

A Heuristic for the Constrained One-Sided Two-Layered Crossing Reduction Problem
for Dynamic Graph Layout

by

Dung Mai

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Graduate School of Computer and Information Sciences
Nova Southeastern University

2011

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3474089

Copyright 2011 by ProQuest LLC.

UMI Number: 3474089

Dissertation Signature (Approval) Page

We hereby certify that this dissertation, submitted by Dung Mai, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

___ ______________
Michael J. Laszlo, Ph.D. Date
Chairperson of Dissertation Committee

___ ______________
Wei Li, Ph.D. Date
Dissertation Committee Member

___ ______________
Junping Sun, Ph.D. Date
Dissertation Committee Member

Approved:

___ ______________
Amon B. Seagull, Ph.D. Date
Interim Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences
Nova Southeastern University

2011

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Heuristic for the Constrained One-Sided Two-Layered Crossing

Reduction Problem for Dynamic Graph Layout

by
Dung Mai

September 2011

Data in real-world graph drawing applications often change frequently but incrementally.
Any drastic change in the graph layout could disrupt a user’s “mental map.”
Furthermore, real-world applications like enterprise process or e-commerce graphing,
where data change rapidly in both content and quantity, demand a comprehensive
responsiveness when rendering the graph layout in a multi-user environment in real time.
Most standard static graph drawing algorithms apply global changes and redraw the
entire graph layout whenever the data change. The new layout may be very different
from the previous layout and the time taken to redraw the entire graph degrades quickly
as the amount of graph data grows. Dynamic behavior and the quantity of data generated
by real-world applications pose challenges for existing graph drawing algorithms in terms
of incremental stability and scalability.

A constrained hierarchical graph drawing framework and modified Sugiyama heuristic
were developed in this research. The goal of this research was to improve the scalability
of the constrained graph drawing framework while preserving layout stability. The
framework’s use of the relational data model shifts the graph application from the
traditional desktop to a collaborative and distributed environment by reusing vertex and
edge information stored in a relational database. This research was based on the work of
North and Woodhull (2001) and the constrained crossing reduction problem proposed by
Forster (2004). The result of the constrained hierarchical graph drawing framework and
the new Sugiyama heuristic, especially the modified barycenter algorithms, were tested
and evaluated against the Graphviz framework and North and Woodhull’s (2001) online
graph drawing framework.

The performance test results showed that the constrained graph drawing framework run
time is comparable with the performance of the Graphviz framework in terms of
generating static graph layouts, which is independent of database accesses. Decoupling
graph visualization from the graph editing modules improved scalability, enabling the
rendering of large graphs in real time. The visualization test also showed that the
constrained framework satisfied the aesthetic criteria for constrained graph layouts.
Future enhancements for this proposed framework include implementation of (1) the
horizontal coordinate assignment algorithm, (2) drawing polylines for multilayer edges in
the rendering module, and (3) displaying subgraphs for very large graph layouts.

Acknowledgments

The completion of this dissertation would not have been possible without the support and
encouragement from many.

First and foremost I would like to express my deep gratitude and sincere appreciation to
my advisor, Dr. Laszlo, whose patience, guidance, and support help me complete this
dissertation. I also extend my appreciation to the dissertation committee members Dr.
Sun and Dr. Li for their support and expertise in serving as part of the committee for my
dissertation.

I must express special thanks to my wife, Ha Mai, who always believed I could complete
this undertaking. This work could not have been completed without her endless patience,
support, and encouragement. I also extend my utmost gratitude to my mother-in-law,
Vietnga Pham, for staying with us in the past few years to help us take care of my
daughters so I could work on my dissertation. I also extend my many appreciation to my
former co-worker and a close friend, Mr. Webber, for not only his endless help in editing
my dissertation but also for his great suggestions. I also would like to thank Mr. Evans
for providing a foundation for the graph rendering engine. I thank my daughters for their
understanding and curiosity about science that motivated me to finish this project.

I would like to also express thanks to all my brothers, my relatives, friends, and co-
workers for their encouragement and support in this degree work.

I would like to dedicate this thesis to my father, who endured and overcame the hardship
in the communist re-education camp, and to my mother who worked so hard to raise her
four children while her husband was held indefinitely in the communist prison. Their
lives have been and will always be a beacon that gives light, hope, encouragement, and
motivation to my life.

Last but not least, I would also dedicate this thesis in the memory of my uncle, my
mother’s older brother, whom I wanted to see some time in the future but passed away
abruptly while I was working on this thesis.

 v

Table of Contents

Abstract___ii
List of Tables___viii
List of Figures___xi

Chapters

1. Introduction___ 1

Problem Statement___ 3

Goal___ 5

Relevance___ 6

Barriers and Issues___ 9

Limitations of the Study___ 11

Definitions of Terms___ 12

Summary___ 25

2. Review of the Literature___ 28

Introduction___ 28

The Sugiyama Algorithm___ 28

Cycle Removal___ 29

Layer Assignment___ 32

Crossing Reduction___ 35

Coordinate Assignment___ 45

Incremental Graph Drawing Systems___ 45

Summary___ 52

Contribution to the Field ___ 52

3. Methodology___ 54

Introduction___ 54

Chapter Layout ___ 55

Assumptions and Standard Notations___ 56

Aesthetic Criteria for Drawing Directed Hierarchical Graph Layouts___ 57

Aesthetic Criteria for Incremental Graph Layouts ___ 58

Related Research___ 60

The Standard Sugiyama Heuristic___ 60

Step 1: Cycle Removal___ 61

Step 2: Layer Assignment___ 64

Step 3: Crossing Reduction___ 68

Step 4: Coordinate Assignment___ 71

DynaDAG ___ 72

Constrained Crossing Reduction for One Sided Two-Layered Graph Layouts___
78

Constrained Incremental Graph Drawing Framework___ 82

Design of an Abstract Model for Incremental Graph Layouts___ 82

 vi

Details of the Abstract Model___ 83

An Abstract Model for Hierarchical Constrained Graph Layouts___ 85

Modified Sugiyama Heuristic for Constrained Incremental Graph Layout___ 87

Architecture of the Constrained Graph Drawing Framework ___ 90

An Entity Relationship for Constrained Hierarchical Graph Drawing___ 110

The Process of Collecting Graph Data___ 116

Testing and Evaluation___ 116

Resource Requirements___ 129

Summary___ 130

4. Results___ 131

Visualization Test 1 Results___ 131

Visualization Test 2 Results___ 140

Performance Test Results___ 147

5. Conclusions, Implications, Recommendations, and Summary___ 178

Conclusions___ 178

Implications___ 180

Recommendations___ 181

Summary___ 182

Appendixes

A. Modified Sugiyama Algorithms___ 186

B. Test Files in DOT Format___ 208

C. Performance Test Results for Dynamic Operations___ 227

D. SQL Queries Used in Test Validation___ 245

E. Class Diagrams for Helper Classes in the Constrained Graph Drawing
Framework___ 246

Reference List___ 248

 vii

List of Tables

Tables

1. Summary of algorithms for solving the cycle removal step in the Sugiyama
heuristic.__ 32

2. Summary of algorithms for solving the layer assignment step in the Sugiyama
heuristic.__ 35

3. Summary of algorithms for solving the one-sided two-layered crossing
reduction problem.__ 44

4. Incremental graph drawing frameworks.__ 51

5. Internal Model used in the DynaDAG (North & Woodhull, 2001).__ 73

6. Objectives and constraints of the Process procedure in DynaDAG (North and
Woodhull, 2001).__ 74

7. Variables in phase 2, reranking, in the online graph drawing framework (North
& Woodhull, 2001).__ 75

8. Constraints in phase 2, layer assignment, in DynaDAG (North & Woodhull,
2001).__ 75

9. Similarities and differences between DynaDAG and the proposed CGDF. __ 78

10. Backus Naur Form (BNF) of the extended DOT language.__ 98

11. An example of extended DOT language.__ 99

12. Relations layout and layout snapshot.__ 113

13. Relations layer and layer snapshot.__ 113

14. Relations vertex and vertex_snapshot.__ 114

15. Relations edge and edge_snapshot. __ 115

16. Relations order_constraint and ordered_constraint snapshot. __ 115

17. The criteria to measure effectiveness of the developed constrained framework.
__ 120

 viii

18. Dataset for the first visualization test.__ 121

19. The two datasets used in the performance preliminary test.__ 123

20. Four performance tests.__ 126

21. Small datasets.__ 127

22. Medium-size datasets. __ 127

23. Large datasets. __ 128

24. Real-world graph datasets from the Stanford large-graph repository. __ 128

25. Six dynamic operations. __ 129

26. Number of vertices before and after adding dummy vertices.__ 148

27. Performance result of the preliminary test. __ 148

28. Number of vertices before and after adding dummy vertices (retest). __ 150

29. Performance result of the preliminary test (retest). __ 150

30. Performance comparisons between constrained, Graphviz, and DynaDAG. __
151

31. Results of the first performance tests on small datasets. __ 153

32. Results of the second performance tests on small datasets. __ 154

33. Results of the database retrieval cost tests on small datasets. __ 155

34. Results of the rendering performance tests on small datasets. __ 156

35. Results of the fifth performance tests on small datasets. __ 157

36. Results of the first performance tests on medium-sized datasets. __ 158

37. Results of the second performance tests on medium-sized datasets. __ 158

38. Results of the data retrieval performance tests on medium-sized datasets. __ 159

39. Results of the rendering performance tests on medium-sized datasets. __ 160

40. Results of the fifth performance tests on medium-sized datasets. __ 160

 ix

41. Results of the first performance tests on large datasets. __ 162

42. Results of the second performance tests on large datasets. __ 162

43. Results of the data retrieval performance test on large datasets. __ 163

44. Results of the rendering performance tests on large datasets. __ 163

45. Results of the fifth performance tests on large datasets. __ 164

46. Number of edge crossings comparison. __ 168

47. Rendering results of eight real-world large datasets. __ 169

48. Asymptotic analysis for modified Sugiyama algorithms. __ 175

49. I/O cost of individual insertion operations. __ 176

50. I/O cost of individual operations due to a dynamic operation. __ 177

51. I/O cost of retrieval of individual operations for rendering a graph layout. __
177

52. Total I/O cost of database operations. __ 177

 x

List of Figures

Figures

1. A hierarchical graph layout__ 1

2. A bipartite graph__ 16

3. A 4-layered graph layout (Battista et al., 1999)__ 17

4. A layered hierarchical graph made proper by inserting dummy vertices__ 20

5. A two-layered hierarchical graph layout__ 22

6. Crossing number of cuv and cvu__ 24

7. A directed graph with cycles__ 29

8. An acyclic directed graph after reversing the set of edges {(9, 4), (11, 5)}__ 30

9. A two-layered hierarchical graph layout after crossing reduction is performed__
37

10. Proposed constrained hierarchical graph drawing system and contributing
research__ 56

11. Two conflicting goals of incremental graph layout (Görg, 2005)__ 60

12. Pseudocode of the cycle removal algorithm__ 62

13. Pseudocode of the Greedy-Cycle-Removal algorithm (Eades et al., 1993)__ 63

14. Pseudocode of the modified DFS algorithm (Eades et al., 1993)__ 64

15. Pseudocode of the Coffman-Graham algorithm (Battista et al., 1999)__ 66

16. Pseudocode of the Label Vertices algorithm (Battista et al., 1999)__ 67

17. Pseudocode of the Find Unassigned Vertices algorithm (Battista et al., 1999)__
68

18. Pseudocode of the layer-by-layer sweep algorithm__ 69

19. Pseudocode of the barycenter algorithm__ 71

20. Pseudocode of the computing barycenter algorithm__ 71

 xi

21. Barycentrics of vertices and their incident edges__ 80

22. Pseudocode of the modified barycenter algorithm (Forster, 2004) __ 81

23. Design flow for building an abstract model for incremental graph layouts__ 83

24. Description of the abstract model for constrained graph layout__ 84

25. Pseudocode of the add vertex operation__ 91

26. Pseudocode of the add edges operation__ 92

27. Pseudocode of the remove vertex operation__ 92

28. Pseudocode of the remove edges operation__ 93

29. Pseudocode of the add ordered constraints operation__ 94

30. Pseudocode of the remove ordered constraints operation__ 94

31. Pseudocode of the function that retrieves data from the database to reconstruct
the subgraph__ 96

32. Architecture of the graph drawing framework__ 100

33. Execution flow of the graph editor component__ 101

34. Execution flow of the graph visualization component__ 102

35. Packages of the constrained graph layout__ 103

36. Class diagram of the cycle removal algorithm__ 104

37. Class diagram of the layer assignment algorithm__ 105

38. Class diagram of the crossing reduction algorithm__ 106

39. Class diagram of the action package algorithm__ 107

40. Class diagram of the structure package__ 108

41. Class diagram of the parse, lexical analysis, and abstract syntax classes__ 109

42. Class diagram of the dao and service packages__ 109

43. Class diagram of the main classes in gui, data, display packages__ 110

 xii

44. Entity relationship diagram for the constrained graph drawing framework__ 112

45. Measurable goals for evaluating the proposed algorithm__ 117

46. Layout generated by the constrained graph drawing framework__ 133

47. Layout generated by constrained Graphviz__ 134

48. Layout generated after replacing the Greedy sorting algorithm with a modified
DFS sorting algorithm__ 135

49. Layout produced by the constrained graph drawing framework__ 136

50. Layout produced by Graphviz__ 137

51. Layout produced by the constrained graph drawing framework__ 138

52. Layout produced by Graphviz__ 138

53. Layout produced by the constrained graph drawing framework__ 139

54. Layout produced by Graphviz__ 139

55. Layout produced by the constrained graph drawing framework__ 139

56. Layout produced by Graphviz__ 140

57. Layout produced by the constrained graph drawing framework__ 140

58. Layout produced by DynaDAG__ 141

59. Layout produced by the constrained graph drawing framework__ 141

60. Layout produced by DynaDAG__ 142

61. Layout produced by the constrained graph drawing framework__ 143

62. Layout produced by DynaDAG__ 143

63. Layout produced by the constrained graph drawing framework__ 144

64. Layout produced by DynaDAG__ 144

65. Layout produced by the constrained graph drawing framework__ 145

66. Layout produced by the constrained graph drawing framework__ 145

 xiii

67. Layout produced by DynaDAG__ 146

68. Layout produced by the constrained graph drawing framework__ 147

69. Layout produced by DynaDAG__ 147

70. Performance of the constrained graph drawing framework versus Graphviz__
165

71. Rendering performance of the constrained graph drawing framework versus
Graphviz__ 166

72. I/O cost due to data retrieval for six dynamic operations__ 171

73. I/O cost due to database saving for six dynamic operations__ 171

74. Performance of the constrained graph drawing framework dynamic
operations__ 172

75. Performance comparisons of the constrained graph drawing framework dynamic
operations vs. static graph saving operations and Graphviz__ 173

1

Chapter 1

Introduction

General hierarchical graph layouts as shown in Figure 1 are often used to display

relationships between objects (North, 1995). Some examples of their use include entity

relationship models in databases, the Unified Modeling Language (UML) in software

engineering, management organizational charts, and hierarchical layouts in computer

networking to display Internet networks (Battista, Eades, Tamassia, & Tollis, 1999;

Cohen, Battista, Tamassia, Tollis, & Bertolazzi, 1992; North & Woodhull, 2001).

Figure 1. A hierarchical graph layout

Although current hierarchical graph layout algorithms have been well studied

(North & Woodhull, 2001) and have been effective for drawing static graphs with fewer

than 100 nodes, real-world graph editing applications such as enterprise process modeling

applications depict large amounts of complex data that change frequently but

incrementally. Modelers who manage such large and complex models often

incrementally update the model locally and expect a corresponding local change in the

layout of the model without too drastic a change from the previous layout. Without this

layer 4

layer 3

layer 2

layer 1

crossings

2

precaution users could be confused and unable to associate the new model with the

previous model. In other words, the users’ “mental map,” their perception of the graph’s

concepts based on previous knowledge, could be disrupted if the next layout is

substantially different from the previous layout (Eades & Kelly, 1984). Thus,

incremental stability is an important requirement of real-world graph applications.

Currently, most standard graph drawing algorithms tend to apply global optimization and

redraw the entire graph when the graph data change. The resulting layout sometimes can

be quite different from the previous layout. Moreover, graph models of real-world

applications are often updated by some users while others are viewing the model on line.

To support both editing and viewing in real-time mode, graph editing applications need to

not only generate incrementally stable layouts but to generate them as quickly as

possible. Applying a global change on the model when a local change is made may not

be scalable for large data models such as enterprise process models. As a result, the

dynamic behavior of real-world graph applications poses challenges for current graph

drawing algorithms in terms of incremental stability and scalability.

To address dynamic behaviors of real-world graph applications such as

incremental stability and scalability, Cohen et al. (1992) propose dynamic graph

algorithms for different types of graph drawing techniques, especially series-parallel

directed graphs and trees. Miriyala and Tamassia (1993) introduce an incremental graph

drawing algorithm for drawing orthogonal graph layouts. Brandes and Wagner (1997)

formulate dynamic layouts in terms of random fields and present a formal concept for

dynamic graph layouts. He and Marriott (1998) propose several models for constrained

3

force directed graph layout. Diehl, Görg, and Kerren (2000) present an off-line dynamic

graph drawing framework called foresighted layout that renders a sequence of graph

layouts from a given sequence of graphs while preserving the global layout. Lee, Lin,

and Yen (2006) present a modified simulated annealing algorithm that preserves the

user’s mental map and ensures graph layout stability. Frishman and Tal (2007) propose a

new online dynamic graph drawing that is based on a force directed layout algorithm.

Examples of progress in hierarchical drawing for directed graphs in recent years include a

hierarchical directed graph drawing system called online dynamic graph drawing (North,

1995; North & Woodhull, 2001), and hierarchical graph views for dynamic graph layouts

(Buchsbaum & Westbrook, 2000; Raitner, 2004).

This section first discusses the dynamic nature of graph data in real-world

applications in which data change frequently but incrementally. Any drastic changes in

graph layouts could disrupt a user’s mental map. It then addresses the limitation of

current static graph drawing algorithms, which redraw the entire graph layout without

taking into account the user’s mental map. The section also introduces incremental graph

layout algorithms as a solution to this problem. The next section discusses the impacts

and potential complexity created by incremental graph drawing algorithms, especially

crossing reduction for one-sided two-layered graphs.

Problem Statement

While incremental graph drawing algorithms such as online dynamic graph

drawing (North & Woodhull, 2001) for drawing hierarchical graph layouts do improve

layout stability, their aesthetic criteria impact the readability criterion by complicating the

4

computation of vertex reordering on a layer by imposing certain constraints on vertices.

In fact, the crossing reduction problem for dynamic hierarchical graph drawing is a

variant of the crossing reduction problem called constrained crossing reduction, in which

the crossing reduction algorithm works with a set of predefined constraints. This

problem is presented in Chapter 2.

The extent to which the number of crossings is minimized is one of the important

criteria for measuring the quality of a graph layout algorithm, but unfortunately crossing

reduction is an NP-complete problem (Garey & Johnson, 1983). Though there has been

significant research in this area, most of the work has focused on developing heuristics to

solve the crossing reduction problem without constraints on vertices. Moreover, the

recent experiment done by Huang and Eades (2005) showed that in some cases a

constrained graph layout that produces more edge crossings provides a better

visualization than the same layout with fewer edge crossings. User constraints indeed

impact aesthetic criteria and influence the design of the algorithm that solves the crossing

reduction problem. Hence, minimizing the number of crossings on a constrained graph

layout requires further investigation.

Although several researchers propose efficient online dynamic graph drawing

systems such as the online hierarchical graph drawing framework (North & Woodhull,

2001), those systems do not address the constrained crossing reduction problem. Further

research is needed to address this problem, to improve the scalability and performance of

the dynamic graph drawing algorithm, especially the crossing reduction problem as

suggested by North and Woodhull (2001), and to utilize a relational database to store

5

dynamic graph layouts. The work in the proposed thesis was to develop an incremental

graph drawing framework based on online dynamic graph drawing (North, 1995; North

& Woodhull, 2001). The result of this research improved the incremental stability and

scalability of graph drawing systems by utilizing relational data model to capture

incremental graph layouts.

Goal

The objective of this research was (1) to develop a constrained graph drawing

framework for drawing hierarchical graph layouts and (2) to develop a heuristic to solve

the constrained crossing reduction problem. The result of the research extended the

North and Woodhull (2001) research and developed a variant version of the online

dynamic graph drawing system, achieving a solution that reduced the number of

crossings while accommodating the set of constraining criteria proposed by North (1995).

The specific goals of this research were as follows:

(1) To extend the work of North and Woodhull (2001) by developing an

incremental graph drawing framework that supports the following six operations:

a. Inserting a vertex or pseudovertex and a given set of edges connecting

the new node to existing vertices.

b. Deleting a vertex and all its incident vertices.

c. Adding an edge.

d. Deleting an edge.

e. Adding ordered constraint, which ensures layout stability by enforcing

the order of certain pairs of vertices on the same layer.

6

f. Removing ordered constraints.

(2) To formulate a parameterized equation that accommodates aesthetic

criteria. This equation factors in the number of crossings for the one-sided two-

layered crossing reduction problem.

(3) To develop a relational data model to capture incremental graph layouts.

(4) To develop a heuristic to solve this crossing reduction problem.

(5) To analyze the heuristic’s time and space complexity, and consider

performance guarantees relative to an optimal solution.

Relevance

Graph visualization and graph drawing play key roles in many applications across

disciplines, such as relational database modeling, object oriented modeling or UML,

business modeling, organizational diagrams, molecular layout, and DNA layout (Battista

et al., 1999). With advances in computer hardware and the exponential growth of data,

user experience with computer visualization is also getting more sophisticated. Some

graph visualization applications have been ported to the Internet, whose environment is

dynamic and whose users expect fast rendering of large graphs. Real-world graph editing

applications like enterprise process modeling tools require more sophisticated

interactions such as inserting vertices into and deleting vertices from the graph (North,

1995) in real-time mode. More efficient and effective graph visualization algorithms are

needed for visualizing larger graphs in real-time mode (Cohen et al., 1992; North &

Woodhull, 2001; Buchsbaum & Westbrook, 2000; Raitner, 2004) while still fulfilling

aesthetic criteria (North, 1995). Real-world graph structures are often dynamic and

7

updated frequently (He & Marriott, 1998), but most standard graph drawing algorithms

often apply global optimization, leading to unstable graph layouts. Moreover, most of

those algorithms do not support incremental updating and thus do not scale well for

displaying very large data sets or for graph layouts where users need to interact with the

graph in real time.

Research has been undertaken to improve graph layout stability and performance.

Bohringer and Newbery (1990) proposed using constraints that are defined by the user or

are based on previous layouts to improve the stability of the layouts. Cohen et al. (1992)

proposed a dynamic algorithm for drawing planar graphs for a variety of standard

drawings and defined a property for dynamic graph layout called smooth update. Luder,

Ernst, and Stille (1995) present a graph drawing application called automatic display

layout that preserves the topology of the layout across sequential updates. He and

Marriott (1998) proposed a constrained graph drawing framework for undirected graphs

and trees. North (1995) proposed an incremental graph layout system called DynaDAG,

which supports hierarchical graph drawing. Brandes and Wagner (1997) formalized the

aesthetic criteria notion for dynamic graph layout introduced by North (1995) based on

the random field model, which is widely used in imaging processing. The authors then

proposed a generic framework for online dynamic graph layout and experimented with

the proposed framework by using spring models and orthogonal drawings. Buchsbaum

and Westbrook (2000) formalized the concept of maintaining views for dynamic graph

layout and proposed efficient data structures for storing the views. Their research goal

was to overcome the physical limitation of computer screen size by allowing users to

8

focus on certain parts of the graph using expansion and contraction mechanisms while the

underlying graph is subjected to edge insertions and deletions. Diehl and Kerren (2000)

introduced an off-line dynamic graph layout algorithm called foresighted layout that

preserves layout stability based on a global graph layout that is a union of all the layouts.

This approach looks ahead and renders the entire sequence of n drawings with respect to

a global graph layout from a given sequence of n graphs. Raitner (2004) extended the

work of Buchsbaum and Westbrook (2000) and developed similar algorithms for

maintaining large hierarchical graph layouts that are also subjected to leaf insertion and

deletion operations. Lee et al. (2006) presented a modified simulated annealing

algorithm that preserves the user’s mental map by adding layout stability as a factor in

the cost function in the simulated annealing computation. Similarly, Frishman and Tal

(2007) proposed a new algorithm based on force directed layout for drawing online

dynamic graph layouts. The authors applied degree of movement flexibility on vertices

to ensure the algorithm takes into account layout stability while recalculating the next

layout.

However, most techniques are applied to force directed graph layouts and few

work well with hierarchical graph layout models. Within the few proposed frameworks

for drawing hierarchical graph layouts, none of the current researchers present a way to

minimize the number of crossings while accounting for a set of constraints imposed by

criteria in dynamic graph drawing. The original contribution of this dissertation is the

development of a constrained graph framework for drawing hierarchical graph layouts

9

that includes a heuristic that reduces the number of crossings for one-sided, two-layered

directed graphs while satisfying the aesthetic criteria defined by North (1995).

Barriers and Issues

In addition to the NP-completeness of the one-sided crossing reduction problem,

combining the dynamic criteria with the crossing reduction problem posed challenges for

the thesis. There was an inherent trade-off between satisfying the layout stability

aesthetic criterion and reducing the number of crossings or readability criterion.

Preserving layout stability could have increased the number of crossings, but reducing

crossings could have compromised the aesthetic criteria (North & Woodhull, 2001;

Forster, 2004; Görg, 2005).

Another trade-off was between the aesthetic criteria and the space-time

complexity. Satisfying the aesthetic criteria could have increased the complexity of

space or time or both (Cohen et al., 1992; Gansner, North, & Vo, 1993). Thus, in

exploring the trade-off between minimizing the number of crossings and satisfying the

aesthetic criteria, this dissertation sought a solution that balances layout stability with

minimum edge crossing numbers.

None of the research in dynamic graph drawing applications addresses the

scalability of the use of internal data structures that capture the previous states of the

graph layout. This leads to another interesting problem: how to construct an efficient

graph model that enables the algorithm performance to be efficient and scalable for large

graphs.

10

Other issues related to the inconsistency between theoretical results and real-

world applications. Results from several experiments showed that some proposed

heuristics solving the problem had good performance when tested using synthetic data

but had poor performance using real-world data (Marti & Laguna, 2003). For instance,

the median approach had better worst-case scenario efficiency than the barycenter

approach, but the barycenter method outperformed the median method in practice.

One issue related to the generation of graph models used in testing. Stallman,

Brglez, and Ghost (2001) mentioned that finding a collection of graph data using a

random graph generator that covers different types of graph was challenging. Results

from several experiments also indicated that experimental results using synthetic graph

data did not necessarily reflect those of real-world graph applications (Marti & Laguna,

2003). Thus, generating graph data closely similar to real-world graph applications posed

an interesting but challenging problem for measuring the performance of the proposed

heuristic.

The current literature lacks detailed information for solving the layer-by-layer

crossing reduction problem. Most of the literature only vaguely describes the solution for

the layer-by-layer sweeping approach. The recent experiment done by Patarasuk (2004)

showed that the numbers of crossings sometimes increases after a sweep but then

decreases again after another sweep. Thus, the lack of clear halt criteria in the layer-by-

layer crossing reduction algorithm posed an interesting problem.

Most researchers assumed that minimizing the number of edge crossings will

improve the readability of the layout, but the recent study by Huang and Eades (2005)

11

showed that in some cases graph layouts with more edge crossings due to some

constraints are easier to understand than the same layout with fewer edge crossings. The

result of their experiments showed that human perception can be very complex. In real-

world graph application, minimizing edge crossings may not necessarily improve the

users’ understanding of a layout. Hence, an alternative approach that balances between

minimizing the crossing number and the user’s defined constraints could provide a more

understandable graph layout.

Formalizing aesthetic criteria based on mathematical relationships alone is not

feasible because some of the criteria are simply based on human perceptions. This

unfeasibility was summarized by Knuth (1996) in his guest lecture at the Graph Drawing

Conference that year. His summary was that although merging aesthetic criteria and

mathematical algorithms in graph drawing creates a perception of harmony, formalizing

aesthetic criteria as a mathematical equation is not feasible. The goal of this dissertation

was to formalize the aesthetic criteria as a parameterized equation whose parameters are a

combination of mathematical relations and human feedback.

Limitations of the Study

There are two approaches to measuring the stability of incremental graph layouts.

The off-line dynamic graph drawing framework computes the next layouts based on the

union of all the layouts, while the online framework computes the next layout based on

the previous layout. The scope of this dissertation was to focus on an online dynamic

graph drawing framework for hierarchical directed graph layouts in which the layout

stability constraint is based on the previous layout.

12

Most commercial data are proprietary, so the data that was used for testing the

proposed system and the heuristic for the constrained one-sided two-layered crossing

reduction problem either came from public domains or was synthetically generated. As

discussed in the Barriers and Issues section (page 9), generated graph data may not reflect

closely those of real-world applications.

Real-world applications such as enterprise process modelers should support

concurrent actions such as updating the graph structure. The constrained graph drawing

framework used in this thesis did not take into account possible concurrent execution of

graph structure edits. This feature is discussed in this report as a further enhancement.

Though real-world graph data have different types of shapes and sizes, for this

thesis the incremental hierarchical graph drawing framework assumed that the sizes were

zero and shapes were simple circles. However, the framework was designed to be

extensible and to accept different sizes and shapes of vertices. The enhancement of the

framework is presented in the Recommendations section of this dissertation.

Definitions of Terms

Acyclic graph: An acyclic graph is a simple graph that has no cycles.

Adjacent vertices: Two vertices a and b are adjacent if they are connected by an edge E

(a, b).

Adjacency matrix: Let G (V, E) be a graph, and |V| × |V| matrix M. An adjacency matrix

M is defined as follows:

=

=

otherwisea

vtovfromedgeanexiststhereifa

ij

jiij

0

1

13

Approximation algorithm: A design and analysis approach for solving combinatorial

optimization problems such as NP-complete or NP-hard problems. The goal of

approximation algorithms is to run in polynomial time and to provide an output

solution that is guaranteed to be close to the optimal solution.

Barycenter value of a vertex in a two-layered graph drawing: Let G = (L1, L2, E) be a

two-layered hierarchical graph, and D(G) be a drawing of G, where u ∈ L1, Nu is

the set of vertices on layer L2 that are adjacent with a vertex u on layer L1. A

barycenter value of vertex u on layer L1 is defined as the average value of all of

its adjacent vertices’ positions where the positions are numbered from left to

right. Formally, the barycenter value of a vertex u on layer L1 can be defined as

follows:

avg(u) = ∑
∈ uNu

upos
u '

)'(
)deg(

1
 (Battista et al., 1999)

where deg(u) is the degree of vertex u.

Complete graph: A complete graph is a simple graph such that each pair of vertices is

connected by an edge.

Crossing number of a drawing: The crossing number of a drawing is the number of edge

crossings in a drawing, excluding vertex intersections. The crossing number of a

drawing is denoted as crossing (D (G)).

 Crossing number of a drawing notation: To simplify computing the number of edge

crossings of a drawing we will define an edge crossing as an integer. If D (G) is a

drawing of G and e and e′ are distinct edges of D(G), crossing (e, e′) = 1 if e

14

crosses e′, otherwise crossing (e, e′) = 0. The edge crossing of a drawing can be

denoted as follows:

crossing (D(G)) = ∑
∈′ Eee,2

1
crossing(e, e′)

Curve: A curve δ is a continuous mapping to topological space S such that δ : I � S,

where I is an interval of R and S is the Euclidean plane R2.

Cycle: A path in a graph that starts and ends at the same vertex.

Cycled graph: A graph that has one or more cycles.

Degree of a vertex: Let G be a simple graph, v ∈ V and e ∈ E. The degree of a vertex v

in the graph G, denoted as deg(v), is the number of edges incident to that vertex.

Directed graph: A directed graph is a simple graph where an edge is assigned to an

ordered pair of vertices. The first vertex of the ordered pair is called the tail of

the edge, and the other is called the head. The direction of an edge in a directed

graph drawing is represented by an arrow. A directed graph is denoted as G (V,

A) where V is a set of vertices and A is a set of directed edges.

Directed acyclic graph (DAG): A directed graph that has no cycles.

Directed graph with cycles: Let G (V, A) be a directed graph. G has a cycle if |AR ⊂∀

R forms a one-way loop of edges.

Distance metrics: A measurement of the distance between the location of a vertex and its

previous location.

Dummy vertex: A vertex created in a process of removing edges that span more than one

layer in a hierarchical graph, which makes the graph a proper hierarchical graph.

15

Edge spans more than a layer on layered hierarchical graph: Let G (V, E) be a k-

layered hierarchical graph, and span (e) = (j – i) be the number of layers an edge

spans, where e = (u, u′), u ∈Li and u′ ∈ Lj.

Feedback arc set: Let G= (V, A) be a simple directed graph. The feedback arc set (FAS)

of G, denoted as R (G), is a set of edges (possibly empty) whose reversal makes G

acyclic. A minimum feedback arc set of G, denoted as R * (G), is an FAS of

minimum cardinality of r ∗ (G) (Eades, Lin, & Smith, 1993).

Graph: A graph G consists of a set V of vertices and a set E of edges, where VVE ×⊂ .

Each edge has a pair of vertices referred to as its endpoints (West, 2001).

Graph density: Let G (V, E) be an undirected, simple graph. Graph density is defined as

a ratio of the number of edges in the graph and the maximal number of edges in

the graph. Formally:
)1|(|||

||2
−

=
VV
E

D , where |V| is the number of vertices and

|E| is the number of edges in the graph.

Incident edges: An edge E is incident to its endpoints or vertices.

Incremental graph layout: Please see definition of Online dynamic graph layout.

Independent set: Two sets A and B are said to be independent if their intersection A ∩ B

= Ø, where Ø is the empty set. Independent sets are also called disjoint or

mutually exclusive. Independent sets or disjoint sets are used in defining partite

graphs (Weisstein, 2003).

Jordan arc: A Jordan arc is a subinterval (c, d) of a Jordan curve, where a ≤ b ≤ c ≤ d.

Jordan curve: A curve is closed or a loop if I = (a, b), a ≠ b and δ (a) = δ(b), where δ is

defined as a curve (see definition of Curve). A Jordan curve is defined as a non-

16

self-intersecting loop in a plane, which divides the plane into two disjoint regions,

the inside and the outside.

K-partite graph: A k-partite graph is a simple graph G whose vertices are a union of k

independent (possibly empty) sets of vertices such that no two vertices in the

same set are adjacent (West, 2001). Figure 2 shows a two-partite, or bipartite,

graph with two independent sets of vertices: (a, b, c) and (d, e, f, g, h).

Figure 2. A bipartite graph

K-layered hierarchical graph: A k-layered hierarchical graph is a k-partite graph G (V,

E) in which V is partitioned into k partite sets L1, L2, L3, … Lk such that (u, v) ∈V, where

u ∈ Li, v ∈ Lj, and i < j. A k-layered hierarchical graph is drawn such that the vertices

in a given layer are drawn on a horizontal axis and the edges are drawn as straight lines.

The height of a k-layered graph layout is the number of layers, which is k. The width of

the layout is the number of vertices in the layer that has the most vertices. Figure 3

shows a drawing of a four-layered hierarchical graph that has a height of 4 and a width of

5.

a b c

d e f g h

L1

L2

17

Figure 3. A 4-layered graph layout (Battista et al., 1999)

Lexicographical order: Given A(a, b) and B(a′, b′) are two partially ordered sets,

 the lexicographical order of the Cartesian product of A×B is defined as follows:

(a,b) ≤ (a′,b′) iff a < a′ or a = a′ and b ≤ b′

Median value of a vertex: Let G = (L1, L2, E) be a two-layered hierarchical graph where

u ∈ L1 and u′ ∈ L2, and pos1, pos2 is the ordering of layers L1 and L2 respectively.

The median value of a vertex u on L1 is described as follows:

 If adjacent vertices of the vertex u are vertices u′1, u′2, …,u′n on layer L2, with pos

(u′1) < pos (u′2) < …. < pos (u′n), where pos is the ordering of vertices on a layer

and n is the number of vertices on layer L2, the median value of vertex u, denoted

as med(u), is chosen as a median of all the positions of vertices u′ that are adjacent

to vertex u (Battista et al., 1999).

Formally: med (u) = pos ()2/(' nflooru)

If vertex u has no adjacent vertices then med(u) = 0.

Mental map: A person’s perception or internal representation of an area that helps

organize and interpret its information. Mental maps can be affected positively or

layer 4

layer 3

layer 2

layer 1

crossings

18

negatively by the stability and readability aesthetic criteria in dynamic graph

layout algorithms.

Neighborhood of a vertex v: a set of vertices that are adjacent to v, written as N(v) (West,

2001).

Off-line dynamic graph layout: Given a sequence of n graphs g1,g2,….,gn. Compute

layouts l1,l2,….,ln for these graphs such that

 (1) ∑
≤≤

+∆=∆
ni

ii ll
1

1),(

(2))(
1

i
ni

lΓ=Γ ∑
≤≤

where∆ is a deviation of all the layouts and Γ is defined as layout quality based

on aesthetic criteria (Diehl & Görg, 2002).

Online dynamic graph layout: Given a sequence of n graphs g1,g2,….,gn. Compute

layouts l1,l2,….,ln for these graphs such that layout li is similar to li+1

Ordering of vertices on a layer in a k-layered hierarchical graph: Let D(G) be a

drawing of hierarchical graph G, Vi = {v1,…., vni} are vertices of layer i. pos:Vi �

(1, . . ., ni) is defined as a bijective function that maps vertices on layer i to the

drawing D such that pos(vi) < pos(vj) if x(vi) < x(vj) where pos is defined as an

ordering of vertices on layer i in a given drawing D(G) and pos(v) is the position

of a vertex v on layer i.

 Given that u, v are vertices on layer i in a given drawing D(G), a binary relation <

is defined as relative positions between vertices u and v such that u < v iff pos(u)

< pos(v).

19

Path: A list of vertices of a graph where each vertex except the last has an edge

connecting it to the next vertex.

Proper layered hierarchical graph: A layered hierarchical graph is proper if it has no

edges that span more than one layer. The top layout in Figure 4 shows a layered

hierarchical graph that is not proper because two of its edges span more than one

layer. To make a layered hierarchical graph proper, each edge in the graph that

spans more than one layer is split into multiple edges by inserting dummy vertices

into the layers. The bottom layout shows the layered hierarchical graph made

proper by splitting the two edges that span more than two layers into multiple

edges. Two new dummy vertices have been created on layer 3.

20

Figure 4. A layered hierarchical graph made proper by inserting dummy vertices

Quality of a layout: Let G be a constrained graph layout, and l∈G(l) be a layout of G.

Then the function Q : D(l) � R+ is defined as a metric for the quality of the layout. For

instance, Q(l) = 0 means that l has minimal quality (Görg, 2005). In terms of layout

aesthetics, the metric for quality of a layout is the number of crossings; the fewer the

crossings, the higher the quality.

Quality of incremental graph layout: This is an optimization problem with two objective

layer 4

layer 3

layer 2

layer 1

Edges span more
than one layer

layer 4

layer 3

layer 2

layer 1

Dummy vertices

A layered hierarchical graph with edges spanning more than one layer

The layered hierarchical graph made proper by inserting dummy vertices

21

functions as follows:

(1)),(1
1

ii
ni

ll −
<≤

∆=∆ ∑ is minimal

(2))(
1

i
ni

lQQ ∑
<≤

= is maximal

where∆ is a deviation of all the layouts and Q is defined as layout quality based

on aesthetic criteria (Diehl & Görg, 2002). In terms of graph layout aesthetics,

property (1) is equivalent to preserving the mental map of the layout and (2) is

equivalent to reducing the number of edge crossings in the layout. These two

goals often contradict one another.

Ratio bound performance of one-sided crossing reduction heuristics: Let G = (L1, L2,

E) be a two-layered hierarchical graph, u, v ∈ L1, pos1, pos2 be the ordering of

layers L1 and L2 respectively, and pos2 be held fixed. If h is a heuristic for solving

the one-sided crossing reduction problem, a ratio bound of heuristic h can be

defined as follows:

Ratio bound of
)pos (G, LB
)pos (G, opt

2

2h=h (1)

In which pos2) (G, LB =),min(
1,

vu
Lvu

uv cc∑
∈

 (2) as defined in the Trivial lower

bound of one-sided two-layered graph crossing reduction problem definition.

(1) & (2) => Ratio bound of
),min(

)pos (G, opt

1,

2h

vu
Lvu

uv cc
h

∑
∈

=

22

where opth(G, pos2) is the minimum number of crossings produced by the

heuristic h and ∑
vu

vuuv cc
,

),min(is the trivial lower bound of the one-sided two-

layered crossing reduction problem.

R-approximation algorithm: A polynomial-time algorithm that produces a solution at

most r times the optimum for a minimization problem (Rabani, 2003).

Simple graph: A simple graph is a graph that has no loop or multiple edges.

Sink: A vertex that has incoming edges but has no outgoing edges.

Source: A vertex that has outgoing edges but has no incoming edges.

Topological sorting: Let G be a directed acyclic graph (DAG). Topological sorting is a

topological numbering of G, such that every vertex is assigned a unique integer

between 1 and n. (Battista et. al., 1999)

The crossing number of a graph: Let G be a graph and D(G) a drawing of G. The

crossing number of a graph is the minimum number of edge crossings in any of its

drawings in a plane R2:

crossing (G) = min {crossing (D(G) | D(G) is a drawing of G }

Two-layered hierarchical graph: A two-layered hierarchical graph is denoted as a

triple: G = (L1, L2, E), (u, u′) ∈ E where u ∈ L1 and u′ ∈ L2. Figure 5 shows a

two-layered hierarchical graph layout.

u v
L1

L2

Figure 5. A two-layered hierarchical graph layout

23

The crossing number in a drawing of a two-layered graph: Let G = (L1, L2, E) be a two-

layered hierarchical graph where pos1 and pos2 are orderings of layers 1 and 2

respectively. Cross (G, pos1, pos2) is then defined as the crossing number in a

drawing of G.

The crossing reduction problem of one-sided two-layered graphs: Let G be a bipartite

graph where L1, L2 are layers of G and pos1 and pos2 are orderings

of layers L1 and L2, respectively. L2 is held fixed, and let opt(G, pos2) be the

minimum number of crossings of drawing D of G with respect to pos2. The

crossing reduction problem is to find the minimum number of edge crossings of

layer L1. Formally:

Let G = (L1, L2, E) be a two-layered hierarchical graph with an ordering pos2.

Find an ordering pos1 such that crossing (G, pos1, pos2) = opt(G, pos2).

Hence, the minimum number of crossings of a drawing D of G is:

opt(G, pos2) = min {cross(G, pos1, pos2)| pos1 ∈ S|V1| } (1)

where Sn is the symmetric group of all permutations on layer 1.

The crossing number of two vertices in a one-sided two-layered graph: Let G = (L1, L2,

E) be a two-layered hierarchical graph, u, v ∈L1 | pos(u) < pos(v), Cuv is defined

as the crossing number of edges incident with u and edges incident with v.

Cuv = ∑
∈′∈

′
)(),(

),(crossing
vinceuince

ee

Where inc(u) is a set of edges incident to vertex u.

It is known that the number of crossings between edges incident with vertex u and

edges incident with v depends only on the positions of u and v, where those

24

positions are numbered from left to right, and not on other vertices (Battista et al.,

1999). As illustrated in Figure 6, in the first layout u is placed before v so Cuv is

1. The second layout shows that the order of uv is the same even if the position of

vertex v has moved, so Cuv is still 1. The third layout shows the order between

vertices u and v has been swapped and the new crossing number Cvu is now 6.

u v x

1 crossing between
vertices u and v

(u < v)

L1

L2

1 crossing between
vertices u and v

(u < v)

L2

L1
u vx

uv x

6 crossings between
vertices u and v

(v < u)

L1

L2

The crossing number cuv at initial configuration

The crossing number cuv after vertex coordinate has changed

The crossing number cvu after the order between vertices u and v changes.

Figure 6. Crossing number of cuv and cvu

25

The crossing number in a drawing D of a one-sided two-layered graph G can be

defined as the sum of the number of edge crossings of all the pairs of vertices on

the layer L1.

Formally: crossing (D(G), pos1, pos2) = ∑
<∈)()(|, 1 vposuposLvu
uvc (1)

Where opt(G, pos2) = min {cross(G, pos1, pos2)| pos1 ∈ S|V1| } (2) as defined in

The crossing reduction problem of one-sided two-layered graphs.

Combine (1) and (2): opt(G, pos2) ≥),min(
1,

vu
Lvu

uv cc∑
∈

 Trivial lower bound of the one-sided two-layered graph crossing reduction problem: A

trivial lower bound of the one-sided two-layered graph crossing reduction

problem can be defined as follows:

LB (G, pos2) =),min(
1,

vu
Lvu

uv cc∑
∈

This trivial lower bound will be used to compute the efficiency of the heuristic.

Vertex degree: The degree of a vertex is the number of edges incident to the vertex. The

degree of a vertex v is denoted as deg(v) (West, 2001).

Vertex outdgree: Let G = (V, E) be a directed graph; the outdgree is the number of edges

incident to the vertex and heading outward from the vertex.

Summary

Data in real-world graph drawing applications often change frequently but

incrementally. Any drastic change in the graph layout could disrupt a user’s “mental

map.” Furthermore, real-world applications like enterprise process or e-commerce

26

graphing, where data increase rapidly, demand a good response time when rendering the

graph layout in a multi-user environment and in real-time mode. Most standard static

graph drawing algorithms apply global changes and redraw the entire graph layout

whenever the data change. The new layout may be very different from the previous

layout and the time taken to redraw the entire graph degrades quickly as the amount of

graph data grows. Dynamic behavior and the quantity of data of real-world applications

pose challenges for existing graph drawing algorithms in terms of incremental stability

and scalability.

Dynamic graph drawing algorithms have been proposed to accommodate the

dynamic behaviors of real-world graph drawing applications, but those algorithms also

impose several dynamic aesthetic criteria on graph layouts. The criteria improve the

incremental stability of the graph layout, but their layout constraints hamper the reduction

of crossings. There has been little research on the problem of minimizing crossings while

adhering to a set of dynamic aesthetic criteria for dynamic graph layouts.

The goal of this dissertation was to develop a heuristic for solving the constrained

one-sided crossing reduction problem based on the work of Forster (2004). The goal of

the heuristic was to find a balance between the aesthetic criteria and minimizing the edge

crossings. A modified version of the online dynamic graph drawing framework proposed

by North and Woodhull (2001) was developed to support the experiment.

The remainder of this report is organized as follows. Chapter 2 reviews literature

in the graph drawing area that has direct or indirect influence on this research. Chapter 3

describes the methodology of the proposed constrained hierarchical graph drawing and

27

visualization framework that is based on the work of North (1995) and describes the

modified algorithm for the one-sided two-layered crossing reduction problem based on

the work of Forster (2004). Chapter 4 presents the test results. Chapter 5 provides the

conclusion of this research.

28

Chapter 2

Review of the Literature

Introduction

The work of this research was influenced by two areas of graph drawing frameworks,

namely (1) general algorithms for drawing hierarchical graph layouts and (2) dynamic graph

drawing frameworks. Accordingly, the literature review is divided into two sections: the first

section reviews the Sugiyama heuristic and the second section reviews the graph drawing

frameworks. The Sugiyama heuristic has four steps, each with its own domain of research.

Hence, within the first section the review of the literature is divided into four subsections.

Each subsection reviews the key literature of each step in the Sugiyama heuristic. At the end

of each section and subsection is a table that summarizes the characteristics of the different

algorithms.

The Sugiyama Algorithm

A well-known heuristic for drawing standard hierarchical graph layouts is proposed by

Sugiyama, Tagawa, and Toda (1981). This heuristic has four phases as follows:

(1) Cycle removal

(2) Layer assignment

(3) Crossing reduction

(4) Coordinate assignment

29

Cycle Removal

This first phase is applied when the input graph has cycles, and ensures that a directed

graph is acyclic, which is required in the layer assignment step. To make a cyclic directed

graph acyclic, a set of edges is reversed temporarily so that all the edges flow in the same

direction. The main problem is to choose the smallest set of edges possible to reverse.

Figure 7 shows two possible sets of edges that can be reversed to make the directed graph

shown in Figure 8 acyclic. The optimal solution for the graph in Figure 7 is to reverse set {(9,

4), (11, 5)}. Figure 8 shows that the directed graph is acyclic after reversing the directions of

edges (9, 4) and (11, 5).

Figure 7. A directed graph with cycles

30

Figure 8. An acyclic directed graph after reversing the set of edges {(9, 4), (11, 5)}.

A set of reversed edges in a directed graph is called a feedback set. This problem

relates to the well-known problem called the feedback arc set, which is defined as a set of

edges whose removal makes the directed graph acyclic (Battista et al., 1999). Although the

feedback set algorithm reverses a set of edges and the feedback arc set algorithm removes or

identifies a set of edges, they have the common goal of identifying the minimum set of

feedback arcs. Hence, the same algorithms and heuristics can be used for solving both a

feedback arc set and a feedback set problem. Unfortunately, finding a minimum feedback set

is NP-complete (Garey & Johnson, 1979), and the common technique for solving this type of

problem is to use approximation algorithms. Three well-known algorithmic approaches are

used to find approximation solutions: random cuts, greedy algorithms, and local search.

These approaches are described in the following paragraphs.

A simple random cuts heuristic is to choose an arbitrary ordering, and then reverse

the edges that create cycles using either breadth-first search (BFS) or depth-first search

(DFS). This heuristic is simple to implement but does not guarantee good performance and

may yield poor results (Stedile, 2001).

31

A well-known greedy heuristic for solving the feedback set problem is called Greedy-

Cycle-Removal (GR), introduced by Eades et al. (1993). Unlike the Approximation

algorithm (Berger & Shor, 1990), which could provide an optimal solution but with a run

time of O (|V| × |E|), GR simply finds a “good” vertex sequence that has a small set of

vertices that will be reversed by going through the vertices and eliminating any that have the

maximum sum of in and out degrees. GR runs in linear time and space complexity.

Formally, the run time for the GR algorithm is O (|V| + |E|), where V is a set of vertices and

E is a set of edges.

Demetrescu and Finocchi (2003) presented an approximation algorithm based on the

Local-Ratio technique, which provided an approximation algorithm for the covering

problem. The approximation algorithm consisted of two phases. The first phase searched for

simple cycles C in the directed graph. If such a cycle existed, the algorithm identified edges

in C whose weight, denoted asε , was minimal. Then the weight of all the edges in C was

reduced by ε and the edges with a weight of zero were removed. If no more cycles were

found the first phase terminated. The second phase was to add some deleted edges back to

the graph without re-creating cycles. The approximation ratio of the algorithm was bounded

by the length of the longest simple cycle of the directed graph. However, the proposed

algorithm worst-case run time was O (|V| × |E|).

A summary of the three approximation solution algorithms is shown in Table 1.

32

Table 1. Summary of algorithms for solving the cycle removal step in the Sugiyama
heuristic.

Name Approach Performance Note

BFS/DFS Random O (|V| + |E|) Result may be poor

Greedy-Cycle-
Removal

Greedy O (|V| + |E|) Result is good and the run time is
linear

Approximation
algorithm

Local search O (|V| × |E|) Approximation ratio ~ the longest
simple cycle. The run time is not
linear.

Layer Assignment

The layer assignment phase transforms a given graph structure into an acyclic

directed layered graph layout by assigning vertices to layers. Due to the limitations of

computer screen real estate, the goal of this step is not only to assign vertices to layers but

also to ensure that the final layout has as little width and height as possible. In other words,

the layer assignment problem is a two-objective function that has two optimizing variables.

Unfortunately, minimizing both the width and the height of the graph layout is NP-complete

(Battista et al., 1999). As a result, most of heuristics for the layer assignment problem seek

to either reduce width or reduce height.

A simple algorithm called Longest Path Layering runs linearly and produces a layout

with minimum height. The algorithm of the Longest Path Layering heuristic comprises two

steps: (1) Place all the sinks at bottom layer L1, and (2) Place each remaining vertex v in layer

Lp+1, where p is the longest path from vertex v to those vertices on layer L1. The advantages

of the Longest Path Layering algorithm are that it can be computed in linear time and it

produces a drawing with a minimal number of layers. The drawback of this algorithm is that

the layout could be very wide.

33

Assigning vertices to layers with minimum width also relates to the problem of

multiprocessor scheduling. The Coffman-Graham layering algorithm (Coffman & Graham,

1972) for solving multiprocessor scheduling was also applied to this problem. That

algorithm provides an upper bound for the width of the graph layout by accepting an input W

as an upper bound value. The Coffman-Graham layering algorithm assigns vertices to layers

by performing two steps: (1) Sort vertices based on their lexicographical order, which is as

defined in Chapter 1 an alphabetical order, and (2) Assign vertices to layers such that no

layer has a width greater than the input W (Battista et al., 1999). Though the Coffman-

Graham layering algorithm may produce layouts of a greater height than those of the Longest

Path Layering algorithm, Lam and Sethi (1979) showed that in the worst-case scenario the

height will not exceed twice the optimal height when w ∞→ , as indicated in the following

equation: h)
2

2(
w

−≤ × hmin, where w is the width of the layout and hmin is the optimal

height.

Another aspect of the layer assignment problem is minimizing the number of dummy

vertices. The number of dummy vertices created to make a directed graph proper affects the

width of the layout, but most of the algorithms for layer assignment, for instance the

Coffman-Graham algorithm (Coffman & Graham, 1972), fail to take into account the dummy

vertices while computing the width of the layout. As a result, the actual width of the layout

may be larger than expected. Unfortunately, combining the goals of minimizing the height of

the drawing and minimizing the number of dummy vertices is NP-complete (Lin, 1992).

To deal with dummy vertices, Gansner et al. (1993) proposed a heuristic for solving

the layer assignment problem. The proposed algorithm minimizes the number of dummy

34

vertices by using network simplex programming to translate the layer assignment problem

into an integer linear problem. The problem then is solved using a network simplex

algorithm. Gansner et al. (1993) mentioned that although the time complexity of the simplex

network algorithm has not proven polynomial, it can run very quickly with few iterations in

practice.

Battista et al. (1999) noted that in real-world graph drawings, vertices are not simple

points, but are rectangles or other wide geometric shapes. Thus, the spacing between the

vertices horizontally is often larger than the spacing vertically. In other words, minimizing

the width is more important than minimizing the height and the Coffman-Graham algorithm

is effective for drawings that are drawn from top to bottom. On the other hand, the Longest

Path Layering algorithm is more effective for drawings that are drawn from left to right.

Hierarchical graph layouts tend to be drawn from top to bottom. The incremental

graph drawing algorithm used in this dissertation employed the Coffman-Graham layering

algorithm, assigning vertices into layers. Table 2 summarizes the characteristics of each

algorithm in the layer assignment step.

35

Table 2. Summary of algorithms for solving the layer assignment step in the Sugiyama
heuristic.__

Name Approach Performance Note

Longest Path
Layering

Produces layout
with minimum
height

Linear Good for drawings that are
drawn left to right. Does not
take into account dummy
vertices.

Coffman-Graham Provides upper
bound for layout
width

Linear Good for drawings that are
drawn top-to-bottom. Does not
take into account dummy
vertices.

Gansner et al. (1993) Produces
minimum
number of
dummy vertices

Not linear Though its run time is not linear,
can find a solution with few
iterations in real-world
applications.

Crossing Reduction

This phase reduces the number of edge crossings on a proper k-layered hierarchical

graph layout and improves its readability. As mentioned in Chapter 1, page 19, a proper k-

layered hierarchical graph layout is a special k-partite graph where the vertices are assigned

to horizontal layers, edges are straight and pointing in the same direction, and no edges span

more than one layer.

A well-known heuristic for solving the crossing reduction problem for proper layered

hierarchical graph layouts is the layer-by-layer sweep algorithm proposed by Sugiyama et al.

(1981). This algorithm can be described as follows:

Let G (V, E) be a proper k-layered hierarchical graph with edges pointing downward.

The layer-by-layer sweep algorithm considers two layers at time, starting at the top layer and

sweeping downward through the layers. At each pair of layers, the ordering of the vertices

on one layer is held fixed and the one-sided crossing reduction algorithm is performed, re-

36

ordering the vertices on the other layer to find the minimum number of crossings between the

two layers. Once the algorithm reaches the bottom layer it sweeps upward layer by layer

until it reaches the top layer. The algorithm continues to sweep downward then upward until

the number of crossings stops decreasing.

The proper k-layered hierarchical graph layout can be reduced to a series of two-

layered hierarchical graph layouts. It is observed that the number of crossings of a proper k-

layered hierarchical graph layout is the sum of the number of crossings of all the two-layered

layouts. Hence the crossing reduction problem of a proper k-layered graph can be reduced to

a crossing reduction problem for a two-layered graph.

There are two possible approaches to finding the minimum number of crossings for

each layer in the layer-by-layer sweep algorithm. One approach, called two-sided crossing

reduction, allows an algorithm to permute vertices on both layers (hence “two-sided”) to find

the minimum number of crossings. The other approach, called one-sided crossing reduction,

holds one layer fixed and permutes the vertices on the other layer (hence “one-sided”) to find

the minimum number of crossings. Though in theory the first approach may produce a better

result, it is best for instances of graphs that have few vertices (Junger & Mutzel, 1997). In

practice, one-sided crossing reduction is employed in the layer-by-layer sweep algorithm. As

mentioned in Chapter 1, the crossing reduction problem for one-sided two-layered graphs can

be defined as follows: Given G (L1, L2, E) where an ordering pos2 of layer L2 is fixed, find the

ordering pos1 of layer L1 that results in the fewest crossings.

A brute force computation for the one-sided crossing reduction problem is to compute

the number of edge crossings generated by all permutations of the vertices of layer L1 while

37

the ordering of vertices on L2 is held fixed. The ordering of vertices on layer L1 that results

in the fewest crossings is the optimal solution. The top layout in Figure 9 shows a two-

layered hierarchical graph layout before the one-sided crossing reduction algorithm is

performed. The six edge crossings are represented by the gray dots. The bottom layout of

Figure 9 shows the same two-layered hierarchical graph layout after the one-sided crossing

reduction algorithm is performed and the crossing number is reduced to 1.

u v

1 crossing between
vertices u and v

(u < v)

L1

L2

uv

6 crossings between
vertices u and v

(v < u)

L1

L2

Figure 9. A two-layered hierarchical graph layout after crossing reduction is performed.

Unfortunately, the one-sided crossing reduction problem for two-layered hierarchical

graphs is NP-complete (Garey & Johnson, 1983). The brute force approach works only with

small two-layered hierarchical graphs with few vertices. Finding an optimal solution for

larger hierarchical graphs requires heuristics.

The barycenter heuristic (Sugiyama et al., 1981) is well known for its simplicity and

effectiveness. The algorithm reduces the number of crossings by performing two basic steps:

38

(1) Compute a barycenter value for each vertex on the layer Li and (2) Sort vertices according

to their barycenter values. The result of sorting yields the fewest edge crossings possible.

Although in theory the ratio bound performance, which is the ratio of the number of edge

crossings produced by the algorithm and the minimum number of edge crossings of the

barycenter heuristic is ||(V) (Li & Stallmann, 2002), this heuristic produces a very good

layout and outperforms most algorithms in practice (Junger & Mutzel, 1997).

Eades and Kelly (1986) proposed a split algorithm, which is very similar to the quick

sort algorithm. The algorithm chooses a vertex as a pivot and then places all other vertices to

the left or right of the pivot vertex depending on which way would produce fewer crossings.

The step is applied recursively for all the vertices on the same layer. In practice, the split

algorithm is implemented in two steps: (1) Create a crossing matrix, and (2) Perform the

crossing reduction. The asymptotic performance of this algorithm is O (|V| × |E| + |V|

log|V|).

Eades and Kelly (1986) also proposed a heuristic called greedy-switch. The

algorithm scans all consecutive pairs of vertices and switches their positions if it reduces the

number of crossings. The scan continues until no switching can produce fewer crossings.

The asymptotic performance of this algorithm is O (|V| log|V|2). Junger and Mutzel’s (1997)

experimental result showed that these recursive heuristics are outperformed by the barycenter

heuristic and the third Eades and Kelly proposal, the median heuristic.

Eades and Kelly’s median heuristic (1986) is similar to the barycenter heuristic. Both

barycenter and median algorithms sort vertices based on their average values, but the

barycenter sorts a layer’s vertices according to the barycenter values, while the median

39

heuristic sorts them according to the median values. In theory the median heuristic, with an

approximation guarantee of factor of 3 of optimal, has a better ratio bound than the

barycenter heuristic whose ratio bound is ||V (Li et al., 2002). In practice the barycenter

heuristic outperforms the median heuristic (Marti & Laguna, 2003; Junger & Mutzel, 1997).

Catarci (1988) proposed the assignment heuristic. The assignment problem is

designed to find a best task for workers using an adjacency matrix. The author reduced the

one-sided crossing reduction to an assignment problem by converting the bipartite graph data

into a four-dimensional matrix. The algorithm performed well for graphs with a density

greater than 30%. The run time of the assignment heuristic was defined as a ratio of the

crossing number and the lower bound:
LB
CN

runtime = , where CN denotes the crossing

number and LB = ∑
vu

vuuv cc
,

),min(, as defined in Chapter 1, is a trivial lower bound. An

experiment performed by Junger and Mutzel (1997) indicated that the barycenter heuristic

outperformed the assignment heuristic in many instances of graphs with different densities,

but the assignment heuristic consistently produced an attractive graph layout.

Junger and Mutzel (1997) presented an algorithm called branch and cut. The authors

defined minimizing the number of crossings as an objective function with respect to a set of

constraints. The one-sided two-layered crossing reduction problem can be expressed as

linear programming (LP). The authors determined that the branch and cut heuristic can find

a true optimal solution for a small graph with fewer than 60 vertices and layers with fewer

than 15 vertices. For larger graphs the authors suggested using the barycenter heuristic.

40

Matuszewski, Schönfeld, and Molitor (1999) presented a heuristic for solving the

one-sided two-layered crossing reduction problem based on a technique called sifting

(Rudell, 1993), which reduced the number of vertices in a reduced order binary decision

diagram (ROBDD). The sifting algorithm can be described as follows: Given a one-sided

two-layered graph G = (E, L1, L2), in which vertices on L1 are held fixed, the sifting

algorithm will choose a vertex v from L2 and put it in a position that produces a local optimal

for minimizing the number of crossings, while other vertices on L2 remain fixed. The

procedure is straightforward. First vertex v is shifted to the leftmost position by swapping

with its left neighbors. It is then shifted to the right. Once the vertex reaches the rightmost

position, vertex v is moved to a position that produces a local optimal solution, the minimum

number of edge crossings. This step is done by comparing the number of crossings after

each swapping. The authors showed that the sifting heuristic run-time performance is

slightly better than that of the barycenter heuristic for small, spare, two-layer graphs.

However, the barycenter heuristic outperforms the sifting heuristic because the sifting

heuristic run time is O (|V|2).

Based on local search, a common approach for improving solutions to optimization

problems, Stallman et al. (2001) proposed a heuristic called adaptive insertion, which was a

generalization of the local search approach. The basic operation of the adaptive insertion

heuristic is to swap each vertex with its neighbors in the same layer. This operation is

performed iteratively until no better result is found or fewer crossings are found. The overall

asymptotic performance for each iteration was O(|V| × |E|). The experimental result

indicated that the adaptive insertion heuristic is not scalable for large graphs.

41

Demetrescu and Finocchi (2003) addressed the strong relationship between the

crossing reduction problem and the problem of finding minimum feedback arc sets in

directed graphs. The authors showed that the number of crossings in a two-layered graph can

be represented as a graph called a penalty graph. The authors also proved that the crossing

reduction problem is equivalent to the feedback arc set problem. In the reduction, the final

penalty graph, after cycle removal, represents the ordering of vertices on the layer such that

the number of crossings is minimal. The authors performed several experiments with

different data sets. The experimental result showed that the proposed algorithm produces

fewer crossings than does the barycenter method. The drawback of this approach is that the

algorithm had a time complexity of O (|V|4 + |E|2). This approach is not scalable for large

graphs.

Marti and Laguna (2003) performed extensive experiments comparing 12 well-known

heuristics and two meta-heuristics. The authors concluded that for dense graphs Tabu search

is an appropriate choice for solving the crossing reduction problem, and for sparse graphs the

GRASP meta-heuristic produces better results than other heuristics. However, the authors

also suggested that if performance is critical the hybrid barycenter or splitting heuristic is a

good candidate.

Most of the research cited so far focused on the crossing reduction problem without

constraints. In real-world hierarchical graph drawing applications, users sometimes apply

constraints on vertices and restrict them from changing their positions on the layers to

preserve the layout stability. Reducing edge crossings for one-sided two-layered graph

layouts with vertex constraints is called crossing reduction problem for constrained one-

42

sided two-layered graphs. Formally, given a two-layered graph G(L1, L2, E), where L2 is

fixed, and a set of constraints C ⊆ L1 x L1. Find a permutation of vertices on layer L1 with

few edge crossings and satisfied constraints. This problem is also NP-hard (Finocchi, 2002;

Forster 2004). A constraint c(u,v) is defined such that pos(u) < pos(v). The constraint c(u,v)

is satisfied when pos(u) < pos(v) and is violated when the pos(u) > pos(v).

Sander (1996) proposed a simple solution for solving crossing reduction for

constrained one-sided two-layered graph layout. The proposed algorithm first computes the

barycentric of vertices. Next, it sorts the vertices based on their barycentric values with one

condition: the position of a pair of vertices is swapped if and only if either that pair of

vertices has no constraint or its constraint is not violated. Overall, the proposed algorithm is

a barycenter heuristic with a modified sorting algorithm.

Waddle (2001) proposed a similar solution to that of Sander (1996). After calculating

the barycentric of vertices, the algorithm loops through a set of constraints. For each

constraint, if the constraint is violated, it will swap the barycentric value of the source with

the barycentric of the target vertex. This approach ensures that sorting the vertices based on

barycentric value will not violate any constraints. However, the result showed that the

produced graph layouts are worse than the graph layouts without constraints.

Finocchi (2002) proposed a heuristic by reducing the crossing reduction problem for

constrained one-sided two-layered graph layout to a weighted feedback arc set problem. The

heuristic first constructs a penalty graph, which is a mapping of one-sided two-layered graph

layout into a weighted directed graph. Constraints are added as edges with infinite weight.

Then the heuristic for solving the weighted feedback arc set problem is applied. The penalty

43

graph approach produced good results with fewer edge crossings than the barycenter

heuristic but its performance was not as good as that of the barycenter heuristic (Forster,

2004).

Forster (2004) presented a simple algorithm that extends the barycenter heuristic.

The main idea of the algorithm is as follows: Let the order of vertices be sorted from left to

right based on their barycentric values. The greater barycentric value of the vertex u

indicates more edges are to the right of the vertex than to its left. In the same manner, the

lesser barycentric value of vertex v indicates more edges are to the left of the vertex than to

its right. Forster (2004) proposed to reduce the edge crossings without violating the

constraints by placing no vertices between the two vertices that have violated constraints (pos

(u) > pos (v)). This algorithm first computes the barycentric values. Next, for each violated

constraint – c(u, v), it moves all the vertices that are between the source and target vertices to

the area outside. Finally, the algorithm sorts vertices based on their barycentric values. The

author showed that the proposed algorithm produces a good quality graph layout and is as

fast as the standard barycenter algorithm. His algorithm had a time complexity of O (|V| log

|V| + |E| + |C|2). Table 3 summarizes the characteristics of each crossing reduction algorithm

discussed in this section.

44

Table 3. Summary of algorithms for solving the one-sided two-layered crossing reduction
problem. __

Name Approach Performance Note

Barycenter Sorting vertices Near linear Outperforms most of algorithms in
real-world applications

Split (Eades & Kelly,
1986)

Reorder vertices
through a pivot
point

O(|V|log|V|) Good performance comparing to
barycenter and median

Greedy-switch (Eades
& Kelly, 1986)

Scan vertices and
compare the
crossing numbers

O(|V|log|V|2) Runs effectively in real-world
applications

Median (Eades &
Kelly, 1986)

Sorting vertices Near linear Outperforms barycenter in theory
but is outperformed by barycenter
in real-world experiments

Assignment (Catarci,
1988)

Assignment

LB

CN
=ρ

Efficient for layouts whose edge
density is greater than 30%.
However, it is not as efficient as
barycenter in real-world
applications.

Branch and cut (Junger
& Mutzel, 1997)

Linear
programming

Not linear Finds true optimal solution for a
graph with fewer than 60 vertices.

Based on sifting
algorithm
(Matuszewski et al.,
1999)

Reduced order
binary decision
diagram

O (|V|2) Outperformed by barycenter
heuristic

Adaptive insertion
(Stallman et al., 2001)

Local search O(|V| × |E|) Not scalable for large graphs

Penalty graph
(Demetrescu &
Finocchi, 2003)

Induce as a
feedback arc set
problem

O (|V|4 + |E|2) Provides better drawing with fewer
crossings but is not scalable for
large graphs

Modified Barycenter
(Forster, 2004)

Sorting vertices O(|V| log |V| +
|E| + |C|2)

Provides layout as good as those of
other complicated algorithms but
with a better run time

Modified Barycenter
Sander (1996)

Sorting vertices Near linear Results are sometimes not as good
as the layout without constraints

Modified Barycenter
Waddle (2001)

Sorting vertices Near linear Results are worse than that of
layouts without constraints

45

Coordinate Assignment

In this final phase in the Sugiyama heuristic, vertices are assigned horizontal

coordinates. Graph edges should be short and straight (Gansner et al., 1993). A common

approach for solving this problem is the Quadratic Programming Layout Method proposed

by Sugiyama et al. (1981). The problem is defined as a quadratic objective function with

respect to a set of constraints. Unfortunately, solving this problem using linear programming

is computationally expensive due to the size of the matrix. Gansner et al. (1993) presented a

heuristic for solving this problem. The heuristic performance is good but it is hard to

program and the layout sometimes is not pleasing (Gansner et al., 1993).

Incremental Graph Drawing Systems

Although standard graph layout algorithms have been well studied in the past decade,

the growth of the Internet and the increasing amount of data in enterprise applications such as

process modeling tools have posed challenges for standard graph layout solutions in terms of

graph stability and scalability, as indicated in Chapter 1. To keep up with real-world

application concerns, dynamic graph layout heuristics have been proposed in recent years.

Bohringer and Newbery (1990) addressed two issues with standard graph layout

algorithms. The authors pointed out that without user intervention or user predefined

constraints, automatic graph layout algorithms cannot ensure the semantic meaning of the

layout will be preserved. The other issue is that most standard graph layout algorithms do

not take into account previous layouts when computing the next layout. Thus, a new layout

may look much different from previous layouts and confuse the users. Bohringer and

Newbery proposed to use layout constraints to improve the stability of layouts. The

46

proposed layout constraints can be defined by the user or are based on previous layouts. The

research showed that the proposed constrained graph layout does improve stability but the

system needs improvements in efficiency and scalability. Also, the proposed system did not

address the constrained crossing reduction problem.

Cohen et al. (1992) suggested that a good graph drawing system should support two

important characteristics, namely (1) good performance when restructuring the graph layout,

and (2) the ability to maintain the stability of the layout by not changing the layout

drastically. They proposed a generic framework for drawing planar graphs for a variety of

standard drawings, especially trees and series-parallel digraphs. The authors also defined a

property for dynamic graph layout called smooth update. This property represented the

stability of the graph layout, which is later formalized by North (1995) in his proposed

dynamic graph drawing framework.

Luder et al. (1995) presented a graph drawing application called Automatic Display

Layout (ADL) that preserves the topology of the layout across sequential updates. The

authors defined a term, topological consistency, which is a measure of how consistent the

graph layout is with preceding layouts. The authors considered the problem to be a

combinatoric optimization problem and defined a cost function that includes static and

dynamic constraints. Static constraints represent the aesthetic criteria and dynamic

constraints represent the changes to the layout with respect to the previous layout. Their

experience showed that the system can handle a graph of up to 50 vertices. However, the

ADL system did not address how to minimize the number of edge crossings.

47

North (1995) formalized the notion of smooth update and dynamic graph layout

stability. The author defined three aesthetic criteria for measuring the effectiveness of a

dynamic graph layout: consistency, stability, and readability. Consistency means that the

layout should adhere to the predefined business rules for a domain, stability requires minimal

changes between successive layouts, and readability helps make the layout easier to

comprehend. Addressing aesthetic criteria for dynamic graph layout, North (1995) proposed

an incremental graph drawing system called DynaDAG based on the Sugiyama heuristic.

His proposed framework preserved topological and geometrical stability during dynamic

operations by applying constraints to each of the four steps in the Sugiyama heuristic

discussed above. The experimental results on small graph data indicated that DynaDAG

produced consistent layouts. However, scalability and constrained crossing reduction were

not addressed in the DynaDAG framework.

Ryall, Marks, and Shieber (1997) proposed a constraint based drawing editor called

GLIDE (Graph Layout Interactive Diagram Editor), which allowed users to produce small or

medium diagrams while the system maintained topological stability. The GLIDE system

enabled users to interact with the system in real time and provided a set of hints called Visual

Organization Features, a predefined set of common standard vertex placements. The GLIDE

system used Hook’s Law to compute the graph layouts with respect to a set of constraints.

The GLIDE system supported constrained graph layouts but not hierarchical graph layouts.

Extending the notion of the dynamic graph layout formalism proposed by North

(1995), Brandes and Wagner (1997) proposed a generic framework for online dynamic graph

layout that used a random field. Layout models were defined in terms of the random field,

48

which assigned probabilities that reflected the models’ conformance with the layout goals.

The authors then used a Bayesian decision system to solve this problem. The authors

experimented with this framework on spring model and orthogonal drawings and concluded

that the proposed framework can be adapted to other types of graph layout. However, the

seminal work did not present the result of the experiment in term of efficiency and

performance.

He and Marriott (1998) addressed the problem with current graph layout algorithms:

most of the existing algorithms were not designed for interactive graph drawing applications

for two reasons. The first is that existing algorithms do not adhere to the criterion that the

graph layout should preserve the user’s mental map by not being altered too much. The

second is that existing algorithms are quite restricted in how graphs are laid out; the

algorithms are not flexible and do not enable the application to apply constraints on layout.

The authors also proposed four mathematical models for a constrained graph drawing

framework, where three models are for undirected graphs and one is for trees.

Diehl and Kerren (2000) pointed out the disadvantages of graph animation and online

dynamic graph layout. Graph animation technique simply shows that vertices are moved to

their new positions but does not necessarily preserve the metal map. Though incremental or

online graph layout does preserve layout stability, each layout is based on the previous

layout, so in a worst-case scenario maintaining an incremental graph layout involves

computing the layout of the whole graph. The authors introduced an off-line dynamic graph

layout algorithm called foresighted layout that preserved the mental map of the graph layout

based on a global graph layout structure. This approach looks ahead and renders the entire

49

sequence of n drawings with a respect to a global graph layout from a given sequence of n

graphs with an assumption that the entire graph is known in advance. Görg, Birke, Pohl, and

Diehl (2004) extended the foresighted layout framework in orthogonal and hierarchical graph

layout. The result of the experiment indicated the framework is extensible to other types of

graph layouts, but the authors admitted that it is difficult to apply a foresighted layout

framework with graph layout models that are constructed through multiple phases, such as

hierarchical graph layouts. Foresighted layout also did not address efficiency and scalability.

To improve the efficiency and performance of the DynaDAG framework (North,

1995), North and Woodhull (2001) proposed an online hierarchical graph drawing system.

The proposed system is a client/server model that allows the client to update incrementally

using a messaging protocol. To preserve layout stability the server maintains a shared graph

model and updates the model upon client requests and in accordance with the constraints

imposed by aesthetic criteria. To apply the constraints at each step of the Sugiyama

algorithm, the authors defined an objective function with a set of constraints for each step

and used a simplex network solver to solve the problems. Unfortunately, the online

hierarchical graph drawing system did not address the constrained crossing reduction

problem.

Lee et al. (2006) proposed an algorithm that preserves the mental map for general

graphs based upon Davison and Harel’s (1996) simulated annealing graph drawing

algorithm. The modified simulated annealing algorithm included six aesthetic criteria

defined by Bridgeman and Tamassia (2002) to reflect the user’s mental map. The algorithm

has three phases. The first phase is to apply the original simulated annealing algorithm to

50

draw graphs. The second phase is to modify the graph slightly. The third phase is to redraw

the graph subject to aesthetic criteria. The authors mentioned that this approach is flexible

because it allows the end user to adjust the relative weight of each constraint in the

algorithm.

Frishman and Tal (2007) proposed an efficient and scalable new algorithm based on

directed force layout for drawing online dynamic graphs. This algorithm computed the

layouts using a global layout structure. The authors noted that by moving the main algorithm

executions from the computer’s central processing unit to its graphics processing unit the

algorithm was faster than the conventional directed force algorithms. Also, the quality of the

generated layouts was as good as that of those algorithms. Table 4 summarizes the

characteristics of each dynamic graph drawing framework.

51

Table 4. Incremental graph drawing frameworks.__

Name Approach Graph Type Note

Bohringer and
Newbery (1990)

Online dynamic
graph layout

Generic
graphs

Address layout stability but the
framework is not scalable

Cohen et al. (1992) Online dynamic
graph layout

Tree, series-
parallel
digraphs

Luder et al. (1995) Online dynamic
graph layout

Generic Provide interactive graph
drawing environment.
However, it can handle a graph
with only up to 50 vertices.

Ryall et al. (1997) Online dynamic
graph layout

Generic Interactive diagram editor for
drawing small graphs

Brandes and Wagner
(1997)

Online dynamic
graph layout

Generic.
Applied to
spring and
orthogonal
graph layouts.

He and Marriott
(1998)

N/A Undirected
graphs and
trees

Provide mathematical models

Diehl et al. (2000) Off-line Generic,
orthogonal,
hierarchical
graph layouts

Preserve the mental map using
global graph layout. Animates
the entire sequence of layouts.

North (1995); North
and Woodhull (2001)

Online dynamic
graph layout

Hierarchical
directed
graphs

Preserve the graph model by
using a data structure to capture
the graph attributes. Efficient
and scalable but does not
address the constrained crossing
reduction problem.

Lee et al. (2006) Online Simulated
annealing

Allow users to adjust the relative
weight of aesthetic criteria

Frishman and Tal
(2007)

Online Directed force Very scalable and effective for
directed force graph layouts

52

Summary

This section reviewed the key literature in two related areas of graph drawing

frameworks, namely (1) the Sugiyama heuristic with associated algorithms, and (2)

incremental graph drawing frameworks. The review of the literature showed that most

algorithms for solving the one-sided crossing reduction problem do not take user constraints

into account. Also, there has been progress in incremental graph drawing frameworks for

hierarchical graph layouts, but some of the user constraints such as stability criteria have

been simply defined as a pure heuristic because too few experiments have measured how

humans understand graph layouts. More recent research has paid attention to constraints that

are defined by users. A recent study by Huang and Eades (2005) showed that user

constraints do provide better readability for readers even if the resulting layouts may produce

more edge crossings than layouts that do not capture user constraints. Other research like

North’s (1995) showed that user constraints do help to ensure that graph layouts reflect graph

semantics. However, none of the studies has addressed constrained crossing reduction in

dynamic graph layouts, which is important to their comprehensibility. Furthermore, most

current proposals have been limited to graphs with fewer than 50 vertices. As data grow

quickly and the associations become more complicated, such as in Internet network and

enterprise process modeling, a solution for rendering large graphs in a real-time environment

becomes necessary.

Contribution to the Field

The work of this dissertation made several contributions to the field of graph drawing,

namely (1) extending the online dynamic graph drawing framework (North & Woodhull,

53

2001) by developing a framework for drawing and visualizing hierarchical directed graphs

that supports large graph drawing and visualization using a relational database, and (2)

developing a method to solve the constrained crossing reduction problem for dynamic

hierarchical graph layouts based on the work of Forster (2004) .

54

Chapter 3

Methodology

Introduction

The work of this thesis included four main tasks, namely it (1) developed a

mathematical model representing the aesthetic criteria constraints for incremental

hierarchical graph layout, (2) designed and developed a framework for drawing and

displaying hierarchical directed graphs by extending the online graph drawing framework

developed by North and Woodhull (2001), (3) developed a heuristic for the constrained

crossing reduction problem for one-sided two-layered graphs based on the work of Forster

(2004), and (4) evaluated the asymptotic complexity and efficiency of the new heuristic. The

following four paragraphs detail these tasks.

1. The first task was to develop a formal model for incremental graph layout. The objective

of this model was to balance layout stability with readability criteria. This task was based

on the works of North and Woodhull (2001) and Görg (2005).

2. The second task was to design and develop a constrained hierarchical directed graph

drawing and visualization framework that extended and enhanced the online graph

drawing framework proposed by North and Woodhull (2001). The developed framework

included several new functions. The first function was to preserve the states of the

incremental graph layouts in a relational database. This enabled the framework to

support version control of graph layouts, which is important in real-world interactive

graph applications such as enterprise process modeling systems. The second function

55

decoupled the visualization component from the editing component. This separation

enabled the new framework to render large graph layouts and to support concurrent users

who view the layouts in real-time environments like the Internet. The third function of

the framework enabled end users to input constraints to the layouts. These user

constraints influenced how the graph layout was generated based on the user’s input.

3. The third task was to develop a modified version of the Sugiyama heuristic for updating

the graph model, especially the constrained crossing reduction algorithm for one-sided

two-layered graph layouts. The modified crossing reduction algorithm incorporated the

user’s constraints to ensure graph layout stability. The goal of the modified crossing

reduction algorithm was to find the optimum balance between layout stability and

readability. The algorithm was based on the work of Forster (2004).

4. The fourth task was to evaluate the performance and efficiency of the new algorithm.

This involved collecting graph data from the public domain, generating graph data

synthetically, analyzing the data asymptotically, and measuring the performance and

efficiency of the heuristic against existing heuristics.

Chapter Layout

The chapter first reviews the aesthetic criteria for hierarchical graph layouts. Second,

it reviews the research that contributed to the work of this thesis, as shown in Figure 10.

Reviewing North and Woodhull’s (2001) online graph drawing framework and aesthetic

criteria provided a foundation for the design of a formal model for incremental graph layout.

Third, it reviews the standard Sugiyama heuristic, which is a foundation of the main

algorithm in the proposed constrained graph drawing framework. Fourth, it discusses the

56

development of a new incremental graph drawing system. Finally, the chapter describes

experimental procedures and ends with a chapter summary.

Initial Data graph

Apply standard Sugiyama
algorithm

First graph
layout

Update operation is performed

Redraw graph
model

Apply incremental graph
drawing algorithm

Store graph information in
a graph model and draw a

first graph layout

Update operation is performed

Proposed Constrained
Hierarchical Graph Drawing

Framework
Contribution

Modifed Sugiyama heuristic

Online dynamic graph drawing
framework (North and Woodhull

2001)

Constraint Crossing Reduction
(Forster 2004)

Standard Sugiyama heuristic

Figure 10. Proposed constrained hierarchical graph drawing system and contributing
research

Assumptions and Standard Notations

For conciseness, the proposed constrained incremental graph drawing and

visualization framework is denoted as the constrained graph drawing framework and is

abbreviated as CGDF.

57

Aesthetic Criteria for Directed Hierarchical Graph Layouts

Gansner et al. (1993) listed several principles for drawing good hierarchical graph

layouts. These principles are described as follows:

• Consistency: Edges point in the same direction. For instance, graph layouts flow

from top to bottom. This aesthetic criterion is the most important for drawing

directed hierarchical graph layouts because it is a fundamental characteristic of them.

• Minimize the number of edge crossings.

• Keep edges short: Short edges are easier to relate to associated vertices.

• Keep the layout symmetrical if possible: Edge lengths should not differ drastically.

In addition to these basic aesthetic criteria for drawing a good hierarchical graph

layout, Battista et al. (1999) also discussed three important requirements of a hierarchical

graph layout, which are as follows:

1. The layout width and height should be as small as possible due to the constraints of

screen real estate. As mentioned in Chapter 2, minimizing both width and height is NP-

complete. However, as Battista et al. note, in real-world graph drawings vertices are not

simple points, but are rectangles or other geometric shapes, which tends to result in

greater spacing between the vertices horizontally than vertically. In other words,

minimizing the width is more important than minimizing the height.

2. The layout should be proper; i.e., no edges should span more than one layer. This

requirement is to keep edges as short as possible.

3. The number of dummy vertices that are generated by making the layout proper should be

as small as possible to minimize layer width.

58

Aesthetic Criteria for Incremental Graph Layouts

Although the aforementioned aesthetic criteria are adequate for drawing a hierarchical

directed graph layout, incremental or dynamic graph layouts, whose goal is to preserve

layout stability during incremental changes (North, 1995; Miriyala & Tamassia, 1993; He &

Marriott, 1998; Luder et al., 1995; Cohen et al., 1992; Görg, 2005), require additional

aesthetic constraints.

Unlike static graph layouts, in incremental graph layout an input graph G is

considered as a series of graphs G1, G2, ………,Gn. The generated drawings of these

successive versions of G is also a series of drawings L1, L2, ………,Ln (North, 1995), where

each Li drawing is a result of update operations such as deleting or inserting vertices or

edges. By making Li+1 resemble Li, the incremental graph layout satisfies the following

important requirements for good graph visualization (North, 1995):

1. Maintain layout stability.

2. Make changes locally.

3. Enable the layout potentially to be updated quickly.

The first two requirements ensure the graph layout preserves the mental map and

helps users visualize the layout effectively, and the third ensures the system performs

efficiently. Based on these requirements, North (1995) formalizes three aesthetic criteria for

drawing incremental graphs. In order of importance, these are:

1. Consistency

2. Stability

3. Readability

59

The consistency criterion is the same as the aesthetic criteria mentioned for static

graph layouts (Gansner et al., 1993) and is the most important because it reinforces the

uniqueness of the layout, such as all edges point in the same direction, all vertices are placed

in a straight line, and edges should be short and not span more than one layer.

The stability criterion ensures that the user’s experience with the layout is not

disrupted as the graph is updated. According to North (1995) this criterion is purely heuristic

because too few experiments have been done to provide conclusions about how humans read

graph data and maintain mental maps effectively. The recent study by Huang and Eades

(2005) showed that in some cases user constraints have a better stabilizing effect on the

layout even if that layout has more edge crossings than an unconstrained layout has. Though

the experiment does not cover all possible scenarios, it provides a first glance at how humans

read graphs. Based on the result of the experiment, a constrained dynamic graph drawing

system should give user constraints a higher precedence than the number of crossings in

designing a method of solving the crossing reduction problem. North (1995) observed that

the stability of the vertices is more important than that of the edges, so it is more crucial to

have a higher degree of constraint of movement on vertices than on the edges in designing

update operations.

The readability criterion preserves drawing quality by, for example, minimizing the

number of edge crossings. This criterion often conflicts with the stability criterion as

discussed by Görg (2005). In his seminal dissertation Offline Drawing of Dynamic Graphs,

Görg (2005) stated that drawing quality or local quality of the layout conflicts with global

quality or layout stability, as illustrated in Figure 11. Görg (2005) pointed out that optimizing

60

both goals at the same time is not possible because achieving high drawing quality may

destroy layout stability, and improving layout stability decreases drawing quality by applying

too many constraints on the layout algorithms. Thus, the goal is to find an optimal trade-off

solution. The optimal solution of our proposed constrained incremental graph drawing

framework will find a balance between local drawing quality and global layout stability.

Layout stability or global quality

Drawing quality or local quality

Figure 11. Two conflicting goals of incremental graph layout (Görg, 2005)

The aesthetic criteria described in this section influenced the design of the constrained

incremental graph drawing framework by being utilized in developing the formal layout

model. In the next section we review the research on the constrained graph drawing

framework, as this review helped lay a foundation for our work of building a constrained

graph drawing framework and solving the crossing reduction problem for one-sided two-

layered graph layouts.

Related Research

The Standard Sugiyama Heuristic

As our constrained graph drawing framework was designed to utilize algorithms in

the Sugiyama heuristic in building initial graphs and updating the graph layout due to

dynamic operations, this section discusses in detail each algorithm that was used in our

constrained graph drawing framework and presents the pseudocode of those algorithms.

61

Step 1: Cycle Removal

Chapter 2 introduced the brute force algorithm, DFS (Depth First Search) or BFS

(Breath First Search) algorithms, the penalty graph (Finocchi, 2002), and the Greedy-Cycle-

Removal algorithm (Eades et al., 1993). Among these algorithms, DFS/BFS and Greedy-

Cycle-Removal algorithms have linear run time. Although in theory the DFS/BFS could

produce poor results, our preliminary tests showed that a variation of the DFS/BFS

algorithms produced a good result for graph layouts that have no sources and sinks but have

strong connected edges. On the other hand, our implementation of the Greedy-Cycle-

Removal algorithm produced a sorted list that was different from a sorted list that would

have been created based on the natural ordering that comes from the input. The difference in

terms of sorting was due to the way the Greedy-Cycle-Removal algorithm chooses vertices.

As a result, the constrained graph drawing framework implemented both DFS and Greedy-

Cycle-Removal algorithms for reversing any cycles temporarily, as there was no clear

indication which algorithm is a better choice for reserving the cycles. Furthermore, the

constrained graph drawing framework was also designed to enable users to switch algorithms

based on the generated graph layout. This section describes Greedy-Cycle-Removal and the

modified DFS algorithms.

Since both DFS/BFS and Greedy-Cycle-Removal algorithms have the same goal--to

reverse edges that produce cycles--the only difference between the DFS/BFS and Greedy-

Cycle-Removal algorithms is how they sort the data. For readability purposes, the cycle

removal algorithm is shown as a two-step procedure. The main procedure is to reverse the

edges with cycles and the second procedure is a topological sort algorithm, which can be

62

either a Greedy-Cycle-Removal or a DFS/BFS algorithm. The pseudocode of the main

procedure is described as follows: First sort the list of vertices based on their topological

values. Then reverse any edges whose sink’s position is greater than the source’s position in

the sorted list. The pseudocode of the main cycle removal procedure is shown in Figure 12.

Figure 12. Pseudocode of the cycle removal algorithm

Greedy-Cycle-Removal is a topological sort algorithm that sorts vertices into a

sequential list based on topological ordering. The main characteristic of the algorithm is to

select the vertex to be removed from G and to choose a list to add it to (Eades et al., 1993).

The pseudocode of the Greedy-Cycle-Removal algorithm is described as follows: First create

two empty lists, namely S1 and S2. While the graph is not empty, append sources to S1 (add

to the end of the list) and insert sinks into S2 (insert at the beginning of the list). If there are

more vertices, calculate the delta between the outdegree (number of outgoing edges) and

indegree (number of incoming edges) of the remaining vertices. Append the vertex with the

largest delta value to S1. Finally, concatenate S2 to S1 to create a sequence of vertices. Figure

13 shows the pseudocode of the Greedy topological sort algorithm.

63

Figure 13. Pseudocode of the Greedy-Cycle-Removal algorithm (Eades et al., 1993)

The DFS algorithm is also used for sorting, but it randomly selects a starting point for

the search without taking into account the source and sink. In a worst-case scenario, the DFS

algorithm could produce a very poor result by reversing (m-1) edges where m is the number

of edges. To avoid this potential pitfall, a variation of the DFS algorithm was implemented

in the constrained graph drawing framework. The pseudocode of the modified DFS

algorithm is described as follows: First create two empty lists, namely S1 and result. While

64

the graph is not empty, append sources to S1. For each v in the S1 list, recursively append v

and all its children into the result list. If there are still vertices, add those isolated vertices

into the result list. Figure 14 shows the pseudocode of the modified DFS (Depth First

Search) algorithm.

Figure 14. Pseudocode of the modified DFS algorithm (Eades et al., 1993)__

Step 2: Layer Assignment

As discussed in Chapter 2, although the Longest Path Layering algorithm is simple

and has a linear run time, this algorithm could produce a very wide layer. On the other hand,

the Coffman-Graham layering algorithm (Coffman & Graham, 1972) also runs in linear but

limits layout width. According to Battista et al. (1999), vertices in real applications can have

different shapes and sizes so minimizing the width is more important than minimizing the

height. Hence, the graph drawing framework was designed to use the Coffman-Graham

65

algorithm for assigning vertices into layers. This algorithm comprises three steps. First it

assigns positive integer labels to vertices based on lexicographical order; second it sorts

vertices into a linear list based on their integer labels; third it assigns the vertices to layers,

and ensures that the width of each layer is not larger than the predefined value W.

The first step of the Coffman-Graham algorithm is described as follows: Initially, all

vertices are unlabeled. First it randomly selects a source and assigns an integer label 1 to that

vertex. Then it loops through the remaining sources and assigns integer label 2,3, … k to

each source. For the remaining vertices in G, it performs the following procedure for

assigning integer labels to vertices. This procedure first selects a set R of unlabelled vertices

that have no unlabelled predecessors. Second it sorts the set R based on the lexicographical

order of the set of predecessors’ labels. Next the procedure loops through the set R,

increments value k by 1, and assigns integer label k to vertices. This procedure is performed

until all vertices have labels.

The second and third steps are to sort and to assign vertices to layers as follows: First

the algorithm sorts vertices based on their integer labels, and then it assigns vertices to layers,

ensuring no layer receives more than W vertices where W is a constant value. The procedure

assigns vertices starting from the bottom layer L1 and proceeds to the top layer Ln as follows:

First it assigns all sinks to layer Li (1 ≤ i < k). If the layer Li width is larger than W (a

predefined value), then the procedure increments i by 1 and continues this step until all the

sinks are assigned to layers. To fill a layer Lk (i < k < n), the algorithm selects a vertex u that

has not been assigned to a layer yet and all of its successors (S(u)) have been assigned to one

of the layers L1, L2, …Lk-1. If there is more than one such vertex, the procedure selects the

66

vertex with the largest label. If there is no such vertex, or the width of layer Lk is larger than

W, then it proceeds to the next layer Lk+1. This step is performed until all vertices are assign

to appropriate layers. Figure 15 shows the pseudocode of the main Coffman-Graham

algorithm, and Figures 16 and 17 show Label Vertices and Find Unassigned Vertices

subroutines respectively.

Figure 15. Pseudocode of the Coffman-Graham algorithm (Battista et al., 1999) __

67

Figure 16. Pseudocode of the Label Vertices algorithm (Battista et al., 1999) __

68

Figure 17. Pseudocode of the Find Unassigned Vertices algorithm (Battista et al., 1999)__

Step 3: Crossing Reduction

This step reduces the number of edge crossings. As mentioned in Chapter 2, one

approach is to perform the layer-by-layer sweep algorithm. The layer-by-layer sweep

algorithm starts from the top and moves through each layer. At each layer the crossings

number is computed and is added to the total number of edge crossings. When it reaches the

bottom, the algorithm moves upward and again computes the crossings number at each layer

and adds the crossings number to the total number of edge crossings. Once reaching the top

of the graph, the algorithm compares the previous total edge crossings number with the

current total edge crossings number. If the current total edge crossing number is less than the

previous result, the algorithm repeats this process until the algorithm no longer finds that the

total edge crossings are fewer than the previous runs. Otherwise, the algorithm exits. The

recent experiment done by Patarasuk (2004) showed that the numbers of crossings sometimes

increases after a sweep but then decreases again after another sweep. Thus, there is no clear

halt criterion in the layer-by-layer crossing reduction algorithm. To accommodate the real-

69

world problem, a maximum allowable iterations value is added into the algorithm as a

parameter. The algorithm is terminated when either an optimal solution is found or the

specified iterations value is reached. The pseudocode of the layer-by-layer sweep algorithm

is displayed in Figure 18.

Figure 18. Pseudocode of the layer-by-layer sweep algorithm

70

To compute the edge crossings number at each layer, a one-sided two-layered

crossing reduction algorithm is performed. As the one-sided two-layered crossing reduction

problem has been studied extensively in the past decade, many algorithms have been

proposed to solve this problem. Results from experiments using real-world graph data (Marti

& Laguna, 2003; Junger & Mutzel, 1997) showed that the barycenter heuristic often

outperforms other algorithms. Hence, the barycenter algorithm was employed in the

Sugiyama heuristic. The barycenter algorithm is simple and straightforward. The algorithm

first calculates the barycentric value for each vertex u on layer Li. It then reorders layer Li

according to barycentric values of vertices. Next, it calculates the number of edge crossings.

The pseudocode of the barycenter algorithm for the one-sided two-layered crossing reduction

problem is displayed in Figure 19, and Figure 20 shows the subroutines that calculate the

barycentric of vertices.

71

Figure 19. Pseudocode of the barycenter algorithm

Figure 20. Pseudocode of the computing barycenter algorithm

Step 4: Coordinate Assignment

As mentioned in the limitations section of this report, the constrained graph drawing

framework (CGDF) did not take into account the actual sizes and shapes of real-world

72

vertices. All vertices were circles of the same size. A future framework could take the sizes

and shapes of vertices into account when computing their coordinates.

DynaDAG

The DynaDAG framework (North & Woodhull, 2001) is a dynamic graph drawing

framework that combines both the static layout aesthetic (Sugiyama et. al.) and the dynamic

layout aesthetic as factors in drawing algorithms. DynaDAG uses a client-server model. The

client and server exchange messages through update operations. Update operations comprise

the following primitive operations: (1) add a vertex, (2) add an edge, (3) remove a vertex and

all its incident edges, (4) remove an edge. Composite updates can be decomposed into those

primitive operations. Upon receiving update operations from the client, the server updates an

internal model graph by calling a main procedure according to aesthetic criteria for drawing

dynamic graph layout and sends the result back to the client. The client will render the

layout to reflect new changes. DynaDAG employs internal model graph that contains layout

and supporting attributes for redrawing the layout due to update operations. This internal

model graph satisfies one level edge constraint for crossing reduction computation (North

and Woodhull 2001). The list of attributes is shown in Table 5. The proposed constrained

graph drawing framework (CGDF) will employs a client-server model similar to that of

DynaDAG but employs a more complex relational data model. The proposed model graph

not only captures vertex and edge attributes and constraints for updating the layouts but also

maintains the snapshots of previous layouts’ geometry information. This approach enables

clients to render the layout quickly and can provide layout animation if needed. The detailed

entity relationship model will be discussed entity relationship section.

73

Table 5. Internal Model used in the DynaDAG (North & Woodhull, 2001).

Value Type Explanation

G = (V;E) graph object graph

u, v, w… ∈V vertex object vertex

e,f, ….∈E Edge object Edge

)(G∆ Coord Minimum vertex separation

Li,j vertex object jth node in ith layer

Rx, ry Float precision

)(vλ Integer Layer assignment

X(v), Y(v) coord Position of vertex center

)(),(
^^

vYvX
coord Client vertex position request

)(),('' vYvX
coord Previous vertex position

b(v) Coord vertex shape bounding box

fixed(v) Boolean Node movable

tail(e), head(e) vertex object Endpoints

C(e) Coord list Layout spline

^

C
Coord list Client request spline

)(eϖ Float Weight > 0

)(eδ Float Minimum length > 0

Strong (e) Boolean Strong level constraint

The main procedure of the DynaDAG is called Process, which has four phases

similar to that of the Sugiyama heuristic. Each phase in the Process procedure examines

subgraphs that are affected by update operations and update the internal graph according to

aesthetic criteria defined in previous sections. The objectives and constraints of each phase

in the Process procedure are shown in Table 6. The constrained graph drawing framework

(CGDF) used in this study supported similar operations, such as insert, update, and delete

74

operations on subgraphs. However, implementation of the CGDF was different from that of

the DynaDAG. While DynaDAG transforms Sugiyama phases into optimization problems

and uses network simplex solver for solving those optimization problems, this study’s CGDF

employed modified algorithms that were widely used in each phase of the Sugiyama heuristic

for solving these optimization problems.

Table 6. Objectives and constraints of the Process procedure in DynaDAG (North &
Woodhull, 2001).__

Phase Objective Constraint

Phase 2: Rerank min ∑
∈=

−
Evue

uvew
),(

))()()((λλ),()()(vuuv δλλ +≥

Phase 3: ReduceCrossing Minimize crossings X(v) = X(u) +1

Phase 4: Coordinate assignment min ∑
∈=

−
Evue

ew
),(

X(u) X(v)|)(),()()(vuuXvX ∆+≥

Where:

)(ew is edge weight, which is used as a layout stability constraints

λ is level or rank assignment ()(vλ : is a layer assignment of vertex v

),(vuδ is minimum length between vertices u and v.

X, Y : coordinate of a vertex

∆ is minimum vertex separation. This minimum separation depends on vertex shapes

In phase 2, re-ranking, DynaDAG transforms the objectives and constraints into

optimization problems in which vertices are defined as variables and edges are defined as

constraints as shown in Tables 7 and 8. North and Woodhull (2001) proposed to use integer

network simplex solver for solving those optimization problems.

75

Table 7. Variables in phase 2, reranking, in the online graph drawing framework (North &
Woodhull, 2001).__

Variable Explanation

)(: vVv λ∈∀ layer assignment of v or Y(v)

)(: vVv τ∈∀ Stable level assignment of v

)(:)(: eestrongEe ρ¬∈∀ Lower endpoint of weak edge

maxmin,λλ Lowest and highest levels

Table 8. Constraints in phase 2, layer assignment, in DynaDAG (North & Woodhull,
2001).__

Constraint Edge Weight Explanation

0)(: min ≥−∈∀ λλ vVv 0 Maintain min level

0)(: max ≥−∈∀ vVv λλ 0 X(v) = X(u) +1

)()()(:)(:),(euvestrongEvue δλλ ≥−∈=∀)(eϖ Strong edge constraint

0)()(:)(:),(≥−¬∈=∀ ueestrongEvue λρ)(eϖ Weak edge constraint

)()()(eue δλρ ≥−)(ecrevϖ

Where:

crev is a cost that associates edges

strong(e) is a strong edge constraint

)(estrong¬ is a weak edge constraint

North and Woodhull point out that linear network simplex does not take into account

the layout stability. To compensate, North and Woodhull (2001) added variables and

constraints that penalized the level assignment. In this step, the DynaDAG provides a trade-

76

off between the geometry stability (global optimization) and minimizing edge length (local

optimization) by adjusting the edge constraints.

In phase 3, ReduceCrossing, DynaDAG does not take into account layout stability.

Thus, the crossing reduction problem is solved using a median algorithm without considering

the constraints on vertices. Unlike DynaDAG, our proposed algorithm for solving crossing

reduction problem for constrained one-sided two-layered graph layouts will take into account

the layout stability. Based on the work of Forster (2004) the proposed algorithm will

explicitly include a constraint that represents the layout stability. The constrained crossing

reduction problem and the work of Forster (2004) will be reviewed in following section

Phase 4 of the Process procedure, coordinate assignment, is not discussed in this

thesis; as mentioned in the Limitations section in Chapter 1, this thesis considers all vertices

and edges have constant sizes and shapes. Hence, coordinate assignment in our proposed

constrained hierarchical drawing framework will simply place vertices and edges based on

predefined values and their layer assignments.

This section reviews the DynaDAG framework and its main procedure, and discusses

the similarity and differences between the DynaDAG framework and the proposed

constrained graph drawing framework. Like DynaDAG, the proposed constrained graph

drawing framework (CGDF) utilizes a client-server model as a communication between

client and server. Another similarity between the DynaDAG and the proposed CGDF is the

transformation of hierarchical graph drawing objectives and aesthetic constraints into

equivalent optimization problems. However, the proposed CGDF uses different approach

and technique in term of solving the optimization problems. For example, DynaDAG uses

77

network simplex for solving optimization problems, on the other hand, our constrained graph

drawing framework utilize the Sugiyama and relational database for solving optimization

problems. The similarities and differences between the two frameworks are described in

Table 9.

78

Table 9. Similarities and differences between DynaDAG and the proposed CGDF.__

Framework DynaDAG CGDF

Data structure Captures a constraint of one
layer assignment

Stores vertex attributes,
constraints, and snapshots of
previous layouts

Framework Client-server model Same as DynaDAG

Heuristic Based on Sugiyama heuristic
and translates each phase to
an optimization problem

Based on both static aesthetic
and dynamic aesthetic criteria
to develop optimization
problems

Phase 1: Cycle Removal Uses a dot program (previous
version of DynaDAG) to
solve if applicable

Uses Greedy-Cycle-Removal
algorithm (Eades et al., 1993)
and DFS for removing cycles
if applicable

Phase 2: Layer Assignment Uses integer network
simplex. To compensate for
layout instability, the
program adds constraints to
penalize the layer assignment.

Uses a modified Coffman-
Graham to assign vertices
into layers

Phase 3: Crossing
Reduction

Uses integer network simplex Uses modified constrained
barycenter algorithm (Forster
2004)

Phase 4:Coordinate Uses network simplex for
assigning coordinates

Out of scope of this thesis

Operations Adds vertices, adds edges,
removes vertices, removes
edges

Adds vertices, adds edges,
removes vertices, removes
edges, adds/updates ordered
constraints

Constrained Crossing Reduction for One-sided Two-Layered Graph Layouts

This section first briefly reviews constrained crossing reduction for one-sided two-

layered graphs. Second, it reviews the work of Forster (2004) in the constrained crossing

79

reduction problem. Finally, it discusses how the work of Forster (2004) was used in our

constrained crossing reduction problem.

Constrained one-sided two-layered graph layout is a variant of one-sided two-layered

graph layout in which some pairs of vertices are restrained from changing the order. For

example, given u, v ∈ Li : c(u, v) is constrained where posi(u) < posi(v). A constraint

between vertices u and v is be denoted as c(u, v). Algorithms for solving constrained one-

sided two-layered graphs must take into account these constraints while reordering the

vertices on layers. The constraint is satisfied if pos(u) < pos(v). Otherwise, the constraint is

not satisfied (Forster 2004).

Forster (2004) proposed a simple solution for solving crossing reduction for

constrained one-sided two-layered graphs (G = (V, Li, Li+1)) based on the barycenter

algorithm. The main idea of the algorithm is based on the following observations.

1. The barycenter algorithm sorts the vertices on Li based on the vertex’s barycentric

value from left to right, so a vertex with a greater barycentric value will be placed

to the right and the vertex with a lesser barycentric will be placed to the left. A

constraint c(u, v) on layer Li is violated if the barycentric value of vertex u is

greater than the barycentric value of vertex v (b(u) > b(v)).

2. It is also known that the greater barycentric value of vertex u indicates that more

edges are to the right of the vertex than to its left. In the same manner, the lesser

barycentric value of vertex v indicates that more edges are to the left of the vertex

than to its right, as shown in Figure 21.

80

Figure 21. Barycentrics of vertices and their incident edges _

Based on this observation, Forster (2004) proposed a simple solution. To minimize

the number of edge crossings without violating the constraints, no other vertices should be

placed between u and v. Forster noted that although this assumption is not true in general,

the experimental result showed that the assumption produced good layouts. The modified

barycenter for constrained one-sided two-layered graphs proposed by Forster (2004) is

described as follows:

Given (G, Li, Li+1) | Li+1 is fixed. To minimize the number of crossings in layer Li, the

algorithm first calculates the barycentric values of vertices. Second, it partitions vertices into

total order vertex lists.. Third, the algorithm loops through the vertices to find constraints

that are violated. For each constraint c (u, v) that is violated, a dummy vertex is created.

This dummy vertex is used as a surrogate for both vertices u and v. The barycentric value of

the dummy vertex is the average value of the barycentrics of vertices u and v. This step

ensures that when sorting vertices on Li no vertex is placed between the vertices u and v, as

both u and v are now temporarily replaced by a single dummy vertex. Next, the algorithm

sorts vertices based on their barycentric values. Finally, the algorithm replaces all dummy

vertices with the original vertices u and v. Figure 22 shows the pseudocode of the modified

barycenter algorithm.

81

_
Figure 22. Pseudocode of the modified barycenter algorithm (Forster, 2004)_

82

In this section we reviewed the Online Graph Drawing framework (North &

Woodhull, 2001), the relationship between local drawing quality and global layout stability

(Görg, 2005), the standard Sugiyama heuristic for drawing hierarchical graphs, and a fast

heuristic for constrained one-sided two-layered graphs proposed by Forster (2004). The

combination of North and Woodhull’s (2001) Online Graph Drawing framework work and

the relationship between local drawing quality and global layout stability (Görg, 2005)

influenced the design of the abstract formal model for constrained graph layout in this report.

The aesthetic criteria for drawing incremental hierarchical graph layouts helped to build an

abstract model for drawing comprehensible hierarchical graph layouts, and the standard

Sugiyama heuristic provided a foundation for developing concrete algorithms for updating

the constrained graph layouts due to dynamic operations.

Constrained Incremental Graph Drawing Framework

This section presents a constrained incremental graph drawing framework. First, it

discusses a simple approach to designing an abstract model for drawing incremental graph

layouts. Next, it gives details of that design. Third, it discusses a model for drawing

hierarchical graph layouts. Next, it presents a mapping of the proposed abstract model into

concrete algorithms based on aesthetic criteria and the Sugiyama heuristic. Finally, it

presents pseudocode for modified Sugiyama algorithms for drawing constrained graph

layouts.

Design of an Abstract Model for Incremental Graph Layouts

Designing an abstract model for incremental graph layout used a top-down approach,

as shown in Figure 23. First, an abstract model that represents incremental graph layout

83

regardless of the family of graph layouts was designed. Next, the abstract model was

adapted to represent a family of graph layouts such as hierarchical graph layout. Finally, the

abstract model was transformed into concrete algorithms based on chosen algorithms. This

approach enables future research to extend the work of this research by developing models

for other types of graph layouts such as orthogonal, simulated annealing, etc.

incremental graph layout
problem

abstract model for
incremental graph layout

adapt abstract model to a
class of graph layout

translate into concrete
implementation graph

algorithm

Influnenced by
aesthetic criteria
for drawing
incremental
graph layouts

influenced by aesthetic criteria for
drawing a famility of incremental
graph layouts such as
hierarachical, orthogonal, etc.

influenced by types of algorithms

Figure 23. Design flow for building an abstract model for incremental graph layouts

Details of the Abstract Model

As discussed in the section Aesthetic Criteria for Incremental Graph Layouts, the

three important aesthetic criteria are consistency, layout stability, and readability. The

abstract model for incremental graph layout was designed based on the work of North and

Woodhull (2001), which is an optimization problem of aesthetic criteria. According to North

(1995) consistency has the highest level of importance because it maintains the

characteristics of the type of graph being created. Layout stability is purely heuristic (North,

84

1995). To formalize the importance of each constraint, the abstract model relies on recent

research by Huang and Eades (2005) and Görg (2005).

Huang and Eades (2005) performed an experiment on how humans read graphs. The

result showed that reducing the number of edge crossings without allowing user constraints

on layout stability may not improve readability in all cases. Furthermore, Görg (2005) shows

that the readability or local layout quality conflicts with layout stability or global layout

quality. Hence, in this report’s abstract model the values of weights of drawing readability

and layout stability were defined by end users, and the optimal solution for this problem was

a balance between local drawing quality and global drawing quality. In summary, the

abstract model for incremental graph layout is an optimization problem of three aesthetic

criteria. Each criterion is weighted by its importance, as shown in Figure 24 where Θ is the

optimization goal of the proposed abstract model, C is consistency, R is readability, and S is

stability, where wc, wr, and ws are weights of consistency, readability, and stability

respectively.

>

>

=++

≥

Θ

++=Θ

sc

rc

rsc

src

rsc

ww

ww

www

www

SwRwCw

1

0,,

maximize

(1)

Figure 24. Description of the abstract model for constrained graph layout

This abstract model depends only on aesthetic constraints, not on the types of metrics

that measure layout stability (orthogonal, near neighbor, etc.) or the types of algorithms for

drawing graph layouts (force directed, hierarchical, or orthogonal layout). Both consistency

85

and readability constraints are embedded within standard algorithms for drawing layouts.

The layout stability constraint can be calculated using appropriate measuring metrics and can

also be adjusted by end users. Thus, the abstract model can be adapted to different types of

graph layouts without affecting the actual implementation of the algorithm or the type of

layout. Based on the abstract model we can define a constrained graph layout as follows:

Given a sequence of n graphs g1,g2,….,gn. Compute layouts l1,l2,….,ln for these

graphs such that Θ is optimal, where Θ is an objective function of three aesthetic criteria.

This definition can be applied to either online or offline dynamic graph layouts.

An Abstract Model for Hierarchical Constrained Graph Layouts

In the preceding sections, a generic abstract model for incremental graph layouts was

introduced. An abstract model for incremental graph layouts was developed for incremental

hierarchical graph layouts. Unlike algorithms for the directed force layout model and

orthogonal graph layouts, hierarchical graph drawing algorithms like the Sugiyama heuristic

are multiphased. North and Woodhull (2001) observed that there is no unified model that

represents hierarchical graph drawing algorithms, but the aesthetic criteria should be divided

to form different constraints in each phase of the Sugiyama algorithm. Görg et al. (2004)

addressed the same issue with the hierarchical graph layout family when implementing the

Foresighted Layout algorithm for drawing dynamic hierarchical graphs. They noted that no

global graph adjustment for hierarchical graph layouts exists. Hence, Görg et al. (2004)

divided the adjustments into multiple steps in accordance with the Sugiyama heuristic.

Similar to the model for the One Graph Drawing framework (North & Woodhull, 2001), the

86

abstract model for hierarchical graph layout comprises suboptimization problems

corresponding to each step in the Sugiyama heuristic.

As discussed in Chapter 2 Sugiyama has four steps, so the abstract model for

hierarchical incremental graph layout includes four suboptimization problems if applicable.

The generic abstract model (Equation 1) introduced in the previous section was used as the

foundation for each suboptimization problem.

The first step in the Sugiyama heuristic, which temporarily reverses the directions of

edges, affects none of the aesthetic criteria so the weights of all three aesthetic constraints in

the optimization problem for this step are set to 0. Moreover, because the hierarchical

constrained graph drawing system uses a relational data model to capture the graph structure,

which includes edge direction, any set of edges that needs to be reversed will be identified

automatically once the graph model is built. Thus, the first step of the Sugiyama heuristic

was solved using prior knowledge stored in a relational database and that step requires no

optimization problem.

The second step, layer assignment, which assigns vertices into layers, not only alters

the positions of vertices in the layer but also potentially moves vertices from one layer to

another. This step does affect all three aesthetic criteria. Hence, the optimization problem

for layer assignment involves all three constraints. The abstract model for the second step is

the same as equation (1), as shown in Figure 24.

The third step in the Sugiyama algorithm, crossing reduction, minimizes the number

of crossing by reordering vertices on a layer. This step affects readability and layout stability

but not consistency, because the step does not change the orientation of vertices or alter the

87

characteristics of the hierarchical graph layout. Hence, the weight of the consistency

constraint is set to 0. The optimization problem for the crossing reduction problem

comprises readability and layout stability constraints, as shown in Equation 2. The abstract

model for the third step is as follows:

=+

≥

Θ

+=Θ

1

0,

maximize

rs

sr

rs

ww

ww

SwRw

 (2)

Though the fourth step, coordinate assignment, does impact readability and layout

stability, the scope of this research does not include shapes and size of vertices, as mentioned

in the Limitations of the Study section, Chapter 1, page 11. Coordinate assignment in the

proposed incremental graph drawing framework is simply a constant function that assigns

vertices to layers using a constant value. Chapter 5 discusses the improvement of this thesis

including will take into account the different sizes and shapes of vertices.

A Modified Sugiyama Heuristic for Constrained Incremental Graph Layout

This section translates the optimization problems for drawing incremental

hierarchical graph layouts presented in the previous section to appropriate algorithms in the

Sugiyama heuristic. Our solution for preserving the global layout stability is slightly

difference from that of both offline (North & Woodhull 2001) and online (Görg 2005)

approaches. DynaDAG (North & Woodhull, 2001) used a network simplex solver for

solving optimization problems. To take into account the layout stability, additional

constraints are added to the linear optimization problems. While the DynaDAG preserves

layout stability by basing each layout solely on the previous layout. According to Görg

88

(2005), that approach may require redrawing the entire graph layout. Görg proposed to use a

global graph layout configuration to preserve layout stability, an improvement on the online

graph drawing framework. However, Görg noted that this approach does not work

automatically with multiphase algorithms like hierarchical graph layout algorithms. To

accommodate the Sugiyama heuristic, Görg divides the global adjustments into multiple

phases in order. The constrained graph drawing framework used the modified Sugiyama

heuristic for updating the graph layouts and used a relational database to store the graph

layout model and all of its snapshots. Because none of the algorithms in the standard

Sugiyama heuristic take into account layout stability, The constrained incremental graph

drawing framework introduced a simple solution that can be embedded within the Sugiyama

algorithms to preserve stability.

To preserve the layout stability and make it easy to incorporate into multiphase

algorithm like Sugiyama heuristic, the constrained graph drawing framework included an

attributes called ordered constraint-c(u,v). This ordered constraint is used to perverse the

ordered of vertices on the same layer based on user’s preference while minimizing the

crossing numbers for one-sided two layer graph layout by restricting vertices from changing

the order of vertices in the same layer. Additionally, based on Huang and Eades’ (2005)

experiment, the constrained graph drawing framework enabled end-users to change the value

of c(u, v). The attribute c(u, v) is stored in a relational database along with other vertex’s

attributes. The next paragraphs present the translation of the optimization problems to

appropriate Sugiyama algorithms.

89

Step 1, cycle removal, does not impact any aesthetic criteria. Furthermore, as

discussed in the previous paragraph, this step is automatically detected based on previous

layouts information that are stored in the relational database and the naming convention of

edge direction such that graph layout flows from top to bottom. Any cycles that may be

produced in dynamic operations will be reversed while the operation is updating the layout.

Thus, the modified Sugiyama heuristic does not employ the cycle removal algorithm.

Step 2, layer assignment, as discussed in the previous section, does impact all three

aesthetic criteria as shown in Equation 1. Hence, the layer assignment algorithm should take

into account all three criteria while reassigning vertices, which are affected by dynamic

operations, to layers. We observe that both consistency and readability criteria are embedded

in the layer assignment algorithm. For instance, assigning vertices to layers and pointing

their edges in the same direction does satisfy the consistency criterion for a hierarchical

graph layout. Keeping the width and height of the layout proportional satisfies the

readability criterion. the constrained hierarchical graph drawing system was designed to use

the modified version of the Coffman-Graham algorithm will be similar to the original

algorithm but will accept a subgraph instead of the entire graph model. The impacted

subgraph depends on dynamic operations which will be discussed in the architecture of the

constraint graph layout framework section. For example, impacted layers due to add vertex

operation include layers which have new vertex, any created dummy vertices, which ensures

every layer is proper layer, and a set of new edges.

For step 3, crossing reduction, the constrained hierarchical graph drawing system was

designed to use a modified barycenter algorithm for solving constrained crossing reduction,

90

which extends the work of Forster (2004). The original barycenter algorithm is not designed

to preserve layout stability, so the modified barycenter algorithm will employ the attribute

c(u,v) to determine whether the order of vertices on a layer can be changed. The modified

one-sided crossing reduction algorithm comprises three steps. The first step calculates

barycentric values for the vertices. The second resequences vertices on the layers based on

their barycentric values. The third step replaces any violated ordered constraints c(u,v) with

a dummy vertex . Fourth, sorts vertices again based on their barycentric values. Finally,

replaces the dummy vertices with real vertices.

Architecture of the Constrained Graph Drawing Framework

Similar to DynaDAG, the CGDF supports four basic operations and two additional

operations that preserve the ordered constraints of vertices. These operations are as

described as follows:

1. Add vertex—add a vertex and a set of edges

2. Add edges—add one or more edges

3. Remove a vertex and all of its incident edges

4. Remove edges

5. Add ordered constraints to vertices

6. Remove ordered constraints from vertices

The add vertex operation adds a vertex and a set of edges to the existing graph layout. The

operation first computes the impacted layers based on a given vertex and the set of edges

from the input. Next, it retrieves the existing graph layout from the database, and then inserts

a new vertex and edges onto the graph layout before executing the modified Sugiyama

91

heuristic. Finally, the operation saves the new graph layout into the database as a new

snapshot. Figure 25 shows the pseudocode of the add vertex operation.

Figure 25. Pseudocode of the add vertex operation

Similar to the add vertex operation, the add edges operation adds one or more edges to the

existing graph layout. The operation first computes the impacted layers based on a given

vertex and the set of edges from the input. Next, it retrieves the existing graph layout from

the database, and then inserts new edges onto the graph layout before executing the modified

Sugiyama heuristic. Finally, the operation saves the new graph layout into the database as a

new snapshot. Figure 26 shows the pseudocode of the add edges operation.

92

Figure 26. Pseudocode of the add edges operation

The remove vertex operation removes a vertex and all of its incident edges from the

existing graph layout. First the operation retrieves the vertex and all of its incident edges

from the graph layout from the database. Next, it computes the impacted layers based on the

impacted vertex and edges. Third, the operation deletes the vertex and all of its incident

edges, and then executes the modified Sugiyama heuristic. Finally, the operation saves the

new graph layout into the database as a new snapshot. Figure 27 shows the pseudocode of

the remove vertex operation.

Figure 27. Pseudocode of the remove vertex operation

93

The remove edges operation removes edges from the existing graph layout. First, the

operation retrieves the edges of the graph layout from the database. Next, it computes the

impacted layers based on the impacted deleted edges. Third, the operation deletes the edges,

and then executes the modified Sugiyama heuristic. Finally, the operation saves the new

graph layout into the database as a new snapshot. Figure 28 shows the pseudocode of the

remove edges operation.

Figure 28. Pseudocode of the remove edges operation

The add ordered constraints operation sets ordered constraints to pairs of vertices on

the same layer. The operation first retrieves the vertices’ information from the database and

uses the barycentric values of the vertices to determine whether any newly added ordered

constraints is violated. If an ordered constraint is violated, the operation adds the violated

constraint into a list of violated constraints. If the list of violated constraints is not empty, the

operation executes the modified Sugiyama heuristic. Finally, it saves the latest snapshot into

the database. Figure 29 shows the pseudocode of the add ordered constraints operation.

94

Figure 29. Pseudocode of the add ordered constraints operation

The remove ordered constraints operation removes ordered constraints from pairs of

vertices on the same layer. The operation simply deletes ordered constraints from the

database and then saves the latest snapshot into the database without executing the modified

Sugiyama heuristics, as none of the aesthetic criteria are impacted. Figure 30 shows the

pseudocode of the remove ordered constraints operation.

Figure 30. Pseudocode of the remove ordered constraints operation

95

Each of the six operations utilizes the same function to retrieve data from the database

based on the impacted layers. Figure 31 shows the pseudocode of the function that retrieves

data from the database and reconstructs the subgraph that is used in each dynamic operation.

96

Figure 31. Pseudocode of the function that retrieves data from the database to reconstruct
the subgraph

97

To measure elegance, effectiveness, and efficiency of the proposed framework

against well-known graph drawing frameworks such as Graphviz from AT&T and

DynaDAG from DynaDAG.org, a simple constrained graph layout system was developed.

This section describes the implementation of the constrained graph drawing framework that

was used in testing. The implementation of the constrained graph drawing framework

includes (1) extending the DOT language developed by AT&T, which is used to store graph

layouts in the textual format; (2) developing a simple command line graph editor, which

enables users to enter dynamic operations through the system console or in a file. Multiple

commands can be stored in the same file and can be executed at once, which is very useful

for testing; (3) a simple online graph visualization, which is an applet used to measure the

graph layout elegance against the layout generated by Graphviz and DynaDAG applications;

and (4) creating a relational database that stores the graph layout model and its snapshots. In

addition to the implementation of the constrained graph drawing framework, the Graphviz

and DynaDAG applications were installed and used as baselines for performance and

elegance comparisons. The next paragraphs describe an extended version of the DOT

language, the design and implementation of the constrained graph drawing framework, and

the design of the entity relationship diagram.

As a large number of graph layout dataset are stored in DOT format, the constrained

graph drawing framework was designed to accept input that is in the extended version of the

DOT format. To simplify the implementation, the framework used the simplest version of

the DOT language without including grammar for displaying shapes, descriptions, and sizes

of entities and other features. Additionally, the extended version of the DOT language

98

includes additional grammars that support six dynamic operations of the graph drawing

framework. Table 10 shows the Backus Naur Form (BNF) of the extended DOT language.

Table 10. Backus Naur Form (BNF) of the extended DOT language.

Backus Naur Form (BNF) of an extended DOT language

graph : [strict] (graph | digraph) [ID] '{' stmt_list '}'
stmt_list : [stmt [';'] [stmt_list]]
stmt : node_stmt
 | edge_stmt
 | attr_stmt
 | ID '=' ID
 | subgraph
attr_stmt : (graph | node | edge) attr_list
attr_list : '[' [a_list] ']' [attr_list]
a_list : ID ['=' ID] [','] [a_list]
edge_stmt : (node_id | subgraph) edgeRHS [attr_list]
edgeRHS : edgeop (node_id | subgraph) [edgeRHS]
node_stmt : node_id [attr_list]
node_id : ID [port]
port : ':' ID [':' compass_pt] | ':' compass_pt
subgraph : [subgraph [ID]] '{' stmt_list '}'
compass_pt : (n | ne | e | se | s | sw | w | nw | c | _)
ID : [-]?(.[0-9]+ | [0-9]+(.[0-9]*)? | [a-zA-Z\200-\377]
edgeop : ->

//extension
drop_graph : drop ID
layer : [0-9]+
id_list : ID [; id_list]
order_list : ID '<' ID [';' order_list]
edge_list : ID edgeop ID [; edge_list]
add_vertices : add vertices ID ID layer '{' edge_list '}'
remove_vertices : remove vertices ID ID
add_edges : add edges ID '{' edge_list '}'
remove_edges : remove edges ID '{' edge_list '}'
set_order_constraints : set order ID '{' order_list '}'
remove_order_constraints : drop order ID '{' order_list '}'

Drop_graph grammar is used to delete a graph layout and all its snapshots from the

database. Layer grammar represents layers of a graph layout. Order_list grammar represents

a list of ordered constraints, which is a pair of vertices on the same layer. Other grammars

are self-explanatory. An example of the extended DOT language used in testing is shown in

Table 11.

99

Table 11. An example of extended DOT language..

add vertices "/home/mvinni/o/jspin411/tmp_t/thirdabbrev" 50 1 { 50->0 }

add edges "/home/mvinni/o/jspin411/tmp_t/thirdabbrev" { 50->4 }

remove vertices "/home/mvinni/o/jspin411/tmp_t/thirdabbrev" 2

set order "org-parent-child-conversion-12-134" { 8482 < 8479 }

The CGDF system’s architecture is similar to that of the DynaDAG (North &

Woodhull 2001). It is a client-server application that uses TCP and HTTP protocols to

communicate between the clients and server. Once the users execute the instructions using

the editing tool, the client sends the command to the server. The server then updates the

graph layout based on the dynamic operations by executing the Sugiyama heuristic, and then

stores a new snapshot of the layout in a relational database. The client includes a drawing

editing tool and a graph layout visualization component. The high-level architecture of the

developed system is shown in Figure 32.

100

client client 2 client n

HTTP protocol

client 1

Clients that view the graph online (internet)Clients that edit the graph structure (desktop)

client

Database

Update Manager Visualization Manager

Server

TCP protocol

Figure 32. Architecture of the graph drawing framework

The graph editor, which runs on a desktop computer, is a simple command line editor

that accepts input from a command line. The input can be entered from either the console or

a file. To support automatic testing, the graph editor accepts one-to-many dynamic

operations from the same file. Once the input is entered, the editor parses the input and

invokes an appropriate action, which in turn calculates the layers that are impacted by the

dynamic operation, and then retrieves data and executes the modified Sugiyama heuristics.

Finally, the action saves the snapshots into the database. The execution flow of the graph

editor component is shown in Figure 33.

101

Editing client

Database

Updates Manager
4. rerank the sub tree

Visualization Manager

2. Executes query

Server1. Sends request

3. Retrieves
graph data

7. Returns response

6. Updates the database

Figure 33. Execution flow of the graph editor component

The graph visualization component was developed as an applet that can be run on a

desktop or the Internet. Due to the limitation of the thesis, which does not include Step 4 in

the Sugiyama heuristic that calculates the horizontal coordinate assignment for vertices, the

graph visualization rendering engine simply uses the positions of vertices on a layer, which

was calculated in the crossing reduction step of the Sugiyama heuristic, to render the vertices

and edges. As a result, the generated layouts do not look as pleasant as the layouts generated

by Graphviz. The visualization test scores the developed graph visualization component

based on the number of vertices on a layer and the number of edge crossings. The applet was

designed to be an interactive application that enables end users to select a graph layout to be

displayed. Once a layout is selected the applet retrieves all the snapshots of the layout from

the database through a web service call. The applet then renders the graph layout snapshot.

The execution flow of the graph visualization component is shown in Figure 34.

102

Visualization
client

Database

Updates Manager
4. Reranks the sub

tree
Visualization Manager

3. Retrieves graph data

Server 1. Sends request

4. Returns response2. Queries the database

Figure 34. Execution flow of the graph visualization component

The developed graph editor and visualization system was written in Java. The

program comprises eight main packages, as shown in Figure 35. The packages lex, parser,

and absyntax were used to parse input from the DOT data file into abstract syntax. The

action package is the main driver that translates the abstract syntax into objects, executes a

modified Sugiyama heuristic, and saves objects into a relational database through the use of a

data object package. The algorithm package contains classes that implement algorithms in

the Sugiyama heuristic. The plus sign notation used in the UML diagrams represents the

composition relationship.

103

Figure 35. Packages of the constrained graph layout application

This section describes the design and class diagrams of the main classes of the

constrained graph drawing framework. Other utilities and helper classes, along with the

source code of the Sugiyama algorithms, are shown in Appendix A. Since the algorithm

package contains all the algorithms in the Sugiyama heuristic, the class diagrams of this

package are divided into groups based on their functionality. Figure 36 shows the class

diagram of the cycle removal algorithm. The Factory pattern design was utilized to enable

the extendibility of the program. For example, additional implementations of the sorting

algorithms could be implemented without changing the abstract layer of the main algorithm.

The factory also enables the system to instantiate different concrete implementations of the

104

algorithm in real time. The main class GreedyCycleRemoval calls the sorting algorithm

through the use of the Factory class. The sorting algorithms are self-explanatory based on

their names.

Figure 36. Class diagram of the cycle removal algorithm

The second group of the algorithm in the Sugiyama heuristic is the layer assignment

algorithm. In the same manner, the factory pattern was also utilized in the layer assignment

algorithm, as shown in Figure 37. The Layer Assignment class is called through a Factory

class that can instantiate different concrete implementations of the layer assignment

algorithm.

105

Figure 37. Class diagram of the layer assignment algorithm

Crossing reduction algorithms are shown in Figure 38. The crossing sweeping layer-

by-layer class calls a two-layer crossing reduction algorithm through a factory class. The

SweepingReductionStatic class was used to compute the number of crossings for the static

graph, and the SweepingReductionDynamic class was used to compute the crossing number

for layouts due to dynamic operations. In the same manner, to compute the crossing numbers

for a two-layer graph layout, two two-layer crossing reduction algorithms were implemented.

The CrossingReductionBaryCenter class was designed to reduce the crossing number of the

static graph or initial graph, and the CrossingReductionConstrainedBaryCenter class was

designed to reducing the number of crossings for layouts due to dynamic operations.

106

Figure 38. Class diagram of the crossing reduction algorithm

The design of package Action was simple because it contains one interface named

Action and a main class called GraphAction, which implements the Action interface, as

shown in Figure 39. This package is the main engine of the graph editor component.

GraphAction was designed as a command-line editor that accepts input from either a console

or a file. This class will then invoke appropriate action based on the input. It then retrieves a

subgraph from the database, executes the modified Sugiyama algorithms if applicable, and

finally updates the database with a new snapshot. The package also contains most of the test

classes that were used to compare performances and elegance against Graphviz and

DynaDAG applications. The test source code is shown in Appendix B.

107

Figure 39. Class diagram of the action package

The package structure was designed to capture the graph model from the DOT format

and from a relational database. The package contains a main class called SimpleGraph,

which was designed to store a graph layout in memory. In this class it contains one-to-many

instances of Vertex and Edge classes. In addition to those main classes, the

LayerDataStructure class was designed as a helper class for the layer assignment step. This

class helps to keep track of the layers of the graph layout. The class diagram is shown in

Figure 40.

108

Figure 40. Class diagram of the structure package

As parser, lexical, and absyntax packages were designed to parse graph

layouts from the DOT into memory, all three class diagrams of these three packages are

shown in Figure 41. The Parser was designed to translate graph layouts from the DOT

language into appropriate abstract syntax types. Different types of abstract syntax classes

help the GraphAction class determine the appropriate action to be called.

109

Figure 41. Class diagram of the parse, lexical analysis, and abstract syntax classes

Package dao was designed to map data from the relational database to objects, and

the service package was designed to transfer the data between client and server through the

HTTP protocol. Once it receives the HTTP request from the client, the service package

invokes the classes in package dao to retrieve data from the relational database. The class

diagram of the dao and service packages is shown in Figure 42.

Figure 42. Class diagram of the dao and service packages

Package gui contains the main classes for displaying the graph layout, and the data

package was designed to map vertex and edge objects into graphical shapes such as circles,

lines, and rectangles. Once the SimpleGraphServiceImpl class has completed data retrieval

110

from the relational database, the classes in the data package are instantiated and transform

vertices and edges into circle and rectangle shapes. The coordinates of vertices and edges are

simply calculated based on the positions of vertices on the layers. These positions are stored

in a database. The dao package was designed to map data from the relational database to

objects. The class diagram of gui, data, and geom packages is shown in Figure 43.

Figure 43. Class diagram of the main classes in gui, data, and geom packages

An Entity Relationship for Constrained Hierarchical Graph Drawing

To enable the drawing visualization to render graphs with thousands of vertices, the

constrained hierarchical graph drawing framework utilized a relational database to capture

the graph model and a sequence of the graph layouts to speed up graph visualization.

111

Computing hardware has been progressing rapidly in the past decade, especially in the data

storage field, so our design took advantage of this. In interactive graph drawing and

visualization applications, especially Internet applications, performance in rendering graph

layouts has a higher priority than reducing graph data storage space. Furthermore, because

the cost of joining tables is expensive in terms of performance, the database structure was

designed to increase space complexity but decrease time complexity by ensuring that data

retrieval can be achieved without joining multiple tables. This was done by storing snapshots

of vertices and edges in separate tables without sharing common vertices, edges, or

constraints with the vertex, edge, and constraint tables respectively. Thus, a relational

database was utilized to store snapshots of each layout in the graph layout sequence. The

entity relationship diagram for the model is shown in Figure 44.

112

Figure 44. Entity relationship diagram for the constrained graph drawing framework

As shown in Figure 44, the entity relationship diagram comprises 10 core relations

that store the graph layout model and graph layout snapshots. The relations layout, layer,

vertex, edge, and constraint capture the up-to-date graph layouts. The relations

layout_snapshot, layer_snapshot, vertex_snapshot, and edge_snapshot capture snapshots of

graph layouts. The current implementation of the constrained graph framework was not

designed to support different type of shapes and colors for vertices and edges, however our

data model was designed to include additional properties such as vertex size and shape, and

edge colors. The entity relationship includes two additional relations that store entity

113

properties. The additional designed data structure supports future enhancement of the

constrained graph drawing framework. Thus they are not used in the current implementation.

To make relation naming consistent, the relations that store snapshots of the layout

were named such that their prefix is the name of the relation that stores the model; the suffix

was called snapshot. For example, the layout relation stores the model of a layout, and the

layout_snapshot relation stores the snapshots of the layout. From this point forward, the

relations that store actual models of graph layouts will be called model relations and the

relations that store snapshots of layouts will be called snapshot relations. Furthermore, both

model and snapshot relations have the same number of attributes, with the exception that the

snapshot relation has an additional attribute called version, which enables it to store multiple

versions or snapshots of the same layout. The following description tables show both model

and snapshot attributes.

Table 12. Relations layout and layout snapshot.

Attribute Description Purpose

name Name of graph layout Enables storage of one-to-many layouts

created_date Creation date For tracking purposes

version Version of snapshot Enables storage of one-to-many layout snapshots

Table 13. Relations layer and layer snapshot.

Attribute Description Purpose

name Name of graph layout Enables storage of one-to-many layouts

layer Layer number Preserves the layer assignment step in
the database

total-vertices Numbers of vertices on the layer Helper attribute in graph visualization

version Version of snapshot Enables storage of one-to-many layout
snapshots

114

Table 14. Relations vertex and vertex_snapshot.

Attribute Description Purpose

graph_name Name of the graph layout graph_name and vertex_id attributes
form a primary key of the vertex
table

layer Layer vertex resides on Preserves layer assignment step in
the database

movable Movable constraint Restricts vertex from moving while
computing crossing reduction

barycentric Barycentric value of vertex Preserves crossing reduction step in
the database

position Position of vertex on a layer Preserves crossing reduction step in
the database

vertex_id Id of a vertex graph_name and vertex_id attributes
form a primary key of the vertex
table

dummy If this attribute = 1 then vertex is
dummy. Otherwise, vertex is real

Keeps track of created dummy
vertices in the layer assignment step

source If this attribute = 1 then vertex is a
source of a multilayer edge

Helper attribute that keeps track of
multilayer edges

sink If this attribute = 1 then vertex is a
sink of a multilayer edge

Helper attribute that keeps track of
multilayer edges

version Snapshot version Supports multiple snapshots of the
same layout

115

Table 15. Relations edge and edge_snapshot.

Attribute Description Purpose

graph_name Name of the graph layout Distinguishes vertex from one layout
to another

head Source vertex Source of an edge

tail Sink vertex Sink of an edge

reverse If reverse = 1 then the edge is in
cycle

Preserves the original direction of an
edge

multi_layer If reverse = 1 then the edge is a
multilayer

Keeps track of multilayer edges

start_layer First vertex in multiedge Helps to track all dummy vertices
and edges

end_layer Last vertex in multiedge Helps to track all dummy vertices
and edges

dummy If this attribute=1 then edge is
dummy.

Keeps track of created dummy edges
in the layer assignment step

source If this attribute=1 then vertex is a
source of a multilayer edge

Helper attribute that keeps track of
multilayer edges

sink If this attribute=1 then vertex is a
sink of a multilayer edge

Helper attribute that keeps track of
multilayer edges

version Snapshot version Supports multiple snapshots of the
same layout

Table 16. Relations order_constraint and ordered_constraint snapshot.

Attribute Description Purpose

graph_name Name of graph layout Enables storage of one-to-many layouts

vertex_id_1 First vertex First vertex in ordered constraint

vertex_id_2 Second vertex Second vertex in ordered constraint

layer Layer where vertices resides Helper attribute in the crossing reduction
algorithm

version Version of snapshot Enables storage of one-to-many layout
snapshots

116

The Process of Collecting Graph Data

We collected graph data from the following sources:

• The DOT data file from the Graphviz repository

• Real-world graph data of organizational hierarchical relationships and enterprise

processes from The Boeing Company. The process graph data has about 3,000

vertices and the organizational graph data has about 10,000 vertices. These two

graph datasets were then used to generate a pool of graph datasets with different

sizes. These generated graph dataset were used for visualization and performance

tests.

• Real-world large graph data of CAIDA AS (autonomous systems) from the Stanford

large-graph data repository.

Testing and Evaluation

We employed suggestions by Eades (2005) to evaluate and measure the constrained

graph drawing framework and its constrained crossing reduction algorithm. The constrained

graph drawing framework and algorithms were evaluated and measured based on the three

goals shown in Figure 45. Effectiveness measures how well the framework produces

layouts. Efficiency measures the performance of the algorithm and the scalability of the

proposed framework, such as how well the system handles large graph layouts. Elegance

measures the degree of compliance of the generated layout with graph layout aesthetic

criteria.

117

measure

effectiveness

elegance efficiency

Figure 45. Measurable goals for evaluating the proposed algorithm.

To satisfy the three measurable goals, three tests were performed. Two visualization

tests were performed to measure the effectiveness and elegance of the constrained graph

drawing framework. The third test, which comprised a series of performance tests, was

conducted to measure the performance and scalability of the constrained graph drawing

framework. All tests comprised four factors: (1) setup, (2) test procedure, (3) evaluation

criteria, and (4) dataset. While the test procedure and dataset of each test were different from

one another, most tests used the same setup and evaluation criteria. The test procedure and

datasets are discussed individually in later sections of this report. The setup and evaluation

criteria are discussed in this section. In additional to these three tests, an asymptotic analysis

for the modified Sugiyama algorithms is also shown.

118

Test Setup

For all comparison tests except the comparison of the generation of very large graph

layouts, the setup comprises two test programs. The first test program, written in Java, loads

the dataset into memory, executes the action procedure, which in turn computes the

Sugiyama heuristic run time, and finally computes the run time. The second test program,

written in Java, is a shell program that invokes the DOT program that generates the graph

layout. The shell Java program computes the time it takes to complete the execution of the

DOT program.

Evaluation Criteria

 The evaluation criteria for performance measurement is straightforward. The run

time of the constrained graph drawing framework and the run time of the Graphviz were

compared side by side. The evaluation criteria for effectiveness measurement using the

visualization approach depends on the rendering engine. The current implementation of the

constrained graph drawing framework rendering engine is still in an early state and cannot be

used to compare exactly against the rendering engine of the Graphviz. Thus, a set of

measurements were defined to evaluate the effectiveness of layouts generated by the

constrained graph drawing framework. Due to the limitations of this dissertation’s scope, the

implementation of our graph visualization component did not employ the horizontal

coordinate assignment algorithm, Bezier curves, or polyline drawing for multilayer edges.

The rendering engine simply rendered the graph layout using the vertices’ positions

calculated from the crossing reduction step that are stored in the relational database. The

multilayer edges were drawn as a straight line. As a result, the straight line multilayer edges

119

generated by our constrained graph drawing framework created pseudo-edge crossings that

can be removed by drawing a multilayer edge as a curve or a polyline that would go around

other edges. On the other hand, the Graphviz application employs a horizontal coordinate

assignment and also supports drawing multilayer edges as a curve. Another limitation of the

graph visualization component is that it does not restore the original direction of any cycled

edges whose directions were reversed during the cycle removal algorithm. As a result, the

cycle edges were displayed like other regular edges without reversing their direction back to

the original direction, as was done by Graphviz. A consequence of this is that the directions

of cycle edges in the generated graph layout produced by the constrained graph drawing

framework are opposite to those of the cycle edges of the generated graph layout produced

by Graphviz and DynaDAG. Thus, layouts generated by the constrained graph drawing

framework do not look as pleasing as the layout generated by Graphviz.

To compensate for these limitations, and to have a mechanism that measures the

effectiveness of the constrained graph drawing framework against Graphviz, visual

evaluation criteria were defined and were used by visualization tests. To compare two

layouts generated by the same dataset, the following parameters were used: (1) the number of

vertices on a layer, (2) the number of layers on the layout, (3) the number of edge crossings,

and (4) the similarity of the overall graph layout flow, as shown in Table 17.

120

Table 17. The criteria to measure effectiveness of the developed constrained framework.

Criterion Purpose

The number of vertices on a layer Check layer assignment step

the number layers on the layout Check layer assignment step

the number of edge crossings Check crossing reduction step

the similarity of the overall graph layout flow Check the flow of the graph layout

The first visualization test set was performed to compare the layout generated by the

constrained graph drawing framework against the same layout generated by Graphviz. The

goal of this first test set was to validate the effectiveness of the constrained graph drawing

framework in drawing static graph layouts. Five datasets were used in the first visualization

test set. Two datasets were selected randomly from the Graphviz repository. The first

dataset has 8 vertices but has strongly connected edges, with a total of 14 edges. The second

dataset has 9 vertices and 16 edges. These first two datasets were used to measure the

effectiveness of the constrained graph drawing framework in drawing graph layouts that have

strongly connected edges and have many cycles. In addition to those two datasets, three

datasets were randomly selected from a pool of more than 50 datasets. These datasets are

subgraphs of the real-world organization and enterprise processes dataset. The third dataset

has 11 vertices and 11 edges. The fourth dataset has 16 vertices and 16 edges, and the fifth

dataset has 23 vertices and 23 edges. These three datasets represent typical hierarchical

graph layouts, and were used to measure the effectiveness of the constrained graph drawing

framework in drawing good hierarchical graph layouts. Table 18 summarizes these five

datasets. For each dataset, two layouts were generated. The first layout was generated by the

constrained graph drawing framework and the second layout was generated by the Graphviz

121

application. The results of the generated graph layouts were save into images. These images

were then displayed side by side for comparison.

Table 18. Dataset for the first visualization test.

Dataset name Size Description

Third.dot 8 vertices Has strong connected edges

Second.dot 9 vertices Has strong connected edges

org-parent-child-conversion-11.dot 11 vertices Hierarchical relationship

process-parent-child-conversion-16_0.dot 16 vertices Hierarchical relationship

org-parent-child-conversion-23_0.dot 23 vertices Hierarchical relationship

In the same manner, to measure the elegance of the constrained graph drawing

framework, which requires that the generated graph layout satisfies dynamic aesthetic criteria

such as preserving layout stability, but also improves readability of the layouts after dynamic

operations, seven visualization tests were conducted to cover all six dynamic operations and

a static graph layout. For each test, a graph layout generated by the constrained graph

drawing framework due to a dynamic operation was compared with graph layouts generated

by the DynaDAG system. The two tests that cover the adding and removing of ordered

constraints of vertices were not compared with the results from DynaDAG, because the

current version of DynaDAG does not support ordered constraints Thus, the results of these

two tests were visualized to ensure that none of the ordered constraint of vertices were

violated after the graph layout was updated by a dynamic operation, and none of the vertices

would be placed between the two vertices that created the order constraint.

To perform the seven aforementioned tests, a sample was randomly selected from a

pool of 50 datasets. This sample was a subset of the organizational dataset and had 13

122

vertices and 12 edges. The first test was performed to measure the elegance of the

constrained graph drawing framework in drawing a standard static graph layout. The second

test was conducted to demonstrate the ability of the constrained graph drawing framework to

support an added vertex and a set of edges operation. In the same manner, the remaining

tests were performed to measure the ability of the constrained graph drawing framework to

support adding edges, removing vertices, removing edges, and adding and removing ordered

constraints.

Prior to conducting the performance and scalability tests, a preliminary test was also

performed to check the design of the constrained graph drawing framework. Two large

datasets were used in this preliminary test. The first dataset represented an enterprise process

graph layout with 3,222 vertices. This dataset represented a real-world hierarchical graph

layout with very few multilayer edges. In the same manner, the second dataset represented a

real-world organizational hierarchical relationship graph with 10,370 vertices and no

multilayer edges. Thus, the expectation from the test result was that the generated graph

layout should not have many dummy vertices and edges. The two datasets used in the

performance preliminary test are shown in Table 19. The results of these two tests were then

displayed in tabular formats as shown below.

Graph layout name Size

Number of vertices value

Number of vertices after adding dummy vertices value

123

Action Run time (milliseconds) Run time (milliseconds)

Time it takes to remove cycles value value

Time it takes to assign vertices to layers
and add dummy vertices

value value

Time it takes to reduce edge crossings value value

Total time it takes for the Sugiyama
algorithm

value value

Time it takes to save into database value value

Time it takes to render the graph value value

Table 19. The two datasets used in the performance preliminary test.

Dataset name Size Description

process-parent-child-conversion.dot 3222 vertices Process graph

org-parent-child-conversion.dot 10370 vertices Organizational graph

To measure the performance of the constrained graph drawing framework against the

performance of Graphviz, five sets of performance tests were conducted. Table 20 shows the

five performance test set names and descriptions.

The first test set was to compare the performance of the implementation of the

Sugiyama heuristic against that of the algorithms used by the Graphviz application. The goal

of this test set was to compare the performance of the implementation of the Sugiyama

heuristic of the constrained graph drawing framework against the algorithms used by the

Graphviz application. The setup for this test set comprised two test programs. The first test

program, written in Java, loads the sample dataset into memory, and then executes the action

procedure which in turn computes the Sugiyama heuristic run time.

124

The second test program, also written in Java, invokes the DOT program, which

actually performs the Sugiyama heuristic, from within Java and computes the time it takes to

complete the execution of the DOT program. The second test set was run to measure the

performance of combining the run time of the Sugiyama heuristic and the time it takes to

save the graph data into the database. Because Graphviz does not store data into a secondary

storage as does the constrained graph drawing framework, the goal of the second test set was

to see how the overhead incurred by the step that saves the data into the relational database

impacts the overall performance of the constrained graph drawing framework.

The third performance test set was run to measure the I/O cost of retrieving data from

the database back to memory for rendering graph layouts in the graph visualization

component. The purpose of this set was to show the overhead of retrieving data from the

database and the impact on rendering performance of using the database for storing a graph

layout.

The fourth performance test set was run to measure the total run time of the graph

visualization component. The purpose of this set was to validate the performance

improvement of displaying the graph layout by decoupling the graph visualization from the

graph editing module.

The fifth performance test set was run to compare the total run time, which basically

was the combined run time of the second and third test sets, of the constrained graph drawing

framework with the performance of Graphviz. The goal of this set was to show the overall

performance of the constrained graph drawing framework. To compute the run time of the

constrained graph drawing framework, an automatic test was written that first launched the

125

applet. Next, for each dataset in the DOT format file, the program read data into memory

and executed the Sugiyama heuristic. The program then saved the graph layout and layout

snapshot into the database. Finally, the program loaded the snapshot from the database and

displayed the result in the applet. The time difference between start and finish of the

program was then computed as total run time. To compute the run time of Graphviz we

employed the DOT command line program to test the run time of Graphviz for the majority

of the dataset. Except for large datasets whose sizes were 3,000 vertices or more, a stop

watch was used to compute the run time of Graphviz; this provided more accuracy than using

the DOT command line program, which does not display the graph layout on the computer

screen but rather executes the Sugiyama heuristic in memory, with options to save the result

into a data file either in DOT format or as an image. The source code of the aforementioned

tests is shown in Appendix B. In additional to these performance tests, the graph layout

generated from these performance results was also used to measure the aesthetic criteria of

the constrained graph drawing framework. As the number of edge crossings represents graph

layout quality, a comparison of the number of crossings is included along with performance

test results. The number of edge crossings of the layouts generated by the constrained graph

drawing framework were compared against the same graph layout generated by Graphviz.

The comparisons are presented in a tabular format.

126

Table 20. Five performance test sets.

Test set name Description

Test only Sugiyama run time Compare performance of Sugiyama
algorithms implemented by constrained vs.
Graphviz

Test run time of Sugiyama and database saving Test the overhead of saving data into
database

Test I/O cost of retrieving data from the
database

Test the overhead of retrieving data from
the database

Test run time of rendering graph layout Test run time of render graph layout by
constrained framework

Test run time of the overall action Compare the overall performance of
constrained vs. Graphviz

To test the scalability of the constrained graph layout, the four aforementioned

performance test sets were conducted on three sets of data that had different sizes. The

average run time results from each dataset were then plotted in a chart to show the scalability

of the constrained graph drawing framework. As a result, a total of 12 sets of tests were

conducted to measure both performance and scalability of the constrained graph drawing

framework. Five performance test sets were run for each dataset. The first dataset, which

represented a small dataset, comprised 14 samples, as shown in Table 21. Each sample had

from 200 to 500 vertices. The second dataset, which represented a medium-size dataset,

comprised 5 samples, as shown in Table 22. Each had from 500 to 1,000 vertices. The third

dataset, which represented a large dataset, comprised 9 samples, as shown in Table 23. Each

had from 1,000 to 5,000 vertices. The sizes of these samples were arbitrarily selected. The

tests were set up to show the run-time results from the constrained graph layout, Graphviz,

and DynaDAG. The results were then stored in a table as shown below.

127

Graph name Size Constrained Graphviz
Name of the graph Size of graph Run time in milliseconds Run time in milliseconds
…… …… …… ……

Table 21. Small datasets.

Dataset name Size (number of vertices)

org-parent-child-conversion-263 263
org-parent-child-conversion-265 265
org-parent-child-conversion-276 276
org-parent-child-conversion-277 277
org-parent-child-conversion-306 306
org-parent-child-conversion-309 309
process-parent-child-conversion-332 332
process-parent-child-conversion-337 337
org-parent-child-conversion-351 351
process-parent-child-conversion-357 357
org-parent-child-conversion-361 361
org-parent-child-conversion-386 386
process-parent-child-conversion-422 422
org-parent-child-conversion-460 460

Table 22. Medium-size datasets.

Dataset name
Size

(number of vertices)

process-parent-child-conversion-526 526

org-parent-child-conversion-735 735

org-parent-child-conversion-807 807

org-parent-child-conversion-856 856

org-parent-child-conversion-888 888

128

Table 23. Large datasets.

Dataset name
Size

(number of vertices)

org-parent-child-conversion-1063 1,063

process-parent-child-conversion-1112 1,112

org-parent-child-conversion-1444 1,444

org-parent-child-conversion-1733 1,733

process-parent-child-conversion-1849 1,849

org-parent-child-conversion-4164 4,164

process-parent-child-conversion-4495 4,495

In addition to those datasets, eight sets of real-world graph data from the Stanford

large-graph dataset repository were also tested to demonstrate the scalability and shareability

of the constrained graph drawing framework. Table 24 shows the eight CAIDA AS

(autonomous systems) datasets from the Stanford large-graph repository that were used in the

scalability test.

Table 24. Real-world graph datasets from the Stanford large-graph repository.

Dataset name Size (number of vertices)

as-caida20040105 16,301

as-caida20040202 16,493

as-caida20040301 16,655

as-caida20040405 16,874

as-caida20040503 17,160

as-caida20040607 17,306

as-caida20040705 17,509

as-caida20040802 17,655

129

All the aforementioned tests were run to test the performance of the constrained graph

drawing framework in loading static graph data. To measure the performance of the

constrained graph drawing framework due to dynamic operations, all three small, medium,

and large datasets that were used in the tests that measured the performance of the

constrained graph drawing framework in loading static graph data were utilized again in

these tests. The dynamic operation test scripts are in Appendix B. Table 25 shows six

dynamic operations that were executed. The run time for each operation was measured. The

results were then displayed in a tabular format as follows:

 Graph Name Size Operation name Run time
Name of the graph Size of graph Name of the operation Run time in milliseconds
…… …… …… ……

Table 25. Six dynamic operations.

Operation name Purpose

Add vertex Test adding vertex and a set of edges to the layout

Add edges Test adding edges to the layout

Remove vertex Test removing a vertex and all its incident edges from the
layout

Remove edges Test removing edges from the layout

Set ordered constraint Test adding an ordered constraint to the layout

Drop ordered constraint Test removing an ordered constraint from the layout

Resources Used

The following resources were used in this research:

• Software: Java Development Kit (JDK), Apache Tomcat Servlet engine, MySQL

relational database server, Java open-source graph libraries.

130

• Hardware: Tests were performed on a Dell Latitude M6300, 2.4 GHz, 4 GB of RAM,

and the OS is Windows XP SP2.

• Graphviz and DynaDAG were installed on Windows XP SP2.

• Participant: The author was the only researcher for this project.

 Summary

This chapter first discussed aesthetic criteria for drawing hierarchical graph layouts

and additional aesthetic criteria for incremental graph layouts. Next we reviewed the

Sugiyama heuristic in detail because the proposed hierarchical graph drawing framework will

use the standard Sugiyama heuristic in building the initial graph model from an initial data

set. The online dynamic graph drawing framework (North & Woodhull, 2001) was then

reviewed in detail, as it was a foundation for the constrained hierarchical graph drawing

framework. The constrained crossing reduction problem was then reviewed, as we extended

the work of Forster (2004) to solve that problem.

We then presented an abstract optimization model based on dynamic aesthetic

criteria, and then translated an abstract optimization problem to a concrete optimization

problem for hierarchical graph layout. The optimization problem was then incorporated into

appropriate steps in the Sugiyama heuristic. We discussed the measurable goals for testing

and evaluating the constrained graph drawing framework. We then described three tests that

were conducted to measure the effectiveness, efficiency, and elegance of the constrained

graph drawing framework.

131

Chapter 4

Results

This chapter presents the test results and run-time analysis of the constrained graph

drawing framework. Three sets of tests were performed as described in the Testing and

Evaluation section in Chapter 3. The results are presented in three sections:

• Visualization Test 1 Results, which describes the effectiveness of the constrained

graph drawing framework in drawing static graph layouts

• Visualization Test 2 Results, which describes the effectiveness of the constrained

graph drawing framework in drawing dynamic graph layouts

• Performance Test Results, which describes the efficiency of the constrained graph

drawing framework in drawing static graph layouts and dynamic graph layouts

• Asymptotic analysis for Sugiyama algorithms and I/O cost due to database operations

Visualization Test 1 Results

The third.dot dataset used in this test was downloaded from the Graphviz web site

(http://www.graphviz.org/). The data file is DOT format and is available in Appendix B.

Figure 146 shows the graph layout generated by the constrained graph drawing framework,

and Figure 247 shows the graph layout generated by Graphviz. The result shows that the two

generated layouts were very different. The first image generated by the constrained graph

drawing framework shows that the layout started at vertices 6 and 2 but the second image

generated by Graphviz shows that the layout started at vertex 0. The difference indicates that

one of the algorithms used by the constrained graph drawing framework could be different

from the algorithm used by Graphviz.

132

The analysis of the third.dot data file showed that the graph layout had strong

connected edges. In other words the given graph has no source nor sink, because edges are

connected. As described in Chapter 3, the Greedy topological sort algorithm first finds all

the sources and adds those sources into the beginning of the list. If none is found, the

algorithm then finds the vertex with largest difference between outdegree and indegree and

inserts that into the sorted list. In this particular dataset, vertices 6 and 2 had the largest

difference between outdegree and indegree, which was two. Other vertices had either 1, 0 or

negative differences. Thus, the Greedy sort algorithm inserted vertices 6 and 2 into the

sorted list before all other vertices, as shown in Figure 46.

On the other hand, Graphviz uses a different sorting algorithm, which was not

specified in the Graphviz user guide, but the result generated by Graphviz showed the flow of

the layout nicely according to the nature of the graph layout, as shown in Figure 47. To

make our test results more compatible with the layouts generated by Graphviz, we

implemented a variant version of the DFS sorting algorithm, whose pseudocode was

described in Chapter 3, and replaced the Greedy sorting algorithm with the modified DFS

sorting algorithm. The layout generated by the constrained graph drawing framework after

using the modified DFS sorting algorithm is shown in Figure 48. With the exclusion of the

Bezier curve and direction of the cycled edges, the layout produced by the constrained graph

drawing framework in Figure 48 had an identical overall layout flow, the same number of

layers, the same number of vertices on each layer, and the same number of edge crossings,

which is none in this test, as the layout produced by the Graphviz application (Figure 47).

133

Figure 46. Layout generated by the constrained graph drawing framework.

134

Figure 47. Layout generated by constrained Graphviz

135

Figure 48. Layout generated after replacing the Greedy sorting algorithm with a modified
DFS sorting algorithm.

The second subtest of the first visualization test was a graph layout generated from a

data set called second.dot, which was also downloaded from the Graphviz repository. Figure

49 shows a graph layout generated by the constrained graph drawing framework, and Figure

50 shows the graph layout generated by Graphviz. Based on the visualization comparison

specification discussed in Chapter 3, the result shows that the layout produced by the

constrained graph drawing framework in Figure 49 is very similar to the layout produced by

136

the Graphviz application (Figure 50) in terms of the graph layout flow, the number of

vertices on each layer, the number of layers, and the number of edge crossings.

Figure 49. Layout produced by the constrained graph drawing framework

137

Figure 50. Layout produced by Graphviz.

While the first two tests demonstrated the effectiveness of the constrained graph

drawing framework in drawing generic graph layouts, the following four tests demonstrated

the effectiveness of the constrained graph drawing framework in drawing real-world

hierarchical graph layouts. The third dataset was randomly selected from a pool of 56

datasets. Figure 51 shows a graph layout generated by the constrained graph drawing

framework, and Figure 52 shows a graph layout generated by Graphviz. Once again, based

on the visualization comparison specification discussed in Chapter 3, the result shows that

138

the layout produced by the constrained graph drawing framework in Figure 51 is very similar

to the layout in Figure 52 producing by the Graphviz application.

Figure 51. Layout produced by the constrained graph drawing framework

Figure 52. Layout produced by Graphviz

The fourth dataset was also randomly selected from a pool of 56 datasets. Figure 53

shows a graph layout generated by the constrained graph drawing framework, and Figure 54

shows a graph layout generated by Graphviz. The result shows that the layout produced by

the constrained graph drawing framework in Figure 53 is very similar to the layout in Figure

54 produced by the Graphviz application.

139

Figure 53. Layout produced by the constrained graph drawing framework

Figure 54. Layout produced by Graphviz

The fifth dataset was also randomly selected from a pool of 56 datasets. Figure 55

shows a graph layout generated by the constrained graph drawing framework, and Figure 56

shows a graph layout generated by Graphviz. The result shows that the layout produced by

the constrained graph drawing framework in Figure 55 is very similar to the layout in Figure

56 produced by the Graphviz application.

Figure 55. Layout produced by the constrained graph drawing framework

140

Figure 56. Layout produced by Graphviz.

Visualization Test 2 Results

This test was performed to demonstrate the elegance of the constrained graph drawing

framework by preserving the layout stability and readability of the layouts due to dynamic

operations. Seven scenarios were tested to cover all six of the dynamic operations and an

initial static graph layout. The first test showed the first version of the graph layout that was

loaded from the data file. Figures 57 and 58 show the generated layouts created by the

constrained graph drawing framework and by DynaDAG respectively. The test result shows

both generated layouts look very similar.

Figure 57. Layout produced by the constrained graph drawing framework

141

Figure 58. Layout produced by DynaDAG

The second test showed the layout after a new vertex called 1 was added. Figures 59

and 60 show the generated layouts created by the constrained graph drawing framework and

by DynaDAG respectively. The similarity between the two layouts demonstrated that the

constrained graph drawing framework supports the add vertex operation and also preserves

graph layout stability by not changing the global layout after a new vertex is added.

Figure 59. Layout produced by the constrained graph drawing framework

142

Figure 60. Layout produced by DynaDAG

The third test showed the layout after a vertex called 2 and a multilayer edge were

added to the graph at layer 3. Figures 61 and 62 show the generated layouts created by the

constrained graph drawing framework and by DynaDAG respectively. The result shows that

there was a slight difference between the graph layout produced by the constrained drawing

framework and the layout produced by DynaDAG The layout that was created by the

constrained graph drawing framework had the newly created vertex 2 on layer 3, and a new

multi-edge was also created that connects vertex 8478 to the newly created vertex 2. On the

other hand, the layout that was created by DynaDAG had the newly created vertex 2 at layer

2 instead of layer 3. Experimenting with DynaDAG showed that the system does not allow

the end-user to specify the layer specifically when adding a vertex to the existing graph

layout. DynaDAG computes the new vertex’s layer based on the adjacent vertex through the

connected edge. In this case, the newly created vertex 2 was connected to vertex 8478,

which was on layer 1. Thus, DynaDAG automatically assigned a layer 2 to vertex 2 without

an option that enabled end-users to select on which layer the newly created vertex would be.

The constrained graph drawing framework was designed to be flexible and enable end-users

143

to choose which layer on which a new vertex resides. Figure 61 shows that vertex 2 was

assigned to layer 3 based on user input. However, the current implementation of the

constrained graph drawing framework does not automatically assign a layer to a new vertex

if no layer was specified in the input. This would be an improvement of the constrained

graph drawing framework.

Figure 61. Layout produced by the constrained graph drawing framework

Figure 62. Layout produced by DynaDAG

The fourth test showed the layout after a simple edge was added to the graph. Figures

63 and 64 show the generated layouts created by the constrained graph drawing framework

and by DynaDAG respectively. The result showed that the layout produced by the

144

constrained drawing framework and the layout produced by DynaDAG are very similar.

This test demonstrated that the constrained drawing framework supports adding edges.

Figure 63. Layout produced by the constrained graph drawing framework

Figure 64. Layout produced by DynaDAG

The fifth test showed the layout after two ordered constraints between vertices (8482 ,

8479) and (1 , 8490) were added to the graph. There is no equivalent function in DynaDAG

so in this test there was no compatible layout generated by DynaDAG. Figure 65 shows the

generated layout created by the constrained graph drawing framework after the ordered

constraint was added. The result showed that the constrained graph drawing framework does

preserve the ordered constraint of vertices while updating the graph layout.

145

Figure 65. Layout produced by the constrained graph drawing framework

The sixth test showed the layout after a vertex and ordered constraints were removed

from the graph. Figures 66 and 67 show the generated layouts created by the constrained

graph drawing framework and by DynaDAG respectively. Similar to previous results, the

test result showed that the layout produced by the constrained drawing framework and the

layout produced by DynaDAG were very similar.

Figure 66. Layout produced by the constrained graph drawing framework

146

Figure 67. Layout produced by DynaDAG

The seventh test showed the layout after a number of vertices were removed from the

graph. Figures 68 and 69 show the generated layouts created by the constrained graph

drawing framework and by DynaDAG respectively. The test result showed that the

constrained drawing framework and the DynaDAG application produced very similar layouts

after several vertices had been removed.

Figure 68 shows what appear to be three edge crossings due to multilayer edge (8478,

2). Those are actually not edge crossings and can be avoided by drawing the multilayer edge

(8478, 2) as a polyline going around the vertex 8479, as the Graphviz application does in

drawing multilayer edges. As discussed in Chapter 3, showing pseudo-edge crossings in the

layout is due to the limitations of the current implementation of the graph visualization

component, which does not support Bezier curve or polyline drawing. Drawing multilayer

edges as polylines would be a future enhancement for the constrained graph drawing

framework. Beside this shortcoming of the design, the result showed both frameworks had a

similar overall layout flow, number of vertices on each layer, number of vertices, and number

of actual edge crossings.

147

Figure 68. Layout produced by the constrained graph drawing framework

Figure 69. Layout produced by DynaDAG

Performance Test Results

The result of the preliminary performance test is shown in Table 26 and Table 27.

The result showed there were three issues with the constrained graph drawing framework.

The first issue is that the number of created dummy vertices was unusually high. Both

datasets used for this experiment had very few or no multilayer edges. Thus, the result

should not have had many dummy vertices. The second issue is that the run time of layer

assignment and crossing reduction algorithms were not good. Later performance tests

showed the run time of the Sugiyama heuristic was much better for Graphviz for such

148

datasets. The third issue is that the run time of saving data into the database was not

acceptable.

Table 26. Number of vertices before and after adding dummy vertices.

Graph Name Before inserting dummy vertices After inserting dummy vertices

Process graph 3222 vertices 18464 vertices

Organizational graph 10370 vertices 38789 vertices

Table 27. Performance result of the preliminary test.

Action Process structure Organizational structure

Remove cycles 0.078 s 0.758 s

Assign vertices to layers 8.073 s 57.103 s

Reduce edge crossings 5.89 s 33.912 s

Total time it takes for Sugiyama algorithm 14.041 s 91.773 s

Save into database 33.005 s 71.415 s

Render to graph (applet) 1.8 s 5.237 s

After reviewing the algorithms, we noticed we used an arbitrary value to limit the

number of vertices per layer in the layer assignment algorithm. This value did impact how

the layer assignment algorithm assigned vertices to layers and created dummy vertices. For

example, if this value was less than the actual number of vertices on a layer due to the nature

of the data structure, the layer assignment algorithm created pseudo-multilayer edges by

pushing vertices down to the next layers when the number of vertices per layer was larger

than the maximum allowable value per layer. Those intentional extra dummy vertices were

then used to created pseudo-multilayer edges. We called those pseudo-multilayer edges

because the edges would not be created if the value limiting the width of a layer was larger

149

than the actual number of vertices on that layer. As a result, the number of created dummy

vertices impacted the performance of the layer assignment and crossing reduction algorithms.

To resolve the number of dummy vertices and the run time of the Sugiyama heuristic, the

value that limits the width of layers in layer assignment was set to a very large number.

To attack the poor performance of the step that saves data into the database, we

reviewed the program and noticed that the constrained graph drawing framework utilized the

object-to-relational-mapping API called Hibernate to save data from memory into the

database. This approach saves programming time but it added more overhead to the

performance of the algorithm. To improve the performance of this step the program was

modified to use direct relational calls instead of the object-to-relational-mapping API when

saving data from memory to object-to-relational-mapping database. The preliminary test was

run again after changes were made to the constrained graph drawing framework.

The results of the retest are shown in Tables 28 and 29. The result showed the

number of vertices before and after adding dummy vertices was much better. To validate the

number of vertices and the correctness of the design, two graph layouts were produced and

compared side by side. The first layout was generated by the constrained graph drawing

framework and the second layout was generated by the Graphviz program. To compensate

for the poor visibility of both layouts due to their size, a SQL query was run that computed

the number of layers of the layout generated by the constrained graph drawing framework.

The SQL queries used in this analysis are included in Appendix D. The query result showed

there were 11 layers for the process graph layout generated by the constrained graph drawing

framework. For the same process graph layout generated by Graphviz the count was

150

performed manually by looking at the zoomed-in image. The image showed the number of

layers was approximately 10. Furthermore, the zoomed-out image showed that the layer

width was much greater than the height, which indicates that the Graphviz algorithm did not

restrict layer width based on an arbitrary value. Thus, this result showed that even though in

theory limiting the width of a layer is considered to enhance the readability of a graph layout,

real-world data structures showed that the width of a layer should be based on the actual

number of vertices on the layer, not an arbitrary value that limits layer width for some data

structures.

Table 28. Number of vertices before and after adding dummy vertices (retest).

Graph name Before inserting dummy vertices After inserting dummy vertices

Process graph 3,222 vertices 3,674 vertices

Organizational graph 10,370 vertices 10,370 vertices

Table 29. Performance result of the preliminary test (retest).

Action Process structure Organizational structure

Remove cycles 0.272 s 1.549 s

Assign vertices to layers 0.588 s 0.307 s

Reduce edge crossings 0.262 s 1.054 s

Total time it takes for Sugiyama algorithm 1.122 s 2.91 s

Save into database 2.753 s 6.113 s

Render to graph (applet) 1.309 s 2.359 s

The result of the retest also showed that the performance of the Sugiyama heuristic

improved dramatically. To ensure that the overall performance of the constrained graph

drawing framework is compatible with that of Graphviz and DynaDAG, we generated the

151

same graph layouts using Graphviz and DynaDAG and computed the run time using a stop

watch. The result in Table 30 shows that the overall performance of the constrained graph

drawing framework is better than that of Graphviz. The reason for this is that the constrained

graph drawing framework did not implement horizontal coordinate assignment. Because the

difference in run time between the constrained graph drawing framework performance and

the Graphviz performance is no more than 6 seconds for the process dataset and 60 seconds

for the organizational dataset, we concluded that the performance of the constrained graph

drawing framework is compatible with that of Graphviz if the run time of the horizontal

coordinate assignment algorithm is taken into account. The comparison with DynaDAG was

inconclusive because DynaDAG could not produce a graph layout for those two data

structures; it hung while the test was performed. As the current version of the DynaDAG

framework could not handle large datasets, Graphviz was used in our performance test for

static graph layouts instead. As a result, to measure performance we compared our results

against the performance of Graphviz for generating static graph layouts. For performance

due to dynamic operations, tests were conducted and the results displayed in a tabular format.

Table 30. Performance comparisons between constrained, Graphviz, and DynaDAG.

Graph name Size Constrained Graphviz DynaDAG

Process data structure 3,222 5.184 s 12 s Inconclusive

Organizational structure 10,370 11.382 s 79 s Inconclusive

The following section presents the results of 12 performance tests, 4 for each of the 3

datasets. The run times were all computed in milliseconds and the results are displayed in

tables. In each table, the first column contains the name of the graph, the second column

152

shows the size of the dataset, the third column shows the run time of the constrained graph

drawing framework, and the fourth column displays the run time of Graphviz.

The first performance tests were run to measure the run time of the Sugiyama

algorithm on small datasets. The results of these tests are shown in Table 31. With the

exception of the first result (second row), which was discarded due to an anomaly that could

have been the time it took to initialize the Graphviz application, the test results indicate that

the performance of the Sugiyama algorithms implemented by the constrained graph drawing

framework is comparable with that of the algorithms employed by Graphviz. The difference

in milliseconds between the constrained graph drawing framework and the performance of

Graphviz is due to the fact that the constrained graph drawing framework did not include a

horizontal coordinate assignment algorithm in its implementation of the Sugiyama heuristic.

As a result, we concluded that the run time of the two frameworks should be closer if the

horizontal coordinate assignment algorithm had been implemented.

153

Table 31. Results of the first performance tests on small datasets.

Graph name
Size

(vertices)
Constrained

(milliseconds)
Graphviz

(milliseconds)

org-parent-child-conversion-263 263 31 78

org-parent-child-conversion-265 265 141 1,172

org-parent-child-conversion-276 276 47 78

org-parent-child-conversion-277 277 31 63

org-parent-child-conversion-306 306 32 62

org-parent-child-conversion-309 309 31 94

process-parent-child-conversion-332 332 16 94

process-parent-child-conversion-337 337 15 79

org-parent-child-conversion-351 351 47 78

process-parent-child-conversion-357 357 62 94

org-parent-child-conversion-361 361 47 78

org-parent-child-conversion-386 386 32 78

process-parent-child-conversion-422 422 31 78

org-parent-child-conversion-460 460 46 94

The second performance tests were run to measure the time taken to perform the

Sugiyama algorithm and to save data into the relational database. The results of these tests

are shown in Table 32. Though the test results show that Graphviz outperformed the

constrained graph drawing framework in terms of run time due to the latter’s overhead of

saving data into the database, the benefit of storing graph layout snapshots into a relational

database outweighed the overhead, as shown in the results of the fourth test.

154

Table 32. Results of the second performance tests on small datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-263 263 204 62

org-parent-child-conversion-265 265 344 78

org-parent-child-conversion-276 276 219 62

org-parent-child-conversion-277 277 203 63

org-parent-child-conversion-306 306 250 78

org-parent-child-conversion-309 309 219 63

process-parent-child-conversion-332 332 219 94

process-parent-child-conversion-337 337 203 78

org-parent-child-conversion-351 351 234 78

process-parent-child-conversion-357 357 266 78

org-parent-child-conversion-361 361 234 78

org-parent-child-conversion-386 386 266 62

process-parent-child-conversion-422 422 266 94

org-parent-child-conversion-460 460 359 78

The third performance tests were run to measure the time taken to retrieve data from

the relational database back into memory. The results of the data retrieval tests are shown in

Table 33. The results show that the I/O cost of database retrieval is linear to the size of the

dataset except for the first result, which could be from when the database connection was

first established. The average time taken to load a dataset with a size of a few hundred

vertices is approximately less than 100 milliseconds, which is acceptable for loading and

rendering graph layouts on the Internet.

155

Table 33. Results of the database retrieval cost tests on small datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-263 263 109 NA

org-parent-child-conversion-265 265 62 NA

org-parent-child-conversion-276 276 78 NA

org-parent-child-conversion-277 277 63 NA

org-parent-child-conversion-306 306 62 NA

org-parent-child-conversion-309 309 47 NA

process-parent-child-conversion-332 332 47 NA

process-parent-child-conversion-337 337 62 NA

org-parent-child-conversion-351 351 63 NA

process-parent-child-conversion-357 357 47 NA

org-parent-child-conversion-361 361 46 NA

org-parent-child-conversion-386 386 47 NA

process-parent-child-conversion-422 422 47 NA

org-parent-child-conversion-460 460 47 NA

The rendering performance tests were run to measure the run time of the visualization

component, which combines the time taken to retrieve data from the database and the time

taken to render the graph layout to the Internet. The results of these tests are shown in Table

34. The test results indicate that the performance is acceptable for rendering graph layouts

on the Internet in real time even with the cost of database retrieval.

156

Table 34. Results of the rendering performance tests on small datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-263 263 78 NA

org-parent-child-conversion-265 265 109 NA

org-parent-child-conversion-276 276 94 NA

org-parent-child-conversion-277 277 78 NA

org-parent-child-conversion-306 306 94 NA

org-parent-child-conversion-309 309 78 NA

process-parent-child-conversion-332 332 78 NA

process-parent-child-conversion-337 337 94 NA

org-parent-child-conversion-351 351 94 NA

process-parent-child-conversion-357 357 110 NA

org-parent-child-conversion-361 361 109 NA

org-parent-child-conversion-386 386 109 NA

process-parent-child-conversion-422 422 94 NA

org-parent-child-conversion-460 460 109 NA

The fourth performance tests were run to compare the total run time of the

constrained graph drawing framework with that of the Graphviz application. The results of

these tests are shown in Table 35. The results show that the constrained graph drawing

framework outperformed Graphviz in all tests. As mentioned earlier, the test did not take

into account the time it takes to compute the horizontal assignment due to the fact that the

constrained graph drawing framework did not implement the horizontal assignment

algorithm. Thus, the performance of the constrained graph drawing framework should be

close to the performance of Graphviz in drawing graph layouts whose sizes are from 200 to

500 vertices.

157

Table 35. Results of the fifth performance tests on small datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-263 263 250 984

org-parent-child-conversion-265 265 453 765

org-parent-child-conversion-276 276 343 813

org-parent-child-conversion-277 277 297 875

org-parent-child-conversion-306 306 297 703

org-parent-child-conversion-309 309 297 1,140

process-parent-child-conversion-332 332 297 1,578

process-parent-child-conversion-337 337 281 1,172

org-parent-child-conversion-351 351 327 1,266

process-parent-child-conversion-357 357 406 1,032

org-parent-child-conversion-361 361 328 1,407

org-parent-child-conversion-386 386 327 1,265

process-parent-child-conversion-422 422 375 2,531

org-parent-child-conversion-460 460 406 1,531

Similar to the tests that were run on small datasets, the following performance tests

were run on medium-sized datasets. The first performance tests were run to measure the run

time of the Sugiyama algorithm. The results shown in Table 36 indicate that the Sugiyama

algorithms implemented by the constrained graph drawing framework perform well against

the algorithms employed by Graphviz for datasets whose sizes are from 500 to 1,000

vertices.

158

Table 36. Results of the first performance tests on medium-sized datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

process-parent-child-conversion-526 526 31 125

org-parent-child-conversion-735 735 94 109

org-parent-child-conversion-807 807 125 110

org-parent-child-conversion-856 856 125 125

org-parent-child-conversion-888 888 172 141

The second performance tests were conducted to measure the time it takes to execute

the Sugiyama algorithm to save data into a relational database on medium-sized datasets of

from 500 to 1,000 vertices. The results of these tests are shown in Table 37. The results

show that Graphviz outperformed the constrained graph drawing framework due to the

latter’s overhead from saving data into the database.

Table 37. Results of the second performance tests on medium-sized datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

process-parent-child-conversion-526 526 360 109

org-parent-child-conversion-735 735 531 125

org-parent-child-conversion-807 807 578 125

org-parent-child-conversion-856 856 578 125

org-parent-child-conversion-888 888 609 141

The third tests were run to measure the time it takes to load data from the database to

memory of the visualization component for medium-sized datasets of from 500 to 1,000

vertices. The test results shown in Table 38 indicate that the average time taken to retrieve

159

data from the database was strictly less than 100 milliseconds for a dataset whose size was

less than 1000 vertices.

Table 38. Results of the data retrieval performance tests on medium-sized datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

process-parent-child-conversion-526 526 63 NA

org-parent-child-conversion-735 735 63 NA

org-parent-child-conversion-807 807 47 NA

org-parent-child-conversion-856 856 63 NA

org-parent-child-conversion-888 888 62 NA

A rendering test was run to measure the run time of the visualization component for

medium-sized datasets of from 500 to 1,000 vertices. The test results shown in Table 39

indicate that even with the I/O overhead the overall run time was reasonable for rendering

graph layouts on the Internet. Although decoupling the graph visualization component from

the graph editor and saving graph layouts to the database incurred I/O overhead, this

approach enabled the constrained graph drawing framework to render graph layouts over the

Internet acceptably quickly and allowed a move away from traditional desktop environment

to distributed environments such as client-server.

160

Table 39. Results of the rendering performance tests on medium-sized datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

process-parent-child-conversion-526 526 110 NA

org-parent-child-conversion-735 735 156 NA

org-parent-child-conversion-807 807 141 NA

org-parent-child-conversion-856 856 157 NA

org-parent-child-conversion-888 888 156 NA

The fifth performance tests were run to compare the total run time of the constrained

graph drawing framework with the run time of the Graphviz application for medium-sized

datasets. The results in Table 40 show that the performance of the constrained graph drawing

framework should be close to the performance of Graphviz when drawing graph layouts

sized from 500 to 1,000 vertices, if the test takes into account the run time of the horizontal

coordinate assignment algorithm.

Table 40. Results of the fifth performance tests on medium-sized datasets.

Graph name Size (vertices)
Constrained

(milliseconds)
Graphviz

(milliseconds)

process-parent-child-conversion-526 526 453 1,781

org-parent-child-conversion-735 735 640 625

org-parent-child-conversion-807 807 812 1,203

org-parent-child-conversion-856 856 766 1,765

org-parent-child-conversion-888 888 766 657

The following are results of performance tests run on large datasets. In the same

manner as the prior tests, the first performance tests were run to measure the run time of the

161

implementation of the Sugiyama algorithm. The second tests measured the time to perform

the Sugiyama algorithm and to save data into a relational database. The third tests measured

data retrieval cost. The fourth tests measured the run time of the visualization component.

The fifth performance test was run to compare the total run time of the constrained graph

drawing framework with the run time of the Graphviz application. The results of these tests

are shown in Tables 41, 42, 43, 44, and 45 respectively. The test results show that the

performance of the constrained graph drawing framework on large datasets compares well

with that of Graphviz.

162

Table 41. Results of the first performance tests on large datasets.

Graph name
Size

(vertices)
Constrained

(milliseconds) Graphviz (milliseconds)

org-parent-child-conversion-1063 1,063 172 156

process-parent-child-conversion-1112 1,112 94 281

org-parent-child-conversion-1444 1,444 250 219

org-parent-child-conversion-1733 1,733 438 234

process-parent-child-conversion-1849 1,849 234 625

org-parent-child-conversion-4164 4,164 1,844 1,531

process-parent-child-conversion-4495 4,495 860 3,375

Table 42. Results of the second performance tests on large datasets.

Graph name Size (vertices)

Constrained

(milliseconds)
Graphviz

(milliseconds)

org-parent-child-conversion-1063 1,063 813 156

process-parent-child-conversion-1112 1,112 609 281

org-parent-child-conversion-1444 1,444 1,000 203

org-parent-child-conversion-1733 1,733 1,390 219

process-parent-child-conversion-1849 1,849 1,172 641

org-parent-child-conversion-4164 4,164 3,984 1,454

process-parent-child-conversion-4495 4,495 2,766 3,313

163

Table 43. Results of the data retrieval performance tests on large datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-1063 1,063 78 NA

process-parent-child-conversion-1112 1,112 63 NA

org-parent-child-conversion-1444 1,444 141 NA

org-parent-child-conversion-1733 1,733 78 NA

process-parent-child-conversion-1849 1,849 93 NA

org-parent-child-conversion-4164 4,164 140 NA

process-parent-child-conversion-4495 4,495 141 NA

Table 44. Results of the rendering performance tests on large datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-1063 1,063 203 NA

process-parent-child-conversion-1112 1,112 281 NA

org-parent-child-conversion-1444 1,444 235 NA

org-parent-child-conversion-1733 1,733 282 NA

process-parent-child-conversion-1849 1,849 328 NA

org-parent-child-conversion-4164 4,164 797 NA

process-parent-child-conversion-4495 4,495 594 NA

164

Table 45. Results of the fifth performance tests on large datasets.

Graph name Size (vertices)

Constrained

(milliseconds)

Graphviz

(milliseconds)

org-parent-child-conversion-1063 1,063 985 2,109

process-parent-child-conversion-1112 1,112 860 3,172

org-parent-child-conversion-1444 1,444 1,235 1,812

org-parent-child-conversion-1733 1,733 1,625 1,360

process-parent-child-conversion-1849 1,849 1,687 3,063

org-parent-child-conversion-4164 4,164 4,609 10,000

process-parent-child-conversion-4495 4,495 3,500 6,922

To measure the scalability of the constrained graph drawing framework, 12 test

results from 3 datasets were combined and plotted to create a performance chart, as shown in

Figure 70. The detailed performance chart shows that both frameworks were scalable and

could render graphs whose size was up to 4,000 vertices within 10 seconds.

165

Constrained vs GraphViz

0

2000

4000

6000

8000

10000

12000

26
3

27
6

30
6

33
2

35
1

36
1

42
2

52
6

80
7

88
8

11
12

17
33

41
64

Graph size

R
u

n
 t

im
e

(i
n

 m
ill

is
ec

o
n

d
s)

 graphviz

constrained

Figure 70. Performance of the constrained graph drawing framework versus Graphviz

Furthermore, these test results showed the overall run time of the two frameworks

from loading data into the memory to rendering the graph layout without taking into account

the decoupling of the graph visualization from the graph editing component. In real-world

applications such as the enterprise process modeling tool, few modelers make changes to the

model but many more viewers view the graph layouts on line. Once the model and snapshots

were saved into a database, the constrained graph drawing framework not only rendered the

graph layout faster than did Graphviz, but also scaled better for large graphs, as shown in

Figure 71. Please note in Figure 71 the run-time comparison between the overall run time of

Graphviz and the run time of the visualization component of the constrained graph drawing

framework.

166

Contrained vs GraphViz

0

1000

2000

3000

4000

5000

6000

7000

8000

26
3

27
6

30
6

33
2

35
1

36
1

42
2

52
6

80
7

88
8

11
12

17
33

41
64

Graph size

R
u

n
 t

im
e

(m
ill

is
ec

o
n

d
s)

Constrained

GraphViz

Figure 71. Rendering performance of the constrained graph drawing framework versus
Graphviz

To demonstrate that the layouts generated by the constrained graph drawing

framework satisfy the aesthetic criteria, especially for the number of edge crossings, the edge

crossings of layouts generated by the constrained graph drawing framework in the

performance tests were computed and compared against the number of crossings in the same

layouts generated by Graphviz. The comparison results are presented in Table 46. The

comparison shows that both frameworks produced the optimal solution, where layouts have

zero edge crossings if they have no edge crossings by nature. For example, most

organizational graph layouts do not have edge crossings by nature. For layouts that have

edge crossings by nature, Graphviz produces layouts with fewer edge crossings, except for

167

two large graph layouts whose sizes are 1849 and 4495. For those two layouts, the

constrained graph drawing framework produces layouts with fewer edge crossings. A

detailed analysis was performed on those two large graph layouts. For the graph layout

whose size was 1849, the layout generated by the constrained framework had 8 layers; the

layout generated by Graphviz had 10 layers. In other words, Graphviz limited the total width

of the layout due to screen real state and created dummy vertices, which created more edge

crossings. The constrained graph framework allows the width of a layout to be as wide as the

maximum number of incident edges a vertex has. Consequently, its layout has fewer edge

crossings but is wider. Similarly, for the graph whose size was 4495, the layout generated by

the constrained graph framework has 11 layers with fewer edge crossings but the layout is

wider. On the other hand, the layout generated by Graphviz has 13 layers with more edge

crossings but is narrower. With improvements in the crossing reduction sweeping algorithm,

the constrained graph drawing framework should generate layouts with fewer edge crossings

if applicable.

168

Table 46. Number of edge crossings comparison.

Graph name Size
Constrained

(edge crossings)
Graphviz

(edge crossings)
org-parent-child-conversion-263 263 0 0
org-parent-child-conversion-265 265 0 0
org-parent-child-conversion-276 276 0 0
org-parent-child-conversion-277 277 0 0
org-parent-child-conversion-306 306 0 0
org-parent-child-conversion-309 309 0 0
process-parent-child-conversion-332 332 8 1
process-parent-child-conversion-337 337 171 35
org-parent-child-conversion-351 351 0 0
process-parent-child-conversion-357 357 44 0
org-parent-child-conversion-361 361 0 0
org-parent-child-conversion-386 386 0 0
process-parent-child-conversion-422 422 66 0
org-parent-child-conversion-460 460 0 0
process-parent-child-conversion-526 526 88 1
org-parent-child-conversion-735 735 0 0
org-parent-child-conversion-807 807 0 0
org-parent-child-conversion-856 856 0 0
org-parent-child-conversion-888 888 0 0
org-parent-child-conversion-1063 1,063 0 0
process-parent-child-conversion-1112 1,112 815 259
org-parent-child-conversion-1444 1,444 0 0
org-parent-child-conversion-1733 1,733 0 0
process-parent-child-conversion-1849 1,849 2,846 3,392
org-parent-child-conversion-4164 4,164 0 0
process-parent-child-conversion-4495 4,495 26,858 31,369

To demonstrate the scalability of the constrained graph layout framework for real-

world graph layouts, eight datasets of CAIDA AS (autonomous systems) from the Stanford

large-graph data repository were tested. Each dataset was loaded into Graphviz, DynaDAG,

and the constrained graph drawing framework respectively. None of the frameworks was

able to render the graph layouts even after 2 hours of running and consuming almost 100 %

of computer resources. The tests were terminated after 2 hours of running. To test the

169

scalability and shareability of the constrained graph drawing framework, another test was

performed. First, the size of the graph data was reduced to approximately 4000 vertices by

removing the vertices and edges. The deleted vertices and edges were saved so they could

later be added back to the graph through dynamic operations. After loading and saving the

initial graph layouts, the constrained graph drawing framework added all the deleted vertices

and edges dynamically into the database until the graph size reached the size of the original

dataset. Finally, render tests were performed on all eight datasets. The test results in Table

47 show that the constrained graph drawing framework rendered real-world large graph

layouts in fewer than 20 seconds once the initial graph was stored in the database. The test

results also demonstrated the constrained graph drawing framework can render multiple real-

world large graph layouts simultaneously over the Internet, which is useful in a collaborative

environment.

Table 47. Rendering results of eight real-world large datasets.

Graph name Size

Size
(including

dummy
vertices)

Constrained
Render time

(milliseconds)

Graphviz
Render time

(milliseconds)

DynaDAG
Render time

(milliseconds)

as-caida20040105 16,301 69,740 10,813 too long too long

as-caida20040202 16,493 80,961 11,906 too long too long

as-caida20040301 16,655 93,723 14,422 too long too long

as-caida20040405 16,874 95,892 16,703 too long too long

as-caida20040503 17,160 95,625 16,813 too long too long

as-caida20040607 17,306 98,274 16,766 too long too long

as-caida20040705 17,509 99,364 16,468 too long too long

as-caida20040802 17,655 107,948 19,266 too long too long

170

Similar to the static tests, all three datasets were utilized to conduct performance tests

due to six dynamic operations. As dynamic operations require both retrieving and saving

data from and to the database, three detailed performance tests were performed. The first

performance test measured the I/O cost of data retrieval from the database to memory for

each dynamic operation. The second performance test was run to measure the I/O cost of

data insertion to the database, and the third performance test was run to measure the total run

time of the constrained graph drawing framework for each dynamic operation. Three

performance test results due to six dynamic operation are shown in Appendix C. The

combined results of all six tests due to dynamic operations are shown in Figures 72, 73, and

74, respectively. Figure 72 shows the data retrieval run time of the constrained graph

drawing framework, Figure 73 shows the time taken to save data into database, and Figure 74

shows the total run time of six dynamic operations, which combines the run times from

Figures 72 and 73.

171

Figure 72. I/O cost due to data retrieval for six dynamic operations

Figure 73. I/O cost due to database saving for six dynamic operations

172

The detailed run time analysis also shows that the Sugiyama heuristic employed in

dynamic operations was fast, taking fewer than 0.5 seconds on average. Figure 73 shows that

the bottleneck of dynamic operations was the step that saved data into the database. That the

database saving operation was more expensive than data retrieval is due to the fact that the

program copies the entire latest graph layout and creates a snapshot in the database once the

graph model is updated. On the other hand, the data retrieval operation retrieves only data

based on the impacted layers. This step could be improved by optimizing the relational data

structure, which is discussed in Chapter 5.

Figure 74. Performance of the constrained graph drawing framework dynamic operations

Because of the issue with the DynaDAG application, which did not return results

when running against those datasets, the performance test results were compared against the

performance of saving the entire graph into the database and the performance of Graphviz

when rendering the same graph. The performance comparisons between the constrained

173

graph drawing framework and Graphviz are shown in Figure 75. The chart shows that

though the I/O cost of retrieval and insertion impact the overall performance of the

constrained graph drawing framework dynamic operations, the size of the subgraph that was

impacted by the operations helped to reduce their total run time. Thus, the run time of the

constrained graph drawing framework was close to the run time of Graphviz and showed

some performance improvement when graph sizes approached greater than 1,000 vertices.

This result confirms that selecting only vertices and edges on impacted layers due to dynamic

operations improves the performance of the constrained graph framework against the

traditional static graph rendering frameworks.

Figure 75. Performance comparisons of the constrained graph drawing framework dynamic
operations vs. static graph saving operations and Graphviz

Asymptotic analysis for modified Sugiyama algorithms

The constrained graph drawing framework employed modified the Sugiyama algorithms.

Table 48 shows the asymptotic performance of algorithms that were utilized in the developed

174

constrained graph drawing framework. Except for the modified barycenter algorithm, which

had quadratic performance, the implementations of cycle removal and layer assignment

algorithms had linear performance. The asymptotic analysis in Table 48 shows that the

performance of the constrained graph drawing framework in the worst scenario was

)|(| 2CΘ , where C is the set of ordered constraints. However, in an average scenario the

number of ordered constraints is much fewer than the number of vertices.

175

Table 48. Asymptotic analysis for modified Sugiyama algorithms.

Sugiyama step Algorithm name Asymptotic run time
Cycle removal DFS |)||(| EV +Ο : V a set of vertices, E is a set of

edges
Cycle removal Greedy Cycle Removal |)||(| EV +Ο : V a set of vertices, E is a set of

edges
Layer Assignment Coffman-Graham |)||(| EV +Ο : V a set of vertices, E is a set

of edges
Crossing reduction Modified Barycenter)|(| 2CΟ : C a set of constraints

Asymptotic analysis of I/O cost due to database operations

The constrained graph drawing framework employed a relational database for storing layout

snapshots. Though the database enables the constrained graph drawing framework to

decouple the graph visualization from the graph editor which improves the scalability by

storing large datasets that cannot be stored in the computer main memory and helps to shift

from desktop environment to distributed environment, the database does incur the overhead

cost as the I/O cost is the dominant cost of a program run time. Two basic database

operations that were utilized by the constrained graph drawing framework are insertion and

retrieval. Insertion operation was executed while saving the layout snapshots from the

computer memory to the database. The retrieval operations were called while retrieving

impacted layers due to dynamic operations and retrieving graph layout snapshots for

rendering. Because all six dynamic operations utilize the same function that retrieves

vertices, edges, and constraints from the database based on the number of impacted layers,

the database asymptotic analysis for retrieval operations can be applied to all six dynamic

operations. The total I/O cost of insertion operation comprises eight insertion operations

that are saving graph layout, graph snapshot, vertices, edges, vertex snapshots, edges

176

snapshots, layers, and layer snapshots. Table 49 shows the I/O cost of each individual

insertion operation, and Table 52 shows the total cost of all operations. The total I/O cost of

retrieval due to dynamic operations comprises three individual transactions that are retrieving

vertices that are assigned to the impacted layers, incident edges of those vertices, and

constraints that are on the impacted layers. Let L′ be a set of L1, L2, L3, … Lk layers where

(1,2, .. k) are the impacted layers; Let V′ be a set of vertices where v ∈ V′ are vertices that

are assigned to impacted layers and E′ be a set of incident edges of v ∈ V′. Let C′ =(u,v) be

a set of ordered constraints where u, v are on the same layer and (u,v) ∈ V′. Table 50 shows

the I/O cost for each individual retrieval operation, and Table 52 shows the total cost of all

operations due to a dynamic operation. The I/O cost of retrieval for graph layout rendering

also comprises two transactions that are retrieving all vertex snapshots and edge snapshots as

shown in Table 51.

Table 49. I/O cost of individual insertion operations.

Operation Type Operation Name Asymptotic run time
Insertion Save graph information)1(Ο
Insertion Save snapshots)|(|VΟ : V a set of vertices
Insertion Save vertices)|(|VΟ : V a set of vertices
Insertion Save edges |)(|EΟ : E a set of edges
Insertion Save vertex snapshots)|(|VΟ : V a set of vertices
Insertion Save edge snapshots |)(|EΟ : E a set of edges
Insertion Save layers |)(|LΟ : L a set of layers
Insertion Save layer snapshots |)(|LΟ : L a set of layers

177

Table 50. I/O cost of individual operations due to a dynamic operation.

Operation Type Operation Name Asymptotic run time
Retrieval Get vertices by layer |)V(| ′Ο : V′ a set of vertices on the impacted

layers
Retrieval Get edges by layers |)E(| ′Ο : E′ a set of incident edges of V′
Retrieval Get constraints by layers |)(| ′Ο C : C′ a set of constraints

Table 51. I/O cost of retrieval of individual operations for rendering a graph layout.

Operation Type Operation Name Asymptotic run time
Retrieval Get all vertices |)(| VΟ : V a set of vertices
Retrieval Get all edges |)(| EΟ : E a set of edges

Table 52. Total I/O cost of database operations.

Step Operation Type Asymptotic run time
Save initial layout Insertion |)||||(| LEV ++Ο
Retrieve impacted layers due to
dynamic operations

Retrieval |)||||(| ′+′+′Ο CEV

Retrieve snapshots for rendering a graph
layout

Retrieval |)||(| EV +Ο

178

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

This research has shown that improved user experience for hierarchical graph

drawing and viewing can be achieved by incrementally updating the graph layout and by

storing graph layout snapshots into a database. This goal was achieved by incorporating two

new features. The first feature improved layout stability by including ordered constraints of

vertices on the same layer by extending the research of Forster (2004). The second feature

improved the scalability of graph visualization by decoupling graph editing from the graph

visualization components and storing graph layout snapshots into a relational database.

Though using a relational database to store graph layouts incurred overhead due to the I/O

cost of database operations, the following benefits flow from use of the database:

1. A graph drawing application could serve as “software as a service.”

2. Enables graph drawing in collaborative environment.

3. Enables animation of the graph sequences.

4. Improves scalability.

5. Enables graph sequence analysis; for example, to view differences from one version

to another.

A constrained graph drawing framework was developed based on the research of

North and Woodhull (2001) and Forster (2004). The architecture of the constrained graph

drawing framework was designed as client/server, which is similar to that of DynaDAG. In

179

addition to supporting dynamic operations employed by DynaDAG, such as add vertex, add

edge, remove vertex, and remove edge operations, the new framework implemented two new

dynamic operations: (1) add ordered constraints and (2) remove ordered constraints. These

two new dynamic operations were used to preserve layout stability. Unlike DynaDAG, the

constrained graph drawing framework utilized a modified Sugiyama heuristic to generate

graph layouts instead of using Network simplex. Another difference between DynaDAG and

the new framework is that the constrained graph drawing framework was designed to

separate graph editing from the visualization components and to store graph layouts and their

snapshots into a database, which enhanced the scalability of the graph visualization and

enabled the graph application to be deployed in a collaborative environment.

Three tests were performed. The first test was conducted to measure the effectiveness

of the constrained graph drawing framework. The second test was run to measure its

elegance, and the third test was conducted to measure the performance and scalability of the

constrained graph drawing framework. The first test results showed that if the horizontal

coordinate assignment factor is included from rendering, and if the overhead due to testing

the Graphviz as a black box—which may have added some overhead to the overall run

time—are excluded, the graph layouts generated by the constrained graph drawing

framework are compatible with the layouts generated by Graphviz using the same dataset.

The second test results showed that the constrained graph drawing framework preserved

layer stability while updating graph layouts during dynamic operations. The third test was

divided further into two tests, where the first test was run to measure the performance and

scalability of the constrained graph drawing framework for generating static graph layouts

180

and the second test was conducted to measure the performance and scalability of the

constrained graph drawing framework during dynamic operations. The performance test

results for generating static graph layouts showed that the constrained graph drawing

framework performed better than Graphviz because the current implementation of the

constrained graph drawing framework did not include a horizontal coordinate assignment

algorithm in the Sugiyama heuristic and because the Graphviz test was run as a black box,

which may have added some overhead to the calculated run time. Thus, the performances of

the constrained graph drawing framework and Graphviz are within a few milliseconds of

each other if the horizontal assignment is taken into account and if the runtime overhead due

to the test mechanism is excluded. The scalability chart shows that as the graph size

increased the constrained graph drawing framework performed reasonably well. The

framework rendered a graph layout of about 10,000 vertices in a few seconds, which is

acceptable in a collaborative environment.

Implications

By decoupling graph editing from the graph visualization component and utilizing a

database to store the graph layout and its snapshots, this research presented many

possibilities for graph viewing and graph analysis. One possibility is to move away from the

traditional desktop environment to an online environment. HTML5 specifications are now

mature, and newer versions of most browsers now support HTML5. Online interactive graph

visualization such as graph animation is now possible if a sequence of layout snapshots is

stored in a database. Another possibility for utilizing the storage of graph data in a database

is to have graph versioning for enterprise process modeling. Furthermore, the problem of

181

displaying very large graphs has been discussed in graph layout research. Searching and

displaying subgraphs are now possible by retrieving subgraph snapshots from a database.

Graph statistic functionality within the graph visualization has not been addressed widely,

because most algorithms do not preserve the previous states of the graph. Storing graph data

in a database makes it possible to have graph statistic features in graph visualization. The

abstract model of aesthetic criteria can also be expanded to other types of graphs. For

example, the orthogonal graph can also be implemented using this approach.

Recommendations

The constrained graph drawing framework developed in this research is still in an

early state. The framework is still missing a number of important functions and features of a

graph drawing system. Thus, many enhanced features should be developed for future

versions of the constrained graph drawing framework before it could be used in real-world

applications. An implementation of the horizontal coordinate assignment and support for

Bezier curve and polyline drawing should improve the graph rendering engine and make it

compatible with other real-world graph drawing and visualization applications. The run-time

of the constrained graph drawing framework during dynamic operations can also be

improved by optimizing the database saving function, which is the bottleneck of the

constrained graph drawing framework performance. One possible enhancement to graph

visualization is to include a search functionality to support the subgraph display

functionality. Other improvements to the graph visualization component include a Google

Maps-like cursor that allows the end user to move the graph to a location of interest by

dragging with the mouse. This improvement should enhance user experience while viewing

182

graph layouts on line. Several improvements in the graph editor component are possible.

One improvement would be to have a graphical user interface that allows the user to modify

the graph layout in a friendly graphical environment. Another improvement would be to

allow the end user to add vertices without specifying a layer. The system should

automatically assign a layer to the new vertex based on the given edge.

Summary

Data in real-world graph drawing applications often change frequently but

incrementally. Any drastic change in the graph layout could disrupt a user’s “mental map.”

Furthermore, real-world applications like enterprise process or e-commerce graphing, where

data increase rapidly, demand a good response time when rendering the graph layout in a

multi-user environment and in real-time mode. Most standard static graph drawing

algorithms apply global changes and redraw the entire graph layout whenever the data

change. The new layout may be very different from the previous layout and the time taken to

redraw the entire graph degrades quickly as the amount of graph data grows. Dynamic

behavior and the quantity of data of real-world applications pose challenges for existing

graph drawing algorithms in terms of incremental stability and scalability.

Dynamic graph drawing algorithms have been proposed to accommodate the dynamic

behaviors of real-world graph drawing applications, but those algorithms also impose several

dynamic aesthetic criteria on graph layouts. The criteria improve the incremental stability of

the graph layout, but their layout constraints hamper the reduction of crossings. There has

been little research on the problem of minimizing crossings while adhering to a set of

dynamic aesthetic criteria for dynamic graph layouts. The goal of this dissertation was to

183

develop a constrained graph drawing framework based on the work of North and Woodhull

(2001) and to design a modified Sugiyama heuristic for solving the constrained one-sided

crossing reduction problem based on the work by Forster (2004). The goal of the heuristic

was to find a balance between the aesthetic criteria and minimizing the edge crossings.

This research first reviewed the aesthetic criteria for incremental graph layout. Then

the research formulated an abstract model that represents those aesthetic criteria for

incremental graph drawing and visualization. The objective of this abstract model was to

define generic requirements for building an incremental graph drawing and visualization

framework. The research then translated the abstract model into a concrete implementation

of a modified Sugiyama heuristic, which was utilized by the developed constrained graph

drawing framework. The enhancement of the modified Sugiyama was that it included

ordered constraints of vertices on the layer, which preserves layout stability. A new

constrained graph drawing framework was then developed. The architecture of the new

framework is a client/server model in which clients communicate with a server through the

HTTP and TCP protocols. Unlike DynaDAG, the newly developed framework completely

decoupled the graph editor from the graph visualization process through the use of a

relational database. Once receiving update operations from the graph editing component

(client), the server first updates the layout utilizing the modified Sugiyama heuristic. Then it

saves the updated layout and its snapshot into a relational database. The graph visualization

component (client) retrieves the graph layout snapshot from the server and displays the graph

layout on line. This process runs on separated threads asynchronously.

184

The research conducted three tests that measured the effectiveness, elegance, and

efficiency (performance and scalability) of the developed constrained graph drawing

framework. Due to the limitations of the graph visualization component, which does not

implement the horizontal coordinate assignment and does not draw multilayer edges as

polylines, the research defined three aesthetic criteria that were used to compare layouts

generated using the same datasets. Using this scoring mechanism, the tests showed that

layouts generated by the constrained graph drawing framework were compatible with layouts

generated by Graphviz. Hence, the constrained graph drawing framework satisfied the

effectiveness and elegance criteria.

To measure the efficiency of the constrained graph drawing framework in drawing

static graphs, a performance test was conducted that compared the performance of the

constrained graph drawing framework with that of Graphviz. As the current version of

DynaDAG could not handle a large graph layout, to measure the efficiency of the constrained

graph drawing framework in drawing graph layout during dynamic operations a simple

performance was run and the result displayed to show the run time of the developed

framework.

In summary, though many enhancements for the developed constrained graph

drawing framework are possible, the research achieved the goals defined in Chapter 1. First,

the research defined an abstract model representing aesthetic criteria for incremental graph

layouts. Second, the research developed a constrained graph drawing framework based on

the work of North and Woodhull (2001) that supports six dynamic operations. Third, the

research implemented a modified Sugiyama heuristic in the constrained graph drawing

185

framework by extending the work of Forster (2004). Fourth, the test results showed the

developed constrained graph drawing framework satisfied all three aesthetic criteria for

incremental graph drawing and visualization. In addition to the dissertation goals, the

research demonstrated that although decoupling graph visualization from graph editing

functionality—and utilizing a relational database to store graph layouts and their snapshots

incurred additional overhead due to the I/O cost of database operations, the constrained graph

drawing framework improves scalability and provides a foundation for graph editing

applications in a collaborative environment. These features could be extended to support

potential features such as graph animation, graph versioning, graph analysis, and drawing

subgraphs for very large graphs in real time.

186

Appendix A

Modified Sugiyama Algorithms

TopologicalSortDFS source code
public class TopologicalSortDFS implements TopologicalSort {
 List<Vertex> list;
 List<Vertex> result;
 List<Vertex> sources;
 List<Vertex> sinks;

 public List<Vertex> sort(final List<Vertex> vertices) {
 list = new ArrayList<Vertex>();
 list.addAll(vertices);

 sources = new ArrayList<Vertex>();
 sinks = new ArrayList<Vertex>();
 result = new ArrayList<Vertex>();
 for (Iterator<Vertex> iter = list.iterator(); iter.hasNext();) {
 Vertex vertex = iter.next();
 // isolated vertices
 if (0 == vertex.getIndegree() && 0 == vertex.getOutdegree()) {
 sinks.add(vertex);
 iter.remove();
 }
 // sources
 else if (0 == vertex.getIndegree()) {
 sources.add(vertex);
 iter.remove();
 }
 }

 // result.addAll(sources);
 for (Vertex v : sources) {
 addChild(v);
 }

 if (!list.isEmpty()) {
 for (Vertex v : list) {
 addRemainder(v);
 }
 }
 result.addAll(sinks);
 return result;
 }

 private void addChild(Vertex v) {
 if (result.contains(v))
 return;
 result.add(v);
 int index = list.indexOf(v);
 if (index >= 0)
 list.remove(index);
 for (Vertex child : v.getChildren()) {
 addChild(child);
 }
 }

 private void addRemainder(Vertex v) {
 if (result.contains(v))
 return;
 result.add(v);
 for (Vertex child : v.getChildren()) {
 addRemainder(child);
 }
 }

}

187

TopologicalSortGreedy source code

public class TopologicalSortGreedy implements TopologicalSort {
 protected final Log logger = LogFactory.getLog(getClass());
 List<Vertex> list;
 List<Vertex> result;
 List<Vertex> sources;
 List<Vertex> sinks;
 List<Vertex> vertices;

 public List<Vertex> sort(final List<Vertex> input) {
 list = new ArrayList<Vertex>();
 list.addAll(input);
 sinks = new ArrayList<Vertex>();
 sources = new ArrayList<Vertex>();
 // vertices = new ArrayList<Vertex>();

 Comparator<Vertex> reverse = new ReverseComparator();

 while (false == list.isEmpty()) {
 for (Iterator<Vertex> iter = list.iterator(); iter.hasNext();) {
 Vertex vertex = iter.next();
 // isolated vertices
 if (0 == (vertex.getOutdegree() - vertex.getCycleRemovalOutdegree())) {
 sinks.add(vertex);
 for (Vertex parent : vertex.getParents()) {
 parent.setCycleRemovalOutdegree(parent.getCycleRemovalOutdegree() + 1);
 }
 iter.remove();
 }
 }
 for (Iterator<Vertex> iter = list.iterator(); iter.hasNext();) {
 Vertex vertex = iter.next();
 // sources
 if (0 == (vertex.getIndegree() - vertex.getCycleRemovalIndegree())) {
 sources.add(vertex);
 for (Vertex child : vertex.getChildren()) {
 child.setCycleRemovalIndegree(child.getCycleRemovalIndegree() + 1);
 }
 iter.remove();
 }
 }
 if (false == list.isEmpty()) {
 List<Vertex> temp = new ArrayList<Vertex>();
 for (Vertex v : list) {
 temp.add(new Vertex(v.getId(), ((v.getOutdegree() - v
 .getCycleRemovalOutdegree()) - (v.getIndegree() - v
 .getCycleRemovalIndegree()))));
 }
 // sort vertices base on their delta in a reversed order

 Collections.sort(temp, reverse);
 Vertex vertex = temp.get(0);
 int index = list.indexOf(vertex);
 vertex = list.get(index);
 // logger.debug(vertex.getId());
 for (Vertex child : vertex.getChildren()) {
 child.setCycleRemovalIndegree(child.getCycleRemovalIndegree() + 1);
 }
 for (Vertex parent : vertex.getParents()) {
 parent.setCycleRemovalOutdegree(parent.getCycleRemovalOutdegree() + 1);
 }
 sources.add(vertex);
 list.remove(index);
 }
 }

 sources.addAll(sinks);
 return sources;
 }

 public static class ReverseComparator implements Comparator<Vertex> {
 public int compare(Vertex arg0, Vertex arg1) {
 if (arg1.value > arg0.value)

188

 return 1;
 else if (arg1.value == arg0.value)
 return 0;
 else
 return -1;
 }
 }

}

189

LayerAssignmentTopDownImpl source code

public class LayerAssignmentTopDownImpl extends LayerAssignmentImpl {
 protected final Log logger = LogFactory.getLog(getClass());
 static LabelComparator labelComparator = new LabelComparator();
 List<Vertex> result = new ArrayList<Vertex>();
 /*
 * assign vertices into layers 1. sort vertices based on lexicographical order
 * starts from the sinks
 */
 public void assign(SimpleGraph graph, int max) throws Exception {
 Set<Vertex> assignedlist = new HashSet<Vertex>();
 List<Vertex> sortedlist = sort(graph);
 if (graph.getVertices().size() != sortedlist.size()) {
 throw new Exception("assigning layer: vertices do not match after sorting");
 }
 LayerDataStructure layers = graph.layers;
 layers.setMax(max);
 // add all source to the list
 for (Iterator<Vertex> iter = sortedlist.iterator(); iter.hasNext();) {
 Vertex v = iter.next();
 v.getParentLabels().clear();
 if (0 == v.getIndegree()) {
 layers.add(v);
 iter.remove();
 assignedlist.add(v);
 logger.debug("add " + v.getId() + " to layer: " + layers.getCurrentlayer());
 }
 }
 layers.nextLayer();
 // recursively assign remaining vertices into layers
 // stop when all vertices are assigned onto layers
 ReverseComparator comparator = new ReverseComparator();
 while (false == sortedlist.isEmpty()) {
 List<Vertex> locals = findUnassignedLayeredVertices(graph, assignedlist,
 sortedlist);
 if (false == locals.isEmpty()) {
 Collections.sort(locals, comparator);
 for (Vertex v : locals) {
 layers.add(v);
 assignedlist.add(v);
 sortedlist.remove(v);
 }
 locals.clear();
 }
 layers.nextLayer();
 }
 assignedlist.clear();
 addDummyVertices(graph);
 graph.getLayers().cleanupEmptyLayer();
 }

 List<Vertex> findUnassignedLayeredVertices(SimpleGraph graph,
 Set<Vertex> assignedlist, List<Vertex> sortedlist) throws Exception {
 List<Vertex> result = new ArrayList<Vertex>();
 LayerDataStructure layers = graph.layers;
 // find set R of vertices whose sinks have been assigned to layer
 for (Vertex v : sortedlist) {
 List parents = v.getParents();
 logger.debug(v.getId() + ": parents "
 + SimpleGraphUtil.printVertexSummary(parents));
 if (assignedlist.containsAll(parents)) {
 result.add(v);
 logger.debug("added vertex: " + v.getId() + " to assigned list");
 }
 }
 return result;
 }

}

190

CrossingReductionConstraintBaryCenter source code

public class CrossingReductionConstraintBaryCenter extends
 CrossingReductionBaryCenter {
 protected final Log logger = LogFactory.getLog(getClass());

 /**
 * reorder a layer(i) based on barycenter values
 */
 public void sortVerticesBasedonBarycenter(SimpleGraph graph, int layer,
 int nextlayer) throws Exception {
 BarycenterComparator comparator = new BarycenterComparator();

 List<Vertex> vertices = computeBarycenterValue(graph, layer, nextlayer);
 logger
 .debug("CrossingReductionConstraintBaryCenter before sorted" + vertices);
 Collections.sort(vertices, comparator);
 logger.debug("CrossingReductionConstraintBaryCenter after sorted" + vertices);

 Map<Vertex, Edge> violatedConstraints = findViolatedConstraints(graph,
 vertices, graph.getConstraints(), layer, nextlayer);
 if (!violatedConstraints.isEmpty()) {
 for (Vertex v : violatedConstraints.keySet()) {
 Edge e = violatedConstraints.get(v);
 vertices.remove(e.getSource());
 vertices.remove(e.getSink());
 vertices.add(v);
 }
 vertices = computeBarycenterValue(graph, layer, nextlayer);
 /**
 * sort the list based on bary center values
 */
 Collections.sort(vertices, comparator);
 for (Vertex v : violatedConstraints.keySet()) {
 Edge e = violatedConstraints.get(v);
 int index = vertices.indexOf(v);
 Vertex source = e.getSource();
 Vertex sink = e.getSink();
 source.setValue(v.getValue());
 sink.setValue(v.getValue() + 0.01f);
 source.setIndex(index);
 sink.setIndex(index + 1);
 logger.debug("add source and sink back " + source.getId() + ", "
 + sink.getId());
 vertices.remove(index);
 vertices.add(index, source);
 vertices.add(index + 1, sink);
 }
 }
 int pos = 0;
 for (Vertex v : vertices) {
 v.setIndex(pos++);
 graph.barycenter.add(v);
 }
 }
 Map<Vertex, Edge> findViolatedConstraints(SimpleGraph graph,
 List<Vertex> vertices, List<Edge> constraints, int layer, int nextLayer) {
 Map<Vertex, Edge> result = new HashMap<Vertex, Edge>();
 for (Edge e : constraints) {
 if (vertices.contains(e.getSource())) {
 Vertex source = vertices.get(vertices.indexOf(e.getSource()));
 Vertex sink = vertices.get(vertices.indexOf(e.getSink()));
 if (source.getValue() > sink.getValue()
 || source.getIndex() > sink.getIndex()) {
 Vertex v = createDummyVertex(graph, source, sink, layer, nextLayer);
 logger
 .debug("new dummy vertex created to compensate the violated constraints");
 Edge edge = new Edge(source, sink);
 result.put(v, edge);
 }
 }
 }
 return result;
 }

191

 private Vertex createDummyVertex(SimpleGraph graph, Vertex source,
 Vertex sink, int layer, int nextLayer) {
 int vertexNextValue = graph.getVertexMaxValue() + 1;
 Vertex v = new Vertex(vertexNextValue);
 int sourceDegree = (layer < nextLayer) ? source.getOutdegree() : source
 .getIndegree();
 int sinkDegree = (layer < nextLayer) ? sink.getOutdegree() : sink
 .getIndegree();
 v.setValue((source.getValue() * sourceDegree + sink.getValue() * sinkDegree)
 / (sourceDegree + sinkDegree));
 return v;
 }

}

192

GraphAction source code

public class GraphAction implements Action {
 protected final Log logger = LogFactory.getLog(getClass());
 private ApplicationContext ctx;
 GraphDAO dao;
 GeneralJdbcDao general;
 PojoDAOImpl pojo;
 SimpleGraphService service;
 CrossingReductionSweep crossingReductionAlg;
 int iteration;

 public GraphAction(int maxIteration) {
 ctx = new FileSystemXmlApplicationContext("/WEB-INF/graph-servlet.xml");
 dao = (GraphDAO) ctx.getBean("graphDAO");
 general = (GeneralJdbcDao) ctx.getBean("generalDAO");
 service = (SimpleGraphService) ctx.getBean("simpleGraphPOJService");

 crossingReductionAlg = CrossingReductionSweepFactory.getAlg(
 CrossingReductionSweepFactory.DYNAMIC, maxIteration);
 iteration = maxIteration;
 pojo = new PojoDAOImpl();
 }

 public Object execute(String s) throws Exception {
 return execute(new StringReader(s));
 }

 public Object execute(Reader in) throws Exception {
 LexicalAnalyzer lexical = new DotLexicalAnalyzer(in);
 DotGraphParser parser = new DotGraphParser(lexical);
 Object result = null;
 AbstractExpression absyn = parser.parse();
 // logger.debug("executing command " + absyn.getExpressionType());
 if (AbstractExpression.GRAPH == absyn.getExpressionType()) {
 return executeGraph(absyn, parser);
 } else if (AbstractExpression.ADD_VERTEX == absyn.getExpressionType()) {
 result = executeAddVertexOperation(absyn, parser);
 } else if (AbstractExpression.REMOVE_VERTEX ==
absyn.getExpressionType()) {
 result = executeRemoveVertexOperation(absyn, parser);
 } else if (AbstractExpression.ADD_EDGE == absyn.getExpressionType()) {
 result = executeAddEdgesOperation(absyn, parser);
 } else if (AbstractExpression.REMOVE_EDGE == absyn.getExpressionType())
{
 result = executeRemoveEdgesOperation(absyn, parser);
 }

 else if (AbstractExpression.SET_MOVEMENT == absyn.getExpressionType()) {

 } else if (AbstractExpression.REMOVE_MOVEMENT ==
absyn.getExpressionType()) {

 } else if (AbstractExpression.SET_ORDER == absyn.getExpressionType()) {

193

 result = executeSetOrderConstraintsOperations(absyn, parser);
 } else if (AbstractExpression.REMOVE_ORDER == absyn.getExpressionType())
{
 result = executeRemoveOrderConstraintsOperations(absyn, parser);
 }
 return result;
 }

 SimpleGraph executeAddVertexOperation(AbstractExpression absyn,
 DotGraphParser parser) throws Exception {
 AddVerticesExp exp = (AddVerticesExp) absyn;
 List<Edge> edges = new ArrayList<Edge>();
 List<Vertex> vertices = new ArrayList<Vertex>();
 List<Edge> multi = new ArrayList<Edge>();

 String id = exp.getId();
 int newVertexId = new Integer(id).intValue();
 int lastImpactedLayer = exp.getLayer();
 int firstImpactedLayer = exp.getLayer();

 // posible next value for dummy vertices if any
 int vertexNextValue = general.getQueryForInt(
 "select max(vertex_id) from vertex where graph_name=?",
 new Object[] { exp.getGraphName() });

 vertexNextValue = (vertexNextValue > newVertexId) ? (vertexNextValue +
1)
 : (newVertexId + 1);
 logger.debug("next possible vertex id " + vertexNextValue);
 /**
 * simple test to check if the vertex is new or existing
 */
 VertexObject test = dao.getVertex(exp.getGraphName(), newVertexId);
 if (null != test) {
 throw new Exception("Vertex already exists..." + id);
 }

 if (exp.getEdges().isEmpty()) {
 throw new Exception("Missing required edges.. Please add edges..");
 }

 Vertex newVertex = new Vertex(newVertexId, 0);
 newVertex.setLayer(exp.getLayer());
 newVertex.setExisted(false);
 newVertex.setDummy(0);
 newVertex.setExisted(false);
 logger.debug("new vertex " + newVertex.getId() + " layer "
 + newVertex.getLayer());

 // add vertex into a list vertices
 vertices.add(newVertex);

 Vertex source = null;
 Vertex sink = null;

194

 for (EdgeAbstract edge : exp.getEdges()) {
 int sourceid = new Integer(edge.getSource()).intValue();
 int sinkid = new Integer(edge.getSink()).intValue();

 logger.debug("edge " + sourceid + ":" + sinkid);

 if (sourceid == sinkid) {
 throw new Exception("two cycle not supported " + sourceid + ": " +
sinkid);
 }

 if (sourceid == newVertexId) {
 source = newVertex;
 VertexObject vertex = dao.getVertex(exp.getGraphName(), sinkid);
 sink = new Vertex(vertex.getVertexId(), vertex.getBarycentric());
 sink.setIndex(vertex.getPosition());
 sink.setLayer(vertex.getLayer());
 sink.setDummy(vertex.getDummy());
 sink.setExisted(true);
 } else {
 sink = newVertex;
 VertexObject vertex = dao.getVertex(exp.getGraphName(), sourceid);
 source = new Vertex(vertex.getVertexId(), vertex.getBarycentric());
 source.setIndex(vertex.getPosition());
 source.setLayer(vertex.getLayer());
 source.setDummy(vertex.getDummy());
 source.setExisted(true);
 }
 // if layer(sink) < layer(source)
 // ==> likely create cycle
 // ==> needs to be reversed
 if (source.getLayer() > sink.getLayer()) {
 Vertex temp = source;
 source = sink;
 sink = temp;
 }

 lastImpactedLayer = Math.max(sink.getLayer(), lastImpactedLayer);
 firstImpactedLayer = Math.min(source.getLayer(), firstImpactedLayer);
 logger.debug("first layer " + firstImpactedLayer + " last layer "
 + lastImpactedLayer);

 addEdge(source, sink, vertices, edges, multi, vertexNextValue);
 }

 // get vertices and edges in these impacted layers
 long start2 = System.currentTimeMillis();
 SimpleGraph graph = getImpactedVerticesEdges(exp.getGraphName(),
 firstImpactedLayer, lastImpactedLayer, vertices, edges, multi);
 long end2 = System.currentTimeMillis();
 logger.info("get data from db takes: " + (end2 - start2));
 logger.debug("firstImpactedLayer " + firstImpactedLayer + ", max layer "
 + lastImpactedLayer + ", edges " + graph.getEdges().size() + ",

195

vertices "
 + graph.getVertices().size());

 // execute function here
 long start = System.currentTimeMillis();
 crossingReductionAlg.reduce(graph);
 long end1 = System.currentTimeMillis();
 System.out.println("constrained crossing reduction takes " + (end1 -
start));
 service.saveDynamicGraph(graph);
 long end = System.currentTimeMillis();
 System.out.println("save into db takes " + (end - end1));
 return graph;
 }

 SimpleGraph executeRemoveVertexOperation(AbstractExpression absyn,
 DotGraphParser parser) throws Exception {
 SimpleGraph graph = new SimpleGraph();
 AddVerticesExp exp = (AddVerticesExp) absyn;

 String id = exp.getId();
 int vertexId = new Integer(id).intValue();
 VertexObject vertexObject = dao.getVertex(exp.getGraphName(), vertexId);
 if (null == vertexObject) {
 logger.warn("vertex not found " + exp.getId());
 return graph;
 }

 int children = general.getQueryForInt(
 "select count(*) from edge where graph_name=? and head=? ", new
Object[] {
 exp.getGraphName(), new Integer(exp.getId()) });
 int parents = general.getQueryForInt(
 "select count(*) from edge where graph_name=? and tail=?", new
Object[] {
 exp.getGraphName(), new Integer(exp.getId()) });

 int lastImpactedLayer = (children > 0) ? vertexObject.getLayer() + 1
 : vertexObject.getLayer();
 int firstImpactedLayer = (parents > 0) ? vertexObject.getLayer() - 1
 : vertexObject.getLayer();

 pojo.updateByQuery("delete from edge where graph_name='" +
exp.getGraphName()
 + "' and (head=" + id + " or tail=" + id + ")");

 pojo.updateByQuery("delete from vertex where graph_name='"
 + exp.getGraphName() + "' and vertex_id=" + id);

 pojo.updateByQuery("delete from order_constraint where graph_name='"
 + exp.getGraphName() + "' and (vertex1_id=" + id + " or vertex2_id=" +
id
 + ")");

196

 // get vertices and edges in these impacted layers
 graph = getImpactedVerticesEdges(exp.getGraphName(), firstImpactedLayer,
 lastImpactedLayer, new ArrayList<Vertex>(), new ArrayList<Edge>(),
 new ArrayList<Edge>());
 logger.debug("total vertices before dummy " +
graph.getVertices().size());

 crossingReductionAlg.reduce(graph);
 service.saveDynamicGraph(graph);
 return graph;
 }

 Object executeMovementConstraintsOperations(AbstractExpression absyn,
 DotGraphParser parser) {
 SimpleGraph graph = new SimpleGraph();
 SetConstraintExp exp = (SetConstraintExp) absyn;
 String graphName = exp.getGraphName();
 List<Integer> vertices = exp.getVertice();
 // execute function here
 if (AbstractExpression.REMOVE_MOVEMENT == absyn.getExpressionType()) {

 } else if (AbstractExpression.SET_MOVEMENT == absyn.getExpressionType())
{

 }
 return graph;
 }

 SimpleGraph executeAddEdgesOperation(AbstractExpression absyn,
 DotGraphParser parser) throws Exception {
 List<Vertex> vertices = new ArrayList<Vertex>();
 List<Edge> edges = new ArrayList<Edge>();
 List<Edge> multi = new ArrayList<Edge>();
 AddEdgesExp exp = (AddEdgesExp) absyn;

 int lastImpactedLayer = 0;
 int firstImpactedLayer = 0;

 Vertex source = null;
 Vertex sink = null;

 // posible next value for dummy vertices if any
 int vertexNextValue = general.getQueryForInt(
 "select max(vertex_id) from vertex where graph_name=?",
 new Object[] { exp.getGraphName() });
 vertexNextValue += 1;

 logger.debug("next possible vertex id " + vertexNextValue);

 for (EdgeAbstract edge : exp.getEdges()) {
 int sourceid = new Integer(edge.getSource()).intValue();
 int sinkid = new Integer(edge.getSink()).intValue();

197

 if (sourceid == sinkid) {
 throw new Exception("cycle not supported " + sourceid + ": " +
sinkid);
 }

 VertexObject temp1 = dao.getVertex(exp.getGraphName(), sourceid);
 VertexObject temp2 = dao.getVertex(exp.getGraphName(), sinkid);
 source = new Vertex(temp1);
 sink = new Vertex(temp2);

 // if layer(sink) < layer(source)
 // ==> likely create cycle
 // ==> needs to be reversed
 if (source.getLayer() > sink.getLayer()) {
 Vertex temp = source;
 source = sink;
 sink = temp;
 }

 lastImpactedLayer = Math.max(sink.getLayer(), lastImpactedLayer);
 firstImpactedLayer = Math.min(source.getLayer(), firstImpactedLayer);
 logger.info("first layer " + firstImpactedLayer + " last layer "
 + lastImpactedLayer);

 addEdge(source, sink, vertices, edges, multi, vertexNextValue++);
 }

 // get vertices and edges in these impacted layers
 SimpleGraph graph = getImpactedVerticesEdges(exp.getGraphName(),
 firstImpactedLayer, lastImpactedLayer, vertices, edges, multi);

 logger.debug("firstImpactedLayer " + firstImpactedLayer + ", max layer "
 + lastImpactedLayer + ", edges " + graph.getEdges().size() + ",
vertices "
 + graph.getVertices().size());
 // execute function here
 crossingReductionAlg.reduce(graph);
 service.saveDynamicGraph(graph);
 return graph;
 }

 SimpleGraph executeRemoveEdgesOperation(AbstractExpression absyn,
 DotGraphParser parser) throws Exception {
 AddEdgesExp exp = (AddEdgesExp) absyn;
 int lastImpactedLayer = 0;
 int firstImpactedLayer = 0;

 VertexObject source = null;
 VertexObject sink = null;
 SimpleGraph graph = null;

 for (EdgeAbstract edge : exp.getEdges()) {
 int sourceid = new Integer(edge.getSource()).intValue();
 int sinkid = new Integer(edge.getSink()).intValue();

198

 if (sourceid == sinkid) {
 throw new Exception("cycle not supported " + sourceid + ": " +
sinkid);
 }

 source = dao.getVertex(exp.getGraphName(), sourceid);
 sink = dao.getVertex(exp.getGraphName(), sinkid);
 if (null != source && null != sink) {
 firstImpactedLayer = Math.min(source.getLayer(), firstImpactedLayer);
 lastImpactedLayer = Math.max(sink.getLayer(), lastImpactedLayer);
 EdgeObject e = dao.getEdge(exp.getGraphName(), sourceid, sinkid);
 if (1 == e.getMultilayer()) {
 dao.updateByQuery("delete from VertexObject where graphName='"
 + exp.getGraphName() + "' and dummy=1 and source=" + e.getSource()
 + " and sink=" + e.getSink());
 dao.updateByQuery("delete from EdgeObject where graphName='"
 + exp.getGraphName() + "' and dummy=1 and source=" + e.getSource()
 + " and sink=" + e.getSink());
 }

 dao.delete(e);

 // get vertices and edges in these impacted layers
 graph = getImpactedVerticesEdges(exp.getGraphName(),
firstImpactedLayer,
 lastImpactedLayer, new ArrayList<Vertex>(), new ArrayList<Edge>(),
 new ArrayList<Edge>());

 logger.debug("firstImpactedLayer " + firstImpactedLayer + ", max layer
"
 + lastImpactedLayer + ", edges " + graph.getEdges().size()
 + ", vertices " + graph.getVertices().size());

 crossingReductionAlg.reduce(graph);
 service.saveDynamicGraph(graph);
 }
 }
 return graph;
 }

 SimpleGraph executeSetOrderConstraintsOperations(AbstractExpression
absyn,
 DotGraphParser parser) throws Exception {
 SimpleGraph graph = null;
 List constraintlist = new ArrayList();
 List snapshotlist = new ArrayList();
 SetOrderedConstraintExp exp = (SetOrderedConstraintExp) absyn;
 String graphName = exp.getGraphName();
 List<OrderedPairVertex> list = exp.getVertice();
 List<Edge> constraints = new ArrayList<Edge>();
 List<Edge> violated = new ArrayList<Edge>();
 int minLayer = 0;
 int maxLayer = 0;

199

 int currentversion = general.getLayoutSnapshotMaxVersion(graphName);

 int max = general.getQueryForInt(
 "select max(layer) from layer where graph_name=?",
 new Object[] { absyn.getGraphName() });

 for (OrderedPairVertex pair : list) {
 if (!pair.getVertex1().equals(pair.getVertex2())) {
 VertexObject v1 = dao.getVertex(graphName,
 new Integer(pair.getVertex1()).intValue());
 VertexObject v2 = dao.getVertex(graphName,
 new Integer(pair.getVertex2()).intValue());

 OrderConstraint constraint = new OrderConstraint();
 constraint.setGraphName(graphName);
 constraint.setLayer(v1.getLayer());
 constraint.setVertex1Id(v1.getVertexId());
 constraint.setVertex2Id(v2.getVertexId());
 constraintlist.add(constraint);

 OrderConstraintSnapshot snapshot = new OrderConstraintSnapshot();
 snapshot.setGraphName(graphName);
 snapshot.setGraphVersion(currentversion);
 snapshot.setLayer(v1.getLayer());
 snapshot.setVertex1Id(v1.getVertexId());
 snapshot.setVertex2Id(v2.getVertexId());
 snapshotlist.add(snapshot);

 minLayer = Math.min(minLayer, v1.getLayer());
 maxLayer = Math.max(maxLayer, v1.getLayer());

 Vertex vertex1 = new Vertex(v1);
 vertex1.setIndex(v1.getPosition());

 Vertex vertex2 = new Vertex(v2);
 vertex1.setIndex(v2.getPosition());

 Edge e = new Edge(vertex1, vertex2);
 e.setExisted(false);
 constraints.add(e);
 /**
 * constraint is violated
 */
 if (v1.getBarycentric() > v2.getBarycentric()
 || v1.getPosition() > v2.getPosition()) {
 violated.add(e);
 }
 } else {
 logger.warn("cycle found " + pair.getVertex1());
 }
 }
 if (!violated.isEmpty()) {
 if (maxLayer == minLayer) {
 if (0 == minLayer)

200

 maxLayer = minLayer + 1;
 else if (maxLayer == max) {
 minLayer = minLayer - 1;
 }
 }
 // get vertices and edges in these impacted layers
 graph = getImpactedVerticesEdges(exp.getGraphName(), minLayer,
maxLayer,
 new ArrayList<Vertex>(), new ArrayList<Edge>(), new
ArrayList<Edge>());

 graph.getConstraints().addAll(constraints);
 crossingReductionAlg.reduce(graph);
 service.saveDynamicGraph(graph);
 } else {
 dao.saveAll(constraintlist);
 dao.saveAll(snapshotlist);
 }
 return graph;
 }

 Object executeRemoveOrderConstraintsOperations(AbstractExpression absyn,
 DotGraphParser parser) throws Exception {
 List<OrderConstraint> temp = new ArrayList<OrderConstraint>();
 List<OrderConstraintSnapshot> temp1 = new
ArrayList<OrderConstraintSnapshot>();
 SetOrderedConstraintExp exp = (SetOrderedConstraintExp) absyn;
 String graphName = exp.getGraphName();
 List<OrderedPairVertex> list = exp.getVertice();
 int minLayer = 0;
 int maxLayer = 0;
 int max = general.getQueryForInt(
 "select max(layer) from layer where graph_name=?",
 new Object[] { absyn.getGraphName() });

 int currentversion = general.getLayoutSnapshotMaxVersion(graphName);

 for (OrderedPairVertex pair : list) {
 VertexObject v1 = dao.getVertex(graphName,
 new Integer(pair.getVertex1()).intValue());
 VertexObject v2 = dao.getVertex(graphName,
 new Integer(pair.getVertex2()).intValue());

 OrderConstraint constraint = dao.getOrderConstraint(graphName, new
Integer(
 pair.getVertex1()).intValue(), new
Integer(pair.getVertex2()).intValue());
 minLayer = maxLayer = constraint.getLayer();
 dao.updateByQuery("delete from OrderConstraint where graphName='"
 + exp.getGraphName() + "'and vertex1Id=" + pair.getVertex1()
 + " and vertex2Id=" + pair.getVertex2());
 }
 if (maxLayer == minLayer) {
 if (0 == minLayer)

201

 maxLayer = minLayer + 1;
 else if (maxLayer == max) {
 minLayer = minLayer - 1;
 }
 }

 // get vertices and edges in these impacted layers
 long start = System.currentTimeMillis();
 SimpleGraph graph = getImpactedVerticesEdges(exp.getGraphName(),
minLayer,
 maxLayer, new ArrayList<Vertex>(), new ArrayList<Edge>(),
 new ArrayList<Edge>());
 long end = System.currentTimeMillis();
 logger.debug("get data from db takes: " + (end - start));
 crossingReductionAlg.reduce(graph);
 service.saveDynamicGraph(graph);
 return graph;
 }

 /*
 * retrieve data from database and build the subgraph
 */
 public SimpleGraph getImpactedVerticesEdges(String graphname, int
minLayer,
 int maxLayer, List<Vertex> newvertices, List<Edge> newedges, List<Edge>
multi)
 throws Exception {
 SimpleGraph graph = new SimpleGraph();
 graph.setName(graphname);
 graph.setStartImpactedLayer(minLayer);
 LayerDataStructure layers = graph.getLayers();

 int maxlayer = Integer.MAX_VALUE;
 int lastLayer = general.getQueryForInt(
 "select max(layer) from layer where graph_name=?",
 new Object[] { graphname });
 layers.setMax(maxlayer);
 System.out.println("retrieve data start layer " + minLayer
 + " and end layer " + maxLayer);

 long start = System.currentTimeMillis();
 for (int i = minLayer; i <= maxLayer; i++) {
 /*
 * retrieve vertices from database
 */
 List<VertexObject> vertices = pojo.getVerticeByLayer(graphname, i);

 for (VertexObject v : vertices) {
 Vertex vertex = new Vertex(v);
 logger.debug("add vertex " + vertex + " to layer " + (i - minLayer));
 graph.addVertex(vertex);
 layers.add(vertex, (i - minLayer));
 }
 }

202

 long end = System.currentTimeMillis();
 // System.out.println("get vertices takes " + (end - start));

 String query = "select * from edge where graph_name='" + graphname
 + "' and start_layer>=" + minLayer + " and end_layer<=" + maxLayer;
 // System.out.println(query);
 start = System.currentTimeMillis();
 /*
 * retrieve edges from database
 */
 List<Object> list = pojo.getEdgesByQuery(query);
 end = System.currentTimeMillis();
 // System.out.println("get edges takes " + (end - start));

 logger.debug("# edges: " + list.size() + " graph name " + graphname);

 for (Object o1 : list) {
 EdgeObject edge = (EdgeObject) o1;
 if (false == graph.hasVertex(new Vertex(edge.getHead(), 0))) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + edge.getHead());
 }
 if (false == graph.hasVertex(new Vertex(edge.getTail(), 0))) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + edge.getTail());
 }
 Vertex head = graph.getVertices().get(
 graph.getVertices().indexOf(new Vertex(edge.getHead(), 0)));
 Vertex tail = graph.getVertices().get(
 graph.getVertices().indexOf(new Vertex(edge.getTail(), 0)));
 // logger.debug(edge);
 Edge e = new Edge(head, tail, edge.getDummy(), edge.getMultilayer());
 e.setTop(edge.getSource());
 e.setBottom(edge.getSink());
 e.setExisted(true);
 if (0 == edge.getMultilayer()) {
 graph.addEdge(e);
 } else {
 graph.getMulti().add(e);
 }
 }

 start = System.currentTimeMillis();
 /*
 * retrieve additional edges from database if applicable
 */
 if (minLayer > 0) {
 query = "select * from vertex where graph_name='" + graphname
 + "' and layer=" + (minLayer - 1) + " order by vertex_id";
 String getEdges = "select * from edge where graph_name='" + graphname
 + "' and start_layer=" + (minLayer - 1) + " and end_layer=" +
minLayer;
 List<VertexObject> parents = pojo.getVerticeByQuery(query);
 List<Object> tempedges = pojo.getEdgesByQuery(getEdges);

203

 for (Object o : tempedges) {
 EdgeObject e = (EdgeObject) o;
 int tailpos = graph.getVertices().indexOf(new Vertex(e.getTail()));
 if (tailpos < 0) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + e.getTail() + "[" + minLayer + "," + maxLayer + "]");
 }
 VertexObject temp = new VertexObject();
 temp.setGraphName(graphname);
 temp.setVertexId(e.getHead());
 int headpos = Collections.binarySearch(parents, temp);
 if (headpos < 0) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + e.getHead() + "[" + minLayer + "," + maxLayer + "]");
 }
 Vertex tempVertex = graph.getVertices().get(tailpos);
 tempVertex.getParents().add(new Vertex(temp));
 }
 }

 /*
 * retrieve additional vertices from database if applicable
 */
 if (maxLayer < lastLayer) {
 query = "select * from vertex where graph_name='" + graphname
 + "' and layer=" + (maxLayer + 1) + " order by vertex_id";
 String getEdges = "select * from edge where graph_name='" + graphname
 + "' and start_layer=" + (maxLayer) + " and end_layer=" + (maxLayer +
1);
 List<VertexObject> childrens = pojo.getVerticeByQuery(query);
 List<Object> tempedges = pojo.getEdgesByQuery(getEdges);
 for (Object o : tempedges) {
 EdgeObject e = (EdgeObject) o;
 int headpos = graph.getVertices().indexOf(new Vertex(e.getHead()));
 if (headpos < 0) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + e.getTail() + "[" + minLayer + "," + maxLayer + "]");
 }
 VertexObject temp = new VertexObject();
 temp.setGraphName(graphname);
 temp.setVertexId(e.getTail());
 int tailpos = Collections.binarySearch(childrens, temp);
 if (tailpos < 0) {
 throw new Exception("getImpactedVerticesEdges: vertex not found "
 + e.getTail() + "[" + minLayer + "," + maxLayer + "]");
 }
 Vertex tempVertex = new Vertex(childrens.get(tailpos));
 tempVertex.getChildren().add(new Vertex(temp));
 }
 }

 end = System.currentTimeMillis();
 System.out.println("get parents and children takes " + (end - start));
 /**

204

 * add constraints if any
 */

 query = "select * from order_constraint where graph_name='" + graphname
 + "' and layer <=" + maxLayer + " and layer>=" + minLayer;
 /*
 * retrieve constraints from database
 */
 List<Object> constraints = pojo.getConstraintsByQuery(query);

 for (Object o : constraints) {
 OrderConstraint c = (OrderConstraint) o;
 int sourceid = c.getVertex1Id();
 int sinkid = c.getVertex2Id();
 logger.debug("add ordered constraint: " + sourceid + ":" + sinkid);
 Vertex source = graph.getVertices().get(
 graph.getVertices().indexOf(new Vertex(sourceid, 0)));
 Vertex sink = graph.getVertices().get(
 graph.getVertices().indexOf(new Vertex(sinkid, 0)));
 Edge e = new Edge(source, sink);
 e.setExisted(true);
 graph.getConstraints().add(e);
 }

 // add vertices onto the graph
 for (Vertex v1 : newvertices) {
 graph.addVertex(v1);
 // add new vertex onto the layer
 graph.getLayers().add(v1, v1.getLayer() - minLayer);
 }

 // add all new edges onto the graph
 for (Edge e : newedges) {
 logger.debug("Add vertex operation add edge " + e.source + ", " +
e.sink);
 graph.addEdge(e);
 }

 // add all multi edges onto the graph
 for (Edge e : multi) {
 logger.debug("Add vertex operation add multi edge " + e.source + ", "
 + e.sink);
 graph.getMulti().add(e);
 }

 return graph;
 }

 SimpleGraph executeGraph(AbstractExpression absyn, DotGraphParser parser)
 throws Exception {
 GraphExp exp = (GraphExp) absyn;
 SimpleGraph graph = new SimpleGraph();
 graph.name = exp.getGraphName();
 // logger.debug(graph.name + " node count " +

205

 // graph.getVertexCount());

 for (Statement stmt : exp.getStatements()) {
 if (stmt instanceof NodeStatement) {
 NodeStatement nodestatement = (NodeStatement) stmt;
 NodeId node = nodestatement.getNodeid();
 graph.addVertex(new Integer(node.getId()).intValue());
 logger.debug("add vertex " + node.getId());
 } else if (stmt instanceof EdgeStatement) {
 EdgeStatement edgestmt = (EdgeStatement) stmt;
 NodeId id = edgestmt.getNodeid();
 String source = id.getId();
 NodeId id2 = edgestmt.getEdgeRHS().getNodeId();
 String sink = id2.getId();
 if (!source.equals(sink)) {
 logger.debug("add edge " + source + ", " + sink);
 graph
 .addEdge(new Integer(source).intValue(), new
Integer(sink).intValue());
 } else {
 logger.info("self loop found " + source);
 }
 }
 }
 logger.debug("total vertices before cycle removal "
 + graph.getVertices().size() + ", total edge before cycle removal "
 + graph.getEdges().size());

 GreedyCycleRemovalImpl alg = new GreedyCycleRemovalImpl();
 long start = System.currentTimeMillis();
 alg.reverseCycles(graph);
 long end = System.currentTimeMillis();
 logger.info("cycle removal step takes " + (double) (end - start) /
1000f);

 logger.debug("total edges " + graph.getEdges().size());
 int max = calculateMaxVerticesPerLayer(graph.getVertices().size());
 logger.info("total vertices " + graph.getVertices().size() + ", layer
max "
 + max);
 start = System.currentTimeMillis();
 LayerAssignment layerAssignmentAlg = LayerAssignmentFactory
 .getAlg(LayerAssignmentFactory.TOPDOWN);

 logger.info("start assign vertices into layer...");
 layerAssignmentAlg.assign(graph, max);
 end = System.currentTimeMillis();

 logger.info("assign step takes " + (double) (end - start) / 1000f);
 logger.info("start reduce edge crossings ...");
 start = System.currentTimeMillis();

 CrossingReductionSweep sweep = CrossingReductionSweepFactory.getAlg(
 CrossingReductionSweepFactory.STD, 5);

206

 sweep.reduce(graph);
 end = System.currentTimeMillis();
 logger
 .info("crossing reduction step takes " + (double) (end - start) /
1000f);

 logger.info("start save initial graph into databse....");
 start = System.currentTimeMillis();
 service.saveInitialGraph(graph);
 end = System.currentTimeMillis();
 logger.info("save data into relational database step takes "
 + (double) (end - start) / 1000f);

 return graph;
 }

 private void addEdge(Vertex source, Vertex sink, List<Vertex> vertices,
 List<Edge> edges, List<Edge> multi, int vertexNextValue) {
 // find and remove edges that cross more than one layer
 if ((sink.getLayer() - source.getLayer()) > 1) {
 logger.debug("not propered layers " + source + ", " + sink);

 Vertex newsource = source;
 Vertex newsink = sink;

 while (sink.getLayer() > newsource.getLayer() + 1) {
 newsink = new Vertex(vertexNextValue++, 0);
 newsink.setLayer(newsource.getLayer() + 1);
 newsink.setDummy(1);
 newsink.setSource(source.getId());
 newsink.setSink(sink.getId());
 logger.debug("add new dummy vertex " + newsink.getId());
 // add dummy vertex into the list of new vertices
 if (false == vertices.contains(newsink)) {
 vertices.add(newsink);
 }

 Edge newedge = new Edge(newsource, newsink, Edge.DUMMY);
 newedge.setTop(source.getId());
 newedge.setBottom(sink.getId());
 newedge.setExisted(false);
 edges.add(newedge);
 newsource = newsink;
 }
 // add last edge
 newsink = sink;
 Edge newedge = new Edge(newsource, newsink, Edge.DUMMY);
 newedge.setTop(source.getId());
 newedge.setBottom(sink.getId());
 newedge.setExisted(false);
 edges.add(newedge);
 multi.add(new Edge(source, sink, 0, 1));// add multi edges
 } else {
 edges.add(new Edge(source, sink));

207

 }
 }

 public static int calculateMaxVerticesPerLayer(int total) {
 return Integer.MAX_VALUE;
 }

}

208

Appendix B

Test Files in DOT Format

Third.dot file dataset that was used in the first visualization test

digraph "/home/mvinni/o/jspin411/tmp_t/thirdabbrev" {
0;
1;
2;
3;
4;
5;
6;
7;
0 -> 1;
1 -> 2;
2 -> 0;
2 -> 3;
3 -> 4;
4 -> 5;
5 -> 5;
5 -> 5;
4 -> 6;
6 -> 7;
7 -> 1;
6 -> 0;
1 -> 5;
0 -> 4;
}

Second.dot file dataset that was used in the first visualization test

digraph "/home/mvinni/o/jspin411/tmp_t/secondabbrev" {
0;
1;
2;
3;
4;
5;
6;
7;
8;
0 -> 1;
1 -> 2;
2 -> 0;
1 -> 3;
3 -> 4;
4 -> 5;
5 -> 3;
5 -> 6;
6 -> 0;
4 -> 7;
7 -> 6;
7 -> 2;
3 -> 8;
8 -> 7;
8 -> 1;
0 -> 5;
}

209

org-parent-child-conversion-11.dot file dataset that was used in the first visualization test

digraph "org-parent-child-conversion-11" {
6669;
6670;
6672;
6673;
6674;
6676;
6677;
6678;
6679;
6680;
6671;
6675;
6669 -> 6670;
6669 -> 6672;
6669 -> 6673;
6669 -> 6674;
6669 -> 6676;
6669 -> 6677;
6669 -> 6678;
6669 -> 6679;
6669 -> 6680;
6670 -> 6671;
6674 -> 6675;
}

210

process-parent-child-conversion-16 file dataset that was used in the first visualization test

digraph "process-parent-child-conversion-16_0" {
1564;
1565;
1865;
2765;
507;
1866;
3199;
508;
1118;
1234;
1236;
1240;
1241;
1243;
1245;
1286;
1734;
1564 -> 1565;
1564 -> 1865;
1564 -> 2765;
1564 -> 507;
1865 -> 1866;
1865 -> 3199;
507 -> 508;
507 -> 1118;
507 -> 1234;
507 -> 1236;
507 -> 1240;
507 -> 1241;
507 -> 1243;
507 -> 1245;
507 -> 1286;
507 -> 1734;
}

211

org-parent-child-conversion-23_0.dot file dataset that was used in the first visualization test

digraph "org-parent-child-conversion-23_0" {
264;
265;
266;
267;
840;
403;
841;
842;
3311;
405;
406;
407;
408;
409;
667;
10079;
10080;
404;
464;
465;
466;
467;
468;
469;
264 -> 265;
264 -> 266;
264 -> 267;
264 -> 840;
264 -> 403;
264 -> 841;
264 -> 842;
264 -> 3311;
265 -> 405;
265 -> 406;
265 -> 407;
265 -> 408;
265 -> 409;
265 -> 667;
409 -> 10079;
409 -> 10080;
403 -> 404;
403 -> 464;
403 -> 465;
403 -> 466;
403 -> 467;
403 -> 468;
403 -> 469;
}

212

org-parent-child-conversion-12_33.dot file that was used in the second visualization test

digraph "org-parent-child-conversion-12_33" {
8478;
8479;
8482;
8486;
8490;
8480;
8481;
8483;
8484;
8485;
8487;
8488;
8489;
8478 -> 8479;
8478 -> 8482;
8478 -> 8486;
8478 -> 8490;
8479 -> 8480;
8479 -> 8481;
8482 -> 8483;
8482 -> 8484;
8482 -> 8485;
8486 -> 8487;
8486 -> 8488;
8486 -> 8489;
}

org-parent-child-conversion-263-dynamic.txt test file for dynamic operation tests

add vertices "org-parent-child-conversion-263" 2014 1 { 777->2014 }
add edges "org-parent-child-conversion-263" { 1214->2014 }
remove vertices "org-parent-child-conversion-263" 1948
remove edges "org-parent-child-conversion-263" { 1109 -> 1119 }
set order "org-parent-child-conversion-263" { 1918 < 1321 }
drop order "org-parent-child-conversion-263" { 1918 < 1321 }

org-parent-child-conversion-265-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-265" 9706 1 { 31->9706 }
add edges "org-parent-child-conversion-265" { 8283->9706 }
remove vertices "org-parent-child-conversion-265" 225
remove edges "org-parent-child-conversion-265" { 8267 -> 8269 }
set order "org-parent-child-conversion-265" { 227 < 226 }
drop order "org-parent-child-conversion-265" { 227 < 226 }

213

org-parent-child-conversion-276-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-276" 3953 1 { 70->3953 }
add edges "org-parent-child-conversion-276" { 476->3953 }
remove vertices "org-parent-child-conversion-276" 470
remove edges "org-parent-child-conversion-276" { 731 -> 3457 }
set order "org-parent-child-conversion-276" { 558 < 374 }
drop order "org-parent-child-conversion-276" { 558 < 374 }

org-parent-child-conversion-277-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-277" 10104 1 { 5853->10104 }
add edges "org-parent-child-conversion-277" { 6353->10104 }
remove vertices "org-parent-child-conversion-277" 6846
remove edges "org-parent-child-conversion-277" { 6013 -> 6123 }
set order "org-parent-child-conversion-277" { 6349 < 5517 }
drop order "org-parent-child-conversion-277" { 6349 < 5517 }

org-parent-child-conversion-306-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-306" 10340 1 { 644->10340 }
add edges "org-parent-child-conversion-306" { 2345->10340 }
remove vertices "org-parent-child-conversion-306" 2033
remove edges "org-parent-child-conversion-306" { 2453 -> 2460 }
set order "org-parent-child-conversion-306" { 2032 < 2020 }
drop order "org-parent-child-conversion-306" { 2032 < 2020 }

org-parent-child-conversion-309-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-309" 2599 1 { 342->2599 }
add edges "org-parent-child-conversion-309" { 2081->2599 }
remove vertices "org-parent-child-conversion-309" 1736
remove edges "org-parent-child-conversion-309" { 1262 -> 1267 }
set order "org-parent-child-conversion-309" { 2085 < 2084 }
drop order "org-parent-child-conversion-309" { 2085 < 2084 }

org-parent-child-conversion-351-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-351" 5165 1 { 49->5165 }
add edges "org-parent-child-conversion-351" { 4825->5165 }
remove vertices "org-parent-child-conversion-351" 4884
remove edges "org-parent-child-conversion-351" { 57 -> 4831 }
set order "org-parent-child-conversion-351" { 58 < 57 }
drop order "org-parent-child-conversion-351" { 58 < 57 }

214

org-parent-child-conversion-361-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-361" 2014 1 { 243->2014 }
add edges "org-parent-child-conversion-361" { 1089->2014 }
remove vertices "org-parent-child-conversion-361" 1523
remove edges "org-parent-child-conversion-361" { 1934 -> 1935 }
set order "org-parent-child-conversion-361" { 777 < 1497 }
drop order "org-parent-child-conversion-361" { 777 < 1497 }

org-parent-child-conversion-386-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-386" 10339 1 { 633->10339 }
add edges "org-parent-child-conversion-386" { 8674->10339 }
remove vertices "org-parent-child-conversion-386" 8561
remove edges "org-parent-child-conversion-386" { 8100 -> 8104 }
set order "org-parent-child-conversion-386" { 8693 < 8591 }
drop order "org-parent-child-conversion-386" { 8693 < 8591 }

org-parent-child-conversion-460-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-460" 10366 1 { 360->10366 }
add edges "org-parent-child-conversion-460" { 10347->10366 }
remove vertices "org-parent-child-conversion-460" 9244
remove edges "org-parent-child-conversion-460" { 9784 -> 9786 }
set order "org-parent-child-conversion-460" { 9430 < 9426 }
drop order "org-parent-child-conversion-460" { 9430 < 9426 }

process-parent-child-conversion-332-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-332" 3228 1 { 101->3228 }
add edges "process-parent-child-conversion-332" { 55->3228 }
remove vertices "process-parent-child-conversion-332" 889
remove edges "process-parent-child-conversion-332" { 149 -> 578 }
set order "process-parent-child-conversion-332" { 332 < 200 }
drop order "process-parent-child-conversion-332" { 332 < 200 }

process-parent-child-conversion-337-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-337" 3221 1 { 48->3221 }
add edges "process-parent-child-conversion-337" { 2253->3221 }
remove vertices "process-parent-child-conversion-337" 1176
remove edges "process-parent-child-conversion-337" { 349 -> 2495 }
set order "process-parent-child-conversion-337" { 3200 < 3204 }
drop order "process-parent-child-conversion-337" { 3200 < 3204 }

215

process-parent-child-conversion-357-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-357" 3231 1 { 19->3231 }
add edges "process-parent-child-conversion-357" { 1812->3231 }
remove vertices "process-parent-child-conversion-357" 862
remove edges "process-parent-child-conversion-357" { 203 -> 1716 }
set order "process-parent-child-conversion-357" { 1248 < 1149 }
drop order "process-parent-child-conversion-357" { 1248 < 1149 }

process-parent-child-conversion-422-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-422" 3229 1 { 1->3229 }
add edges "process-parent-child-conversion-422" { 2650->3229 }
remove vertices "process-parent-child-conversion-422" 3217
remove edges "process-parent-child-conversion-422" { 23 -> 628 }
set order "process-parent-child-conversion-422" { 2637 < 2631 }
drop order "process-parent-child-conversion-422" { 2637 < 2631 }

org-parent-child-conversion-735-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-735" 10294 1 { 658->10294 }
add edges "org-parent-child-conversion-735" { 5131->10294 }
remove vertices "org-parent-child-conversion-735" 5910
remove edges "org-parent-child-conversion-735" { 6657 -> 6659 }
set order "org-parent-child-conversion-735" { 6385 < 6383 }
drop order "org-parent-child-conversion-735" { 6385 < 6383 }

org-parent-child-conversion-807-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-807" 4976 1 { 2919->4976 }
add edges "org-parent-child-conversion-807" { 3434->4976 }
remove vertices "org-parent-child-conversion-807" 3098
remove edges "org-parent-child-conversion-807" { 3974 -> 3977 }
set order "org-parent-child-conversion-807" { 3506 < 3495 }
drop order "org-parent-child-conversion-807" { 3506 < 3495 }

org-parent-child-conversion-856-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-856" 10350 1 { 656->10350 }
add edges "org-parent-child-conversion-856" { 6153->10350 }
remove vertices "org-parent-child-conversion-856" 5196
remove edges "org-parent-child-conversion-856" { 5712 -> 5716 }
set order "org-parent-child-conversion-856" { 5901 < 5898 }
drop order "org-parent-child-conversion-856" { 5901 < 5898 }

216

org-parent-child-conversion-888-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-888" 10296 1 { 664->10296 }
add edges "org-parent-child-conversion-888" { 7771->10296 }
remove vertices "org-parent-child-conversion-888" 6303
remove edges "org-parent-child-conversion-888" { 7765 -> 7781 }
set order "org-parent-child-conversion-888" { 6568 < 6562 }
drop order "org-parent-child-conversion-888" { 6568 < 6562 }

process-parent-child-conversion-526-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-526" 3237 1 { 76->3237 }
add edges "process-parent-child-conversion-526" { 661->3237 }
remove vertices "process-parent-child-conversion-526" 2118
remove edges "process-parent-child-conversion-526" { 288 -> 929 }
set order "process-parent-child-conversion-526" { 873 < 629 }
drop order "process-parent-child-conversion-526" { 873 < 629 }

org-parent-child-conversion-1063-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-1063" 10380 1 { 73->10380 }
add edges "org-parent-child-conversion-1063" { 8720->10380 }
remove vertices "org-parent-child-conversion-1063" 8721
remove edges "org-parent-child-conversion-1063" { 8965 -> 8969 }
set order "org-parent-child-conversion-1063" { 161 < 75 }
drop order "org-parent-child-conversion-1063" { 161 < 75 }

org-parent-child-conversion-1444-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-1444" 10345 1 { 76->10345 }
add edges "org-parent-child-conversion-1444" { 169->10345 }
remove vertices "org-parent-child-conversion-1444" 2545
remove edges "org-parent-child-conversion-1444" { 159 -> 438 }
set order "org-parent-child-conversion-1444" { 2980 < 2918 }
drop order "org-parent-child-conversion-1444" { 2980 < 2918 }

org-parent-child-conversion-1733-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-1733" 10342 1 { 35->10342 }
add edges "org-parent-child-conversion-1733" { 2822->10342 }
remove vertices "org-parent-child-conversion-1733" 1451
remove edges "org-parent-child-conversion-1733" { 1209 -> 1211 }
set order "org-parent-child-conversion-1733" { 651 < 649 }
drop order "org-parent-child-conversion-1733" { 651 < 649 }

217

org-parent-child-conversion-4164-dynamic.txt test file for dynamic tests

add vertices "org-parent-child-conversion-4164" 10354 1 { 33->10354 }
add edges "org-parent-child-conversion-4164" { 9157->10354 }
remove vertices "org-parent-child-conversion-4164" 8124
remove edges "org-parent-child-conversion-4164" { 5606 -> 5613 }
set order "org-parent-child-conversion-4164" { 661 < 660 }
drop order "org-parent-child-conversion-4164" { 661 < 660 }

process-parent-child-conversion-1112-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-1112" 3259 1 { 11->3259 }
add edges "process-parent-child-conversion-1112" { 2938->3259 }
remove vertices "process-parent-child-conversion-1112" 2890
remove edges "process-parent-child-conversion-1112" { 101 -> 1108 }
set order "process-parent-child-conversion-1112" { 1615 < 1468 }
drop order "process-parent-child-conversion-1112" { 1615 < 1468 }

process-parent-child-conversion-1849-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-1849" 3276 1 { 118->3276 }
add edges "process-parent-child-conversion-1849" { 2958->3276 }
remove vertices "process-parent-child-conversion-1849" 311
remove edges "process-parent-child-conversion-1849" { 93 -> 407 }
set order "process-parent-child-conversion-1849" { 760 < 722 }
drop order "process-parent-child-conversion-1849" { 760 < 722 }

process-parent-child-conversion-4495-dynamic.txt test file for dynamic tests

add vertices "process-parent-child-conversion-4495" 3564 1 { 8->3564 }
add edges "process-parent-child-conversion-4495" { 658->3564 }
remove vertices "process-parent-child-conversion-4495" 1051
remove edges "process-parent-child-conversion-4495" { 48 -> 1222 }
set order "process-parent-child-conversion-4495" { 1602 < 3539 }
drop order "process-parent-child-conversion-4495" { 1602 < 3539 }

218

Main function of the first performance test program

public void testAll() throws Exception {
 action = new MockGraphAction(1);;
 testMany(testfolder + "small-data-set", resultfolder, "-result");
 testMany(testfolder + "medium-data-set", resultfolder, "-result");
 testMany(testfolder + "large-data-set", resultfolder, "-result");
 }

 public void testMany(String dir, String diroutput, String suffix)
 throws Exception {
 File file = new File(dir);
 File[] files = file.listFiles(new FileFilter() {
 public boolean accept(File f) {
 return f.isFile() && f.getName().endsWith(".dot");
 }
 });
 File outputfile = new File(diroutput + file.getName() + suffix + ".txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("Graph name \t size \t dynamic \t graphviz\n");
 for (int i = 0; i < files.length; i++) {
 String name = ApplicationUtil.getNameWithoutExtension(files[i].getName());
 String size = name.substring(name.lastIndexOf("-") + 1);
 delete(name);
 long taken = testGraphVizPerformance(files[i]);
 long taken1 = testConstrainedFrameworkPerformance(files[i]);
 writer.write(name + "\t" + size + "\t" + taken1 + "\t" + taken + "\n");
 System.out.println(name + "\t" + size + "\t" + taken1 + "\t" + taken + "\n");
 }
 writer.flush();
 writer.close();

 }

Main function of the second performance test program

public void testAll() throws Exception {
 action = new MockGraphAction2(1);
 testMany(testfolder + "small-data-set", resultfolder, "-result2");
 testMany(testfolder + "medium-data-set", resultfolder, "-result2");
 testMany(testfolder + "large-data-set", resultfolder, "-result2");

 }

219

Main function of the test program that measures the I/O cost of data retrieval for rendering

public static void testAll(String dir, String diroutput, String suffix)
 throws Exception {
 ApplicationContext ctx = new FileSystemXmlApplicationContext(
 "/WEB-INF/graph-servlet.xml");
 SimpleGraphService service = (SimpleGraphService) ctx
 .getBean("simpleGraphService");
 GeneralJdbcDao general = (GeneralJdbcDao) ctx.getBean("generalDAO");
 File file = new File(dir);
 File[] files = file.listFiles(new FileFilter() {
 public boolean accept(File f) {
 return f.isFile() && f.getName().endsWith(".dot")
 && (f.getName().indexOf("graphviz-result") == -1);
 }
 });
 File outputfile = new File(diroutput + file.getName() + suffix + ".txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("Graph name \t size \t dynamic \t graphviz\n");
 for (int i = 0; i < files.length; i++) {
 String name = ApplicationUtil.getNameWithoutExtension(files[i].getName());
 String size = name.substring(name.lastIndexOf("-") + 1);
 // System.out.println("start render graph [" + name + "]");
 String[] localgraphs = service.getGraphsnapshots(name);
 String[] tokens = localgraphs[0].split(":");
 String graphname = tokens[0];
 String version = tokens[1];
 long start = System.currentTimeMillis();
 service.generateLayoutShapes(graphname, new Integer(version).intValue());
 long end = System.currentTimeMillis();
 long taken = (end - start);
 writer.write(name + "\t" + size + "\t" + taken + "\t" + "\n");
 System.out.println(name + "\t" + size + "\t" + taken + "\t" + "\n");
 }
 writer.flush();
 writer.close();

 }

Main function of the rendering performance test program

public static void testAll(String dir, String diroutput, String suffix)
 throws Exception {
 ApplicationContext ctx = new FileSystemXmlApplicationContext(
 "/WEB-INF/graph-servlet.xml");
 SimpleGraphService service = (SimpleGraphService) ctx
 .getBean("simpleGraphService");
 GeneralJdbcDao general = (GeneralJdbcDao) ctx.getBean("generalDAO");
 String[] graphs = service.getAllGraphVersions();
 StringBuffer buffer = new StringBuffer();
 String first = graphs[0];
 for (int i = 0; i < graphs.length; i++) {
 buffer.append(graphs[i] + ",");
 }
 String[] tokens = first.split(":");
 String graphname = tokens[0];
 String version = tokens[1];

 JFrame frame = new JFrame("graph viewer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 String layout = buffer.toString();

220

 String location =
"http://localhost:8080/graphlayout/service.xhtml?service=graph&graphname="
 + URLEncoder.encode(graphname)
 + "&version="
 + URLEncoder.encode("" + version);
 URL url = new URL(location);
 URL base = new URL("http://localhost:8080/");
 File imagedir = new File("./test-results/" + graphname + "/");
 if (!imagedir.exists())
 imagedir.mkdir();

 Applet myApplet = new DynamicGraphViewerApplet(base, url, layout,
 imagedir.getAbsolutePath());
 myApplet.init();
 frame.getContentPane().add(myApplet);
 frame.setSize(900, 700);
 frame.setVisible(true);
 myApplet.start();

 File file = new File(dir);
 File[] files = file.listFiles(new FileFilter() {
 public boolean accept(File f) {
 return f.isFile() && f.getName().endsWith(".dot");
 }
 });
 File outputfile = new File(diroutput + file.getName() + suffix + ".txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("Graph name \t size \t dynamic \t graphviz\n");
 for (int i = 0; i < files.length; i++) {
 String name = ApplicationUtil.getNameWithoutExtension(files[i].getName());
 String size = name.substring(name.lastIndexOf("-") + 1);
 String[] localgraphs = service.getGraphsnapshots(name);
 tokens = localgraphs[0].split(":");
 graphname = tokens[0];
 version = tokens[1];
 long start = System.currentTimeMillis();
 ((DynamicGraphViewerApplet) myApplet).reload(localgraphs[0]);
 ((DynamicGraphViewerApplet) myApplet).repaint();
 long end = System.currentTimeMillis();
 long taken1 = (end - start);
 writer.write(name + "\t" + size + "\t" + taken1 + "\t" + "\n");
 System.out.println(name + "\t" + size + "\t" + taken1 + "\t" + "\n");
 }
 writer.flush();
 writer.close();

 frame.dispose();
 }

Main function of the overall performance test program

public void testAll(String dir, String diroutput, String suffix)
 throws Exception {
 String[] graphs = service.getAllGraphVersions();
 StringBuffer buffer = new StringBuffer();
 String first = graphs[0];
 for (int i = 0; i < graphs.length; i++) {
 buffer.append(graphs[i] + ",");
 }
 String[] tokens = first.split(":");
 String graphname = tokens[0];
 String version = tokens[1];

 JFrame frame = new JFrame("graph viewer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 String layout = buffer.toString();
 String location =
"http://localhost:8080/graphlayout/service.xhtml?service=graph&graphname="
 + URLEncoder.encode(graphname)
 + "&version="
 + URLEncoder.encode("" + version);
 URL url = new URL(location);
 URL base = new URL("http://localhost:8080/");
 File imagedir = new File("./test-results/" + graphname + "/");

221

 if (!imagedir.exists())
 imagedir.mkdir();

 Applet myApplet = new DynamicGraphViewerApplet(base, url, layout,
 imagedir.getAbsolutePath());
 myApplet.init();
 frame.getContentPane().add(myApplet);
 frame.setSize(900, 700);
 frame.setVisible(true);
 myApplet.start();

 File file = new File(dir);
 File[] files = file.listFiles(new FileFilter() {
 public boolean accept(File f) {
 return f.isFile() && f.getName().endsWith(".dot");
 }
 });
 File outputfile = new File(diroutput + file.getName() + suffix + ".txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("Graph name \t size \t dynamic \t graphviz\n");
 for (int i = 0; i < files.length; i++) {
 String name = ApplicationUtil.getNameWithoutExtension(files[i].getName());
 delete(name);
 long taken1 = testConstrainedFrameworkPerformance(files[i]);

 String size = name.substring(name.lastIndexOf("-") + 1);
 String[] localgraphs = service.getGraphsnapshots(name);
 tokens = localgraphs[0].split(":");
 graphname = tokens[0];
 version = tokens[1];
 long start = System.currentTimeMillis();
 ((DynamicGraphViewerApplet) myApplet).reload(localgraphs[0]);
 ((DynamicGraphViewerApplet) myApplet).repaint();
 long end = System.currentTimeMillis();
 long taken2 = (end - start);
 long total = taken1 + taken2;

 writer.write(name + "\t" + size + "\t" + total + "\t" + "\n");
 System.out.println(name + "\t" + size + "\t" + total + "\t" + "\n");
 }
 writer.flush();
 writer.close();

 frame.dispose();
 }

222

Main function of the test program that measures the I/O cost of data retrieval due to dynamic

operation

public void testAll() throws Exception {
 MockGraphAction action = new MockGraphAction(1);
 File[] dirs = { new File("./testfiles/real-dataset/small-data-set"),
 new File("./testfiles/real-dataset/medium-data-set"),
 new File("./testfiles/real-dataset/large-data-set"), };
 for (int m = 0; m < dirs.length; m++) {
 File[] files = dirs[m].listFiles(new FileFilter() {
 @Override public boolean accept(File pathname) {
 // TODO Auto-generated method stub
 return pathname.getName().endsWith("dynamic.txt");
 }
 });
 // initialize
 for (int j = 0; j < files.length; j++) {
 init(files[j], action);
 }
 File outputfile = new File(resultfolder, dirs[m].getName()
 + "-retrieval-cost-dynamic.txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("graph name\tsize\toperation\truntime\n");

 for (int i = 0; i < 6; i++) { // six operations
 for (int j = 0; j < files.length; j++) {
 callTest(files[j], writer, action, i);
 }
 }

 writer.flush();
 writer.close();
 }
 }

 public void delete(String graphName) throws Exception {
 general.update("delete from vertex where graph_name=?", graphName);
 general.update("delete from vertex_snapshot where graph_name=?", graphName);
 general.update("delete from order_constraint_snapshot where graph_name=?",
 graphName);
 general.update("delete from order_constraint where graph_name=?", graphName);
 general.update("delete from edge where graph_name=?", graphName);
 general.update("delete from edge_snapshot where graph_name=?", graphName);
 general.update("delete from layer where graph_name=?", graphName);
 general.update("delete from layer_snapshot where graph_name=?", graphName);
 general.update("delete from layout_snapshot where name=?", graphName);
 general.update("delete from layout where name=?", graphName);

 }

 public void callTest(File testfile, BufferedWriter writer,
 MockGraphAction action, int active) throws Exception {
 SimpleGraph graph = null;

 String name = ApplicationUtil.getNameWithoutExtension(testfile.getName());
 name = name.substring(0, name.lastIndexOf("-"));

 BufferedReader reader = new BufferedReader(new FileReader(testfile));

 String line = null;
 int count = 0;
 while (null != (line = reader.readLine())) {
 if (count == active) {

223

 System.out.println("testing" + line);

 Object result = action.execute(line, writer);
 graph = (SimpleGraph) result;

 }
 count++;
 }
 reader.close();

 }

Main function of the test program that measures the I/O cost of data saving due to dynamic

operation

public void testAll() throws Exception {
 MockGraphAction2 action = new MockGraphAction2(1);
 File[] dirs = { new File("./testfiles/real-dataset/small-data-set"),
 new File("./testfiles/real-dataset/medium-data-set"),
 new File("./testfiles/real-dataset/large-data-set"), };
 for (int m = 0; m < dirs.length; m++) {
 File[] files = dirs[m].listFiles(new FileFilter() {
 @Override public boolean accept(File pathname) {
 // TODO Auto-generated method stub
 return pathname.getName().endsWith("dynamic.txt");
 }
 });
 // initialize
 for (int j = 0; j < files.length; j++) {
 init(files[j], action);
 }
 File outputfile = new File(resultfolder, dirs[m].getName()
 + "-savedb-cost-dynamic.txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("graph name\tsize\toperation\truntime\n");

 for (int i = 0; i < 6; i++) { // six operations
 for (int j = 0; j < files.length; j++) {
 callTest(files[j], writer, action, i);
 }
 }

 writer.flush();
 writer.close();
 }
 }

 public void delete(String graphName) throws Exception {
 general.update("delete from vertex where graph_name=?", graphName);
 general.update("delete from vertex_snapshot where graph_name=?", graphName);
 general.update("delete from order_constraint_snapshot where graph_name=?",
 graphName);
 general.update("delete from order_constraint where graph_name=?", graphName);
 general.update("delete from edge where graph_name=?", graphName);
 general.update("delete from edge_snapshot where graph_name=?", graphName);
 general.update("delete from layer where graph_name=?", graphName);
 general.update("delete from layer_snapshot where graph_name=?", graphName);
 general.update("delete from layout_snapshot where name=?", graphName);
 general.update("delete from layout where name=?", graphName);

 }

 public void callTest(File testfile, BufferedWriter writer,
 MockGraphAction2 action, int active) throws Exception {

224

 SimpleGraph graph = null;

 String name = ApplicationUtil.getNameWithoutExtension(testfile.getName());
 name = name.substring(0, name.lastIndexOf("-"));

 BufferedReader reader = new BufferedReader(new FileReader(testfile));

 String line = null;
 int count = 0;
 while (null != (line = reader.readLine())) {
 if (count == active) {
 System.out.println("testing" + line);

 Object result = action.execute(line, writer);
 graph = (SimpleGraph) result;

 }
 count++;
 }
 reader.close();

 }

Main function of the dynamic performance test program

public void test4() throws Exception {
 GraphAction action = new GraphAction(1);
 File[] dirs = { new File("./testfiles/real-dataset/small-data-set"),
 new File("./testfiles/real-dataset/medium-data-set"),
 new File("./testfiles/real-dataset/large-data-set"), };
 for (int m = 0; m < dirs.length; m++) {
 File[] files = dirs[m].listFiles(new FileFilter() {
 @Override public boolean accept(File pathname) {
 // TODO Auto-generated method stub
 return pathname.getName().endsWith("dynamic.txt");
 }
 });
 // initialize
 for (int j = 0; j < files.length; j++) {
 init(files[j], action);
 }
 File outputfile = new File(resultfolder, dirs[m].getName()
 + "-dynamic-3.txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 writer.write("graph name\tsize\toperation\truntime\n");

 for (int i = 0; i < 6; i++) {
 for (int j = 0; j < files.length; j++) {
 test2(files[j], writer, action, i);
 }
 }

 writer.flush();
 writer.close();
 }
 }
 public void test(File testfile, BufferedWriter writer) throws Exception {
 GraphAction action = new GraphAction(1);
 SimpleGraph graph = null;

 String name = ApplicationUtil.getNameWithoutExtension(testfile.getName());
 name = name.substring(0, name.lastIndexOf("-"));

 String size = name.substring(name.lastIndexOf("-") + 1);
 delete(name);
 String origname = name + ".dot";
 File orig = new File(testfile.getParentFile(), origname);

225

 BufferedReader reader = new BufferedReader(new FileReader(orig));

 graph = (SimpleGraph) action.execute(reader);
 reader.close();

 reader = new BufferedReader(new FileReader(testfile));

 String line = null;
 while (null != (line = reader.readLine())) {
 System.out.println("testing" + line);
 long start = System.currentTimeMillis();
 Object result = action.execute(line);
 graph = (SimpleGraph) result;
 long end = System.currentTimeMillis();
 System.out.println(name + "\t" + (end - start));
 String op = line.substring(0, line.indexOf("\""));
 op = op.toLowerCase();
 writer.write(size + "\t" + op + "\t" + (end - start) + "\n");
 }
 reader.close();

 }

Main function of the Graphviz performance test program

public void testSmallDataSet() throws Exception {
 System.out.println("test small dataset ");
 testMany(testfolder + "small-data-set");
 }

 public void testMediumDataSet() throws Exception {
 System.out.println("test medium dataset ");
 testMany(testfolder + "medium-data-set");
 }

 public void testLargeDataSet() throws Exception {
 System.out.println("test large dataset ");
 testMany(testfolder + "large-data-set");
 }

 private void testMany(String dir) throws Exception {
 File file = new File(dir);
 File outputdir = new File(resultfolder, file.getName());
 File outputfile = new File(outputdir, "graphviz-result.txt");
 BufferedWriter writer = new BufferedWriter(new FileWriter(outputfile));
 File[] files = file.listFiles(new FileFilter() {
 public boolean accept(File f) {
 return f.isFile() && f.getName().endsWith(".dot");
 }
 });
 for (int i = 0; i < files.length; i++) {
 runTest(files[i], writer);
 }
 writer.flush();
 writer.close();
 }

 private void runTest(File testfile, BufferedWriter writer) throws Exception {
 long start = System.currentTimeMillis();
 String name = ApplicationUtil.getNameWithoutExtension(testfile.getName());
 File outputdir = new File(resultfolder, testfile.getParentFile().getName());
 if (!outputdir.exists())
 outputdir.mkdir();
 File outputfile = new File(outputdir, name + ".jpg");
 // System.out.println(outputfile.getAbsolutePath());
 ProcessBuilder pb = new ProcessBuilder("dot", "-Tjpeg", "-o"
 + outputfile.getAbsolutePath(), testfile.getAbsolutePath());
 Process p = pb.start();

226

 int i = p.waitFor();
 long end = System.currentTimeMillis();
 System.out.println(testfile.getName() + "\t" + (end - start));
 writer.write(testfile.getName() + "\t" + (end - start) + "\n");

 }

227

Appendix C

Performance Test Results for Dynamic Operations

Test result: I/O cost of data retrieval due to the Add edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add edges 15
org-parent-child-conversion-265 265 Add edges 15
org-parent-child-conversion-276 276 Add edges 16
org-parent-child-conversion-277 277 Add edges 16
org-parent-child-conversion-306 306 Add edges 31
org-parent-child-conversion-309 309 Add edges 16
process-parent-child-conversion-332 332 Add edges 31
process-parent-child-conversion-337 337 Add edges 15
org-parent-child-conversion-351 351 Add edges 31
process-parent-child-conversion-357 357 Add edges 16
org-parent-child-conversion-361 361 Add edges 16
org-parent-child-conversion-386 386 Add edges 31
process-parent-child-conversion-422 422 Add edges 32
org-parent-child-conversion-460 460 Add edges 31
process-parent-child-conversion-526 526 Add edges 31
org-parent-child-conversion-735 735 Add edges 15
org-parent-child-conversion-807 807 Add edges 31
org-parent-child-conversion-856 856 Add edges 31
org-parent-child-conversion-888 888 Add edges 31
org-parent-child-conversion-1063 1063 Add edges 47
process-parent-child-conversion-1112 1112 Add edges 31
org-parent-child-conversion-1444 1444 Add edges 63
org-parent-child-conversion-1733 1733 Add edges 63
process-parent-child-conversion-1849 1849 Add edges 78
org-parent-child-conversion-4164 4164 Add edges 125
process-parent-child-conversion-4495 4495 Add edges 94

228

Test result: I/O cost of data saving due to the Add edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add edges 94
org-parent-child-conversion-265 265 Add edges 63
org-parent-child-conversion-276 276 Add edges 62
org-parent-child-conversion-277 277 Add edges 62
org-parent-child-conversion-306 306 Add edges 94
org-parent-child-conversion-309 309 Add edges 109
process-parent-child-conversion-332 332 Add edges 125
process-parent-child-conversion-337 337 Add edges 109
org-parent-child-conversion-351 351 Add edges 110
process-parent-child-conversion-357 357 Add edges 140
org-parent-child-conversion-361 361 Add edges 63
org-parent-child-conversion-386 386 Add edges 63
process-parent-child-conversion-422 422 Add edges 141
org-parent-child-conversion-460 460 Add edges 94
process-parent-child-conversion-526 526 Add edges 172
org-parent-child-conversion-735 735 Add edges 93
org-parent-child-conversion-807 807 Add edges 94
org-parent-child-conversion-856 856 Add edges 125
org-parent-child-conversion-888 888 Add edges 125
org-parent-child-conversion-1063 1063 Add edges 203
process-parent-child-conversion-1112 1112 Add edges 172
org-parent-child-conversion-1444 1444 Add edges 281
org-parent-child-conversion-1733 1733 Add edges 297
process-parent-child-conversion-1849 1849 Add edges 422
org-parent-child-conversion-4164 4164 Add edges 484
process-parent-child-conversion-4495 4495 Add edges 516

229

Test result: Total run time of the Add edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add edges 124
org-parent-child-conversion-265 265 Add edges 86
org-parent-child-conversion-276 276 Add edges 87
org-parent-child-conversion-277 277 Add edges 103
org-parent-child-conversion-306 306 Add edges 165
org-parent-child-conversion-309 309 Add edges 145
process-parent-child-conversion-332 332 Add edges 146
process-parent-child-conversion-337 337 Add edges 138
org-parent-child-conversion-351 351 Add edges 155
process-parent-child-conversion-357 357 Add edges 193
org-parent-child-conversion-361 361 Add edges 83
org-parent-child-conversion-386 386 Add edges 137
process-parent-child-conversion-422 422 Add edges 178
org-parent-child-conversion-460 460 Add edges 136
process-parent-child-conversion-526 526 Add edges 170
org-parent-child-conversion-735 735 Add edges 164
org-parent-child-conversion-807 807 Add edges 176
org-parent-child-conversion-856 856 Add edges 155
org-parent-child-conversion-888 888 Add edges 187
org-parent-child-conversion-1063 1063 Add edges 179
process-parent-child-conversion-1112 1112 Add edges 176
org-parent-child-conversion-1444 1444 Add edges 265
org-parent-child-conversion-1733 1733 Add edges 312
process-parent-child-conversion-1849 1849 Add edges 820
org-parent-child-conversion-4164 4164 Add edges 558
process-parent-child-conversion-4495 4495 Add edges 599

230

Test result: I/O cost of data retrieval due to the Add vertices operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add vertices 32
org-parent-child-conversion-265 265 Add vertices 15
org-parent-child-conversion-276 276 Add vertices 15
org-parent-child-conversion-277 277 Add vertices 16
org-parent-child-conversion-306 306 Add vertices 16
org-parent-child-conversion-309 309 Add vertices 16
process-parent-child-conversion-332 332 Add vertices 16
process-parent-child-conversion-337 337 Add vertices 16
org-parent-child-conversion-351 351 Add vertices 15
process-parent-child-conversion-357 357 Add vertices 16
org-parent-child-conversion-361 361 Add vertices 15
org-parent-child-conversion-386 386 Add vertices 15
process-parent-child-conversion-422 422 Add vertices 15
org-parent-child-conversion-460 460 Add vertices 15
process-parent-child-conversion-526 526 Add vertices 16
org-parent-child-conversion-735 735 Add vertices 16
org-parent-child-conversion-807 807 Add vertices 31
org-parent-child-conversion-856 856 Add vertices 15
org-parent-child-conversion-888 888 Add vertices 16
org-parent-child-conversion-1063 1063 Add vertices 15
process-parent-child-conversion-1112 1112 Add vertices 32
org-parent-child-conversion-1444 1444 Add vertices 31
org-parent-child-conversion-1733 1733 Add vertices 47
process-parent-child-conversion-1849 1849 Add vertices 62
org-parent-child-conversion-4164 4164 Add vertices 94
process-parent-child-conversion-4495 4495 Add vertices 110

231

Test result: I/O cost of data saving due to the Add vertices operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add vertices 31
org-parent-child-conversion-265 265 Add vertices 47
org-parent-child-conversion-276 276 Add vertices 31
org-parent-child-conversion-277 277 Add vertices 47
org-parent-child-conversion-306 306 Add vertices 47
org-parent-child-conversion-309 309 Add vertices 46
process-parent-child-conversion-332 332 Add vertices 62
process-parent-child-conversion-337 337 Add vertices 78
org-parent-child-conversion-351 351 Add vertices 62
process-parent-child-conversion-357 357 Add vertices 94
org-parent-child-conversion-361 361 Add vertices 47
org-parent-child-conversion-386 386 Add vertices 47
process-parent-child-conversion-422 422 Add vertices 109
org-parent-child-conversion-460 460 Add vertices 62
process-parent-child-conversion-526 526 Add vertices 94
org-parent-child-conversion-735 735 Add vertices 63
org-parent-child-conversion-807 807 Add vertices 78
org-parent-child-conversion-856 856 Add vertices 94
org-parent-child-conversion-888 888 Add vertices 94
org-parent-child-conversion-1063 1063 Add vertices 188
process-parent-child-conversion-1112 1112 Add vertices 140
org-parent-child-conversion-1444 1444 Add vertices 188
org-parent-child-conversion-1733 1733 Add vertices 234
process-parent-child-conversion-1849 1849 Add vertices 296
org-parent-child-conversion-4164 4164 Add vertices 453
process-parent-child-conversion-4495 4495 Add vertices 407

232

Test result: Total run time of the Add vertices operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Add vertices 89
org-parent-child-conversion-265 265 Add vertices 76
org-parent-child-conversion-276 276 Add vertices 72
org-parent-child-conversion-277 277 Add vertices 66
org-parent-child-conversion-306 306 Add vertices 95
org-parent-child-conversion-309 309 Add vertices 85
process-parent-child-conversion-332 332 Add vertices 90
process-parent-child-conversion-337 337 Add vertices 106
org-parent-child-conversion-351 351 Add vertices 91
process-parent-child-conversion-357 357 Add vertices 144
org-parent-child-conversion-361 361 Add vertices 72
org-parent-child-conversion-386 386 Add vertices 87
process-parent-child-conversion-422 422 Add vertices 143
org-parent-child-conversion-460 460 Add vertices 262
process-parent-child-conversion-526 526 Add vertices 111
org-parent-child-conversion-735 735 Add vertices 133
org-parent-child-conversion-807 807 Add vertices 131
org-parent-child-conversion-856 856 Add vertices 135
org-parent-child-conversion-888 888 Add vertices 131
org-parent-child-conversion-1063 1063 Add vertices 184
process-parent-child-conversion-1112 1112 Add vertices 171
org-parent-child-conversion-1444 1444 Add vertices 167
org-parent-child-conversion-1733 1733 Add vertices 193
process-parent-child-conversion-1849 1849 Add vertices 288
org-parent-child-conversion-4164 4164 Add vertices 512
process-parent-child-conversion-4495 4495 Add vertices 516

233

Test result: I/O cost of data retrieval due to the Remove vertices operation

Graph name Size Operation
Run time

(milliseconds)

org-parent-child-conversion-263 263
Remove
vertices 16

org-parent-child-conversion-265 265
Remove
vertices 16

org-parent-child-conversion-276 276
Remove
vertices 16

org-parent-child-conversion-277 277
Remove
vertices 15

org-parent-child-conversion-306 306
Remove
vertices 31

org-parent-child-conversion-309 309
Remove
vertices 16

process-parent-child-conversion-332 332
Remove
vertices 15

process-parent-child-conversion-337 337
Remove
vertices 31

org-parent-child-conversion-351 351
Remove
vertices 15

process-parent-child-conversion-357 357
Remove
vertices 16

org-parent-child-conversion-361 361
Remove
vertices 94

org-parent-child-conversion-386 386
Remove
vertices 32

process-parent-child-conversion-422 422
Remove
vertices 31

org-parent-child-conversion-460 460
Remove
vertices 31

process-parent-child-conversion-526 526
Remove
vertices 31

org-parent-child-conversion-735 735
Remove
vertices 47

org-parent-child-conversion-807 807
Remove
vertices 46

org-parent-child-conversion-856 856
Remove
vertices 47

org-parent-child-conversion-888 888
Remove
vertices 62

org-parent-child-conversion-1063 1063
Remove
vertices 32

234

process-parent-child-conversion-1112 1112
Remove
vertices 47

org-parent-child-conversion-1444 1444
Remove
vertices 94

org-parent-child-conversion-1733 1733
Remove
vertices 47

process-parent-child-conversion-1849 1849
Remove
vertices 78

org-parent-child-conversion-4164 4164
Remove
vertices 406

process-parent-child-conversion-4495 4495
Remove
vertices 188

235

Test result: I/O cost of data saving due to the Remove vertices operation

Graph name Size Operation
Run time

(milliseconds)

org-parent-child-conversion-263 263
Remove
vertices 93

org-parent-child-conversion-265 265
Remove
vertices 125

org-parent-child-conversion-276 276
Remove
vertices 62

org-parent-child-conversion-277 277
Remove
vertices 93

org-parent-child-conversion-306 306
Remove
vertices 78

org-parent-child-conversion-309 309
Remove
vertices 109

process-parent-child-conversion-332 332
Remove
vertices 109

process-parent-child-conversion-337 337
Remove
vertices 63

org-parent-child-conversion-351 351
Remove
vertices 110

process-parent-child-conversion-357 357
Remove
vertices 78

org-parent-child-conversion-361 361
Remove
vertices 109

org-parent-child-conversion-386 386
Remove
vertices 109

process-parent-child-conversion-422 422
Remove
vertices 109

org-parent-child-conversion-460 460
Remove
vertices 125

process-parent-child-conversion-526 526
Remove
vertices 125

org-parent-child-conversion-735 735
Remove
vertices 156

org-parent-child-conversion-807 807
Remove
vertices 250

org-parent-child-conversion-856 856
Remove
vertices 203

org-parent-child-conversion-888 888
Remove
vertices 250

org-parent-child-conversion-1063 1063
Remove
vertices 203

236

process-parent-child-conversion-1112 1112
Remove
vertices 266

org-parent-child-conversion-1444 1444
Remove
vertices 407

org-parent-child-conversion-1733 1733
Remove
vertices 297

process-parent-child-conversion-1849 1849
Remove
vertices 360

org-parent-child-conversion-4164 4164
Remove
vertices 1109

process-parent-child-conversion-4495 4495
Remove
vertices 750

Test result: Total run time of the Remove vertices operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Remove vertices 132
org-parent-child-conversion-265 265 Remove vertices 91
org-parent-child-conversion-276 276 Remove vertices 86
org-parent-child-conversion-277 277 Remove vertices 133
org-parent-child-conversion-306 306 Remove vertices 145
org-parent-child-conversion-309 309 Remove vertices 149
process-parent-child-conversion-332 332 Remove vertices 169
process-parent-child-conversion-337 337 Remove vertices 114
org-parent-child-conversion-351 351 Remove vertices 135
process-parent-child-conversion-357 357 Remove vertices 162
org-parent-child-conversion-361 361 Remove vertices 156
org-parent-child-conversion-386 386 Remove vertices 165
process-parent-child-conversion-422 422 Remove vertices 201
org-parent-child-conversion-460 460 Remove vertices 174
process-parent-child-conversion-526 526 Remove vertices 172
org-parent-child-conversion-735 735 Remove vertices 241
org-parent-child-conversion-807 807 Remove vertices 356
org-parent-child-conversion-856 856 Remove vertices 274
org-parent-child-conversion-888 888 Remove vertices 345
org-parent-child-conversion-1063 1063 Remove vertices 181
process-parent-child-conversion-1112 1112 Remove vertices 305
org-parent-child-conversion-1444 1444 Remove vertices 423
org-parent-child-conversion-1733 1733 Remove vertices 283
process-parent-child-conversion-1849 1849 Remove vertices 397
org-parent-child-conversion-4164 4164 Remove vertices 1188
process-parent-child-conversion-4495 4495 Remove vertices 873

237

Test result: I/O cost of data retrieval due to the Remove edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Remove edges 15
org-parent-child-conversion-265 265 Remove edges 16
org-parent-child-conversion-276 276 Remove edges 31
org-parent-child-conversion-277 277 Remove edges 15
org-parent-child-conversion-306 306 Remove edges 16
org-parent-child-conversion-309 309 Remove edges 16
process-parent-child-conversion-332 332 Remove edges 16
process-parent-child-conversion-337 337 Remove edges 32
org-parent-child-conversion-351 351 Remove edges 15
process-parent-child-conversion-357 357 Remove edges 15
org-parent-child-conversion-361 361 Remove edges 31
org-parent-child-conversion-386 386 Remove edges 32
process-parent-child-conversion-422 422 Remove edges 31
org-parent-child-conversion-460 460 Remove edges 31
process-parent-child-conversion-526 526 Remove edges 47
org-parent-child-conversion-735 735 Remove edges 47
org-parent-child-conversion-807 807 Remove edges 62
org-parent-child-conversion-856 856 Remove edges 78
org-parent-child-conversion-888 888 Remove edges 47
org-parent-child-conversion-1063 1063 Remove edges 47
process-parent-child-conversion-1112 1112 Remove edges 31
org-parent-child-conversion-1444 1444 Remove edges 63
org-parent-child-conversion-1733 1733 Remove edges 203
process-parent-child-conversion-1849 1849 Remove edges 78
org-parent-child-conversion-4164 4164 Remove edges 969
process-parent-child-conversion-4495 4495 Remove edges 156

238

Test result: I/O cost of data saving due to the Remove edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Remove edges 94
org-parent-child-conversion-265 265 Remove edges 109
org-parent-child-conversion-276 276 Remove edges 94
org-parent-child-conversion-277 277 Remove edges 62
org-parent-child-conversion-306 306 Remove edges 78
org-parent-child-conversion-309 309 Remove edges 109
process-parent-child-conversion-332 332 Remove edges 109
process-parent-child-conversion-337 337 Remove edges 109
org-parent-child-conversion-351 351 Remove edges 110
process-parent-child-conversion-357 357 Remove edges 125
org-parent-child-conversion-361 361 Remove edges 125
org-parent-child-conversion-386 386 Remove edges 125
process-parent-child-conversion-422 422 Remove edges 141
org-parent-child-conversion-460 460 Remove edges 141
process-parent-child-conversion-526 526 Remove edges 203
org-parent-child-conversion-735 735 Remove edges 172
org-parent-child-conversion-807 807 Remove edges 266
org-parent-child-conversion-856 856 Remove edges 281
org-parent-child-conversion-888 888 Remove edges 141
org-parent-child-conversion-1063 1063 Remove edges 266
process-parent-child-conversion-1112 1112 Remove edges 172
org-parent-child-conversion-1444 1444 Remove edges 266
org-parent-child-conversion-1733 1733 Remove edges 671
process-parent-child-conversion-1849 1849 Remove edges 375
org-parent-child-conversion-4164 4164 Remove edges 1594
process-parent-child-conversion-4495 4495 Remove edges 672

239

Test result: Remove edges operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Remove edges 144
org-parent-child-conversion-265 265 Remove edges 142
org-parent-child-conversion-276 276 Remove edges 122
org-parent-child-conversion-277 277 Remove edges 104
org-parent-child-conversion-306 306 Remove edges 151
org-parent-child-conversion-309 309 Remove edges 166
process-parent-child-conversion-332 332 Remove edges 140
process-parent-child-conversion-337 337 Remove edges 155
org-parent-child-conversion-351 351 Remove edges 147
process-parent-child-conversion-357 357 Remove edges 150
org-parent-child-conversion-361 361 Remove edges 160
org-parent-child-conversion-386 386 Remove edges 208
process-parent-child-conversion-422 422 Remove edges 201
org-parent-child-conversion-460 460 Remove edges 220
process-parent-child-conversion-526 526 Remove edges 242
org-parent-child-conversion-735 735 Remove edges 274
org-parent-child-conversion-807 807 Remove edges 402
org-parent-child-conversion-856 856 Remove edges 352
org-parent-child-conversion-888 888 Remove edges 214
org-parent-child-conversion-1063 1063 Remove edges 289
process-parent-child-conversion-1112 1112 Remove edges 221
org-parent-child-conversion-1444 1444 Remove edges 288
org-parent-child-conversion-1733 1733 Remove edges 759
process-parent-child-conversion-1849 1849 Remove edges 442
org-parent-child-conversion-4164 4164 Remove edges 2048
process-parent-child-conversion-4495 4495 Remove edges 864

240

Test result: I/O cost of data retrieval due to the Set order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-306 306 Set order 16
org-parent-child-conversion-386 386 Set order 15
org-parent-child-conversion-460 460 Set order 16
org-parent-child-conversion-735 735 Set order 15
org-parent-child-conversion-888 888 Set order 16
org-parent-child-conversion-1063 1063 Set order 31

Test result: I/O cost of data saving due to the Set order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Set order 16
org-parent-child-conversion-265 265 Set order 15
org-parent-child-conversion-276 276 Set order 15
org-parent-child-conversion-277 277 Set order 16
org-parent-child-conversion-306 306 Set order 47
org-parent-child-conversion-309 309 Set order 16
process-parent-child-conversion-332 332 Set order 15
process-parent-child-conversion-337 337 Set order 0
org-parent-child-conversion-351 351 Set order 15
process-parent-child-conversion-357 357 Set order 0
org-parent-child-conversion-361 361 Set order 0
org-parent-child-conversion-386 386 Set order 47
process-parent-child-conversion-422 422 Set order 15
org-parent-child-conversion-460 460 Set order 62
process-parent-child-conversion-526 526 Set order 15
org-parent-child-conversion-735 735 Set order 79
org-parent-child-conversion-807 807 Set order 0
org-parent-child-conversion-856 856 Set order 0
org-parent-child-conversion-888 888 Set order 94
org-parent-child-conversion-1063 1063 Set order 156
process-parent-child-conversion-1112 1112 Set order 15
org-parent-child-conversion-1444 1444 Set order 16
org-parent-child-conversion-1733 1733 Set order 16
process-parent-child-conversion-1849 1849 Set order 16
org-parent-child-conversion-4164 4164 Set order 16
process-parent-child-conversion-4495 4495 Set order 16

241

Test result: Set order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Set order 45
org-parent-child-conversion-265 265 Set order 29
org-parent-child-conversion-276 276 Set order 27
org-parent-child-conversion-277 277 Set order 26
org-parent-child-conversion-306 306 Set order 107
org-parent-child-conversion-309 309 Set order 24
process-parent-child-conversion-332 332 Set order 28
process-parent-child-conversion-337 337 Set order 24
org-parent-child-conversion-351 351 Set order 38
process-parent-child-conversion-357 357 Set order 34
org-parent-child-conversion-361 361 Set order 22
org-parent-child-conversion-386 386 Set order 158
process-parent-child-conversion-422 422 Set order 22
org-parent-child-conversion-460 460 Set order 117
process-parent-child-conversion-526 526 Set order 22
org-parent-child-conversion-735 735 Set order 136
org-parent-child-conversion-807 807 Set order 20
org-parent-child-conversion-856 856 Set order 48
org-parent-child-conversion-888 888 Set order 161
org-parent-child-conversion-1063 1063 Set order 190
process-parent-child-conversion-1112 1112 Set order 22
org-parent-child-conversion-1444 1444 Set order 25
org-parent-child-conversion-1733 1733 Set order 29
process-parent-child-conversion-1849 1849 Set order 47
org-parent-child-conversion-4164 4164 Set order 31
process-parent-child-conversion-4495 4495 Set order 28

242

Test result: I/O cost of data retrieval due to the Drop order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Drop order 16
org-parent-child-conversion-265 265 Drop order 16
org-parent-child-conversion-276 276 Drop order 16
org-parent-child-conversion-277 277 Drop order 16
org-parent-child-conversion-306 306 Drop order 16
org-parent-child-conversion-309 309 Drop order 15
process-parent-child-conversion-332 332 Drop order 16
process-parent-child-conversion-337 337 Drop order 16
org-parent-child-conversion-351 351 Drop order 15
process-parent-child-conversion-357 357 Drop order 15
org-parent-child-conversion-361 361 Drop order 16
org-parent-child-conversion-386 386 Drop order 16
process-parent-child-conversion-422 422 Drop order 31
org-parent-child-conversion-460 460 Drop order 0
process-parent-child-conversion-526 526 Drop order 140
org-parent-child-conversion-735 735 Drop order 31
org-parent-child-conversion-807 807 Drop order 31
org-parent-child-conversion-856 856 Drop order 16
org-parent-child-conversion-888 888 Drop order 16
org-parent-child-conversion-1063 1063 Drop order 15
process-parent-child-conversion-1112 1112 Drop order 31
org-parent-child-conversion-1444 1444 Drop order 47
org-parent-child-conversion-1733 1733 Drop order 47
process-parent-child-conversion-1849 1849 Drop order 62
org-parent-child-conversion-4164 4164 Drop order 109
process-parent-child-conversion-4495 4495 Drop order 93

243

Test result: I/O cost of data saving due to the Drop order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Drop order 31
org-parent-child-conversion-265 265 Drop order 47
org-parent-child-conversion-276 276 Drop order 31
org-parent-child-conversion-277 277 Drop order 31
org-parent-child-conversion-306 306 Drop order 47
org-parent-child-conversion-309 309 Drop order 47
process-parent-child-conversion-332 332 Drop order 47
process-parent-child-conversion-337 337 Drop order 47
org-parent-child-conversion-351 351 Drop order 62
process-parent-child-conversion-357 357 Drop order 63
org-parent-child-conversion-361 361 Drop order 63
org-parent-child-conversion-386 386 Drop order 47
process-parent-child-conversion-422 422 Drop order 78
org-parent-child-conversion-460 460 Drop order 62
process-parent-child-conversion-526 526 Drop order 63
org-parent-child-conversion-735 735 Drop order 94
org-parent-child-conversion-807 807 Drop order 94
org-parent-child-conversion-856 856 Drop order 94
org-parent-child-conversion-888 888 Drop order 110
org-parent-child-conversion-1063 1063 Drop order 156
process-parent-child-conversion-1112 1112 Drop order 109
org-parent-child-conversion-1444 1444 Drop order 141
org-parent-child-conversion-1733 1733 Drop order 172
process-parent-child-conversion-1849 1849 Drop order 204
org-parent-child-conversion-4164 4164 Drop order 422
process-parent-child-conversion-4495 4495 Drop order 344

244

Test result: Drop order constraints operation

Graph name Size Operation
Run time

(milliseconds)
org-parent-child-conversion-263 263 Drop order 84
org-parent-child-conversion-265 265 Drop order 74
org-parent-child-conversion-276 276 Drop order 68
org-parent-child-conversion-277 277 Drop order 84
org-parent-child-conversion-306 306 Drop order 92
org-parent-child-conversion-309 309 Drop order 91
process-parent-child-conversion-332 332 Drop order 96
process-parent-child-conversion-337 337 Drop order 118
org-parent-child-conversion-351 351 Drop order 116
process-parent-child-conversion-357 357 Drop order 129
org-parent-child-conversion-361 361 Drop order 118
org-parent-child-conversion-386 386 Drop order 88
process-parent-child-conversion-422 422 Drop order 157
org-parent-child-conversion-460 460 Drop order 124
process-parent-child-conversion-526 526 Drop order 210
org-parent-child-conversion-735 735 Drop order 137
org-parent-child-conversion-807 807 Drop order 167
org-parent-child-conversion-856 856 Drop order 145
org-parent-child-conversion-888 888 Drop order 152
org-parent-child-conversion-1063 1063 Drop order 221
process-parent-child-conversion-1112 1112 Drop order 188
org-parent-child-conversion-1444 1444 Drop order 209
org-parent-child-conversion-1733 1733 Drop order 239
process-parent-child-conversion-1849 1849 Drop order 323
org-parent-child-conversion-4164 4164 Drop order 792
process-parent-child-conversion-4495 4495 Drop order 524

245

Appendix D

SQL Queries Used in Test Validation

Count the number of layers in a process graph layout:

select count(layer) from layer where graph_name='process-parent-child-conversion';

Count the number of vertices in a process graph layout:

select count(*) from vertex where graph_name='process-parent-child-conversion';

Find data generating dynamic operations:

select * from vertex where graph_name='org-parent-child-conversion' order by layer,
vertex_id;

select max(vertex_id) from vertex where graph_name='org-parent-child-conversion';

select * from edge where graph_name='org-parent-child-conversion' and head > 1;

select * from vertex where graph_name='org-parent-child-conversion' and layer=4 order by
position, vertex_id;

246

Appendix E

 Class Diagrams for Helper Classes in the Constrained Graph Drawing Framework

Lexical class diagram

Connection class diagram

247

Web service class diagram

248

Reference List

Battista, G. D., Eades, P., Tamassia, R., & Tollis, I. (1999). Graph drawing algorithms for
the visualization of graphs. New Jersey: Prentice Hall.

Berger, B., & Shor, P. W. (1990). Approximation algorithms for the maximum acyclic
subgraph. Proceedings of the First ACM-ISAM Symposium on Discrete Algorithms,
236–243.

Bohringer, K., & Newbery, P. (1990). Using constraints to achieve stability in automatic
graph layout algorithms. Proceedings of ACM CH 90, 43–51.

Brandes, U., & Wagner, D. (1997). A Bayesian paradigm for dynamic graph layout. Proc.
Measures for GSymp. Graph Drawing GD ’97, pp. 236–247.

Bridgeman, S., & Tamassia, R. (2002). A user study in similarity measures for graph
drawing. Journal of Graph Algorithms and Applications, 6(3), 225–254.

Buchsbaum, A. L., & Westbrook, J. R. (2000). Maintaining hierarchical graph views.
Proceedings of the Eleventh Annual ACM-Siam Symposium on Discrete Algorithms.
566–575.

Catarci, T. (1988). The assignment heuristic for crossing reduction. IEEE Trans. Syst. Man
Cybern. 25(3), 515–521.

Coffman, E. G., & Graham, R. L. (1972). Optimal scheduling for two processors systems.
Acta Informica 1, pp. 200–213.

Cohen, R. F., Battista, G. D., Tamassia, R., Tollis, I. G., & Bertolazzi, P. (1992). A
framework for dynamic graph drawing. Annual Symposium on Computational
Geometry: Proceedings of the Eighth Annual Symposium On Computational
Geometry (pp. 261–270). Berlin: ACM.

Davison, R., & Harell, D. (1996). Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics Vol. 15 (301–331)

Demetrescu, C., & Finocchi, I. (2003). Combinatorial algorithms for feedback problems in
directed graphs. Information Processing Letters, 86(3), 129–136.

Diehl, S., & Görg, C. (2002). Graphs, they are changing. Lecture Notes In Computer Science
Vol. 2528 (23–30).

249

Diehl, S., Görg, C., Kerren, A. (2000). Foresighted graph layout. Technical Report, FR
Informatik, Saarland University.

Eades, P. (2005). How to get a PhD in Information Technology. Retrieved May 02, 2007
from http://www.cs.usyd.edu.au/~peter/howtogetphdusyd.pps

Eades, P., & Kelly, D. (1984). The Marey graph animation tool demo. Proceedings of the
8th International Symposium on Graph Drawing, 396 – 406.

Eades, P., & Kelly, D. (1986). Heuristics for reducing crossings in 2-layered networks. Ars
combin., pp. 187–191. Proceedings of the Australian Computer Science Conference,
327–334.

Eades, P., Lin, X. Y, & Smith, W. (1993). A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters, 12–15.

Finocchi, I. (2002). Hierarchical decompositions for visualizing large graphs. Ph. D thesis.
Universita�� degli Studi di Roma, Rome.

Forster, M. (2004). A fast and simple heuristic for constrained two-layered crossing
reduction. Proc. Graph Drawing, GD 2004, 206–216.

Frishman, Y., & Tal, A. (2007). On-line dynamic graph drawing. Eurographic/ IEEE-VGTC
Symposium on Visualization.

Gansner, E. R., North, S. C., & Vo, K. P. (1993). A technique for drawing directed graphs.
IEEE Transactions on Software Engineering, 19(3), 214–230.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory
of NP-complete. New York: W. H. Freeman.

Garey, M. R., & Johnson, D. S. (1983). Crossing number is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 4(3), 312–316.

Görg, C. (2005). Offline drawing of dynamic graphs. Ph. D Dissertation. Saarland
University, Saarbrücken, Germany.

Görg, C., Birke, P., Pohl, M., & Diehl, S. (2004). Dynamic graph drawing of sequences of
orthogonal and hierarchical graphs. Proceedings of 12th International Symposium on
Graph Drawing.

He, W., & Marriott, K. (1998). Constrained graph layout. Constraints, 3, 289–314. Boston:
Kluwer.

250

Huang, W., & Eades, P. (2005). How people read graphs. Asia Pacific Symposium on
Information Visualization (APVIS 2005). Australia.

Junger, M., & Mutzel, P. (1997). 2-layer straightline crossing minimization: Performance of
exact and heuristic algorithms. J. Graph Algorithms and Applications, 1(1), 1–25.

Knuth, D. E. (1996). Guest Lecture. Preceding Graph Drawing 1996.

Lam, S., & Sethi, R. (1979). Worst case analysis of two scheduling algorithms. SIAM
Journal on Computing, 6(3), 518.

Lee, Y. Y., Lin, C. C., & Yen, H. C. (2006). Mental map preserving graph drawing using
simulated annealing. Vol. 60 of Conferences in Research and Practice in Information
Technology.

Li, X. Y., & Stallmann, M. (2002). New bounds on the barycenter heuristic for bipartite
graph drawing. Information Processing Letters, 82(6), 293–298. Amsterdam:
Elsevier.

Lin, X. Y. (1992). Analysis of algorithms for drawing graphs. PhD thesis, Department of
Computer Science, University of Queensland, Queensland, Australia.

Luder, P., Ernst, R., & Stille, S. (1995). An approach to automatic display layout using
combinatorial optimization algorithms. Software – Practice and Experience (25)11,
1183–1202.

Marti, R., & Laguna, M. (2003). Heuristics and meta-heuristics for 2-layer straight line
crossing minimization. Discrete Applied Mathematics, 12(3), 665–678.

Matuszewski, C., Schönfeld, R., & Molitor, P. (1999). Using sifting for k-layer straightline
crossing minimization. Lecture Notes in Computer Science; Vol. 1731: Proceedings
of the 7th international symposium on graph drawing (pp. 217–224). London:
Springer-Verlag.

Miriyala, K., & Tamassia, R. (1993). An incremental approach to aesthetic graph layout.
Computer-Aided Software Engineering, Proceeding of the Sixth International
Workshop, Vol. 47. Iss 11, 1297–1309

North, S. C. (1995). Incremental layout in DynaDAG. Software and Systems Research
Center. AT & T Bell Laboratories.

North, S. C., & Woodhull, G. (2001). On-line hierarchical graph drawing. Lecture Notes in
Computer Science; Vol. 2265: Revised papers from the 9th international symposium
on graph drawing (pp. 232–246). London: Springer-Verlag.

251

Patarasuk, P. (2004). Crossing reduction for layered hierarchical graph drawing. Master’s
thesis, Florida State University, Tallahassee, Florida.

Rabani, Y. (2003). Approximation Algorithms Lectures. Retrieved May 02, 2007 from
http://www.cs.technion.ac.il/~rabani/236521.04.wi.html

Raitner, M. (2004). Maintaining hierarchical graph views for dynamic graphs. Technical
Report, MIP-0403, University of Passau, Passau, Germany.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagram. In Proc.
International Conference on Computer-Aided Design (pp. 42–47).

Ryall, K., Marks, J., & Shieber, S. (1997). An interactive constraint-based system for
drawing graphs. Mitsubishi Electric Research Laboratory.

Sander G. (1996). Visualisierungstechniken f¨ur den Compilerbau. PhD thesis, University of
Saarbrücken.

Stallman, M., Brglez, F., Ghost, D. (2001). Heuristics, experimental subjects, and treatment
evaluation in bigraph crossing minimization. Journal of Experimental Algorithmics
(JEA), 6(8).

Stedile, A. (2001). JMFGraph - A modular framework for drawing graphs in Java. Master’s
thesis, Graz University of Technology, Graz, Austria.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of
hierarchical systems. IEEE Trans. On System, Man, and Cybernetics, (2), 109–125.

Waddle V. (2001). Graph layout for displaying data structures. In J. Marks, editor, Proc.
GD’00, volume 1984 of LNCS, pp. 241–252. Springer, 2001.

Weisstein, E. W. (2003). Independent Set. MathWorld--A Wolfram Web Resource. Retrieved
October 20, 2006 from http://mathworld.wolfram.com/IndependentSet.html

West, D. B. (2001). Introduction to graph theory. New Jersey: Prentice Hall.

