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ABSTRACT

The current standard for medical image-based tumor response assessment for patients with malig-

nant pleural mesothelioma is the modified Response Evaluation Criteria In Solid Tumors (RECIST)

measurement technique with changes classified according to the standard RECIST response clas-

sification criteria. While the modified RECIST measurement technique was developed specifically

for the unique morphology and growth patterns of mesothelioma, the standard RECIST classifi-

cation criteria are used across a wide range of diseases and are certainly not specific to any one

disease. As a coherent progression, this work extends the definition of radiologic response for

patients with malignant pleural mesothelioma from one to three dimensions, both in the context

of a discrete classification system and as a continuous prognostic model. Furthermore, temporal

and spatial measurements are combined in an investigation of dynamic imaging for patients with

mesothelioma.

This work begins by quantifying the association between standard tumor response classifica-

tion from thoracic computed tomography (CT) scans and patient survival in a study focused on the

standard linear thickness measurement technique. The association between tumor response and

patient survival was improved by identifying new response classification criteria specifically for

a database of treated mesothelioma patients. In place of summed linear thickness measurements,

summed measurements of disease area from a limited number of CT sections were investigated as

a more complete and potentially less variable metric for tumor response assessment. However, the

inter-observer variability in such measurements, even in a constrained follow-up contouring task,

was too broad for reliable use as a response assessment technique in patients with mesothelioma.

Next, full volumetric segmentations of pleural disease volume were investigated as a response

assessment measurement technique. A comprehensive model to predict patient survival was built

using time-changing measurements of disease volume in conjunction with other clinical covariates,

where it was shown that increasing pleural disease volumes are significantly associated with poor

patient prognosis in both univariate and multivariate prognostic models. Automatically segmented
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lung volumes were also investigated as an alternate response assessment measurement technique.

Because of the anatomy associated with mesothelioma, when the disease volume increases, it is

reasonable to believe that the aerated lung volume will decrease correspondingly. Lung volume

segmentation is a completely automated process and is a computationally simpler task than pleural

disease volume segmentation. As expected, decreases in lung volume were shown to be signifi-

cantly associated with poor patient prognosis, and the performance of the prognostic model using

lung volume measurements was statistically nearly identical to the model using disease volume

measurements. Both models were compared with a model using summed linear thickness mea-

surements, and the performance of the linear measurement model was on average better than the

performance of either the disease volume or lung volume models (though not significantly so).

This work provides the first evidence that trajectories of three distinct response assessment mea-

surement techniques are significantly associated with mesothelioma patient survival in univariate

and multivariate models. Finally, this work reports the results of a pilot study on dynamic contrast-

enhanced (DCE) CT for patients with mesothelioma. A DCE-CT imaging protocol was developed

to dovetail with a clinically indicated standard chest CT scan, and software tools were developed

to analyze DCE-CT parameters from volumetric regions of interest in a spatially co-registered

reference frame. DCE-CT parameter values are reported for individual scans and changes in DCE-

CT parameters are calculated for two cohorts of patients, one undergoing treatment and the other

on observation. Only 13 patients have received both DCE-CT scans; the initial pilot study will

continue until a final accrual goal of 20 patients with two DCE-CT scans each. This dissertation

investigated a variety of new response assessment strategies for patients with malignant pleural

mesothelioma. These techniques will hopefully impact the tools clinicians use to assess patient

response in both phase II clinical trials and routine patient care.
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CHAPTER 1

INTRODUCTION

“In physical science the first essential step in the direction of learning any subject

is to find principles of numerical reckoning and practicable methods for measuring

some quality connected with it. I often say that when you can measure what you are

speaking about, and express it in numbers, you know something about it; but when

you cannot measure it, when you cannot express it in numbers, your knowledge is of

a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have

scarcely in your thoughts advanced to the state of Science, whatever the matter may

be.” – Sir William Thomson (Lord Kelvin)

1.1 Mesothelioma

Malignant pleural mesothelioma (MPM) is a malignancy of the pleural membranes which sur-

round the lungs and separate them from the thoracic wall and is primarily caused by exposure to

asbestos [1,2]. Mesothelioma in general is not exclusive to the thoracic cavity but can appear in the

body where mesothelium cells are present, which often make up all or part of the protective linings

surrounding internal organs and separating body cavities. For instance, peritoneal mesothelioma

can occur in the lining of the abdominal cavity, though approximately 90% of malignant mesothe-

liomas are of pleural origin [3]. For the purpose of this work, “mesothelioma” (or MPM) will be

taken to mean malignant pleural mesothelioma.

1.1.1 Asbestos

The relationship between exposure to asbestos and development of mesothelioma is well-docu-

mented [1, 3]. Asbestos is a mineral with properties that work well as an insulating construction

material, and asbestos has been used in wall and pipe insulation, floor tiles, ceilings, walls, con-

1



crete fences, and other places. The asbestos fibers are long and thin crystals, and these crystals

can be inhaled during uncontrolled exposure to loose airborne fibers. The exact mechanism by

which asbestos is carcinogenic is not fully understood, but it is believed that the airborne asbestos

fibers become lodged in the alveoli, and larger fibers migrate through the lung parenchyma to

the pleural lining. There, the fibers repeatedly scratch and irritate the pleural surfaces with every

breathing cycle, and the constant damage repair processes of the immune system are thought to

result in DNA strand breaks, eventually leading to mutation and carcinogenesis. Different types

of asbestos have different crystalline shapes: chrysotile, or white, asbestos is described as “curly,”

whereas amosite (brown) or crocidolite (blue) asbestos have more needle-like crystals. Because

of the mechanisms believed to be responsible for mesothelioma carcinogenesis, amosite and cro-

cidolite asbestos are jointly believed to be responsible for the majority of disease incidence [4]. A

photograph of asbestos fibers used to weave insulating material is shown in Figure 1.1.

Because asbestos exposure is usually occupational, and males were largely involved in the

mining and construction uses of asbestos, the incidence of mesothelioma is higher in males than in

females. The annual incidence is estimated in the range of 15–20 cases per million, with less than

five cases per million occurring in females (contrasted with an annual incidence of approximately

560 per million for breast cancer or 570 per million for prostate cancer) [5,6]. The latent period of

the disease is around 30–40 years, and asbestos use reached its peak in the US in the late 1960s,

explaining the relatively high incidence of the disease now compared with past decades [3, 7, 8].

While evidence suggests that the disease may have peaked in the US in the late 1990s or early

2000s, European incidence is not forecast to peak until sometime this decade, and incidence in

countries that continue to use asbestos in new buildings will continue to increase. For instance,

asbestos use continued longer in Europe, Japan, and Australia, and incidence is expected to peak

in these regions in 2020, 2025, and 2015, respectively. Therefore, while the US incidence of

mesothelioma is relatively low, the disease is not “going away” anytime soon. The Australian

incidence is one of the higher incidences worldwide at approximately 40 per million, largely due to
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Figure 1.1: A photograph of asbestos fibers used to weave insulation material. Note the
long, thin crystal shape. Source: Wikimedia, “Asbestos fibres,” accessed January 31, 2012
(http://commons.wikimedia.org/wiki/File:Asbestos_fibres.jpg; Wikimedia Commons is a media
file repository making available public domain and freely-licensed educational media content to
everyone).
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Figure 1.2: A sample of blue (crocidolite) asbestos from Wittenoom in Western Aus-
tralia. Note the fibrous and spindle-like nature of the mineral. The ruler is 1 cen-
timeter. Source: Wikimedia, “Blue asbestos (teased),” accessed January 31, 2012
(http://commons.wikimedia.org/wiki/File:Blue_asbestos_(teased).jpg).

the presence of vast mineral mines in Australia, especially mines like Wittenoom Gorge in Western

Australia, where asbestos tailings were used as covering spread on playgrounds and schoolyards

(in addition to the airborne asbestos from the mining operations) [1]. A sample of blue asbestos

from Wittenoom is shown in Figure 1.2.

1.1.2 Treatment

For patients with resectable MPM, the primary means of treatment is surgery. Surgical interven-

tions include thoracoscopy (resection of masses within the pleural cavity, often video-assisted),

pleurectomy/decortication (P/D: open thoracotomy with stripping of pleural lining from hemitho-

racic and mediastinal structures), and extrapleural pneumonectomy (EPP: removal of entire tissues

from the affected hemithorax, including pleura, lung, lymph nodes, etc) [9]. Because EPP is a
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more radical treatment option, its use is somewhat controversial; the procedure is associated with

significant morbidity, and it has not been shown to improve long-term survival [10]. Surgical

intervention is still associated with recurrence, both distant and local. For P/D, local recurrence

dominates, with rates from 64% to 72%, and for EPP, distant recurrence dominates, with rates from

41% to 44% [11–13].

Radiation therapy also plays an important role in the treatment of MPM. The primary use of

radiotherapy in treating MPM is for prophylaxis, either at the site of surgical incision to prevent

disease spreading, or to the entire hemithorax after EPP. Both approaches aim to kill microscopic

disease left behind by surgical intervention. Definitive treatment of the entire hemithorax after

EPP involving a radiation dose of 54 Gy improved locoregional control over moderate radiation

doses of 30 Gy, but the difference between dose cohorts was not statistically significant. Further-

more, intensity modulated radiation therapy (IMRT) resulted in a local control rate of 87% but had

associated high toxicity, including a case of fatal radiation pneumonitis [14, 15].

Chemotherapy can be administered in the neoadjuvant or adjuvant settings for resectable MPM.

The most common drugs used are a platinum-based agent (cisplatin or carboplatin) with either

gemcitabine or pemetrexed. A Swiss multi-center trial of neoadjuvant cisplatin plus gemcitabine

prior to EPP showed an overall median survival of 19.8 months for all patients, with median sur-

vival for patients with resectable disease (74% of patients) increasing to 23 months [16]. For

patients without resectable disease, chemotherapy is used as a front-line treatment. The current

standard is cisplatin in combination with pemetrexed, which became the standard after a large trial

ending in 2003 [17]. This regimen showed an overall median survival of 12.1 months. Cisplatin

has also been combined with gemcitabine for overall median survival times from 9.4 to 13 months

(see Table 2 of reference [9]). Carboplatin is sometimes substituted for cisplatin, since carboplatin

reduces the side-effects of nausea, vomiting, and kidney toxicity compared with cisplatin. How-

ever, carboplatin is not as potent as cisplatin [18]. Both agents use platinum to interfere with DNA

mechanisms, including mitotic cell division, and when repair is not possible, the cells default to

5



apoptosis, or cell death.

1.1.3 Imaging

The standard diagnostic imaging modality used in the assessment of mesothelioma is computed to-

mography (CT) [19–23]. While patients may be initially evaluated at presentation with a projection

chest x-ray (CXR), CT is the primary modality for diagnosis, staging, and preoperative evaluation.

These CT scans are typically performed with an iodinated (radio-opaque) contrast agent unless the

contrast agent is not tolerated by the patient (for instance because of renal insufficiency). Whether

or not contrast media is used, the presentation of MPM on CT scans can pose challenges. The

Hounsfield Unit (HU), sometimes called the CT number, values of mesothelioma overlaps consid-

erably with the adjacent chest wall musculature [24]. The overlap in HU values can be seen in

Figure 1.3, where the signal of the disease appears very similar to the adjacent muscle. Further-

more, pleural effusion (PE) is also commonly observed with mesothelioma, and the HU values

of pleural effusion can appear very similar to disease tissue, depending on the fluid content (pro-

tein concentration, etc). Especially when very small pockets of PE are mixed with solid tissue, the

partial volume effect of CT imaging can make distinguishing PE from disease virtually impossible.

MRI can be used for MPM imaging and has the advantage of improved soft-tissue contrast over

CT, depending on the pulse sequence (or weighting) of the scan [23]. This additional image con-

trast leads to better identification of chest wall invasion, diaphragmatic invasion, and mediastinal

invasion. However, MRI imaging is more susceptible to imaging artifacts because of the extended

duration of the scans, with aliasing especially common.

Fluorodeoxyglucose positron emission tomography (FDG-PET) also provides complementary

imaging information to CT scans. MPM is FDG-avid, meaning that because of the metabolic prop-

erties of the tumor, FDG shows preferential uptake in the diseased tissue [25–28]. This property,

along with the known FDG avidity of affected lymph nodes and metastatic masses, has great value

in the staging process for MPM. Complete image staging, including primary tumor staging, node,
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Figure 1.3: Typical presentation of mesothelioma on CT. The white arrow indicates disease, the
red arrow indicates pleural effusion, and the green arrow indicates adjacent musculature. Note the
decidedly aspherical disease morphology.
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and metastasis staging (TNM), is often impossible without an FDG-PET scan [29]. However, the

spatial resolution of PET imaging (typically on the order of 1 cm) is not comparable with the spa-

tial resolution of MRI or CT (typically on the order of 1 mm), and even the CT used for attenuation

correction in PET imaging is typically not of diagnostic quality. However, there has been interest-

ing work on the use of FDG-PET metrics for tumor response in MPM, including the standardized

uptake value (SUV), which is a normalized quantitative metric for FDG uptake [28].

1.1.4 Prognostic Markers

Prognostic markers are pieces of information that have value in forecasting the likely future out-

come for a patient. In a very broad sense, prognostic markers are useful in making predictions

about a patient’s survival, whether the markers are taken before or during the course of a patient’s

treatment. There is some ambiguity between the terms “prognostic” and “predictive” in the realm

of patient outcomes, with “predictive” usually implying a marker that has value in predicting how

well a patient will respond to a specific therapy, and “prognostic” implying a marker that has value

in forecasting future survival in some way, sometimes from baseline marker values only. In this

work, the term “predictive” will generally be avoided to describe patient-specific markers, since in

a broad sense the term “prognostic” encompasses the definition of “predictive.”

In MPM, several studies have focused on the identification of prognostic markers [30–35].

Some common features of these studies are patient age, sex, performance status (PS) as measured

on the Eastern Cooperative Oncology Group (ECOG)/World Health Organization (WHO) scale,

white blood cell (WBC) count, blood platelet count, histological subtype, presence of chest pain,

and weight loss. Specifically, groups with worse prognosis are older patients, males, ECOG PS

1 and 2 (compared with 0), high WBC count (> 8.3 · 109 per liter), high platelets (> 400 · 109

per liter), sarcomatoid or biphasic histology (compared with epithelioid), confirmed chest pain,

and confirmed weight loss. These factors (and various others) have been used to create discrete

prognostic groups, such as the six groups of the Cancer and Leukemia Group B (CALGB) system,
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or the two groups in the European Organization for Research and Treatment of Cancer (EORTC)

system [31, 32]. Both of these models, as well as the individual prognostic markers, have been

validated [33]. Using the same EORTC patient cohort, a separate model has been developed using

histology, disease stage (stage IV compared with I, II, or III), and ECOG PS [34]. There has also

been recent interest in blood serum markers such as soluble mesothelin concentration [35].

Some image-based features have proven to be prognostic for MPM as well. In a 1998 study,

Pass et al. [36] showed that preoperative tumor volume, as measured using manual contours on CT

scans, was prognostic for survival. Median survival for patients with preoperative volumes less

than 100 cc was 22 months, while for patients with preoperative volumes greater than 100 cc the

median survival was 11 months (p = 0.03). FDG-PET imaging has also been used as a prognostic

marker [25, 28, 35, 37, 38]. The general trend of these models is that larger values of SUV (or

occasionally maximum SUV) and/or total glycolytic volume (TGV), a measure combining the

metabolic activity and volume of the entire tumor mass, are associated with poor patient prognosis.

1.2 Measuring Disease Response to Treatment

In general, the concept of an “effective treatment” hinges on the definition of “effective.” The

ultimate standard for efficacy is patient survival; effective treatments should by definition prolong

patient survival. However, because of the expected survival for some diseases, measuring efficacy

through survival can be prohibitively time-consuming. Disease response metrics are common sur-

rogates for patient survival in the assessment of treatment efficacy, and as such, response metrics

are vital components of patient care and clinical trials.

Response metrics measure some aspect of the patient’s disease, often (but not always) a mea-

sure of tumor burden. These measurements are then used as a more immediate tool to assess the

efficacy of therapy. Is the patient’s disease shrinking? If so, they may be responding to the treat-

ment. Is the disease burden increasing? The patient’s disease may be progressing, potentially

indicating a lack of therapeutic efficacy. As Nowak states in a 2005 article, “a decrease in tumor
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size may or may not achieve palliation in individual patients. However, tumor response is an im-

portant surrogate for patient benefit in non-randomized clinical trials where symptom improvement

and increased survival are difficult to assess” [39].

This type of “immediate” feedback is especially useful in phase II clinical trials, where the goal

is simply to show that the treatment has demonstrable efficacy. The purview of a phase III trial is a

definitive assessment of the novel therapy in comparison with the “gold standard.” Patient survival

remains the preferred measure of efficacy in phase III trials, but a phase II trial is greatly expedited

through the use of surrogate markers such as disease response metrics. However, for the success

of a phase II trial to have relevancy, the disease response metric must be a useful surrogate for

patient benefit or survival. Recent analysis of clinical trials for chemotherapeutic agents showed a

disappointing tendency for pharmaceuticals passing phase II trials to fail in a phase III trial, and

perhaps part of the issue is an inappropriate system for response assessment [40, 41].

1.2.1 Historical Development of Response Models

Any image-based response evaluation method has two components; the first describes a protocol

for making measurements, and the second describes how to classify patients into response cate-

gories once those measurements are available. The first widely utilized radiologic response assess-

ment tool was the World Health Organization (WHO) bi-dimensional measurement technique [42].

Using this technique, the medical image section containing the largest tumor diameter was found,

and linear measurements were taken of both the largest tumor diameter and the largest span per-

pendicular to the first measurement. The product of these two linear measurements was used as the

quantity to represent tumor burden. If the product of the bi-dimensional measurement increased

by more than 25% from the minimum of previous measurements (nadir), the patient was classified

as having progressive disease (PD), and if the measurement decreased by 50% or more from the

baseline measurement, the patient was classified as partially responsive (PR). Complete response

was the disappearance of measurable disease, and stable disease (SD) was defined for measure-
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ment changes lying between the previously mentioned classification groups. These -50%/+25%

cutoffs for PR and PD, respectively, were based on previous breast cancer cohort studies, where

the origin of the criteria was, in part, from what physicians believed to be reasonable palpable

changes in tumor burden (i.e., the amount of change the physicians could reliably identify from

palpation alone).

Later, the Response Evaluation Criteria In Solid Tumors, or RECIST criteria, were derived to

simplify this measurement process; the two necessary measurements were reduced to one (again,

the longest tumor diameter), and the cutoff criteria were derived from a geometrical relation-

ship [43]. For a sphere where the cross-sectional area increases by 25%, the diameter increases

by 12%, whereas a cross-sectional area reduction of 50% for the same sphere would correspond

to a diameter decrease of 29%. The -29%/+12% “sphere model” extrapolations were rounded to

-30%/+20%, leading to the current RECIST classification criteria [44, 45]. The RECIST measure-

ment technique and classification criteria are currently used across many disease types including

lung cancer, mesothelioma, breast cancer, colorectal cancer, prostate cancer, gastro-intestinal stro-

mal tumors, soft tissue sarcomas, brain tumors, renal cell carcinomas, and others [46].

1.2.2 Response Assessment in Mesothelioma

The wording of the original RECIST measurement technique poses a serious challenge for MPM.

Since MPM grows as a pleural rind surrounding the lung, does the “longest diameter” refer to the

diameter of the entire lung? To the maximum chord across the annular ring? To the maximum

thickness of the rind? The measurement technique for MPM was ill-defined until 2004, when

the modified RECIST criteria were published [46–48]. With the modified RECIST technique, two

linear “short axis” measurements, or thickness measurements, are summed from each of three axial

sections. The sum of the six thickness measurements is tracked across time, and patient response

classification is performed according to the same -30%/+20% criteria that are applied to many

other diseases.
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Whereas the modified RECIST measurement technique is better suited to MPM morphology,

the classification criteria are still based on arbitrary standards with historical baggage. There is

room for doubt on the applicability of such criteria for classification of response in a disease so

typically aspherical as mesothelioma (see Figure 1.3) [49]. As the eccentricity of a tumor in-

creases, the concordance between the RECIST and WHO systems has been shown to significantly

decrease [50]. Indeed, others have derived theoretical response classification criteria for mesothe-

lioma based on geometric models other than spheres, such as the lens, crescent, or annulus [51].

On the whole, these geometric models indicate that uni-dimensional measurements made accord-

ing to the modified RECIST guidelines would be better classified with criteria where the definition

of stable disease was more broad (for instance, in the crescent model, criteria of -66%/+74% would

replace the current -30%/+20% standards). Broadening the definition of stable disease would also

have benefit in the context of inter-observer variability: it has been previously shown that modified

RECIST measurements have a relative inter-observer variability that can span a range of 30% under

highly idealized image measurement conditions [52, 53]. With the standard RECIST -30%/+20%

criteria, a patient with truly stable disease (i.e., 0% change) may be incorrectly classified as PR or

PD due to observer effects alone.

While the goal of the (modified) RECIST system is to capture changes in overall tumor bulk,

the true measure of tumor burden is three-dimensional volume. Numerous studies have investi-

gated the use of tumor volume and tumor volume-related measurements for response assessment

in patients with MPM using MRI, CT, and FDG-PET imaging [35,37,54–58]. The main challenge

in these volumetric studies is the segmentation of the complete tumor volume. Using FDG-PET

imaging, the segmentation of MPM is greatly facilitated by the FDG avidity of the tumor. Three-

dimensional semi-automated region growing techniques can be used with high reproducibility to

capture the complete tumor volume [55,59], and even more rudimentary simple thresholding tech-

niques also appear to perform well [56].

The segmentation of MPM in CT images is more problematic, and both published studies use a
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semi-automated tool for MPM volume segmentation [57,58]. The study by Frauenfelder et al. [57]

used a linear shape-based interpolation technique, requiring contours on “every fourth or fifth

slice.” The main conclusion of this study related to volumetric response was that the inter-observer

agreement of volumetric response classification is much higher than for manual modified RECIST

response classification (general k = 0.9 vs general k = 0.33, respectively) [57]. This may be a

by-product of the fairly wide definitions given to the response categories for volumetric data. The

study by Liu et al. [58] utilized a combination of semi-automated techniques for volumetric MPM

segmentation, and their analysis revealed changes in tumor volume to be significantly associated

with patient survival. Patients experiencing tumor growth had a median survival of 11.5 months,

while patients with tumor decrease had a median survival of 18.1 months.

There has been progress toward an automated tool for the volumetric segmentation of MPM.

The method developed by Sensakovic et al. [60] uses automated segmentations of the lung and

hemithoracic boundaries, and the results agree with human observers to the extent that human

observers agree with each other. The area overlap metric (AOM), defined as the volumetric overlap

between two sets of contours divided by the total volume encompassed by either of the sets of

contours, was used as the validation metric. The median AOM value amongst observers was 0.52,

while the median AOM value between the computerized method and the manual observers was

0.48. While this places the automated method on par with the manual observers, the fact remains

that neither AOM value instills much confidence.

With the challenges in volumetric MPM segmentation on CT images, it is not unreasonable to

wonder why FDG-PET response assessment does not have a wider usage. Figure 1.4 highlights

the difficulty of MPM segmentation on CT and the ease of MPM segmentation on FDG-PET.

However, PET imaging is more expensive, has a lower spatial resolution, and is less accessible

than CT imaging.
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Figure 1.4: Appearance of MPM on axial CT (a) and FDG-PET (b,c). The coronal PET image (b)
and the axial PET image (c) highlight the FDG-avidity of MPM. Automatic volume segmentation
contour is shown in (c) and in a PET/CT fusion image (d). Taken from Figure 2 of reference [37]
(used with permission from publisher).
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1.3 Modeling Patient Survival

With any prognostic or response assessment model, there needs to be a robust framework for esti-

mating survival itself and correlation between variables (sometimes called covariates) and survival.

A brief introduction to some relevant concepts in survival statistics follows. Ideally, patient time-

to-event data is measured from a set landmark time (i.e., from diagnosis or treatment initiation)

until the observed event of interest. This event may consist of disease progression, disease relapse,

or ultimately death. The question of interest may simply be “what is is the median survival?” or

may be more complicated, such as “is the median survival significantly different between males

and females for patients with mesothelioma?” In either case, the question is fairly easy to answer

if all events are known to occur.

However, the event of interest is not always observed, for instance when a patient is “lost” to

follow-up. All that is known in these cases is that the event of interest is at least a certain value, but

the true value is unknown. This general loss of information is called “censoring,” and specifically

“right censoring” when the event is only known to occur after a certain duration [61, 62]. It is

possible for time-to-censoring to be dependent on time-to-event: healthy patients would usually

live longer, giving them more opportunity to move away from the study center, leading to loss

in follow-up. However, censoring is usually assumed to be independent of the event of interest.

Additionally, censoring can occur because of administrative issues, for instance if patients are still

alive at the time that final data analysis is performed.

Estimates of patient survival time distributions are commonly obtained using the Kaplan-Meier

method of analysis [63]. This method uses conditional probabilities over time to produce the

maximum likelihood estimate (MLE) of patient survival. The differences between Kaplan-Meier

estimates of survival for unique groups can be tested using log-rank analysis, which orders the

event times between two or more groups [64]. Typically, the null hypothesis for the log-rank test is

that there is no difference in the distribution of event times between the groups, and this hypothesis

is tested using the rank score of each group compared with the others [65]. The log-rank test is
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optimally powered for the proportional hazards (PH) case, where the ratio of hazard rates between

groups is constant over time (i.e., the hazard rates of distinct groups are proportional). The hazard

rate h(t) is interpreted as the instantaneous probability of the event to occur, given that it has not

yet occurred, and is related to the survival function S(t) via

S(t) = exp

−
Z t

0
h
�
t0
�

dt0
�
. (1.1)

The most common method used to model patient survival and assess the correlation between co-

variates and survival is Cox proportional hazards (PH) modeling [61,66]. The standard PH survival

model assumes that the effect of any given covariate is fixed across time, and h(t) takes the form

h
⇣

t |~Z
⌘
= h0(t) exp

⇣
~b ·~Z

⌘
, (1.2)

where h0(t) is an arbitrary “baseline” hazard function, ~Z is the vector of covariates, and ~b is the

vector of regression coefficients (to be estimated). By estimating b and its confidence interval for

each covariate individually (in a univariate model), we can assess whether any covariate is signif-

icantly associated with patient survival (i.e., b different from zero). With this standard approach,

the covariate vector ~Z is assumed to be fixed across time and does not allow for covariates that

change with time.

The incorporation of time-varying covariates into a survival model is not trivial, since the fitting

form of the Cox PH model changes. The partial likelihood function (used to estimate the covariate

effects in the same manner as the typical likelihood function) for the model becomes

LP = ’
f ailuretimes j

0

@
exp
⇣
~b · ~Z j

�
t j
�⌘

Âi2R j exp
⇣
~b ·~Zi

�
t j
�⌘

1

A , (1.3)

where now the covariate vector ~Z (t) can change with time. The term R j represents the patients

still at risk at the jth failure time (i.e., still alive and on-study), and in a typical Cox PH model
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with fixed covariates, risk sets at later time points are subsets of earlier risk sets since patients can

only leave the risk set, not re-enter. For patients who endure from one risk set to the next, their

~b ·~Zi value does not change. In equation 1.3, though, there is additional computational complexity

since the risk set R j must be entirely recalculated at each unique failure time to properly account

for covariates that change over time. While this extension of the PH model is not overly common,

it is readily available in many statistical software packages [67]. There are multiple ways to report

the findings of a survival model; the regression coefficients ~b and their confidence intervals can be

tabulated, or the model can be depicted graphically using a nomogram. For examples, see [34,38].

In order to assess the performance of a survival model, we need an appropriate metric. Re-

ceiver operating characteristic (ROC) analysis provides an interesting framework to assess survival

curves. ROC analysis can be used when the data consist of an ordinal-scale predictor for a bino-

mial outcome of interest and the true status of that outcome. Then, the sensitivity and specificity

for predicting the outcome of interest can be calculated for a whole range of possible cut points

in our predictor [68–70]. Plotting these sensitivity/specificity pairs on the typical ROC axes and

calculating the area under the curve (AUC) gives one metric for how well the predictor performs.

In survival analysis models, at each time t, each patient will have a model-predicted probability

of survival, and of course each patient will have survived to time t or will have experienced the

event of interest by time t. Therefore, treating our group of model-predicted survival probabilities

for our patients as our set of “predictors,” we can come up with an ROC curve for our model at

each time where a prediction is made by the model. For instance, at 6 months, the model will

predict that some patients have a 90% chance of survival, some have a 70% chance of survival,

etc., and by sweeping the decision threshold (“anyone with > 80% predicted survival rate will be

called ’alive’...now which patients were actually alive at 6 months?”), we can construct the ROC

curve. For a model using time-independent covariates, the predicted survival probability for any

patient will change through time, but the ordering of the predicted survival probabilities among

patients will remain constant due to the proportional hazards model. Combining equations 1.1 and
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1.2 for a time-independent Cox PH model, it can be shown that

S (t) = S0 (t)
exp
⇣
~b ·~Z

⌘

, (1.4)

where S0 (t) is calculated from equation 1.1 using h0 (t) as described above. Therefore, predicted

survival probability changes over time, but the monotonicity between predicted survival and a

given patient’s ~b ·~Z is preserved.

For these models with covariates fixed across time, the same ROC curve would be obtained at

every time t, and Harrell’s C statistic is equivalent to the non-parametric area under this single ROC

curve [71]. However, if the covariates are allowed to vary with time, the rank ordering of predicted

survival probabilities amongst patients can vary as well, and there will exist a unique ROC curve

for model performance at each time. Each of these ROC curves will have a corresponding AUC,

and plotting this AUC as a function of time gives us a general sense of our model performance. This

is precisely the motivation for Heagerty’s time-dependent AUC and Ct [72], where we calculate

our final performance metric as

Ct =
Z t

0
AUC(t) ·wt (t) dt, (1.5)

where AUC(t) is the AUC as a function of time explained above, t is the follow-up period of

interest, and wt is a weight function. The problem has been considered by others, but Heagerty’s

metric is available in R [73, 74]. Harrell’s C can also be used to assess the performance of a single

factor in predicting patient survival outside of a Cox model.

1.4 Dynamic Imaging

While standard CT scans provide structural information based on differing tissue densities, the

similarity between surrounding soft tissue density and MPM density on CT scans complicates

the accurate identification of disease and evaluation of tumor growth. The use of intravenous
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iodinated contrast media can lead to an increase in the differentiation between tissue types, but

there is still considerable overlap between MPM and other thoracic tissues [24]. In a traditional

contrast-enhanced scan, an amount of contrast appropriate for the patient (usually 90-120 mL of

contrast with an iodine concentration of 350 mg/mL) is injected intravenously, and the CT scan is

acquired after an amount of time that allows for distribution of the contrast media throughout the

body (usually 30–60 seconds). Such a scan still results in a single timepoint image, or snapshot,

but the resulting scan contains information related to both anatomy and vascularity.

Still more information related to vascularization and functional physiology can be discovered

through the use of perfusion imaging, often called dynamic contrast-enhanced (DCE) imaging.

The main difference with DCE imaging is that instead of acquiring a single timepoint scan after

a set delay from initiation of injection, scans are repeatedly captured during (and potentially fol-

lowing) the intravenous injection of the contrast media. In this way, DCE imaging adds a temporal

component to an otherwise structural scan. Because the change in HU value for a given voxel is

directly proportional to the contrast of iodine in that voxel, blood flow to different tissues can be

tracked over time from the temporal scan information. If a single timepoint contrast-enhanced scan

gives information about relative vascularity between various soft tissues, a DCE scan gives infor-

mation about how fast the blood is flowing to the tissues of interest, how much blood is flowing

through those tissues, and how long the blood takes to travel through those tissues.

The application of a DCE-CT protocol will create data maps for hemodynamic properties that

may demonstrate increased separation between MPM and surrounding soft tissues. The same

hemodynamic maps of blood flow and vascularity have also been shown to serve as useful on-

cologic biomarkers [75]. In a study using DCE-MRI to image MPM patients, Giesel et al. [76]

reported that a disease perfusion parameter (kep) was clearly associated with patient survival, and

two other perfusion values, taken together, differentiate MPM tissue from surrounding soft tissues.

However, the general application of DCE-MRI for MPM is limited by the presence of cardiac and

respiratory motion. It is therefore reasonable to believe that DCE-CT will produce functional data
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Figure 1.5: A hypothetical series of data from a DCE-CT scan. The individual uptake and washout
characteristics of a single voxel can be observed from enhancement due to perfusion of iodinated
contrast media to the tissues of interest.

maps that hold prognostic significance and help to differentiate MPM from thoracic soft tissue in a

manner similar to DCE-MRI imaging. And while DCE-CT uses ionizing radiation to generate scan

data, the scans do not suffer from the MRI artifacts mentioned previously, and the DCE-CT scan

can be integrated nicely with the current CT scanning already being performed on MPM patients.

A DCE-CT scan begins when a bolus of iodinated contrast media is injected venously via a

power injector. The contrast agent enters the circulatory system and perfuses to different tissue

types according to their vascularity and blood flow, where the increased attenuation of iodine

will present with increasing HU value [77]. The degree of tissue enhancement depends on the

contrast media concentration and local hemodynamics reflecting tissue vascularity and physiology

[78]. During the DCE-CT scan, a small section of relevant patient anatomy (limited axially by

the extent of the collimated CT beam) is repeatedly imaged, and the uptake and eventual washout

characteristics of the iodinated contrast can be quantified by tracking voxel-by-voxel HU values

over time. A hypothetical series of data for one voxel can be seen in Figure 1.5.

One uptake curve is obtained for every voxel in the three-dimensional image, and various
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oncologic biomarkers can be derived from these curves. The Philips scanner used in this research

will determine: perfusion, tissue peak enhancement, time to peak enhancement, and mean transit

time [77, 79]. Perfusion measures the flow rate through the vasculature of the structure and is an

oncologic marker for tumor vascularity and grade. Perfusion (along with the other parameters) is

calculated according to the “slope method” of deconvolution analysis, and is calculated as the ratio

of the maximum slope in the tissue uptake curve to the peak arterial enhancement, or

Perfusion =
max

⇣
dHU(t)tissue

d t

⌘

max(HU(t)arterial −HU(0)arterial)
. (1.6)

Peak enhancement is the maximum increase in tissue density over baseline, or

Peak Enhancement = max(HU(t)tissue −HU(0)tissue) , (1.7)

and is an oncologic marker of tissue blood volume. The marker commonly called “blood volume”

is simply a normalized version of peak enhancement and is calculated by the slope method as

Blood Volume =
max(HU(t)tissue −HU(0)tissue)

max(HU(t)arterial −HU(0)arterial)
. (1.8)

The time to peak enhancement is a measure of the time for contrast to flow from a major arterial

vessel to the tissue, or

Time to Peak = argmax(HU(t)tissue)− tarterial arrival, (1.9)

and is an oncologic marker of pressure (where tarterial arrival is the time of initial contrast enhance-

ment in the arterial input). Mean transit time is the time taken for contrast to travel from artery

to vein, calculated as the full-width at half-maximum (FWHM) of the tissue uptake curve over
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baseline, or

Mean Transit Time = FWHM(HU(t)tissue −HU(0)tissue) , (1.10)

and is an oncologic marker of perfusion pressure.

To our knowledge, DCE-CT has been used for imaging of MPM in only a single study con-

ducted by Meijerink et al. [80]. This study investigated the use of DCE-CT to study the hemo-

dynamic response of tumors of the thorax and abdomen. The patient cohort consisted of 16 pa-

tients, including only two patients with confirmed MPM. DCE-CT data demonstrated a substantial

decrease in tumor perfusion values for both MPM patients after treatment with anti-angiogenic

VEGF inhibitors. This supported the assertion that DCE-CT is able to measure hemodynamic

function in MPM patients.

In the current climate of caution surrounding all things radiological, the radiation dose from

DCE-CT has come under scrutiny [81, 82]. Even before recent accidents were made public, re-

searchers questioned the necessity of using DCE-CT when DCE-MRI and PET imaging were

already available [23]. However, comparing the effective whole-body doses of FDG-PET imaging

and DCE-CT imaging of the lung, a typical FDG-PET body scan can contribute on average 5–10

times (and up to 20 times) the effective dose of a DCE-CT scan [83,84]. Therefore, DCE-CT may

be favorable to FDG-PET imaging for the limited task of assessing local tumor physiology if DCE-

CT can reveal functional tumor characteristics that are similar in their prognostic significance to

FDG-PET measurements. FDG-PET imaging will always maintain certain advantages over DCE

imaging, however, since an FDG-PET scan yields data for the entire tumor extent as well as distant

data from nodal and metastatic involvement.

1.5 Outline

The following dissertation will describe a series of projects with the overall goal of redefining

radiologic response for patients with malignant pleural mesothelioma. Response assessment, a key
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component of clinical trials for MPM, is currently performed using linear measurements of disease

burden. Many phase II clinical trials, where radiologic response assessment plays a crucial role,

show promising results, only to disappoint during the phase III trial (not only for MPM) [40, 41].

Therefore, it is reasonable to question the validity of the current response metric widely used in

phase II trials, namely the RECIST system.

As a coherent progression, this work will extend the definition of radiologic response for MPM

patients from one to three dimensions, both in the context of a discrete classification system and

as a continuous prognostic model. In Chapter 2, I will optimize the discrete response classifica-

tion criteria for patients with MPM using the current linear (1D) measurement technique. Image-

based response assessment is often used as a surrogate for patient benefit in clinical trials, and

therefore the most useful (and relevant) response classification criteria would be those developed

to maximize the surrogacy of the assessment metric for meaningful outcomes such as survival.

Such classification criteria would be better suited to the specific morphology of mesothelioma and

would provide more realistic markers of treatment efficacy, all while preserving the simplicity of

the current linear measurement protocol. I hypothesize that without changing the measurement

technique, a new set of classification criteria can be obtained to more appropriately cluster patients

into response categories than the current -30%/+20% standard RECIST criteria.

In Chapter 3, I will investigate the potential use of manual area (2D) contours as a means

of response assessment in MPM patients. Area contours may serve as a useful “middle ground”

for response assessment in MPM. The area contouring process may be better suited to capture

morphological tumor changes in MPM, and by summing the area measurements from a limited

number of axial sections, observers are spared the time and effort required to contour complete

volumes of disease. However, the additional “degrees of freedom” inherent in the area contouring

process may lead to high levels of inter-observer variability in area measurements. I hypothesize

that while perhaps able to better capture changes in MPM burden, the inter-observer variability

between manual area contours will exceed any reasonable response criteria and is therefore too
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large to allow for robust response assessment.

In Chapter 4, I will incorporate time-changing radiologic measurements of disease volume, as

well as other clinical covariates, into a survival model for patients with MPM. Disease volumes

are the most direct and meaningful measurements of tumor burden. This study will serve as the

most “complete” survival model for MPM in this dissertation. I hypothesize that the addition

of time-changing radiologic measurements to survival models with other clinical covariates will

prove significant for the prediction of patient survival.

In Chapter 5, I will assess the prognostic significance of changes in automatically segmented

lung volume for use as a novel response assessment metric. Lung volume serves as a physiolog-

ical correlate of disease volume for pleural diseases such as MPM. Because the thoracic space is

approximately bounded by the ribcage, it is reasonable to expect changes in lung volume to be

complementary to changes in disease volume, and therefore that changes in lung volume may be

used as a surrogate for changes in disease volume. Survival models will be constructed in the same

manner as in Chapter 4, and models using disease volumes will be compared to models using ei-

ther lung volumes or linear measurements. Here, I hypothesize that changes in lung volumes will

correlate with changes in disease volume, and that changes in lung volume will be significantly

associated with patient survival. The complete survival models built using the three measurement

techniques will be compared and contrasted.

In Chapter 6, I will investigate DCE-CT as a functional imaging tool for MPM. The DCE-CT

imaging protocol is an experimental method allowing for the integration of DCE imaging with

clinically standard contrast-enhanced imaging of the full thorax. In this pilot study, changes in

DCE-CT metrics will be correlated with changes in disease burden (both linear and volumetric

measurements) for patients undergoing treatment as well as for patients on observation. Patterns

of interest will be reported for potential investigation in future response assessment trials with

DCE-CT in MPM.

Finally, in Chapter 7 I will provide a summary of the relevant conclusions from the separate in-
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vestigations, as well as make recommendations regarding future directions of study. The studies in

this dissertation form part of the answer to the question “Can we successfully and effectively rede-

fine radiologic response for patients with malignant pleural mesothelioma?” Hardly any question

can ever be considered truly answered in the sciences, and this dissertation will hopefully serve its

role as a small impetus of change in the small world of response assessment for malignant pleural

mesothelioma.
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CHAPTER 2

OPTIMIZATION OF RESPONSE CLASSIFICATION CRITERIA

“We cannot solve our problems with the same thinking we used when we created

them.” – Albert Einstein

2.1 Introduction

As explained in section 1.2 above, the history of the Response Evaluation Criteria in Solid Tumors

(RECIST) classification criteria casts doubt on the applicability of such criteria for classification

of response in a disease so typically aspherical as mesothelioma. Indeed, alternate theoretical re-

sponse classification criteria for mesothelioma have been derived from geometric models other

than spheres, such as the lens, crescent, or annulus [51]. On the whole, these geometric models

indicate that uni-dimensional measurements acquired according to the modified RECIST guide-

lines would be better classified with criteria where the definition of stable disease was more broad.

Typically, if the uni-dimensional measurement increased by more than 20% from the minimum of

previous measurements (nadir), the patient was classified as having progressive disease (PD), and

if the measurement decreased by 30% or more from the baseline measurement, the patient was

classified as partially responsive (PR). Stable disease (SD) was defined for measurement changes

lying between the previously mentioned classification groups. For the alternate geometry models,

the current short-axis measurement criteria of -30%/+20% would be replaced by -66%/+74% for

the crescent geometry, and for the lens and annulus geometries, the criteria would be -52%/+45%

and -68%/+100%, respectively.

While these models raise important issues, they are still theoretical derivations. Image-based

response assessment is often used as a surrogate for patient benefit in clinical trials, and there-

fore the most useful (and relevant) response classification criteria would be those developed to

maximize the surrogacy of the assessment metric for meaningful outcomes such as survival. Such
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classification criteria would be better suited to the specific morphology of mesothelioma and would

provide more realistic markers of treatment efficacy.

The purpose of this specific study is two-fold: first, to assess the validity of existing response

classification criteria in malignant pleural mesothelioma (MPM), and second, to optimize disease-

specific response classification criteria by maximizing the correlation between response assessment

and overall survival in patients with MPM treated with chemotherapy. The main hypothesis for this

study is that without changing the measurement technique, a new set of classification criteria can

be obtained to more appropriately cluster patients into response categories.

2.2 Patients and Methods

2.2.1 Patient Cohort

The patient cohort for this study was a subset of a database collected retrospectively from Sir

Charles Gairdner Hospital in Perth, Western Australia, Australia, in collaboration with Anna

Nowak, M.D., Ph.D. of Sir Charles Gairdner Hospital and the University of Western Australia. The

patients were part of a prospective study involving fluorodeoxyglucose positron emission tomogra-

phy (FDG-PET) and CT imaging of MPM [38]. All patients were over 18 years old with histolog-

ically or cytologically confirmed MPM and had not received prior chemotherapy or radiotherapy.

Original patient accrual occurred from late 2003 to 2010, and the original study was approved by

the local institutional Human Research Ethics Committee at Sir Charles Gairdner Hospital, with

patients providing written informed consent. The retrospective analysis of the HIPAA-compliant

data was approved by both the originating institution’s Human Research Ethics Committee and

the Institutional Review Board at The University of Chicago, where the analysis was performed.

Because the original study was not a research treatment study, patients were treated as clinically

indicated. Initially, combination chemotherapy consisted of cisplatin and gemcitabine, and later,

when it became available at the original study institution, cisplatin and pemetrexed. Palliative
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radiotherapy was used when indicated.

The original full database consists of 129 patients. However, for the studies in this dissertation,

patients were only included where imaging and clinical data existed for first-line chemotherapy

(i.e., not only during secondary salvage therapy). Furthermore, patients were only investigated

when serial imaging studies existed in a digital format. These restrictions reduced the number of

eligible patients to 97. Summary descriptive information for the 97 patients eligible for considera-

tion in this dissertation is given in Table 2.1.

Table 2.1: Description of the full eligible patient cohort, consisting of 97 patients. The specific
patient cohorts used in the studies of this dissertation are subsets of this cohort.

Characteristic Summary

Sex:

Male n = 84

Female n = 13

Age at Diagnosis:

Median 66 years

Range 41–80 years

Chemotherapy:

Carboplatin/Pemetrexed n = 7

Cisplatin/Pemetrexed n = 46

Cisplatin/Gemcitabine n = 44

Histology:

Epithelioid n = 72

Sarcomatoid n = 8

Biphasic n = 17

(continued on next page)
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(Table 2.1, continued from previous page)

T Stage:

T1 n = 21

T2 n = 26

T3 n = 32

T4 n = 18

N Stage:

N0 n = 29

N1 n = 3

N2 n = 49

N3 n = 16

M Stage:

M0 n = 83

M1 n = 14

IMIG Stage:

I n = 14

II n = 6

III n = 45

IV n = 32

Known Asbestos Exposure:

Yes n = 91

No n = 6

Chest Pain:

Yes n = 61

No n = 36

(continued on next page)
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(Table 2.1, continued from previous page)

Shortness of Breath:

Yes n = 79

No n = 18

ECOG Performance Status:

0 n = 44

1 n = 48

2 n = 5

Talc Pleurodesis:

Yes n = 36

No n = 61

Weight:

Median 76 kg

Range 52–121 kg

Height:

Median 173 cm

Range 155–190 cm

Smoking Status:

Never n = 43

Past n = 47

Present n = 7

Pleurectomy/Decortication:

Yes n = 4

No n = 93

For inclusion in this specific study, patients were required to have available modified RECIST
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tumor thickness measurements at baseline (prior to beginning chemotherapy) and for one or more

follow-up scans during chemotherapy. This requirement did not always imply the availability of

the complete digital CT scans for the dates of measurement, since original baseline measurements

were occasionally made on scans from an outside institution, where scans were transmitted as

digitized films. Additionally, patients were required to have measurable disease at therapy baseline,

which excluded some patients whose disease had been surgically removed prior to treatment with

chemotherapy. These new constraints reduced the eligible patient cohort to 78 patients, and the

summary description of these patients is given in Table 2.2. The remaining 19 patients were eligible

for inclusion in the other studies in this dissertation.

Table 2.2: Description of the patient cohort used in this specific study, consisting of 78 of the
original 97 patients. This specific patient cohort is a subset of the patients summarized in Table
2.1.

Characteristic Summary

Sex:

Male n = 66

Female n = 12

Age at Diagnosis:

Median 66 years

Range 41–80 years

Chemotherapy:

Carboplatin/Pemetrexed n = 7

Cisplatin/Pemetrexed n = 41

Cisplatin/Gemcitabine n = 30

(continued on next page)
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(Table 2.2, continued from previous page)

Histology:

Epithelioid n = 56

Sarcomatoid n = 7

Biphasic n = 15

T Stage:

T1 n = 16

T2 n = 18

T3 n = 26

T4 n = 18

N Stage:

N0 n = 22

N1 n = 3

N2 n = 38

N3 n = 15

M Stage:

M0 n = 65

M1 n = 13

IMIG Stage:

I n = 11

II n = 3

III n = 34

IV n = 30

(continued on next page)
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(Table 2.2, continued from previous page)

Known Asbestos Exposure:

Yes n = 72

No n = 6

Chest Pain:

Yes n = 49

No n = 29

Shortness of Breath:

Yes n = 66

No n = 12

ECOG Performance Status:

0 n = 35

1 n = 38

2 n = 5

Talc Pleurodesis:

Yes n = 32

No n = 46

Weight:

Median 75 kg

Range 52–121 kg

Height:

Median 172 cm

Range 155–190 cm

(continued on next page)
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(Table 2.2, continued from previous page)

Smoking Status:

Never n = 36

Past n = 37

Present n = 5

Pleurectomy/Decortication:

Yes n = 1

No n = 77

2.2.2 Imaging

Patients were imaged using helical CT up to one month prior to the first cycle of chemotherapy

and throughout their treatment regimen (typically after the first cycle, then every two cycles there-

after). Images were reconstructed axially with 5-mm slices. CT staging was performed according

to the Union for International Cancer Control (UICC) TNM staging system (2002). CT scans

were staged by a thoracic radiologist or medical oncologist experienced in mesothelioma imaging,

and tumor measurements were made according to the modified RECIST protocol on baseline and

all follow-up scans [47]. Initially, radiologic response was classified according to the standard

RECIST criteria, where partial response (PR) is a 30% reduction in tumor thickness over baseline,

progressive disease (PD) is a tumor thickness increase of 20% over the nadir measurement, and

stable disease (SD) is attributed to patients who failed to meet the criteria for either of the other

categories.

There were a total of 275 CT scans in this study, with a median of four scans per patient

(including baseline scans). Eleven patients had only a baseline scan with one follow-up scan,

while 25 patients had three scans total, 32 patients had four scans total, and 10 patients had five

scans total. The median duration between scans was 45 days.
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2.2.3 Correlating Response with Survival

To measure the association between patient response classification and survival, a single response

category must be assigned for each patient, since a response classification is actually assigned at

each follow-up scan during the patient’s treatment. This single response can be assigned in multiple

ways; for instance, the “best response” for the patient achieved during some time interval (usually

over the active treatment period) can be used, where PR is “better” than SD, and SD is better than

PD. Alternatively, response at a predetermined follow-up time could be equally important. In this

study, both the best response and response at the first follow-up scan were investigated.

If the response assessment system were a perfect correlate of survival (measured from diagno-

sis), patients labeled as PR would survive longer than those patients labeled as SD, and both groups

would survive longer than patients labeled as PD. It is important to note that this is different from

the groups having different and proportional hazard rates, which is the metric of interest in Cox

proportional hazards modeling and log-rank testing [61, 65, 66]. When groups have different haz-

ard rates, and the hazard ratios between groups are assumed to be independent of time (as they are

in traditional Cox PH modeling), equation 1.4 reveals that the hazard ratio simply has an expo-

nential effect on estimated survival. That is, unique and proportional hazard rates between groups

do not imply that survival times of the different groups will be separated, but only that individu-

als in the different groups will experience the event of interest at different rates. This important

distinction motivates a correlative metric choice other than the log-rank metric in this study, since

surrogacy between response assessment and patient survival is most relevant when survival times

are separated between groups.

The extent to which the desired trend holds true (PR survives longer than SD, SD survives

longer than PD) can be measured quantitatively using Harrell’s C statistic, an extension of Smith’s

Pk measure of rank correlation [71,85]. C is scaled similarly to the standard area under the receiver

operating characteristic (ROC) curve (AUC); a value of C = 0.5 is equivalent to classification by

chance alone, whereas C = 1.0 would indicate perfect separation of response groups with respect to
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subsequent survival times. According to Harrell, C > 0.65 indicates clinical utility, while C > 0.80

indicates high predictive accuracy [71]. The numerical value of C can be interpreted as the fraction

of patient comparisons that would be “concordant.” A concordant pair of data points exists when

the patient with the higher response rating is known to survive at least as long as the patient with

the lower response rating, which allows for the appropriate consideration of censoring.

For example, when C = 0.70, in 70% of the valid patient comparisons where patient B is

classified into a “better” response category than patient A, patient B will be known to live at least

as long as patient A. Graphical examples are shown in Figures 2.1 and 2.2. In Figure 2.1, the

response category is actually anti-correlated with survival, which would be opposite the expected

trend, and therefore we would expect C to be less than 0.5. In Figure 2.2, however, response

categorization is nearly perfectly associated with survival, and therefore we expect C to be very

nearly unity. All analyses were performed using the academic edition of Revolution R Enterprise

(version 4.3, based on R version 2.12), and C was implemented in the R package “Hmisc” [86,87].

2.2.4 Optimization and Cross-Validation

To determine the optimal set of response classification criteria, the PR and PD cutoffs were varied

in 1% increments (i.e., the PR cutoff was swept from -100% to 0% in 1% increments, and the PD

cutoff was swept from 0% to 100% in 1% increments). For each possible pair of cutoff criteria,

the correlation between response and survival was assessed to yield one value of C. By tabulating

the values of C across all possible response criteria, the optimal pair of classification criteria was

determined. These optimal points represent the classification criteria for which the correlation

between response and patient survival is greatest. The criteria derived in this way, using all 78

patients, will be called the “full cohort criteria.”

The optimization process requires validation, since the most optimal model from the full patient

cohort has a strong tendency to yield an overly optimistic prediction rule with respect to predic-

tions on de novo observations not involved in model building. A leave-one-out cross-validation
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Figure 2.1: Hypothetical distribution of survival with response classification. For these simulated
data, response groups 1, 2, and 3 would correspond to progressive disease, stable disease, and
partial response, respectively. Using Harrell’s C, the performance of these simulated data is C =
0.40.
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Figure 2.2: Hypothetical distribution of survival with response classification. For these simulated
data, response groups 1, 2, and 3 would correspond to progressive disease, stable disease, and
partial response, respectively. Using Harrell’s C, the performance of these simulated data is C =
0.98.
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(LOOCV) process may thus generate a more realistic value of C [71, 88]. Using LOOCV, each

patient was excluded, one at a time, and the classification criteria were optimized using the other

77 patients. The optimized criteria from these 77 “training” patients were used to test the model

on the 78th patient (who had been excluded from model optimization). This process continued

until all 78 patients individually had been excluded from the optimization cohort. In this manner,

all 78 patients were assigned a response category (for each of best response and first follow-up

response), and a value of C correlating these LOOCV-based response categories to patient survival

was calculated. LOOCV allows each patient to be assigned to a response category using criteria

that were derived without knowledge of that particular patient’s tumor measurement trajectory, and

the LOOCV-based value of C is a better indicator of how well the reported classification criteria

will perform for a new, previously unknown patient.

Two additional internal validation checks were also performed. First, to evaluate possible

dependence of the classification rule and C derived to specific cases or subsets of cases, bootstrap

samples from the entire cohort were generated and the optimization procedure repeated, followed

by a descriptive summary of the cut-points and C values. Secondly, to evaluate the performance

of the derived rule from the full cohort in hypothetical independent patient cohorts, the rule was

applied to random bootstrap sub-cohorts and the performance summarized.

When point estimates, or individual values, of C are calculated, standard errors (SE) are also

calculated for the metric. However, point estimates of the performance of the standard RECIST

classification criteria, Cstd , and the optimized classification criteria performance, Copt , will nec-

essarily be correlated for a given patient sample because of the inevitable overlap in response

classification groups. Therefore, to compare differences in point estimates of C, one must account

for this correlation, since an assumption of independence would result in an overly conservative

p-value for the difference between Cstd and Copt . There are multiple methods one could use to ac-

count for this correlation. One approach would be the simple calculation of the ordinal correlation

between the standard RECIST response category for each patient and the new response category
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from the optimized classification criteria. Another approach would use the pseudo-values from a

jackknife analysis to implicitly discover the correlation between performance metrics [89, 90]. In

general, the variance of a difference between two statistical quantities X and Y is given by

Var [X−Y] = Var [X]+Var [Y]−2Corr [X,Y]
p

Var [X] Var [Y], (2.1)

where Corr denotes the correlation between the two variables. Since correlation is zero for in-

dependent variables, assuming that Cstd is independent from Copt would artificially inflate the

variance of their difference. Using the jackknife method, we compute the pseudo-values of Cstd

and Copt for each patient in the full patient cohort [88]. These pseudo-values behave as if they are

independent, and we fit a mixed effects linear model to the data, similar to a method previously de-

scribed for ROC curves [89, 90]. Using the estimated variance components from the linear model,

we can derive the correlation between Cstd and Copt . Finally, after the correlation between point

estimates of C was factored into the difference, Copt was compared with Cstd using a one-sided

Z-test with p < 0.05 as the standard for statistical significance.

2.3 Results

2.3.1 Patients and Overall Survival

Median overall survival from diagnosis was 14.9 months. Of the 78 patients, there were 75 ob-

served deaths, while three patients were lost to follow-up after a median follow-up of 35 months.

The overall survival curve is shown in Figure 2.3. Using the standard RECIST classification crite-

ria, the median survival for best response PD, SD, and PR was 11.5 months, 11.6 months, and 23.0

months, respectively. Figure 2.4 shows group survival curves for best response using the standard

RECIST classification criteria.
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Figure 2.3: Overall survival curve for patient cohort.

2.3.2 Optimization of Classification Criteria

Using the standard RECIST classification criteria of -30% for PR and +20% for PD, the correlation

between best response and overall survival was Cbest
std = 0.778 with an SE of 0.048. The correla-

tion between first follow-up response for each patient and overall survival was C f irst
std = 0.655 with

an SE of 0.054. After optimization, the new classification criteria derived from the full cohort

were -64% for PR and +50% for PD. Optimizing the correlation between response classification

and survival resulted in identical criteria using both the best response and first follow-up response

per patient. The performance of these full cohort criteria using the best response per patient was

Cbest
opt = 0.855 with an SE of 0.045, and using the first follow-up response per patient, the perfor-

mance was C f irst
opt = 0.932 with an SE of 0.029. These values are summarized, along with their
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Figure 2.4: Overall survival from diagnosis by response category, using the standard RECIST
-30%/+20% classification criteria and each patient’s best response (progressive disease, PD; stable
disease, SD; partial response, PR).
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Figure 2.5: Surface plot showing the performance of the response classification criteria for various
values of the PR and PD cut-points. Harrell’s C is calculated at each set of possible classification
criteria (PR from -100% to 0%, PD from +0% to +100%). The red dot indicates the standard
RECIST criteria, and the green dot indicates the optimized -64%/+50% criteria.

p-values comparing optimized performance with the standard RECIST classification criteria per-

formance, in Table 2.3. A surface plot is shown in Figure 2.5 to visualize the response model

performance for various values of the classification criteria. From the surface plot, it can be seen

that the optimized model performance exists on a fairly broad region and not on a singular promi-

nent maximum.

Figure 2.6 plots the best response classification for each patient against overall survival from

diagnosis using both the standard RECIST classification criteria and the optimized criteria. It can

be seen that after optimization, the classification criteria group patients into only two response

categories; the two patients originally classified as PD are now included in the SD category. Fur-
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Classification Criteria C Standard Error p-value

Best response
Standard RECIST (-30%/+20%) 0.778 0.048 –

Optimized (-64%/+50%) 0.855 0.045 0.039

Cross Validation 0.829 0.043 0.121

First follow-up response
Standard RECIST (-30%/+20%) 0.655 0.054 –

Optimized (-64%/+50%) 0.932 0.029 <0.001

Cross Validation 0.872 0.049 <0.001

Table 2.3: Correlation scores between patient response and overall survival from diagnosis. All
p-values are calculated with reference to the appropriate standard RECIST classification criteria
performance (either best response or first follow-up response per patient) and properly account for
correlation between values of C.

thermore, many of the patients originally classified as PR but having short survival durations are

now included in the SD category. Figure 2.7 plots survival curves for the best response categories

using the optimized criteria, where the median survival for best response SD and PR was 12.9

months and 24.8 months, respectively.

Table 2.4 shows a cross-tabulation of how patients are categorized using the standard RECIST

and optimized classification criteria for both the best response and first follow-up response. For

best response, 17 patients (22%) changed classification categories between the standard RECIST

criteria and optimized criteria, and for first follow-up response, 10 patients (13%) changed classi-

fication categories.
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Optimized Classification Criteria
PR SD PD

Standard Classification Criteria
PR 11 15 0
SD 0 50 0
PD 0 2 0

(a)

Optimized Classification Criteria
PR SD PD

Standard Classification Criteria
PR 1 8 0
SD 0 67 0
PD 0 2 0

(b)

Table 2.4: Number of patients in the different response categories using the standard RECIST
classification criteria and the optimized -64%/+50% classification criteria. Response classified
according to best response is shown in Table 2.4a, while response classified according to first
follow-up response is shown in Table 2.4b.

2.3.3 Cross-Validation of Classification Criteria

As indicated in section 2.2.4, cross-validation of the optimized classification criteria leads to a

more realistic value of model performance, Ccv. Correlating each patient’s cross-validated best

response with overall survival, a performance of Cbest
cv = 0.829 with an SE of 0.043 was achieved.

When the cross-validated first follow-up response was correlated with overall survival, the model

performance was C f irst
cv = 0.872 with an SE of 0.049. The LOOCV scheme is more a validation

of the optimization process than any one set of optimized criteria, and therefore these C metrics

are more realistic estimates of performance without the bias of training and testing a model on the

same patient cohort. These C values, along with p-values comparing cross-validated performance

with the standard RECIST performance, are summarized in Table 2.3.

From the first bootstrap internal validation (where the classification criteria were allowed to

vary with each independent bootstrap patient sample), the criteria selected for each independent

bootstrap sample are summarized as follows. The PR cut-point had a median value of -64%, with a

mode of -64% and a mean of -67%, and the PD cut-point had a median value of +50%, with a mode
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of +50% and a mean of +36%. In the second bootstrap internal validation, where the classification

criteria were fixed at -64%/+50%, the mean performance across independent bootstrap samples

was Cbest
boot,opt = 0.852 with an SE of 0.047. For the same independent bootstrap samples, the

mean performance of the standard RECIST criteria was Cbest
boot,std = 0.778 with an SE of 0.050. A

comparison of these bootstrap performance values and their respective standard errors to the values

in Table 2.3 reveals them to be quite similar.

2.4 Discussion

In order to assess patient response to therapy, clinicians have come to rely on image-based mea-

sures of tumor burden as a surrogate for “true” patient benefit (i.e., reduced symptom burden or

time until a defined event such as death). One common method for image-based assessment is the

RECIST paradigm of linear measurements and response classification criteria. While the specific

technique used to acquire tumor measurements has been defined in a specific sense for patients

with MPM (modified RECIST), the response classification criteria for MPM patients are the same

cut-points used for all tumors based on standard RECIST, which defines progressive disease (PD)

as a 20% or more increase from measurement nadir, partial response (PR) as a decrease of 30% or

more from baseline, and stable disease (SD) as the “middle ground.” However, these classification

criteria may not be optimal for any specific disease [91]. The aim of this study was to optimize the

correlation between response classification and overall survival for MPM patients by varying the

classification criteria.

The first step in this work was to quantify the relationship between response classification and

survival for the standard RECIST classification criteria. We chose to use Harrell’s C as our statis-

tical metric instead of a log-rank survival metric because of the specific relationship trend we were

trying to optimize. If response classification based on linear measurements were “perfectly” asso-

ciated with survival, every patient classified as PR would live longer than every patient classified

as SD, while both classes would live longer than every patient classified as PD. When this rela-
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tionship holds true, C = 1.0. Using the modified RECIST measurement technique and the standard

RECIST -30%/+20% criteria, we found a correlation of Cstd = 0.778 between best patient response

and survival.

While the performance of the standard RECIST criteria is within the range of “clinical utility”

according to Harrell, performance could be improved by changing the response classification crite-

ria to -64%/+50%. The performance of these criteria was measured as Copt = 0.855. To avoid bias

that may result from training and testing on the same group of patients, a cross-validation approach

was used to estimate an unbiased performance of Ccv = 0.829, which is in the range of “high pre-

dictive accuracy.” While comparing the full cohort performance (0.855) with the standard RECIST

performance (0.778) yields a p-value of 0.039, the cross-validated p-value was 0.121. These p-

values are calculated by considering the point estimates of C and their respective standard errors

as well as the correlation between the two metrics. For a given group of patients, values of C from

different classification criteria will be correlated because of the overlap between the discrete re-

sponse categories. While Copt is significantly larger than Cstd , Ccv is still larger than Cstd , though

not significantly so. If the correlation between Cstd and Ccv had not been taken into consideration,

the p-value would have been 0.219 instead of 0.121.

Using the optimized response classification criteria, no patients are classified as having pro-

gressive disease as their best response. This is partly due to the broadening of the stable disease

category; for a patient’s best response to be in the realm of progressive disease with the standard

RECIST classification criteria, the summed tumor thickness measurement needed to increase by

at least 20%. With the proposed classification criteria, the summed tumor thickness measurement

would need to increase by at least 50% to be considered progressive disease (a much higher hurdle

than before).

While the lack of patients classified as PD is a byproduct of our particular patient sample, the

effective reduction in response categories from three to two is actually in line with phase II trials,

where classification into only two categories is common (e.g., “responders” and “non-responders”).
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In fact, if the optimization process above is conducted with only one cut-point to start instead of

two, the same -64% criterion is obtained to separate a responders category from a non-responders

category (see Figure 2.8). Some care also needs to be taken when interpreting the optimized criteria

in terms of first follow-up response. With wider criteria, nearly all patients were classified as SD

(77 of 78), since there has usually not been enough time for tumor burden to change dramatically

in either direction. Despite the improved performance of the optimized criteria on the first follow-

up response compared with standard RECIST, this study does not go so far as to advocate that all

patient response should be assessed after only one follow-up scan and highlights that best response

is usually achieved after a number of treatment cycles.

The issue of disease progression is also important in the context of initiating or withdrawing

patient treatment. Some clinical trials incorporate progressive disease as an eligibility criterion,

use progressive disease as a trigger to cease study treatment, and establish progression-free sur-

vival as an important endpoint. All these settings would be impacted by the classification criteria

proposed in this study. Because this study was not originally an intervention study, we are unable

to determine the impact of the proposed criteria on initiation of patient treatment. Of the 78 pa-

tients, 19 experienced disease progression according to the standard RECIST classification criteria

at some point during their treatment, with a median time-to-progression of 5.0 months. Using the

proposed classification criteria, however, only seven patients experienced disease progression at

some point during their treatment with a median time-to-progression of 5.9 months. Using these

revised criteria, patients may be eligible for clinical trials later and stay on treatment longer. In

order to validate appropriate criteria for progression, it may be more appropriate to identify tumor

thickness changes that correspond to meaningful deterioration in other patient-rated outcomes such

as dyspnea, pain, and quality of life.

Previously, theoretical studies explored the possibility of alternate response criteria for MPM

by investigating linear measurement cut-points in aspherical geometries [51]. Oxnard et al. ob-

tained classification criteria of −67.9%/+100.1% for an annulus, −51.5%/+45.4% for a lens, and
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−65.8%/+73.6% for a crescent geometry, with linear measurements made according to the mod-

ified RECIST protocol. These alternate criteria are all substantially “wider” than the standard

RECIST criteria, as are the optimized criteria we derived in this study; however, the theoretical

criteria of Oxnard et al. were all based on volumetric equivalence to -30%/+20% changes in the di-

ameter of a sphere, and the somewhat arbitrary provenance of those original criteria were outlined

in section 1.2.1.

This study sought to identify classification criteria that optimized correlation with overall sur-

vival. To fully validate these new response criteria derived from this moderately sized database,

they must be tested on a larger independent patient cohort. While the leave-one-out cross-validation

used in this study attempts to simulate this process, it is not a substitute for a full independent val-

idation, and future work will seek to validate these proposed response criteria. It should also be

cautioned that while these criteria predict survival in patients on cytotoxic chemotherapy, it is un-

clear whether they would be a valid candidate surrogate for survival benefit in patients receiving a

targeted therapy.

To summarize, the current standard for response assessment in patients with malignant pleural

mesothelioma is a set of linear tumor thickness measurements acquired according to the modified

RECIST protocol. Changes in these tumor measurements are compared with classification crite-

ria, currently defined as -30% for partial response and +20% for progressive disease. Despite the

original arbitrary provenance of these cut points, they perform adequately and are within the range

of “clinical utility.” However, by changing these criteria to -64% and +50%, respectively, the cor-

relation between tumor response and overall survival is improved. These optimized classification

criteria appear better suited to the specific morphology and growth pattern of mesothelioma and

may prove useful in the assessment of clinical trials and routine patient care.
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Figure 2.6: Correlation between best response classification per patient and survival. 2.6a, using
the standard RECIST classification criteria. 2.6b, using the classification criteria derived from
optimization on the full patient cohort. Black diamonds indicate observed events, while red circles
indicate losses to follow-up. Performance metrics are summarized in Table 2.3.
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CHAPTER 3

AREA CONTOURS AS A POTENTIAL TOOL FOR RESPONSE

ASSESSMENT

“Variability is the law of life, and as no two faces are the same, so no two bodies

are alike, and no two individuals react alike and behave alike under the abnormal

conditions which we know as disease.” – Sir William Osler

3.1 Introduction

The current clinical method for tumor response assessment in malignant pleural mesothelioma

(MPM) is the modified Response Evaluation Criteria in Solid Tumors (RECIST) guidelines, which

calls for two linear measurements of tumor thickness from each of three axial computed tomog-

raphy (CT) sections to be summed as the tumor burden measurement [47]. It has been previously

shown, however, that modified RECIST measurements have a relative inter-observer variability

that can span a range of 30% under highly idealized image measurement conditions [52, 53]. This

inter-observer variability is so large that from observer effects alone, a patient with truly stable

disease (i.e., no actual change in tumor size between two time points) may be incorrectly classified

as progressive disease or partial response (PD or PR, respectively). The level of variability is an es-

pecially salient point since clinically, multiple radiologists are often involved with the assessment

of a given patient over time.

While the goal of the (modified) RECIST measurement system is to capture changes in overall

tumor burden, and use these changes as a metric by which to gauge tumor response, the most com-

plete measure of true tumor bulk is three-dimensional volume. Many tumor morphologies allow

for a spherical approximation, where there is a clear mathematical relationship between a sphere’s

volume and radius. Therefore, for tumors such as lung nodules, the RECIST measurement sys-

tem may be an appropriate tool to assess tumor bulk. For the highly non-spherical morphology
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of MPM, though, one-dimensional measurements may not accurately capture changes in volume.

Volume has been shown to be a significant predictor for overall and progression-free survival in

patients with MPM [36], but the complete manual segmentation of MPM volumes on medical im-

ages is prohibitively time consuming for clinical implementation as a measurement tool. A study

by Frauenfelder et al. [57] used a linear shape-based interpolation technique, requiring contours

on “every fourth or fifth slice.” The main conclusion of this study related to volumetric response

was that the inter-observer agreement of volumetric response classification is much higher than

for manual modified RECIST response classification (general k = 0.9 vs general k = 0.33, re-

spectively). The comparison in that study was made using discretizations of changes in disease

volume according to volumetric response criteria extrapolated from a spherical geometry, where

the cutoffs for PR/PD were -65%/+73%. Therefore, the increased inter-observer agreement for

volumetric measurements over linear measurements is likely in part due to the widening of the

stable disease category alone (the standard RECIST criteria of -30%/+20% were used for linear

measurements). The study by Liu et al. [58] utilized a combination of semi-automated techniques

for volumetric MPM segmentation, and their analysis revealed changes in tumor volume to be

significantly associated with patient survival.

From these studies, it is reasonable to believe that area (two-dimensional) measurements might

serve as a middle ground; contouring visible disease on three axial CT sections (to replicate the

three sections of modified RECIST) is less time consuming than full three-dimensional volume

contours and should be a better representation of tumor bulk than one-dimensional measurements

on those same three CT sections. Furthermore, the sum of three area measurements can be inter-

preted as a pseudo-volume for use in response assessment, and these pseudo-volumes may show

the same improved inter-observer agreement exhibited by full volume measurements.

The goal of this study was to evaluate tumor area measurements on CT scans as a more com-

plete and, potentially, less variable metric for response assessment for MPM. In this study, variabil-

ity will be quantified for two distinct measurement tasks: baseline and follow-up measurements.
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First, there is the variability in area (or pseudo-volume) measurement at a single time-point, i.e.,

baseline. When observers are presented with a “blank slate,” their resulting contours will likely

exhibit high variability. In the work by Armato et al. [52], linear tumor thickness measurements

were all made originating from the same location between observers, and the variability was still

fairly large. Due to the free-form nature of the baseline measurements, we expect to find a large

variability in the single time-point measurements.

It may be more clinically relevant to measure the variability in follow-up measurements, since

for a given patient, only one initial set of baseline measurements is made, and follow-up mea-

surements are made with reference to the pre-existing measurements. It has been shown that initial

outlines strongly influence inter-observer precision [92], and therefore the inter-observer variability

will likely be reduced for follow-up measurements when compared with baseline measurements.

Furthermore, changes in tumor measurements used for response assessment are often discretized

by response classification criteria, and the inter-observer agreement in response classification will

be quantified using relevant response criteria for area measurements.

3.2 Materials and Methods

3.2.1 Patient Cohort

The patient cohort in this study consisted of 31 patients with biopsy-proven MPM. The patients

consisted of 27 males and 4 females, with a median age of 68 years at treatment initiation (range

49–81 years). All patients were part of a phase II clinical trial for a chemotherapy regimen consist-

ing of cisplatin, pemetrexed, and bevacizumab (a monoclonal antibody that inhibits vascularization

through the vascular endothelial growth factor, or VEGF, pathway) [93]. The HIPAA-compliant

clinical trial was IRB-approved at our institution, and no scan was acquired for this area measure-

ment study specifically. This patient cohort was chosen separately from the large cohort outlined in

section 2.2.1 because the database of patients from Australia was not yet available when planning
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for this study began.

3.2.2 Imaging

For each of the 31 patients, two scans were used in this study: first, the baseline scan acquired at

most four weeks prior to treatment initiation, and second, the first follow-up scan acquired after two

cycles of chemotherapy (median span between scans = 47 days). The diagnostic thoracic helical

CT scans were performed on the Philips Brilliance 16-slice scanner (n=39), Brilliance 40-slice

scanner (n=2), Brilliance 64-slice scanner (n=20), or Brilliance iCT (n=1) at our institution. Each

CT section was reconstructed as a 512 x 512-pixel image matrix, with pixel dimensions ranging

from 0.54–0.90 mm. Axially reconstructed slice thickness was three millimeters for all scans. For

28 of the patients, iodinated contrast media was used for both scans, while for one patient each

contrast was used on the first scan only, on the second scan only, and on neither scan.

3.2.3 Area Measurement Acquisition

On each of the 31 baseline CT scans, three axial sections with visible disease were selected by

one of the observers. Sections were selected with consideration for disease burden and proximity

to anatomic landmarks for ease of follow-up measurements and were separated axially by at least

one centimeter, in a similar manner to the process used to select the three axial sections used

for the modified RECIST measurement technique. Using an in-house software package, Abras,

five observers (all attending radiologists) independently contoured the visible disease on the 93

preselected baseline images. The radiologists were able to browse the entire CT image stack for

each patient, as well as adjust window and level settings, but were only able to contour tumor on

the preselected sections. Contours were converted to area measurements using Green’s theorem

[94], leading to 465 baseline area measurements. Before beginning the baseline area measurement

process, all five observers were shown identical training materials for use of the software and were

given identical written and verbal instructions for completing the study measurements. Observers

57



were advised to exclude regions of effusion and lung from their contours. For more information

about Abras, see Appendix A of reference [95].

For the follow-up phase of the study, three of the original five observers were presented with

the baseline scan for each patient and were able to see the baseline contours on the three previously

selected axial sections. All three observers were presented with the same set of baseline contours

for each patient (all baseline contours were taken from the observer who had initially selected the

three axial sections to contour at baseline). The follow-up observers could not alter these base-

line contours but could see the entire baseline scan for each patient as reference. The follow-up

measurement process consisted of two steps: first, each observer needed to independently find

the matched axial follow-up section for each of the three baseline scan sections on which mea-

surements had been made, and second, the observer needed to construct the follow-up contours to

capture tumor area on the selected follow-up sections. This process replicates the clinical workflow

typically used for response assessment, where the observer tasked with making follow-up measure-

ments is able to visualize the previous measurements, but is wholly responsible for the placement

of the new measurements. Again, contours were converted to enclosed area measurements.

For both the baseline and follow-up time-points for each patient, area measurements were

analyzed both as individual sections and as the sum of section measurements per patient, which

is more clinically relevant as a representation of tumor bulk (pseudo-volume). In total, there were

744 individual area measurements (465 baseline and 279 follow-up measurements), or 248 pseudo-

volume measurements (155 baseline and 93 follow-up measurements).

3.2.4 Data Analysis

3.2.4.1 Baseline Measurement Analysis

Estimating the variation in area measurements attributable to differences between observers was

accomplished using a random effects analysis of variance (ANOVA) model [96]. We start with a
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linear model for the section-by-section data,

yi jk = µ +ai +b j + gk( j) + ei jk, (3.1)

where yi jk represents the measurement for the ith observer (i = 1–5) in the jth patient ( j = 1–31) on

the kth section (k = 1–3). In equation 3.1, µ represents the overall mean, ai represents the effects

of the observers, b j represents the effects of the different patients, gk( j) represents the effects of the

different sections nested within each patient (i.e., subscripts k are only meaningful for a specified

subscript j), and ei jk are the residual errors. For summed-area measurements (the sum of three

sections per patient, representing a composite tumor area), the linear model for measurements is

zi j = m+ai +b j + ei j, (3.2)

where the explanation of terms remain the same as in equation 3.1 but variables have changed from

Greek to Roman to avoid any confusion (zi j is the summed measurement, m is the overall mean,

ai is the observer effect, b j is the patient effect, and ei j is the residual error). Note the absence of

a section-effect term in equation 3.2.

Since µ (or m) is the overall mean, the remaining effects are assumed to be normally distributed

with zero mean, and the variance component attributable to each effect is estimated in the ANOVA

model. All analyses were performed using the academic edition of Revolution R Enterprise (ver-

sion 4.3, based on R version 2.12) [86]. Once we obtained estimates for the variance components

that involve the observer, ŝ2
a and ŝ2

e (ŝ2
a and ŝ2

e for summed-area variance estimates), the abso-

lute inter-observer variability is calculated from standard rules of probability. Following a similar

derivation to the work by Armato et al. [52], absolute inter-observer variability for section-by-

section measurements (i.e., variance in the difference of per-section area measurements between
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any two observers) is given by

Var
h
yi0 jk − yi jk

i
= Var

h
(ai0 −ai)+

⇣
ei0 jk − ei jk

⌘i

= 2
⇣

ŝ2
a + ŝ2

e

⌘
, (3.3)

and a similar equation can be derived for the summed measurement data. Once this absolute

inter-observer variability is derived, which we will henceforth call ŝ2
y or ŝ2

z for the section-by-

section and summed measurement data, respectively, the 95% confidence interval on absolute inter-

observer variability can be calculated as ±1.96 ŝy.

For relative inter-observer variability, we are interested in the variability of the quantity

⇣
yi0 jk − yi jk

⌘

yi jk
=

yi0 jk

yi jk
−1.

Finding the variability of this quantity requires estimating the variance of the ratio yi0 jk/yi jk, which

can be accomplished with a log transformation using

Var

"
ln

 
yi0 jk

yi jk

!#
= Var

h
ln
⇣

yi0 jk

⌘
− ln

�
yi jk
�i

= 2
⇣

ŝ 02
a + ŝ 02

e

⌘
, (3.4)

where the ŝ 02
? are derived from fitting equation 3.1 with ln

�
yi jk
�

instead of yi jk. If we denote the

result from equation 3.4 as ŝ 02
y , we can calculate the 95% confidence interval on ln

�
yi0 jk/yi jk

�
as

±1.96 ŝ 0
y . Finally, inverting the log transformation, the 95% confidence interval on the relative

inter-observer variability is

e−1.96 ŝ 0
y −1 <

⇣
yi0 jk − yi jk

⌘

yi jk
< e+1.96 ŝ 0

y −1. (3.5)

A similar derivation can be followed for summed measurement data.
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From the same linear models fit using equations 3.1 and 3.2, the full set of estimated vari-

ance components are produced. These variance components are used to construct the intra-class

correlation (ICC), which can be interpreted as a generalized R2, or proportion of total variation

attributable to a specified source [97,98]. For instance, the proportion of total variation attributable

to patient effects in the summed area measurement model would be

ICCsum
pat =

ŝ2
b

ŝ2
a + ŝ2

b + ŝ2
e
. (3.6)

If ICCsum
pat is equal to unity, all the variability in the data can be attributed to differences between

patients, and none is attributable to differences between observers. Similarly, the proportion of

total variability attributable to reader effects in the per-section area measurement model would be

ICCslice
obs =

ŝ2
a

ŝ2
a + ŝ2

b + ŝ2
g + ŝ2

e
. (3.7)

Finally, the agreement between observers can also be quantified using the mean value of the Spear-

man rank correlation statistic (r) between each pair of readers.

3.2.4.2 Follow-Up Measurement Analysis

The follow-up area measurements can be analyzed with similar methodology to the baseline mea-

surements. The same linear models and intra-class correlations will be calculated for both the

per-section area measurements and summed area measurements. The main expected difference

between baseline and follow-up measurements is the “biasing” effect of seeing previous contours.

Since all observers will be drawing follow-up contours while seeing the same set of baseline con-

tours, it can be expected that the amount of inter-observer variability will be reduced at follow-up.

The inter-observer variabilities (especially the relative variability numbers derived from equa-

tion 3.5 for follow-up measurements) will be best understood in the context of response clas-

sification criteria for area measurements. The 1981 World Health Organization (WHO) criteria
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for bi-dimensional measurement changes called for two linear measurements to be made (longest

diameter and longest perpendicular diameter), and their product represented the bi-dimensional

measurement of interest [42]. The response criteria for WHO measurements were given as a mea-

surement decrease of 50% or more for PR, a measurement increase of 25% or more for PD, and

SD for a measurement change between -50% and +25%.

Alternate bi-dimensional measurement classification criteria are given in Oxnard et al. [51] for

geometric models beyond the sphere, shown in Figure 3.1. The -50%/+25% WHO criteria be-

come -81.2%/+163.0%, -65.3%/+71.0%, and -79.3%/+119.6% for the annulus, lens, and crescent,

respectively. While these criteria are for bi-dimensional measurements (product of two linear mea-

surements) and not true area measurements, the criteria will be used to determine if the derived

relative inter-observer variabilities are so large as to lead to patients being misclassified due to

observer variation alone.

The response classification criteria can also be used to rate the agreement between observers

using Fleiss’ Kappa statistic, which quantifies agreement between a fixed number of raters using

categorical ratings [99]. Once response classification has been calculated for each patient for each

observer, k quantifies to what extent the observers agree with one another in terms of classification

(and not in terms of actual area measurements). Specifically, k is a measure of the agreement

between the fixed observers that exceeds the agreement expected due to chance alone. If there is

perfect agreement between observers in terms of classification, k = 1, while k  0 if the agreement

between observers is less than or equal to the agreement due to chance alone. There do exist some

numerical guidelines for the interpretation of k values [100], but these guidelines are completely

arbitrary, and modern recommendations are that they should be avoided [101].

3.3 Results

For the 31 patients in this study, the median survival as assessed from the initiation of treatment

was 12.5 months, with a 95% confidence interval of 9.3–16.8 months by Kaplan-Meier analysis.
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Figure 3.1: Three tumor models developed to represent mesothelioma-specific tumor geometry
and growth, from Oxnard et al. [51]: (A and B), the annulus, (C and D), the lens, and (E and F),
the crescent. (A, C, and E) Arrows indicate the direction of tumor growth. (B, D, and F) Cross-
sectional views of each tumor model, where the product of tumor thickness t and tumor length l
forms the bi-dimensional measurement of interest in this study. Figure reprinted with permission
of the publisher.
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Twenty-eight out of 31 deaths were observed, while for the remaining three patients the median

follow-up was 31.1 months.

3.3.1 Baseline Measurements

The mean baseline per-section area measurement across five observers and 31 patients (with three

individual area measurements per patient) was 2562 mm2, and the mean summed area measure-

ment across five observers and 31 patients (with one summed area measurement per patient) was

7686 mm2. The baseline area contours of the five observers on the same CT section are shown in

Figure 3.2. Figure 3.3 shows a plot of baseline summed area measurement data that depicts the

difference between an individual observer’s measurement and the average of all five observers’

summed area measurements for a given patient versus the group average. This type of plot is

similar to a Bland-Altman plot, but it should be noted that it is not identical [102, 103]. The mean

difference between the individual observer’s summed area measurements and the mean of the other

four observers’ summed area measurements is 678 mm2, -2510 mm2, 1885 mm2, -1246 mm2, and

1194 mm2 for observer 1, 2, 3, 4, and 5, respectively. This can be easily seen in Figure 3.3, where,

for example, observer 2 is clearly biased lower than the other observers. The average bivariate rank

correlation between observers (i.e., average value of r for each pairwise comparison) for baseline

summed area measurements was r̄sum = 0.898 (p < 0.0001).

Figure 3.4 shows a similar plot for baseline per-section area measurement data. The mean

difference between the individual observer’s per-section area measurements and the mean of the

other four observers’ per-section area measurements is 226 mm2, -837 mm2, 628 mm2, -415 mm2,

and 398 mm2 for observer 1, 2, 3, 4, and 5, respectively. The average bivariate rank correlation

between observers for baseline per-section area measurements was r̄slice = 0.885 (p < 0.0001).
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(a) (b)

(c) (d) (e)

Figure 3.2: Five observers’ outlines of malignant pleural mesothelioma on a single baseline
CT section. The corresponding areas of these five measurements are (3.2a) 2756 mm2, (3.2b)
1583 mm2, (3.2c) 3877 mm2, (3.2d) 2545 mm2, and (3.2e) 3838 mm2.
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Figure 3.3: Plot of baseline summed area measurement data for 31 patients and five observers. The
y-axis is the measurement difference between a given observer and the average of all observers,
and the x-axis is the average of all observers.
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Figure 3.4: Plot of baseline per-section area measurement data for 31 patients, three slices per
patient, and five observers. The y-axis is the measurement difference between a given observer
and the average of all observers, and the x-axis is the average of all observers.

Results from the random effects model give the following per-section area measurement vari-

ance component estimates. For absolute variability, ŝa = 482 mm2 and ŝe = 631 mm2, yield-

ing ŝy = 1122 mm2. Therefore, the 95% confidence interval for absolute inter-observer vari-

ability is
h
−2200mm2, 2200mm2

i
, or ±86% of the mean per-section area measurement value.
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The summed area measurement variance component estimates, for absolute variability, are ŝa =

1435mm2, ŝe = 1436mm2, yielding ŝz = 2871mm2. Therefore, the 95% confidence interval for

absolute inter-observer variability is
h
−5627mm2, 5627mm2

i
for the summed baseline area mea-

surements, or ±73% of the mean summed area measurement value. These values are summarized

in Tables 3.1 and 3.3.

The relative variance component estimates for the baseline per-section area measurements are

ŝ 0
a = 0.230 and ŝ 0

e = 0.367, giving ŝ 0
y = 0.612. This gives a 95% confidence interval for relative

inter-observer variability of [-70%, +232%] from equation 3.5. For the relative baseline summed

area measurement variance component estimates, we have ŝ 0
a = 0.242 and ŝ 0

e = 0.339, giving

ŝ 0
z = 0.624. This gives a 95% confidence interval for relative inter-observer variability of [-71%,

+240%] (i.e., one would expect to find, with 95% confidence, that a given observer’s summed

area measurement for a given patient would be up to 71% less than or 240% greater than another

observer’s summed area measurement for the same patient). These results are summarized in

Tables 3.2 and 3.3.
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Variance Component SD [mm2] Variance [mm4]

Per-Section Measurements
Observer, a 481.7 232017

Patient, b 1327.5 1762245

Slice, g 1135.5 1289430

Residual, e 630.8 397888

ŝ2
y = 2

⇣
ŝ2

a + ŝ2
e

⌘
1122.4 1259810

Summed Measurements
Observer, a 1435.3 2060216

Patient, b 4422.1 19554923

Residual, e 1435.7 2061179

ŝ2
z = 2

⇣
ŝ2

a + ŝ2
e

⌘
2871.0 8242790

Table 3.1: Estimated variance components for the absolute baseline area measurement linear mod-
els, given both as standard deviations (SD) and variances.
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Variance Component SD Variance

Per-Section Measurements
Observer, a 0 0.230 0.053

Patient, b 0 0.681 0.463

Slice, g 0 0.452 0.204

Residual, e 0 0.367 0.135

ŝ 02
y = 2

⇣
ŝ 02

a + ŝ 02
e

⌘
0.612 0.375

Summed Measurements
Observer, a0 0.242 0.059

Patient, b0 0.741 0.549

Residual, e0 0.369 0.136

ŝ 02
z = 2

⇣
ŝ 02

a + ŝ 02
e

⌘
0.624 0.389

Table 3.2: Estimated variance components for the relative baseline area measurement linear mod-
els, given both as standard deviations (SD) and variances.
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95% Confidence
Interval

Lower Bound Upper Bound Range

Absolute, Per-Section -2200 mm2 2200 mm2 4400 mm2

Absolute, Summed -5627 mm2 5627 mm2 11254 mm2

Absolute (as % of
mean), Per-Section

-86% 86% 172%

Absolute (as % of
mean), Summed

-73% 73% 146%

Relative, Per-Section -70% 232% 302%

Relative, Summed -71% 240% 311%

Table 3.3: 95% confidence intervals (CI) for absolute and relative inter-observer variabilities for
baseline area measurements of malignant pleural mesothelioma. CI for both per-section measure-
ments and summed (3 per patient) measurements are assessed using the methods in section 3.2.4.

Intra-class correlation statistics were also computed for the baseline area measurement data

using the estimated variance components in Table 3.1. These values are summarized in Table 3.4.

For the per-section data, the inter-patient variability accounts for 82.7% of the total variability,

while the inter-observer variability accounts for only 6.4% of the total variability. For the summed

data, the inter-patient variability accounts for 82.6% of the total variability, while the inter-observer

variability accounts for only 8.7% of the total variability. For both the per-section and summed

data, the inter-patient variability is the significant majority of total variability as expected from

the inherently wide range of disease sizes between patients. While the inter-observer variability

appears to constitute a small fraction of overall variability for per-section and summed data in

Table 3.4, both inter-observer variabilities are significantly larger than zero, and the total variability
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ICC Statistic Value 95% Confidence Interval

ICCslice
pat 0.872 [0.710, 0.894]

ICCslice
obs 0.064 [0.022, 0.365]

ICCsum
pat 0.826 [0.635, 0.917]

ICCsum
obs 0.087 [0.027, 0.452]

Table 3.4: Intra-class correlation statistics for the baseline area measurement data, calculated from
Table 3.1.

including both inter-observer and inter-patient effects is substantial since the range of disease sizes

in the patient population is quite wide.

3.3.2 Follow-up Measurements

The mean follow-up per-section area measurement across observers and patients was 2532 mm2,

and the mean summed area measurement was 7597 mm2. On average, the follow-up per-section

area measurements were 7.5% lower than the baseline areas. Similarly, follow-up summed area

measurements were 9.7% lower than the corresponding baseline measurements on average. Follow-

up contours are shown in Figure 3.5 for the same baseline axial section shown in Figure 3.2 (specif-

ically, Figure 3.2e was the baseline contour shown to follow-up observers for this patient case).

Since the follow-up observers were free to choose the axial section for a given contour, there

was some disagreement in axial slice selection. On average, two different slices were contoured

at follow-up for a given baseline contour across the three observers; for 21 of the 93 baseline con-

tours, all three observers selected a different axial slice for follow-up measurement. The mean

deviation in slice location between observers was 0.72 slices, or approximately 2.2 mm. Figure 3.6
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(a)

(b) (c)

Figure 3.5: Three observers’ follow-up outlines of malignant pleural mesothelioma on a single CT
section, matched to the section shown in Figure 3.2 (all observers were shown the baseline contour
from Figure 3.2e). The corresponding areas of the three measurements are (3.5a) 3813 mm2, (3.5b)
3659 mm2, and (3.5c) 3139 mm2.
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shows a plot of follow-up summed area measurement data that depicts the difference between an

individual observer’s measurement and the average of all three observers’ summed area measure-

ments for a given patient versus the group average. The mean difference between the individual

observer’s summed area measurements and the mean of the other two observers’ summed area

measurements is -430 mm2, 33 mm2, and 397 mm2 for observer 1, 2, and 3, respectively. Figure

3.7 shows a similar plot for follow-up per-section area measurement data. The mean difference

between the individual observer’s per-section area measurements and the mean of the other two

observers’ per-section area measurements is -143 mm2, 11 mm2, and 132 mm2 for observer 1, 2,

and 3, respectively.
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Figure 3.6: Plot of follow-up summed area measurement data for 31 patients and 3 observers. The
y-axis is the measurement difference between a given observer and the average of all observers, and
the x-axis is the average of all observers. Note that the y-axis is identical to Figure 3.3, highlighting
the increased agreement among observers for follow-up measurements.
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Figure 3.7: Plot of follow-up per-section area measurement data for 31 patients, 3 slices per pa-
tient, and 3 observers. The y-axis is the measurement difference between a given observer and
the average of all observers, and the x-axis is the average of all observers. Note that the y-axis
is identical to Figure 3.4, highlighting the increased agreement among observers for follow-up
measurements.

Results from the random effects model give the following per-section area measurement vari-

ance component estimates. For absolute variability, ŝa = 79 mm2 and ŝe = 461 mm2, yielding
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ŝy = 661 mm2. Therefore, the 95% confidence interval for absolute inter-observer variability

is
h
−1296mm2, 1296mm2

i
, or ±51% of the mean per-section area measurement value. The

summed area measurement variance component estimates, for absolute variability, are ŝa =

194mm2, ŝe = 1096mm2, yielding ŝz = 1574mm2. Therefore, the 95% confidence interval for ab-

solute inter-observer variability is
h
−3085mm2, 3085mm2

i
for the summed follow-up area mea-

surements, or ±41% of the mean summed area measurement value. These values are summarized

in Tables 3.5 and 3.7.

The relative variance component estimates for the follow-up per-section area measurements

are ŝ 0
a = 0.063 and ŝ 0

e = 0.242, giving ŝ 0
y = 0.354. This gives a 95% confidence interval for

relative inter-observer variability of [-50%, +100%] from equation 3.5. For the relative follow-up

summed area measurement variance component estimates, we have ŝ 0
a = 0.061 and ŝ 0

e = 0.179,

giving ŝ 0
z = 0.268. This gives a 95% confidence interval for relative inter-observer variability of

[-41%, +69%]. These results are summarized in Tables 3.6 and 3.7.
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Variance Component SD [mm2] Variance [mm4]

Per-Section Measurements
Observer, a 78.7 6195

Patient, b 1103.1 1216811

Slice, g 1143.7 1308134

Residual, e 460.9 212472

ŝ2
y = 2

⇣
ŝ2

a + ŝ2
e

⌘
661.3 437336

Summed Measurements
Observer, a 193.8 37567

Patient, b 3832.5 14687977

Residual, e 1096.0 1201228

ŝ2
z = 2

⇣
ŝ2

a + ŝ2
e

⌘
1574.0 2477590

Table 3.5: Estimated variance components for the absolute follow-up area measurement linear
models, given both as standard deviations (SD) and variances.
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Variance Component SD Variance

Per-Section Measurements
Observer, a 0 0.063 0.004

Patient, b 0 0.433 0.187

Slice, g 0 0.405 0.164

Residual, e 0 0.242 0.059

ŝ 02
y = 2

⇣
ŝ 02

a + ŝ 02
e

⌘
0.354 0.125

Summed Measurements
Observer, a0 0.061 0.004

Patient, b0 0.486 0.236

Residual, e0 0.179 0.032

ŝ 02
z = 2

⇣
ŝ 02

a + ŝ 02
e

⌘
0.268 0.072

Table 3.6: Estimated variance components for the relative follow-up area measurement linear mod-
els, given both as standard deviations (SD) and variances.

79



95% Confidence
Interval

Lower Bound Upper Bound Range

Absolute, Per-Section -1296 mm2 1296 mm2 2592 mm2

Absolute, Summed -3085 mm2 3085 mm2 6170 mm2

Absolute (as % of
mean), Per-Section

-51% 51% 102%

Absolute (as % of
mean), Summed

-41% 41% 82%

Relative, Per-Section -50% 100% 150%

Relative, Summed -41% 69% 110%

Table 3.7: 95% confidence intervals (CI) for absolute and relative inter-observer variabilities for
follow-up area measurements of malignant pleural mesothelioma. CI for both per-section measure-
ments and summed (3 per patient) measurements are assessed using the methods in section 3.2.4.

The values of the ICC statistics for follow-up measurements are summarized in Table 3.8. For

the per-section data, the inter-patient variability accounts for 92% of the total variability, while

the inter-observer variability accounts for only 0.2% of the total variability. For the summed data,

the inter-patient variability also accounts for 92% of the total variability, while the inter-observer

variability accounts for only 0.2% of the total variability. For both the per-section and summed

data, the inter-patient variability is the significant majority of total variability. For these follow-up

data, the inter-observer variability constitutes a significant portion of overall variability for per-

section area measurements (p = 0.026), but the contribution of inter-observer variability is not

significant for summed area measurements (p = 0.146). While the apparent proportion of total

variability attributable to inter-patient effects has increased from the baseline measurements, it
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ICC Statistic Value 95% Confidence Interval

ICCslice
pat 0.92 [0.888, 0.943]

ICCslice
obs 0.002 [0, 0.109]

ICCsum
pat 0.922 [0.865, 0.959]

ICCsum
obs 0.002 [-0.001, 0.158]

Table 3.8: Intra-class correlation statistics for the follow-up area measurement data, calculated
from Table 3.5.

should be noted that the patient population is the same and therefore the disease burdens in the

different patients are just as variable as before. However, the reduction in total variability is largely

due to the reduction in inter-observer variability, and therefore the relative contribution of inter-

observer effects to total variability is considerably lower than at baseline.

The relative change between the baseline area measurements and follow-up area measurements

was calculated, and the average bivariate rank correlation between observers for the change in

area measurement from baseline to follow-up in summed area measurements was r̄Dsum = 0.802

(p < 0.0001). Using the WHO classification criteria (-50%/+25%), k = 0.557. When classi-

fication criteria are used instead from geometries more specific to mesothelioma, such as the

crescent (-79%/+120%), lens (-65%/+71%), and annulus (-81%/+163%) geometries from Oxnard

et al. [51], k = 1.0, k = 0.866, and k = 1.0, respectively. These values are summarized along in

Table 3.9. The values of k are fairly high for the Oxnard geometries due to the widening of the

definition of stable disease (SD); for the annulus and crescent geometries, 30 of 31 patients were

classified as stable disease, and only one patient was classified as progressive disease (PD), and

there was universal agreement in the response categories that resulted from the three observers’
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Response Classification Criteria PR cut-point PD cut-point Generalized k

World Health Organization -50% +25% 0.557

Oxnard et al.: Annulus -81.2% +163.0% 1.0

Oxnard et al.: Lens -65.3% +71.0% 0.866

Oxnard et al.: Crescent -79.3% +119.6% 1.0

Table 3.9: Generalized k statistics for response classification performed using follow-up summed
area measurements and a range of existing bi-dimensional response classification criteria.

contours. For the lens geometry response criteria, one patient was classified universally by all

three observers’ contours as PD, 28 patients were universally classified as SD, one patient was

universally classified as partial response (PR), and for one patient, the contours from two ob-

servers resulted in a classification of PR while the contours from the third observer resulted in a

classification of SD. Therefore, the vast majority of patients were classified as SD for the Oxnard

geometries, and there was good agreement among observers for the few patients classified as either

PR or PD.

3.4 Discussion

The purpose of this study was to assess manual area measurements of malignant pleural mesothe-

lioma as a metric for response evaluation. Specifically, in the baseline study the area measurement

technique itself was investigated to determine whether such measurements would be well-suited

for response evaluation, and it was discovered that substantial variability was attributable to inter-

observer effects. The measurement technique was evaluated both in terms of individual section-

by-section measurements and in terms of the sum of three sectional area measurements per patient.
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These summed measurements are more clinically relevant, just as summed linear measurements

across three CT sections are currently used in the modified RECIST system.

In the follow-up portion of this study, the variability of area measurements was assessed in a

more practical context, since in clinical practice response measurement acquisition involves ref-

erence to previous measurements. The variability of area measurements (both per-section and

summed measurements) may be large when each observer is given a “blank slate,” as in the base-

line study, but clinical practice involves only a single individual making baseline measurements.

Follow-up measurements are made based on this existing baseline measurement, and therefore the

baseline measurement serves as a biased rubric for a follow-up observer (implicitly constraining

the thought processes and actions of the observer, leading to a reduction in inter-observer variabil-

ity).

The results for baseline area measurements indicate that the 95% confidence intervals of rela-

tive inter-observer variability are considerably larger than the reasonable two-dimensional response

classification criteria found in Table 3.9. Since the use of a 95% (i.e., 2s ) confidence interval may

seem overly conservative, the calculations for relative inter-observer variability can be altered to

yield the 68% (i.e., 1s ) confidence interval by changing the quantity 1.96 to unity in equation 3.5.

With this change, the 68% confidence interval for relative inter-observer variability of section-by-

section area measurements is [-46%, +84%], and for summed area measurements the same interval

is [-46%, +87%]. Even these 68% confidence intervals are so large as to approach the classification

criteria in Table 3.9.

The results of Table 3.3 and Figures 3.3 and 3.4 support the concept that the observers had

different ideas of what constitutes identifiable disease. If the observers had simply been sloppy

in their measurements, one would expect a reduction in inter-observer variability from the per-

section measurements to the summed measurements. Random fluctuations on one slice for a given

patient might be canceled from variability on the second and/or third slices, leading to higher

variability estimates for per-section measurements. The results of the baseline study, however,
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indicate that the inter-observer variability is nearly identical between per-section and summed

area measurements, leading to the conclusion that the observed variation results from different

contouring styles (for lack of a better term) between observers, which are preserved from the per-

section measurement setting through to the summed measurements. One possible explanation for

the different contouring styles between observers is that area measurements are not part of the

standard clinical workflow and therefore the observers are not as familiar with the technique as

they are with, say, the linear measurement technique.

As expected, the follow-up estimates for inter-observer variability are reduced from the base-

line estimates (compare Table 3.7 with Table 3.3). The fact that the variability was reduced is

not noteworthy; previous studies have shown that exposure to prior contours heavily biases ob-

servers [92], and therefore only the absence of any reduction in variability from baseline to follow-

up would have been noteworthy. However, the variability is reduced to the point where inter-

observer variability is no longer a significant component (only 0.2%) of total variability in summed

follow-up area measurements. The relative inter-observer variability is still fairly wide, with a 95%

confidence interval of [-41%, +69%] (even the 68% confidence interval for relative inter-observer

variability of summed follow-up area measurements is [-24%, +31%]). Even these implicitly con-

strained follow-up measurement variabilities are on the same level as the reasonable classification

criteria given in Table 3.9, and therefore tumor response could be misclassified due to observer

variability effects alone.

While the inter-observer variability in follow-up measurements is clearly reduced from base-

line measurements, the remaining amount of variability is not zero. Part of this variability may

be due to differences in disease presentation between baseline and follow-up; a small number of

scans had a difference in contrast administration between baseline and follow-up, and other scans

may exhibit differences in patient orientation in the CT scanner bore. Any misalignment in pa-

tient yaw would result in difficulties for matched-slice selection at follow-up, and one observer

noted this challenge on a small number of patients. In regular clinical practice, when the disease
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presentation changes for non-physiological reasons (e.g., what may be obvious vasculature with

a contrast-enhanced follow-up CT scan may have previously appeared to be pleural disease if the

baseline CT scan had been acquired without contrast), the observer can note the change in the radi-

ology report, and future response assessment measurements can be made according to the changed

interpretation. In this study, however, observers were asked to make follow-up measurements of

the disease that had previously been outlined on the baseline scan. For the patient cases in which

disease presentation was changed from baseline to follow-up in part due to image acquisition, dif-

ferent observers may have had different interpretations and contouring strategies. This ambiguity

in how to handle changes in disease presentation is a source of variability in clinical practice, and

its implicit inclusion in this analysis is important for the applicability of this study’s conclusions.

It is important to note that the sets of two-dimensional response classification criteria used in the

calculation of the k statistics are somewhat arbitrary in that no one set of the criteria are known to

be appropriate for mesothelioma. The original WHO criteria are given for bi-dimensional measure-

ments, which are not the same as full area measurements, and the same is true for the theoretical

geometric models derived in the Oxnard et al. paper. The interesting difference between the WHO

and the Oxnard criteria is the substantial widening of the definition of the stable disease category.

When more tumor responses are swept into this SD categorization, there will be a corresponding

increase in any concordance statistic (such as k), and this is observed in the results above.

Of course, our study is limited by the number of patients and radiologists available for analysis.

The relative inter-observer variabilities presented herein should not be taken as evidence that area

measurements for MPM are a “dead end.” Studies with more patients and/or radiologists could

potentially provide updated estimates of inter-observer variability. However, the collection of these

data is quite time consuming.

Even if follow-up variability were reduced further from the results given above, it would be

hard to recommend the adoption of area contours as a tool for response assessment. The observers

in this study reported time durations for contouring the disease area on three axial slices on the
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order of 20 minutes, and as we will see in subsequent chapters, this is approximately the time re-

quired to complete the manual intervention necessary for a full volumetric semi-automated disease

segmentation. The volumetric segmentations will capture complete tumor burden changes and

will likely exhibit very low inter-observer variabilities. For instance, in the study by Frauenfelder

et al. [57], a value of k = 0.9 was reported for volume measurements classified according to a

spherical geometric model, while in this study, k = 0.557 for area measurements classified by a

spherical geometry model. Given the inter-observer variability estimated for area measurements in

this study and the time required to make such area measurements, it is difficult to foresee a situation

in which summed area measurements (pseudo-volumes) would be used in place of semi-automated

segmentations of actual disease volume for response assessment.
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CHAPTER 4

DISEASE VOLUMES AS A MARKER FOR PATIENT RESPONSE

“The wheel is come full circle.” – William Shakespeare, King Lear

4.1 Introduction

Any image-based response evaluation method has two components; the first describes a protocol

for making measurements, and the second describes how to classify patients into response cate-

gories once those measurements are available. Since 1981, tumor response assessment with medi-

cal images has been focused on reducing the dimensionality of the first component and discretiza-

tion of the second component. The original World Health Organization (WHO) bi-dimensional

measurement technique focused on the product of two linear measurements, the longest diameter

and longest perpendicular measurement to said diameter [42]. The product of these measurements

was used as a quasi-two-dimensional metric to assess tumor response by classifying progressive

disease (PD) for an increase of more than 25% from the minimum of previous measurements

(nadir) and partial response (PR) if the measurement decreased by 50% or more from the baseline

measurement. Measurements not meeting the criteria for either PD or PR were classified as sta-

ble disease (SD). These -50%/+25% cutoffs for PR and PD, respectively, were based on previous

breast cancer cohort studies, where the origin of the criteria was, in part, from what physicians be-

lieved to be reasonable palpable changes in tumor burden (i.e., the amount of change the physicians

could reliably identify from palpation alone).

Later, the Response Evaluation Criteria In Solid Tumors, or RECIST criteria, were derived to

simplify this measurement process; the two necessary measurements were reduced to one (again,

the longest tumor diameter), and the cutoff criteria were derived from a geometrical relation-

ship [43]. For a sphere where the cross-sectional area increases by 25%, the diameter increases

by 12%, whereas a cross-sectional area reduction of 50% for the same sphere would correspond

87



to a diameter decrease of 29%. The -29%/+12% “sphere model” extrapolations were rounded to

−30%/+ 20%, leading to the current RECIST classification criteria [44, 45]. The RECIST mea-

surement technique and classification criteria are currently used across many disease types includ-

ing lung cancer, mesothelioma, breast cancer, colorectal cancer, prostate cancer, gastro-intestinal

stromal tumors, soft tissue sarcomas, brain tumors, renal cell carcinomas, and others [46].

With the advent of near-isotropic three-dimensional voxels in medical imaging and advances

in computer vision methodology, there has been a more recent drive to use full three-dimensional

volume measurements for response assessment [45,104,105] and to track measurements over time

using continuous, not discretized, response [44, 106]. Especially for diseases such as mesothe-

lioma, where the morphological characteristics do not correspond to the spherical extrapolation

of the RECIST classification criteria, disease volumes are a logical choice for tumor burden as-

sessment. While the past history of response assessment has moved away from volumetric quan-

tification for reasons such as imaging technology and ease of manual measurement, the previous

techniques used for response assessment were always intended to identify tumor burden changes

(i.e., volumetric changes), and now is the time for the wheel to come full circle (to paraphrase

Shakespeare).

Numerous studies have investigated the use of tumor volume and tumor volume-related mea-

surements for response assessment in patients with MPM using MRI, CT, and FDG-PET imag-

ing [35,37,54–58]. The main challenge in these volumetric studies is the segmentation of the com-

plete tumor volume. Using FDG-PET imaging, the segmentation of MPM is greatly facilitated by

the FDG avidity of the tumor. Three-dimensional semi-automated region growing techniques can

be used with high reproducibility to capture the complete tumor volume [55, 59], and even more

rudimentary simple thresholding techniques also appear to perform well [56].

The segmentation of MPM in CT images is more problematic, and both published studies

use a semi-automated tool for MPM volume segmentation [57, 58]. The study by Frauenfelder

et al. [57] used a linear shape-based interpolation technique, requiring contours on “every fourth
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or fifth slice.” The main conclusion of this study related to volumetric response was that the inter-

observer agreement of volumetric response classification is much higher than for manual modified

RECIST response classification (general k = 0.9 vs general k = 0.33, respectively) [57]. The

study by Liu et al. [58] utilized a combination of semi-automated techniques for volumetric MPM

segmentation, and their analysis revealed changes in tumor volume to be significantly associated

with patient survival. Patients experiencing tumor growth had a median survival of 11.5 months,

while patients with tumor decrease had a median survival of 18.1 months.

Of course, tumor burden is not the only factor affecting a given patient’s outcome during or

following therapy. Other covariates may provide crucial information useful for the prediction of

survival and have been shown to do so in patients with MPM. Section 1.1.4 outlines covariates

used previously in patients with MPM, including patient age, sex, performance status (PS), white

blood cell (WBC) count, blood platelet count, histological cellular subtype, presence of chest pain,

and weight loss [30–35]. In fact, some of these covariates (and others) have been shown to be

significant independent predictors of patient survival in models that also include disease volumes

estimated from FDG-PET imaging [35].

The goal of this study was to create a comprehensive model to predict MPM patient survival

utilizing time-changing estimates of disease volume in conjunction with other clinical covariates.

To date, no survival model for MPM utilizes disease volumes that can freely change over time.

Continuous measurements of disease volume were hypothesized to be a significant predictor of

MPM patient survival, both as a single covariate and in conjunction with other clinical covariates.

4.2 Patients and Methods

4.2.1 Patient Cohort

The patient cohort used in this study was a subset of the entire “Perth database” described in

section 2.2.1 and Table 2.1. For inclusion in this specific study, patients were required to have
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an available CT study at baseline (prior to beginning chemotherapy) and one or more follow-up

CT scans during (and immediately following) chemotherapy. This constraint reduced the eligible

patient cohort to 81 patients, and the summary description of these patients is given in Table 4.1.

Table 4.1: Description of the patient cohort used in this specific study, consisting of 81 of the
original 97 patients. This specific patient cohort is a subset of the patients summarized in Table
2.1.

Characteristic Summary

Sex:

Male n = 68

Female n = 13

Age at Diagnosis:

Median 66 years

Range 41–80 years

Chemotherapy:

Carboplatin/Pemetrexed n = 7

Cisplatin/Pemetrexed n = 42

Cisplatin/Gemcitabine n = 32

Histology:

Epithelioid n = 60

Sarcomatoid n = 7

Biphasic n = 14

T Stage:

T1 n = 19

T2 n = 22

T3 n = 25

T4 n = 15

(continued on next page)
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(Table 4.1, continued from previous page)

N Stage:

N0 n = 25

N1 n = 3

N2 n = 40

N3 n = 13

M Stage:

M0 n = 70

M1 n = 11

IMIG Stage:

I n = 13

II n = 5

III n = 36

IV n = 27

Known Asbestos Exposure:

Yes n = 75

No n = 6

Chest Pain:

Yes n = 50

No n = 31

Shortness of Breath:

Yes n = 67

No n = 14

(continued on next page)
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(Table 4.1, continued from previous page)

ECOG Performance Status:

0 n = 38

1 n = 38

2 n = 5

Talc Pleurodesis:

Yes n = 30

No n = 51

Weight:

Median 75 kg

Range 52–121 kg

Height:

Median 172 cm

Range 155–189 cm

Smoking Status:

Never n = 36

Past n = 39

Present n = 6

Pleurectomy/Decortication:

Yes n = 1

No n = 80

4.2.2 Imaging

Patients were imaged using helical CT up to one month prior to the first cycle of chemotherapy and

throughout their treatment regimen (typically after the first cycle, then every two cycles thereafter).
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CT staging was performed according to the Union for International Cancer Control (UICC) TNM

staging system (2002). CT scans were staged by a thoracic radiologist or medical oncologist

experienced in mesothelioma imaging.

There were a total of 281 CT scans in this study, with a median of four scans per patient (in-

cluding baseline scans). Ten patients had only a baseline scan with one follow-up scan, while 30

patients had three scans total, 34 patients had four scans total, and seven patients had five scans

total. The median duration between scans was 49 days. Of the 281 scans, 197 were performed on

General Electric scanners (HiSpeed CT/i, n=105; LightSpeed Pro 16, n=2; or LightSpeed VCT,

n=90), and 84 were performed on Philips Brilliance 64-slice scanners. At least 135 of the scans

were performed with iodinated contrast media (for the other 146 scans, the contrast field in the

DICOM image header is empty, which does not necessarily imply that no contrast was adminis-

tered).

Only one reconstructed series was required for each CT scan date, and this series was selected

for each patient primarily with consideration for slice thickness and secondarily with considera-

tion for reconstruction kernel. Preference was given to thinner slice thicknesses and “Standard”

reconstruction kernels, but if for a given patient there was a scan date with only “Lung” kernel

reconstructions, then matched kernel and slice thickness reconstructions were used for the other

scan dates. Having this type of consistency across the scan dates for a given patient was consid-

ered important for segmentation of volumetric disease, since different amounts of disease might

be segmented on different reconstructions due to, for instance, partial volume effects. With this

consistency in mind, slice thickness for the different scans in this study was 0.63 mm (n=6), 1 mm

(n=18), 1.25 mm (n=36), 2.5 mm (n=97), or 5 mm (n=124). In-plane voxel dimensions ranged

from 0.54–0.87 mm, and all reconstructed axial images had an in-plane matrix size of 512 by

512. The kVp setting for the scans was predominantly 120 kVp (n=273), with 100 kVp (n=2) and

140 kVp (n=6) also used. Reconstruction kernels fell into two broad categories, with “Lung” ker-

nels (including the Philips “L” and GE “Lung” kernels) used for 185 scans and “Standard” kernels
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(including Philips “B” and GE “chest,” “soft,” and “standard” kernels) used for the remaining 96

scans.

4.2.3 Disease Segmentation

For each scan, the pleural disease was segmented using a semi-automated method based, in large

part, on the Ph.D. thesis of William Sensakovic at The University of Chicago [60, 95]. Because of

the considerable overlap in Hounsfield Unit (HU) values between actual mesothelioma tumor and

pleural effusion, the automated method used by Sensakovic produces contours of pleural disease

and does not readily separate tumor from effusion. This is discussed further below. Therefore, the

end goal of the disease segmentation technique used in this study was reliable volumes of pleural

disease and not necessarily volumes of only mesothelioma tumor. Note that since there is no

database of “gold standard” pleural disease volume segmentations (it would be prohibitively time-

consuming to generate such segmentations), the existing automated segmentation method was only

partially validated by Sensakovic et al. [60]; the automated segmentation technique was found to

agree with human observers on a limited number of individual axial CT slices only to the extent

that human observers agreed with one another.

4.2.3.1 Automated Segmentation Methods

The first step in the segmentation method is a thoracic segmentation. The thoracic segmentation

identifies just the patient in the image, removing the CT scanner table and any blankets on top of

the patient. Identifying the patient in the image is an important factor in guiding the rest of the

segmentation methods. Following the thoracic segmentation, a bone and contrast segmentation

identifies regions of high HU values using a thresholding technique followed by morphological

operations to remove small regions and fill the marrow “holes” in the rib cross-sections. An airway

segmentation is calculated next, including the trachea and bronchi. This segmentation is performed

three-dimensionally using automatically seeded active contours and is necessary because of the
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similarity in HU values between lung and airway regions. Without this segmentation, the lung

segmentation could potentially “leak” into the main-stem bronchi and trachea.

Lung region segmentation is a crucial component of the disease segmentation process. Gen-

erally speaking, any “disease” is located between the visceral and parietal pleural surfaces, where

the parietal pleura is the outer surface in contact with the chest wall and the visceral pleura is the

inner surface attached to the lungs and other hemithoracic structures (e.g., vasculature and me-

diastinum). Therefore, the lung segmentation helps define the “inner” boundary of any potential

pleural disease. The lung segmentation method is fully automated and utilizes gray-level, morpho-

logical, and texture features to segment the aerated lung tissue. The lung segmentation method

has been under development in our group for some time, and the updated version been used for

other studies for patients with MPM [107,108]. Figure 4.1 shows the above-mentioned automated

segmentation results for an example patient (the same patient scan is used to exemplify all the

segmentation methods described herein).

Following lung segmentation, a hemithoracic segmentation is necessary to define the “outer”

pleural surface. The method used in reference [60] is fully automated and relies on an active

contour region growing approach to propagate the lung contours outward until they are constrained

by the hemithoracic bounding structures, such as the ribs and mediastinum (as partially defined by

the bone and contrast segmentation mentioned above). Unfortunately, this technique is prone to

errors, such as the active contour being “pulled through” the openings between the ribs, especially

near the scapulae and clavicles. After initial review of the automatic hemithoracic segmentations

for a large number of applicable patient scans, it became clear that the previously published method

would not yield the necessary segmentations on the new (and potentially more diverse) patient

scan cohort (see Figure 4.2 for an original automated hemithoracic segmentation). The cohort of

patient scans used to build the original algorithm had a tendency toward thinner slice thickness

than the patient cohort used in this study, and the level of anatomic variability in MPM patients

(rib bunching, surgical meshes, etc) complicates any attempted automated method.
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Figure 4.1: Automatically segmented components of an example patient scan, including the tho-
racic segmentation (dashed orange), bone and contrast segmentation (green), airway segmentation
(blue), and lung region segmentation (pink).
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Figure 4.2: Results of automated hemithoracic segmentation from reference [60] on example pa-
tient shown in Figure 4.1. Note how the contour in the left hemithorax has been “pulled through”
the opening in the ribs to encompass a large portion of musculature.
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In an attempt to improve the automated hemithoracic segmentation algorithm, efforts were

made to develop an automated rib segmentation algorithm. With a rib segmentation algorithm, one

could constrain the hemithoracic segmentation to be “inside” the ribcage (some patients exhibit

invasion of disease through the parietal pleura into the chest wall, and in such instances the invasive

disease foci would be erroneously excluded). Automated rib segmentation on CT images is a task

that has been attempted by other groups, with apparent success [109–112]. The methodology in

two of the previous algorithms was implemented to recreate a functional algorithm (the other two

were developed by corporate researchers, and methodology was not readily available).

The method starts with an automated spinal canal segmentation inspired by Lee et al. [111]

derived from a distance mapping from the bone segmentation mentioned above. Next, the bone

segmentation was enhanced using a Hessian filter implemented in the Insight ToolKit (ITK), as

inspired by Staal et al. [110]. For each voxel in the volumetric image block, the Hessian tensor H

is calculated as

H =

0

BBBB@

Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

1

CCCCA
,

where Li j is the second-derivative of image intensity values as calculated using a Laplacian-of-

Gaussian (LoG) filter. For “tubes,” the Hessian tensor will have two eigenvalues of relatively

large magnitude, and one eigenvalue of small magnitude. The eigenvector associated with this last

eigenvalue will point along the direction of tube curvature in the original image. The ITK imple-

mentation of the Hessian filter allows for automatic enhancement of “tubularity” after performing

enhancement at multiple spatial length scales [113]. Following Hessian enhancement, rib “seeds”

were identified using the proximity to the spinal canal segmentation, as in [111]. The image block

was processed using a sequence of morphological operations (erosion and opening) in MATLAB

(MathWorks; Natick, MA) in order to separate rib regions from areas of contrast in the medi-

astinum [114]. The~z-component of the principal curvature eigenvector from the Hessian tensor
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computation was used to remove enhanced regions that were primarily oriented in the superior-

inferior direction, such as the edges of the scapulae and patient vasculature. The resulting regions

were wrapped in a 3D convex hull in an attempt to identify the outer extent of the ribcage. The

process is illustrated in Figure 4.3.

After implementation of this simplistic rib segmentation algorithm, the results from the patient

cohort in this study indicated that the method would not be viable without a substantial amount

of further work on the topic. Many issues arose that complicated the automatic extraction of just

the ribcage. For instance, differences in patient contrast administration greatly affected the relative

brightness of different structures in the body. Figure 4.4a shows a patient scan where a substantial

amount of contrast agent remains in the subclavian vein. Since this vein comes in close contact

with the clavicles and first rib, it was impossible to separate the vascular structure from the bone

structures without removal of the bone structures themselves. Therefore, the wrapped hull was

artificially pulled anterio-laterally. Other problems arose due to rib bunching and implanted sur-

gical meshes, which alter HU values in the CT scan and thereby affect the Hessian enhancement

and rib segmentation. Undoubtedly, the ribcage segmentation algorithm could have been improved

substantially with more time and a training database with defined “truth,” for instance through the

inclusion of a candidate-region classifier [110]. Even so, the rib segmentation technique some-

what improved the previous automated hemithorax segmentation, where the updated hemithorax

segmentation is shown in Figure 4.4b for the same patient as in Figure 4.2.

While the inclusion of the rib hull segmentation in the automated hemithoracic segmentation

algorithm appears to improve the hemithorax contours (compare Figure 4.4b to Figure 4.2), the

resulting pleural disease segmentations were still too far from “usable” to use in this study. The

pleural disease segmentation approach was exactly as described in [60], but a brief summary is

in order. The pleural space was defined as everything simultaneously “inside” the hemithoracic

segmentation and “outside” the lung segmentation, or more formally,

Pleural Space = (Hemithorax)
\

(Lung)c , (4.1)
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(a) (b)

(c) (d)

Figure 4.3: Attempted automated rib segmentation algorithm, constructed from published method-
ology [110, 111]. 4.3a, volume rendering of chest CT scan. 4.3b, output of automatic spinal canal
segmentation. 4.3c, hessian-enhanced chest CT. 4.3d, final output, with the ribcage segmentation
in white and the 3D “wrapped” hull used as the hemithorax boundary in pink. Note the persistence
of carotid and subclavian arteries, which erroneously extend the hull anterio-laterally.
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(a)

(b)

Figure 4.4: 4.4a, rib hull segmentation, showing the effect of remnant contrast in the subclavian
vein. 4.4b, results from the automated hemithoracic segmentation algorithm after the inclusion
of the rib hull segmentation to define an outer bounding structure. Both images are of the same
patient scan as in Figure 4.2, though 4.4a is not the same axial section as shown previously.
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where ()c indicates the complement of a set. A k-means classifier is applied to the diffusion-filtered

image values in this initial pleural space segmentation, where the classifier is initiated with nine

classes centered at HU values of -10000, -500, -200, -50, 0, 50, 100, 200, and 500 (for extrapleu-

ral space, aerated lung, air/lung/fat, fat/soft tissue, soft tissue/mesothelioma/effusion, soft tis-

sue/mesothelioma/effusion, soft tissue/mesothelioma/cartilage, mesothelioma/cartilage/bone, and

bone/metal/contrast media, respectively). Pixels assigned to the first two or last categories af-

ter iterative convergence of the k-means classifier are eliminated from the segmentation. Finally,

a watershed segmentation is applied to the resulting segmentation mask [115]. The watershed

segmentation splits the pleural space segmentation into three-dimensional regions based on their

morphology and proximity to one another, and this step is performed only to expedite the process

of final manual segmentation editing (an entire three-dimensional labeled region can be removed

with the click of a button). The pleural space segmentation is shown in Figure 4.5. The watershed

segmentation would allow for quick removal of many of the erroneous regions in the image (such

as the regions indicated by red and yellow arrows), but other errors are combined with true disease

(such as the green and magenta arrows). Editing the three-dimensional segmentation shown in part

by Figure 4.5 required approximately 45 minutes by a trained user.

4.2.3.2 Semi-Automated Techniques

In order to obtain pleural disease segmentations in a more reasonable amount of time, a semi-

automated hemithoracic segmentation algorithm was developed. The semi-automated approach

utilized shape-based interpolation [116] and an interface written for the in-house software Abras.

The user places manual contours of the hemithorax spaced axially approximately every 15 mm,

depending on the local level of hemithorax boundary change. After contour placement on the se-

lected slices, the uncontoured axial sections are “filled in” automatically with contours interpolated

from the initial contours. The user is then allowed to change any contour necessary, iterating the

interpolation process (any time a contour is changed, it is automatically defined as a new seed
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Figure 4.5: Automated pleural space segmentation from hemithoracic segmentation in Figure 4.4b.
Erroneous regions indicated by arrows. The magenta arrow indicates inclusion of the end of a rib.
The green arrow indicates inclusion of neighboring chest wall musculature. The yellow arrow
indicates the inclusion of the esophagus. The red arrow indicates chest musculature. Only the
patient’s left hemithorax contains disease.
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contour for the next interpolation step). Once the resulting hemithorax segmentation is acceptable,

the contours are saved.

The important distinction with this semi-automated method is that the user only needs to con-

tour the outside boundary of any identifiable pleural disease. If the disease exists in only one

hemithorax, the user only needs to make contours on one side of the patient. If the disease does not

span the complete axial extent of the chest, the user only needs to supply contours in the applicable

region. Whenever the user is able to reduce the contouring burden by focusing seeding efforts on

a limited spatial region of interest, the time required to complete the semi-automated hemithorax

segmentation will be reduced compared with the time required for seeding the full axial span of

both hemithoracic spaces. An additional advantage of the semi-automated technique is that any

instances of disease invasion through the chest wall can be manually included during the contour

seeding process. The semi-automated hemithorax segmentation is shown in Figure 4.6.

After obtaining the semi-automated hemithorax segmentation, the pleural space segmentation

proceeds in the automated fashion outlined above. The watershed segmentation is again applied

to the resulting volumetric segmentation, and the in-house software Abras is used to manually edit

and finalize the segmentation. Hemithorax segmentation seeding and pleural disease segmentation

editing were performed by the author, who had been trained in thoracic anatomy by an attending

radiologist (Christopher Straus, MD). Plans were initially made for the attending radiologist to

review all of the 281 volumetric pleural disease segmentations, but after review of approximately

20 scans resulted in no changes to the contours of the author, these plans were abandoned as too

time-intensive. The initial pleural disease segmentation and the final edited results are shown in

Figures 4.7a and 4.7b, respectively.

To calculate pleural disease volume for each patient scan, a pixel-counting technique was used

[94]. The number of pixels inside the pleural disease segmentation were counted for each axial

section and multiplied by the area of a single pixel and by the axial section thickness. These per-

section disease volumes were summed for each axial section containing disease; very occasionally,
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Figure 4.6: Semi-automated hemithorax segmentation from same patient section shown in Figure
4.2. This axial section did not contain a seeded contour, so the orange contour is an interpolation
from other manual axial contours. Note that the hemithorax contour only needs to encompass the
identifiable pleural disease.

105



(a)

(b)

Figure 4.7: Pleural disease segmentation from the semi-automated hemithorax segmentation
(4.7a), and final edited pleural disease segmentation (4.7b). Because of the constrained semi-
automated hemithorax segmentation, manual editing of pleural disease segmentations was gener-
ally minimal (restricted to partial volume artifacts adjacent to aortic arch in this axial section). The
axial section is the same shown in Figure 4.6.
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the axial section thickness changed over the span of a single scan, and therefore the volume of

disease needed to be summed on a section-by-section basis. Further complicating the issue was

the sometimes incomplete axial coverage of a single scan (for instance, when the disease extended

inferiorly past the most inferior axial section). To account for this constrained scanning, the disease

volume was calculated for each patient only in the anatomical portion of the thorax shared across

all patient scan dates. The matching of the inferior limit axial section was performed manually

by referencing vertebral bodies and rib origin points whenever possible, but occasionally with

additional reference to organ location when respiratory phase was prohibitively disparate between

scan dates. This manual matching of inferior limits was required in approximately one-quarter of

the scans used in this study.

To quantify overlap between two segmentation techniques of the same structure (producing

contours denoted by, say, Seg1 and Seg2), the Jaccard similarity coefficient J provides a useful

metric. Also known as the area of overlap metric (AOM), J is defined as

J =
Volume(Seg1

T
Seg2)

Volume(Seg1
S

Seg2)
, (4.2)

where the numerator indicates the volume of the intersection of the two segmentation techniques,

and the denominator indicates the volume of the union of the two segmentation techniques. For

segmentations with no overlap whatsoever, J = 0, and J = 1 for segmentations that overlap com-

pletely. In this study, J was only truly applicable to pleural disease segmentations, since although

multiple methods were used to identify the hemithoracic boundary, their aims were so different

as to make direct comparisons misleading (e.g., the automated techniques produce bilateral seg-

mentations, while the semi-automated technique produces segmentations bounding the identifiable

disease). The value of J was calculated to compare the automated pleural disease segmentations

with the semi-automated pleural disease segmentations, and also to quantify the extent of manual

intervention in the pleural disease segmentation editing process, comparing the pre-edited pleural

disease segmentations with the final edited pleural disease segmentations.
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4.2.4 Survival Analysis

As mentioned in Chapter 1, the most common method used to model patient survival and assess the

correlation between covariates and survival is Cox proportional hazards (PH) modeling [61, 66].

The standard PH survival model assumes that the effect of any given covariate is fixed across time

and the hazard h(t) takes the form

h
⇣

t |~Z
⌘
= h0(t) exp

⇣
~b ·~Z

⌘
, (4.3)

where h0(t) is the baseline hazard, ~Z is the vector of covariates, and ~b is the vector of regression

coefficients (to be estimated). The hazard is interpreted as the instantaneous probability of the event

of interest occurring, given that it has not yet occurred, and ratios of hazard functions from either

a known categorical contrast or a known increment in some continuous covariate are referred to as

“hazard ratios,” or HR. The maximum likelihood estimates (MLE) of ~b usually are accompanied

by estimates of the standard error of the estimates for ~b , and the significance of a given coefficient

(i.e., b different from zero) is therefore reported via a Z-test. When a covariate takes on multiple

but discrete “levels,” (i.e., male versus female, over age 60 versus under age 60), the significance

of the Cox PH model coefficient will closely match the significance of the equivalent log-rank test

performed on the Kaplan-Meier curves for the discrete groups [63,65]. This is due to the nature of

the log-rank test, which is powered for and best suited for testing situations where the hazard ratio

between groups is constant with time (the standard PH assumption).

The incorporation of time-varying covariates into a survival model is not trivial, since the fitting

form of the Cox PH model changes. The partial likelihood function for the model becomes

LP = ’
f ailuretimes j

0

@
exp
⇣
~b · ~Z j

�
t j
�⌘

Âi2R j exp
⇣
~b ·~Zi

�
t j
�⌘

1

A , (4.4)

where now the covariate vector ~Z (t) can change with time. The term R j represents the patients
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still at risk at the jth failure time (i.e., still alive and on-study), and in a typical Cox PH model

with fixed covariates, risk sets at later time points are subsets of earlier risk sets since patients can

only leave the risk set, not re-enter. For patients who endure from one risk set to the next, their

~b ·~Zi value does not change. In equation 4.4, though, there is additional computational complexity

since the risk set R j must be entirely recalculated at each unique failure time to properly account

for covariates that change over time. While this extension of the PH model is not overly common,

it is readily available in many statistical software packages [67].

Survival models can include examples of both time-invariant and time-varying covariates. For

instance, the amount of disease can be allowed to vary over time, but the baseline covariates can

remain fixed (such as the disease histology). By including multiple covariates in a survival model,

one is said to be “adjusting” for other factors (e.g., the impact of changing disease volume among

patients with a common disease histology). One could also include interactions between terms,

such as allowing the coefficient determining the impact of changing disease burden to take on dif-

ferent values depending on baseline histology. All these capabilities are available in the academic

edition of Revolution R Enterprise (version 4.3, based on R version 2.12; Revolution Analytics,

Palo Alto, CA) [86].

In this study, patient survival is measured from a landmark time of the baseline CT scan prior

to the initiation of treatment until either patient death or administrative censoring. No patients

were lost to follow-up in this study, but a small number of patients remained living at the time of

final database update in November of 2011. Survival needed to be defined from baseline rather

than from diagnosis in order to have tumor volume data at time “zero,” and while some patients

in the study have CT scans taken during this pre-treatment or “natural history” time period, the

processing and analysis of these natural history scans was not part of this dissertation. Clinical co-

variates available for each patient include sex, histology, weight, height, body surface area (BSA),

TNM (tumor-node-metastasis) staging, International Mesothelioma Interest Group (IMIG) stag-

ing, smoking status, asbestos exposure, presence of chest pain, presence of dyspnea (shortness of
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breath), weight loss noted prior to diagnosis, Eastern Cooperative Oncology Group (ECOG) per-

formance status, talc pleurodesis status before chemotherapy, blood hemoglobin levels, white cell

count, platelet count, baseline forced expiratory volume in one second (FEV1), baseline forced

vital capacity (FVC), and age at diagnosis. All these covariates were fixed at their baseline values

in the survival models. In concordance with prior prognostic models for mesothelioma, some co-

variates were binarized as follows: ECOG performance status was split to level 0 versus level 1

or 2, histology was split to epithelioid versus other, N staging was split to N0 versus other, IMIG

staging was split to stage 1 or 2 or 3 versus stage 4, blood platelet count was split to  400 ver-

sus > 400 per nanoliter, blood hemoglobin was split to  140 versus > 140 grams per liter, and

blood white cell count was split to  8.3 versus > 8.3 per nanoliter (these discretizations are found

in [33] and [34]).

Tumor response measurements were allowed to change over time. Pleural disease volume mea-

surements were modeled using scaled logarithmic transforms of relative changes from baseline,

known as the specific growth rate (SGR) [106]. The definition of the SGR metric is

SGR(t) =
ln
h

V (t)
V (t0)

i

(t − t0)
, (4.5)

where V (t) denotes the volume measurement over time and t0 indicates the time of baseline scan-

ning (times in this study were all modeled as fractional years). The logarithmic transform of

relative change data works well, since SGR is equal to zero for stable disease volumes, SGR is

positive for growing disease volumes, and SGR is negative for shrinking disease volumes. Fur-

thermore, the normalization by time span since baseline is useful since the time duration between

patient CT scans was not strictly controlled in this study.

Survival models were constructed for this study using a forward selection process [88]. First,

each covariate was tested one at a time in a Cox PH model on the full cohort of applicable pa-

tients, and covariates were noted for inclusion in the next step if their significance reached the
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a = 0.10 level. Next, the subset of covariates from the previous step were added one at a time

to a multivariate Cox PH model. The covariates were added one at a time (starting with the most

significant covariate from the previous step) until no further single addition achieved significance

at the a = 0.10 level. For the final multivariate model, covariates were selected from the previous

step and added to the final model one at a time (in order of significance from the previous step) un-

til no single addition resulted in a decrease of overall model AIC (Akaike’s Information Criterion).

AIC is defined as

AIC = 2k−2ln(LP) , (4.6)

where k is the number of parameters in the model and LP is the likelihood described in equation

4.4 [117]. AIC is a useful metric for assessing model fit since it seeks to improve overall fit through

the likelihood term, but also avoids model over-fitting by penalizing the number of parameters in

the model (for an example of AIC used for survival modeling with Cox PH models, see [118]).

While metrics like AIC give a relative sense of model performance (i.e., which model is the

better of two options on the same group of patients), they do not give an absolute sense of model

performance and are not applicable for models fit on different patient cohorts. Therefore, in order

to assess the performance of a survival model, we need an appropriate metric. Receiver operating

characteristic (ROC) analysis provides an interesting framework to assess survival curves. ROC

analysis can be used when the data consist of an ordinal-scale predictor for a binomial outcome

of interest and the true status of that outcome. Then, the sensitivity and specificity for predicting

the outcome of interest can be calculated for a whole range of possible cut points in our predictor

[68–70]. Plotting these sensitivity/specificity pairs on the typical ROC axes and calculating the

area under the curve (AUC) gives one metric for how well the predictor performs.

In survival analysis models, at each time t, each patient will have a model-predicted probability

of survival to time t, and of course each patient will have survived to time t or will have experienced

the event of interest by time t. Therefore, treating our group of model-predicted survival probabil-

ities for our patients as our set of “predictors,” we can come up with an ROC curve for our model
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at each time where a prediction is made by the model. For models with covariates fixed across

time, Harrell’s C statistic is equivalent to the non-parametric area under the fixed ROC curve [71].

However, if the covariates are allowed to vary with time, the rank ordering of predicted survival

probabilities amongst patients can vary as well, and there will exist a unique ROC curve for model

performance at each time. Each of these ROC curves will have a corresponding AUC, and plot-

ting this AUC as a function of time gives us a general sense of our model performance. This is

precisely the motivation for Heagerty’s time-dependent AUC and Ct [72], where we calculate our

final performance metric as

Ct =
Z t

0
AUC(t) ·wt (t) dt, (4.7)

where AUC(t) is the AUC as a function of time explained above, t is the follow-up period of

interest, and wt is a weight function. The problem has been considered by others [73,74], but Hea-

gerty’s metric is available in R. Although both Heagerty’s Ct and Harrell’s C are identically scaled

and in some sense should be interpreted similarly, Ct and C can handle ties slightly differently and

therefore their values are not directly comparable for situations with very coarse discretization in

the predictor (as in Chapter 2, where there were only three possible classes).

To obtain estimates of predictive performance applicable to new cases, a cross-validation sys-

tem is necessary [88]. The value of Ct derived from both training and testing the model perfor-

mance on the full cohort of applicable patients will be optimistic, and two methods were used in

this study to cross validate model performance. First, a leave-one-out cross-validation (LOOCV)

was used. Similarly to section 2.2.4, each of the 81 patients was omitted one at a time. A multi-

variate Cox PH model that consisted of the terms included in the final model as described above

was fit to the remaining 80 patients, and the fit model was applied to the 81st patient. The predicted

survival over time was stored for this single omitted patient. The process was repeated until each

of the 81 patients had been excluded once from the training cohort. In this way, predicted survival

for all 81 patients was calculated using models that had no knowledge of the patient in question.

A value of Ct was calculated from these LOOCV-based survival predictions, called Ct
cv, which
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is a better indicator of how well the reported final Cox model will perform for a new, previously

unknown patient.

The second validation procedure was performed via repeated random sub-sampling and was

intended to assess the impact of any small number of patients on the overall model performance as

well as generate a confidence interval for model performance (standard errors of Ct are not readily

reported using Heagerty’s package in R). For each sub-sampling iteration, a model was trained

on two-thirds of the patient cohort and tested on the remaining one-third of the patient cohort.

The training set was chosen randomly without replacement at each iteration, and the testing set

was considered to be the remaining patients who had not been selected for the training set at that

iteration (there are over 1021 possible unique combinations of 81 patients into a training set of 54

and a testing set of 27). After fitting the final multivariate Cox PH survival model described above

to the training cohort, the value of Ct from the testing set was tabulated. The repeated random

sub-sampling simulation consisted of 1000 iterations, and the mean performance metric value will

be referred to as Ct
sub. The sub-sample performance 95% confidence interval was calculated from

the 2.5% and 97.5% quantiles of the tabulated sub-sample performance scores.

4.3 Results

4.3.1 Patients and Overall Survival

Median survival from baseline imaging prior to treatment initiation was 12.6 months (95% confi-

dence interval, 10.6–14.9 months). Of the 81 patients, there were 76 observed deaths, while the

remaining five patients were lost to follow-up after a median duration of 35 months. The overall

Kaplan-Meier survival curve is shown in Figure 4.8.
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Figure 4.8: Overall survival for the patient cohort in this study.
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4.3.2 Disease Segmentation

Across all patients, the mean pleural disease volume at baseline was 1511±1065 mL (range 225–

5287 mL). For patients with stage 1, 2, or 3 disease, the mean disease volume at baseline was

1394 mL, whereas the mean for stage 4 patients was 1744 mL (the difference was not significant by

a Student’s t-test, p = 0.17). At first follow-up, the mean disease volume had reduced to 1397 mL,

with geometric mean change from baseline of -11%. By the end of treatment, the geometric mean

change in disease volume from baseline was -19%.

A threshold was determined to split patients into two groups (large disease volume and small

disease volume) using a minimum p-value technique, after which the p-value was automatically

adjusted to correct for multiple hypothesis testing [119, 120]. The cut-point was determined to

be a baseline disease volume of 522.3 mL, and the resulting large disease volume cohort (n=68)

had a median survival of 11.9 months, while the small disease volume cohort (n=13) had a median

survival of 19.7 months. However, after appropriate adjustment of the p-value, the difference was

not significant (p = 0.32). The Kaplan-Meier survival curves for both groups are shown in Figure

4.9.

Because the disease segmentation process required manual intervention for every individual

CT scan, the intent was to perform disease segmentation only on a single reconstruction series for

each unique patient scan. However, segmentation was unintentionally performed on two distinct

axial reconstructions of differing slice thicknesses for five patient scans. These five cases can

provide some minimal level of variability quantification for disease segmentation volumes derived

from a single observer. The median unsigned difference between the estimates of disease volume

was 4.2% (for absolute differences, the disease volume from the reconstruction with thinner axial

slices was 3.0% larger on average).

To quantify the poor agreement between the automated disease segmentation algorithm us-

ing the attempted rib segmentation and the disease segmentation from semi-automated hemitho-

racic segmentations, the Jaccard similarity coefficient had a median value of J = 0.27 (without
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Months from Treatment Baseline
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Figure 4.9: Survival curves for patients with baseline disease volumes above and below 522.3 mL.

the attempted rib segmentation, the similarity between automated and semi-automated disease

segmentations was even worse, with a median value of J = 0.25). Following the initial disease

segmentation from the semi-automated hemithoracic segmentations, the disease segmentations

were all manually corrected, though this correction was minimal, as evidenced by a median value

of J = 0.97 between semi-automated disease segmentations and manually corrected disease seg-

mentations. As mentioned in section 4.2.3.2, the comparison between hemithoracic segmentation

approaches would be misleading, since their aims were to contour inherently different anatomic

structures and therefore those results are not given here.

Segmentations were all performed on a 64-bit PC running the latest version of MATLAB at the

time of computation (currently version 7.13), with 8 GB of RAM and a quad-core processor with

a clock speed of 2.66 GHz. Much of the code is not optimized for multi-core computation, but

the timings given below are perhaps useful for reference. The automated thoracic segmentation

required 2.0 minutes on average and the bone and contrast segmentation required 2.8 minutes on
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average, which both scale approximately linearly with the number of axial sections. The automated

airway segmentation required 27.2 minutes on average, and the automated lung segmentation re-

quired 14.7 minutes on average. While these automated steps together require 46.7 minutes on

average, it should be pointed out again that these are 46.7 minutes of purely background com-

putation: the user can start the segmentation process for hundreds of scans at a time and simply

walk away (or leave on vacation). Additionally, these algorithms could potentially be sped-up by

a factor of two to three with already existing parallelization routines in MATLAB.

For completeness, the timings for the remaining automated segmentation algorithms are given

here, although the semi-automated techniques were used to compute the volumes in this study.

Prior to hemithoracic segmentation, the ribcage segmentation required 7.0 minutes on average.

Non-linear diffusion filtering of the image volume required 14.3 minutes on average, and the final

hemithoracic boundary segmentation required 6.2 minutes on average. The pleural disease seg-

mentation algorithm required 5.2 minutes on average, 2.4 of which were devoted to volumetric

watershed region splitting.

For the semi-automated segmentation technique used in this study, there are two additional

timings that are relevant. First, the time required to complete a semi-automated segmentation of

the hemithoracic boundary from contour seeding through final interpolated contour approval is es-

timated to be between 10 and 15 minutes by the author, though no formal timings were performed.

For cases with unilateral disease, especially with disease limited inferiorly by the diaphragm, seg-

mentation may be completed in as little as five minutes, but for cases with bilateral disease or

complicated disease boundaries, segmentation may require 15 minutes. Diffusion filtering of the

image volume is still a required pre-processing step for the pleural disease segmentation, and the

pleural disease segmentation itself is unchanged with regards to timing (only the hemithoracic in-

put is changed). Finally, because the semi-automated hemithoracic segmentations are manually

constrained to the outer border of disease, the manual correction process for the pleural disease

segmentations is minimal, on average requiring less than five minutes (predominantly to clean up
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spurious and spatially isolated labeled watershed volumes). The same manual correction process

on the automated pleural disease segmentations typically required 45 minutes per case, from the

author’s limited experience in processing such automated segmentations (approximately only 10

cases were attempted in this way). Therefore, while the semi-automated approach used in this

study requires perhaps 15–20 minutes of active user intervention per case on average, correcting

the output of the fully automated approach required around 45 minutes of active user intervention

per case.

4.3.3 Univariate Survival Analysis

Covariates that were predictive for survival in univariate Cox PH models at the a = 0.10 level

are shown in Table 4.2. Any covariates mentioned in section 4.2.4 but not shown in Table 4.2

had p-values larger than 0.10 and were therefore not included in future analyses. The clinical co-

variates predictive for survival are not novel discoveries, since all have been reported in previous

prognostic models for patients with mesothelioma. However, continuous time-changing measure-

ments of pleural disease volume (modeled according to equation 4.5) are significantly associated

with patient survival, and this is a novel discovery. As would be expected, the larger the disease

SGR, the larger the hazard ratio. Therefore, patients with disease growth have worse prognosis

than patients with disease shrinkage, and patients with substantial growth have worse prognosis

than patients with minimal growth. Kaplan-Meier curves comparing survival between the different

levels of histology, dyspnea, ECOG performance status, and M stage are shown in Figures 4.10,

4.11, 4.12, and 4.13, respectively.

4.3.4 Multivariate Survival Analysis

In the first multivariate Cox PH model, covariates from Table 4.2 were added one at a time (start-

ing with the most significant covariate from the previous step) until no further single addition

achieved significance at the a = 0.10 level. This resulted in a model including disease volume
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Variable Hazard Ratio 95% CI p-value

N stage N0 1 – –
N1+ 1.58 [0.95, 2.61] 0.076

M Stage M0 1 – –
M1 1.98 [1.03, 3.81] 0.040

Dyspnea No 1 – –
Yes 1.94 [0.98, 3.82] 0.056

Weight Loss (continuous, in kg) 1.05 [1.00, 1.10] 0.054

Talc Pleurodesis No 1 – –
Yes 0.67 [0.41, 1.08] 0.098

ECOG Performance Status 0 1 – –
1 or 2 1.56 [0.98, 2.46] 0.059

Histology Epithelioid 1 – –
Other 2.26 [1.34, 3.83] 0.0023

Blood Platelet Count  400 per nanoliter 1 – –
> 400 per nanoliter 1.58 [0.97, 2.57] 0.067

Disease Volume (continuous, SGR) 1.26 [1.11, 1.42] 0.00031

Table 4.2: Factors predictive for survival (from baseline imaging) in univariate Cox PH models,
including hazard ratios and 95% confidence intervals (CI). Disease volume modeled as continuous
specific growth rate (SGR) from baseline.
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Figure 4.10: Survival curves for different values of the histology covariate (log-rank test p =
0.0018).
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Figure 4.11: Survival curves for different values of the dyspnea covariate (log-rank test p= 0.052).
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Figure 4.12: Survival curves for different values of the ECOG performance status covariate (log-
rank test p = 0.057).

Months from Treatment Baseline

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 12 24 36 48 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M0, n=70

M1, n=11

Figure 4.13: Survival curves for different values of the M stage covariate (log-rank test p = 0.036).
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SGR (HR=1.30, p = 0.00088), histology (HR=2.33, p = 0.0025), M stage (HR=1.67, p = 0.097),

dyspnea (HR=2.94, p = 0.0044), and ECOG performance status (HR=1.66, p = 0.039). The final

multivariate model was constructed by adding these covariates one at a time in order of increasing

p-value until no addition (or replacement) achieved a reduction in AIC. The AIC values of the

successive models are shown in Table 4.3, leading to the final model described in Table 4.4 (model

5 from the AIC table). The included covariates are disease volume SGR (HR=1.31, p = 0.00045),

histology (HR=2.28, p = 0.0029), dyspnea (HR=3.20, p = 0.0020), and ECOG performance sta-

tus (HR=1.69, p = 0.029). No two-way interactions between covariates in this final multivariate

model were significant.

The value of Ct was calculated for the final multivariate model on the full patient cohort (after

training on the full patient cohort). The value used for t was the time associated with the final

observed patient death (37.7 months), and the calculated performance value was Ct = 0.690. Be-

cause of differences in the calculation of Harrell’s C (used in Chapter 2) and Heagerty’s Ct , values

of Ct are not directly comparable to values of C from Chapter 2; for a comparison of survival

model performance for disease volumes and linear measurements, the reader is referred to the fol-

lowing chapter. From the leave-one-out cross-validation, the survival model performance from

the final multivariate model was Ct
cv = 0.661, a slight reduction from the full cohort performance

(as predicted). The 1000 random sub-sampling iterations yielded a mean model performance of

Ct
sub = 0.660, and the 95% confidence interval of sub-sample performance values ranged from

0.556–0.746. Figure 4.14 shows the histogram of sub-sample performance values from the 1000

simulation iterations.

4.4 Discussion

The goal of this study was to create a survival model using time-varying image-based measure-

ments of pleural disease volume modeled as “specific growth rate” from baseline for patients with

malignant pleural mesothelioma. Disease volumes extracted from semi-automated disease seg-
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Model Number Model Covariates AIC

1 None (Null Model) 542.09

2 Disease Volume SGR 531.55

3
Disease Volume SGR,

Histology 528.23

4
Disease Volume SGR,

Histology, Dyspnea 520.05

5

Disease Volume SGR,
Histology, Dyspnea,
ECOG Performance

Status

517.26

6

Disease Volume SGR,
Histology, Dyspnea,
ECOG Performance

Status, M Stage

517.30

Table 4.3: Values of Akaike’s Information Criteria (AIC) for forward selection iterations of the
final multivariate Cox PH model.
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Figure 4.14: Smoothed histogram of repeated random sub-sample performance values Ct for the
final multivariate Cox PH model trained on two-thirds of the patient cohort selected at random and
tested on the remaining third (1000 iterations). Mean and 95% confidence interval shown with red
lines.
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Variable Hazard Ratio 95% CI p-value

Disease Volume (continuous, SGR) 1.311 [1.13, 1.53] 0.00045

Histology Epithelioid 1 – –
Other 2.283 [1.33, 3.93] 0.0029

Dyspnea No 1 – –
Yes 3.204 [1.53, 6.71] 0.0020

ECOG Performance Status 0 1 – –
1 or 2 1.693 [1.05, 2.72] 0.029

Table 4.4: Factors predictive for survival in the final multivariate Cox PH model, including hazard
ratios and 95% confidence intervals (CI). Disease volume modeled as continuous specific growth
rate (SGR) from baseline.

mentations proved to be significant predictors of patient survival in conjunction with other clinical

covariates. In fact, the p-value associated with disease volume for survival prediction is the small-

est of any of the included terms (in either the univariate or multivariate analysis), indicating the

pronounced prognostic value of the image-based measurements for tumor response assessment.

Because of the continuous and time-varying nature of the specific growth rate (SGR) metric

used to model changes in disease volume, interpretation of the Cox PH model terms can be slightly

challenging. Because the hazard ratio is larger than unity, tumor growth (i.e., positive SGR) is

associated with poor prognosis, and tumor shrinkage (i.e., negative SGR) is associated with more

positive prognosis. Additionally, the larger the tumor growth (i.e., larger SGR), the worse the

prognosis. This can be better illustrated using some visual examples. Figure 4.15a shows volume

trajectories for four hypothetical patients, and Figure 4.15b shows the equivalent SGR trajectories

for the same patients. Next, each patient was given the same set of clinical covariates (epithelioid

histology, ECOG performance status of 0, and noted presence of dyspnea). Survival probability

over time was predicted for each patient using the final multivariate model in Table 4.4, and the

resulting survival curves are shown in Figure 4.16. Predicted survival probabilities at 12 months
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are 54%, 71%, 78%, and 68% for patients 1, 2, 3, and 4, respectively, and at 24 months the survival

probabilities are 11%, 25%, 37%, and 24%, respectively.

Some of the unique contributions of this study are the ability to model changes in disease

volume through time and the modeling of continuous (not discretized) changes in disease volume.

For instance, in the only other study using changes in disease volume as a prognostic covariate for

patients with MPM by Liu et al. [58], analysis was limited to a single follow-up point and changes

in disease volume were discretized as “volume decrease” or “volume increase.” In the current

work, any arbitrary number of follow-up points can be used, and changes in disease volume are

treated continuously. In the work by Liu et al. the hypothetical patients #2 and #3 in Figure 4.15

would be interpreted identically after the first follow-up volume quantification, and subsequent

updates to the volume trajectory would be ignored. In this study, however, the survival curves for

patients #2 and #3 clearly separate in Figure 4.16 after more of the disease volume trajectory has

been realized. In the patient cohort of this study, fitting a model similar to Liu et al. where the only

prognostic covariate was discrete volume change after first follow-up yielded a model with a Ct

value of 0.521 (compare to Ct = 0.690 for the full multivariate model in this study).

Although this study is not the first to use changes in MPM disease volume as a prognostic

marker [37, 54–58], it is the first to model changing disease volumes using the SGR metric, and

is also the first (to the author’s knowledge) to combine clinical covariates with changing disease

volumes in a multivariate survival model. This is an important distinction, since it was shown

in this work that the addition of baseline clinical covariates to the multivariate model results in a

reduction of AIC. Although it was not shown in the results above, the Ct value for a model only

including the disease volume term was 0.610, while for the final multivariate model also including

the baseline covariates Ct = 0.690. Finally, just for comparison, a multivariate model built using

the forward selection technique described above using only baseline clinical covariates (i.e., no

disease volumes) resulted in a model including histology, dyspnea, ECOG performance status, and

M stage, and the full cohort Ct value was 0.659. Therefore disease volume changes and the clinical
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Figure 4.15: 4.15a, disease volume trajectories for four hypothetical patients. 4.15b, corresponding
specific growth rate trajectories for the same four patients (time in equation 4.5 adjusted to years).
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Figure 4.16: Predicted survival curves for the four hypothetical patients whose volume trajecto-
ries are shown in Figure 4.15, using the survival model in Table 4.4. All patients were assigned
epithelioid histology, ECOG performance status of 0, and presence of dyspnea.
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covariates are both crucial components of the final multivariate survival model.

The modeling of disease volume SGR as a continuous and time-varying quantity has some clear

advantages. First, in any attempt to discretize disease volume changes into two or more classes,

the class distinctions will be arbitrary. While one cut-point for changes is at 0% (i.e., growth

versus shrinkage) and this cut-point has been used in previous studies with MPM disease volumes

on CT [58], changes in disease volume are inherently continuous. In Frauenfelder et al. [57],

for example, the authors use an extrapolation of the RECIST classification criteria to volumetric

changes based on a spherical geometry, which remain entirely arbitrary for reasons expounded

upon elsewhere in this dissertation. The modeling of changes in disease volume as time-varying

is a bit of a double-edged sword: the model fitting and interpretation is more complicated, but

flexible and arbitrary volumetric trajectories can be modeled for each patient. In many published

studies, there are exactly two volume measurements for each patient, baseline and “follow-up.”

Follow-up can be defined after a set number of chemotherapy cycles, but what happens before

or after that milestone? If a patient gets four follow-up scans during treatment, the researchers

have updated information about how the patient’s disease volume has changed since baseline. The

modeling approach used in this study allows the researchers to utilize the updated information

to predict patient survival, whereas other fixed follow-up models cannot take advantage of the

updated knowledge. Figures 4.15 and 4.16 highlight the substantial impact on predicted survival

that updates in patient disease volume can have.

One disadvantage of the disease segmentation technique used in this study is that segmenting

pleural disease is not necessarily the same as segmenting mesothelioma tumor per se. For cases

in which pleural effusion is present and spatially mixed with tumor tissue, the separation of tu-

mor from effusion can be difficult to impossible. The same challenge was faced by Sensakovic

et al. [60] in the creation of an automated segmentation technique. The only difference in the

segmentation scheme of this study and that of Sensakovic et al. is the semi-automatic hemithorax

segmentation. The pleural space segmentation component is identical between the two studies
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and therefore the automated handling of pleural effusion is limited by the ability of the k-means

classifier to separate tissue types based on HU values. In this study, pleural effusion regions were

manually excluded if they were localized and spatially independent of tumor tissue regions, but

when effusion was mixed together with tumor tissue, no attempt was made to exclude the effu-

sion. It is unknown whether quantification of true tumor volume has more prognostic value than

pleural disease volume. Certainly pleural effusion and tumor tissue both have negative impact on

patient quality of life, but clinical management is different for the two types of pleural disease, and

future work could potentially focus on the construction of a prognostic model from time-varying

measurements of purely tumor tissue.

Although the task of pleural disease segmentation is greatly facilitated through as much au-

tomation as possible, it will always be important for a trained observer to “proof” the final seg-

mentations and manually correct the results. It is not unreasonable to fear that this manual process

may introduce undesirable imprecision in the final volumetric measurement. However, the re-

sults of Frauenfelder et al. [57] indicate that “volumetry is highly reliable, reproducible and reader

independent compared with the modified RECIST criteria.” The comparison in that study was

made using discretizations of changes in disease volume according to volumetric response crite-

ria extrapolated from the spherical geometry described above, where the cutoffs for PR/PD were

-65%/+73%. Therefore, the increased inter-observer agreement for volumetric measurements over

linear measurements is likely in part due to the widening of the stable disease category alone (the

standard RECIST criteria of -30%/+20% were used for linear measurements). However, the gen-

eral conclusion is still important and pertinent to the current study. The very small number of cases

in this study for which two reconstruction series were segmented for the same scan also point to

the robustness of volumetric quantification by a single observer.

The inclusion of disease histology, dyspnea, and ECOG performance status in the final mul-

tivariate model is well in line with previous prognostic models for MPM (see especially refer-

ence [31]). The indication that non-epithelioid histology, presence of dyspnea, and non-zero ECOG
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performance status are associated with poor prognosis is well-known for MPM patients. These

factors are routinely available as part of the diagnostic workup of patients with MPM, and they

improve the predictive performance of the resulting survival model. Theoretically, the presence of

dyspnea and ECOG performance status can and do change over time for each patient and could

therefore be treated as time-varying in the multivariate prognostic model. However, these data are

not typically recorded or available after the baseline assessment of each patient, and therefore the

treatment of these covariates as fixed in time is in line with current clinical practice.

It is important to acknowledge this study’s limited patient cohort size. Increasing the patient

cohort may reveal associations between new covariates and survival, potentially improving the

performance of the survival model. We hope to validate the model performance in a larger inde-

pendent patient cohort. Unfortunately, such cohorts are difficult to obtain or construct, especially

cohorts with serial CT imaging and a similar treatment regimen. Even after the collation of a patient

database, pleural disease segmentations are time-consuming and tedious. The observer tasked with

semi-automated hemithorax segmentation in this study had intimate knowledge of the segmenta-

tion technique, and a duration of 10–15 minutes per case was only achievable after familiarization

and practice (compare this with the approximately two hours required for a complete manual dis-

ease segmentation). The feasibility of semi-automated hemithoracic segmentation and subsequent

disease segmentation editing in the clinical workflow is unclear at this point, and therefore the

routine clinical use of disease volumes for MPM prognosis remains to be investigated. Finally,

the patients in this study were treated with cytotoxic chemotherapy, not with other therapies such

as anti-angiogenic therapy, but treatment-specific models could be developed for individual patient

cohorts. The model derived in this study may not be directly applicable to patient cohorts receiving

biologically different treatments.

In summary, volumes derived from semi-automatic segmentations of pleural disease in patients

with MPM are prognostically significant. Disease volume (specifically the “specific growth rate”)

is allowed to change over time, allowing for survival prediction from arbitrary disease volume
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trajectories. In a final multivariate model, disease histology, dyspnea, and ECOG performance

status were also significant predictors of patient survival.
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CHAPTER 5

MEASURING PATIENT RESPONSE: ALTERNATIVES TO DISEASE

VOLUME

“The most exciting phrase to hear in science, the one that heralds new discoveries,

is not ‘Eureka!’ but ‘That’s funny. . . ”’ – Isaac Asimov

5.1 Introduction

For matters involving tumor response, there is only one metric that can be considered to be “truth”:

the proliferative cellular tumor burden. If we can convince ourselves that the tumor bulk is spatially

homogeneous in cellular density, changes in tumor volume will directly correspond to changes in

the number of tumor cells. Some molecular imaging methods, such as total glycolytic volume

(TGV) quantification in fluorodeoxyglucose-positron emission tomography (FDG-PET), are mov-

ing toward proliferative cellular quantification. However, until these methods become widespread,

computed tomography (CT) imaging with the possibility of volumetric quantification will remain

the best tool to assess patient tumor burden for patients with malignant pleural mesothelioma

(MPM).

As described in Chapter 4, mesothelioma segmentation and volumetric quantification is a chal-

lenging task. The morphology of the disease is widely variable between patients, and the radio-

graphic density of the disease mimics tissues often in close proximity to the tumor itself. Some de-

gree of manual intervention is necessary for segmentation of MPM in CT scans, a task potentially

requiring up to 20 minutes per scan. The disease volume segmentation process is further com-

plicated by the occasional presence of pleural effusion, the identification and exclusion of which

can be difficult to impossible. While volume measurements of MPM have been shown to exhibit

lower inter-observer variability than linear thickness measurements made according to the modi-

fied Response Evaluation Criteria In Solid Tumors (RECIST) protocol [57], the computational and
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manual challenges of the volume segmentation task are problematic.

Since we cannot count individual tumor cells, it is necessary to quantify changes in tumor

burden using medical images. It was previously shown that pleural disease volume is a significant

predictor of patient survival, but there are other ways to answer the question “is the tumor burden

growing or shrinking?” Chapter 1, specifically section 1.2.2, argued that the current application

of the modified RECIST measurement technique with the standard RECIST classification criteria

is not specifically suited to mesothelioma. Although Chapter 2 was devoted to the optimization

of response classification criteria for linear thickness measurements, there is reason to believe

that continuous (not discretized) changes in tumor burden should be used for response assessment

[44]. The modified RECIST measurement technique may be an oversimplified tool to measure

tumor burden, but it is a tool specifically suited for the morphology of MPM. By focusing on

continuous changes in tumor burden as measured using mesothelioma-specific linear thickness

measurements (potentially in conjunction with other clinical covariates), it may be possible to

improve the association between measured tumor response and actual patient survival.

Because of the anatomy associated with MPM, changing tumor burden affects more than

just the volume of tumor. The hemithoracic space is fairly fixed by the ribcage and mediasti-

nal anatomy. Therefore, when the disease volume increases, it is reasonable to believe that the

aerated lung volume may decrease correspondingly. The disease volume and aerated lung volume

are physiologically correlated, and while the trade-off will very likely not be one-to-one, changes

in lung volume may have prognostic value for patients with MPM. Lung volume has been used

to monitor response in MPM patients previously, though the setting was after surgical interven-

tion where lung re-expansion was the expected result after comprehensive tumor de-bulking [108].

Changes in lung volume may also be a useful tool to assess tumor response for patients receiving

chemotherapy; instead of classifying response from declining tumor volume, response would be

classified from increasing lung volume.

Both linear measurements and lung volumes have advantages over disease volumes for re-
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sponse assessment. Disease volumes require substantial manual intervention. Linear thickness

measurements are almost entirely manual (though some automation techniques have been sug-

gested [121]) but require much less time than disease volume segmentation. Lung volume seg-

mentation, on the other hand, is entirely automated and is likely to be the measurement technique

with the lowest variability of the three techniques. The purpose of this study is to build prognostic

models for patients with MPM using changing lung volumes or changing linear thickness measure-

ments in place of changing disease volumes. The performance of these models will be compared

with the models built in the previous chapter. The hypothesis of this study is that lung volumes and

linear measurements, treated continuously, will both be prognostic for patient survival for MPM

patients during chemotherapy.

5.2 Patients and Methods

5.2.1 Patient Cohort

The patient cohort used in this study was a subset of the entire “Perth database” described in section

2.2.1 and Table 2.1. For inclusion in this specific study, patients were required to have available

modified RECIST tumor thickness measurements at baseline (prior to beginning chemotherapy)

and for one or more follow-up scans during chemotherapy. The patients were also required to have

unilateral disease, since the analysis below for lung volumes is limited to patients with one non-

diseased lung. Finally, all patients were required to have a complete CT scan for all scan dates (i.e.,

not simply scanned films) for automated lung segmentation. These constraints reduced the eligible

patient cohort to 61 patients, and the summary description of these patients is given in Table 5.1.
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Table 5.1: Description of the patient cohort used in this specific study, consisting of 61 of the
original 97 patients. This specific patient cohort is a subset of the patients summarized in Table
2.1.

Characteristic Summary

Sex:

Male n = 50

Female n = 11

Age at Diagnosis:

Median 66 years

Range 42–80 years

Chemotherapy:

Carboplatin/Pemetrexed n = 6

Cisplatin/Pemetrexed n = 31

Cisplatin/Gemcitabine n = 24

Histology:

Epithelioid n = 43

Sarcomatoid n = 5

Biphasic n = 13

T Stage:

T1 n = 13

T2 n = 16

T3 n = 20

T4 n = 12

(continued on next page)
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(Table 5.1, continued from previous page)

N Stage:

N0 n = 17

N1 n = 2

N2 n = 32

N3 n = 10

M Stage:

M0 n = 55

M1 n = 6

IMIG Stage:

I n = 9

II n = 2

III n = 29

IV n = 21

Known Asbestos Exposure:

Yes n = 55

No n = 6

Chest Pain:

Yes n = 38

No n = 23

Shortness of Breath:

Yes n = 50

No n = 11

(continued on next page)
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(Table 5.1, continued from previous page)

ECOG Performance Status:

0 n = 31

1 n = 26

2 n = 4

Talc Pleurodesis:

Yes n = 27

No n = 34

Weight:

Median 75 kg

Range 52–121 kg

Height:

Median 171 cm

Range 155–188 cm

Smoking Status:

Never n = 27

Past n = 29

Present n = 5

Pleurectomy/Decortication:

Yes n = 0

No n = 61

5.2.2 Imaging

Patients were imaged using helical CT up to one month prior to the first cycle of chemotherapy

and throughout their treatment regimen (typically after the first cycle, then every two cycles there-
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after). CT staging was performed according to the Union for International Cancer Control (UICC)

TNM staging system (2002). CT scans were staged by a thoracic radiologist or medical oncologist

experienced in mesothelioma imaging. Tumor thickness measurements were made on 5 mm recon-

structions according to the modified RECIST protocol on baseline and all follow-up scans [47].

There were a total of 216 CT scans in this study, with a median of four scans per patient (in-

cluding baseline scans). Eight patients had only a baseline scan with one follow-up scan, while 19

patients had three scans total, 27 patients had four scans total, and seven patients had five scans

total. The median duration between scans was 48 days. Of the 216 scans, 150 were performed

on General Electric scanners (HiSpeed CT/i, n=81; LightSpeed Pro 16, n=1; or LightSpeed VCT,

n=68), and 66 were performed on Philips Brilliance 64-slice scanners. At least 101 of the scans

were performed with iodinated contrast media (for the other 115 scans, the contrast field in the

DICOM image header is empty, which does not necessarily imply that no contrast was adminis-

tered).

Only one reconstructed series was required for segmentation for each CT scan date, and this

series was selected for each patient with consideration for reconstruction kernel and slice thickness.

The decisions regarding the choice of reconstructed series for each scan were made for the disease

volume segmentation task described in Chapter 4. Although linear thickness measurements were

consistently acquired using 5 mm reconstructions, multiple reconstructed slice thicknesses exist for

each CT scan. For the scans used in this study, slice thickness was 0.63 mm (n=4), 1 mm (n=14),

1.25 mm (n=28), 2.5 mm (n=75), or 5 mm (n=95). In-plane voxel dimensions ranged from 0.54–

0.86 mm, and all reconstructed axial images had an in-plane matrix size of 512 by 512. The kVp

setting for the scans was predominantly 120 kVp (n=212), with 100 kVp (n=1) and 140 kVp (n=3)

also used. Reconstruction kernels fell into two large categories, with “Lung” kernels (including the

Philips “L” and GE “Lung” kernels) used for 136 scans and “Standard” kernels (including Philips

“B” and GE “chest,” “soft,” and “standard” kernels) used for the remaining 80 scans.
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5.2.3 Lung Volume Quantification

Lung region segmentation was performed using the segmentation algorithm described by Sen-

sakovic et al. [60] in the pleural disease segmentation scheme. The lung segmentation method

is fully automated and utilizes gray-level, morphological, and texture features to segment the

aerated lung tissue. The lung segmentation method has been under development in our group

for some time, and the updated version was previously used in other studies for patients with

MPM [107, 108]. The resulting segmentations were all reviewed for accuracy specifically for this

study and modified when necessary by the author, who had been trained in thoracic anatomy by

an attending physician. In-house software was used for this task (Abras), and duration of any

necessary intervention was tracked.

A pixel-counting technique was used to calculate the volume of aerated lung tissue inside the

resulting lung segmentations [94]. The number of pixels inside the lung segmentation were counted

for each axial section and multiplied by the area of a single pixel and by the axial section thickness.

These per-section lung volumes were summed for each axial section containing aerated lung; very

occasionally, the axial section thickness changed over the span of a single scan, and therefore the

volume of aerated lung needed to be summed on a section-by-section basis.

As an independent validation of the lung segmentation method, lung segmentations were per-

formed on a separate set of 44 CT scans from 22 patients with MPM (one baseline and one follow-

up scan per patient). For each patient, the full automated lung segmentation was performed, and an

attending radiologist contoured the aerated lung tissue on three axial sections for the diseased (ip-

silateral) lung and healthy (contralateral) lung (patients had unilateral disease). The area enclosed

by each contouring method was calculated, and the section-by-section areas are compared using

Pearson’s correlation coefficient and Bland-Altman analysis [102].

Lung volumes were used as a response assessment measurement by normalizing the ipsilateral

lung volume by the contralateral lung volume for each patient scan. While it is customary for CT

scans to be acquired during patient breath-hold, it is possible that differences in patient respira-
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tory phase between scan dates still exist. By using patients with unilateral disease, the healthy

(contralateral) lung can be used to normalize the volume of aerated lung tissue in the diseased

(ipsilateral) hemithorax, thereby controlling for any potential differences in inspired volume. This

normalized volume Vnorm is calculated as

Vnorm (t1) =
Vipsilateral (t1)

Vcontralateral (t1)
, (5.1)

for a single timepoint t1, and the specific growth rate (SGR) between baseline and t1 is calculated

from equation 4.5 as

SGRlung (t1) =
ln
h

Vnorm(t1)
Vnorm(t0)

i

(t1 − t0)
. (5.2)

5.2.4 Data Analysis

The different tumor response assessment measurements in this study (summed linear thickness

measurements, normalized lung volumes, and disease volumes) were compared using correlation

statistics. The correlation between changes in disease volume and changes in normalized lung vol-

umes was measured using Spearman’s rank correlation, since while there is no geometric model for

the physiological trade-off between lung volume and disease volume, any such model would be de-

cidedly non-linear. To compare changes in summed linear thickness measurements with changes in

disease volume, rank correlation was again used. While there do exist expressions relating changes

in linear thickness to changes in volume for various geometric models (i.e., the mathematical mod-

els underlying the manuscript by Oxnard et al. [51]), only the sphere model could be tested in this

study. The other geometric models (cylindrical annulus, crescent prism, and lens prism) require

knowledge of the average linear thickness measurement and hemithorax diameter [51]; only the

summed linear thickness measurement was available for this study (the number of linear thick-

ness measurements varied clinically so the average value of a single thickness measurement was

unattainable), and the hemithorax segmentations from the previous chapter were only drawn to
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encapsulate the outer boundary of any present disease. While only obtainable for the sphere model

(which might not be the most appropriate model for mesothelioma), the proportion of variability

in observed volume changes explained by the geometry model is reported as R2 from a linear fit

between actual changes and predicted sphere model changes. For a sphere with diameter d that

changes by an amount Dd, the volume V changes by

DV
V

=

✓
Dd
d

◆3
+3
✓

Dd
d

◆2
+3
✓

Dd
d

◆
. (5.3)

To compare the prognostic performance of the different disease response assessment measure-

ments, the univariate significance of all three measurement techniques was assessed using time-

varying Cox proportional hazards (PH) models, as in the previous chapter. Next, survival models

were built using the clinical covariates from the final multivariate Cox PH model in Table 4.4 and

one disease response assessment measurement, modeled as specific growth rate (SGR, see equation

4.5). Therefore, the clinical covariates disease histology, dyspnea, and Eastern Cooperative Oncol-

ogy Group (ECOG) performance status were included along with (1) summed linear measurement

SGR, (2) disease volume SGR, or (3) normalized lung volume SGR.

The performance of the survival models was assessed using the Ct statistic introduced in the

previous chapter. For this study, values of Ct are reported from training and testing on the same

dataset, as well as leave-one-out cross-validation (LOOCV) performance values for the different

models. Additionally, repeated random sub-sampling was used to assess the difference between

models. Since standard errors are not provided by the Ct evaluation code in R, random sub-sample

performance metrics can be used to assess the difference in paired patient cohorts for the models

tested in this study. In each of 1000 sub-sample iterations, each model was trained on two-thirds of

the patient cohort and tested on the remaining one-third of the patient cohort. The training set was

chosen randomly without replacement at each iteration, and the testing set was considered to be

the remaining patients who had not been selected for the training set at that iteration. Each model

(full multivariate Cox PH model with summed linear thickness SGR, disease volume SGR, or
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normalized lung volume SGR) was trained on the training cohort then tested on the testing cohort.

Therefore, for each sub-sample iteration, model performance statistics are tracked in a paired

fashion, and differences between models can be assessed using the histogram of paired differences

between testing cohort performance values. Models were considered significantly different if the

95% central confidence interval (CI) of sub-sample paired differences did not include a difference

of zero.

5.3 Results

5.3.1 Patients and Overall Survival

Median survival from baseline imaging prior to treatment initiation was 12.7 months (95% confi-

dence interval, 10.2–15.3 months). Of the 61 patients, there were 58 observed deaths, while the

remaining three patients were lost to follow-up after a median duration of 34 months. The overall

Kaplan-Meier survival curve is shown in Figure 5.1.

5.3.2 Lung Segmentation

Across all patients, the mean baseline ipsilateral lung volume was 1021±574 mL, and the mean

baseline contralateral lung volume was 2648±639 mL. The mean normalized ipsilateral lung vol-

ume at baseline was 0.399 (range 0.058–1.262). By the first follow-up scan, the normalized ipsilat-

eral lung volume had increased to 0.420, up by a geometric mean of 5% from baseline. By the end

of treatment, the normalized ipsilateral lung volume had increased an average of 8% from base-

line. Over the course of the entire treatment, the distinction between normalized ipsilateral lung

volume increase and decrease was significantly associated with patient survival. Figure 5.2 shows

the Kaplan-Meier survival curves for the two patient groups, and the log-rank test for differences

in survival showed the groups to be significantly different (p = 0.0003).
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Figure 5.1: Overall survival for the patient cohort in this study.

144



Figure 5.2: Kaplan-Meier survival curves for patients with and without normalized ipsilateral lung
volume increase during the course of their therapy.
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The extent of manual intervention necessary in the otherwise fully automated lung segmen-

tation was minimal. For cases that required any intervention whatsoever (21% of all scans), the

duration of manual intervention averaged approximately one minute. Only 1.9% of cases required

five minutes or more of manual intervention. The predominant cause for manual editing of lung

segmentations was erroneous inclusion of segmented bowel gas.

From the validation study, there was very high agreement for area measurements of per-section

lung segmentations between the manual approach and the automated method for the 132 axial sec-

tions evaluated. Pearson’s correlation coefficient was calculated as 0.973 (p < 0.0001). However,

because the intent of both measurement techniques was the quantification of the same structure,

one would expect a very high correlation (in fact, only a small correlation coefficient would be

noteworthy). Using Bland-Altman analysis, the mean bias was for automated measurements to

be 117 mm2 larger than manual measurements (the average section lung area was 10203 mm2), or

1.1% larger on average. The 95% limits of agreement in the difference between manual measure-

ments and automated measurements were -1952–1719 mm2, relatively small given the correlation

and average measurement magnitude. The Bland-Altman plot is shown in Figure 5.3.

5.3.3 Linear and Volumetric Measurement Correlations

A plot comparing the relative change from baseline of summed linear thickness measurements and

disease volumes computed according to the semi-automated methods in Chapter 4 for the 61 pa-

tients in this study is shown in Figure 5.4. Each of the 155 points on the plot represents a single

paired change from baseline (i.e., if a patient has four CT scans, there will be three data points com-

paring linear measurements with volume measurements for that patient in Figure 5.4). For these

data, Spearman’s rank correlation coefficient was estimated as rthickness = 0.676 (p < 0.0001) and

Pearson’s linear correlation coefficient was estimated as rthickness = 0.665 (p < 0.0001). Both cor-

relations are positive, as expected, indicating that growth in disease linear thickness corresponds

to growth in disease volume.
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Figure 5.3: Validation of automated lung segmentation. 5.3a, Bland-Altman plot, where bias is
shown with a solid black line and the 95% limits of agreement are shown with dashed black lines.
5.3b, direct comparison between measurements, with the identity line shown.
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Figure 5.4: Relative change from baseline of summed linear thickness measurements versus rela-
tive change from baseline of disease volumes. The relationship expected from a spherical geomet-
ric model is indicated with a dashed black line.

The relationship expected from a spherical geometric model is indicated in the plot with a

dashed line (the relationship is given by equation 5.3). The quality of fit of the spherical model

is R2 = 0.35, indicating that only 35% of the overall variation in the data is attributable to the

geometric model. Visual inspection of the plot indeed indicates that the data do not reliably fall

along the dashed line and instead appear nearly linear in some locations. While there was no

theoretical reason to believe that mesothelioma would follow a spherical geometry, Figure 5.4

provides the first empirical evidence for the inappropriateness of the spherical assumption implicit

in the standard RECIST classification criteria for MPM.

A plot comparing the relative change from baseline of normalized ipsilateral lung volumes and
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Figure 5.5: Relative change from baseline of normalized ipsilateral lung volumes versus relative
change from baseline of disease volumes.

actual disease volumes computed according to the semi-automated methods in Chapter 4 for the 61

patients in this study is shown in Figure 5.5. Each of the 155 points on the plot represents a single

paired change from baseline (i.e., if a patient has four CT scans, there will be three data points

comparing normalized ipsilateral lung volumes with disease volumes for that patient in Figure 5.5).

Using the non-parametric Spearman’s rank correlation coefficient, the correlation was estimated to

be rlung =−0.687 (testing for difference from zero, p< 0.0001). The linear trend correlation from

Pearson’s correlation coefficient was estimated to be rlung = −0.494 (p < 0.0001). As expected,

the correlation coefficients are negative, indicating that for an increase in normalized lung volume,

the disease volume decreases.
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5.3.4 Survival Analysis

All three response assessment measurement techniques were significantly associated with patient

survival in univariate Cox PH survival models. Increases in continuous time-varying linear thick-

ness SGR measurements were associated with poor patient prognosis (HR=1.53, p < 0.0001), as

were increases in disease volume SGR (HR=1.32, p = 0.0003). As expected, decreases in nor-

malized ipsilateral lung volume SGR were associated with poor patient prognosis (HR=0.763,

p = 0.003).

In multivariate Cox PH survival models including disease histology, dyspnea, and ECOG per-

formance status, all three response assessment measurement techniques remained significantly

associated with patient survival. The model coefficients for the summed linear thickness model,

disease volume model, and normalized lung volume model are shown in Tables 5.2, 5.3, and 5.4,

respectively. Note that the clinical covariates included in these models were selected from the final

multivariate model in the previous chapter and were not necessarily selected for their prognostic

significance in this particular patient cohort.

The hazard ratio estimates for the clinical covariates vary between the three tumor measure-

ment technique models, but the variability is small compared to the 95% confidence intervals given

in Tables 5.2, 5.3, and 5.4. For instance, the hazard ratio for “Other” histology is 1.95 times higher

than for Epithelioid histology when tumor burden is modeled using summed linear thickness mea-

surements, but the same comparison shows that “Other” histology is 2.38 times worse than Epithe-

lioid histology for patient mortality when tumor burden is modeled using normalized ipsilateral

lung volume measurements. It is possible that the effect of disease histology is simply more pro-

nounced in the lung volume model, but given the overlap in the 95% confidence intervals of the

hazard ratio estimates one cannot state that the effect of histology is significantly different between

the two models. The same can be said for the other clinical covariates as well. It is interesting

to note that in all three multivariate models the tumor response measurement technique is always

the most significant of the prognostic variables. While the values of the hazard ratios are different
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Variable Hazard Ratio 95% CI p-value

Summed Linear Thickness (continuous, SGR) 1.468 [1.18, 1.84] 0.00053

Histology Epithelioid 1 – –
Other 1.953 [1.05, 3.65] 0.036

Dyspnea No 1 – –
Yes 2.458 [1.09, 5.55] 0.030

ECOG Performance Status 0 1 – –
1 or 2 1.472 [0.83, 2.61] 0.099

Table 5.2: Multivariate Cox PH model, including hazard ratios and 95% confidence intervals (CI).
Summed linear thickness modeled as continuous specific growth rate (SGR) from baseline.

for the three measurement techniques (as they should be, given the differences in the structures

being measured), the p-value for the tumor response measurement technique is always smallest,

indicating in some sense that the tumor response measurement technique is the most “important”

prognostic variable for all three models.

Model performance was quantified using the Ct statistic, where t was set to the time associ-

ated with the final observed patient death (37.7 months). The performance of the full multivariate

model trained and tested on the same patient cohort was 0.692, 0.680, and 0.670 for the mod-

els using summed linear thickness measurements, disease volume measurements, and normalized

lung volume measurements, respectively. In the leave-one-out cross-validation, these scores were

reduced somewhat, as expected, to 0.657, 0.625, and 0.630, respectively. Finally, the mean random

sub-sample performance values for the three models were 0.659, 0.638, and 0.628, respectively.

These values are summarized in Table 5.5.

To compare one response assessment measurement technique with another, the paired differ-

ences in sub-sample testing cohort performance values are reported. The mean difference in paired

Ct performance values between the summed linear thickness model and the disease volume model
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Variable Hazard Ratio 95% CI p-value

Disease Volume (continuous, SGR) 1.334 [1.13, 1.58] 0.00090

Histology Epithelioid 1 – –
Other 2.041 [1.10, 3.79] 0.023

Dyspnea No 1 – –
Yes 2.809 [1.19, 6.61] 0.018

ECOG Performance Status 0 1 – –
1 or 2 1.543 [0.89, 2.67] 0.12

Table 5.3: Multivariate Cox PH model, including hazard ratios and 95% confidence intervals (CI).
Disease volume modeled as continuous specific growth rate (SGR) from baseline.

Variable Hazard Ratio 95% CI p-value

Normalized Lung Volume (continuous, SGR) 0.762 [0.64, 0.91] 0.0033

Histology Epithelioid 1 – –
Other 2.375 [1.30, 4.34] 0.0050

Dyspnea No 1 – –
Yes 2.154 [0.98, 4.74] 0.056

ECOG Performance Status 0 1 – –
1 or 2 1.582 [0.92, 2.73] 0.099

Table 5.4: Multivariate Cox PH model, including hazard ratios and 95% confidence intervals (CI).
Normalized lung volume modeled as continuous specific growth rate (SGR) from baseline.
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“Full”
Performance

LOOCV
Performance

Mean
Random

Sub-Sample
Performance

95% Random
Sub-Sample
Confidence

Interval

Summed
Linear

Thickness
0.692 0.657 0.659 [0.556, 0.760]

Disease
Volume 0.680 0.625 0.638 [0.526, 0.755]

Normalized
Lung Volume 0.670 0.630 0.628 [0.510, 0.744]

Table 5.5: Performance value (Ct ) summary for multivariate survival models from Tables 5.2, 5.3,
and 5.4. Performance values are given for “full” models trained and tested on the complete cohort,
from leave-one-out cross-validations, and from repeated random sub-sample simulations.

was 0.022, with a 95% confidence interval of -0.077–0.123 and was therefore not significant (boot-

strap p = 0.30). The mean difference in paired Ct performance values between the normalized

ipsilateral lung volume model and the disease volume model was -0.009, with a 95% confidence

interval of -0.087–0.077, and was therefore not significant (bootstrap p = 0.65). Figures 5.6 and

5.7 show histograms of the paired Ct differences in model performance values for summed linear

thickness versus disease volume and for normalized ipsilateral lung volume versus disease vol-

ume, respectively. While the performance of the summed linear thickness model is on average

3.4% higher than the performance of the disease volume model, there is obviously considerable

overlap in the performance of the two models. The disease volume model outperformed the linear

thickness model for 30% of the random sub-sample iterations. For the normalized ipsilateral lung

volume model, though, the performance is on average 1.4% lower than the performance of the dis-

ease volume model. There is even more overlap between the lung and disease volume models than

the linear thickness and disease volume models. For the purposes of survival prediction, changes

in normalized ipsilateral lung volume are statistically very similar to changes in disease volume,
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Figure 5.6: Smoothed histogram of repeated random sub-sample performance differences, DCt ,
comparing multivariate Cox PH models using summed linear thickness measurements and disease
volume measurements. All models were trained on two-thirds of the patient cohort selected at
random and tested on the remaining third (1000 iterations). Mean and 95% confidence interval of
differences shown with red lines.

as indicated in Figure 5.7.

5.4 Discussion

In the previous chapter, it was shown for the first time that continuous and time-varying image-

based measurements of pleural disease volume were significantly associated with patient survival.

The performance of the survival model was even improved with the addition of other clinical co-

variates to the model. This chapter tells a largely similar story, though now the protagonist role is
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ΔCτ, Lung Volume Model − Disease Volume Model
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Figure 5.7: Smoothed histogram of repeated random sub-sample performance differences, DCt ,
comparing multivariate Cox PH models using normalized ipsilateral lung volume measurements
and disease volume measurements. All models were trained on two-thirds of the patient cohort
selected at random and tested on the remaining third (1000 iterations). Mean and 95% confidence
interval of differences shown with red lines.
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shared between three tumor response assessment techniques: summed linear thickness measure-

ments acquired using the modified RECIST technique, semi-automated segmentations of pleural

disease volume, and automated segmentations of normalized ipsilateral lung volume. These three

response assessment measurement techniques are all significantly associated with patient survival,

and there are no significant differences between model performance metrics. However, there are

certainly practical differences between the three measurement techniques and the models derived

therefrom.

In a way, measurements of disease volume are the most established for use in response assess-

ment. After all, response assessment as performed by RECIST is historically based on equivalent

volumetric response from simplified measurements. Until recently, though, full measurements of

pleural disease volume for patients with MPM were time-prohibitive, and summed linear thick-

ness measurements remain the clinical standard for response assessment. In the past few years,

several software algorithms for the segmentation of mesothelioma on CT scans have been pub-

lished [57, 58, 60], and researchers are now able to explore true disease volume as a response

assessment measurement technique. The novel response assessment technique in this study is

lung volume: aerated lung segmentation is a comparatively easier computational task than pleural

disease segmentation, and there is reason to expect lung volumes to be uniquely correlated phys-

iologically to disease volumes for patients with MPM. Because of the constrained hemithoracic

space, any decrease in disease volume should be met with corresponding increase in the ipsilateral

(disease-sided) lung volume. Normalizing the ipsilateral lung volume by the contralateral lung vol-

ume corrects for differences in respiratory phase between CT scans, and the resulting normalized

lung volume forms a useful (if contrary) response assessment technique.

The correlations among the three measurement techniques are in line with expectations. One

would expect changes in summed linear thickness to be correlated with changes in disease vol-

ume, and the data show this to be true. However, the spherical geometric relationship implicit in

the RECIST protocol is not a good fit, as evidenced in Figure 5.4. Unfortunately, the alternate
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Figure 5.8: Relative changes from baseline of normalized lung volume and pleural disease volume
for an example patient. Note the (anti-)correlation between the two curves.

geometric models from Oxnard et al. [51] could not be tested in this study because of the form

of available data. The correlation between normalized ipsilateral lung volumes and disease vol-

umes was also as expected, since increases in normalized ipsilateral lung volume were met by

decreases in disease volume. An example of this correlation is shown in Figure 5.8, where changes

in normalized ipsilateral lung volume and changes in disease volume are seen to closely mirror one

another.

It is possible to build multivariate survival models simultaneously utilizing any two (or even all

three) tumor response measurement techniques. However, because of the high correlation between

the three tumor response measurement techniques, using more than one measurement technique

in the same multivariate Cox PH model results in at least one of the tumor response measurement
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terms becoming non-significant (usually with a p-value larger than 0.20). Therefore, no more than

one tumor response measurement technique at a time can be an independent significant covariate

for patient prognosis. This “only one at a time” observation further supports the idea that all three

measurement techniques are inherently measuring the same underlying process: changing tumor

burden.

The performance of the survival model using pleural disease volumes in this study was near the

performance reported in the previous chapter. The slightly lower performance may be attributable,

in part, to the reduction in patient cohort size for this study, especially since the size of each

random sub-sample testing cohort fell from 27 to 20 patients. The more interesting comparison is

between survival models using alternate disease response measurement techniques. The fact that

the survival model with summed linear thickness measurements outperformed the disease volume

survival model was unexpected. While the survival model using manual thickness measurements

did not perform significantly better than the disease volume model, the performance was better on

average, as evidenced by Figure 5.6. Disease volumes are logically better able to capture changes

in overall tumor bulk, but perhaps changes in tumor thickness are physiologically more predictive

of eventual patient survival than overall volumetric changes. The two measurement techniques

provide different information, and while it was previously assumed that disease volumes should

be the ultimate goal of any response assessment technique, it is possible that the specific type of

morphological change quantified by tumor thickness measurements is simply more representative

of patient benefit. Another (purely speculative) possibility is that human observers are able to place

their baseline tumor thickness measurements in locations that are in some sense “important” for

response assessment; volume measurements capture changes over the total extent of disease, while

summed tumor thickness measurements only capture change in the discrete (up to six, by modified

RECIST) locations where baseline measurements were placed.

Also interesting is the nearly statistically identical performance of the survival models using

disease volumes and normalized ipsilateral lung volumes (see Figure 5.7). The similar performance
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of the two models reinforces the expectation that changes in (normalized) lung volume and disease

volume should convey roughly equivalent information due to the physiological correlation between

the two structures. The correlation between paired Ct values from random sub-sample testing

cohorts showed high correlation (r = 0.77) between the survival models using disease volume and

normalized ipsilateral lung volume, again as expected.

There are various advantages and disadvantages for each response assessment measurement

technique. It was shown by Frauenfelder et al. [57] that the inter-observer variability is substan-

tially lower for disease volume measurements than for linear thickness measurements, a fact that

could become an important consideration if disease volumes were to be used clinically to assess

tumor response. However, linear measurements require less manual intervention time than disease

volume measurements, and existing techniques could potentially be used to partially automate the

linear measurement process and thereby reduce variability [52, 53]. Lung volume measurement is

an automated process, and the only manual intervention used in this study was the correction of

obvious segmentation errors from contrast artifacts and bowel gas. It is therefore reasonable to be-

lieve that lung volume measurements would have almost no inter-observer variability whatsoever.

However, the utility of lung volume measurements for tumor response assessment is limited to pa-

tients with unilateral disease. While unilateral disease is common (the number of useable patients

in this study would have increased only from 61 to 68 with the removal of the “unilateral disease”

criterion), this stipulation necessarily precludes response assessment via lung volumes for a small

number of patients.

An inherent limitation of this study is the relatively small number of patients used. The survival

models compared in this study form a starting point for a validation in independent patient cohorts

and should not be taken as “definitive” response models. While all the survival models in this study

are significant (all of the 95% random sub-sample confidence intervals for Ct do not include 0.5),

absolute performance scores of around 0.65 are by no means perfect. And while the survival model

from the linear thickness measurements outperforms the other two models on average, there is no
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statistical basis to conclude that any one model is better than another. It should be further cautioned

that the survival models in this study may not be applicable to patients who receive biologically

different treatments than the cytotoxic therapy used herein.

In summary, survival models using three different tumor response measurement techniques

were compared in this study for patients with MPM undergoing chemotherapeutic treatment. Mod-

els were fit using clinical covariates identified in a previous chapter and either summed linear thick-

ness measurements, pleural disease volume measurements, or normalized ipsilateral lung volume

measurements. As a novel tumor response assessment technique, lung volumes exhibited the ex-

pected correlation with disease volumes. All three tumor response measurement techniques were

significantly associated with patient survival. The model using summed linear thickness measure-

ments performed, on average, better than the other two models, though the differences were not

significant.
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CHAPTER 6

DYNAMIC COMPUTED TOMOGRAPHY FOR MESOTHELIOMA

“X rays will prove to be a hoax.” – Sir William Thomson (Lord Kelvin)

6.1 Introduction

Standard computed tomography (CT) captures a volumetric image of an object over the course

of a relatively small amount of time. These single-timepoint images contain structural anatomi-

cal information, where the gray-scale value associated with each discrete reconstructed volumetric

pixel (voxel) is related to the mean x-ray attenuation coefficient of the materials in that voxel.

These Hounsfield Unit (HU) values are assigned in relation to the individual voxel attenuation

coefficients and the known attenuation of water. The addition of iodinated contrast media aids

in the visualization of structures that take up contrast through the blood supply, since the x-ray

attenuation of iodine is considerably higher than usual soft tissues for the x-ray energies under

consideration (on the order of 100 keV). Therefore, regions that have contrast uptake will appear

“brighter” on reconstructed images and will thus convey some physiologic information along with

anatomic information. Depending on the time delay between contrast injection and volumetric

image acquisition, the relative enhancement of different anatomical structures will imply some in-

formation about the hemodynamic properties of those structures. Contrast is used clinically in CT

to both visually enhance structures (especially mediastinal structures) and identify physiological

properties of interest.

Even with the addition of iodinated contrast, CT images pose challenges for the anatomic iden-

tification of disease for patients with malignant pleural mesothelioma (MPM). For reasons identi-

fied previously, MPM can be difficult to impossible to distinguish from surrounding soft tissues,

and this fact has been quantitatively established in a previous study [24]. But a traditional contrast-

enhanced scan is like a photograph, just a snapshot in time: an amount of contrast appropriate for
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the patient (usually 90–120 mL of contrast with an iodine concentration of 350 mg/mL) is injected

intravenously, and the CT scan is acquired after an amount of time that allows for distribution of

the contrast media throughout the body (usually 30–90 seconds). On the other hand, much more

physiological or functional information can be gathered from dynamic contrast-enhanced (DCE)

imaging, which is more like a movie than a photograph. The main difference with DCE imaging is

that instead of acquiring a single timepoint scan after a set delay from initiation of injection, scans

are repeatedly captured during (and potentially following) the intravenous injection of the contrast

media. In this way, DCE imaging adds a temporal component to an otherwise static structural scan.

Because the change in HU value for a given voxel is directly proportional to the contrast of iodine

in that voxel, blood flow to different tissues can be tracked over time from the temporal scan infor-

mation. If a single timepoint contrast-enhanced scan gives information about relative vascularity

between various soft tissues, a DCE scan gives information about how quickly the blood is flowing

to the tissues of interest, how much blood is flowing through those tissues, and how long the blood

takes to travel through those tissues. For clarity, while DCE-CT is often called “perfusion CT,” the

author has purposefully restricted the use of the term “perfusion” to mean a specific hemodynamic

parameter calculated from dynamic imaging data.

The individual voxel contrast uptake curves can be analyzed to extract various summary hemo-

dynamic properties. The hemodynamic maps of blood flow and vascularity have been shown to

serve as useful oncologic biomarkers [75]. In a study using DCE-MRI to image MPM patients,

Giesel et al. [76] reported that a hemodynamic perfusion parameter (kep) was clearly associated

with patient survival. However, the general application of DCE-MRI for MPM is limited by the

presence of cardiac and respiratory motion. It is therefore reasonable to believe that DCE-CT will

produce functional data maps that hold prognostic significance in a manner similar to DCE-MRI

imaging. And while DCE-CT uses ionizing radiation to generate scan data, the scans do not suffer

from the MRI artifacts mentioned previously, and the DCE-CT scan can be integrated efficiently

with the current clinically indicated CT scanning already being performed on MPM patients.
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To our knowledge, DCE-CT has been used for imaging of MPM in only a single study con-

ducted by Meijerink et al. [80]. The study investigated the use of DCE-CT to assess the hemody-

namic response of tumors of the thorax and abdomen. The patient cohort consisted of 16 patients,

including only two patients with MPM. DCE-CT data demonstrated a substantial decrease in tu-

mor perfusion values for both MPM patients after treatment with anti-angiogenic VEGF inhibitors.

This supported the assertion that DCE-CT is able to measure hemodynamic function in MPM pa-

tients.

In order to more completely explore the potential use of DCE-CT for patients with MPM,

we initiated a pilot study to explore the feasibility of DCE-CT and the information contained in

the hemodynamic maps resulting from the DCE-CT scans. Besides establishing feasibility for

DCE-CT performed in a slightly different manner than usual, the study also aimed to identify the

“optimal” delay period between contrast injection and peak enhancement of the tissues of interest.

Finally, the pilot study was structured to obtain scans at two distinct times for each patient, thereby

leading to an analysis of changes in hemodynamic data maps over time and correlations between

changes in DCE-CT data and tumor bulk. This pilot study is still underway (May 2012), with an

accrual goal of 20 patients, each scanned with DCE-CT twice (40 scans total). Ten patients will be

“on observation,” not receiving any biologically active therapy, and the remaining ten patients will

be “on treatment,” though the (chemotherapeutic) treatment is not necessarily the same among all

patients. There are, at present, 13 patients with two scans each, and another three patients who have

received only their first scan. Of the 13 patients with two scans each, seven are on observation,

and all three patients awaiting their second scan are on observation as well. The report that follows

is a documentation of the imaging protocol used, the image processing and other methodologies

required for the analysis of the DCE-CT data, and the quantitative results obtained thus far for the

13 patients with two scans each.
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6.2 Imaging Protocol

6.2.1 Patient Cohort

Patients were considered eligible for this study approved by our local Institutional Review Board if

they had been diagnosed with MPM with pathologic confirmation. Patients were required to have a

tumor with a thickness of at least 1 cm located axially between the superior-most point of the aortic

arch and the superior-most point of the diaphragm on a previous chest CT examination, a criterion

ensuring that patients would have a volume of disease sufficient for quantitative analysis. Patients

were only eligible if they were not considered potential candidates for surgical intervention during

their involvement on the study and could not have undergone talc pleurodesis in the three months

prior to the first DCE-CT scan. Surgical intervention during the study would obviously remove foci

of disease, leading to an inability to compare uptake curves and changes in hemodynamic prop-

erties between the two scan dates. Talc pleurodesis is known to be associated with inflammation

and other local immunological changes and would potentially alter the hemodynamic properties

of tissue. In such situations, any changes in DCE-CT data between the two scan dates could be an

arbitrary mixture of effects from talc pleurodesis healing and effects from any active therapy. As

mentioned previously, the overall patient accrual goal was 20 patients, with 10 patients each from

the observation and treatment groups. Finally, and perhaps most importantly, patients were only

eligible for this study if they were scheduled to receive their clinically indicated standard chest CT

scan with contrast. Some patients do not tolerate contrast media, depending on kidney function,

and therefore our study only considered patients who would have otherwise been given the full

amount of clinically indicated contrast. All patients provided written informed consent for their

participation in this prospective study.

For the six patients in this study “on treatment,” the treatment regimens were not identical

across patients. Two patients were on a clinical trial for oral Vorinostat, a potential new inhibitor

for malignant pleural mesothelioma [122]. Two patients were on a clinically standard regimen
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of cisplatin and pemetrexed. One patient received cisplatin, pemetrexed, and CBP501, a novel

treatment which interferes with the cellular reproduction cycle at the G2 checkpoint [123]. Finally,

one patient received pemetrexed only. From the patients on observation, one patient was part of

the placebo arm of the Vorinostat trial. These details are provided in Table 6.1.

The time between patient scans was usually approximately six weeks for patients undergoing

treatment, since this is the time span of two cycles of chemotherapy. Treatment patients are typi-

cally scanned with CT every other cycle of chemotherapy, and the timing of the two scans in this

study was set according to the clinical need for the standard chest CT component. The median

duration between scans was 42 days for treated patients (range, 42–56 days). For patients on ob-

servation, the timing of the two scans was again mandated by the clinical need for the standard

chest CT component. The median duration between scans was 58 days for patients on observation

(range, 41–126 days). At the date of this analysis, four patients have died, with survival durations

from diagnosis to death ranging from 9.2–71.1 months. The patients who remain living have a

median follow-up duration from diagnosis of 31.9 months (range, 16.5–61.7 months).

6.2.2 DCE-CT Scan Acquisition

A DCE-CT scan starts the same way that any contrast-enhanced CT begins: a bolus of iodinated

contrast media is injected venously via a power injector. The contrast agent enters the circulatory

system and perfuses to different tissue types according to their vascularity and blood flow, where

the increased attenuation of iodine will present with increasing HU value [77]. The degree of tissue

enhancement depends on the contrast media concentration and local hemodynamics reflecting tis-

sue vascularity and physiology [78]. During the DCE-CT scan, a small section of relevant patient

anatomy (limited axially by the extent of the collimated CT beam) is repeatedly imaged, and the

uptake and eventual washout characteristics of the iodinated contrast can be quantified by tracking

voxel-by-voxel HU values over time.

The imaging protocol used specifically in this study had some constraints not typically present
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Patient Sex Age Treatment Status

1 Male 81 Observation (Placebo)

2 Male 52 Treatment (Vorinostat)

4 Male 80 Observation

5 Male 59 Observation

7 Female 64
Treatment (Cisplatin,

Pemetrexed)

8 Male 77 Observation

10 Male 84 Treatment (Vorinostat)

12 Male 77
Treatment (Cisplatin,

Pemetrexed)

13 Male 64
Treatment (Cisplatin,
Pemetrexed, CBP501)

14 Male 79 Observation

15 Male 77 Observation

17 Male 68 Observation

21 Male 68 Treatment (Pemetrexed)

Table 6.1: Summary information about the 13 patients included in this study to date.
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in usual DCE-CT imaging, since this protocol needed to fit in the workflow of an already ordered

contrast-enhanced chest CT scan. The initial funding for this study was provided by the Hodges

Society of the Department of Radiology at The University of Chicago and was not sufficient to

provide contrast media and scanner time if the scan was not covered by insurance. Furthermore,

it is desirable to minimize the number of iodinated contrast injections for a given patient due to

the possibility of renal damage. Therefore, an imaging protocol was needed that would somehow

utilize the bolus of contrast already necessary for the standard contrast-enhanced chest CT scan

and would minimize extra scanner time. Furthermore, in clinical practice the standard chest CT

scan usually occurs somewhere around 60–70 seconds post contrast injection initiation, so again

this was a requirement during protocol planning.

The scanner used in this study is a Philips Brilliance iCT 256-slice scanner. After adjusting the

reconstructed field-of-view to encompass an average patient’s thorax, the maximum axial extent

of the CT detector at isocenter is approximately 55 mm. Since individual DCE-CT acquisitions,

referred to herein as “snapshots,” are typically acquired without the CT table moving during the ac-

quisition, we are limited in the amount of disease we can image for a given scan. While the Philips

scanner is capable of table motion during snapshot acquisition, the table top does not move quickly

compared with the CT gantry rotation time (0.3 seconds per rotation), and therefore extending the

axial extent of snapshot imaging would generally lead to unacceptable motion (cardiac and res-

piratory). Before each DCE-CT scan, then, an anatomical location was preselected for DCE-CT

imaging based on the patient’s previous CT examinations (the location to scan was selected for all

patients by the author). When selecting this 55 mm DCE-CT section, preference was given to areas

of thicker disease and more superior axial locations to minimize respiratory motion. The DCE-CT

section was constrained to be between the top of the aortic arch and the top of the diaphragm. The

DCE-CT section for a patient’s second DCE-CT scan was matched as closely as possible to the

first scan.

The first component of our imaging protocol is an anteroposterior scout scan of the thorax
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and abdomen. This is a standard component of any chest CT scan and is used to identify the

location to scan for the rest of the CT series. The DCE-CT scan components are planned based

on the anatomical location of the DCE-CT section identified previously, usually with reference to

the radiologic position of the bifurcation of the trachea. Next, the contrast media is prepared and

loaded into a power injector. Injection is typically performed via an 18-gauge cannula placed in

the antecubital vein. Finally, the CT table is moved to the axial position indicated for full coverage

of the selected DCE-CT section.

The timing of the protocol designed for this study is summarized in Figure 6.1. Contrast injec-

tion is started at time t = 0, concurrent with the first DCE-CT snapshot. Snapshots are acquired

every three seconds until 20 snapshots have been acquired after 57 seconds. During this period,

patients are instructed to use “shallow breathing,” where they breathe enough to maintain com-

fort but avoid any sudden large inhalations or exhalations. After the 20th DCE-CT snapshot is

acquired, the scanner transitions to the acquisition of the full clinical chest CT scan. This pro-

cess usually requires between 10 and 18 seconds, depending on the axial location of the DCE-CT

scanning section. Therefore, the full chest CT usually begins around 75 seconds after the initiation

of contrast injection. The full chest CT scan is acquired during patient breath-hold and requires

around five seconds. Next, the CT table is moved back to the location of the DCE-CT scanning

section, and as quickly as possible the scanner transitions back to DCE-CT scanning mode. At

approximately 115 seconds after initial contrast injection, the 21st DCE-CT snapshot is acquired,

and snapshots in this secondary DCE-CT scanning period are acquired every five seconds until

five additional DCE-CT snapshots have been acquired (resulting in 25 total DCE-CT snapshots).

The exact times associated with snapshot acquisition are imprinted in the DICOM headers of the

reconstructed images.

The contrast media used in our study is iohexol (Omnipaque, 350 mg/mL iodine concentration;

Amersham Health, Princeton, NJ). The amount of contrast used in a DCE-CT scan varies from

study to study, though recommendations are typically around 50 mL of iodinated contrast media
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Figure 6.1: Graphical summary of the DCE-CT protocol used in this study. Blue lines indicate the
DCE-CT imaging snapshots, and the green bar indicates the standard clinical contrast-enhanced
chest CT.

injected at around 4 mL/second [77, 124]. However, in our study, the standard amount of contrast

for a full chest CT was necessary because of the chest CT component. Since the entire premise

of our protocol design was to “piggyback” on an otherwise necessary standard chest CT scan, the

patient scans in our study were all performed with 90 mL of contrast (90 mL is on the low end of

the standard range of contrast administrations for full chest CT scans). To somewhat compensate

for the increased amount of contrast, injection was performed at an increased 6 mL/second. The

contrast injection was immediately and automatically followed by a 30 mL “chaser” of saline flush,

which ensured that the entire bolus of contrast had entered into the circulation of the patient.

6.2.3 DCE-CT Imaging Parameters

In order to select the imaging parameters for the DCE-CT snapshots, previous DCE-CT studies

were investigated. In the study by Meijerink et al. [80], scanning parameters were a tube volt-

age of 80 kVp with a current of 120 mAs, acquiring snapshots every second for 30 seconds (or

for the complete duration of patient breath-hold), leading to two adjacent reconstructed slices of

10 mm each. Two additional protocols from lung nodule studies were compared. The first, by

Ma et al. [75], used 120 kVp and 60 mAs, acquiring snapshots approximately every half-second

for 40 seconds and reconstructing four adjacent slices of 5 mm each. The second study, by Li

et al. [83], used 120 kVp and 100 mAs, acquiring snapshots every 5 seconds for 60 seconds and re-
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constructing 5 mm slices. From these studies, and the guidance offered in other DCE-CT literature

[77, 78], the imaging protocol parameters selected for this study were 120 kVp with 100 mAs, ac-

quiring snapshots every 3 seconds for 60 seconds during the first 20 snapshots, then every 5 seconds

for the last group of five snapshots. Reconstructions were set for 3 mm slices (resulting in 18 ax-

ial slices in each DCE-CT snapshot) using the standard kernel, without edge enhancement. The

choice of 120 kVp was a rational choice for thoracic imaging due to the physical size and attenu-

ation of the human thorax, and 100 mAs offered a good balance between image noise and patient

dose. Effective patient dose in CT scales approximately linearly with reported dose-length product

(DLP) [125–127], and phantom studies during the planning phase indicated that the effective dose

from the DCE-CT scanning components contributed approximately 1.5 times the dose of the stan-

dard chest CT scan. Finally, based on an analysis of contrast uptake curves in the aforementioned

lung DCE-CT studies, a temporal sampling of three seconds was deemed sufficient to capture

first-pass hemodynamic uptake curves.

6.3 Image Processing

After DCE-CT scan acquisition, the DCE-CT series are reconstructed using 3-mm axial slices (for

analysis purposes) and 1-mm axial slices (for visualization purposes). Each DCE-CT series con-

sists of 25 snapshots, each snapshot containing 18 3-mm sections, resulting in 450 axial sections

for the thicker reconstruction and 1375 axial sections for the thinner reconstruction (the full axial

span of the DCE-CT series is 55 mm). The images were pushed from the CT workstation to the

network picture archiving and communication system (PACS) and were stored as 16-bit integer

images, with data restricted to only the first 12 bits. The image headers define the rescaling inter-

cept and slope to be used with the pixel value data, but the native headers are incorrectly assigned

as the inverse of the correct rescale slope; if the slope is not manually corrected, the image values

will not be true HU values, and the resulting analysis will not be indicative of true hemodynamic

parameters.
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Before proceeding further, the DCE-CT series are visualized across both spatial and temporal

dimensions. Using a simple script written for the in-house software package Abras, the user can

interactively visualize a single axial section across time or can visualize the entire spatial image

stack for a single snapshot. These visualizations aide in the identification of gross motion artifacts,

as well as granting an initial impression of contrast uptake and washout through the different

anatomical structures of interest. Because the patients continuously respire and have continuously

beating hearts, some motion is expected in the DCE-CT images, and this initial visualization allows

the user to identify any locations where motion (especially axial motion across the superior or

inferior boundaries of the spatial image stack) may lead to unreliable estimates of contrast uptake

curves.

6.3.1 Image Registration: Initial Efforts

In order to remove the effects of patient motion (both internal and external), deformable image

registration was used to deform each individual DCE-CT snapshot in a DCE-CT scan to a common

reference frame. Image registration is a common tool often used to facilitate analysis of serial CT

scans of the same patient or 4DCT scans (as in the current study) [128–131]. Registrations fall

into three general categories: rigid, affine, and deformable registrations. In a rigid registration, the

moving image volume is allowed to rotate and translate (and sometimes scale) to match a target

image volume. In an affine registration, the moving image volume is further allowed to shear to

match the target image volume. In a deformable registration, the vectors describing the warp field

between the moving image and the target image are approximately spatially independent (only true

to the extent of regularization of the deformation field).

The registration task in this study is to register all the DCE-CT snapshots of a scan to a common

reference point. The image coordinate systems are identical (same scanner, same table position,

same day) and the patient does not physically change much in terms of scaling or shear, and

therefore a rigid or affine registration is mostly unnecessary. However, a deformable registration is
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necessary to match DCE-CT snapshots, since while the patient bones and muscles are not moving

(much), the lungs and heart are continuously moving. Therefore, the posterior surface of the patient

is nearly fixed while the anterior surface is rising and falling, and the interior anatomy is expanding

and contracting with the respiratory cycle. In order to focus the registration task on the patient only

(and not include the CT table), the thoracic segmentation described in Chapter 4 was applied to all

DCE-CT images before image registration.

For this study, the “target” image was always selected as snapshot number 20 (i.e., the last snap-

shot of the initial DCE-CT series) instead of “daisy-chaining” the successive deformation fields

together (e.g., 1 ! 20 directly rather than a composite deformation vector field generated from

1 ! 2, 2 ! 3,. . . , 19 ! 20). Snapshot 20 is approximately half-way through the total scan time-

line, and the enhancement of the structures in the image volume are at a qualitatively “moderate”

level. Use of the first snapshot as the target reference frame would have resulted in registration

challenges when the contrast media washes into the heart and greatly enhances the mediastinal

structures (e.g., at peak enhancement of the mediastinal structures around the sixth snapshot, there

is nothing in the first snapshot that these bright structures can “latch onto”). Use of a snapshot

with highly concentrated contrast and bright structures would have led to registration challenges

with the earliest and latest snapshots, when the enhancement is diminished. Empirical exploration

of the registration process identified the 20th snapshot as a reasonable compromise for the target

image reference frame.

There are many options available for deformable registration algorithms, but probably the most

popular such algorithm is called “demons” [132] (after the thermodynamic thought experiment

postulated by James Clerk Maxwell) and was first implemented by J. P. Thirion [133]. The demons

registration algorithm relies on an optical flow technique to match image value level sets. A soft-

ware package called “Plastimatch” was initially used for deformable demons registration in this

study, since the package had been heavily parallelized and was freely available from the devel-

opers [134]. The Plastimatch registration was implemented first using an affine registration, then
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a multi-resolution-stage demons registration. At the first stage, the volumetric image block was

down-sampled by eight times for in-plane resolution, and axial resolution was made as isotropic as

possible to the new down-sampled resolution. The stages progressed to four-times down-sampling,

two-times down-sampling, and finally native resolution registration. This resolution “ladder” al-

lows for the moving image block to be matched to the target on a very coarse level initially, with

refinements for the deformation vector field happening at each successive rung on the ladder, which

allows for an increase in computational efficiency. The metric used in registration optimization was

the global mean squared error (MSE) between matched pixel values, which is the default (and only)

choice for demons registration in Plastimatch.

The registration of one moving image block to the 20th snapshot target image block required

approximately two minutes on a desktop quad-core 64-bit PC. The process was parallelized and

utilized nearly 100% of all four CPU cores for the duration of the registration. Therefore, the

total time required to register an entire DCE-CT scan (with 25 DCE-CT snapshots) was around

50 minutes.

Figure 6.2 shows an axial image from the 20th DCE-CT snapshot of an example patient. Figure

6.3 shows the matched axial section from the Plastimatch deformed 8th snapshot, where is can be

seen that the concentration of contrast is fairly high in the vascular structures. The images are spa-

tially well-matched, especially the portion of mesothelioma immediately posterior to the patient’s

sternum, but the demons registration process introduces image artifacts in structures with chang-

ing HU values due to the use of the MSE metric. Since the changing concentration of iodinated

contrast in the patient’s vasculature will alter the underlying attenuation of those structures, it is

expected that they will change HU value on the CT images. However, the MSE metric penalizes

differences in HU value quadratically, leading to artifacts especially at the boundaries between

structures of different HU value. For instance, Figure 6.3 exhibits deformation artifacts around the

border of the bright mediastinal structures and the pulmonary arteries, especially in the patient’s

right lung. The Plastimatch registrations very effectively “fix” structures in space across time, but
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the appearance of the aforementioned artifacts is ubiquitous across all snapshots.

6.3.2 Image Registration: Updated Efforts

After the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) challenge

results became public [135], we became interested in the deformable registration algorithm that

performed best, offered by a software package called Advanced Neuroimaging Tools (ANTs)

[136]. The primary deformable registration algorithm implemented in ANTs is a diffeomorphic

symmetric normalization (SyN) transform. “Diffeomorphic” describes certain properties of the re-

sulting vector deformation field, guaranteeing that the field will be mathematically “well-behaved”

with properties such as differentiability and invertibility. The SyN transform used is a symmetric

technique to derive the underlying vector deformation field of the diffeomorphism by starting at

the target image and the moving image and working toward the middle. The image is deformed

with no smoothing applied to the deformation field, as is typical for a fully deformable registra-

tion technique (e.g., demons). The parameters for the derivation of the diffeomorphism were set

to nearly default values as recommended by the program developers [136], with slight tweaks to

allow for larger deformations when necessary.

There are more deformation metrics from which to choose for ANTs registration than for Plas-

timatch demons registration. We found that the recommendations of the developers provided the

best performance for our registration task (binned mutual information for the affine component and

normalized cross-correlation in the default local image neighborhood for the deformable SyN reg-

istration component) [136]. Using cross-correlation as the metric for diffeomorphism optimization

has obvious advantages for our registration task; since HU values are expected to change, MSE

metrics will perform poorly when faced with different contrast concentrations across DCE-CT

snapshots (as indicated previously). However, at least in small location neighborhoods on the or-

der of 5x5x5 voxels, HU values can still be expected to correlate (i.e., bright with bright, dark with

dark) between snapshots even if they are not identical. That is, the global MSE metric enforces
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(a)

(b)

Figure 6.2: Axial image (undeformed) from the 20th DCE-CT snapshot of an example patient
scan. (6.2a), the grayscale window level is set to 0 HU, and the window width is set to 1000 HU.
(6.2b), the window level/width is set to 0 HU/2000 HU.
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(a)

(b)

Figure 6.3: Plastimatch-deformed axial image from the 8th DCE-CT snapshot of the same patient
scan shown in Figure 6.2. (6.3a), grayscale window level/width is set to 0 HU/1000 HU. (6.3b),
the window level/width is set to 0 HU/2000 HU.
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an identity relationship between HU values in the target and moving images over the entire image

blocks, while the cross-correlation metric only enforces that the relationship between HU values

between the two image blocks be linear in a local neighborhood. Cross-correlation is an inherently

better metric to use for our registration task, and the results shown below for the ANTs registration

illustrate that fact. Finally, the ANTs registrations were all performed with a multi-resolution-stage

ladder similar to that of the Plastimatch registrations, since these multi-scale registrations are fairly

common in the image registration literature.

One downside of the ANTs registration software is that it is not effectively parallelized, using

only one CPU core for the vast majority of computation. The calculation of the cross-correlation

metric is also fairly time consuming; the time required to register one DCE-CT snapshot to its

corresponding target image is approximately 45 minutes on a desktop 64-bit PC. However, the reg-

istration process can be entirely parallelized using The University of Chicago’s Scientific Image

Reconstruction and Analysis Facility (SIRAF), since for a DCE-CT scan as a whole, there are 24

independent registration tasks that can occur simultaneously (snapshots 1, 2,. . . , 19, 21,. . . , 25 all

need to be registered to snapshot 20). Since there are hundreds of cores on the SIRAF cluster,

even assigning two cores per registration task for computational overhead results in all 24 regis-

tration tasks occurring simultaneously, and the registration of the entire DCE-CT scan is therefore

completed in approximately 45 minutes.

Figure 6.4 shows the axial section matched to Figure 6.2 from the ANTs deformed 8th snap-

shot. These images highlight the improvement in subjective image appearance. Anatomic struc-

tures are still well-matched spatially, but the deformed image is free of the artifacts exhibited by

the demons registration (see Figure 6.3). When the unique DCE-CT snapshots of a single demons-

registered axial section are viewed across time (i.e., as a “cine loop”), individual structures are very

effectively “pinned down” in that they are all well-registered to the same target coordinate system.

However, the appearance of any one snapshot will include demons artifacts. With the ANTs reg-

istrations, structures are well-matched, but boundaries may exhibit a bit of “wobble” across the

177



temporal dimension on the order of one or two voxels in-plane. That is, the same cine loop of a

single ANTs-registered axial section will be largely free of deformation artifacts but will reveal

very slight mis-registrations across time, especially at the boundary between adjacent structures.

Since uptake curves will be averaged over spatial structures, however, it is easy to avoid the arti-

facts in these boundary regions by simply padding the contours of spatial structures by one or two

voxel widths. The same contour padding would also be necessary with the demons registrations

due to the artifacts in regions of high HU-value gradients. Because of the qualitatively improved

image appearance with the ANTs registrations, ANTs became the registration algorithm of choice

for the remainder of this DCE-CT study.

6.4 Dynamic Analysis

6.4.1 DCE-CT Parameter Calculation

After image registration has been performed, the HU value of an individual voxel can be tracked

over time, and the extent of HU value increase over baseline will be proportional to the con-

centration of contrast media in the voxel. One uptake curve is obtained for every voxel in the

three-dimensional image, and various hemodynamic parameters can be derived from these curves.

The first-pass kinetic parameters used in this research include perfusion, tissue peak enhancement,

calculated blood volume, time to peak enhancement, and mean transit time [77, 79].

Perfusion measures the flow rate through the vasculature of the structure and is an oncologic

marker for tumor vascularity and grade. Perfusion (along with the other parameters) is calculated

according to the “slope method” of deconvolution analysis and is calculated as the ratio of the

maximum slope in the tissue uptake curve to the peak arterial enhancement, or

Perfusion =
max

⇣
dHU(t)tissue

d t

⌘

max(HU(t)arterial −HU(0)arterial)
. (6.1)
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(a)

(b)

Figure 6.4: ANTs-deformed axial image from the 8th DCE-CT snapshot of the same patient scan
shown in Figure 6.2. (6.4a), grayscale window level/width is set to 0 HU/1000 HU. (6.4b), the
window level/width is set to 0 HU/2000 HU.
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This formulation of perfusion is the slope method of the original Mullani-Gould approach [137],

and the derivation of the formula is found in the Appendix of reference [79]; the method has been

validated in other organ systems [138,139]. For the discrete data in this study, the maximum slope

in the numerator of equation 6.1 is calculated using the running difference between values in the

uptake curve, divided by the temporal spacing of points on the uptake curve. The denominator is

calculated as the maximum enhancement of the average uptake in an arterial region of interest over

its baseline value.

Peak enhancement is the maximum increase in tissue density over baseline, or

Peak Enhancement = max(HU(t)tissue −HU(0)tissue) , (6.2)

and is an oncologic marker of tissue blood volume. The marker commonly called “blood volume”

is simply a normalized version of peak enhancement and is calculated by the slope method as

Blood Volume =
max(HU(t)tissue −HU(0)tissue)

max(HU(t)arterial −HU(0)arterial)
. (6.3)

This formulation of blood volume was presented by Koenig et al. [140] and is an approximation of

blood volume as originally presented by Axel et al. [141].

The time to peak enhancement is a measure of the time for contrast to flow from a major arterial

vessel to the tissue, or

Time To Peak = argmax(HU(t)tissue)− tarterial arrival, (6.4)

and is an oncologic marker of blood pressure (where tarterial arrival is the time of initial contrast

enhancement in the arterial input).

Mean transit time is the time taken for contrast to travel from artery to vein, calculated as the
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full-width at half-maximum (FWHM) of the tissue uptake curve over baseline, or

Mean Transit Time = FWHM(HU(t)tissue −HU(0)tissue) , (6.5)

and is an oncologic marker of local perfusion pressure.

6.4.2 Region of Interest Identification

Many of the above DCE-CT parameters require the definition of an arterial input function (AIF). In

our patient cohort, the pulmonary arteries (PA) were used whenever possible; contours were placed

in the PA trunk at the level of the PA bifurcation when the structures were in the reconstructed field

of view. For other patients whose PA trunk was not visible in the axial DCE-CT section, the PA

main branch corresponding to the diseased hemithorax was used as the AIF. Contouring for all

regions of interest, including the AIF, was performed by the author using our in-house software

Abras. The average HU value of the voxels inside the arterial input contour was used as the value

of the AIF for the time associated with a given DCE-CT snapshot.

Other regions of interest were contoured for each patient. Spatially isolated foci of disease

were contoured separately, and contours were allowed to span multiple axial slices (volumetric

contours). Because the scans had been registered to a common reference coordinate system (the

20th DCE-CT snapshot), the contours only needed to be drawn on a single snapshot of the ob-

server’s choosing (e.g., the snapshot that best highlighted the difference between the structure

of interest and the surrounding structures). Matched ROIs were independently contoured on the

second DCE-CT scan for each patient with reference to the first DCE-CT scan. All contours were

verified to include the region of interest for all DCE-CT snapshots by overlaying the contour across

the temporal images for a given axial section. Because of the “wobble” mentioned earlier for the

ANTs registration algorithm, contours were necessarily drawn a few voxel-widths interior to the

boundary of the disease foci; in this way, the ROI contours included the distinct disease foci across
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all DCE-CT snapshots. A median of four distinct volumetric regions of interest were contoured

for each patient, each corresponding to a distinct focus of disease.

After registration, the uptake curve of each voxel inside the patient’s thorax is calculated (i.e.,

the HU-value trajectory across time for the 25 DCE-CT snapshots). Individual voxel uptake curves

are subject to image noise, leading to variability in the DCE-CT parameters calculated by the

slope method shown above. Therefore, before the voxel-by-voxel DCE-CT data maps can be dis-

played as images, smoothing was applied to individual voxel uptake curves using the “csaps” cubic

smoothing spline function in MATLAB, an extension of the “smooth” function from FORTRAN.

The default value of the smoothing parameter was used for data points with a separation of ap-

proximately six seconds, since it was reasonable to believe that while uptake curve changes on the

three-second sampling scale might be affected by noise, changes at half the sampling rate may be

more robust to image noise. It should be noted, however, that these smoothed uptake curves are

only used to visualize the DCE-CT data maps.

6.4.3 DCE-CT Parameter Values

DCE-CT parameters can also be summarized from the average uptake curves of the individual

ROIs. That is, the average HU value of all the voxels inside a disease ROI can be extracted from

each DCE-CT snapshot using the observer-provided contours, and this single “average uptake

curve” can be used to calculate the DCE-CT parameters for the individual ROI. Average uptake

curves are shown for an example patient scan (patient #2, scan #2) in Figure 6.5. The effect

of spatially averaging the HU values inside a contour at each DCE-CT snapshot is sufficient to

not require any further smoothing of the average uptake curves. The DCE-CT parameter values

reported below are all derived from average uptake curves.

The implementation of the DCE-CT analysis software in MATLAB is flexible; it can handle

DCE-CT scans with arbitrary time spacing and arbitrary definitions of regions of interest. Many

implementations of DCE-CT or “perfusion CT” analysis software, especially commercial, limit
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Figure 6.5: Average uptake curves from an example patient’s tumor regions of interest across all
25 DCE-CT snapshots. The four distinct foci of disease were each identified by the author using
volumetric contours.

183



the user to identifying regions of interest as simple shapes (ovals or boxes) in single axial sections.

The code written specifically for this study allows contours placed on different and potentially non-

sequential axial sections to be linked, and the average uptake curves for those regions of interest

are simply derived from any voxels inside the mask formed by the volumetric contours. Volumetric

contouring is especially useful for more “rind-like” tumor ROIs, where the thickness of disease in

any one axial section can be rather thin, but many axial sections contain the same spatial region of

interest (perhaps “volume of interest”). The voxel count for these ROIs is increased substantially

(and the noise in the average uptake curve thereby reduced) through the use of volumetric contours

rather than single-section contours. The code for this study is relatively fast, calculating all DCE-

CT parameters for the entire collection of voxels in approximately two minutes on a standard

desktop PC. However, even with parallelization across all four cores of a quad-core computer, the

spline smoothing operation required for image visualization purposes mentioned above can take

approximately one hour.

Table 6.2 summarizes the DCE-CT parameters for the ROIs from patients on observation. Since

there are seven patients on observation, there are 14 individual scans included in these summaries

(among the seven patients, there are 19 unique ROIs). Some values of mean transit time (from

equation 6.5) are not calculable, since there is no guarantee that the average uptake curve will fall

to its half-maximum value within the allotted DCE-CT imaging time. Therefore, all that can be

said for the full-width at half-maximum of uptake over baseline for these ROIs is that it exceeds

the total observed imaging duration. Table 6.3 shows the same DCE-CT parameter summaries for

the ROIs from patients being treated. There are six patients “on treatment,” and therefore there are

12 scans included in these summaries (among the six patients, there are 24 unique ROIs).

The parameter “time to peak” (TTP) is interesting to study at a single time point, while the other

DCE-CT parameters are perhaps more interesting when comparing DCE-CT scans across time

(i.e., using the DCE-CT parameters as imaging biomarkers of response). In order to maximize the

enhancement of MPM on a single standard chest CT scan, the delay between contrast injection and
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scan acquisition should be set to the time required for peak enhancement, quantified in this study

as TTP. From the TTP data, we have an overall average TTP value of 76.2 seconds when using all

patient ROIs. The average value of tarterial arrival from equation 6.4 is 6.3 seconds, indicating that

the average peak in disease ROI uptake occurs 82.5 seconds after initiation of contrast injection.

However, for a standard chest CT scan with contrast, it is typical to acquire the scan approximately

70 seconds after initiation of contrast injection. Therefore, if clinicians wanted to acquire a chest

CT specifically to maximally enhance tumor tissue for patients with MPM, it may be prudent to

wait additional time before acquiring the CT scan post contrast injection (for the contrast injection

parameters given in this study). However, any additional delay may negatively impact the visibility

of mediastinal structures and pulmonary vasculature.

Images of the DCE-CT parameter data maps for an example scan (patient #2, scan #2) are

shown in Figures 6.7 through 6.11. Figure 6.6 shows the temporal maximum intensity projec-

tion (tMIP), where the maximum HU value across time for each voxel is assigned to the spatial

location of that voxel. Images of tMIP maps are useful for visual and anatomic reference, since

they combine data across all DCE-CT snapshots. Figure 6.7 shows the perfusion map, Figure 6.8

shows the peak enhancement map, Figure 6.9 shows the blood volume map, Figure 6.10 shows the

time to peak map, and Figure 6.11 shows the mean transit time map. The main tumor region on

these maps is shown with an outline and an arrow. The tMIP image reveals that the main posterior

mass adjacent to the vertebral body contains some low-uptake voxels (more anterior) and some

higher-uptake voxels (more posterior), though the first DCE-CT snapshot image of this mass is

nearly spatially uniform. The posterior higher uptake region is also reflected in the perfusion, peak

enhancement, and blood volume maps. In these figures, no effort was made to mask the uptake in

the lungs, which have very high perfusion properties due to the vascularity of the lung parenchyma

and the extent of large vasculature in the lungs.
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Figure 6.6: Example axial section of the temporal maximum intensity projection (tMIP) for patient
#2, scan #2. The units of the image values are HU. The ROI indicated by the green arrow is the
“posterior” ROI shown in Figure 6.5.

188



Figure 6.7: Example axial section of the perfusion map for patient #2, scan #2. The units of the
image values are 1/sec. The ROI indicated by the white arrow is the “posterior” ROI shown in
Figure 6.5 and has an average uptake curve perfusion value of 0.0038 1/sec.
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Figure 6.8: Example axial section of the peak enhancement map for patient #2, scan #2. The units
of the image values are HU. The ROI indicated by the white arrow is the “posterior” ROI shown
in Figure 6.5 and has an average uptake curve peak enhancement value of 33.1 HU.
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Figure 6.9: Example axial section of the blood volume map for patient #2, scan #2. The image
values are unitless. The ROI indicated by the white arrow is the “posterior” ROI shown in Figure
6.5 and has an average uptake curve blood volume value of 0.061.
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Figure 6.10: Example axial section of the time to peak (TTP) map for patient #2, scan #2. The
units of the image values are seconds. The ROI indicated by the red arrow is the “posterior” ROI
shown in Figure 6.5 and has an average uptake curve TTP value of 27.6 seconds.
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Figure 6.11: Example axial section of the mean transit time (MTT) map for patient #2, scan #2.
The units of the image values are seconds. Voxels where the MTT value is not calculable (i.e.,
only known to be longer than the total duration of the DCE-CT scan) are shown as zeros. The ROI
indicated by the white arrow is the “posterior” ROI shown in Figure 6.5 and the average uptake
curve MTT value is not calculable.
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6.5 Quantitative Response Assessment

6.5.1 Tumor Bulk

As mentioned previously, one component of the patient scan procedure was a full chest CT scan

acquired at full inspiration, beginning approximately 75 seconds after the initiation of contrast

injection. Tumor burden can be measured using these full chest CT scans for the purpose of

investigating correlations between changes in tumor burden measurements and DCE-CT parameter

measurements. Measurements of tumor burden are often used as tools for response assessment, but

changes in tumor burden may not be directly related to changes in the hemodynamic properties of

the disease. Therefore, we do not necessarily expect high correlations between changes in tumor

burden and changes in DCE-CT parameters.

Tumor burden was quantified in the full chest CT scans using two distinct methods: first, the

full volume of pleural disease was segmented using the semi-automated technique described in

Chapter 4. Disease volumes from both scans per patient for all 13 patients who have currently

undergone both DCE-CT scans in this study were quantified from these segmentations using the

pixel-counting technique [94]. Second, linear measurements of tumor thickness were made on all

scans according to the modified Response Evaluation Criteria In Solid Tumors (RECIST) tech-

nique [47]. A research radiologist experienced in thoracic CT and MPM measurements made six

thickness measurements per patient scan (two measurements on each of three axial sections, per

the modified RECIST protocol) with full access to both the first and second scan, per patient. The

change in summed linear thickness and the change in volume of segmented pleural disease were

recorded as measures of tumor “response.”

Figure 6.12 shows the change in disease volume between the two scans as a function of the

change in summed tumor thickness between the two scans. Compare this plot to Figure 5.4; in

Chapter 5, it was shown that the rank correlation between changes in summed linear measurements

and disease volume measurements was rCh.5
thickness = 0.676. In this study, the same correlation is
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estimated to be rthickness = 0.643 (p = 0.021) when including data from all 13 patients. It can be

seen in the figure that, as initially observed in Chapter 5, the agreement of the data to a spherical

geometric model is poor. For patients on treatment, the geometric mean change in disease volume

between scan dates was +6.8%, and the corresponding change in summed linear thickness was

+2.9%. For patients on observation, the geometric mean change in disease volume between scan

dates was +3.9%, and the corresponding change in summed linear thickness was +0.9%.

6.5.2 DCE-CT Parameter Changes

To quantify the mean changes in DCE-CT parameter values between the first and second scan, the

DCE-CT changes were first averaged over a given patient’s regions of interest. Next, the unique

patients in a given classification (i.e., treatment or observation) were averaged together. The results

are shown in Table 6.4. Differences in mean DCE-CT parameter changes between the treatment

and observation group were quantified using Student’s t-test. Perhaps the most noteworthy DCE-

CT parameter in the table is perfusion; for patients undergoing treatment, perfusion declines by an

average of 12.6% between scans, while perfusion increases by an average of 29.4% for patients on

observation. This finding is in line with the expectation that biologically active therapy reduces the

proliferative cell burden, and therefore the blood flow to the region would also be reduced. None

of the p-values in the table are significant, in large part due to the small number of patients in each

classification group.

The changes in DCE-CT parameter values are plotted against the changes in tumor bulk mea-

surements between the two scan dates in Figures 6.13 through 6.17. Table 6.5 shows the calculated

rank correlation statistics (with respective p-values for a null hypothesis of r = 0) comparing

changes in DCE-CT parameter values with changes in tumor bulk as measured with either disease

volume segmentations or modified RECIST measurements. For the figures mentioned above, note

that there are multiple changes in each DCE-CT parameter per patient (one for each ROI) but only

one change in tumor bulk per patient. This multiplicity is due to the per-ROI nature of DCE-CT
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Figure 6.12: Correlation in relative change between scan dates for disease volume measurements
and summed linear thickness measurements. The relationship expected from a spherical geomet-
ric model (see Chapter 5) is indicated with the solid gray line. Each point is labeled with the
corresponding patient number.
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DCE-CT
Parameter

D,
All

Patients

D,
Treated
Patients

D,
Observation

Patients

p-value,
difference
between
groups

Perfusion +7.9% -12.6% +29.4% 0.20

Peak
Enhancement

-8.6% -7.6% -9.5% 0.99

Blood Volume -7.2% -12.8% -2.2% 0.50

Time To Peak -15.2% -9.9% -19.4% 0.77

Table 6.4: Average changes (D) in DCE-CT parameters from first scan to second scan. The p-
values are calculated using a Student’s t-test. The mean transit time parameter is not calculable for
all ROI average uptake curves, resulting in insufficient data to calculate average changes.

parameter calculation and the per-patient nature of the tumor bulk measurement. Rank correlation

values and corresponding p-values were calculated using the per-patient average change in each

DCE-CT parameter, as in Table 6.4. There are no obvious patterns in these data, as summarized

with the low correlation values found in Table 6.5, though as mentioned previously, there was no

a priori expectation of high correlation.

6.6 Discussion

The current study is part of an ongoing pilot study to explore the feasibility of dynamic contrast-

enhanced computed tomography and the information contained in the DCE-CT parameter values

for patients with malignant pleural mesothelioma. In the current work, we have established that

DCE-CT integrated with a standard chest CT scan is a feasible imaging tool for gathering anatomic

and physiologic information in MPM patients and that first-pass hemodynamic parameters can be

calculated from the resulting dynamic image data. To date, 13 patients have received both the

first and second planned DCE-CT scans, while an additional three patients await their second scan.
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Figure 6.13: Changes in DCE-CT perfusion values versus changes in tumor bulk as measured with
either (6.13a) disease volume or (6.13b) modified RECIST measurements. Each point is labeled
with the corresponding patient number.
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Figure 6.14: Changes in DCE-CT peak enhancement values versus changes in tumor bulk as mea-
sured with either (6.14a) disease volume or (6.14b) modified RECIST measurements. Each point
is labeled with the corresponding patient number.
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Figure 6.15: Changes in DCE-CT blood volume values versus changes in tumor bulk as measured
with either (6.15a) disease volume or (6.15b) modified RECIST measurements. Each point is
labeled with the corresponding patient number.
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Figure 6.16: Changes in DCE-CT time to peak values versus changes in tumor bulk as measured
with either (6.16a) disease volume or (6.16b) modified RECIST measurements. Each point is
labeled with the corresponding patient number.
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Figure 6.17: Changes in DCE-CT mean transit time values versus changes in tumor bulk as mea-
sured with either (6.17a) disease volume or (6.17b) modified RECIST measurements. Each point is
labeled with the corresponding patient number. The mean transit time parameter is not calculable
for all ROI average uptake curves.
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DCE-CT
Parameter

Tumor
Measurement

Technique

r ,
All

Patients

r ,
Treated
Patients

r ,
Observation

Patients

Volume
-0.385

(p = 0.20)
-0.143

(p = 0.80)
-0.357

(p = 0.44)
Perfusion

RECIST
0.148

(p = 0.63)
0.486

(p = 0.36)
-0.036

(p = 0.96)

Volume
-0.363

(p = 0.22)
-0.429

(p = 0.42)
-0.321

(p = 0.50)
Peak Enhancement

RECIST
-0.566

(p = 0.05)
-0.486

(p = 0.36)
-0.429

(p = 0.35)

Volume
-0.352

(p = 0.24)
-0.600

(p = 0.24)
-0.107

(p = 0.84)
Blood Volume

RECIST
-0.544

(p = 0.06)
-0.543

(p = 0.30)
-0.286

(p = 0.56)

Volume
0.308

(p = 0.31)
-0.143

(p = 0.80)
0.607

(p = 0.17)
Time To Peak

RECIST
0.033

(p = 0.92)
-0.086

(p = 0.92)
0.286

(p = 0.56)

Table 6.5: Rank correlation statistics and respective p-values comparing changes in DCE-CT pa-
rameter values with changes in tumor bulk as measured with either disease volume segmentations
or modified RECIST measurements. All p-values are calculated for a null hypothesis of r = 0.
The mean transit time parameter is not calculable for all ROI average uptake curves, resulting in
insufficient data to calculate rank correlation values.
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Patient accrual is planned to continue for an additional four patients, leading to a total of 20 patients

(10 each on treatment and on observation).

The imaging protocol in this study was initially developed by studying other previously imple-

mented DCE-CT protocols for thoracic malignancies, namely lung cancer. The imaging param-

eters (120 kVp and 100 mAs) provided sufficient contrast and low enough noise for 3-mm axial

reconstructions to be easily visually interpretable. Later, after a quantitative study of imaging dose

and image quality metrics, it was decided that 100 kVp and 100 mAs provided a better balance be-

tween image quality and patient dose. Imaging parameters of 120 kVp and 80 mAs were “a close

second,” with similar imaging dose values between the two protocols, but the enhanced iodine

attenuation of the 100 kVp spectrum leads to a higher signal from the contrast uptake in vascular

tissues. While noise is somewhat increased by using a lower tube voltage setting, the increase in

noise does not preclude visual interpretation or image registration (while no patient in this written

document has received the “updated” imaging protocol, two of the patients awaiting their second

DCE-CT scan have been scanned with 100 kVp/100 mAs). Furthermore, since DCE-CT analysis

is predominantly performed on average uptake curves, the process of spatially averaging HU val-

ues for each DCE-CT snapshot in a masked ROI region compensates for any image noise in the

individual DCE-CT snapshots (the smooth appearance of the average uptake curves in Figure 6.5

are an example of this effect).

The software toolkit and workflow developed specifically for this study allow for analysis of

volumetric regions of interest of arbitrary morphology in a spatially co-registered coordinate sys-

tem (chosen for this study as the 20th DCE-CT snapshot). The application of non-rigid image

registration for DCE-CT is not novel, since its use has been described elsewhere [129–131]. In this

study, registration to a common “central” snapshot was performed, rather than “daisy-chaining”

the registrations together (e.g., 1 ! 20 directly rather than a composite deformation vector field

generated from 1 ! 2, 2! 3,. . . , 19! 20). While this technique was developed independently for

this study after exploration of our own DCE-CT image data, the technique is in fact recommended
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in recent literature [129]. The non-rigid registration technique used in this study (the symmet-

ric normalization algorithm in ANTs) is relatively new and has been seemingly used in only one

other dynamic imaging study [142]. Its use in this study was motivated by the qualitative improve-

ments in deformed image appearance and reduction in deformation artifacts when compared with

the demons algorithm implementation. A quantitative comparison of residual error in matched

anatomical landmarks would conceivably show similar performance in spatial matching between

demons and ANTs, since both techniques achieve good spatial matching across DCE-CT snap-

shots. It should be noted that the onus is still on the observer to identify any gross mis-registrations

and draw regions of interest that avoid these areas.

When calculating changes in DCE-CT parameters between successive scans, it is important to

match the definitions of spatial regions of interest. Initially, we attempted to register all the DCE-

CT snapshots from the second DCE-CT scan to the 20th snapshot of the first DCE-CT scan. Had

this approach been successful, the ROI contours from the first DCE-CT scan could be used on the

second DCE-CT scan without too much editing. However, due to potentially gross positioning dif-

ferences between DCE-CT scans, this attempt was often not successful (or if partially successful,

the useful axial range might potentially be reduced from 54 mm because of changes in patient pitch

in the scanner bore). Instead, the strategy was adopted to independently contour matched ROIs on

the second DCE-CT scan for each patient with reference to the first DCE-CT scan.

There were no obvious correlations between changes in tumor bulk measurements and changes

in DCE-CT parameter values in Table 6.5, and no individual correlation was significantly different

from zero. While the rank correlation tests could have been performed using per-ROI changes in

DCE-CT parameter values rather than the average per-patient changes, “response” is inherently a

per-patient phenomenon, and changes in tumor measurements are reported on a per-patient basis.

In Table 6.4, the DCE-CT parameter perfusion showed an interesting separation between the treat-

ment and observation patient cohorts. For patients on treatment, perfusion decreased on average

between the two DCE-CT scans, while for patients on observation, perfusion increased on aver-
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age. It will be interesting to investigate this parameter again when the full 20 patients have been

scanned. For the two mesothelioma patients on the anti-angiogenic therapy AZD2171 in the study

by Meijerink et al. [80], there was a reduction in perfusion between DCE-CT scan dates matched

with a decrease in tumor bulk as measured using the modified RECIST technique (one patient

experienced a perfusion reduction of 19%, while the other experienced a reduction of 47%).

It should be noted that the patient cohort for this study is small. Trends within patient subsets

(six patients on treatment, seven patients on observation) are tenuous, and the final analysis after 20

patients have been accrued will only be marginally better powered from a statistical perspective.

The goal of this work was always intended to be “motivational” in the pilot-study sense of the

word. Based on these data, a future study may potentially be designed to further investigate DCE-

CT parameters for patients all undergoing the same treatment (even with six treatment patients in

this study, there are four unique treatment regimens!). Since it has been shown that the complete

calculation of mean transit time would likely require more imaging at the “distal end” of the current

DCE-CT protocol, the revised imaging protocol could either cut the second group of DCE-CT

snapshots entirely or increase the delay until their acquisition.

As survival times become available for the patients in this study, it will also be interesting to

investigate correlations among DCE-CT parameters and survival. In the DCE-MRI study by Giesel

et al. [76], the kinetic parameter kep was significantly associated with patient survival. While the

parameter kep often used in DCE-MRI literature has no direct analogue in first-pass DCE-CT, it is

still a normalized contrast uptake rate and is therefore most similar to perfusion [143]. It will be

interesting to investigate DCE-CT perfusion as a prognostic parameter for MPM as more patient

data become available.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

“What is a scientist after all? It is a curious man looking through a keyhole, the

keyhole of nature, trying to know what’s going on.” – Jacques Yves Cousteau

The work in this dissertation has been focused on the redefinition of radiologic response for pa-

tients with malignant pleural mesothelioma (MPM). The current standard for medical image-based

tumor response assessment for patients with MPM is the modified Response Evaluation Criteria

In Solid Tumors (RECIST) measurement technique [47] with changes classified according to the

standard RECIST response classification criteria [43]. In the modified RECIST protocol, two tu-

mor thickness (short-axis) measurements are acquired from each of three axial sections; the sum of

the six linear measurements forms the tumor burden measurement to be tracked over time. Using

the standard RECIST classification criteria, if the summed linear measurement increases by more

than 20% from the minimum of previous measurements (nadir), the patient is classified as having

progressive disease (PD), and if the measurement decreases by 30% or more from the baseline

measurement, the patient is classified as partially responsive (PR). Stable disease (SD) is defined

for measurement changes lying between the previously mentioned classification groups. While the

modified RECIST measurement technique was developed specifically for the unique morphology

and growth patterns of mesothelioma, the standard RECIST classification criteria are used across

a wide range of diseases and are certainly not specific to any one disease. In fact, the standard

RECIST classification criteria are extrapolated from an assumption of spherical geometry and the

amount of change physicians believed they could reliably identify from palpation alone in previous

breast cancer cohort studies [44].

The individual projects that form the chapters of this dissertation extend the current response

assessment paradigm by investigating alternate response assessment strategies in one, two, three,

and four dimensions. Tumor burden measurements were extended from one to three dimensions,

and tumor response was extended from discrete to continuous quantification of change in tumor
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burden. Normal tissue structures were investigated as potential surrogates of tumor response. Fi-

nally, temporal and spatial measurements were combined in an investigation of dynamic imaging

for patients with MPM.

In Chapter 2, the performance of the current response classification criteria was quantified and

new discrete response classification criteria were optimized for patients with MPM using the cur-

rent linear (1D) measurement technique. Seventy-eight patients were included from of a patient

database consisting of 97 treated patients from Sir Charles Gairdner Hospital in Perth, Western

Australia. Using Harrell’s C statistic, the performance of the current classification criteria (i.e.,

-30%/+20%) and each patient’s best response during treatment was Cstd = 0.778. Despite the

original arbitrary provenance of these classification cut points, they perform adequately and are

within the range of “clinical utility.” However, the most useful (and relevant) response classifi-

cation criteria for any given disease are those developed to maximize the association between the

assessment metric and meaningful outcomes such as survival. In this study, the optimal association

between tumor response and patient survival was obtained using classification criteria of -64% and

+50% for PR and PD, respectively. Using the same Harrell’s C statistic, the performance of the

new optimized criteria (-64%/+50%) and each patient’s best response was Copt = 0.855. These

optimized classification criteria appear better suited to the specific morphology and growth pattern

of mesothelioma and may prove useful in the assessment of clinical trials and routine patient care.

Furthermore, these optimized criteria allow for a marginal improvement (though not significant;

p = 0.12 in a cross-validation) in response assessment performance while maintaining the simple

linear thickness tumor burden measurement technique.

Because of the limited number of patients in the database, these optimized classification crite-

ria need to undergo a full validation on an independent patient cohort. The new criteria are similar

to theoretical linear measurement classification criteria derived for non-spherical geometries by

Oxnard et al. [51], but because the classification criteria would impact clinical trial eligibility and

triggers to cease clinical trial treatment, it is important that the new classification criteria be vali-
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dated before utilization in a clinical setting. Furthermore, the optimization process may need to be

repeated for patients undergoing therapeutic regimens beyond the cytotoxic therapy of the patients

in this study.

In Chapter 3, manual area (2D) contours were investigated as a potential means of response as-

sessment in MPM patients. In place of summed tumor thickness measurements, summed area mea-

surements from three axial sections are potentially better able to capture morphological changes

in tumor burden while avoiding the time cost associated with manual segmentation of complete

disease volume. The goal of the study was to evaluate tumor area measurements on CT scans as

a more complete and, potentially, less variable metric for MPM response assessment than linear

thickness measurements acquired according to the modified RECIST protocol. Inter-observer vari-

ability was initially quantified for baseline scans (i.e., at a single time-point), where the relative

variability between observers’ summed area measurements spanned -71% – 240% (95% confi-

dence interval). Observers were also tasked with drawing follow-up contours on a CT scan from a

later time-point for each patient, where the baseline scan and contours were visible to the observers

for each patient during the follow-up contouring task. The baseline contours implicitly constrained

the follow-up measurement process, and the relative variability between observers was reduced to

-41% – 69% for the follow-up summed area measurements (95% confidence interval).

The measured inter-observer variability in both baseline and follow-up summed area measure-

ments exceeds two-dimensional response classification criteria and are much wider than corre-

sponding inter-observer variabilities previously published for summed linear thickness measure-

ments [52,53]. Therefore, while the number of patients (31) and observers (five for baseline, three

for follow-up) in this study are relatively low, the primary implication of this study is that summed

area measurements are too variable for reliable use as a response assessment technique in patients

with MPM. Beyond the variability in the data, the collection of area contours from three axial

sections per patient is considerably more time-consuming than the linear measurement technique

currently utilized clinically. The time burden per patient is similar to the time required to complete
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a semi-automated disease volume segmentation, and therefore it is difficult to foresee a situation

in which summed area measurements would be used in place of semi-automated segmentations of

actual disease volume for response assessment.

In Chapter 4, a comprehensive model to predict MPM patient survival was built using time-

changing measurements of image-based disease volume in conjunction with clinical covariates.

While prognostic models have been published for patients with MPM previously, they have either

included clinical covariates or measurements of disease volume, never both. Furthermore, the

only model incorporating changes in disease volume used discrete change (i.e., disease growth or

disease decline) assessed only once (i.e., between baseline and first follow-up scans) [58]. In the

present study, pleural disease was segmented using a semi-automated technique with modifications

from previously published literature. Changes in pleural disease volume were treated continuously

and were quantified using the “specific growth rate” (SGR) evaluated over time. Patient survival

was modeled using a time-variable implementation of the Cox Proportional Hazards model, and

survival model performance was assessed using Heagerty’s Ct statistic, an extension of receiver

operating characteristic (ROC) analysis to time-dependent survival models.

Using the semi-automated segmentation method customized for this study, final segmenta-

tions of pleural disease volume were obtained with approximately 20 minutes of manual inter-

vention per case, compared with around 45 minutes of manual intervention per case using the

previously published “automated” segmentation technique. In the cohort of 81 patients (281 CT

scans), disease volume SGR was significantly associated with patient survival in a univariate model

(p = 0.0003), as were eight clinical covariates in univariate analysis. The final multivariate model

for patient survival used disease volume SGR (p = 0.00045) in conjunction with disease histology

(p = 0.0029), dyspnea (p = 0.0020), and Eastern Cooperative Oncology Group (ECOG) perfor-

mance status (p = 0.029), where again disease volume was allowed to vary over time as disease

volume measurements were accumulated from a series of follow-up CT scans. The performance

of the survival model, when trained and tested on the same full patient cohort, was estimated to be
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Ct = 0.69, whereas the performance estimate was reduced to Ct = 0.66 when model performance

was cross-validated using either a leave-one-out approach or repeated random sub-sampling.

The multivariate survival model in this study is the only model developed to date that includes

both clinical covariates and time-variable measurements of disease volume for patients with MPM.

While changes in disease volume were previously shown to be associated with patient survival

when discretized between growth and decline, these changes were only assessed at a single time-

point, and subsequent updates from follow-up scans during the entire course of a patient’s treatment

were necessarily disregarded. When modeled according to the methods of Liu et al. [58], patient

survival only achieved a performance of Ct = 0.521. However, any arbitrary disease-volume tra-

jectory can be modeled using the techniques in this study, and model performance is improved

accordingly.

Future work will focus on expanding the patient cohort and validating the prognostic model

in independent databases. Efforts are currently underway to use semi-automated disease volume

measurements for response assessment in a clinical trial for patients with MPM. While the patients

in the current study all received cytotoxic chemotherapy, the number of cycles per patient was

prescribed clinically, and drug selection was also based on clinical standard of care. It will be in-

teresting to see whether the model from this study will be applicable to a new treatment regimen, or

whether treatment-specific models will need to be developed (e.g., for a targeted anti-angiogenic

treatment). Furthermore, future work could investigate incorporating disease volume measure-

ments from the pre-treatment period. Though not investigated in the current study due to time

constraints, changes in disease SGR between the pre-treatment period and the during-treatment

period could be indicative of patient response.

In Chapter 5, automatically segmented lung volumes were investigated as an alternate response

assessment measurement technique. Because of the anatomy associated with MPM, changing tu-

mor burden affects more than just the volume of tumor. The hemithoracic space is fairly fixed

by the ribcage and mediastinal anatomy. Therefore, when the disease volume increases, it is rea-
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sonable to believe that the aerated lung volume should decrease correspondingly. This correlation

was observed for data in an applicable cohort of 61 patients (a subset of the cohort from Chapter

4), where the rank correlation between changes in disease volume and aerated lung volume was

r = −0.69. Furthermore, while increasing disease volume was shown to be significantly asso-

ciated with poor patient prognosis in the previous chapter, this study revealed decreases in lung

volume to be significantly associated with poor patient prognosis (as expected). When modeled

as time-variable SGR, disease volume and lung volume were nearly identical in terms of their

statistical prognostic performance (as assessed using Ct in multivariate survival models).

Linear measurements were also compared with disease volumes in Chapter 5, where again

a high rank correlation between changes in linear thickness and disease volume was observed

(r = 0.68). Summed linear thickness measurements were significantly associated with patient

survival (p = 0.00053) when modeled as time-variable SGR in conjunction with the previously-

mentioned clinical covariates. Prognostic performance was on average better in multivariate sur-

vival models using summed linear thickness measurements than with models using disease vol-

ume measurements, though the difference was not statistically significant in a repeated random

sub-sample analysis.

The broad strokes of Chapter 5 are quite similar to those of Chapter 4: relevant measurements

(whether of the disease burden directly or of surrogate normal structures), treated continuously and

modeled as time-variable specific growth rates, are significantly associated with patient survival in

multivariate models. However, while the statistical performance of the three survival models are

very similar, there are certainly practical differences between the three measurement techniques.

Summed linear thickness measurements are obtained manually and require perhaps five minutes of

manual intervention per case, whereas disease volumes are obtained semi-automatically, requiring

around 20 minutes per case of manual intervention. Lung volumes are obtained completely auto-

matically with no user invention required and therefore are perhaps the most desirable of the three

measurement techniques. However, lung volumes were only investigated as a response assessment
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measurement technique in patients with unilateral disease since, to be tracked over time, ipsilat-

eral lung volumes need to be normalized by contralateral healthy lung volumes; lung volumes are

not applicable for response assessment in patients with bilateral disease (around 10% of patients).

While survival models using summed linear thickness measurements performed better (on average)

than corresponding models using disease volumes, Frauenfelder et al. [57] reported considerably

lower inter-observer variability in disease volume measurements than in summed linear thickness

measurements. The result may have been in part due to their elementary volumetric measurement

technique and arbitrary response criteria with a very wide definition of stable disease, but taken

at face value, the reduced inter-observer variability of volume measurements should temper the

apparent advantage of linear thickness measurements.

While disease volumes are logically better able to capture changes in overall tumor bulk, it is

possible that changes in tumor thickness may be more directly associated with patient prognosis

than overall disease volume, leading to the observed performance increase for the survival model

using summed linear thickness measurements. One possible explanation is that human observers

are able to place their baseline tumor thickness measurements in locations that are in some sense

“important” for response assessment; volume measurements capture changes over the total extent

of disease, while summed tumor thickness measurements only capture change in the discrete (up

to six, by modified RECIST) locations where baseline measurements were placed. This hypothesis

could be tested by using the available volumetric segmentations to derive automated random linear

thickness measurements at baseline. Follow-up measurements could be made by picking matched

locations using deformable registration and again using the volumetric segmentation to identify

the local “tumor thickness.” The prognostic performance of these effective linear measurements

could be compared with the performance of the existing manual measurements, indicating to what

extent manual measurement placement was better able to predict patient survival than “random”

linear thickness measurements.

Whether changes in tumor burden are assessed using summed linear thickness measurements,
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disease volume measurements, or normalized lung volume measurements, many recommend that

tumor response should be assessed using continuous (i.e., not discrete) measurement changes

[44, 45, 106, 144]. Therefore, while a discretized model for tumor response was optimized specif-

ically for patients with MPM in Chapter 2, tumor response should ultimately rely on continuous

measurement changes. Rather than defining study eligibility and exclusion criteria in terms of

discretized response classification, continuous SGR measurements may be better able to identify

when patients are in need of therapeutic intervention or are no longer gaining benefit from an

administered therapy. This dissertation provides the first evidence that continuous changes in all

three measurement techniques are significantly associated with patient survival.

Finally, Chapter 6 reported the results of a pilot study on dynamic contrast-enhanced (DCE)

CT for patients with MPM. Of the 13 patients with two completed DCE-CT scans included in this

initial analysis, six were on treatment and seven were on observation. The final accrual goal is 10

patients in each classification group with two DCE-CT scans each. A DCE-CT imaging protocol

was developed to dovetail with a clinically indicated standard chest CT scan and utilize the same

bolus of iodinated contrast media. A deformable registration software tool was implemented to co-

register the individual DCE-CT snapshots in a single scan to a common reference frame, allowing

contrast uptake to be tracked on a voxel-by-voxel level. Volumetric foci of disease were contoured

separately, and various hemodynamic parameters were calculated for each region of interest. DCE-

CT parameter values are reported on a per-scan basis, as well as changes in the DCE-CT parameters

for each patient group.

There were no obvious correlations between changes in tumor bulk measurements and changes

in DCE-CT parameter values. While measurements of tumor burden are often used as tools for

response assessment, changes in tumor burden may not be directly related to changes in the hemo-

dynamic properties of the disease, and there was no a priori expectation of high correlation be-

tween changes in tumor burden and changes in DCE-CT parameters. The DCE-CT parameter

perfusion showed an interesting separation between the treatment and observation patient cohorts.
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For patients on treatment, perfusion decreased by 13% on average between the two DCE-CT scans,

while for patients on observation, perfusion increased by 29% on average. It will be interesting to

investigate this parameter again as a potential indicator of response when the full 20 patients have

been scanned. Another parameter of interest was the time until peak enhancement, which averaged

around 86 seconds after initiating contrast injection. While the typical delay between contrast in-

jection and standard chest CT scan acquisition is around 60–70 seconds, clinicians may be able to

improve single-snapshot MPM disease enhancement by extending the duration of the delay period.

It should be noted that the patient cohort in Chapter 6 is small. Trends within patient subsets

(six patients on treatment, seven patients on observation) are tenuous, and the final analysis after 20

patients have been accrued will only be marginally better powered from a statistical perspective.

The goal of this work was always intended to be “motivational” in the pilot-study sense of the

word. Based on these data, a future study may potentially be designed to further investigate DCE-

CT parameters for patients all undergoing the same treatment (even with six treatment patients in

this study, there are four unique treatment regimens represented).

One feasible and interesting direction of future work motivated by this particular study would

be the investigation of correlations between DCE-CT data and fluorodeoxyglucose positron emis-

sion tomography (FDG-PET) data. Some of the patients imaged in this study with DCE-CT have

also been imaged at our institution with FDG-PET, and DCE-CT parameters could be correlated

with FDG-PET imaging parameters such as the standardized uptake value (SUV). FDG-PET imag-

ing parameters have been shown to be significantly associated with patient survival in multiple

studies [25, 28, 35, 37, 38], and correlations between DCE-CT and FDG-PET parameters may pro-

vide insight into which DCE-CT parameters are potentially prognostic before survival data be-

comes available on the current patient cohort.

As a coherent progression, this work has extended the definition of radiologic response for

patients with malignant pleural mesothelioma. New classification criteria were obtained for one-

dimensional tumor measurements and improved the classification performance of the discrete re-

215



sponse classification model. Two-dimensional area measurements were investigated as a potential

tumor measurement technique and were found to be too variable for reliable response assessment.

Three-dimensional measurements of disease and lung volume were found to be associated with

patient survival, and survival models using linear measurements were in fact found to out-perform

the models using three-dimensional measurements. Finally, dynamic CT imaging was investigated

as a potential four-dimensional imaging technique for patients with mesothelioma and DCE-CT

parameters were calculated from the dynamic imaging data. My sincere hope is that the benefit to

clinicians and patients will match the enjoyment obtained in researching these projects.
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