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In the effort to simulate the biologically inspired continuum robot’s dynamic capabili-

ties, researchers have been faced with the daunting task of simulating—in real-time—the

complete three dimensional dynamics of the the “beam-like” structure which includes the

three “stiff” degrees-of-freedom transverse and dilational shear. Therefore, researchers

have traditionally limited the difficulty of the problem with simplifying assumptions. This

study, however, puts forward a solution which makes no simplifying assumptions and

trades off only the real-time requirement of the desired solution.

The solution is a Finite Difference Time Domain method employing an explicit sin-

gle step method with cheap right hands sides. The cheap right hand sides are the result

of a rather ingenious formulation of the classical beam called the Cosserat rod by, first,

the Cosserat brothers and, later, Stuart S. Antman which results in five nonlinear but un-

coupled equations that require only multiplication and addition. The method is therefore



suitable for hardware implementation thus moving the real-time requirement from a soft-

ware solution to a hardware solution.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The elephant trunk can pick a single blade of grass and yet move an entire tree. The

octopus arm can move rocks in search of prey and then capture that prey with an aston-

ishingly fast prey strike. These biological systems, termed muscular hydroststs [1], thus

display an amazing range of dexterity, strength and speed. These creatures depend on the

dynamics of their appendages for many essential behaviors, such as the prey strike. There-

fore any model useful for the development of realistic continuum robots that emulate the

elephant trunk or the octopus arm must be a complete three dimensional (3D) dynamic

description.

There are numerous current and proposed applications for continuum robots, as has

been ably put forward in a review of the current state of the art by Webster and Jones [2],

such as undersea manipulation, toxic area cleanup, assembly line painting, nuclear reactor

repair and search and rescue. Other areas of employment are in the medical field for

forceps, catheters and steerable needles in robotized surgical systems. Though each of the

above applications requires accurate placement and control and would therefore benefit

from a more accurate prediction of responses to body forces and tip loadings provided by

a complete 3D dynamic model, the undersea manipulation and search and rescue robots,
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as well as others not yet envisioned, would additionally profit from a highly dynamic

capability like the prey strike.

1.2 Motivation

A complete, accurate model for continuum robot dynamics provides many essential

capabilities which could enable a new generation of nimble, fast, agile continuum robots.

There are many open questions—several of which are discussed below—on the dynamics

of continuum robots which cannot be addressed by a static, quasi-static or limited dimen-

sionality model but could be answered by employing an appropriately damped dynamic

model.

Material specific damping is key to continued development of biologically inspired

continuum robots. A dynamic structure will store energy when stimulated and the ap-

propriately damped dynamic model—unlike the static, quasi-static, undamped or limited

dimensionality models—can be used to understand and optimize the intentional utilization

of that stored energy in the robot’s dynamic structure for such behaviors as grasping and,

ultimately, prey strikes.

Elastic structures will, of course, vibrate when forced therefore vibration management

will be an essential element of the objective continuum robotics system. Currently robotics

systems have to wait until transients damp out before beginning a new motion. With the

appropriately damped dynamic model the stimulus-response characteristics can be truly

representative of the biological systems we wish to emulate.
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Furthermore, an appropriately damped dynamic model allows rapid reactive response

dynamic behaviors not possible with current models. Rapid reactive response is necessary

to provide for actions such as catching or throwing a ball which includes a number of de-

sired behaviors. Catching a ball requires an awareness of the current environment with ball

position and velocity. Additionally, compliance must be controlled to eliminate bounce-

off if the “glove” should be too firm. Sensor development must support the environmental

awareness, compliance control and other desired capabilities. The appropriately damped

dynamic model can support the development and testing of the sensors and algorithms

necessary to support these rapid reactive response dynamic behaviors.

In summary, emulating the desired biological behaviors requires an appropriately damped

dynamic model as opposed to the models currently available.

1.3 Contributions

Biologically inspired continuum robotics aims to emulate the functionality of both the

elephant trunk and octopus arm though they span such an intimidating dynamic range

in both strength and speed. Thus continuum robotics researchers find themselves in a

dilemma. A realistic model is difficult—if not impossible—to solve in real time. Some re-

searchers have therefore employed constant curvature models based on simplified kinemat-

ics which run in real time but evidence significant placement error [2]. Other researchers

have employed static models which fail to capture the dynamics inherent in any continuum

manipulator. Thus far no researcher has demonstrated a complete 3D dynamic solution.

Therefore, the contribution of this study is a solution that is not real-time but is simple
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enough to be moved toward real-time by massive parallelization (GPU computing) or by

implementation in hardware.

The solution is a finite difference time domain implementation. Furthermore, the solu-

tion method is reasonably conservative in that no numerical damping other than that inher-

ent in the difference equations has been employed for the base platform; material-specific

damping will however be added as future work. Finally, in order to facilitate paralleliza-

tion or hardware implementation, the method of solution is a single-step explicit method

with cheap right hand sides.

The current state of the project is a working model demonstrating all six degrees of

freedom. The model is, however, limited to scenarios with both fixed or both free end

points due to issues with the calculation of boundary conditions. The model is stable for

non-forcing excitation which includes various pulses induced by transitory stimulation.
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CHAPTER 2

LITERATURE REVIEW

Continuum robots, as well as the biological appendages that they emulate, are concep-

tually like beams from classical mechanics; they are continuous 3D dynamic structures

with the length much greater than the diameter. Furthermore, though they have infinite

degrees of freedom, they have but six degrees of control. Thus classical beam theory pro-

vides a framework within which to analyze the complete 3D dynamics of the continuum

robot.

We begin with the planar elastica put forth by Euler-Bernoulli. It had the problems of

infinite group velocity for longitudinal waves and no shear strains [3]. The group velocity

problem was solved by Lord Rayleigh with the inclusion of rotational inertia [3]. Subse-

quently, Timoshenko included transverse shear strain [3]. We however need a 3D system

as opposed to the planar elastica, so we look to Kirchhoff where we gain torque or twist

but lose transverse shear strain. Finally we come to the Cosserat brothers followed by

Stuart S. Antman [4] who provide a geometrically exact system of equations for a special

3D dynamic beam called a Cosserat rod which has the limitation from a “real” beam in

that the cross-section is non-deformable.

Recent approaches which require accurate modeling of the shape of a continuum robot

therefore select the Cosserat rod as the best model for the elongated (rod like) contin-
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uum robot [5, 6, 7, 2, 8, 9, 10, 11]. Antman’s Cosserat rod model provides a system of

uncoupled geometrically exact non-linear equations with cheap right hand sides. Thus

the Cosserat model—unlike the Euler-Bernoulli or Kirchhoff models—accommodates the

three “stiff” degree-of-freedom strains, transverse shear and dilation, as well as the three

“soft” degree-of-freedom strains, bending and twisting.

Therefore, the solution for a 3D dynamic model of a continuum robot—which is pa-

rameterized both in space (along the beam length) and in time—requires solving a stiff sys-

tem of non-linear partial differential equations (PDEs) [4]. This is a difficult task [4, 12]

and becomes even more difficult if real-time constraints are considered. Therefore, nu-

merous researchers have reduced the degree of difficulty by placing limitations on their

model such as restricting motion to a single plane [13, 14, 15], making their models in-

extensible and quasistatic [16, 8] or even choosing a fully static model [5, 2, 11]. Some

researchers have presented the full Cosserat model but provided no information to solve

the model [5, 2, 9]. Finally one researcher presents the full Cosserat model [8] and, in an-

other paper [6], provides a significant amount of information on how to solve the proposed

system, yet provides only 1D dynamic and 3D quasistatic results.

Though there is a convergence on the Cosserat model, there is no corresponding con-

vergence on a method of solution. The real-time constraint coupled with the Courant-

Freidrich-Lewy 1 (CFL) condition [17] likely means there will be no suitable near term

method of solution. Therefore, this paper presents a simple yet high fidelity explicit single-

step numerical solver that trades off only the real-time aspect of the desired solution.

1Sampling must occur at a rate faster than the nodal information can change
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CHAPTER 3

METHODOLOGY

3.1 The Cosserat Rod

The Cosserat rod is a mathematical construct. Imagine a vanishingly thin filament

forming a center-line or space-curve r(s, t) in global space and then imagine thin cylin-

drical disks threaded on the filament and constrained to remain undistorted. In the limit

as the thickness of these disks approaches zero it becomes the continuous Cosserat rod

which retains all of the characteristics of the beam that are of interest to us. However, we

no longer have to worry about Poisson expansion, lateral inertia [18] or the probabilistic

nature of internal damping [19] as the disks cannot distort, are homogeneous and—for

our purpose—identical. We are now free to derive a deterministic geometrically exact

nonlinear system of equations describing the three dimensional dynamics of the Cosserat

rod.

The Cosserat rod’s position and orientation in global space is uniquely defined by the

location of each material point s and the orientation of two orthonormal vectors d1 and d2

located at these material points. Each s ∈ [0, L]—where 0 is one end of the beam and L

is the other—defines the position in global space of a particular “disk” or material point

of the rod. The director vectors d1,d2 and d1 × d2 = d3 form an orthonormal basis for

the local axes centered at each material point s. Figure 3.1 shows a rod sectioned at an
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arbitrary material point s with the director vectors d1 and d2 constrained to lie in the cross

section with d3 normal to the cross section but not necessarily parallel to the tangent. In

fact, the degree to which d3 is not parallel to the tangent represents the shear deformation.

Since the disks are identical, homogeneous and cannot distort, all that is required to

completely describe the disk’s position is the location in global space of the disk’s center

r(s, t) and the orientation of the director vectors d1(s, t) and d2(s, t). Figure 3.2 depicts

the Cosserat rod—where we show only the center line—we will use for the beam surro-

gate. We now drop—where appropriate—the spacial and time dependencies for brevity’s

sake.

6
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3.1.1 Kinematics

We restrict our Cosserat rod model to a system wherein stresses cause strains in a linear

relationship; therefore Hooke’s law is in effect. The two strains that are of interest to us

are

v = vkdk

u = ukdk.

The repeated subscripts mean that we should sum over the range 1, 2, 3. We thus have

v = v1d1 + v2d2 + v3d3 and u = u1d1 + u2d2 + u3d3. The strain v = [v1, v2, v3]
T is

the shear triple where v1 and v2 are shear strains and v3 is the dilational strain. The strain

u 1 = [u1, u2, u3]
T is the bending triple where u1 and u2 represent bending strains and u3

represents twisting strain. However knowing current and past values of v and u alone are

1Global vector variables are in bold symbol font (u), local vector variables are in math bold font (u) and

scalars—always local—are in math font (u).
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of little value; what is needed is the time partials vt and ut so that we can calculate future

values of v and u given known current and previous vales.

We begin with spatial (with respect to s) and time derivatives of the director vectors

dk. From differential geometry [20] we have

∂sdk = u × dk

∂tdk = w × dk,

where u is the spacial rate of bending and w is the angular velocity of the frame. Further-

more we have

∂sr = vkdk

= Rv (3.1)

with

R =

















d1i d2i d3i

d1j d2j d3j

d1k d2k d3k

















where we see that we cannot just do a simple finite difference to calculate vk. We would

in theory have to solve the linear system v = R−1∂sr for each node; however, this is not

required. We have two options. Since the rotation matrix R is orthogonal we need do no

more than calculate inner products. The other option—following Antman’s example—is

to make use of compatibility equations, the genesis of which is the requirement that

∂t∂sr = ∂s∂tr (3.2)

∂t∂sdk = ∂s∂tdk. (3.3)
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We now substitute for ∂sr and ∂tr in (3.2) which provides

∂t(vkdk) = ∂s(rt)

where we follow Antman and employ p in place of rt. We therefore substitute p for rt

and rearrange to get

ps = ∂t(vk)dk + vk∂tdk

= ∂t(vk)dk + vk(w × dk)

= vt + w × vkdk

= vt + w × v

and we have the global expression for the velocity of shearing vt

vt = ps − w × v.

We must now treat (3.3). We proceed by

∂t(u × dk) = ∂s(w × dk)

ut × dk + u × ∂tdk = ws × dk + w × ∂sdk

(ut − ws) × dk = w × (u × dk) − u × (w × dk)

= u(w · dk) − (w · u)dk −

w(u · dk) + (u · w)dk

= wku − ukw.
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Given a dj , dk and dj × dk = dl basis, dotting both sides with dl gives

(ut − ws) × dk · dl = wku · dl − ukw · dl

(ut − ws) · (dk × dl) = wkul − ukwl

(ut − ws) · dj = (w × u) · dj.

Multiplying both sides by dj returns the above scalar equation to the global expression for

ut

ut = ws − u × w.

3.1.2 Mechanics

We now have vt and ut but they are in terms of p and w; we therefore need the time

partials pt and wt so that we can calculate future values of p and w. What is needed are

force and torque balance equations; we look to Antman’s derivations in [4]

Antman employs a concept of balancing contact forces at arbitrary material points s

and a. These contact forces are the shear forces n at points s and a and the body force

∫

s

a
f(s, t)ds. He then allows point a to approach point s effectively taking the differential

with respect to s. Antman’s force balance equation is therefore

ρA

∫ s

a

pt(s, t)ds = n(s, t) − n(a, t) +

∫ s

a

f(s, t)ds

where we take the partial with respect to s and we have

ρApt = ns + f (3.4)

which provides pt = rtt where ρ is the mass density of the rod and A is the cross sectional

area of the rod. The conservative force balance equation therefore equates the force per

12



meter due to translational acceleration rtt to the sum of the partial with respect to s of the

shear force n and the distributed body force f .

We also require wt so we need a torque balance equation. Antman provides a torque

balance equation which balances the moments over the interval between points s and a

caused by the contact forces at s and a, the body forces and distributed torques over the

interval and the internal moments at s and a. As above, Antman allows the point a to

approach point s. Using the second moment of area tensor for a solid circular rod,

J =

















1

2
Aκ2 0 0

0 1

2
Aκ2 0

0 0 Aκ2

















where κ is the radius of gyration 2, we therefore have

∫ s

a

r(s, t) × ρApt(s, t)ds +

∫ s

a

ρJwt(s, t)ds = m(s, t) − m(a, t) + r(s, t) × n(s, t)

−r(a, t) × n(a, t) +

∫ s

a

(r(s, t) × f(s, t) + l(s, t)) ds

where we substitute (3.4) in for pt which gives

ρJwt = ms + rs × n + l (3.5)

for the conservative torque balance equation, for the circular rod, when the partial with

respect to s is taken of both sides. m is the bending moment, rs × n is the cross product

of the shear deformation and the shear force and l is the distributed body torque.

2The radius of gyration κ = R
√

2
where R is the radius of the circular rod.
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Taking inventory we have

vt = ps − w × v (3.6)

pt = (ρA)−1 [ns + f ] (3.7)

wt = (ρJ)−1 [ms + rs × n + l] (3.8)

ut = ws − u × w (3.9)

which provides a system of four equations with a time derivative on the left hand side and

a spacial derivative on the right hand side [12]. The fifth and final equation (dk)t = w×dk

is of course solved directly. The important point is that everything on the right hand sides

is known and the left hand sides provide future values thus marching the solution forward

in time. Therefore we have a system of five uncoupled nonlinear equations which can be

solved numerically using the finite difference time domain method.

3.1.3 Constitutive

It has been established that n and m are the shear force and bending moments respec-

tively but we have not demonstrated how a magnitude is determined. Herein we develop

the material dependent relationship between the shear strain v and the shear force n and

the relationship between the bending strain u and the bending moment m.

The shear modulus G is the measure of the material’s resistance to shear. The modulus

of elasticity E is the measure of the material’s resistance to dilation. These moduli are

14



measured in Newtons per square meter. We therefore have, since we have invoked Hooke’s

law, for the shear force n

n = Dv − D33d3 (3.10)

where D is

D =

















GA 0 0

0 GA 0

0 0 EA

















.

It is important to note that the initial undisturbed value for v is [0, 0, 1]T . If v3 is greater

than 1 the material is said to be stretched and if v3 is less than 1 the material is said to be

compressed.

For the bending moment m we have

m = Cu, (3.11)

where C is

C =

















EAκ2 0 0

0 EAκ2 0

0 0 GAκ2

















and κ is the shape dependent radius of gyration measured in meters. Equations 3.10

and 3.11 show the linear (Hooke’s law) relationship we alluded to earlier as G, E, A,

and κ are constants.
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3.1.4 Partials with Respect to Material Points

Wemust now address the issue of spacial partials with respect to s. We need—in order

to compute the right hand sides—to take the partials with respect to the material points s

of n(s, t), m(s, t), p(s, t) and w(s, t).

We begin with n(s, t) and we have

∂sn = ∂s(Dkkvkdk − D33d3)

= Dkk(∂svk)dk + vkDkk(u × dk) − D33(u × d3)

= Dvs + u × Dv − D33(u2d1 − u1d2)

= (Dvs + u × Dv − Hu) · dk

where H is

H =

















0 D33 0

−D33 0 0

0 0 0

















and therefore the local gradient of shear force is

ns = Dvs + u × Dv − Hu. (3.12)

and the local gradient of shear deformation is

vs(s) ≈ v(s + ds) − v(s − ds)

2ds
.

Note that the local value or triple of v is denoted as v. We will treat the remaining global

variables in the same manner.
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Therefore ms is

∂sm = ∂s(Ckkukdk)

= Ckk(∂suk)dk + ukCkk(u × dk)

= Ckk(∂suk)dk + u × Cu

= (Cus + u × Cu) · dk.

The local gradient of the bending moment is therefore

ms = Cus + u × Cu

and

us(s) ≈ u(s + ds) − u(s − ds)

2ds
.

We have for ps

∂sp = ∂s(pkdk)

= (∂spk)dk + pk(u × dk)

= (∂spk)dk + u × p

= (ps + u × p) · dk (3.13)

and of course

ps(s) ≈ p(s + ds) − p(s − ds)

2ds
.
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Finally we have

∂sw = ∂s(wkdk)

= (∂swk)dk + wk(u × dk)

= (∂swk)dk + u × w

= (ws + u × w) · dk (3.14)

where

ws(s) ≈ w(s + ds) − w(s − ds)

2ds
.

3.1.5 Partials with Respect to Time

The global spacial partials have been presented in terms of local variables. We must

now provide the global time partials vt, pt, wt and ut in terms of local variables.

Treating vt we have

vt = ∂t(vkdk)

= (∂tvk)dk + vk(w × dk)

= (∂tvk)dk + w × v

= (vt + w × v) · dk (3.15)

where

vt(t) ≈ v(t + dt) − v(t − dt)

2dt
.
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Next we treat pt

pt = ∂t(pkdk)

= (∂tpk)dk + pk(w × dk)

= (∂tpk)dk + w × p

= (pt + w × p) · dk (3.16)

where

pt(t) ≈ p(t + dt) − p(t − dt)

2dt
.

In order to treat wt we employ a dummy matrix K = (ρJ)−1 to avoid the w × w

condition and therefore wt is

wt = Kkk∂t(wkdk)

= Kkk(∂twk)dk + wkKkk(w × dk)

= Kkk(∂twk)dk + w × Kw

= (Kwt + w × Kw) · dk (3.17)

where

wt(t) ≈ w(t + dt) − w(t − dt)

2dt
.
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Finally

ut = ∂t(ukdk)

= (∂tuk)dk + uk(w × dk)

= (∂tuk)dk + w × u

= (ut + w × u) · dk (3.18)

where

ut(t) ≈ u(t + dt) − u(t − dt)

2dt
.

3.1.6 Antman’s System

We are now ready to form the system of equations that we will actually solve. The

following equations are in terms of local variables. We begin with vt where, from equa-

tions 3.13 and 3.15, we have

vt + w × v = ps + u × p

vt = ps + u × p − w × v

which provides the velocity of shearing from which we calculate future vales of shear.

Next we tackle the translational acceleration pt where, from equations 3.7 and 3.16,

we have

ρA(pt + w × p) = ns + f

ρApt + w × ρAp = ns + f

pt = (ρA)−1 [ns + f − w × ρAp] .
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Given the current translational acceleration and current and past values of r we can calcu-

late future values for r by

pt · dk ≈ r(t + dt) − 2r(t) + r(t − dt)

dt2

r(t + dt) ≈ dt2pt · dk + 2r(t) − r(t − dt).

The torque balance equation provides the angular acceleration wt which is given by,

from equations 3.8 and 3.17,

ρJwt − w × ρJw = ms + v × n + l

wt = (ρJ)−1 [ms + v × n + l − w × ρJw]

where n is the local value of the shear force. It provides future values of the angular

velocity w.

The velocity of bending strain ut is, from equations 3.14 and 3.18,

ut + w × u = ws + u × w − u × w

ut = ws − w × u

which provides future values for the bending strain u.

Finally we need future values of dk. The global finite difference equation

∂tdk = w × dk

dk(t + dt) − dk(t − dt)

2dt
≈ w × dk

dk(t + dt) ≈ 2dt(w × dk) + dk(t − dt)

provides them. We are now ready to solve Antman’s system but we need a conservative

yet stable method for doing so.
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3.2 Numerical Method

The proposed system is composed of the force and torque balance equations and three

auxiliary equations. The mesh ratio 3 p is nominally equal to 1

β
where β =

√

E/ρ is

the maximum phase velocity and 1

β
is the CFL condition on the mesh ratio. However

p :→ p(h = ∆x) is the experimentally determined largest stable multiplier for the fully

coupled condition where all the modes are stimulated simultaneously. The spacial step

size h is of course variable but should be set at some fraction of the beam’s diameter. The

mesh ratio p and the spacial step size h therefore determine the time step size k.

We begin with the force balance system, (3.4),

ρA
(pn+1

m − pn−1
m )

2k
= ns + f − w × ρAp

ns = [GAv1sd1 + GAv2sd2 + EAv3sd3+

GAv1(u × d1) + GAv2(u × d2)+

EA(v3 − 1)(u × d3)] · [d1 + d2 + d3]

vks
≈

(vn
km+1

− vn
km−1

)

2h

u × dk = [u1d1 + u2d2 + u3d3] × dk

f = [Fii + (Fj − Fg)j + Fkk] ·

[d1 + d2 + d3]

3The mesh ratio p is the time step k = ∆t divided by the spacial step h = ∆x.
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where the object is to solve for pn+1—the future value—given the current and past values

(·)n,(·)n−1 for all M nodes. Fi,j,k are externally applied global distributed shear forces and

Fg is the global distributed force due to gravity. Any variable with no superscript desig-

nating a time sequence is a current value and any variable without a subscript designating

a nodal sequence is the current node.

The torque balance system, (3.5), is

ρJ

(

wn+1
m − wn−1

m

2k

)

= ms + rs × n + l − w × ρJw

ms = [EJ1,1u1sd1 + EJ2,2u2sd2+

EJ3,3u3sd3 + EJ1,1u1(u × d1)+

EJ2,2u2(u × d2) + EJ3,3u3(u × d3)] · [d1 + d2 + d3]

uks
≈

(un
km+1

− un
km−1

)

2h

l = [Tii + Tjj + Tkk] · [d1 + d2 + d3]

where the Ti,j,k are externally applied distributed torques.

The three auxiliary equations are

(un+1
m − un−1

m )

2k
=

(wn
m+1 − wn

m−1)

2h
− wn

m × un
m

(vn+1
m − vn−1

m )

2k
=

(pn
m+1 − pn

m−1)

2h
+ un

m × pn
m − wn

m × vn
m (3.19)

(dk
n+1

m − dk
n−1

m )

2k
= wn

m × dk
n
m.
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Here, however, we break with Antman and forgo (3.19) in favor of the global partial with

respect to s of r(s, t) and solve for the local values of shear via the inner-products

vn+1 =
[

Rn+1
]T

∂sr
n+1.

This alternative has the advantage of providing relief from certain difficulties with bound-

ary conditions on vt.

3.2.1 Numerical Stability

Antman’s system is nonlinear and therefore we cannot do a definitive stability analysis.

However, the dilation only mode is linear and therefore amenable to analysis. We begin

with (3.4)

ρApt = ns + f

which we convert to a scalar equation based on the dilation only assumption. We now have

ρApt = ns (3.20)

where the dependencies and external forces have been dropped. In order to do a stability

analysis we must first rewrite (3.20) as a left side time derivative and a right side space

derivative of the same variable. Rewriting (3.20) using (3.12) gives

ρArtt = (Dvs + u × Dv − Hu) · d3

= EAvs.
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where, since there are no bending strains, the terms in u drop out. Using (3.1) we have

ρArtt = EAvs

rtt = β2∂s(R
T rs) · d3

= β2(∂sR
T rs + RT rss) · d3

and since there are no bending strains the ∂sR
T term drops out leaving

rtt = β2(RT rss) · d3

= β2αrss

where αrss is the local d3 component of the global rss. Aligning d3 with the k axis we

have

rtt = β2rss.

Using the following discretization

(rn+1,m − 2rn,m + rn−1,m)

k2
− β2

h2

(

1

90
(rn,m+3 + rn,m−3) −

3

20
(rn,m+2 + rn,m−2)+

3

2
(rn,m+1 + rn,m−1) −

49

18
rn,m

)

= 0

rn+1,m − 2rn,m + rn−1,m − p2β2

(

1

90
(rn,m+3 + rn,m−3) −

3

20
(rn,m+2 + rn,m−2)+

3

2
(rn,m+1 + rn,m−1) −

49

18
rn,m

)

= 0 (3.21)

which is O(h6) and the Von Neumann stability method where rn±i,m±j is represented as

exp(α(n ± i)k)exp(I(m ± j)βh) we substitute into (3.21) and solve for the gain factor ξ

where ξ = exp(αk). We next solve for the mesh ratio p where |ξ| = 1. This gives

p =
3

34

√
85

1

β
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for the maximum stable mesh ratio for the dilation only mode. The fully stimulated modes,

however, require a smaller, experimentally determined, mesh ratio.

3.2.2 Dissipation and Dispersion

The numerical method of choice will, unfortunately, cause non-objective or numerical

dissipation and dispersion as a side effect. The important consideration is that the un-

desired dissipation and dispersion be significantly less than the objective dissipation and

dispersion. We, unfortunately, cannot determine the ratio of numerical to objective dissi-

pation and dispersion without implementing material specific damping. Nevertheless, we

can check to see if the numerical dissipation and dispersion are small.

Since we have an expression for ξ from § 3.2.1 above we can break the system response

into its real part, dissipation, and its imaginary part, dispersion. We first pick the worst

case value for β where cos(βh) = −1 which we then use for plotting |ξ|, ℜ(ξ) and ℑ(ξ)

versus p.

Though, as we see from Figure 3.3, the absolute value of p is very close to one, Fig-

ures 3.4 and 3.5 show that there is a small amount of dissipation and dispersion. It should

be noted that this is the best case—dilation only—scenario. For the general case the dissi-

pation and dispersion are unknown but likely to be worse. Until material specific damping

is included in the model no true evaluation of numerical versus objective dissipation and

dispersion is possible.
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Figure 3.3

Absolute value of ξ versus p for β = 3140

Figure 3.4

Dissipation versus p for β = 3140
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Figure 3.5

Dispersion versus p for β = 3140
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CHAPTER 4

RESULTS

The usual way to simulate a dynamic beam with any aspiration towards real time is to

avoid one or all of the three stiff degree of freedom modes. The one most often avoided

is the dilational mode which usually (E > G) has the most impact on the CFL condition.

What is lost when the stiff degree of freedom modes are sacrificed is mode coupling. The

two transverse modes—the usual modes of interest—couple through both the dilational

mode and the twist mode. It is imperative therefor that a complete 3D dynamic simulation

demonstrate these couplings as well as the traditional dynamic behaviors a beam is heir to.

The Antman system—with the noted exception for vt—presented in § 3.1.6 has been

coded in C. This system, fully stimulated, has proved to be stable (double precision) over

a one second interval which is sufficient for our immediate purposes. It should be noted

however, that this system is conservative as there is no material dependent or numerical

damping applied; it is, therefore, expected to be unstable [4, 12]. This considered, the

following stimulations will be limited to those that do not trigger this inherent instability.

4.1 Validation

There are three basic boundary condition scenarios for a rod or cable:

1. Free fall (free end-free end),

2. Cantilever(fixed end-free end),
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3. Catenary (fixed end-fixed end).

Though it is desirable to demonstrate a close match between these scenarios and em-

pirical data we can only match the free fall (vacuum) scenario with the theoretical acceler-

ation of gravity. Comparing the behaviors of scenarios 2 and 3 with empirical data requires

system specific damping which is out of scope for this effort.

We can, however, compare the fundamental phase velocity for scenario 3 as it is con-

sistent with the fundamental phase velocity—thus frequency—of a musical instrument

string such as the “A” string of the violin. Simulating the appropriate string parameters,

the appropriate active length and the appropriate tension should produce a pulse with the

fundamental frequency of 440 Hertz (Hz). We therefore simulate the violin “A” string

and present the results below. Furthermore, we present examples of mode coupling and

material specific dispersion.

The following demonstrations are for a thin steel wire (violin “A” string) with a rela-

tively high Young’s modulus lying (free fall) or stretched (violin string) along the z axes

between rigid end supports. The y axis represents the vertical and the x axis represents the

horizontal.

4.1.1 Free Fall

A simulation of free fall—scenario 1 above—results in the expected rigid body trans-

lation in the yz plane in the negative y direction. After N = 31 iterations the bar, initially
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located at y = 0, had translated to y = −yn. The time delta for N iterations is δt = N/fs

seconds where fs = 44100 is the sampling frequency. We therefore have for δt

δt =
31

44100
seconds

and the percent error e is

e = 100
g

δ2
t

2
− yn

yn

= 0.0043%

where g is assigned the value 9.80669 meters per second per second.

4.1.2 Simulated Violin String

The nominal tension for a violin “A” string composed of a steel core with aluminium

wrapping and an active length of 0.328 meters(M) is 14.1 pounds force (lbf) [21]. Though

we are not simulating a steel core aluminium wrapped string, it is the only violin “A” string

we have tension data for. However, there is tension data [21] for the “E” string for both

the solid steel and the aluminium wrapped steel core strings and, from this data, we learn

that there is a +0.5 lbf adjustment for the solid steel string. Therefore, the nominal string

tension for the solid steel “A” string is 14.6 lbf or 65 Newtons (N).

The following simulation results are for a solid steel violin “A” string with a 0.328M

active length for three tension cases centered about 65N. The stimulation is a transient

pluck as seen in Figure 4.1. Figure 4.2 shows the case of 64N and shows that the spectral

peak lies just below 440Hz. Next, Figure 4.3 is for 66N and shows the spectral peak just

above 440Hz. Finally, Figure 4.4 is for 65N and shows the spectral peak is now centered
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Figure 4.1

Stimulation of x axes by induced pluck
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Figure 4.2

Fundamental frequency for simulated “A” string—64N
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Figure 4.3

Fundamental frequency for simulated “A” string—66N
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Figure 4.4

Fundamental frequency for simulated “A” string—65N
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at 440Hz thus verifying the fundamental phase velocity of the simulated string.

4.1.3 Transverse-Dilational Coupling

In order to demonstrate transverse-dilational coupling we stimulate both transverse

modes and note the cross disturbance that occurs as a result. Figures 4.5 and 4.1 show the

effect of gravity on the y axis and an induced pulse on the x axis respectively.
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Figure 4.5

Stimulation of y axes by gravity

Figure 4.6 shows the resultant distortions that appear on the y axis due to the pulse on

the x axis and the transverse-dilational coupling. Figure 4.7 shows the effect on the x axis

due to the same coupling and gravity acting on the y axis. In order to see these distortions

the axes values are calculated as the difference between the axis value with and without

the other axis being stimulated.
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Figure 4.6

Distortion of y values by transverse-dilational coupling
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Figure 4.7

Distorsion of x values by transverse-dilational coupling
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4.1.4 Transverse-Twist Coupling

The procedure for transverse-twist coupling is the same as above for transverse-dilational

coupling except that the dilational shear has to be switched off during the simulation in

order to see the transverse-twist coupling. The stimulus to each axis is the same as above.

Figure 4.8 shows the distortions on the y axis due to the x axis pulse and the transverse-

twist coupling. Figure 4.9 shows the distortions on the x axis due to the gravitational
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Figure 4.8

Distorsion of y values by transverse-twist coupling

loading of the y axis and the transverse-twist coupling.

4.2 Dispersion due to Material Stiffness

Material stiffness in beams causes dispersion [22]. The simulation has a feature to turn

off stiffness so that we might compare the numerical dispersion with the material specific
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Figure 4.9

Distorsion of x values by transverse-twist coupling

dispersion. Figure 4.2 shows a pulse, traveling left to right, on a perfectly flexible beam.

We see only a very small amount of dispersion as evidenced by the higher frequency

ripples preceding the main pulse. Figure 4.11 shows the same pulse at the same time

traveling on a stiff beam. Here we see that the numerical dispersion shown in Figure 4.2 is

insignificant in comparison. This bodes well for the expectation that whenmaterial specific

damping is included in the simulation that the numerical dissipation and dispersion will be

orders of magnitude below the objective dissipation and dispersion.
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Figure 4.10

Dispersion due to numerical method
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Figure 4.11

Dispersion due to material stiffness
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Capturing the astonishing behavior of a muscular hydrostat such as an octopus’ arm re-

quires the use of a complete 3D dynamic model. Furthermore, that complete 3D dynamic

model must be solved. Therefore, to better develop robots which re-create these amazing

abilities, this study presents the classical Cosserat rod coupled with a simple high-fidelity

(O(h6)) numerical solver which is suitable for parallelization or hardware implementation.

Furthermore, the inherent numerical dissipation and dispersion are expected to be—a sit-

uation which cannot be tested without material specific damping—orders of magnitude

below objective levels. No attempt, and thus no compromise, has been made towards real

time applicability. The system is reasonably 1 conservative and reasonably stable and thus

suitable as a test bed for future research.

Three specific limitations motivate future work:

1. Material specific damping,

2. Boundary condition solutions,

3. Fixed end free end scenarios.

Material specific damping is an absolute necessity for more robust stimulation, such as

those involved with prey strike, as well as for any real world application. Boundary con-

1The system evidences a small numerical dissipation (ℜ(ξ) ≈ 0.996).
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dition solutions are necessary for any scenario where both ends are not fixed or free as the

present solution relies on a trick attained only with both ends treated identically and—to

be of any practical use—the simulation must deal with tip loading (point forces) as well

as the distributed loadings (body forces) such as gravity. Finally, the fixed end free end

scenario is required to emulate the muscular hydrostats that have inspired this effort.
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Berhäuser Verlag, 2002.

[13] G. S. Chirikjian, “Hyper-redundant manipulator dynamics: A continuum approxima-

tion,” Advanced Robotics, vol. 9, no. 3, pp. 217–243, 1995.

[14] I. A. Gravagne, C. D. Rahn, and I. D. Walker, “Large deflection dynamics and control

for planar continuum robots,” IEEE/ASME Transactions on Mechanatronics, vol. 8,

no. 2, 6 2003.

[15] E. Tatlicioglu, I. Walker, and D. Dawson, “New dynamic models for planar extensible

continuum robot manipulators,” in Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, 11 2007, pp. 1485 –1490.

[16] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Discrete

elastic rods,” in ACM SIGGRAPH ASIA 2008 courses, ser. SIGGRAPH Asia

’08. New York, NY, USA: ACM, 2008, pp. 14:1–14:12. [Online]. Available:

http://doi.acm.org/10.1145/1508044.1508058

[17] W. F. Ames, Numerical methods for partial differential equations. San Diego,

California: Academia Press, 1992.

[18] K. F. Graff, Wave motion in elastic solids. New York: Dover Publications Inc.,

1975.

[19] C. Zener, Elasticity and Anelasticity of Metals. Chicago: Chicago Press, 1948.

[20] E. Kreyszig, Differential geometry. New York: Dover Publication Inc., 1991.

[21] Daddario.com, “Violin tension chart,” in URL

http://www.jdaddario.com/resources/JDCBOW/BOPK Tension Charts Violin.pdf.

[22] P. M. Morse and K. U. Ingard, Theoretical Acustics. Princeton New Jersey: Prince-

ton University Press, 1968.

42


