysis platform utilizing open 
XML file formats. Mol Syst Biol, 2005. 1: p. 2005 0017. 

26. Ficarro, S.B., et al., Automated immobilized metal affinity chromatography/nano-
liquid chromatography/electrospray ionization mass spectrometry platform for 
profiling protein phosphorylation sites. Rapid Commun Mass Spectrom, 2005. 
19(1): p. 57-71. 

27. Yu, K., et al., Integrated platform for manual and high-throughput statistical 
validation of tandem mass spectra. Proteomics, 2009. in press. 

28. Elias, J.E. and S.P. Gygi, Target-decoy search strategy for increased confidence 
in large-scale protein identifications by mass spectrometry. Nat Methods, 2007. 
4(3): p. 207-14. 



Chapter 2: HTAPP 

 45 

29. Cao, L., K. Yu, and A.R. Salomon, Phosphoproteomic analysis of lymphocyte 
signaling. Adv Exp Med Biol, 2006. 584: p. 277-88. 

30. Orchard, S., et al., Current status of proteomic standards development. Expert 
Rev Proteomics, 2004. 1(2): p. 179-83. 

31. Pedrioli, P.G., et al., A common open representation of mass spectrometry data 
and its application to proteomics research. Nat Biotechnol, 2004. 22(11): p. 
1459-66. 

32. Deutsch, E., mzML: a single, unifying data format for mass spectrometer output. 
Proteomics, 2008. 8(14): p. 2776-7. 

33. Klimek, J., et al., The standard protein mix database: a diverse data set to assist 
in the production of improved Peptide and protein identification software tools. J 
Proteome Res, 2008. 7(1): p. 96-103. 

34. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 
235-42. 

35. Gasteiger, E., et al., ExPASy: The proteomics server for in-depth protein 
knowledge and analysis. Nucleic Acids Res, 2003. 31(13): p. 3784-8. 

36. Hornbeck, P.V., et al., PhosphoSite: A bioinformatics resource dedicated to 
physiological protein phosphorylation. Proteomics, 2004. 4(6): p. 1551-61. 

37. Obenauer, J.C., L.C. Cantley, and M.B. Yaffe, Scansite 2.0: Proteome-wide 
prediction of cell signaling interactions using short sequence motifs. Nucleic 
Acids Res, 2003. 31(13): p. 3635-41. 

 
 
 

 

 



Chapter 3: PeptideDepot 

 46 

 

 

Chapter 3 
PEPTIDEDEPOT: FLEXIBLE RELATIONAL DATABASE FOR 

VISUAL ANALYSIS OF QUANTITATIVE PROTEOMIC DATA AND 

INTEGRATION OF EXISTING PROTEIN INFORMATION 
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3.1 INTRODUCTION 

Recent exciting progress in the development of new instrumentation and high 

throughput proteomic methods has led to a landslide of proteomic data that needs to be 

analyzed and explored efficiently [1-4].  A single LC/MS experiment potentially 

generates thousands of peptide-specific spectra, and the use of multidimensional 

separations, such as in the MudPIT technique [5], generates even larger datasets. 

Quantitative proteomics experiments facilitate the analysis of protein levels between 

various samples, such as between diseased and normal tissue, or across time points in the 

analysis of cellular signaling associated with receptor stimulation or drug treatment.  

Many quantitative proteomic methods have been developed and reviewed recently [6].  

Stable isotopes have been incorporated within peptides either through Stable Isotope 

Labeling by Amino acids in Cell culture (SILAC) [7] or through direct labeling of 

peptides with Isotope Coded Affinity Tags (ICAT) [8], isobaric Tags for Relative and 

Absolute Quantitation (iTRAQ) [9], or other chemical labeling techniques [10].  An 

alternative ‘label-free’ approach to relative quantitation employs normalization of peptide 

peak areas against a co-purified exogenous standard peptide [11].  Visual representation 

of quantitative proteomic data such as with a heatmap allows for rapid comparison 

between various cellular states but is not a feature available in existing software tools.  

Instead current tools such as Bioworks (Thermo Fisher, San Jose, CA) or Mascot (Matrix 

Science, Boston, MA) convey quantitative data as columns of numbers or ratios if at all.  

Rapid comparison between samples is not possible with this type of presentation.  

Collation of replicate quantitative datasets and efficient access to the underlying selected 

ion chromatograms through heatmap navigation is not currently supported in existing 
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software tools.  Instead, a researcher hoping to validate the quantitative measurement 

must manually query each peptide in a separate piece of software such as Xcalibur or 

Analyst, decreasing efficiency and increasing the chance for error. 

Proteomic journal-mandated warehousing of published proteomic data [12] has led to 

the creation of a variety of relational databases such as Peptide Atlas [13], Human 

Proteinpedia [14], CPAS [15], PRIME [16], and PRIDE [17].  These existing databases 

provide critically important means of distribution of data between proteomic investigators 

but are not necessarily designed for direct proteomic end-user modification for lab-

specific proteomic workflows in labs without dedicated programmer support.  The 

general proteomic workflow is greatly diversified among labs and flexibility in the 

presentation, statistical analysis, quantitation, and filtering of the proteomic data and 

integration of proteomic data with existing protein information sources is a critically 

important component of high throughput proteomic workflows prior to publication.  Here 

we introduce a flexible proteomic data warehousing and analysis repository, named 

PeptideDepot, to provide users with the critical information and quantitative analysis of 

acquired data, as well as a flexible interface for implementation of alternative data 

representations.  The integration of FileMaker’s WYSIWYG layout and schema editors, 

transparent integration with data warehoused in a MySQL relational database, and cached 

external protein information databases allows the relational database to become 

integrated into the workflows of a broader range of proteomic labs. 

 

 

3.2 MATERIALS AND METHODS  
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Data can be loaded into PeptideDepot database manually through a user interface 

integrated directly within the PeptideDepot (Figure 3.1, Figure 3.3A) or it can be 

integrated directly with other software tools such as the High Throughput Autonomous 

Proteomic Pipeline (HTAPP) used in automated LC/MS data acquisition and 

troubleshooting, and autonomous post-acquisition analysis of proteomic data.  Data 

generated manually by a proteomic researcher or autonomously using HTAPP are loaded 

into the PeptideDepot database.  Supported input formats for MS/MS data and database 

search results in Peptide Depot include Thermo Raw, SEQUEST DTA/OUT, standard 

mzData [18], mzXML [19], mzML [20] and pepXML [21], providing support for any 

instrument or any database search method supporting standard proteomic formats.  

 

 

Figure 3.1: Design of data visualization tool providing flexible user customization of data 
representations, calculations, and secure proteomic data storage. Unlike other proteomic database 
software, proteomic end-users can customize the data representations and calculations within FileMaker 
without the need for dedicated programming staff. 
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For calculation of selected ion chromatogram peak areas for label free or stable 

isotope labeling methods, PeptideDepot utilizes either the Xcalibur XDK within a newly 

created Visual Basic program for the analysis of ThermoFisher .RAW files or the existing 

software tool ProteinQuant [22] for the extraction of quantitative data from any mass 

spectrometer data file that supports the standard proteomic data formats mzXML and 

mzData. 

The PeptideDepot relational database consists of MySQL (version 5.1.16-beta-nt; 

MySQL Inc., Cupertino, CA) and FileMaker (version 9.0.3; FileMaker Inc., Santa Clara, 

CA) tables, which are transparently integrated for the proteomic end-user, using 

FileMaker’s external SQL sources capabilities (Figure 3.2).  Data may also be accessed 

from the FileMaker and MySQL tables through ODBC connection or accessed directly 

using PHP or Java.  A set of graphical layouts within FileMaker allows the user to 

explore the proteomic data and associated experimental meta-data, as well as to export 

those data into Excel or PDF files with a format compliant with guidelines set by peer-

reviewed proteomics journals.  FileMaker scripts provide a simple and flexible way to 

manipulate the data stored within the database using intuitive FileMaker scripting 

language. Authentication of users is managed internally within the database or externally 

via a Microsoft Windows domain controller and is transparent to networked Windows 

clients logged into a Windows domain.  The database may be accessed via a web page 

with any operating system or via a standalone FileMaker client in Windows or Mac OS 

X.  In addition to the FileMaker client software, the data are accessible via ODBC, JDBC 

or the FileMaker PHP API.  A user can either display a single proteomic experiment or 

make quantitative comparisons amongst multiple proteomic experiments. 
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Figure 3.2: Entity-relationship diagram for PeptideDepot. Data warehoused in MySQL (labeled 
MySQL and colored red) is relayed transparently to FileMaker using its external SQL source functionality. 
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Figure 3.3: An intuitive user interface to A) manually load LC/MS experiment data into 
PeptideDepot, and B) explore previously loaded proteomic data and related resources. 
 

 

3.3 RESULTS AND DISCUSSION   

Our networked proteomic relational database PeptideDepot serves as both a data 

repository and a means of visualizing incoming data (Figure 3.1).  A database homepage 

gives users an array of options for exploring proteomic data or customizable lab-related 

resources (Figure 3.3B).  The user may explore the sample inventory database, and an 

experiment protocol library.  
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3.3.1 Quantitative Comparison Analysis Tools 

PeptideDepot provides a unique intuitive way for quantitative comparison amongst 

previously loaded datasets using either label-free or stable-isotope labeling strategies as 

illustrated in Figure 3.4.  These quantitative data representations allow for the comparison 

of peptide levels in different experimental conditions such as through a timecourse of 

cellular stimulation or to compare diseased to normal cells.  Such a quantitative heatmap 

view of the data mimics similar representations that are typical in transcriptional 

profiling, using colors to indicate the relative abundance of a given peptide under various 

conditions. 



Chapter 3: PeptideDepot 

 54 

 
Figure 3.4: Quantitative comparison between multiple proteomic experiments within FileMaker, 
with heatmap navigation of underlying quantitative proteomic data. A) A FileMaker layout guides 
users through the creation of a new comparison amongst selected experiments; B) The heatmap is used for 
rapid quantitative comparison and as a navigational tool for validation of the quantitative data. Blue-Yellow 
label-free heatmap (Left) visualizes the quantative change across several cellular states and Red-Green ratio 
heatmap (Right) visualizes the change in ratio between two stable-isotope labeled samples.  If replicate data 
is used to generate the heatmaps, the average values are presented while the error amongst the replicates is 
portrayed by a colored outline around each heatmap square.  The intensity of this outline correlates to the 
magnitude of replicate error.  Red dots indicate whether an MS/MS identification was captured for each 
peptide. A set of filters is available for the user to narrow down the whole dataset and focus on interesting 
proteins; C) Manual inspection and adjustment of the underlying peak area calculation accessed by clicking 
any heatmap square.  Orange vertical lines represent the position of acquired MS/MS spectra for the 
selected peptide (including redundant MS/MS spectra for the same peptide), allowing selection of the 
correct peak.  Both SIC and profile MS scan is shown for stable-isotope labeled data. The user may tab 
through the replicate spectra underlying the average value used to calculate the heatmap square color;  D) 
and E) Hovering the mouse over a label-free heatmap or stable-isotope ratio heatmap square reveals the 
detailed underlying quantitative data including replicate peak areas and standard deviations;  F) The user 
can adjust which data is portrayed in each of the heatmaps and adjust heatmap parameters. 
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A ‘make comparison’ layout is provided in FileMaker to build a quantitative 

comparison heatmap amongst selected experiments (Figure 3.4A).  To build a 

comparison heatmap, a user specifies a new comparison name, selects a peptide filter if 

necessary, and specifies a comparison quantitation type.  Four comparison types are 

already defined, i.e. single fraction/label-free, single fraction/MS1-Label, multiple 

fractions/label-free, and multiple fractions/MS1-Label.  Single fraction experiment refers 

to a sample with only one fraction and multiple fractions experiment refers to a sample 

with many fractions such as collected in a MudPIT experiment.  If peptides in the 

selected experiments are labeled with stable isotopes and quantified in MS scans such as 

SILAC, ICAT, GIST [23], or ICPL [24], an MS1-Label comparison type needs to be 

selected, otherwise a label-free type is chosen.  For each additional LC/MS experiment to 

be incorporated into the heatmap, the user needs to specify a column number in the 

heatmap, a fraction number, and a replicate number (technical or biological replicates).  If 

an exogenous standard peptide is spiked into each sample for normalization in label free 

experiments, each peptides' selected ion chromatogram (SIC, equivalent to an extracted 

ion chromatogram) peak area is normalized to the corresponding standard peptide SIC 

when building a comparison.  To create a heatmap, FileMaker automatically collates a 

nonredundant list of unique peptides from different experiments but having the same 

peptide sequence, post-translational modifications and charge state.  If there are replicate 

LC/MS datasets or multiple fractions, these are combined and the replicate quantitative 

data is averaged from the replicate experiments for each unique peptide.  Essential 

peptide metadata such as SIC peak area, stable-isotope labeling ratio, mass error, Xcorr, 
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MOWSE score, logistic spectral score, phosphorylation site assignment, assigned peptide 

sequence, and protein name are transferred into the comparison table (Figure 3.4B). 

PeptideDepot can generate heatmaps from the corresponding selected ion 

chromatogram peak areas from label free or stable-isotope labeled data using flexible 

equations defined within a custom function in FileMaker (Equation 3.1 and Equation 

3.2).  Two comparison heatmaps are generated using either label-free data or stable-

isotope labeled quantitation.  The label-free heatmap on the left (Figure 3.4B) represents 

the abundance of each peptide compared across all cellular states (optionally normalized 

to exogenous peptide standards if available).  In this heatmap, a black color represents the 

average abundance for that unique peptide across all cellular states.  A blue color 

indicates a selected ion chromatogram peak area that is less than the average and a yellow 

color indicates a peak area more than the average.  The magnitude of the color change 

correlates with the magnitude of change in the underlying SIC peak areas.  The stable-

isotope labeling ratios heatmap is on the right (Figure 3.4B).  In this representation, a 

black color represents a stable-isotope label ratio of 1:1 while a green color represents a 

ratio greater than 1 and a red color represents a ratio less than 1.  For both types of 

heatmap, the magnitude of the CV for collated replicate LC/MS datasets is illustrated 

using an outline border surrounding the colored heatmap square.  A black outline 

indicates a low CV amongst the replicate analyses and a bright green outline in label-free 

heatmap or bright red outline in the ratio heatmap indicates a high CV.  Hovering the 

mouse pointer over any heatmap square reveals all underlying data corresponding to the 

generation of heatmap such as replicate peak areas, average peak areas, stable-isotope 

labeling ratio, and CV for replicate measurements (Figure 3.4D-E).  Clicking any 
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heatmap square displays the selected peptides' SIC and profile MS spectral data (Figure 

3.4C).  This feature allows the manual adjustment of SIC peak boundaries and noise 

levels for all replicates separately.  The user-defined peak parameters are imported back 

into FileMaker and the heatmap square is updated automatically and transparently for the 

end user. 
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jix , : SIC peak area of each timepoint (i) for each peptide (j) 

max( jix , ): max peak area of peptide j 

min( jix , ): min peak area of peptide j  

pmax: maximal fold change defined by the user 

pmin: minimal peak area defined by the user to be shown in the heatmap 

RGB(r,g,b): function to generate a color based on three parameters. r, g and b 

representing the intensity of red, green and blue, ranging from 0 to 255. 

 

Equation 3.1: Equation for color representations of relative peptide abundance in label-free heatmap 
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jix , : selected SILAC ratio of each timepoint (i) for each peptide (j)  

rmax: maximal SILAC ratio change defined by the user 

rmin: minimal SILAC ratio change (reciprocal of the min number provided by the 

user) 

sqrt(n,m): function to calculate m-th square root of number n 

RGB(r,g,b): function to generate a color based on three parameters. r, g and b 

representing the intensity of red, green and blue, ranging from 0 to 255. 

 

Equation 3.2: Equation for color representations of relative peptide abundance in SILAC heatmap 
 
 
 
 

A variety of heatmap settings may be specified in a parameter pane available on the 

heatmap layout within FileMaker (Figure 3.4F).  Minimal peak area thresholds can be set 

for both label-free and stable-isotope label ratio heatmaps to minimize the impact of low 

signal/noise data.  The quantitative change thresholds (min and max fields) define the 
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minimum and maximum fold change and stable-isotope labeling ratios that are 

represented in the heatmap.  Any changes below the minimal or above the maximal 

threshold in the heatmap are displayed as the same color as the minimum or maximum.  

The user can specify the CV value associated with the maximal heatmap outline color 

and specify whether to show the CV outline border.  

 

3.3.2 Data Filtering and Extraction of Biological Significance of Proteomic Data 

In addition to the quantitative comparison mode, identified peptides in a single 

LC/MS experiment can be explored in an informative layout to reveal their fundamental 

biological properties.  The peptide listview (Figure 3.5B) has an extensive collection of 

predefined data filters.  The currently implemented filters include Xcorr/charge state 

thresholding, MOWSE score thresholding, enzymatic cleavage type (for no enzyme type 

database searches), precursor ion mass error, manual validation status, protein name 

filtering, redundant peptide removal, logistic spectral score [25], thresholds for the 

number of phosphorylation sites and quality of the phosphorylation site localization 

(Ascore [26] thresholding), and maximal number of internal tryptic cleavage sites.  

Decoy database estimated false discovery rate (FDR) is dynamically calculated to 

provide the user with an estimate of the quality of the proteomic data and is updated as 

the user refines the filtering criteria.   
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Figure 3.5: FileMaker generated graphical layouts for assimilation, comparison, and exploration of 
proteomic data and experimental metadata and collation of external protein information. A) 
Summary of experiments loaded into the PeptideDepot database after fully automated or manual post-
acquisition analysis with user-customizable summary of numbers of peptides and types of peptide 
modifications observed; B) User-modifiable list of identified peptides from a single LC/MS experiment 
with an array of data filters and useful metadata for exploration of proteomic data; C) Moving mouse over 
the currently selected protein name shows a list of protein names matched to this peptide sequence collated 
from all internally indexed external genomic databases; D) external protein information, queried internally 
within FileMaker, displayed in a tabbed layout with quantitative proteomic data and a notepad for the user 
to document observations made during exploration.  To explore the biological meaning of the proteomic 
data, a user may with a single click search for a certain peptide or protein among all independent protein 
information databases. 
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To enhance the utility of the database to biologists with limited proteomic knowledge, 

a database button provides a unified combination of filters defined by the proteomics lab 

to filter the data to a defined false-discovery rate.  The proteomics lab can tailor these 

filters to the types of analyses and mass spectrometry equipment used in collecting the 

proteomic data in order to provide the most appropriate filters for distinct types of data.  

This function is useful to provide biologists with a unified collection of filters defined by 

the proteomic researcher that can be applied to the proteomic data to minimize 

inappropriate interpretation of the data.  

Genomic database redundancy provides a significant challenge to efficient 

exploration of large proteomic datasets.  Often a single peptide sequence will match 

many protein sequences contained within a given genomic database.  Sometimes these 

peptide hits are actually entirely different proteins; more frequently, however, they are 

hits on redundant genomic database entries for the same peptide sequence with vastly 

different protein descriptors in the genomic database header.  Current proteomic software 

tools associate the first protein hit achieved in the database search, regardless of the 

quality of the protein description.  Although commercial software makes it possible to 

perform peptide lookup across the entire genomic database, the matches are not archived 

permanently with the data, and user-preferred associations between peptide sequence and 

meaningful protein names are not maintained between proteomic experiments.  

PeptideDepot ameliorates this deficiency by archiving user-selected peptide, protein 

name associations between proteomic experiments and caching associations between all 

peptides sequenced in an experiment with all genomic database proteins that contain that 
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peptide as the data is loaded manually or in an automated fashion with HTAPP (Figure 

1). 

To more rapidly understand the biological meaning of newly acquired proteomic data, 

a variety of genomic protein information databases are queried automatically.  Currently, 

the protein information databases NCBInr [27], IPI [28], HPRD [29], Swiss-Prot [30], 

STRING [31], and Scansite [32] are queried by peptide sequence across locally cached 

copies of these databases as each proteomic experiment is loaded into PeptideDepot.  All 

possible protein names associated with a given peptide sequence are cached 

automatically and displayed on demand (Figure 3.5C).  A deep search through the 

multitude of redundant names for all assigned peptides across all protein information 

databases, allows the user to quickly ascertain if a certain protein was found in the 

experiment. (Figure 3.5B)  This search capability overcomes the limitation of alternative 

protein naming across multiple protein information databases.  By default, names from 

Swiss-Prot, IPI, or HPRD have priority over names from the redundant NCBInr database.  

The user can manually reassign the peptide to any matched genomic protein name hit 

with a single click.  By maintaining a registry of user-preferred peptide 

sequence/genomic database associations, subsequent proteomic data is automatically 

associated first with user specified names that are most meaningful to the end-user, 

making proteomic data browsing much more efficient. 

A separate PeptideDepot layout accessed by clicking the ‘?’ icon next to protein name 

in the peptide list view allows users to explore protein annotation contained across all 

protein information databases (Figure 3.5D).  Currently the peptide information view 

provides direct links to information from HPRD, NCBI Genbank, OMIM [33], ExPASy 
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Swiss-Prot, Phosphosite [34], the sequence motif analysis site Scansite, the protein 

domain analysis site CDART [35], the literature database PubMed, the online 

encyclopedia Wikipedia, and the protein-protein interaction database STRING. This tool 

eliminates the necessity to visit a multitude of web sites in an external web browser to 

gather protein information, thus making it possible to explore the significance of 

proteomic data directly within FileMaker through a tabbed interface where users insights 

into the meaning of proteomic data may be recorded directly within the database.  

 

3.3.3 Peptide Validation  

Estimation of false discovery rates using decoy database approach and statistical 

analysis of database sequence assignments is an important component of many proteomic 

workflows.  PeptideDepot integrates a suite of existing tools to aid in this type of analysis 

[25].  The logistic spectral score is a new SEQUEST or Mascot rescoring algorithm that 

increases confidently assigned peptide assignments at a fixed FDR.  FDR estimated using 

the decoy database approach is calculated for the experimental data being explored and is 

recalculated with each addition of a data filter or threshold (Figure 3.5B).  Definition of 

an appropriate Xcorr, MOWSE score, or logistic spectral score threshold to achieve a 

user preferred, decoy database-estimated FDR is a tedious iterative process with current 

software tools.  PeptideDepot increases user efficiency by calculating the score thresholds 

necessary to achieve a user's preferred FDR.   

Manual MS/MS spectral validation is often an important but laborious part of many 

proteomic workflows.  To expedite manual validation, we have integrated a recently 

developed database-integrated manual spectral annotation tool directly within a spectral 
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validation layout in PeptideDepot [25].  Using this existing Java software tool, a user may 

add any annotation to any MS/MS peak without leaving the database while all changes 

are recorded transparently to PeptideDepot.  If the user revisits the manually annotated 

spectra at a later time, the user’s manual annotations are retrieved transparently.  If a user 

decides that the peptide assignment is valid, a single user click records the users 

validation and copies the peptide spectrum to a database of manually validated spectra. 

 

3.3.4 Efficient Phosphoproteomic Data Analysis  

PeptideDepot facilitates the analysis of post-translational modification (PTM) by 

calculating the phosphorylation site position and automatically determining whether the 

phosphorylation site has been described previously in the literature (Figure 3.5B).  If the 

peptide contains a PTM present in the HPRD or phospho.ELM [36] databases, the user is 

automatically alerted to this fact and a single click reveals the journal article describing 

its discovery in PUBMED.  If the peptide is contained in a protein within the protein 

structure database PDB [37], one user click reveals the three-dimensional protein 

structure in PyMOL (http://www.pymol.org). 

 

3.3.5 Workflow Variability 

PeptideDepot provides essential flexibility to support alternative proteomic 

workflows.  The quantitative comparison component in PeptideDepot provides for the 

visual representation and automated interpretation of any MS-based quantitation method 

such as using a stable-isotope label or label free.  In addition to Visual Basic quantitation 

software for Thermo .RAW files, PeptideDepot can display quantitative data calculated 



Chapter 3: PeptideDepot 

 66 

from mzXML or mzData files using the previously described ProteinQuant [22] software.  

Quantitative data generated by any quantitation software are treated identically once they 

are imported into PeptideDepot.   

End-users without any knowledge of programming can add or modify the result 

report forms simply through a drag-and-drop action using the FileMaker graphical 

WYSIWYG layout editor.  New database fields and table relationships can be created 

within a user-friendly graphical database schema editor to add new data fields to the 

database or to define relationships between existing database fields.  FileMaker also 

contains an intuitive scripting language that can automate arduous data manipulations or 

calculations including automation of calculations external to the database. 

Unlimited numbers of external protein information databases can be directly 

integrated within PeptideDepot to meet any lab-specific needs for additional protein 

annotation.  Data within PeptideDepot are accessible through the FileMaker client, a web 

browser, ODBC/JDBC, and PHP API, further expanding the ways in which a proteomic 

researcher can interact with the data. 

 

3.3.6 Rapid Access to Proteomic Data 

Currently our PeptideDepot database contains 16.5 million records of acquired 

peptide data and protein information from publicly available genomic databases.  

PeptideDepot provides rapid access to peptide data even in a table with millions of 

records.  In speed trials, it took 2.7 seconds to load a dataset with 600 peptide records, 

and 7.3 seconds to load a 5,000-peptide dataset in PeptideDepot. 
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3.4 CONCLUDING REMARKS 

The development of proteomic software lags behind the evolution of software for the 

analysis of large genomic datasets [38].  Proteomic researchers are reticent to distribute 

unpublished data beyond the borders of their labs, generating a great need for a flexible, 

integrated, open-source lab-based database for automated processing, interpretation, and 

visualization of proteomic data.  We have presented a new approach to quantitative 

processing and visual analysis of proteomic data that directly integrates the data among 

different tools.  Our system is designed to provide critical flexibility and easily 

implemented functionality to researchers in other proteomics labs, without the need for 

dedicated programmers.  Our software integrates an array of essential functionalities 

including many unique features not currently found in any other publicly available 

integrated software package.   
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4.1 INTRODUCTION 

Liquid chromatography coupled with high-throughput mass spectrometry has become 

a powerful tool in proteomics.  To interpret a tandem mass spectrum, peptide 

identification in LC/MS experiments follows one of two general approaches: (a) 

comparison of the obtained tandem mass spectrum to the theoretical spectrum 

corresponding to a database of sequences and (b) de novo construction of peptide 

sequences to match the obtained spectrum.  Commonly used algorithms for the 

implementation of database searches include heuristic algorithms, e.g. SEQUEST [1], 

X!Tandem [2, 3] and Protein Prospector [4, 5].  Database search algorithms can also be 

based on probabilistic scoring such as MASCOT [6].  Algorithms for the implementation 

of de novo sequencing include those implemented in the software Lutefisk [7], and 

PEAKS [8].  Methods for peptide identification which combine aspects of database 

searching and de novo sequencing have also been proposed such as GutenTag [9] and 

InsPecT [10]. 

The identification of peptides via database searches typically results in a large number 

of candidate peptides.  If a final assignment is determined by picking the “best” match 

from the search algorithm output, a substantial portion of the final selections may be 

incorrect due to the poor ionization and fragmentation efficiency of peptides, especially 

phosphopeptides.  This necessitates the validation of thousands of spectra per experiment.  

A number of statistical methods have been developed to automate validation of large-

scale datasets [5, 11-19].  These approaches combine key output from identification 

algorithms with other available information and also include statistical modeling in order 

to make reliable predictions of whether a “best” match is correct.  A number of other 
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recent proposals in the literature use advanced tools from discriminant and cluster 

analysis to improve on the performance of peptide identification algorithms and to 

develop statistical measures of performance [9, 11, 16, 18, 20-23].  Recent work has 

applied statistics to the validation of phosphorylation sites from CAD-MS/MS data using 

statistical multiple testing and a support vector machine analysis [11], Bayesian network 

scoring [24], or target-decoy approach with a probability based phosphorylation site 

localization score [13, 25]. 

Although some researchers prefer to train models on manually validated datasets, 

others prefer the use of single protein digests or thresholding on spectral parameters 

while optimizing decoy database tests to train their models. Unfortunately, flexible 

training of existing algorithms to user specified validated datasets is not a feature that is 

currently directly supported in existing software tools, reducing their flexibility to 

alternative proteomic workflows.  For example, MS/MS spectra from phopshorylated 

peptides have different spectral characteristics such as the abundant neutral loss of 

phosphate when compared to unphosphorylated peptides.  A model trained on 

phosphorylated datasets may more closely capture the characteristics unique to correctly 

assigned phopshopeptide spectra, compared to a model trained on datasets lacking 

phosphorylated peptides.  Furthermore, the validation philosophy employed to generate 

the training dataset may also impact the subsequent performance of a model when 

applied to a newly acquired dataset. 

On the other hand, statistical validation alone is not enough to reach a determinate 

conclusion in many cases, given that no algorithm can predict with 100% accuracy all the 

spectra that are correctly assigned.  Assigned peptides with significant biological 
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significance still require manual validation of both sequence and sites of covalent 

modifications to minimize ambiguity [26-28].  Manual spectral validation will continue 

to be an important part of any proteomic workflow.  Tools increasing the efficiency of 

this arduous task are critical. 

Commercial software for proteomic analysis such as Bioworks (Thermo Scientific) or 

Mascot [6] provides only static representations of assigned spectra, with no capability for 

user-driven manual annotation.  One newly developed software tool, CHOMPER, 

enables highlighting of fragment peaks that are associated with certain user selected 

amino acids from spectra loaded manually from dta and out files [29].  CHOMPER also 

adds the capability for users to store decisions of overall spectral quality electronically.  

An ideal electronic spectral annotation tool should meet the following requirements: 

a) automatically calculate theoretical fragment ion masses including neutral losses from 

the precursor and fragment ions, b) allow users to add any annotations to an MS/MS 

spectrum and save them for the future reference within a relational database, and c) tight 

integration within an automated proteomic pipeline.  The goal of manual validation is the 

exhaustive assignment of all fragment ions observed in a spectrum.  Often proteomic end-

users are forced to mentally calculate theoretical neutral loss fragment ion masses with 

existing tools.  Furthermore, current software tools designed to assist in the manual 

annotation of spectra are not integrated within lab-based relational databases.  If the same 

peptide is observed in another dataset potentially collected by a different investigator, the 

user of existing software is not able to compare it to previously manually annotated 

spectra associated with that sequence, increasing the chances of redundant manual 

validation and decreasing overall laboratory efficiency.  
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We have incorporated the improvements and addressed the limitations of existing 

software for MS/MS validation by developing a comprehensive validation solution.  This 

solution includes a program for generation of statistical models based on user validated 

datasets, integration of these user created models within automated proteomic workflows, 

and a unique visualization and annotation tool for manual spectral validation called 

SpecNote.  These programs are fully integrated into the HTAPP platform.  

 

 

4.2 MATERIALS AND METHODS 

4.2.1 Software Architecture   

We have designed the HTAPP where LC/MS data acquisition and post acquisition 

analysis is fully automated (Figure 4.1).  This custom-made software controls multi-

dimensional LC separations of peptides (with Immobilized Metal Affinity 

Chromatography capability), LC/MS data acquisition, and post acquisition SEQUEST 

search (version 27; Thermo Scientific), peptide quantitation, decoy database analysis, 

spectral validation, phosphosite localization using Ascore [11], and loading data into a 

lab-based relational database called PeptideDepot created in FileMaker (version 9.0.3; 

FileMaker Inc.) with live connections to data warehoused in a MySQL database (version 

5.1.16-beta-nt; MySQL Inc.).  In this manuscript we describe the peptide validation 

component of HTAPP. Within this validation component, the logistic-model-based 

validation program is launched automatically, without user intervention.  A spectral score 

for each peptide is calculated by an R (version 2.4.1; GNU project) program, which 

indicates the probability that the SEQUEST generated sequence is correctly assigned 
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(1=most likely, 0=least likely).  The estimation of false discovery rates (FDR) is 

accomplished by the decoy database approach and evaluated without user intervention.  

A figure illustrating the distribution of spectral score or XCorr versus decoy database 

search direction is dynamically generated within PeptideDepot from data stored in a 

custom MySQL table that represents the peptides currently viewed by the proteomic 

researcher.  This data is represented within a custom webpage viewed through a 

FileMaker web portal and generated by a PHP script (ver. 5.2.1, http://www.php.net) 

hosted on Apache web server (ver. 2.2.4, the Apache Software Foundation), along with a 

table that lists the yields at a certain FDR.  

 

 
Figure 4.1: Schematic representation of how the statistical validation and manual validation 
software components fit into the HTAPP proteomic pipeline. Balloons indicate the software 
described in this chapter. 
 
 

The manual annotation software component SpecNote, which is built based on 

publicly available Java libraries, including interfascia.jar, pde.jar, pdf.jar, itext.jar, 

jogl.jar, core.jar (all from Processing distribution 0125; http://processing.org/) and mysql-

connector-Java.jar (version 5.0.5; MySQL Inc.), and compiled as a Java Applet (version 



Chapter 4: Spectral Validation Model 
 

 77 

1.6; Sun Microsystems) that runs in any web browser, is embedded in a web portal within 

PeptideDepot.  A user may navigate LC/MS experiment within PeptideDeopt, select any 

peptide and electronically annotate and validate the SEQUEST assigned MS/MS spectra 

within SpecNote.  The user annotations are transparently stored in the MySQL relational 

database component of PeptideDepot, accessible to other users who discover the same 

peptide in another proteomic experiment. 

SpecNote flexibly integrates within existing user workflows that may be independent 

of PeptideDepot.  If a user already has software for selecting a certain peptide from a 

LC/MS experiment, SpecNote could be utilized through a webpage.  If a user's manual 

validation workflow requires additional data to be represented on the spectra, a user may 

alter the source code of SpecNote to customize the GUI or to utilize alternative data 

sources such as a different relational database.  

 

4.2.2 Experimental Datasets   

Four datasets were chosen to train and evaluate the newly created logistic spectral 

model.  The datasets represented a variety of typical proteomic data types including 

simple and complex mixtures of either phosphorylated or unphosphorylated peptides 

acquired on an LTQ mass spectrometer.  The samples were 1) Mast cell phosphopeptides 

(MCP5), 2) Pervanadate stimulated T cell phosphopeptides (PVIP), 3) 18 protein ISB 

standard protein mix [30] (18Mix), and 4) Bovine serum albumin peptides (BSA).  An 

additional dataset, NIH3T3 phosphopeptides (3T3) was prepared to test the performance 

of the logistic model on an LTQ/FTICR dataset.  
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Data Set 1 - Mast cell phosphopeptides (MCP5).  Transformed primary bone 

marrow-derived mast cells (MCP5) were stimulated as described previously. [26] 

Stimulated cells (~5x108) were lysed for 10 min with rotation at 4°C in 50 mL of lysis 

buffer consisting of 20 µg/mL aprotinin, 20 µg/mL leupeptin, 50 mM Tris pH 7.5, 100 

mM NaCl, 1% Triton X-100, 10% glycerol, 1 mM Perfabloc, 2 mM Na3VO4, 10 mM β-

glycerophosphate and 1 mM EDTA (all from Sigma, St. Louis, MO). 

Lysates were centrifuged at 12,000x g for 20 minutes at 4°C.  Fifty pmol of 

LIEDAEpYTAK per ~5x108 cell equivalents (c.eq.) and anti-phosphotyrosine agarose 

(clone PT66, Sigma; 200 µL resin/~5x108 cell equivalents) was added to the supernatant 

for 4 hr at 4° C with rotation.  Beads were washed once with 50 mL lysis buffer and once 

with 50 mL of 20 mM Tris buffer, pH 7.4, 120 mM NaCl.  Proteins were recovered from 

the beads with 100 mM NH4HCO3 buffer pH 8.3 containing 8 M urea for five minutes at 

96° C and the supernatant was filtered using PVDF membranes with a pore size of 0.22 

µm (Millipore Inc., Bedford, MA).  The mixture was diluted with an equal volume of 

water and proteins were digested overnight with 5 µg of modified trypsin (Promega, 

Madison, WI) at 37° C. 

Tryptic peptides were converted to methyl esters with deuteromethanol so that every 

Asp, Glu and peptide c termini contained an additional mass of 17 Da.  Phosphopeptides 

were enriched with an automated desalt/immobilized metal affinity chromatography 

(IMAC)/nano-liquid chromatography/electrospray ionization mass spectrometry platform 

as described previously. [31] Peptides where eluted with a 30 minute 0-70% solvent B 

reversed-phase gradient through an analytical column with integrated 4 µm electrospray 

tip into an LTQ mass spectrometer with 30 nl/min peak parking (solvent A - 0.1 M acetic 
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acid ddH2O, solvent B - 0.1 M acetic acid acetonitrile). [31] Peptides were analyzed by 

data dependent tandem mass spectrometry (MS/MS) experiments using collision-induced 

dissociation (Xcalibur 1.4 parameters designated 35% collision energy, 3 Da isolation 

window, top 5 data dependent, repeat count of one, and a dynamic exclusion time of 1.5 

min, IT-MS AGC of 30,000, and IT-MS/MS AGC of 10,000).  MS/MS spectra were 

assigned to peptide sequences from the NCBI non-redundant protein database sliced in 

Bioworks 3.1 for human proteins and searched with the SEQUEST algorithm and 

X!Tandem.  Search paramaters designated a static modification of +17.0342 Da on Asp, 

Glu and the c-terminus (deuteromethyl esters) and variable modifications of +79.9663 Da 

on Ser, Thr, and Tyr (phosphorylation). 

Data Set 2 - Pervanadate stimulated T cell phosphopeptides (PVIP).  Cell culture 

was performed as described. [32] Briefly, Jurkat cells (clone E6-1) were grown in RPMI 

1640 medium with 10% fetal bovine serum, 2 mM L-glutamine, 100 ug/ml streptomycin 

sulfate, and 100 U/ml penicillin G (all from Sigma) in a 5.0% CO2 incubator.  Cells were 

treated with pervanadate to inhibit tyrosine phosphatases and elevate levels of 

phosphotyrosine as described previously. [33] Cells (1x109) were washed with RPMI 

lacking FBS at 4°C then lysed for 20 min with rotation at 4°C in 25 mL of lysis buffer.  

Cellular lysates were purified and analyzed as in Data Set 1 with the exception that the 

amount of cell equivalents analyzed was reduced to 1x108 as compared with 5x108 for 

Data Set 1.  MS/MS spectra were assigned to peptide sequences from the NCBI non-

redundant protein database sliced in Bioworks 3.1 for human proteins and searched with 

the SEQUEST algorithm and X!Tandem.  Search paramaters designated a static 
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modification of +17.0342 Da on Asp, Glu and the c-terminus (deuteromethyl esters) and 

variable modifications of +79.9663 Da on Ser, Thr, and Tyr (phosphorylation). 

Data Set 3 - Standard protein mixture (18Mix).  The publicly available raw data files 

acquired on LTQ instrument and the validated peptide assignments were downloaded 

from http://regis-web.systemsbiology.net/PublicDatasets/ [30]. MS/MS spectra were 

assigned to peptide sequences from the NCBI non-redundant protein database sliced in 

Bioworks 3.1 for H. influenzae and searched with the SEQUEST algorithm.  SEQUEST 

search paramaters designated a static modification of +57.0215 Da on Cys (alkylation). 

Data Set 4 - Bovine serum albumin peptides (BSA).  Bovine serum albumin (BSA; 

Sigma) was reconstituted in 8M urea, 100 mM ammonium bicarbonate, pH 8.0.  Tris-

carboxyethyl phosphine was added to 10 mM and the mixture allowed to stand at room 

temperature for 10 minutes.  Iodoacetamide was then added to a final concentration of 20 

mM, and the mixture was incubated at 22 ˚C for 45 min. in the dark.  The mixture was 

then diluted with an equal volume of 100 mM ammonium bicarbonate, pH 8.0.  Modified 

trypsin (Promega) was added, and the mixture incubated for 8 hr at 37 °C.  BSA peptides 

were enriched with our automated system as in Data Set 1 except the desalt and IMAC 

separations were skipped. [31] Peptides where eluted with a 30 minute 0-70% solvent B 

reversed-phase gradient through an analytical column with integrated 4 µm electrospray 

tip into an LTQ mass spectrometer with no peak parking (solvent A - 0.1 M acetic acid, 

solvent B - 0.1 M acetic acid acetonitrile). [31] Data acquisition parameters were 

identical to Data Set 1.  MS/MS spectra were assigned to peptide sequences from the 

bovine NCBI non-redundant protein database with the SEQUEST algorithm and 
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X!Tandem.  Search parameters designated a static modification of +57.0215 Da on Cys 

(alkylation). 

Data Set 5 – Insulin stimulated 3T3 phosphopeptides (3T3).  Cell culture was 

performed as described [34]. Briefly, 3T3 cells transfected with IRS-1 were incubated 

with DMEM supplemented with 10% FBS, 2 mM L-glutamine, and 400 ug/ml G418 (all 

from Sigma except L-Glu which from Invitrogen) in a 5.0% CO2 incubator. After 

reaching 95% confluence, Cells were starved in DMEM with 0.1% BSA for 24 hours. On 

the next day, cells were stimulated with 100 nM insulin for 5 minutes and then 

immediately lysed in cold lysis buffer consisting of 8 M urea, 100 mM NH4HCO3 and 1 

mM NaV3O4 for 20 minutes. The lysates were reduced, alkylated, digested, and desalted 

as described [26]. Purified peptides were then fractionated with a homemade SCX 

column (500 µm x 15 cm PEEK tubing (Upchurch, Oak Harbor, WA) packed with 5 µm 

PolyLC SCX resin (The Nest Group, Southborough, MA)). Phosphopeptides in each 

fraction were enriched by TiO2 as described [25] and analyzed on LC/MS as in Data Set 

3. MS/MS spectra were assigned to peptide sequences from the human NCBI non-

redundant protein database with the SEQUEST algorithm and X!Tandem.  Search 

parameters designated a static modification of +57.0215 Da on Cys (alkylation) and 

variable modifications of +79.9663 Da on Ser, Thr, and Tyr (phosphorylation). 

Using the SEQUEST algorithm, tandem mass spectra were assigned to peptide 

sequences from species-specific NCBI non-redundant protein databases.  The forward 

NCBI databases were reversed and appended to the forward database to estimate the false 

discovery rate [35].  SEQUEST search parameters varied depending on the dataset as 

described in supplemental materials.  For all datasets, search parameters designated 
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tryptic enzymatic cleavage.  SEQUEST results were thresholded on XCorr (+1>1.5, 

+2>2, +3>2.5).  For comparison, the same datasets were searched using X!Tandem 

database algorithm (version 2008.12.01.1) with the identical search parameters and 

protein databases used in SEQUEST searching.  X!Tandem results were thresholded on 

E-value (≤1.0) for LTQ data, or on precursor mass error (≤20 ppm) for LTQ-FTICR data. 

The MCP5 dataset consisted of 1114 spectra, with 630 valid and 484 invalid spectral 

assignments determined by manual validation.  The PVIP set consisted of 619 spectra 

with 193 manually validated as correct assignments; the remaining 426 were determined 

to be incorrect.  The BSA set consisted of manually validated 605 spectra with 303 

correct and 302 incorrect.  The 18Mix set consisted of 25856 spectra with 14568 assigned 

correctly to the 18 proteins known to be in this sample while 11288 were assigned as 

incorrect because they were not amongst the 18 known proteins.  A subset of the 18Mix 

spectra was randomly selected for the model training and evaluation, including 913 valid 

and 687 invalid assignments. 

 

4.2.3 Criteria for Manual Validation of Spectra   

Spectra were passed through intensive manual validation to ascertain whether 

SEQUEST assigned sequences were consistent with MS/MS spectra for all datasets 

except 18Mix.  Our requirements were identical to previously described manual 

validation metrics [36] with the additional requirements that 1) threonine and serine 

phosphorylated peptides should contain an abundant neutral loss of phosphate from the 

precursor ion (M-80/z Da or M-98/z Da), 2) all abundant peaks should be assigned to 

either a b or y ion or a neutral loss of phosphate, water, or ammonia from a b, y, or 
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precursor ion, 3) only monoisotopic peaks are assigned, and 4) at most two internal 

cleavage sites were allowed for samples digested with trypsin and peptides containing 

any internal cleavage sites were scrutinized more closely. 

 

4.2.4 Statistical Methods for Spectral Validation   

Logistic regression was used to develop statistical models for peptide validation, with 

the response variable indicating whether the peptide identification is valid or invalid.  

Three manually validated datasets (MCP5, PVIP, BSA) along with another dataset 

validated by matching to a known mixture of 18 proteins (18Mix) were used as training 

sets.  For each spectrum, a number of predictor variables believed to mimic manual 

validation criteria were calculated and used to fit a logistic regression model.  There were 

four groups of predictors that in total constituted 34 variables as described (Table 4.1). 

(a) Variables obtained directly from SEQUEST output (variables 1-7): These 

variables are all computed by SEQUEST and include XCorr1, charge state, MH mass1, 

sp1, and the ions ratio1 (separated into numerator, denominator, and computed ratio 

multiplied by 100).  These variables were taken from the peptide SEQUEST identified as 

the most likely match, the first peptide in the "OUT" file.  

(b) Variables computed from SEQUEST output (variables 8 - 16): These 

variables included 10*
)min*arg*2ln(
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The subscript 2 in all variables denotes the second highest-ranking peptide in the 

SEQUEST OUT file that differs from the first peptide in peptide sequence and not in the 

location of the phosphorylation site. 

€ 

ΔMass1 and 

€ 

ΔMass2 compare the theoretical mass of the assigned peptide sequence 

with the observed experimental mass.  The variables in this group also include the 

number of amino acids in the first peptide, the number of internal enzymatic cleavage 

sites in the first peptide, and the numbers of phosphorylated S, T, and Y amino acids in 

the first "OUT" file peptide.  

 (c) Variables computed directly from the spectra (variables 17 - 18):  These 

variables are used as a general measure of noise in the spectra.  After normalizing peak 

intensities so that the largest intensity is 1, the mean and median are computed.  

(d) Variables computed by comparing the spectra and SEQUEST output 

(variables 19 – 34): Variables in this category ascertain the degree to which the spectrum 

corresponds to the top SEQUEST reported peptide using insight from expert manual 

validation.  First, the overall spectrum quality is evaluated by fancymean that calculates 

the relative abundance of those important peaks comparing to noise peaks.  The spectrum 

is studied for peaks that correspond to neutral losses from the precursor mass.  The 

variable phosphoscore is a ranked average of peak heights for peaks that correspond to a 

loss of a phosphate from the precursor mass if the peptide SEQUEST has selected is 

phosphorylated.  A ranked average of peaks corresponding to other neutral losses from 

the precursor mass, such as ammonia and water, is determined in the variable sumscore. 

Next the spectrum is examined for peaks unassigned to a y or b ion or neutral loss 

peak.  An experimental MS/MS peak was matched with a theoretical assignment only if 
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within 0.5 Da of the peak.  Although we used 0.5 Da, this mass error is a user specified 

tolerance.  The assigned peaks were classified into three groups; Group 1 - b and y ions, 

Group 2 - neutral loss of a single ammonia, water, or phosphate from a b ion, y ion, or 

precursor ion, and Group 3 - neutral losses of multiple ammonia, water, or phosphate 

from a b ion, y ion, or precursor ion.  

Comparisons are made between the sum and average intensities of the assigned peaks 

to the sum and average intensities of the important peaks.  These variables will be low for 

spectra where many important peaks remain unassigned. 

Finally, general sequence coverage of the peptide is studied by computing the fraction 

of Group 1-3 theoretical ions assigned to experimental spectral peaks. 

 

The "SEQUEST" model was developed using only the variables in group (a); the 

"SEQUEST Plus" model uses variables from groups (a) and (b); and the "Spectral" model 

was determined by using stepwise reduction on the variables in all four groups.  Unlike 

the SEQUEST and SEQUEST Plus models, the final variables retained in the Spectral 

model depended on the training dataset.  The stepwise reduction began with a full list of 

variables, sequentially removing each variable and comparing the distribution of model 

predicted likelihoods to determine if the performance of the model was significantly 

changed (p-Value<0.05).  In particular, the remaining number of variables retained after 

stepwise model reduction was 13 for MCP5, 8 for PVIP, 9 for BSA, and 13 for 18Mix.  

The resulting models were applied to the validated datasets and ROC analysis was used 

to assess their predictive performance.  The ROC curves were summarized and compared 

via their corresponding areas under the curve (AUC).  All computations were performed 
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using either STATA software (ver.10, StataCorp LP) or software written in R (version 

2.4.1; GNU project).  In order to compare the effectiveness of the spectral model at a low 

FDR estimated by decoy database, the number of peptide hits found in the proteomic 

datasets thresholded by the Spectral score, XCorr or X!Tandem E-value to achieve an 

overall 1% FDR were counted and summarized into a table. 

 

Table 4.1: Full list of variables used in model computing 
 
 Variable Description   Variable 

Name in 
Model 

(a) Variables obtained directly from SEQUEST output: 
1 Charge state of the precursor ion charge 
2 Xcorr value of the top SEQUEST hit xcorr1 
3 MHMass = Mass of the top SEQUEST hit mhmass 
4 Ions numertor for top SEQUEST hit ionsnum 
5 Ions denominator for top SEQUEST hit ionsden 
6 The ratio of ions numerator to ions denominator ionsratio 
7 sp for top SEQUEST hit sp 

   
(b) Variables computed from SEQUEST output: 

8 The number of amino acids in the top SEQUEST hit aa 
9 Xcorr': xcorr1 normalized by its peptide length xcorrp 

10 ΔCn2 : difference in xcorr1 and the xcorr value of the second 
highest ranking peptide reported by SEQUEST that differs 
from the first in peptide sequence and not in location of 
phosphorylation site. 

dc2 

11 Number of internal K and R amino acids in top SEQUEST hit kr 

12 Relative difference in mass of top SEQUEST hit and 
experimental mass 

dmass1 

13 Relative difference in mass of next sequence different 
SEQUEST hit and experimental mass 

dmass2 

14 Number of phosphorylated S amino acids ps 
15 Number of phosphorylated T amino acids pt 
16 Number of phosphorylated Y amino acids py 

   
(c) Variables computed directly from only the spectrum: 

17 Median of normalized peak intensities  median 
18 Mean of normalized peak intensities mean 
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  (Peak intensities are normalized so that the maximum peak 
intensity is 1.) 

  

   
(d) Variables computed by comparing the spectrum and SEQUEST 
output: 

 

  Accounting for Neutral Loss of Water, Phosphate, and 
Ammonia 

  

19 Ranked weighting of the number of peaks corresponding to 
neutral loss of phosphate off the precursor mass. (*) 

phosphoscore 
 

20 Sum of intensities for any peak in the spectra corresponding 
to some neutral loss (**). 

sumscore 

  Accounting for Noise from Peak Intensities   
21 The total number of peaks in the spectrum divided by aa number 

22 Relative abundance of mean peak intensity of all peaks over 
the mean intensity of low abundance peaks  

fancymean 

23 Number of ASPs (****) divide by number of IMPs noa 
24 Number of Group 1 assigned peaks divided number of ASPs nda 

25 Number of Group 1-2 assigned peaks divided by ASPs nsa 

26 Sum of intensities ASPs divided by sum of intensities of IMPs toa 

27 Sum of intensities of Group 1 assigned peaks divided by sum 
of ASPs 

Tda 

28 Sum of intensities of Group 1-2 assigned peaks divided by 
sum of ASPs 

tsa 

 Accounting for Sequence Coverage   
 29 Fraction of unassigned y and b-ions percunass 
30 Fraction of unassigned or Group 3 assigned y and b-ions percweakass 

31 Fraction of unassigned, Group 2-3 assigned y and b-ions percondirass 

32 Fraction of y and b-ions with more than one peak assignment 
of any kind 

onehit 

33 Fraction of y and b-ions with more than one Group 1-2 hit onestronghit 

34 Fraction of y and b-ions with more than one Group 1 hit onedirecthit 
   
 (*) If more than one phosphorylation site in the peptide we 

account for loss of single or multiple phosphates as well as 
loss of phosphate and water or ammonia. 
 
In the case of a singly phosphorylated peptide, phosphoscore 
is a number between 0 and 4. 
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+2 if the neutral loss of phosphate is directly assigned, 
+1 if we assign the loss of phosphate and water, 
+1 if we assign the loss of phosphate and ammonia 
 
(In the event of multiple phosphorylation sites, we still look 
for single losses first)  

 (**) We consider loss of phosphate, water, ammonia and any 
combination of these. 

 

 (***) IMP = The important peaks; The top N intensive peaks 
in spectrum. N=peptide length 

 

 (****) ASP = The assigned Group 1-3 peaks.  

 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Statisitical Validation 

Each of three logistic regression models was applied to all four validated datasets.  

The AUC was computed and compared to those of the single SEQUEST variable XCorr 

(ΔAUC) (Table 4.2).  All three logistic regression models: SEQUEST, SEQUEST Plus, 

and Spectral, performed statistically better than XCorr in most cases (∆AUC p-value < 

.05).  Amongst our models the spectral model performed the best compared to XCorr 

with a statistically significant ∆ AUC for all but one case.  The SEQUEST model 

performed the poorest with 3 out of 16 cases of no significant change between XCorr and 

SEQUEST model and one case where XCorr outperformed the SEQUEST model.  The 

spectral model trained on MCP5 was selected for further analysis because it resulted in 

the highest ∆AUC of all models when cross-applied to the other datasets.    
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Table 4.2: AUC of SEQUEST, SEQUEST Plus, and Spectral models trained on and applied to all 
datasets.  

 
As a comparison, the difference in AUC from XCorr (ΔAUC) is shown with the p-value below.  Grey 
shading indicates a model trained and applied to the same dataset. The SEQUEST, SEQUEST Plus, and 
Spectral models outperform XCorr in all but four cases. The Spectral model performs well across all 
training and application datasets and has comparatively larger ΔAUC values among all models, with only 
one case that the Spectral model is not significantly better than XCorr (p-values < 0.05 adjusted for 
multiple comparisons). 
 
 

To compare the performance of the spectral model to XCorr, we also examined the 

effect of the spectral score upon the distribution of forward and reversed database hits.  

The use of decoy estimated FDR provides a universal metric that allows comparison of 

the performance of user generated logistic models with other validation approaches.  The 

distribution between the spectral score or XCorr and decoy database direction was 

 Applied To: BSA PVIP MCP5 Standard Mix 

Training Set  AUC ΔAUC 
p-Value AUC ΔAUC 

p-Value AUC ΔAUC 
p-Value AUC ΔAUC 

p-Value 

Sequest 0.761 0.070 
<0.001 0.824 -0.006 

0.733 0.896 0.136 
<0.001 

0.869 0.044 
<0.001 

Sequest Plus 0.812 0.121 
<0.001 0.804 -0.026 

0.241 0.921 0.161 
<0.001 

0.885 0.060 
<0.001 BSA 

Spectral 0.903 0.212 
<0.001 0.837 0.007 

0.739 0.908 0.148 
<0.001 

0.874 0.049 
<0.001 

Sequest 0.693 0.002 
0.841 0.900 0.07 

<0.001 0.858 0.098 
<0.001 

0.867 0.042 
<0.001 

Sequest Plus 0.716 0.025 
0.012 0.936 0.106 

<0.001 0.896 0.136 
<0.001 

0.862 0.037 
<0.001 PVIP 

Spectral 0.852 0.161 
<0.001 0.947 0.117 

<0.001 0.920 0.160 
<0.001 

0.875 0.050 
<0.001 

Sequest 0.762 0.071 
<0.001 0.862 0.032 

0.029 0.920 0.160 
<0.001 

0.875 0.050 
<0.001 

Sequest Plus 0.782 0.091 
<0.001 0.890 0.060 

<0.001 0.961 0.201 
<0.001 

0.890 0.065 
<0.001 MCP5 

Spectral 0.849 0.158 
<0.001 0.897 0.067 

<0.001 0.970 0.210 
<0.001 

0.892 0.067 
<0.001 

Sequest 0.662 -0.029 
0.192 0.744 -0.086 

<0.001 0.800 0.004 
0.006 

0.891 0.066 
<0.001 

Sequest Plus 0.745 0.054 
0.013 0.875 0.045 

0.023 0.932 0.172 
<0.001 

0.909 0.084 
<0.001 

Standard 
Mix 

Spectral 0.796 0.105 
<0.001 0.883 0.053 

0.011 0.944 0.184 
<0.001 

0.914 0.089 
<0.001 

 XCorr 0.691  0.830  0.760  0.825  
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examined for both LTQ and LTQ/FTICR data (Figure 4.2; Table 4.3).  This view is 

useful for selection of spectral score thresholds for user preferred FDR and is 

incorporated into our automated proteomic workflow using a dynamic PHP script (Figure 

4.3D-E).  With both LTQ and LTQ/FTICR data, the forward and reversed populations 

using the spectral score were significantly separated when compared to XCorr or 

XTandem E-value (Figure 4.2).  This increased separation has the impact of increasing 

peptide yield at a user selected FDR.  For instance, to reduce the FDR of 3T3 dataset to 

1%, thresholding on spectral score retains 455 peptides out of a total of 959 peptides, 

comparing to 122 peptides by XCorr and 300 peptides by E-value.  For the datasets 

mentioned in this paper, our logistic spectral model outperformed both XCorr (242% 

more peptides identified on average) and the X!Tandem E-Value (87% more peptides 

identified on average) at a 1% false discovery rate estimated by decoy database approach.  

 

Table 4.3: The spectral model provides a substantial yield increase of confident peptide assignments 
when applied to a range of different proteomic datasets.  

 
Average Spectral Score Average XCorr Average –log(E-value) 

Datasets Forward 
hits 

Reversed 
hits 

#hits at 
1% 

FDR 

Forward 
hits 

Reversed 
hits 

#hits at 
1% 

FDR 

Forward 
hits 

Reversed 
hits 

#hits at 
1% 

FDR 
BSA 0.81 0.47 58 3.2 2.7 41 1.42 0.36 82 
PVIP 0.44 0.19 212 2.9 2.8 48 1.15 0.38 80 
MCP5 0.47 0.19 637 3.0 2.7 154 0.91 0.36 246 

3T3 0.76 0.23 455 2.9 2.5 122 1.16 -0.9 300 
 
Spectral score is computed using the Spectral model trained on MCP5 dataset. E-value is computed by 
X!Tandem and represented as –log(E-value). For each dataset, thresholded by the Spectral score, XCorr or 
X!Tandem E-value, number of peptide hits at 1% FDR estimated by decoy database search is calculated. 
The spectral model outperformed both SEQUEST XCorr (242% more peptides identified on average) and 
X!Tandem (87% more peptides identified on average)  
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Figure 4.2: Performance of Spectral Model and XCorr evaluated with Decoy Database Approach. 
Scores are plotted against the protein database types, Forward (labeled as “F” in figures) and Reversed 
(labeled as “R” in figures) to demonstrate the distribution. Each data point in the figure represents an 
assigned peptide. A histogram of peptide counts was overlaid on the same figure with green bars 
representing forward hits and red bars representing reversed database hits. Spectral score is computed using 
the Spectral model trained on MCP5.  Forward and reverse distribution for the PVIP dataset acquired on an 
LTQ mass spectrometer versus A) Spectral score, B) XCorr C) E-value calculated by X!Tandem.  Forward 
and reverse distribution for the 3T3 dataset acquired on an LTQ/FTICR mass spectrometer with a 20 ppm 
mass error cutoff versus D) Spectral score, E) XCorr F) E-value calculated by X!Tandem.  
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To assist proteomics researchers with high throughput statistical analysis and 

generation of new statistical models, we have integrated model training and application 

of user-driven models within our automated data pipeline (Figure 4.3).  In the analyses 

presented in this paper, training of our new logistic model was based upon the four sets of 

validated data mentioned above.  A user may input any validated dataset from any type of 

mass spectrometer using any validation metrics to recompute model variables, tailoring 

the prediction to the user’s needs and expectations through a flexible user interface.  To 

facilitate new model building, a freely-downloadable, open-source software in the R 

programming language was developed to create new logistic models based either on user 

supplied validated training sets or datasets described in this manuscript (Figure 4.3A).  

When creating new models, this software also calculates ROC curves and the 

corresponding AUC for all models (Figure 4.3B).  Any user-created logistic model may 

be applied to newly collected user data manually resulting in the output of logistic scores 

into a flat file for every peptide (Figure 4.3C).  These user-generated models can also be 

integrated within our automated proteomic pipeline (HTAPP) that performs statistical 

analysis without user intervention after a dataset is newly acquired.  In the automated 

mode, the newly calculated logistic score is deposited and viewable within our proteomic 

relational database PeptideDepot (Figure 4.3D).  Within the database, a user may apply 

thresholds to the data, calculate FDR by the decoy database approach, and view plots of 

XCorr and spectral score versus decoy database direction for any filtered subset of 

experimental data (Figure 4.3D-E).  These plots assist in the selection of appropriate 

logistic score thresholds for any user preferred FDR. 

 



Chapter 4: Spectral Validation Model 
 

 93 

 
 
Figure 4.3: Open-source R software for training logistic models and its application.  In the manual 
mode: A) User selects whether to train a new model or apply an existing model to a new dataset. B) The 
software automatically trains logistic models based on user provided validated datasets. User validation is 
provided as a boolean value using any user preferred validation metric, such as expert manual spectral 
validation, or simple contrived proteomic mixtures. The software calculates an ROC curve and AUC for 
each newly trained model. C) When applying a model to a new dataset, the software outputs a validation 
score for each spectra identified. In the automatic mode: D) An R program trained on MCP5 using the 
Spectral model is implemented in HTAPP to perform statistical validation automatically. Results are 
imported into a FileMaker database and the false-discovery-rate is calculated. User can specify any logistic 
score threshold to adjust the FDR. Clicking on the yellow button brings a live figure showing the logistic 
score or XCorr vs. Decoy database distribution (E).  
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4.3.2 SpecNote for Manual Validation and Annotation 

When manual validation of any peptide within the PeptideDepot database is 

necessary, the spectral annotation tool SpecNote is available.  Manual validation involves 

the verification of the assigned peptide sequence and validation of any post-translational 

modification positions within the sequence.  For both tasks, sequence coverage and 

spectral coverage (assigned ion current) are important parameters for successful analysis.  

SpecNote can provide critical information to accelerate this process.  The graphical 

interface of SpecNote is shown in Figure 4.4A.  The sequence coverage of the matched 

peptide is indicated in the lower left corner of the display area by the peptide sequence 

with colored bars above or below their respective amino acids representing the matching 

of theoretical b and y ions to observed peaks.  When the mouse pointer is hovered over 

amino acid letters within the peptide sequence, fragment peaks corresponding to the 

selected amino acid are highlighted in the spectrum, allowing the user to locate specific 

peaks quickly.  SEQUEST assigned phosphorylation site positions also need to be 

manually validated.  SpecNote enables the user, by clicking on the modified amino acid 

and using the arrow key on the keyboard, to make a quick comparison of different 

repositioned post-translational modifications in both peak assignment and sequence 

coverage.  A preference panel (Figure 4.4B), hidden in the normal view, can be displayed 

by pressing the space bar.  By default, only b/y ions and user annotations are labeled in 

the spectrum.  Using this preference panel, other ion types, such as c, z, a, and x, as well 

as neutral loss of water, ammonia, and phosphate can also be labeled.  Also a user may 

adjust the labeling threshold, the divisions of x-axis, and alter the sequence or 

modification site of the peptide.  
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SpecNote also incorporates novel features not present in other similar tools such as a 

snap-to-peak function.  A normal MS/MS spectrum contains many peak assignments, 

making it impossible to display all detailed information at the same time.  With the snap-

to-peak feature, the program senses the current mouse position and, if it falls within a 

predefined distance from an MS/MS fragment peak, the mouse pointer snaps to that peak.  

A window then pops up displaying details about that peak, such as m/z, relative 

abundance, and suggested theoretical ion assignment with the associated mass error.  This 

feature removes the need for the proteomic end-user to zoom in and out to retrieve that 

same information, maintaining user orientation.   

SpecNote accelerates the manual validation process by performing numerous 

calculations for the user and integrating calculated results within the assigned spectra. 

Traditionally, the user would manually calculate all possibilities to match unidentified 

fragments.  Such procedures reduce manual validation throughput.  SpecNote takes less 

than a second to assign all peaks to theoretical fragments by using an automatic peak 

assignment function to calculate mass differences (∆mass) between the observed masses 

and any potential theoretical fragment masses, including b/y/c/z/a/x ions.  Since neutral 

losses of precursor or fragment ions are widely observed in CID spectra, the algorithm 

also searches for neutral losses of water, ammonia, and phosphate (in the case of 

phosphorylated peptides) from all applicable fragments and the precursor ion.  All 

possible charge states are considered.  After calculation of all possible assignments, the 

fragment is automatically assigned using the following hierarchy: 1) b and y ions are 

preferred for CID spectra by default, 2) ∆mass is minimized, and 3) the number of neutral 

losses is minimized.  Clicking the peak allows the user to compare amongst all calculated 
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theoretical assignments for a given peak including mass errors (Figure 4.4C) and select 

one of them or even enter a manual annotation if the user disagrees with computer 

suggested assignments, increasing accuracy and efficiency.  On average, SpecNote can 

save at least five minutes per spectrum compared to printing the spectra and labeling the 

peaks manually. 

SpecNote allows the user to export PDF reports for selected spectra along with all the 

assignments and annotations by incorporating iText (http://www.lowagie.com/iText/), a 

free Java-PDF library.  iText generates PDF in vector mode, so the file size is only 

around 8 kilobytes per spectrum which is convenient for distributing data between labs.  
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Figure 4.4: User interface of SpecNote. A) Main display area showing essential peptide metadata and a 
spectrum with peaks auto-assigned to peptide fragments. Sequence coverage is illustrated with b-series ions 
on top and y-series ions at bottom. Detailed information such as protein name, XCorr, delta mass is 
provided and linked to NCBI website. B) Preference panel allows a user to determine which ions to show 
by selecting ion types and intensity threshold. Assigned sequence can be changed by resubmitting a 
modified sequence. C) For each peak in the spectrum, a user can reassign it to other candidate fragments or 
input a customized annotation. All user annotations are stored automatically within MySQL proteomic 
database. 
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4.4 CONCLUDING REMARKS 

Recent innovations in multi-dimensional LC/MS proteomic methods have led to a 

deluge of data generation in proteomics.  The ability to efficiently discern the true 

assignment of MS/MS spectra to peptide sequence is essential in this context. 

Proteomic researchers sharply differ in the appropriateness of certain methods of data 

validation.  Many investigators perform simple thresholding on SEQUEST parameters 

while approximating false discovery rates with decoy database search [37].  Other 

researchers prefer the development of statistical models based on simple protein mixture 

digests with the assumption that true positive hits only result from the known proteins in 

the mixture with hits to any other protein defined as false positives.  The popular 

PeptideProphet algorithm was trained with this type of approach [12].  Other researchers, 

weary of the possibility of unexpected contaminating proteins present in these contrived 

mixtures, prefer a manual interpretation of MS/MS spectra.  Our logistic spectral score is 

adaptable to any user preferred validation philosophy with model training implemented 

as a fully supported software feature. 

An illustration of the power of model training in creating optimal models for certain 

proteomic workflows is the analysis of phosphoprotoemic datasets.  Although the 

development of entirely new statistical approaches can optimize the yield of 

phosphopeptides at a user selected FDR [11], we show here that our logistic spectral 

model trained with validated phosphoproteomic datasets (MCP5 and PVIP) outperforms 

logistic spectral models trained with the BSA unphosphorylated dataset.  For example, 

the AUC for cross application of PVIP and MCP5 trained models was 0.920 and 0.897 
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compared to 0.908 and 0.837 for application of the unphosphorylated BSA trained model 

onto PVIP and MCP5. 

One criticism of user-driven model training is the difficulty of comparison of the 

predictions from multiple user created models from different labs with each other.  To 

address this criticism, we have integrated the standardized estimation of false discovery 

rate by the decoy database approach as a central component of our fully automated data 

analysis pipeline.  By providing a graphical representation of the distribution of spectral 

scores relative to forward and reversed database hits, a user may compare model 

performance from different user-created models and select a user preferred FDR.  Along 

with spectral score thresholds, a user may supply these estimated FDR from decoy 

database approach to provide a universal, unbiased assessment of the quality of 

proteomic data submitted for publication to scientific journals.  Furthermore, the 

statistical models may be easily distributed as supplemental material when data is 

submitted for publication in the form of a single binary R data file.  

Overall, the combination of user driven logistic spectral models, full automation of 

statistical analysis within high-throughput proteomic workflows and accelerated manual 

spectral annotation within the PeptideDepot proteomic relational database increases both 

the efficiency of proteomic workflows along with increased yield of confident peptide 

assignments.   

Currently, the software described here is designed around a SEQUEST workflow. To 

adapt the software to a new search engine such as X!Tandem or Mascot, the R software 

and the SpecNote annotation software would require updated parsing of the database 

search results.  Additionally the logistic spectral model would need to be trained on the 
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output variables of the new search algorithm.  In the future, logistic spectral models may 

also be trained with variables from multiple search algorithms to collate database search 

scores such as XCorr, E-value, and MOWSE score into a unified logistic spectral score.  

These small modifications could easily be implemented within the source code of our 

software. 
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5.1 INTRODUCTION 

Cellular behaviors are extensively regulated by various signaling pathways, among which 

insulin signaling plays a critical role in nutrition metabolism and cell proliferation/apoptosis 

[1]. The canonical insulin signaling pathway diagram is illustrated in Figure 5.1. Previous 

studies suggests that the insulin signaling pathway is initiated via the binding of insulin 

protein to the extracellular domain of insulin receptor (IR) α subunit [2]. Insulin receptor β 

subunit is then immediately autophosphorylated, resulting in elevated enzymatic activity 

toward its substrate, insulin receptor substrate (IRS) family of proteins. Activated IRS 

proteins serves as a messenger to mediate and transmit insulin receptor signaling to 

downstream networks, by recruiting several intracellular signaling molecules containing Src 

homology 2 (SH2) binding motifs [3, 4]. Several important downstream signaling cascades 

are known to be associated with this process. IRS family activates PI3K/Akt cascade by 

phosphorylation of p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) [5, 6], 

leading to various critical physiological effects. Akt is a serine/threonine kinase that inhibits 

lipolysis by activating phosphodiesterase 3B (PDE3B) [7]; promotes glycogen synthesis and 

fatty acid synthesis levels by inhibiting glycogen synthase kinase 3 (GSK-3) [8]; protects cell 

against apoptosis by inhibiting Bad [9]. Translocation of Akt to the nucleus inhibits Forkhead 

box O1 (FOXO1), Forkhead box O3A (FOXO3A) and Forkhead box O4 (FOXO4), and turns 

off programmed cell death [10, 11]. On another branch of the insulin signaling pathway, IRS 

family proteins regulate the Ras/mitogen-activated protein kinase (MAPK) cascade by 

recruiting Grb2 and/or SHP2 [12-18]. This activation finally initiates the mitogenic response 

[19]. 
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Figure 5.1: Canonical diagram of the insulin signaling pathway. (Figure from Cell Signaling Technology) 
 
 

It is a fair assumption that many malicious tumors are associated with a dysfunctional 

insulin signaling pathway, including hepatocellular carcinoma (HCC). HCC is a primary type 

of liver cancer that causes severe death within the human population. In most HCC tumor 

tissues and cell lines, overexpression of IRS-1 protein has been identified [20]. Based on the 

canonical insulin signaling pathway, elevated IRS-1 level could result in over-sensitive 

response to external stimulus, which may lead to un-regulated cell proliferation. In order to 

study how IRS-1 mediates extracellular signals and interacts with other proteins, several 
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NIH3T3 cell lines have been established by transfection of mutant human IRS-1 (hIRS-1) 

transcripts [18]. (Figure 5.2) These cell lines have been characterized previously and show a 

neoplastic transformation phenotype [18, 21]. Therefore, this model system to study the 

insulin signaling pathway in HCC can reveal important details of the molecular basis of this 

disease. 

 

 

Figure 5.2: Schemetic representation of wild-type and mutated hIRS-1 proteins overexpressed in NIH3T3 
cells. (Figure from Tanaka et al [18]) 
 
 

In this chapter, we investigate the global phosphorylation in NIH3T3 cells expressing 

Y1180F mutant IRS-1 through a time course of insulin stimulation. Data is analyzed using 

the previously described high-throughput proteomic pipeline (Chapter 2-4) to unravel 

quantitative perturbations of the phosphoproteome in this mutant cell through a time course 

of insulin receptor stimulation. 

 

 

5.2 MATERIALS AND METHODS 

5.2.1 Cell Culture and Stimulation 
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Wild type NIH3T3 and IRS-1 Y1180F mutant NIH3T3 cells were described previously. 

[18] We obtained these cells from the lab of Prof. Wands at Brown University. Two cell 

lines, NIH3T3 cells with overexpression of human IRS1 protein (NIH3T3-hIRS1) and 

NIH3T3 cells with overexpression of human IRS1 protein with SHP2 binding site mutated 

(NIH3T3-hIRS1 Y1180F) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) (Sigma) containing either 12C6, 14N4 Arg and 12C6, 14N2 Lys (Sigma) or 13C6, 

15N4 Arg and 13C6, 15N2 Lys (Cambridge Isotope Laboratories, Andover MA) supplemented 

with 10% heat inactivated dialyzed fetal bovine serum (Sigma), 2mM L-glutamine (Sigma), 

400 µg/mL G418 (Sigma), 100 µM non-essential amino acids (Invitrogen, Carlsbad CA) in a 

humidified incubator with 5% CO2 at 37 °C for 7 cell doublings. The concentration of Lys 

and Arg used in SILAC labeling of NIH3T3 cells in experiments described here was 37 mg/L 

and 23 mg/L, respectively. Cells were starved in DMEM with 0.1% bovine serum albumin 

for 24 hours after reaching 95% confluence. 

Insulin stimulation of NIH3T3 cells was performed as described previously [22]. Briefly, 

starved cells were washed once with 4 °C phosphate buffer saline (PBS), and reconstituted at 

a concentration of 15 ml PBS per 15cm cell culture dish.  For each time point, 1x107 cells 

were treated with 100 nM insulin (Sigma) and incubated at 37 °C for 0, 0.5, 1, 3, 5, 10, or 30 

minutes.  

 

5.2.2 Protein Harvest and Digestion 

To stop insulin stimulation, cells were treated similarly as described elsewhere [23]. Cells 

were placed in lysis buffer (8 M urea, 1 mM sodium orthovanadate, and 100 mM ammonium 

bicarbonate, pH 8.0) and incubated for 20 min at 4 °C.  Lysates were then cleared at 12,000 g 
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for 15 min at 4 °C, and protein concentrations were measured by the DC Protein Assay (Bio-

Rad, Hercules, CA).  Cell lysates from NIH3T3-hIRS1 and NIH3T3-hIRS1 Y1180F were 

combined at a 1:1 protein concentration ratio and reduced with 10 mM DTT for 1 hr at 56 

°C, followed by alkylation with 55 mM iodoacetamide for 1 hr at room temperature in 

dark.  Proteins were then diluted 5 fold with 100 mM ammonium bicarbonate (pH 8.9) and 

digested with sequencing grade modified trypsin (Promega, Madison, WI) at a 1:100 (w/w) 

trypsin:protein ratio overnight at room temperature.  Tryptic peptides were acidified to pH 2, 

cleared at 2000 g for 10 min at 22 °C, desalted using C18 Sep-Pak plus cartridges (Waters, 

Milford, MA), and lyophilized in a Speed Vac plus (Thermo Fisher Scientific, Waltham, 

MA).  

 

5.2.3 SCX Fractionation and TiO2 Enrichment 

Offline strong cation exchange (SCX) was performed on an Agilent 1200 HPLC system 

to fractionate peptide samples. Each timepoint was dissolved in water with 0.1 M acetic acid 

and loaded onto a custom packed SCX column (0.75mm ID x 25cm) of Poly Sulfoethyl A 

(300 Å), 5μm resin (Nest Group, Southborough, MA). Peptides were eluted from the column 

using a 12-step salt gradient with buffer A (30% acetonitrile, 5mM NaH2PO4, pH 3.0) and 

buffer B (30% acetonitrile, 5mM NaH2PO4, pH 3.0, 500mM NH4CH3COO-). Salt step used 

for fractions collected was: fractions 1-10, step-wise 0-20% buffer B, fraction 11, 50% buffer 

B and fraction 12, 100% buffer B. Each fraction was then subjected to TiO2 phosphopeptide 

enrichment as described previously with a few modifications [24]. Eluents were diluted 5:1 

with 30 g/L 2,5-dihydroxybenzoic acid (DHB) in 80% MeCN and 0.1% trifluoroacetic acid 

(TFA) and incubated with 10 mg of titanium beads (GL Science, Torrance, CA) pre-washed 
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with 5 mg/mL DHB in 80% MeCN for 1 hour. Beads were then washed twice with 200 µL of 

50% MeCN in water with 0.2% TFA. Phosphopeptides were eluted using 100 µ L of 

ammonium solution in 40% MeCN, pH 10.5 for 15 minutes. 

 

5.2.4 Mass Spectrometric Analysis 

Enriched phosphopeptides were injected into the mass spectrometer (LTQ-FT; Thermo 

Fisher Scientific) through an analytical column (360 µm OD X 75 µm ID fused silica with 12 

cm of 5 µm Monitor C18 particles with an integrated ~5 µm ESI emitter tip fritted with 3 µm 

silica; Bangs Laboratories) with a reversed-phase gradient (0-70% MeCN with 0.1 M acetic 

acid in 30 min).  Static peak parking was performed via flow rate reduction from 200 nl/min 

to ~40 nl/min when peptides began to elute as judged from a BSA peptide scouting run, as 

described previously [25].  Using a split flow configuration, an electrospray voltage of 2.0 

kV was applied as described [26].  Spectra were collected in positive ion mode and in cycles 

of one full MS scan in the FT (m/z: 400-1800), followed by data-dependent MS/MS scans in 

the LTQ (~0.3 s each) sequentially of the five most abundant ions in each MS scan with 

charge state screening for +1, +2, +3 ions and dynamic exclusion time of 30 s.  The 

automatic gain control was 1,000,000 for the FTMS scan and 10,000 for the ion trap MS 

(ITMS) scans.  The maximum ion time was 100 ms for the ITMS scan and 500 ms for the 

FTMS full scan.  FTMS resolution was set at 100,000. 

MS/MS spectra were searched against the mouse National Center for Biotechnology 

Information non-redundant protein database using the Mascot algorithm (ver 2.2.1) 

[27].  Peak lists were generated using extract_msn.exe provided by ThermoFisher using a 

mass range of 600-4500, precursor ion tolerance (for grouping) of 0.005 AMU, minimum ion 
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count of 5, group scan of 0, minimum group count of 1.  The NCBI mouse database was 

appended with its reversed version (decoy database) [28].  Mascot search was performed 

with the following parameters: trypsin enzyme specificity, 2 possible missed cleavages, 0.2 

Da mass tolerance for precursor ions, 0.5 Da mass tolerance for fragment ions.  Search 

parameters specified a differential modification of phosphorylation (+79.9663 Da) on serine, 

threonine, and tyrosine residues and a static modification of carbamidomethylation 

(+57.0215 Da) on cysteine.  Search parameters also included a differential modification for 

arginine (+10.00827 Da) and lysine (+8.01420 Da) amino acids.  To provide high confidence 

phosphopeptide sequence assignments, Mascot results were filtered with ion score (>25), 

precursor mass error (<20 ppm), a logistic spectral score that assessed MS/MS spectral 

quality (> 0.5015), non-redundant phosphopeptides, and proteins with descriptors of 

"unnamed" or "unknown" removed, to reach 1% false discovery rate estimated by the decoy 

database approach [28]. To validate the position of the phosphorylation site, the Ascore 

algorithm [29] was applied to all data, and the reported phosphorylation site position reflects 

the top Ascore prediction. All data were processed by HTAPP platform described previously 

in an automated fashion.  

 

 

5.3 RESULTS 

5.3.1 SCX/TiO2 Approach Revealed 2201 Phosphorylation Sites in NIH3T3 Cells 

All peptide hits identified in a total of 91 LC/MS runs (7 timepoints times 13 fractions 

per timepoint) were assembled into a quantitative comparison timecourse. At 1% FDR rate 

estimated by decoy database, we discovered a total of 2201 phosphorylation sites on 1194 
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proteins, among which 1862 (84.6%) were on serine, 299 (13.6%) were on threonine and 40 

(1.8%) were on tyrosine (Figure 5.3 A). These numbers were consistent with previous 

estimated phosphorylation site distributions [30]. We found that the TiO2 enrichment method 

produced predominantly singly phosphorylated peptides (Figure 5.3 B). 

 

 

Figure 5.3: Results of large-scale phosphoproteomic analysis of insulin-stimulated NIH3T3 cells. A) 
Residue distribution of phosphopeptides; B) Distribution of singly, doubly, and multiply phosphorylated 
peptides. 
 
 
5.3.2 Quantitative Time-Resolved Proteomic Data Revealed Different Regulation 

Patterns in NIH3T3-hIRS1 and NIH3T3-hIRS1 Y1180F 

Using a hybrid approach combining both a label-free and SILAC quantitation strategy 

(Figure 1.5), identified phosphopeptides were quantified and data assembled in the 

experiment comparison view within PeptideDepot. We detected many known and novel 

phosphorylation sites on IGF-II receptor, IRS1 and IRS2, indicating that insulin signaling 

pathway was triggered after treatment with insulin. Data show the protein activation after 0 

minutes. (Figure 5.4) 
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Figure 5.4: Activation of insulin/IGF related proteins in insulin-stimulated NIH3T3 cells. The heatmap on 

the left shows the temporal profile of phosphorylations in NIH3T3-hIRS1 cells. The heatmap on the right shows 

the ratio of phosphorylation abundance in NIH3T3-hIRS1 Y1180F versus NIH3T3-hIRS1. Color legends are 

indicated on the top-left. 

 

 

SHP2 (also known as Syp, SHPTP2, PTP1D, SHPTP3, or PTP2C) is a protein tyrosine 

phosphotase that contains two adjacent SH2 domains in addition to a catalytic
 
phosphatase 

domain. SHP2 binds to insulin receptor substrate 1 to become activated [15, 31]. In the 

NIH3T3-hIRS1 Y1180F cell line, a point mutation was created to replace Y with F, leading 

to failure of IRS1 to activate SHP2. Previous studies suggest that SHP2 is a positive 

downstream regulator of insulin signaling pathways [32] and removal of SHP2 binding site 

leads to decreased MAPK activity in response to insulin stimulation comparing to NIH3T3-

hIRS [18]. We summarized our results into three categories: phosphorylation sites that were 

down-regulated in NIH3T3-hIRS1 Y1180F comparing to NIH3T3-hIRS1 (Figure 5.5); 

phosphorylation sites that were up-regulated in NIH3T3-hIRS1 Y1180F comparing to 
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NIH3T3-hIRS1 (Figure 5.6); and phosphorylations that didn’t show obvious changes 

between the two cell lines (Figure 5.7). 
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(Continued from the previous page) 
 

 
 

Figure 5.5: Selected phosphopeptides that were down-regulated in NIH3T3-hIRS1 Y1180F comparing to 
NIH3T3-hIRS1 
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Figure 5.6: Selected phosphopeptides that were up-regulated in NIH3T3-hIRS1 Y1180F comparing to 
NIH3T3-hIRS1 
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Figure 5.7: Selected phosphopeptides that showed no obvious change between NIH3T3-hIRS1 Y1180F 
and NIH3T3-hIRS1 
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5.4 CONCLUSION 

In this project we aimed to use our novel high-throughput proteomic pipeline to explore 

the change in phosphorylation profiles in different NIH3T3 cells in response to insulin 

stimulation. In a SILAC-labeled NIH3T3-hIRS1/NIH3T3-hIRS1 Y1180F timecourse, we 

discovered a total of 2201 phosphorylation sites at an estimated 1% false discovery rate. 

While previous studies have shown that SHP2 has a positive effect on MAPK/Ras cascade in 

insulin signaling pathway but has little influence on PI3K/Akt cascade [32, 33], we 

discovered hundreds of phosphorylation sites that were up-regulated, down-regulated and 

were unaffected in the NIH3T3-hIRS1 Y1180F cells (hIRS-1 without SHP2 binding site). 

Although some of the unchanged sites were related to routine cell activities, some of them 

were clearly involved in the PI3K/Akt branch. 

 Using protein-protein interaction exploration software developed in the lab of Prof. 

David Laidlaw at Brown, we will explore the connections between quantitatively perturbed 

phosphorylation sites and expected protein interactions. Future experiments will examine 

selected protein-protein interactions of proteins discovered in this experiment showing 

significant changes between NIH3T3-hIRS1 Y1180F and NIH3T3-hIRS1 with a particular 

emphasis on canonical insulin signaling pathway proteins. Data generated in this experiment 

is useful to study binding substrates of a particular phosphoprotein by co-

immunoprecipitation, expressing TAG and pull down, or synthesizing phosphopeptides 

discovered here and applying pull-down assay. 
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6.1 SUMMARY OF RESULTS 

Since biological mass spectrometry has been introduced in 1990s, exciting progress in 

the development of new instrumentation and high throughput proteomic methods has led 

to a landslide of proteomic data that needs to be analyzed and explored efficiently. 

However, this enhanced ability in data acquisition has not been accompanied by a 

concomitant increase in the availability of flexible tools that allows users to rapidly 

assimilate, explore, and analyze this data and adapt to a variety of experimental 

workflows with minimal user intervention. Often the manual aggregation of proteomic 

data and analysis in current proteomics software distract investigators from the biological 

meaning of their data, leading to the all-too-frequent deposition of proteomic data into the 

scientific literature with little or no biological or clinical interpretation. We fill the critical 

gap by providing a high-throughput autonomous proteomic pipeline to streamline the 

total analysis of a complex proteomic sample. The work presented in this thesis covered 

the most critical components within the proteomic pipeline. 

High-throughput proteomic methods necessitate the development of large-scale 

statistical spectral validation algorithms. We developed a novel method based on a 

logistic regression model that learns rules from a user-provided training set. Our 

statistical approach mimics experts’ manual spectra validation criteria and provides an 

estimated spectral confidence level. The result showed a substantial improvement for this 

method over the generic score provided by database search engine, such as XCorr by 

Sequest and E-value by X!Tandem. A flexible platform was developed to tie multiple 

pieces of proteomic software together to streamline the data processing. Our platform 

was capable of performing LC/MS acquisition control, MS/MS database search, peptide 
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spectral validation, phosphorylation site localization and peptide quantitation. The 

resulting peptide identifications, along with data-dependent calculation results were 

directed into a relational FileMaker/MySQL database for organization of expansive 

proteomic data sets, collation of proteomic data with available protein information 

resources, and visual comparison of multiple quantitative proteomic experiments. An 

information-rich user interface was presented to end-users to unravel the biological 

significance of acquired proteomic data. 

We also explored the utility of our bioinformatic tools in the analysis of insulin 

signaling in hepatocellular carcinoma. Using a hybrid quantitation approach combining 

label-free and SILAC, we were able to quantify a total of 2201 phosphorylation sites at a 

1% false discovery rate. Several categories of phosphorylation pattern were identified 

based on the quantitative data. 

 

6.2 FUTURE WORK 

A major question that remains unanswered is how to use the collected quantitative 

phosphoproteomic timecourse data to predict signal transduction events happened during 

cell activation. Due to the inherent complexity of signaling networks, machine learning or 

statistical approaches must be employed. Comparative data generated by mutated 

signaling molecules may provide a hint in the placement of phosphorylated proteins in 

the signaling network. Furthermore, new text mining tools may be developed to reveal 

the internal connections between acquired datasets with existing protein and network 

knowledge contained in the literature. The future direction of bioinformatic software for 
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phosphoproteomic analysis should focus on understanding the protein-protein interaction 

networks assembled from the quantitative timecourse data. 
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