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Building Safety Maps using Vision for

Safe Local Mobile Robot Navigation

Publication No.

Aniket Murarka, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Benjamin J. Kuipers

In this work we focus on building local maps to enable wheeled mobile robots to

navigate safely and autonomously in urban environments. Urban environments present a

variety of hazards that mobile robots have to detect and represent in their maps to navigate

safely. Examples of hazards include obstacles such as furniture, drop-offs such as at down-

ward stairs, and inclined surfaces such as wheelchair ramps. We address two shortcomings

perceived in the literature on mapping. The first is the extensive use of expensive laser-

based sensors for mapping, and the second is the focus on only detecting obstacles when

clearly other hazards such as drop-offs need to be detected to ensure safety.
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Therefore, in this work we develop algorithms for building maps using only rela-

tively inexpensive stereo cameras, that allow safe local navigation by detecting and mod-

eling hazards such as overhangs, drop-offs, and ramps in addition to static obstacles. The

hazards are represented using 2D annotated grid maps called local safety maps. Each cell in

the map is annotated with one of several labels: Level, Inclined, Non-ground, or, Unknown.

Level cells are safe for travel whereas Inclined cells require caution. Non-ground cells are

unsafe for travel and represent obstacles, overhangs, or regions lower than safe ground.

Level and Inclined cells can be further annotated as being Drop-off Edges.

The process of building safety maps consists of three main steps: (i) computing a

stereo depth map; (ii) building a 3D model using the stereo depths; and, (iii) analyzing the

3D model for safety to construct the safety map. We make significant contributions to each

of the three steps: we develop global stereo methods for computing disparity maps that

use edge and color information; we introduce a probabilistic data association method for

building 3D models using stereo range points; and we devise a novel method for segmenting

and fitting planes to 3D models allowing for a precise safety analysis. In addition, we also

develop a stand-alone method for detecting drop-offs in front of the robot that uses motion

and occlusion cues and only relies on monocular images.

We introduce an evaluation framework for evaluating (and comparing) our algo-

rithms on real world data sets, collected by driving a robot in various environments. Ac-

curacy is measured by comparing the constructed safety maps against ground truth safety

maps and computing error rates. The ground truth maps are obtained by manually anno-

tating maps built using laser data. As part of the framework we also estimate latencies

introduced by our algorithms and the accuracy of the plane fitting process. We believe this

framework can be used for comparing the performance of a variety of vision-based map-

ping systems and for this purpose we make our datasets, ground truth maps, and evaluation

code publicly available.

We also implement a real-time version of one of the safety map algorithms on a
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wheelchair robot and demonstrate it working in various environments. The constructed

safety maps allow safe local motion planning and also support the extraction of local topo-

logical structures that can be used to build global maps.
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Chapter 1

Introduction

Humans are able to move about in the world easily and robustly on their own. In unfamiliar

environments we quickly learn new routes for going from one place to another and over

time utilize these to build more complex representations of the environment. The learned

routes and representations exhibit map like properties and are collectively referred to as

the cognitive map [Kuipers, 1978; Trullier et al., 1997]. Building the cognitive map as we

move about the world requires solving many problems such as identifying places, figuring

out where we are, planning a route, and physically moving from one place to another while

avoiding obstacles.

Autonomous navigation for robots aims to replicate the abilities of humans, i.e., to

enable robots to move independently and robustly through the world. The problem of robot

navigation is broken down along similar lines as in humans: place detection, localization,

path planning, obstacle and hazard avoidance, and mapping. These sub-problems can be

solved either independently or in conjunction with the others. Since autonomous navigation

is a vast problem, researchers focus on particular types of environments and robots. This

makes the problem tractable and provides insight into the mechanisms and representations

required for a general solution.

It is hoped that by studying autonomous navigation for mobile robots we will get
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a better understanding of the structure of the human cognitive map and on how humans

represent spatial knowledge. Apart from satisfying scientific curiosity, autonomous agents

have enormous application potential. An application that has motivated this work is the de-

velopment of an autonomous robotic wheelchair to serve as a mobility assistant for humans

who have disabilities associated with motion, communication, and perception. Such an in-

telligent wheelchair has the potential to open up the world for many people who otherwise

cannot move around the world on their own.

1.1 Problem: Safe Local Mapping using Vision

The general problem we consider in this work is that of the safe autonomous navigation

of mobile robots through an urban environment. There are two parts to the problem of

autonomous navigation:

1. The problem of safe local motion, i.e., planning safe paths in the local surroundings

of the robot or small scale space.

2. The problem of planning safe routes through a large scale environment.

Here, by a large scale environment we mean one whose spatial structure extends

beyond the sensory horizons of the robot, e.g., a building or a university campus. Small

scale or local space is defined as space whose structure is within access of the robot’s

sensors, e.g., a corridor intersection or a room. A critical prerequisite to being able to

navigate safely in large scale space is being able to navigate safely in small scale space or

locally.

Therefore in this work we focus on local navigation. The specific problem we

address is that of building local metrical maps that will allow (a class of) mobile robots to

plan safe paths in their local surroundings (in urban environments). In addition, we focus

on using cameras as the primary sensor to build the maps. The class of robots we consider
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are wheeled mobile robots that can only travel on smooth terrain, e.g., sidewalks and roads,

but cannot travel on uneven surfaces or climb stairs.

The urban environments we consider are people friendly environments like a uni-

versity campus with buildings and open spaces, with mostly pedestrian traffic and slow

moving vehicles. We assume the environment conforms to the Americans with Disabili-

ties Act (ADA), and follows various standards and guidelines [U.S. Department of Justice,

1994, 2000], so that most places are accessible by sidewalks and wheelchair ramps.

For a wheeled mobile robot to travel safely and autonomously in such environments,

it has to detect and avoid a number of hazards. The most common hazards are obstacles -

static obstacles such as walls and trees, and dynamic ones such as people. In addition to

obstacles, there are a number of other hazards, such as drop-offs and ramps, that the robot

must also detect and avoid or carefully navigate. In this work we focus on detecting (and

representing) static obstacles, overhangs, drop-offs, and, inclines.

For the purpose of safe local motion for wheeled robots, it is possible to represent

the relevant characteristics of the robot’s local 3D environment with semantically annotated

2D grid maps, called local safety maps. These local safety maps can then used for continu-

ally planning safe paths in the local surroundings of the robot as it moves through the world.

We introduce the exact safety map representation and explain why a 2D representation is

sufficient for the purpose of safe local motion in Chapter 2. Thus, building safety maps

using vision that can be used for safe local navigation will be the main thrust of this thesis.

To deal with the problem of planning safe routes over longer distances we explain

how the local safety maps, when used with an existing large scale mapping framework such

as the Hybrid Spatial Semantic Hierarchy (HSSH), permit the construction of large scale

global maps (Section 2.2.3) which in turn allow large scale navigation. A nice feature of

the HSSH is that it gives us the ability to deal with large scale navigation issues for little

effort once we have the local safety maps.
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Figure 1.1: The wheelchair robot used as the experimental platform in this work. The robot
has a stereo camera and one horizontal and one vertical laser range-finder.

1.1.1 Experimental Platform: Vulcan, the Intelligent Wheelchair

Our experimental platform, representative of the class of robots mentioned above, is the

Intelligent Wheelchair, Vulcan, shown in Figure 1.1. It is equipped with two laser range

finders, one mounted vertically and the other horizontally, a stereo camera, and optical

encoders. The laser range-finders are only used for the purposes of localizing the robot and

for providing ground truth data as explained in Chapter 2. Range data from the lasers is not

used for constructing the local safety maps.

1.2 Thesis Motivation and Overview

In addition to the potential benefits of autonomous navigation mentioned above, the prob-

lem addressed in this work is motivated by two shortcomings perceived in the literature on

robot mapping. The first is the extensive use of expensive laser-based sensors for mapping,

and the second is the focus on only detecting obstacles when clearly, other hazards such as

drop-offs also need to be detected to ensure safe autonomous navigation.
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Laser range-finders have been the predominant sensor of choice because they pro-

vide accurate range data with very little noise. However, since most laser range-finders

can only sense distances in a 2D plane and cannot capture 3D information, the maps built

using them miss several hazards, such as drop-offs and overhangs, and cannot be relied on

for safe navigation in many urban environments. In recent times laser range-finders that

return 3D range data have become more common, as witnessed in the DARPA Grand Chal-

lenges [Thrun et al., 2006]. However, such sensors are prohibitively expensive and if we

wish for robots to be ubiquitous, an infeasible choice.

Cameras are used less frequently, and then too usually as a secondary source of

information, because they are sensitive to environmental changes and the data they return is

noisy and difficult to interpret. This is specially true of the range data obtained from stereo

cameras that, besides being noisy, has the problem of being unreliable in regions of poor

texture.

On the other hand cameras have lower cost than laser-based sensors, are usually

smaller in size and provide a lot more information in a single frame of data. Being cheap

and small, it is possible to mount several cameras on a single robot to provide a larger field-

of-view which can be important for safety. On robots such as the Intelligent Wheelchair

where passenger comfort is of prime importance, the flexibility provided by the smaller

size is very desirable. Furthermore, the large amounts and types of information from a

camera can be used for purposes other than safety, such as for object recognition.

In this thesis, we hope to overcome both shortcomings by introducing methods for

building good quality stereo-based maps that can be used for safe navigation by detecting

and representing hazards such as drop-offs, ramps, and, overhangs, in addition to obstacles.

We begin by first defining local safety maps in Chapter 2. We explain how safety maps fit

into the HSSH framework and also provide an overview of the general algorithm used to

build safety maps.

In Chapter 3 on related work, we show where our work fits in the literature on robot
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navigation and how it relates to other mapping algorithms. In particular we compare our

methods against other geometric laser-based and stereo-based mapping methods and also

against methods that use visual cues such as color and texture to distinguish between safe

and unsafe areas.

Chapter 4 starts with an explanation of stereo camera geometry and then explains

three different stereo methods for computing depth maps. One of the methods is a com-

mercially available local correlation-based method and other two are global stereo methods

that we propose. The chapter ends with an evaluation of the three methods on a standard

dataset.

Once we have stereo depth data, the next step involves accumulating the data over

time to build 3D models. In Chapter 5 we introduce two different methods for building the

models that also reduce the amount of noise present in stereo data. In Chapter 6 we then

show how to construct local safety maps from the 3D models. We present a fast method for

identifying potentially traversable regions and fitting planes followed by an analysis to get

the final maps.

Chapter 7 describes and evaluates a stand-alone method for detecting frontal drop-

offs that only relies on a sequence of images from a monocular camera. The detected

drop-off edges can be used to augment the safety maps created using stereo methods.

In Chapter 8 we introduce an evaluation framework for extensively evaluating the

algorithms and comparing them to each other. We begin with a description of the datasets

and the metrics that are computed and end with the results of a real-time version of one of

the safety map algorithms on the Intelligent Wheelchair. Chapter 9 summarizes and outlines

avenues for future work.
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1.3 Major Contributions

We make the following contributions in this work:

• We introduce the notion of local 2D safety maps and show how the safety maps com-

press 3D information into a 2D representation sufficient for safe local travel (Chap-

ter 2).

• We propose global color and edge segmentation based stereo methods for computing

stereo disparity maps (Chapter 4).

• We introduce a probabilistic data association method for building 3D point cloud

models from noisy stereo data. The method works by matching 3D points over time

by computing the Mahalanobis distance between the point locations and visual fea-

tures (Section 5.1).

• We introduce a method for analyzing 3D models for safety to build 2D local safety

maps (Chapter 6). This includes a fast method for identifying and segmenting traversable

ground regions (i.e., level or inclined surfaces on the ground) in 3D models and fitting

planes to them.

• In addition to the 2D safety map we also introduce a hybrid 3D map (based on the

above analysis) for representing a mobile robot’s local surroundings. The map is

a hybrid of a 3D grid, used for modeling obstacles and other unsafe regions, and of

planes, for modeling the ground and other potentially traversable regions (Chapter 6).

• We develop a method for detecting drop-off edges in front on the robot based on

visual motion and occlusion cues (Chapter 7). The method only requires monocular

images and does not utilize stereo data.

• We propose a comprehensive evaluation framework for measuring and comparing the

performance of mobile robot mapping algorithms on a set of video datasets (Chap-

ter 8). In the framework, constructed safety maps are compared against ground truth
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safety maps to compute different error rates. Latencies present in the system are

measured and the accuracy of the plane fitting process is also estimated. We believe

the evaluation framework will provide the robotics community with an objective way

of comparing different mapping algorithms and towards this end we plan to make

the datasets and associated ground truth publicly available [Murarka and Kuipers,

2009a].

• Finally, we provide a real-time implementation of one our algorithms for building

safety maps on the Intelligent Wheelchair and demonstrate it being used successfully

for local planning (Chapter 8). We also integrate our algorithm in the HSSH frame-

work and demonstrate the successful extraction of local topological maps from safety

maps.

Parts of the work presented in this thesis have appeared before in the following publications:

[Murarka et al., 2006], [Murarka et al., 2008], [Murarka and Kuipers, 2009b], and, [Murarka

et al., 2009].

8



Chapter 2

Local Safety Maps

2.1 The Local Safety Map Representation

To develop a suitable representation for the local safety maps we have to consider both

the motion capabilities of the robot and the characteristics of the environment relevant for

safety. In addition, the representation should be of a form usable by standard planning

algorithms.

As mentioned in Chapter 1, the robots we consider can travel over smooth terrain

only. The surface over which such robots move can be treated as a 2-manifold. It is the

characteristics of this manifold that we want to capture, and locally it is possible to do

so with a 2D plane. Given this we choose to use annotated 2D grids as the safety map

representation. The 2D plane of the grid allows the robot to represent traversable surfaces

whereas the annotations allow it to represent the hazards present in the 3D environment.

Furthermore, the use of a 2D grid means that the safety maps can be used by standard

planning algorithms for finding safe paths 1.

Table 2.1 lists the kinds of hazards that wheeled mobile robots have to avoid or care-

fully navigate in urban environments. Based on these we can annotate cells in the safety

1Since 2D grid maps are ubiquitous in mobile robotics, most standard planning algorithms, e.g., D* [Stentz,
1995], value iteration [Burgard et al., 1998], work with 2D grids.
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Potential Hazards Examples
Obstacles: Static Walls, furniture
Dynamic People, doors
Invisible Glass doors and glass walls
Drop offs Sidewalk curbs, downward stairs
Inclines Wheelchair ramps, curb cuts, sloped sidewalks
Overhangs Table tops, railings, tree branches
Uneven surfaces Gravel paths, grass beds
Narrow regions Doorways, elevators

Table 2.1: Potential hazards that a mobile robot must deal with in urban environments.

maps with the following labels corresponding to different characteristics of the environ-

ment:

1. Level: Cells with this label correspond to smooth horizontal ground regions in the

world and are safe for travel.

2. Inclined: Cells with this label correspond to ramps and inclined ground surfaces that,

while safe, require caution when travelling.

3. Non-Ground: Cells with this label correspond to either static obstacles or overhangs,

or to regions below safe ground regions. They are unsafe for travel.

4. Uneven: Cells with this label correspond to terrain that is too rough or soft for travel.

5. Narrow: Cells with this label are in a region where there is little room for the robot

to maneuver 2.

6. Unknown: Cells with this label are in a region for which there is either insufficient

or no data.

A cell labeled “Level” or “Inclined” can be further annotated as a Drop-off Edge. Ideally,

we should annotate the edges between cells as drop-off edges instead of the cells them-

selves. While it is certainly possible to do this, in practice we choose to annotate the cells

2In this work we do not detect or classify “Uneven” and “Narrow” regions.
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Legend: L: Level, I: Inclined, D: Drop−off Edge,

O: Obstacle, H: Overhang, B: Below−ground

O I DL BL IO HH H

World Cross Section

Local Safety Map

Figure 2.1: The local safety map and its relation to the local 3D space it models. “Level”
surfaces in the world are safe for travel (marked green in the safety map). “Inclined” sur-
faces require caution (marked yellow) whereas “Non-ground” regions (in red) are unsafe
and represent either obstacles, overhanging objects, or regions below traversable ground
regions. “Drop-off Edges” are in blue and are to be avoided as well. Note that, ideally,
objects in the 3D world are not projected directly onto the horizontal plane of the safety
map. For example, the object on the incline is first projected onto the ground below it - then
the region on the ground is projected onto the plane of the safety map. In practice, however,
since the slopes of traversable inclines are low, projecting objects directly onto the plane of
the safety map gives a good approximation. This figure and others in this thesis are best
viewed in color.

themselves so that our safety maps can be used by existing planning algorithms - planners

can simply treat cells marked as drop-offs as unsafe when planning. Since a drop-off edge is

at the boundary between a higher surface and a lower one, we annotate cells adjacent to the

boundary on the higher surface, since these cells require more caution during navigation.

Section 2.1.1 discusses planning using the safety map in more detail.

Another detail associated with drop-offs edges is that it is not always possible to

confirm their existence. This is because regions adjacent to drop-off edges are often oc-

cluded and get labelled “Unknown” in the safety map - making it impossible to compare

the heights of cells adjacent to a drop-off edge. Thus we are often required to infer the

existence of a drop-off edge and for such edges we use the label Potential Drop-off Edge.
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Figure 2.1 shows pictorially the relationship between the 2D horizontal plane of the

safety map and the local 3D space that it models. The projections of objects and regions in

the robot’s 3D surroundings onto the horizontal plane define distinct regions on the safety

map plane. Each of these projected regions is then annotated with one of the labels defined

above to give the safety map. The 2D representation and the simple semantics of the local

safety map permit efficient local motion planning in a 3D world.

2.1.1 Navigating using the Safety Map

There are two parts to navigating using the safety map - the first is planning paths to desired

goal points, and the second is making control and travel decisions while following the path.

The safety map can be used in a straightforward manner by 2D planners. Cells

marked “Level” or “Inclined” in the safety map can be treated as safe, whereas cells marked

“Non-ground” and “Drop-off Edge” should be treated as unsafe when planning a path to

a goal point. Treatment of cells marked “Unknown” or “Potential Drop-off Edge” will

depend on the application and the amount of risk the robot is willing to take. Usually it is

acceptable to treat such cells as safe when planning, i.e., a planned path may pass through

such cells, but it is not acceptable for the robot to actually drive over such cells. However,

in practice, robots plan continuously as they move through the world and it is often the case

that as the robot gets near such ambiguous regions, additional information usually removes

or reduces the ambiguity allowing the robot to correctly plan through such regions.

Once the robot has a path to follow, the safety map can also assist the robot in mak-

ing control decisions such as the speed with which it should travel. In “Inclined” regions,

it makes sense for the robot to be more cautious and drive slowly and, as mentioned above,

a robot may choose to avoid driving over an “Unknown” region when following a planned

path.

Figure 2.2 shows the results of using an existing planner (a combination of a Rapidly-

exploring Random Tree (RRT) planner [Kuffner and LaValle, 2000] and a trajectory gen-
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(a) (b)

Figure 2.2: Path planning using the safety map. (a) Image from the stereo camera on
the Intelligent Wheelchair showing an environment with an upward ramp and the resulting
drop-off edge. (b) The safety map of the environment showing the robot (in red) and a
planned path (in blue-black) from start, s, to goal, g. The start and end points are also shown
in the stereo camera image. The safety map coloring scheme is as follows: “Level” regions
are in white; “Non-ground” regions in black; “Inclined” regions are in yellow (representing
the upward ramp in this case); “Unknown” regions are in gray; and “Drop-off Edge” cells
on the ramp are in blue. The planning algorithm treats these blue cells (next to the actual
drop-off boundary) as unsafe and plans a path around them even though the goal is directly
ahead of the robot.

erator [Gulati et al., 2009]) on a safety map built using the Intelligent Wheelchair. The

planning algorithm treats all regions marked “Level”, “Inclined”, or “Unknown” as safe

and all other regions as unsafe, including cells labeled as “Drop-off Edges”. The RRT plan-

ner finds a path by sampling points in the robot’s configuration space, obtained by growing

the safe space in the safety map by the size of the robot, and choosing a path that goes

through safe cells with the required clearance. The trajectory generator smooths the path

returned by the RRT planner, while satisfying velocity and other dynamic constraints, to

generate the final path shown in Figure 2.2(b).
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2.2 Relationship to Large Scale Mapping

In this section we explain how local safety maps fit in the framework of a large scale map-

ping method, in particular the Hybrid Spatial Semantic Hierarchy (HSSH), and thus can be

used towards solving the problem of large scale navigation. We first examine the two main

paradigms of mapping: metrical and topological, and their applicability to the problem of

mapping large scale spaces. We then discuss the HSSH, a hybrid mapping framework that

combines both metrical and topological mapping methods.

2.2.1 Metrical Mapping

As the name suggests, the goal of metrical mapping is to build geometric maps of environ-

ments. In recent years, great progress has been made in the field of robot metrical mapping

[Thrun, 2002]. Using powerful probabilistic methods it is possible to construct accurate 2D

maps of level urban environments. Most of these methods employ laser range-finders as

their primary sensor and construct 2D occupancy grid maps of the world (Figure 2.3(a)).

Laser range-finders have also been used for constructing 3D maps, e.g, [Newman et al.,

2006] use a 2D laser range-finder mounted on a rotating assembly to build a 3D model of

an urban environment. Apart from robotics researchers, people working in computer vision

have also successfully investigated building metrical models of environments [Hartley and

Zisserman, 2000]. Most of the above metrical mapping methods have been applied to small

environments, e.g., a room or a small building.

Metrical mapping of larger environments also attempts to build geometrically accu-

rate maps except on a much large scale. This requires solving a number of difficult problems

such as maintaining accurate 3D pose estimates over large distances and detecting loop clo-

sures in three dimensions [Modayil et al., 2004]. While having global metrical maps can be

useful for some applications, on the whole they seem largely unnecessary and cumbersome

for large scale navigation specially when dealing with environments as large as a Univer-

sity campus or even a city. A more compact representation is required - topological maps
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provide such a representation and are discussed next.

Nevertheless, metrical methods are very effective at building accurate geometrical

models (2D or 3D) of small scale environments that prove to be very useful for planning

safe local motion.

2.2.2 Topological Mapping

A topological map models the world as a collection of paths and places with connections

and order relations amongst them. Informally, places are areas of interest in the world, e.g.,

street corners, corridor and street intersections, or rooms. Paths usually correspond to side-

walks and corridors. Place and path elements form the basis of most topological methods,

though the methods differ in their definitions [Kuipers, 2000; Choset and Nagatani, 2001].

Thus, a topological map provides a much more compact representation of the world

than a metrical map, that can be used easily for large scale navigation. A topological map

does not require maintaining highly accurate pose estimates over large distances, and as a

result problems of large scale environments such as closing large loops become less expen-

sive and simpler to solve [Kuipers et al., 2004].

Despite these advantages, we can see that in building only topological maps of large

scale space we lose detailed metrical information that is useful for local motion planning.

However, it is possible to combine metrical maps with topological maps, and hybrid map-

ping methods do just that.

2.2.3 Hybrid Mapping: The HSSH

Hybrid mapping approaches combine the strengths of metrical and topological approaches.

Generally in hybrid mapping, topological methods are used to map the large scale structure

of space and metrical methods are used to model the small scale structure [Kuipers et al.,

2004; Bosse et al., 2003]. This gives both the required detailed metrical information and a

compact representation of large scale environments.
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(a) (b)

Figure 2.3: A local metrical map and its local topology. (a) A grid map of a small scale
environment constructed using laser range-finders. The white areas represent free space,
black areas represent obstacles, and grey areas represent unexplored space. We call such
a small scale map a local metrical map. The robot is shown as a circle in its center. (b)
A pictorial representation of the local topology of the place described by the local metrical
map. The dashed green segments represent path fragments (PF1, PF2, etc) that pass through
or terminate in the place whereas the solid red segments (gw1, gw2, etc) are gateways into
and out of the place [Beeson et al., 2005].

We use one particular hybrid approach, the Hybrid Spatial Semantic Hierarchy

(HSSH) [Kuipers et al., 2004], as our framework for constructing large scale maps from

local maps. The HSSH uses metrical mapping methods to give the robot detailed metrical

information about its small scale space. The local metrical map, as it is called, scrolls with

the robot when it moves between places in the world providing it with the necessary metric

information for travel. When the robot arrives at a place, the local map stays stationary

as the robot explores the place completely. The completed local metrical map of a place

(Figure 2.3(a)) then allows the robot to extract its local topology. Figure 2.3(b) shows a

pictorial representation of the local topology of a place which is a circular ordering on the

directed gateways and directed path fragments in the place [Kuipers et al., 2004].

To construct a global map from the local metrical maps in the HSSH, places in the

robot’s environment have to be detected [Beeson et al., 2005] and their local metrical maps
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(a) (b) (c) (d)

Figure 2.4: Building large scale maps from local metrical maps. (a) Construct local
metrical maps of every place in the robot’s environment. (b) Extract the local topology of
every place and search through the space of possible topological maps consistent with the
local topologies and the robot’s exploration sequence to find the correct global topological
map. (c) Annotate the local metrical maps with the topological map to get a patchwork
map. (d) A global metrical can also be constructed, if required, using the global topology
and robot travel estimates [Modayil et al., 2004].

constructed (Figure 2.4(a)). The local metrical maps allow the extraction of local place

topologies and these along with travel information, are used by the HSSH to construct a

large scale topological map (Figure 2.4(b)). The topological map can be annotated with

local metrical maps at every place to give a patchwork map (Figure 2.4(c)). It is also

possible to construct a global metrical map of the environment using the global topological

map and robot travel estimates, as shown in Figure 2.4(d). Thus, the HSSH framework

gives us the ability to construct maps of large scale environments using 2D local metrical

maps.

The similarity of the local safety map to the local metrical maps used in the HSSH,

means that the safety maps can be used in the HSSH with almost no effort. In Chapter 8

we show the results of integrating the safety maps with our existing HSSH implementation.

The safety maps permit the extraction of local topologies as shown in Figures 8.12 and 8.13

in Chapter 8, and at the same time enable safe navigation.
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2.3 Constructing the Local Safety Map

We now give an overview of the process followed in this work for building a safety map. We

begin with a framework that outlines the major components that algorithms for constructing

safety maps, and more generally local metrical maps, should have.

2.3.1 General Framework

The framework we introduce here helps to categorize the work that has already been done

in the mapping literature and therefore also identifies the major problems that are yet to

be solved. The process of constructing local safety maps can be broadly thought of as

consisting of the following steps:

1. Localization and Geometric Reconstruction: To obtain a useful and accurate safety

map the robot has to construct a geometric model of its local surroundings. The

geometric model tells the robot the location of various objects and surfaces in its

surroundings with respect to its own position. Localization is an integral part of this

reconstruction process as it keeps track of the robot’s pose while the robot moves

through the local environment.

2. Safety Classification: The different regions in the safety map, corresponding to vari-

ous objects and regions in the robot’s surroundings, have to be classified as being safe

or unsafe (or more precisely, classified with one of the labels defined in Section 2.1).

The classification process has two components:

(a) Classification based on geometric information. Geometric information about

objects/regions can be used to deduce a large amount of necessary safety in-

formation. For example, all vertical objects can be considered unsafe, whereas

all level surfaces can be considered potentially safe. The majority of the work

presented in this thesis is based on using geometric information.
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(b) Classification based on non-geometric information. Pure geometric informa-

tion alone is not sufficient for distinguishing between safe and unsafe regions.

For example, both a sidewalk (safe) and its dirt shoulder (unsafe) can look safe

to a robot if it only considers geometry. However, color and texture information

can distinguish between them. It is important to note that though such proper-

ties help in safety classification, we still require geometric information to locate

the classified objects/regions in the safety map. In Chapter 7 we introduce a

method that uses non-geometric information to identify drop-off edges.

2.3.2 Overview of the Process for Constructing Safety Maps

In this work we propose several algorithms for building local safety maps using vision.

The algorithms have a common structure – they consist of three major steps. As the robot

explores its local surroundings it gets a constant stream of stereo images. Each time the

robot receives a new stereo image pair/frame, it processes the images to update its current

knowledge of the world. The following steps are involved in processing each new stereo

frame (the steps are shown pictorially in Figure 2.5):

1. Computing a Depth Map: A disparity map relative to the left image is computed

using a stereo method (Figures 2.5(a) and 2.5(b)). The range readings obtained are

transformed into world or map coordinates from the camera coordinates (we assume

that the robot is able to localize - see below). We use three different stereo methods

for computing the depth maps. The end result of this step is a collection of range

readings in the map coordinate frame.

2. Building a 3D Model: The range readings from stereo are used to update a 3D model.

The 3D model also helps in handling the noise present in stereo data. We present two

methods for constructing the 3D model - one based on occupancy grids and the other

a probabilistic method based on matching range points across frames. In both cases

the final form of the 3D model consists of a 3D point cloud (Figure 2.5(c)) with a 3D
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grid (Figure 2.5(d)) overlaid on top. The points and grid are in the map coordinate

frame.

3. Analyzing the 3D Model for Safety: In the final step the 3D model is analyzed for

safety to yield the annotated local safety map. The safety classification is based only

on geometric properties of the environment. We present three ways of making the

safety map.

(a) Based on Height Thresholds: The 3D model is simply thresholded by height

using knowledge of the robot’s current location. This produces a safety map

that can only be used in level environments.

(b) Based on Grid Traversability: A traversability analysis of the 3D grid is per-

formed that identifies traversable ground regions or segments in the grid. This

produces a safety map that works for many non-level environments. However,

since the method identifies small changes in height as being traversable, it can-

not distinguish between level and inclined regions.

(c) Based on 3D Planes: This method fits planes to the segments identified by

the previous method and then analyzes the relationship between neighboring

planes to produce the final safety map (Figure 2.5(e)). We believe this safety

map should be usable in a wide variety of urban environments. The output of

this method can be used to produce a hybrid 3D map (Figure 2.5(f)), consisting

of a 3D grid and planes, that might be useful for other applications.

Since the focus of this work is on building models of the environment appropriate

for safe navigation, we assume that the robot pose is known. For our experiments we use

a laser based 3 degrees of freedom (DOF) localization algorithm [Beeson et al., 2006] for

providing the robot’s pose to our mapping algorithms (the 3-DOF method can be replaced

by a camera based 6-DOF SLAM algorithm [Comport et al., 2007]). Since we use a 3-

DOF localization module, our robot is restricted to travelling only on level surfaces for
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the experiments reported in this work. However, our algorithms are general and applicable

without modification to the case when the robot’s motion has 6-DOF.

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Constructing Safety Maps. Step 1: Computing a Depth Map. (a) Left image
from the stereo camera showing a scene from an environment with a drop-off and a ramp.
(b) Disparity map computed for the stereo pair (brighter areas closer) using a correlation
stereo method. Step 2: Building a 3D Model. (c) 3D point cloud and (d) 3D grid (rendered
from a viewpoint different from the image above) of the environment constructed using an
occupancy grid method. Step 3: Analyzing the 3D Model for Safety. (e) A safety map
produced by analyzing the 3D grid for traversability followed by plane fitting and analysis
of the relationship between planes for safety. The color scheme is the same as that used
Figure 2.2 with the addition of dark grey areas (outside the circle) for representing unexam-
ined regions. (f) A hybrid 3D map of the environment that can also be constructed once the
safety analysis is done. Unsafe regions are represented using voxels (grey). Safe ground
regions are represented using planes: green for level planes; yellow for inclined planes – in
this case a wheelchair ramp.
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Chapter 3

Related Work

In this chapter we review other robot mapping systems that are related to our safety mapping

system as a whole. We also review other pieces of work that are related to the individual

components that form part of our mapping system. Some of these individual works are

described in Chapters 4 to 7 where we felt it was more appropriate to discuss them.

3.1 Robot Mapping Systems

We begin by reviewing several related robotic systems that use lasers, cameras, and other

sensors to determine the traversability or safety of the robot’s environment. The systems

are varied, from off-road vehicles that participated in the DARPA Grand Challenge to hu-

manoid robots navigating indoor environments, and therefore have different traversability

requirements.

We describe in the following sections robot systems that primarily use stereo infor-

mation for determining traversability, followed by systems that use visual cues other than

stereo, i.e., appearance-based systems. We then discuss laser-based systems and systems

that combine information from multiple sensors to determine traversability.
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3.1.1 Vision based Systems: Stereo

We discuss several stereo vision based mapping methods for detecting different kinds of

hazards. We begin with two pieces of work that are closest to our own. Both methods

construct annotated maps with labels and use stereo vision to do so.

Gutmann et al. [2008] present a real-time stereo based mapping system for hu-

manoid robots that creates a 2D annotated grid map similar to our safety map. Their method

for building maps consists of first segmenting a disparity map, produced using a local stereo

method [Sabe et al., 2004], into planes using a variation of a range image segmentation

method [Jiang and Bunke, 1994] 1. They use all range readings to update a 3D occupancy

grid and only readings corresponding to horizontal planes to update a floor height map. The

occupancy grid and floor height map are then combined to create a Floor Obstacle Grid

(FOG) map with the regions classified into six categories: obstacle, tunnel, border, floor,

stairs, and unknown.

Therefore, similar to our work they detect obstacles, overhangs, and drop-off edges.

However, they do not detect inclines – their system assumes a level ground when building

the floor map. In our work, we segment the 3D model and fit planes to find inclines. Also,

when labeling drop-off edges they only consider height differences and do not consider the

case that regions beyond drop-off edges might be unknown like we do (Section 6.4). While

we do not explicitly label stairs like their system does (since we are interested in wheeled

robot navigation), our system is capable of finding stairs as shown in Figures 8.4 and 8.7 in

Chapter 8.

Rusu and colleagues [Rusu et al., 2008; Morisset et al., 2009] present a real-time

stereo algorithm that creates a labeled 3D map consisting of polygonal patches. They use

a local stereo algorithm to compute depths from every stereo image pair and create point

clouds. An octree data structure is created for storing the points and discretizing space

1In our work, the segmentation stereo algorithms of Chapter 4 achieve a similar result. The difference is
that in their method the planes are obtained after stereo computation whereas in the our method the planes are
obtained as part of the stereo computation.
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(this is similar to our 3D models that consist of a 3D grid and point cloud). Then points

in each occupied octree cell are modeled using convex polygonal planar patches – a plane

is fit to points in each cell using a variation of RANSAC [Fischler and Bolles, 1981] and

convex hulls are found to get the polygonal patch for each cell. Polygonal patches across

different stereo frames are combined and refined to remove duplicates. They also have a

simple outlier removal process in which they remove lone planar patches. The final 3D

model consisting of polygonal planar patches is annotated based on the patch slopes with

one of five labels: ground, level (here level refers to traversable regions that are above the

ground plane), vertical, steps, and, unknown. The ground and level labels include inclined

surfaces.

Like our work, their system works in environments with inclined surfaces but unlike

our work, inclines are not distinguished from horizontal surfaces. They do not detect drop-

off edges or overhangs. Also, the analysis in their method is very local – each patch is

analyzed individually to determine its label. Furthermore, they do not have a proper process

for removing noise from stereo range readings. We believe that the combination of these

two reasons, specially a local analysis, can lead to incorrect labels. In our work we have

methods for removing stereo noise (Chapter 5) and we label on the basis of much large

regions (Chapter 6).

Unfortunately, neither Gutmann and colleagues, nor Rusu and colleagues, quantita-

tively evaluate the accuracy of their final maps thereby not permitting an objective compar-

ison with our work. We believe that our datasets with their associated ground truth and our

evaluation methodology can fill this gap by providing a common evaluation framework to

the mapping community.

Singh et al. [2000] also use 2D local grid maps made using stereo for the navigation

of a planetary rover. They construct the grid maps from “goodness” maps made at each

frame. The “goodness” of a grid cell is a combined measure of the pitch, roll, and roughness

of a plane fitted to a local patch of stereo range data around that cell. In addition a certainty
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measure for each cell is computed based on the number of range points in its patch and the

“age” of the cell. Finally, the robot plans routes based on the local map and calculates the

traversability of each route based on goodness and certainty values. The system is tested in

complex simulated environments and outdoors in simpler environments. Again, the analysis

of traversability is very local in nature – it is done on the basis of small planar patches that

can lead to errors. Furthermore, they focus primarily on detecting obstacles.

Other stereo algorithms along these lines include work by Iocchi et al. [2000]

and Murray and Little [1998]. Iocchi et al. [2000] present a stereo vision based system

for building planar 3D models. However, they only consider environments with vertical

walls and a level ground. In the method by Murray and Little [1998], 2D occupancy grid

maps are built by compressing 3D stereo range data into 2D range data before adding the

range scans to the map. This is very similar to how horizontal 2D laser range-finders are

used for creating maps – the existence of the ground is assumed meaning that hazards like

drop-offs cannot be detected.

Rankin et al. [2005b] evaluate several vision based methods for the detection of

various hazards such as obstacles, overhangs, drop-offs, trees, water bodies, and highly

sloped regions. Most of the methods use stereo vision however some methods use other

visual cues in addition such as color. They evaluate two methods for the detection of drop-

offs. The first method by Bellutta et al. [2000] looks for gaps (unknown regions) directly in

stereo range data. The second method looks for height differences and gaps in local terrain

height maps of the environment to identify drop-offs. The results from both methods are

combined to identify drop-offs. Both the above methods are designed for detecting drop-

offs caused by holes, i.e., a drop-off edge at a sidewalk curb won’t be detected. Our methods

for detecting drop-offs (Chapters 6, 7) detect both types and in addition use other visual cues

such as occlusion and motion (Chapter 7).

Another method by Rankin et al. [2005a] identifies highly sloped regions by fitting

planes to fixed size local patches to determine the slopes of the planes. If the slope is
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determined to be above a threshold the region is marked as such. In our work highly sloped

and vertical regions are detecting by analyzing the 3D grid model as described in Chapter 6.

Also of interest in the above work are methods for the detection of hazards that we do not

consider in our work, such as water [Rankin et al., 2005a], which is detected using color,

texture, and stereo range (estimating depth of reflections). Tree detection [Huertas et al.,

2005] is another example where edge detection is used in addition to stereo (trees will get

marked as “Non-ground” regions in our work).

Other methods for detecting drop-offs include work by Se and Brady [2002] and

Rankin et al. [2007]. Se and Brady [2002] present a method for detecting drop-off edges at

sidewalk curbs using a stereo vision camera. They assume that all ground surfaces are hor-

izontal and find the curb drop-off by comparing the height difference between planes fit to

the before and after the curb edge. They do not consider inclined surfaces and the case that

regions beyond drop-off edges might be unknown like we do. Rankin et al. [2007] merge

stereo vision and thermal signatures to detect drop-offs at night. Drop-offs are identified

using temperature differences between them and surrounding areas. This method requires

the use of special infrared cameras.

In addition to the ones described, stereo vision has been used for obstacle and hazard

detection for a variety of applications. Labayrade et al. [2005] use v-disparities to detect

obstacles for a vehicle driving on city roads; Byrne et al. [2006] use stereo for obstacle

detection for an unmanned air vehicle; Se and Jasiobedzki [2006] develop a hand held

stereo vision system that they use for mine navigation. Diebel et al. [2004] use “active”

stereo vision to build 3D maps with the ICP algorithm. The methods are “active” in the

sense that they have use artificial lighting to create patterns on the environment allowing

for better depth computation using stereo methods. A review of vision based methods for

navigation is presented in DeSouza and Kak [2002].
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3.1.2 Vision based Systems: Appearance

In our work we mostly focus on detecting hazards based on geometric information (the

exception is the motion and occlusion based method in Chapter 7 for detecting drop-offs).

However, as discussed in the last chapter, while geometric information provides the ma-

jority of safety information it is not sufficient – there are situations when visual cues such

as color and texture can provide important information. In this section we briefly review

systems from the literature that use appearance based cues for determining traversability –

we begin with systems that use color and texture and then describe a few learning based

systems from the DARPA Learning Applied to Ground Robotics (LAGR) project. These

methods can be thought of as extensions to be used on top of the geometric safety mapping

techniques introduced in our work.

Ulrich and Nourbakhsh [2000] use the colormaps of previously traversed surfaces to

classify new surfaces as being safe or dangerous. As the robot moves over surfaces known

to be safe (either through initialization or past experience), it learns the colormaps of these

surfaces. When the robot moves into a new region, it uses previously learned colormaps to

distinguish between safe and unsafe surfaces in the new region. Then assuming it is in an

environment with level ground, the robot uses simple geometry to determine the physical

extent of the safe surfaces. The system is tested in both indoor and outdoor urban environ-

ments. A similar method presented by Dahlkamp et al. [2006] was used on the Stanford

DARPA Grand Challenge vehicle (described in the next section). Such methods based on

using only color are simple and work well in limited environments. They suffer from a lack

of generalizability (e.g., what happens if the robot has only seen unsafe regions that are

black in color and all of a sudden encounters unsafe regions that are white) and can only be

used as add-ons to existing systems.

Alon et al. [2006] develop a texture and optical flow based method to find the path

for an off-road vehicle. Their system has two independent modules for finding the path and

then uses the result of the module with higher confidence. One module assumes the world is
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level and has a road bounded by parallel edges. It then uses camera roll and pitch and optic

flow to determine the road boundaries and direction of the road ahead. The other module

trains a classifier to use texture for classifying the world into road and non-road regions.

Because the system uses two modules it is fairly robust to failure but there are instances

when the system gets confused, e.g., in the presence of shadows.

The DARPA LAGR project emphasized the use of learning and image appearance

for making long-range traversability decisions [Jackel et al., 2006]. The robots provided

as part of the project had stereo vision cameras that gave short range depth information.

The robots used the depth data and the appearance of pixels, for which the depths had been

calculated, to predict the traversability of far-off regions seen in the robot’s images. The

appearance-based vision systems were used as add-ons to the base stereo based naviga-

tion system. We discuss here three representative methods developed as part of the LAGR

program. All the systems developed were meant to be used for outdoor navigation over

vegetated terrain.

The LAGR system by Konolige et al. [2006] uses color information to find paths

and line-of-sight information to find obstacle free regions (regions upto an obstacle along

the line-of-sight are obstacle free and hence traversable). A classifier learns color models

associated with path and non-path regions by training on image pixels labeled using stereo

data. The classifier then labels image regions not labeled using stereo data. Traversable im-

age regions, as determined using the classifier and the line-of-sight method, are projected

from image space into 3D Euclidean space to update a local map (to which stereo infor-

mation is also added). The projection requires the assumption that the ground is part of a

single plane which is computed by fitting a plane to stereo points using RANSAC.

The method by Kim et al. [2006] uses texture to identify traversable regions. Tex-

ture, stereo, and, tactile information is used to train a classifier to categorize patches in

an image. To collect training data the robot initially explores the environment unsuper-

vised and constructs local maps using stereo. The robot is free to explore and even allowed
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to bump into obstacles, and uses this exploration experience to automatically label im-

age patches (corresponding to grid cells in the local map) as being either traversable or not

traversable. It then uses this self-labeled data to train a classifier for future prediction. From

their results the system seems to work fairly well at detecting obstacles. By using its expe-

rience from bumping into obstacles, the robot is able to learn that tall grass is traversable

by their robot even though it appears to be an obstacle based on height.

Hadsell et al. [2007] do not explicitly use color and texture information and instead

used feature vectors obtained from image patches. They create a 2D local map (in polar

coordinates) and a global map for short and long distance planning respectively. The maps

include information from the combined output of a short range stereo system and a long

range vision system. At each frame a plane is fit to the ground in front of the robot (as-

suming that the ground can be approximated using a single plane). Then with the help of

the ground plane, stereo range readings are added to a 2D quad-tree that stores the stereo

points and their labels (ground vs. obstacle). A multi-scale image pyramid is created and

small overlapping windows in the pyramid are annotated with the labels of corresponding

stereo points. The system learns beforehand, using existing datasets, a set of radial basis

function (RBF) centers. The image windows and the RBF centers are used to construct

feature vectors that are used along with the labels to train a logistic regression classifier.

Training of the classifier is done online at each image frame. After the classifier parameters

have been updated for a given frame, the output of the classifier is used to classify all win-

dows in the image pyramid (including those with stereo labels) as being part of the ground

or obstacles. The system works fairly well with an average error rate of about 15 percent.

This method was recently extended to use deep belief networks to learn features instead of

RBFs [Hadsell et al., 2008].

One of the assumptions made in all the methods above is that the ground is either

relatively flat or can be represented using a single plane – this is necessary to project distant

image points into 3D space. Furthermore, unlike our work, all the above LAGR methods
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focus on the detection of obstacles – other hazards like drop-offs are ignored.

Although the above systems focus on using appearance based information they all

also build metric models of the environment for navigation. Michels et al. [2005] present a

robot system that directly uses images to navigate - no explicit metric model is built. They

use supervised learning to learn depth in monocular images from color, texture, and other

visual cues, (similar to [Saxena et al., 2005] in Section 3.2.2). Then they divide the image

into vertical stripes and predict the depth of the closest obstacle in each stripe and learn a

policy for driving their robot (a radio controlled car) using reinforcement learning. Thus,

they do not build an explicit metric model of the world and just use the predicted depth in

images to navigate the robot making the method purely reactive. However, as mentioned,

pure appearance based methods have limitations and can only work in a restricted range of

environments – in the above system the environment is implicitly assumed to be near level

and free of other kinds of hazards.

3.1.3 Laser based Systems

In this section we describe robot systems that rely primarily on laser range data to determine

the safety/traversability of their environment. We give examples of systems for finding var-

ious kinds of hazards including obstacles, surface roughness, drop-offs, dynamic obstacles,

etc. Although we only review a handful, there is a great variety of robotic systems that rely

on laser data for navigation.

Amongst the most well known of robot systems are the ones that took part in the

DARPA Grand and Urban Challenges. We briefly overview the methods used on Stan-

ley [Thrun et al., 2006], the robot that won the second DARPA Grand Challenge [Iagnemma

and Buehler, 2006]. The robot vehicle had multiple lasers mounted on top that were used to

construct a local 3D point cloud of the road and other regions in front of the car. To identify

obstacles the difference between the height coordinates of nearby points was used. If the
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difference was large it was taken as evidence for an obstacle 2. The obstacle information

was incorporated into a 2D grid map and areas were classified as drivable and obstacles.

The terrain analysis was quite simple but sufficient for the needs of the challenge. They

also used a camera on top of the vehicle to identify drivable areas at large distances using

color [Dahlkamp et al., 2006], as mentioned in the previous section. The vision system was

only used for speed control.

Stavens and Thrun [2006] present a system that learns the roughness of surfaces

based on laser range data. The system uses a self-supervised approach in that the robot

drives over terrain and applies roughness labels, based on the shock its accelerometers ex-

perience, to corresponding laser data. This data is then used to train a learning algorithm

that predicts roughness based on new laser data. This method is a promising way to extend

our own work for detecting rough surfaces using stereo.

Wellington and Stentz [2004] also use self-supervised learning to determine terrain

traversability for a tractor robot navigating in fields. The fields have tall grass, some of

which is traversable, and the task is to estimate the true height of ground hidden beneath

the dense vegetation. They train a classifier to predict the true ground height based on

various features extracted from laser range data. They model the world geometrically as a

2D horizontal grid where each cell stores the height of the ground above it. They gather

training data by having the robot drive over tall grassy terrain and label corresponding

voxels with their true height. The labeled data is then used to train the classifier. The

system seems to work quite well and the problem tackled here is an unusual one, because

the desired geometry of the environment is “hidden” from the robot’s range sensors and has

to be deduced.

Heckman et al. [2007] present a method for finding drop-offs (or negative obstacles)

using 3D laser data. They create a 3D grid and label voxels in the grid as belonging to

ground and non-ground objects (the non-ground objects are classified further). They ray-

2Surprisingly, one of the main problems in getting this simple obstacle detection method to work was getting
accurate pose estimates which was particularly hard as the road was rough.
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trace to find occluded voxels in the 3D laser grid and determine the cause of the occlusions

– whether the occlusions are caused by ground or non-ground objects. Furthermore, they

check to see if the region after the occluded voxels is occupied. Based on this they identify

the occluded voxels as potential negative obstacles and annotate it with details on the nature

of the occlusion (occlusion caused by ground or non-ground objects; region after occluded

voxels is occupied or unknown). This analysis is similar to what we do in Chapter 6 for

finding potential drop-off edges using stereo data. However, we fit planes to the data before

finding the drop-off edges which gives a better estimate of the height difference between

surfaces – this is specially important for stereo data (as illustrated in Chapter 6).

Thrun et al. [2004] present a method for modeling corridor style environments using

planes. They fit the planes to a 3D point cloud of laser range points using EM where each

plane is a bounded rectangular region. The final model constructed consists of several such

planes overlapping each other. We discuss the EM based method for fitting planes and

compare it with our own plane fitting method further in Chapter 6.

Prassler et al. [1999] use a 2D laser range-finder to identify dynamic obstacles.

They use their method to navigate a wheelchair robot during rush hour in a railway station

and other environments – the system is unique in its performance in crowded dynamic

environments and a promising direction for extending our work.

3.1.4 Multiple Sensor based Systems

We end our review of robot mapping systems by presenting a couple of representative meth-

ods for mapping that use multiple sensors. We have already seen some examples of such

methods in the previous sections in the works by Kim et al. [2006] (cameras and bump

sensors), Thrun et al. [2006] (lasers and cameras) and Rankin et al. [2007] (regular cameras

and thermal cameras). The use of complementary sensors on a robot allows a wider variety

of problems to be solved more easily. Problems that are difficult to solve using one sensor

might be easier to solve using another sensor. In our own work, we expect to use additional
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sensors in the future such as sonars and bump sensors to detect invisible obstacles (e.g.,

glass walls) that can be very difficult to detect using vision.

Wellington et al. [2005] improve on the methods discussed above [Wellington and

Stentz, 2004] for detecting true ground height beneath vegetation by using multiple sensory

modalities: laser range data, laser reflectance, infrared temperature (from an infrared cam-

era), and color data. First, the world is modeled geometrically using a 3D grid of voxels

where each voxel can be classified as ground, vegetation, free-space or as an obstacle. Then

they use a self-supervised approach to gather training data by having the robot drive over

tall grassy terrain and label the voxels, corresponding to the terrain, with the categories

defined above. Finally, the labeled data is used to train multiple MRFs each modelling the

different object classes. The trained MRFs are then used to predict the true ground height

for each of the classes. The use of several sensors allows them to distinguish between the

different object categories better and predict ground height more accurately. An example

given is the use of the infrared camera to detect a person hidden in vegetation (the person

has a higher temperature than the vegetation). The use of the infrared camera allows the

corresponding region to be labeled as an obstacle instead of vegetation.

[Rasmussen, 2006] use both laser and vision based methods for driving a vehicle

on rural and desert roads. The vision component uses texture to find ruts and tracks in

the ground which are used to find the road vanishing point (that can be hard to find using

lasers). This yields a direction for steering the vehicle. The laser component is used to

detect obstacles (that are harder to find using vision) along that road direction to center

the vehicle in the road. The system was tested (and used) on the Caltech DARPA Grand

Challenge vehicle and gave good performance.

3.2 Methods for Computing Depth and 3D Reconstruction

An important part of almost all the robot mapping methods discussed above is the ability to

estimate the depth of objects in the environment and reconstruct a model of the environment.
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Laser range-finders directly return depth measurements to objects that are accurate and

almost free of false positive readings allowing environments to be reconstructed relatively

easily. The information provided by cameras on the other hand has to be heavily processed

to produce the depth estimates. In this section we look at different methods for computing

depth from images and for obtaining 3D reconstructions of environments. In our work we

have focussed on using stereo depth information but here we also look at methods that

involve computing depth from a single image and Structure from Motion methods [Hartley

and Zisserman, 2000].

3.2.1 Depth from Stereo Images

Scharstein and Szeliski [2002] provide an excellent overview of stereo image based meth-

ods for computing depth. Broadly, stereo algorithms can be split into two types – local

algorithms and global algorithms.

Local algorithms do not take the overall structure of the image into account when

computing the depth at a pixel – they only consider a local image patch around the pixel.

Some of the most commonly used local methods are sum-of-squared differences (SSD) and

normalized cross-correlation [Scharstein and Szeliski, 2002]. Local algorithms have the ad-

vantage of being very fast and amenable to real-time implementation. However, most local

methods have trouble computing disparities in untextured regions (because when looking

at a small patch in such regions everything looks similar). Furthermore, local methods tend

to compute incorrect disparities at boundary regions.

Global stereo methods attempt to overcome the problems of local methods. Such

methods are called global because the depth at a single pixel is dependent on the entire

image as global methods usually minimize a cost function over the whole image. The cost

function usually consists of two terms - a data term and a smoothing term. The data term

measures how well the depth at a pixel agrees with image intensities and the smoothing

terms encodes smoothing (and other) assumptions made by the algorithm. Such cost func-
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tions also have a Bayesian interpretation (based on Markov Random Fields) given by Ge-

man and Geman [1984]. A variety of optimization methods are used to minimize the cost

function.

A well known global method is that by Kolmogorov and Zabih [2001]. They opti-

mize a cost function that in addition to the two terms above, has a term for handling occlu-

sions. Furthermore, they use a fast Graph Cuts based method to minimize the cost function

that gives a strong local minima. Other methods use Belief Propagation to minimize the

cost function [Sun et al., 2003].

The above algorithms operate on pixels. Recently, algorithms that operate on larger

image regions – segments – have become popular [Tao et al., 2001; Hong and Chen, 2004].

The algorithms first segment the image based on color and then find matches based on the

segments. These methods have the advantage of shorter computation times as the optimiza-

tion is done over a smaller set of elements (segments as opposed to pixels). This is relevant

as most global methods have a long computation time. In our work we use one local method

and two global segmentation based methods as described in Chapter 4.

For a more in depth review of stereo methods we refer the reader to the work

by Scharstein and Szeliski [2002]. Furthermore, the paper also links to a website [Scharstein

and Szeliski, 2009] where the latest algorithms and a common evaluation can be found.

3.2.2 Depth from Monocular Images

In recent times researchers have looked at inferring the geometry of a scene from a single

image. A learning/statistical modeling approach is taken. We describe here three represen-

tative methods and discuss their applicability to our work.

Torres-Mendez and Dudek [2004] develop a method for inferring a complete depth

map of an image from a partial depth map of the image. They use Markov Random Fields

(MRFs) to model the statistical relationship between variations in the intensity values of

pixels in the image and variations in the scene depth of those pixels. The MRF is then used
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to interpolate the scene depth of the remaining pixels in the image for which depth is not

available. In their system they use a laser range-finder to get the partial depthmaps. They

test their system in indoor environments and get fairly accurate and complete depth maps.

Saxena et al. [2005] train MRFs to predict the depth of small patches in a single

image based on various visual properties of the patch (and its neighbors) such as color

and texture at multiple scales. To train the MRFs they use images that have ground truth

depth maps (obtained using lasers). They test their method in various environments and

are able to get reasonably accurate depth maps. Though the depthmaps do not seem to be

as accurate as the ones obtained by the method above, they are able to estimate depth over

larger distances.

Hoiem et al. [2007] take a slightly different approach and train a classifier to la-

bel various regions of an image into one of three categories: “support, “vertical”, or “sky”.

“vertical” is further subdivided into five categories. The classifier uses various features in an

image region, such as color, texture, location in image, shape, lines, and, vanishing points

to label the region. The classifier is trained using images that have been manually labeled.

To create a 3D model they assume that the ground is a level plane and all regions marked

“vertical” are perpendicular to the ground plane. Then all they need to do is find the inter-

section of the “vertical” regions with the ground plane and extract the camera parameters

from the scene. This gives a simple 3D “pop-up” model of the scene [Hoiem et al., 2005].

It seems plausible to use the first two methods to improve the output of stereo meth-

ods specially in areas of low texture. Partial depth data available in different parts of the im-

age and learned relationships between image features and depth can help get more complete

depth maps. In fact, a similar approach is taken in [Saxena et al., 2007] where the output of

a monocular system is shown to improve stereo depth estimates. The third method is sim-

ilar in flavor to the appearance based methods of Section 3.1.2 in that parts of images are

labeled as ground or non-ground. Thus, it is possible to get image-based safety information

using this method from a single image.
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3.2.3 Structure from Motion

We review here a couple of representative systems for 3D reconstruction that use Structure

from Motion (SFM) techniques and their relation to our work. SFM techniques require a

sequence of images from a moving camera. The camera can be calibrated or uncalibrated.

The focus of SFM techniques is to simultaneously estimate the relative poses of the camera

for the sequence of images taken and the 3D structure of the environment (usually a sparse

3D reconstruction is obtained).

The general process used in SFM methods is as follows. First, features are de-

tected in the current image and matched to features in the previous image. The matched

features are used to compute either a Fundamental matrix (for uncalibrated cameras) or an

Essential matrix (for calibrated cameras) relating the two images. Usually a method like

RANSAC [Fischler and Bolles, 1981] is used to eliminate bad matches and find the correct

matrix. The matrix can then be used to find the relative motion between the two images.

Once relative motions between several image pairs are obtained a global optimization over

all camera poses and features can be done to obtain the relative poses of all camera lo-

cations – this is known as bundle adjustment. The feature locations can be computed in

Euclidean or Projective space using the camera poses depending on whether the cameras

were calibrated or not, giving the final 3D reconstruction. There are numerous variations

of this process, e.g., using three images to estimate a trifocal tensor instead of a Fundamen-

tal matrix or using line segments instead of features or the amount of camera calibration

information assumed available.

[Fitzgibbon and Zisserman, 1998] use both point and line features and two and

three images to obtain a 3D reconstruction. Once a 3D model of points is available, they

fit planes to the model using RANSAC iteratively to create a VRML model. In their work

they assume that the images be “interesting”, i.e., the images have texture. One of the dif-

ferences between this work and ours is that they use only sparse feature points to construct

the 3D models (we use dense stereo depth maps). Also, their models don’t catch all the de-
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tails that we consider important as the models they construct are from a computer graphics

perspective.

[Akbarzadeh et al., 2006] present an SFM based method for reconstructing urban

scenes on a large scale using a suite of cameras. Their goal is to provide texture mapped

models that can be used by people for various purposes such as route finding. SFM based

techniques along with GPS and an Inertial Navigation System (INS) provide accurate cam-

era pose information in their method. Once camera pose is available a multi-view stereo

method is used to compute depths maps of the environments. The depth maps from dif-

ferent times are fused and smoothed to produce a triangulated, texture-mapped 3D model.

The results are quite good, although like the above method, they are more interested in large

scale structure as opposed to finer structure (that is more suitable for robot navigation).

SFM methods are very useful for getting accurate camera (and hence robot) pose

estimates and thus can be used in our work for localizing the robot as we discuss below.

The 3D reconstructions are usually sparse and hence need to be augmented with denser

data such as from stereo. However, the use of line segments for building 3D models can be

a useful future extension to our work.

3.3 Methods for Localization

In this section we give a brief overview of visual localization methods. These methods

are taken from the robotics SLAM (Simultaneous Localization and Mapping) literature and

the vision SFM literature. In our work we assume that the robot has the ability to localize

itself in its surroundings. Currently for our robot, localization is done using laser range-

finders [Beeson et al., 2006]. In the future we would like to use vision-based localization

methods to remove the dependency on laser data. In addition we would like that the local-

ization be done in all 6 degrees-of-freedom available to the robot.

Visual localization methods in the literature use a variety of mathematical tech-

niques to estimate robot pose. Davison [2003] uses an Extended Kalman Filter (EKF) for
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localization. The EKF tracks the pose of the robot and observed visual landmarks in the

world simultaneously and provides good small scale 6 DOF localization. Nister [2004] uses

SFM techniques for real-time 6 DOF visual localization. He introduces a efficient algorithm

for computing the relative camera motion between two calibrated images given five pairs of

matching points/features. He reconstructs parts of the environment in 3D using the features

detected. This method also seems to give good localization results in small scale environ-

ments. Sim and Little [2006] use Rao Blackwellized Particle Filters to localize their robot

in 3 DOF and construct 3D SIFT feature-based maps.

[Konolige et al., 2008] use features in stereo images for localization. They use

RANSAC to estimate motion between image pairs and then do incremental bundle adjust-

ment to compute the final visual odometry. They then fuse the visual odometry result with

odometry obtained using Inertial Measurement Units (IMUs). The use of IMUs helps re-

duce error. They demonstrate the system working well over large distances on the order of

kilometers. Other methods based on using stereo images include those by Comport et al.

[2007], who show their system working over several hundred meters on a car traveling at

high speeds, and Howard [2008], who demonstrate similar accuracy over hundreds of me-

ters on legged robots in addition to mobile robots. It is clear that such stereo image based

localization methods are particularly relevant to our work.
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Chapter 4

Computing Stereo Depth

In this chapter we describe three methods that we use for computing depth maps from stereo

images. One of the methods is a commercially available local stereo method and the other

two are global methods we propose. The two global methods use color and edge infor-

mation to compute the depth maps respectively. The reason we consider global methods

in addition to the local method is because global methods are considered to provide better

depth estimates than local methods in general, particularly in regions of low texture (Sec-

tion 3.2.1). Therefore, we hope to be able to build better safety maps using global methods

than using local methods. In Chapter 8 we evaluate this hypothesis by comparing the safety

maps built using all three stereo methods.

In addition to the evaluation done in Chapter 8, we do an initial evaluation of all

methods towards the end of this chapter using an existing standard stereo evaluation frame-

work [Scharstein and Szeliski, 2002] that is popular in the stereo vision literature. The

purpose behind this standard evaluation is to provide a basis for comparing the stereo meth-

ods we present here with other stereo methods present in the literature 1.

Before describing the stereo methods, we provide a description of stereo camera ge-

1We shall see later in Section 4.4, that the results of the standard evaluation are not a good indicator of the
relative quality of safety maps that can be constructed using the stereo methods.
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Figure 4.1: Geometry of the left and right stereo imagers observing a point p in the world
with camera coordinates xcam.

ometry and the math behind computing depth values from stereo images in the next section.

4.1 Stereo Geometry: Computing Depth and Error

In this section we see how, given the disparity of a point in a stereo image pair, we can

compute the distance of the camera to that point. We also compute the errors associated

with the distance estimate – information that is used in Chapter 5.

The idealized geometry of a stereo camera is shown in Figure 4.1. The distance

between the centers of the two imagers, b, is called the stereo camera’s baseline. The focal

length of both imagers is f (units are in pixels). (r0,c0) are the row and column coordinates

of the center of each imager (that happen to be the same for each imager). The camera

coordinate frame is attached to the optical point OL of the left imager.

Consider a point p in the robot’s environment that is seen in both imagers. Let

the left row and column coordinates of the image point (or pixel) that corresponds to p,

be (rL,cL), and right coordinates be (rR,cR). Then the 3D coordinates, in the camera’s
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coordinate frame, of the point p are given by [Forsyth and Ponce, 2002]:

xcam =


xcam

ycam

zcam

 = λ (z) =


b f /d

(c0− cL) b/d

(r0− rL) b/d

 (4.1)

where,

d = cL− cR (4.2)

is the point’s disparity and z = (rL,cL,d)T , are defined to be p’s image coordinates (we shall

use the abbreviated version z = (r,c,d)T for denoting a point’s image coordinates from here

onwards – by default (r,c) without superscripts will refer to the left image row and column

coordinates). Thus, given the disparity, the point’s 3D location in the camera coordinate

frame, xcam, can be computed.

The point’s location in the robot’s coordinate frame can be computed using the

equation,

xr =


xr

yr

zr

 = Rcxcam +Tc (4.3)

where Rc and Tc are known (and constant) rotation and translation matrices, obtained through

a calibration process, relating the camera’s coordinate frame to the robot frame. Localiza-

tion gives the position of the robot in the map coordinate frame, xm
R = (xm

R ,ym
R ,θ m

R )T 2. Given

this we can also compute the point’s position, xm, in the map coordinate frame:

xm = κ(xr,xm
R ) =


xm

R + xrcos(θ m
R )− yrsin(θ m

R )

ym
R + xrsin(θ m

R )+ yrcos(θ m
R )

zr

 (4.4)

Hence, the 3D location of a point in the map’s coordinate frame can be calculated

2For simplicity, we assume here that the robot’s pose only has three degrees of freedom.
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given the robot pose and the point’s disparity. The disparity in turn can be estimated using

any one of the stereo methods described below. Computing the disparity requires finding

image points in the left and right imagers that represent the same world point – this usually

involves matching image points in the left imager to points in the right imager. The matches

are not perfect and there is a lot of noise associated with the process (the camera resolution

also plays a role). The noise or errors can be random or systematic – this is discussed further

in Section 4.4.

4.1.1 Error Modeling and Propagation

The random noise or error in the image coordinates, z, of a point p can be modeled by a

Gaussian distribution with zero mean [Matthies and Shafer, 1997]. Let Σ = diag(σ2
r ,σ2

c ,σ2
d )

be the covariance matrix of the Gaussian distribution in the image coordinate frame. The

covariance matrix Σcam, of the point’s position in the camera reference frame is obtained by

propagating error using Equation (4.1) [Matthies and Shafer, 1997],

Σ
cam =

[
∂λ

∂z

]
Σ

[
∂λ

∂z

]T

(4.5)

Since localization gives the position of the robot in the map coordinate frame, xm
R , we can

also estimate the covariance Σm of the point in the map coordinate frame, using Equa-

tions (4.4) and (4.5):

Σ
m =

[
∂κ

∂xcam

]
Σ

cam
[

∂κ

∂xcam

]T

(4.6)

We assume that localization error is negligible in the above Equation.

Thus, the quantity Σm gives us an approximation to the error in the location of the

world point p as estimated using stereo. We use this information in the data association

method described in Chapter 5 for building 3D models.
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(a) Left image of stereo pair. (b) Right image of stereo pair. (c) Disparity map with respect to
the left image.

Figure 4.2: Stereo image pair and disparity map computed by the local stereo algo-
rithm [Videre Design, 2006]. The stereo images are from the ACESRAMP dataset, one
of several datasets that we use in this work.

4.2 Local Correlation Stereo

The local stereo method we use is a standard off-the-shelf multi-scale correlation stereo

method [Videre Design, 2006]. Correlation stereo methods work by matching pixels in the

left image to pixels in the right image. To find a match for a pixel in the left image, the

method compares the intensities of pixels in a small window centered around the original

pixel, against the intensities of pixels in a similar window centered around a pixel in the

right image. For each pixel in the left image, this computation is performed for several

pixels in the right image. The pixel in the right image for which the intensities match best

is chosen as the matching pixel.

Figure 4.2 shows the disparity map computed using this method for a stereo im-

age pair obtained from the stereo camera on the intelligent wheelchair. The disparity map

shown was obtained after post-processing the disparities obtained from the local stereo

method. We removed range readings that were significantly different from neighboring

range readings. Such readings have a high likelihood of being incorrect and their removal

improved our system’s performance.

Computation Time: The local stereo method is fast and can run at frame rate (30 Hz),

however the post-processing step slows the speed down to around 10 Hz.
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4.3 Global Segmentation Stereo

One of the drawbacks of local correlation stereo methods is their inability to provide good

depth estimates in regions of low texture. This is because when intensities in the left and

right images are compared locally in low texture regions, several pixels around the correct

pixel in the right image appear to match the pixel in the left image, leading to ambiguity

and incorrect depth estimates.

Global stereo methods that perform an optimization over the whole image, have

been shown to give better depth estimates than local stereo methods [Scharstein and Szeliski,

2002], including in regions of low texture. We draw on a particular type of global method,

based on color image segmentation [Hong and Chen, 2004], to develop our own global

stereo methods.

The first global method that we propose, described in the following section, utilizes

a color-based image segmentation to compute disparity maps 3. The second method (Sec-

tion 4.3.2) is the same as the first method in all respects except that it utilizes an edge-based

image segmentation algorithm that we propose.

4.3.1 Color Segmentation based Stereo

Color segmentation algorithms work by first segmenting an image into segments of homo-

geneous color and then computing the disparity of each segment as a whole. Based on the

premise that significant disparity discontinuities do not occur inside a region of homoge-

neous color, most methods fit a disparity plane to each color segment in one stereo image.

The quality of the fit is measured by warping the image based on the computed disparities,

and comparing the warped image to the remaining stereo image. Since the assumption of

planar color segments is not always true, most approaches tend to over-segment the im-

age to better approximate the true disparity [Hong and Chen, 2004]. Over-segmentation

3The method we describe here is a variation of a color segmentation stereo method we presented in previous
work [Murarka et al., 2008].
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allows non-planar surfaces to be approximated using several small planes. We believe that

for urban environments, which are mostly composed of planar or smooth surfaces, this ap-

proximation should work fairly well in most cases. The final step of global segmentation

methods then involves minimizing a global cost function that measures the quality of fit

over the entire image and adherence to different constraints (e.g., smoothness).

Algorithm: The main steps in our algorithm are as follows (shown in Figure 4.3).

(i) Color Segmentation. In the first step, the left image (Figure 4.3(a)) of a stereo pair is

color-segmented (Figure 4.3(b)) using a color-based segmentation algorithm. We use one of

two methods by [Comaniciu and Meer, 2002] and [Felzenszwalb and Huttenlocher, 2004]

to color segment the image using code available online from [Georgescu and Christoudias,

2009] and [Felzenszwalb and Huttenlocher, 2007] respectively 4. In Section 4.4 we present

results obtained by using both methods.

(ii) Correlation Stereo Disparity Computation. In the second step, the disparity map for

the stereo image pair is computed using a local correlation stereo algorithm (Figure 4.3(c)).

Again, we use one of two local algorithms – the algorithm described in Section 4.2 [Videre

Design, 2006] and the other a SSD (Sum-of-Squared Differences) correlation stereo algo-

rithm [Scharstein and Szeliski, 2002] that we implement. In Section 4.4 we present results

obtained using both methods.

(iii) Fitting Disparity Planes to Segments. The end result of the first two steps is a set of

segments and disparities associated with (almost) all pixels in the image. The next step

consists of fitting planes in disparity space to the segments. We can define planes P of the

form,

P : d = a1c+a2r +a3 (4.7)

in the 3D space defined by the row and column coordinates of pixels and their disparities.

4The parameter settings used were as follows: “SpatialBandwidth = 8; RangeBandwidth = 6; Minimum-
RegionArea = 80;” for the method by [Comaniciu and Meer, 2002] and “sigma=0.5; K=20; min=100” for the
method by [Felzenszwalb and Huttenlocher, 2004].
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These planes in disparity space correspond to planes in 3D Euclidean space. For each

segment, we fit a disparity plane to the pixels in the segment and their disparities using an

iterative weighted least squares method [Hong and Chen, 2004]. This method is able to

handle outliers that arise due to bad correlation stereo disparity estimates.

Figure 4.3(d) shows the resulting disparity map found after fitting planes to all seg-

ments and using the determined plane parameters to recompute the disparities of all pixels.

The dark areas in the figure arise because we do not fit planes to small segments (i.e., seg-

ments with less than 100 pixels) or segments with an insufficient number of valid disparities

(i.e., at least 50 valid disparities).

The goal of this step is to find a candidate set of planes representative of the major

planes in the robot’s environment and not, as it seems, to find the best fitting disparity plane

for each segment. The following steps describe how the “best” plane is chosen for each

segment.

(iv) Adding Additional Planes. In order to ensure that the candidate plane set contains all

the major horizontal planes in the robot’s environment (horizontal planes are of obvious

significance when considering robot navigation), several pre-calculated evenly distributed

horizontal planes are added to the candidate set. For example, all horizontal planes between

-2 and 2 meters that are 0.1 meters apart are added. This increases the probability that the

correct ground (and below ground) planes are included in the set of candidate planes.

(v) Refining the Set of Planes. The plane set, which now contains several similar planes,

is refined by clustering similar planes and then picking the plane with maximum support

in each cluster. This refinement process reduces the number of planes and results in a

overall increase in the speed of the algorithm as it reduces the time taken by the final global

optimization process.

Plane clusters are found very simply: planes that have very similar normals, n̂ (an-

gular difference is less than 0.25 degrees), and similar distances to the origin dO (less

than 0.5 pixels) are grouped in a single cluster. The normal and distance for a plane,
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(a) Left image of stereo pair. (b) Color segmented left im-
age [Felzenszwalb and Hutten-
locher, 2004].

(c) Correlation stereo disparity
map [Videre Design, 2006].

(d) Disparity map after fitting
planes.

(e) Disparity map corresponding
to initial labeling f0.

(f) Final disparity map after en-
ergy optimization.

Figure 4.3: Images from various stages of the color segmentation stereo algorithm.

P = (a1,a2,a3)T , are computed as follows.

n̂ =
(a1,a2,−1)T

(a2
1 +a2

2 +1)1/2 (4.8)

dO =
a3

(a2
1 +a2

2 +1)1/2 . (4.9)

Next, for each disparity plane P and each pixel (r,c) in the image, we compute the

following difference in intensities,

∆IP(r,c) = |IL(r,c)− IR(r,c−d)|. (4.10)

where d is computed using Equation (4.7). Here IL(r,c) and IR(r,c) are the left and right

image intensities at (r,c) (for color images the RGB intensities at each pixel are added to

compute ∆IP(r,c)). Now for each plane P, we find the total number of pixels, for which
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∆IP(r,c) is below a threshold T , called the support sP of the plane in the image,

sP = ∑
∀(r,c)

δ (∆IP(r,c) < T ) (4.11)

where δ (∆IP(r,c) < T ) is 1 when its argument is true otherwise 0. The best plane in each

cluster then is the plane with maximum support. The best planes from each cluster now

form the set of candidate planes.

(vi) Energy Minimization for Selecting Correct Planes. In the final step, the set of disparity

planes from the candidate plane set, that minimize a global energy function over the two

stereo images are chosen as the “correct” planes. To define the energy function we first

define a matching cost for a given disparity plane P and segment S,

C(S,P) = ∑
(r,c)∈S

|IL(r,c)− IR(r,c−d)| (4.12)

where d is computed using Equation (4.7).

We also define a labeling f that assigns a plane to every segment S in the image.

For a given labeling f , f (S) then gives the plane corresponding to S. The energy function

corresponding to a labeling f of an image is:

E( f ) = ∑
S

C(S, f (S))+ ∑
S,S′

LS,S′δ ( f (S) 6= f (S′)) (4.13)

where the first sum is over all segments and the second sum is over all pairs of neighboring

segments 5. LS,S′ is proportional to the common boundary length between segments S and S′

– computed as the number of boundary pixels of segment S that are adjacent to S′ assuming

an eight pixel neighborhood (the constant of proportionality is chosen to be 30). δ ( f (S) 6=

f (S′)) is 1 when its argument is true otherwise 0. Minimizing this energy function, over all

segments and all planes in the candidate set, gives us the optimal labeling f for the image

5Similar energy functions arise when we consider Markov Random Field based formulations of the stereo
matching problem [Li, 1995].
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which in turns gives the “correct” disparity plane for each segment S.

The first term of the energy function is often called a data-term – it measures the cost

of assigning planes to segments computed on the basis of image intensities only (the “data”).

The second term is a smoothing function which takes interactions between neighboring

segments into account. It imposes a penalty if two neighboring segments have different

disparity planes assigned to them, thereby trying to ensure that disparities change smoothly

across the image.

The initial labeling f0 for starting the energy optimization process is chosen by

minimizing C(S,P) for each segment S independently,

f0(S) = arg min
∀P

C(S,P) (4.14)

Figure 4.3(e) shows the disparity map for the initial labeling f0.

Methods for minimizing energy functions of the form given by Equation (4.13), are

well documented in literature. In particular, we use an α-expansion graph cuts algorithm

to find a strong local minima of the energy function [Boykov et al., 2001; Hong and Chen,

2004] using code available online [Bagon, 2006; Kolmogorov and Zabih, 2004; Boykov

and Kolmogorov, 2004]. Figure 4.3(f) shows the final disparity map obtained after finding

the “correct” labeling.

Issues: Unfortunately, in practice, the depth estimates obtained from the global color seg-

mentation stereo algorithm are also noisy and contain incorrect range readings. Incorrect

range readings can arise due to several reasons – some of the major ones are as follows.

• When the wrong plane is found for a segment. This leads to incorrect disparities for

all pixels in that segment.

• When the set of candidate planes does not contain all the planes actually present in the

environment. This can happen when the correlation stereo disparities are incorrect or

very noisy and the plane fitting process is unable to find the correct planes.
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• When the image segmentation is incorrect. This results in segments that straddle

depth discontinuities – it means that no single plane can provide the correct set of

disparities for that segment.

Therefore, this method is susceptible to producing poor quality disparity maps at times,

which means that we need to have a noise removal process, like those discussed in Chap-

ter 5, to properly handle the depth estimates produced by this method

Computation Time: On a machine with a dual core processor, this stereo method takes

on average 6 seconds per stereo frame. The code we use is a mix of C++ and Matlab

code that is reasonably optimized. We believe that an optimized pure C++ implementation

should be able to run at 1 Hz on current dual core processors.

4.3.2 Edge Segmentation based Stereo

As mentioned, the second global stereo method utilizes an edge-based image segmentation

algorithm that we propose. The rationale behind using edge-based segmentation is the low

amount of local color variation in the urban environments that we consider and a large num-

ber of edges. For example in the scene in Figure 4.3(a), several surfaces have the same color

even though they are oriented differently. This can be a problem for color segmentation al-

gorithms, in that a segment may straddle regions with different disparity planes. However

on the other hand, the environment does have edges where depth discontinuities occur.

Thus, our hypothesis is that by using an edge-based image segmenter, we might

be able to overcome the problem of segments straddling depth discontinuities, leading to

better overall performance. The rest of the global stereo algorithm stays exactly the same.

We describe our proposed edge-based segmentation method next.

Algorithm: The main steps of our edge-based image segmentation algorithm are as fol-

lows (shown in Figure 4.4).

51



(a) Edges found for the image shown in Fig-
ure 4.5(a).

(b) Edges with their endpoints (in red) and
neighbors (in green) identified.

(c) Edges after growing (grown parts in
blue).

(d) The segments found.

Figure 4.4: Edge based segmentation.

(i) Edge Detection: The first step is detecting edges in the left stereo image. We use the

Canny edge detector [Canny, 1986] to find the edges (using code available in Matlab). A

low threshold on the edge strength 6 is used so as to detect weak edges as well. Figure 4.4(a)

shows the edges found for the stereo image in Figure 4.5(a). Simply finding edges is not

enough to get a segmentation since usually the entire edge is not detected. This can lead

to segments that straddle depth discontinuities and so we need to “‘complete” the edges by

growing them before we find segments.

(ii) Finding Edge Endpoints and Neighbors: In the next step, the endpoints of edges are

found by tracing the edges. In addition, the first two neighbors of the endpoints are also

found. Figure 4.4(b) shows the identified endpoints and neighbors.

6This corresponds to parameter settings of “t high=0.04; t low=0.4×t high” in the Matlab code.
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(a) Left image of stereo pair. (b) Edge segmented left image. (c) Correlation stereo disparity
map [Videre Design, 2006].

(d) Disparity map after fitting
planes.

(e) Disparity map corresponding
to initial labeling f0.

(f) Disparity map after energy
optimization.

Figure 4.5: Images from various stages of the edge segmentation stereo algorithm.

(iii) Growing Edges: The endpoint of an edge along with its neighbors helps define the

direction, as defined by the vector between the endpoint and its farthest neighbor, in which

to grow that end of the edge. All ends of an edge are grown in the respective directions

specified by these vectors. Growth is stopped whenever the end of an edge hits another

edge or the image boundary. Figure 4.4(c) shows the final edges obtained after growing the

edges.

(iv) Finding Contiguous Regions: In the last step all contiguous regions enclosed by the

edges are found to give a set of segments. These segments initially don’t contain the edges

themselves – the edges are randomly assigned to the segments afterwards to give the final

image segmentation shown in Figure 4.4(d).

Figure 4.5 shows the results of the global segmentation stereo method when it is

based on the edge segmentation algorithm.
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Computation Time: On a machine with a dual core processor, the edge-based stereo

method takes on average 10 seconds per stereo frame. The increase in the time over the

color-based stereo method is largely due to the use of Matlab for implementing the edge-

based segmentation algorithm.

4.4 Evaluation and Results

We perform an initial evaluation of all three stereo methods in this section using the stereo

evaluation framework presented in [Scharstein and Szeliski, 2002]. The framework has be-

come a standard way for evaluating stereo algorithms in the stereo vision literature. There

are two reasons for performing this evaluation: (i) the evaluation provides a common basis

for comparing our methods with other stereo methods, and, (ii) the evaluation provides us

with a simple way of comparing our stereo methods against each other. A more extensive

evaluation of our stereo methods on video datasets, comparing the quality of safety maps

produced, is done in Chapter 8. The results of the evaluation in Chapter 8 show that the

standard evaluation framework discussed here is not a good predictor of how suitable the

stereo methods are for building safety maps (see below and Section 8.2 for more details).

Nevertheless, performing the standard evaluation is important for placing our stereo meth-

ods in the framework used by the stereo vision community.

The stereo evaluation framework of [Scharstein and Szeliski, 2002] consists of eval-

uating the methods on several stereo image pairs that have ground truth disparity maps as-

sociated with them. The stereo images are shown in Figure 4.6 and their associated ground

truth disparity maps are shown in the first row of Figure 4.8 7. The disparity maps computed

by the various stereo methods for the stereo images are compared against the ground truth

disparity maps and three metrics are computed:

7The framework evaluates on four image pairs, whereas we evaluate on only three of the four image pairs.
The reason for doing this is that one the image pairs is in gray-scale which causes one of the color-segmentation
algorithms (external code) we use to crash.
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(a) Left stereo image from
Tsukuba dataset.

(b) Left stereo image from
Venus dataset.

(c) Left stereo image from
Sawtooth dataset.

Figure 4.6: Stereo image pairs used in the evaluation framework presented in [Scharstein
and Szeliski, 2002]

1. Bnonocc: The percentage of pixels in non-occluded regions Ō of the stereo image that

have an absolute disparity error greater than 1 pixel.

Bnonocc =
1

NŌ
∑

(r,c)∈Ō

| d(r,c)−dGT (r,c) |> 1 (4.15)

Here, NŌ is the total number of pixels in non-occluded regions, d(r,c) is the disparity

computed at pixel (r,c) by a stereo method and dGT (r,c) is the ground truth disparity.

Figure 4.7(a) shows the non-occluded regions for the one of the test stereo images.

2. Buntex: The percentage of pixels in texture-less regions of the stereo image that have

an absolute disparity error greater than 1 pixel (defined similarly to Bnonocc). Fig-

ure 4.7(b) shows the texture-less regions for one of the stereo pairs.

3. Bdisc: The percentage of pixels in regions with depth discontinuities of the stereo

image that have an absolute disparity error greater than 1 pixel (defined similarly to

Bnonocc). Figure 4.7(c) shows the regions with discontinuities for one of the stereo

pairs.

We evaluate and compare four different versions of our stereo methods. In addition the

results of our stereo methods are compared against the results of the state-of-art color seg-

mentation based stereo method presented in [Hong and Chen, 2004]. The algorithms we
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(a) Non-occluded regions (in
white).

(b) Texture-less regions (in
white).

(c) Regions with depth disconti-
nuities (in white).

Figure 4.7: Various regions for the Tsukuba dataset [Scharstein and Szeliski, 2002]. No-
tice that there is a boundary region around all images where the stereo algorithms are not
evaluated since the results of many stereo algorithms are considered unreliable in boundary
regions.

evaluate are as follows.

• CS: The correlation stereo method from Section 4.2.

• HC: The algorithm by [Hong and Chen, 2004]. The results presented here are taken

from their paper – they use the same evaluation framework that we use and the same

images.

• SS-Best: A version of the color segmentation stereo method from Section 4.3.1. It

uses the color segmentation algorithm presented in [Comaniciu and Meer, 2002] and

our SSD based correlation stereo algorithm. We have tuned this version to work best

on the three stereo image pairs that form part of the evaluation of [Scharstein and

Szeliski, 2002] (Figure 4.6).

• SS-Used: A version of the color segmentation stereo method from Section 4.3.1 that

uses the color segmentation algorithm presented in [Felzenszwalb and Huttenlocher,

2004] and the correlation stereo algorithm presented in Section 4.2. This is the ver-

sion we use when we evaluate on our video datasets in Chapter 8. This version has

been tuned on one of our video datasets - it is not tuned on the stereo images we test

on here. Unfortunately, due to the difference in the quality of the images obtained
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from our stereo camera from the ones used here, we have to use a different version of

the color segmentation algorithm when evaluating on our video datasets. The SS-Best

method does not work with all of our video datasets giving very poor results for some.

• ES-Used: A version of the edge segmentation-based stereo method from Section 4.3.2.

This is the version we use when we evaluate on our video datasets in Chapter 8 and

is tuned similarly to SS-Used.

Table 4.1 gives the values of the three metrics obtained for the five stereo methods and

Figure 4.8 shows the disparity maps found by the stereo methods. We make the following

observations.

• From Table 4.1 we see that all three versions of the segmentation stereo methods we

propose are able to get much better performance than the correlation stereo method.

This is true for untextured regions as well, providing some justification of our original

reason for using global stereo methods.

• The SS-Best algorithm gets good performance in non-occluded and untextured re-

gions. While the performance of HC is clearly better than that of SS-Best, the abso-

lute errors for SS-Best are quite low (between 2 and 7 percent) in non-occluded and

untextured regions. However, the performance of SS-Best is not as good in regions

with depth discontinuities.

• The SS-Used and ES-Used algorithms perform reasonably well, but not as well as

SS-Best. This is expected because the methods are not tuned for these datasets.

• The disparity maps in Figure 4.8 for SS-Best also suggest that it performs quite well,

except in regions with depth discontinuities (in agreement with Table 4.1).

• The disparity maps for the correlation stereo method tell a slightly different story.

The method seems to perform better than what the metrics in Table 4.1 suggest. It
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Dataset→ Tsukuba Venus Sawtooth
Metric→ Bnonocc Buntex Bdisc Bnonocc Buntex Bdisc Bnonocc Buntex Bdisc
Algo. ↓
CS 26.34 30.10 35.64 28.56 51.68 29.56 18.22 29.59 26.16
HC 1.23 0.29 6.94 0.08 0.01 1.39 0.30 0.00 3.24
SS-Best 6.44 3.73 19.64 3.58 5.53 17.12 2.87 3.47 12.30
SS-Used 10.97 10.92 26.64 7.65 11.23 23.90 7.92 8.45 21.39
ES-Used 11.91 12.77 25.74 10.43 18.13 21.23 7.04 14.81 16.14

Table 4.1: Three error metrics for five different stereo algorithms evaluated on the three
stereo image pairs in Figure 4.6. CS denotes the correlation stereo algorithm from Sec-
tion 4.2; HC denotes the algorithm by [Hong and Chen, 2004]; SS denotes the color seg-
mentation stereo algorithm from Section 4.3.1; and ES denotes the edge segmentation al-
gorithm from Section 4.3.2.

loses out in the quantitative evaluation partly because of not estimating disparities

in many regions, specially around the boundary. In regions where it does estimate

disparities, it does fairly well.

• The CS method also clearly shows a “fattening” effect near the boundaries of objects

in the disparity maps meaning it does not estimate disparities near boundaries well.

• Looking at the disparity maps of Figure 4.8, we can see that there are two kinds of

error (or noise) present in the disparities computed using the stereo methods - ran-

dom error and systematic error. Systematic errors manifest themselves as disparities

that are completely incorrect, whereas random error is present in (almost) all other

disparities. In Chapter 5 we discuss how to handle both kinds of error (or noise) to

build good 3D models.

Based on the above evaluation we can conclude that the segmentation stereo methods per-

form better than the correlation stereo method on the stereo image pairs in Figure 4.6 and

are likely to perform better than the correlation stereo method at building safety maps.

However, our evaluation in Chapter 8 does not support this. The correlation stereo method

performs very well at building safety maps and actually better than the segmentation stereo

methods in one crucial metric (the False Negative error rate in Section 8.2). Why does this
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Figure 4.8: Disparity maps for three different data sets. The disparity maps for each row
are computed by the same algorithm. Row 1 shows ground truth disparity maps. Row 2
shows maps for the correlation stereo method, CS. Row 3 shows maps from HC [Hong and
Chen, 2004]. Row 4 and 5 shows maps for the color segmentation stereo methods, SS-Best
and SS-Used respectively. Row 6 shows maps for the edge segmentation method, ES-Used.
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happen? We believe there are several reasons.

First of all, the three metrics Bnonocc, Buntex, Bdisc are not very suitable for the pur-

pose of evaluating stereo methods for use in robot mapping. The metrics in effect only

measure errors in disparities upto a resolution of 1 pixel. For our stereo camera, a 1 pixel

error in disparity at a distance of 4 meters (corresponding to a disparity of approximately 6

pixels) leads to an error of 0.6 meters or more in the depth estimate. Clearly, such an error

is unacceptable when building maps for robot navigation. To get more sensitive metrics we

need stereo images with more accurate ground truth disparity maps.

Secondly, a problem with the evaluation framework of [Scharstein and Szeliski,

2002] is the very small number of images the stereo methods are evaluated on. With careful

tuning, and given the low resolution of the metrics, it is possible to get good performance out

of a stereo method on the datasets – thus not truly reflecting the stereo methods performance

under a wider variety of situations. For example, the texture-less regions in the stereo image

pairs in Figure 4.6 do not reflect the kinds of texture-less environments a robot in urban

environments has to deal with. If we compare Figure 4.2(a) to Figure 4.6(a) we see that

the environment in Figure 4.2(a) has much less texture. This is reflected in the disparity

maps (Figure 4.2(c) and Figure 4.8) computed by the correlation stereo method for both

images where the disparity map in Figure 4.2(c) has more blacked out regions where no

good disparities are estimated.

Thirdly, in the framework the methods are tested on the image pairs on which they

are tuned. Thus, there is no separation of training and testing data that can lead to stereo

methods that have been overfit to the datasets and do not really generalize.

In our video datasets in Chapter 8, a stereo method runs on thousands of images

meaning that in practice we get a great variation in the quality of the disparity maps com-

puted. This is especially true for the segmentation-based stereo methods because it is quite

likely any one of the issues with such methods, mentioned in Section 4.3.1, can prevail

leading to noisy disparities. Additionally, we tune all our algorithms on only about a dozen
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images from one single video dataset and test on all the datasets, providing a better test of

the generalization capabilities of the stereo methods.

Therefore, we need to be careful when interpreting the results from the evaluation

framework of [Scharstein and Szeliski, 2002]. The main problem with setting up a stereo

evaluation framework is that it is quite hard to get good ground truth stereo data leading to

low resolution metrics and few datasets.

4.5 Related Work and Summary

Related work on stereo methods is discussed in Section 3.2.1 in Chapter 3.

In this chapter we have presented three different stereo methods for computing

depth maps - one existing local method and two global methods that we propose. The

color segmentation-based global stereo method works by first segmenting images into re-

gions of (almost) uniform color. Disparity planes are then fit to the segments and a global

objective function minimized to get the final disparity map. The edge segmentation-based

stereo method works in a similar manner except that the image is segmented using edges

present in the image.

We perform an initial evaluation of all three methods using the standard evaluation

framework of [Scharstein and Szeliski, 2002]. The results suggest that better safety maps

can be built using global stereo methods, however, our results in Chapter 8 show other-

wise. We believe this happens due to several reasons, amongst them the low “resolution”

of the error metrics and the very small number of stereo images on which the methods are

evaluated in the framework of [Scharstein and Szeliski, 2002].

Once the depth maps have been computed for a stereo image pair, we use the equa-

tions in Section 4.1 to obtain the 3D locations in the map coordinate frame of stereo points

corresponding to pixels in the left stereo image. We also compute the error in the 3D point

location estimates.
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Chapter 5

Building 3D Models

In this chapter we describe two methods that build 3D models from stereo range data by

accumulating depth information over time. The data has to be accumulated in an intelligent

manner to build good quality models. The reason for this, as discussed in the previous

chapter, is that depth estimates from stereo are noisy. As mentioned in Section 4.4, the

estimated depth of a pixel in a stereo image can have noise in one of two forms:

• The estimated depth can be in the ballpark of the pixel’s true depth. Such depth esti-

mates can be modeled as arising due to the addition of zero mean random Gaussian

noise to the true pixel depth (Section 4.1.1).

• The estimated depth can be completely incorrect. We call such depth estimates, false

positive depths or range readings and they can be thought of as having noise produced

due to systematic errors.

It is important that both types of noise in the estimated depth be handled, specially the latter,

since these lead to incorrect models of the environment being built that can place the robot

in danger or hinder its motion.

Accumulating range data over time and filtering out some of the data helps attenuate

the effects of both types of stereo noise. Also, since stereo data is usually sparse in regions
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of low texture, gathering data also allows the robot to model such low texture regions ade-

quately over time.

The two methods for building 3D models that we discuss in the chapter are both

probabilistic. The first method, discussed in Section 5.1, is based on associating points in

3D Euclidean space over time 1. The second method (Section 5.2) is based on occupancy

grids that are well established in the robotics mapping literature. The models that we con-

struct are 3D point clouds with a 3D grid overlaid on top. The points in the model are all

in a single frame of reference – the map coordinate frame.

An important aspect of the 3D models is that they are local models. The models

are of a bounded size ensuring that computation is bounded. There are two ways in which

we implement local 3D models. In the first method, the model is always (approximately)

centered on the robot and “scrolls” with the robot’s motion. As the robot moves, newer

regions of the environment fall in the area enclosed by the model, and other regions fall out.

Models of the regions that fall out, are lost and have to reconstructed from scratch when

the robot sees them again. The other method for constructing local maps is useful when the

robot arrives at a place or is in a fixed environment like a room. In such cases, the model

does not “scroll” with the robot. Instead the robot moves in the model as it explores its

environment. Implementing both types of local models requires that separate coordinate

frames be maintained for the robot and the model.

5.1 Probabilistic Data Association of Points in 3D Space

The probabilistic data association method we introduce here takes as input at every frame a

collection of points in 3D space outputted by the stereo method. Each stereo point should

have associated with it an estimate of the error in its location. In addition, the point may also

optionally have a visual feature vector associated with it, e.g., a point may have associated

with it a vector containing the RGB values of the image pixel that corresponds to it.

1The method described here was first presented in [Murarka et al., 2006].
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In the method, every stereo point is assumed to have been generated by a (point)

landmark in the world whose true location is unknown. When the robot first wakes up

in the world, it does not know of any landmarks, and so all 3D points from the first stereo

image frame are used to instantiate a set of temporary landmarks. Points from the following

stereo frames are compared to the temporary landmarks. If a match, based on some criteria,

is established between a point and a landmark, the landmark’s location is updated using the

point’s location. The temporary landmarks that match points consistently over many frames

are made into permanent landmarks. All the permanent landmarks that exist at a particular

time are taken together to give the 3D point cloud model at that time. A grid is then overlaid

on top of point cloud to give the final 3D model (Section 5.1.4). Thus, to build a map of

landmarks, four steps (described in the following sections) are performed at every frame:

1. Associations/matches are determined between the points observed in the current stereo

frame and existing (temporary or permanent) landmarks. The criteria used for deter-

mining matches are the similarities of the point and landmark locations and the visual

feature vectors associated with both. Points that do not match any existing landmarks

are used to initialize new temporary landmarks.

2. Existing landmark location estimates are then updated based on the observed loca-

tions of the matching points. The feature vectors associated with the landmarks are

also updated.

3. Temporary landmarks that have not had sufficient matches in a fixed period of time,

are removed from the landmark database. Such landmarks are considered to corre-

spond to false positive range readings. On the other hand, temporary landmarks that

match a minimum number of points in the time period are made permanent.

4. The collection of permanent landmarks obtained at the end of the above steps gives

the 3D point cloud model. A grid is overlaid on top of this point cloud to give the

final 3D model.
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5.1.1 Associating Points with Landmarks

The problem is to pick from all stereo points observed at time t, the point that has the highest

probability of being associated with landmark li, based on the point and landmark locations

and visual features. This has to be done for every single existing temporary and permanent

landmark that is currently in the field of view of the robot.

Let the location of a stereo point, p j, observed in the current time step (or frame) t,

be xt
p j

in the map reference frame2 (obtained from Equation (4.4)). Let the covariance (or

error) in its 3D position in the map reference frame be, Σt
p j

(Equation (4.6)). Let dt
p j

be the

visual feature vector associated with point p j at time t.

Let the true location of a landmark, li, in the map frame of reference, be xli . Let

x̂t
li be the landmark’s location estimate at time t. The estimate is modeled using a Gaussian

probability distribution, x̂t
li = {µ t

li ,Σ
t
li}. Each landmark also maintains a database of visual

feature vectors consisting of the feature vectors of all points that have matched the land-

mark in the past (including the feature vector of the point used to instantiate the landmark).

Associated with each feature vector in the database is the original viewing direction of its

corresponding point from the robot’s camera. The feature vector, dt
li , of the landmark li at

time t, is taken to be the feature vector in the database whose viewing direction is closest

to the current viewing direction of the landmark (we explain how the viewing direction is

computed and the database updated in Section 5.1.2). This ensures a certain amount of

viewpoint invariance for the feature vectors.

Each stereo frame generates on the order of thousands of stereo points, and match-

ing each point to every landmark can take a long time. To reduce computation time, for

each landmark li, an initial set of points, Pi = {p1, p2, ..., pni}, is selected from all the stereo

points using a fast process. This initial set can be obtained in various ways, for example by

collecting all points within a cuboidal region around the landmark. Since we assume that

each point can be associated with exactly one landmark, let ai ∈ Pi denote the point with

2We drop the superscript m in this section as all locations are in the map frame of reference unless otherwise
stated.
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which landmark li is associated. The point p∗ most likely to be associated with li is then

given by,

p∗ = arg max
[p j∈Pi]

p(ai = p j | IX , ID) (5.1)

where, IX = {x̂t−1
li ,{xt

pk
}k=1..ni}, is the collection of landmark and point locations, and ID =

{dt
li ,{d

t
pk
}k=1..ni}, is the collection of landmark and point feature vectors.

Derivation 3. We now show how Equation (5.1) can be simplified into a usable form.

Using Bayes rule and making an independence assumption between locations and visual

features we get,

p(ai = p j | IX , ID) ∝ p(IX , ID | ai = p j) p(ai = p j)

∝ p(IX | ai = p j) p(ID | ai = p j) p(ai = p j)

or p(ai = p j | IX , ID) ∝ p(IX | ai = p j) p(ID | ai = p j) . (5.2)

Where we get the final equation by assuming a uniform prior for p(ai = p j) for all p j ∈ Pi

and noting that its value will not matter when taking the arg max in Equation (5.1). The

first term on the RHS in Equation (5.2) can be simplified as follows using the rules of

probability,

p(IX |ai = p j) = p(x̂t−1
li ,{xt

pk
}k=1..ni | ai = p j)

= p(xt
p j
| x̂t−1

li ,{xt
pk
}k=1..ni, k 6= j,ai = p j) ·

p(x̂t−1
li | {x

t
pk
}k=1..ni,k 6= j, ai = p j) · p({xt

pk
}k=1..ni, k 6= j | ai = p j)

= p(xt
p j
| x̂t−1

li , ai = p j) · p(x̂t−1
li ) · ∏

k=1..ni
k 6= j

p(xt
pk

) (5.3)

p(IX |ai = p j) ∝ p(xt
p j
| x̂t−1

li , ai = p j) . (5.4)

3The reader can skip directly to the final result in Equation (5.10) if desired.
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Where we assume that the locations of the points are independent of each other to get the

first term and third terms in (5.3), and also that the locations of points in the current frame,

that are not associated with li, do not affect its estimated location in the past frame, to get

the second term in (5.3). To get the final equation, we note that the value of the second term

in (5.3) is common across all probability terms in (5.1), and so is the value of the third term

under the assumption that p(xt
pk

) is uniform ∀k, making these terms irrelevant when finding

the arg max.

The RHS of (5.4) can be further evaluated by marginalizing over the true landmark

location xli ,

p(xt
p j
|x̂t−1

li ,ai = p j) =
∫

p(xt
p j
| xli , x̂

t−1
li ,ai = p j) p(xli | x̂t−1

li ,ai = p j) dxli (5.5)

=
∫

Nxt
p j
(xli ,Σ

t
p j

) Nxli
(µ

t−1
li ,Σt−1

li ) dxli (5.6)

p(xt
p j
|x̂t−1

li ,ai = p j) ∝ exp{−1
2
(xt

p j
−µ

t−1
li )T (Σt

p j
+Σ

t−1
li )−1(xt

p j
−µ

t−1
li )} (5.7)

The left term in the integral in (5.5) is a generative model. It is the probability distribution

over the observed point locations given the true location of the landmark. For a Gaussian

generative model it reduces as shown. The right term under the integral in (5.5) is the prob-

ability distribution over the true location given the parameters of the estimated Gaussian

distribution and reduces to the estimated Gaussian distribution itself. To go from Equa-

tion (5.6) to (5.7) we use standard formulae [Bishop, 2006]. Combining equations (5.4) and

(5.7) we get,

p(IX | ai = p j) ∝ exp{−1
2
(xt

p j
−µ

t−1
li )T (Σt

p j
+Σ

t−1
li )−1(xt

p j
−µ

t−1
li )} (5.8)

We proceed in a similar fashion for the second term on the RHS in (5.2) to get,

p(ID | ai = p j) ∝ exp{−1
2
(dt

p j
−dt

li)
T

Σ
−1
d (dt

p j
−dt

li)} (5.9)

67



where Σd is taken to be a diagonal matrix containing a set of constant parameters that have

to be tuned based on the types of visual features that are being compared.

Finding the Best Match. If we combine equations (5.1), (5.2), (5.8), and (5.9) and take

the negative log, we get that the point, p∗, most likely to be associated with li, is the one

with the lowest negative log likelihood.

p∗ = arg min
[p j∈Pi]

(xt
p j
−µ

t−1
li )T (Σt

p j
+Σ

t−1
li )−1(xt

p j
−µ

t−1
li )

+ (dt
p j
−dt

li)
T

Σ
−1
d (dt

p j
−dt

li) . (5.10)

The first term on the RHS is the square of the Mahalanobis distance between the observed

point location at t and estimated landmark location at t− 1. This implies that points with

a lower Mahalanobis distance to the landmark will be favored. The second term, which is

also the square of a Mahalanobis distance, ensures that points with visual features similar

to that of the landmark are favored.

Since, matches for each landmark are found independently, occasionally we can get

the same point matching more than one landmark. In such cases we pick the match with

the lower Mahalanobis distance (ties are broken randomly).

No Matches and New Landmarks. To consider the possibility of no point being asso-

ciated with landmark li, we set a threshold, Mmax, on the maximum Mahalanobis distance

allowed between only the locations of a point and a landmark. To set the threshold, we

think of the Mahalanobis distance as the Euclidean distance measured in units of standard

deviation [Duda et al., 2000], and set the maximum distance, in standard deviation units,

that a point can be from a landmark in order for a match to be considered (the threshold

can be found by looking up a χ2 distribution table) 4. An added benefit is that points, that

do not lie within the Mahalanobis distance threshold of any landmark, are used to initialize

4We use Mmax = 3.66 for all our experiments.
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new landmarks.

5.1.2 Updating Landmark Locations and Feature Vector Database

We use a Kalman filter [Gelb, 1974], to update a landmark’s location estimate based on

the observed location of its matching point. This helps reduce the amount of error in the

landmark location estimate. Given that point p j is associated with li at time t, the landmark

location estimate from t−1 can be updated as follows:

(Σt
li)
−1 = (Σt−1

li )−1 +(Σt
p j

)−1

µ
t
li = Σ

t
li

(
(Σt−1

li )−1
µ

t−1
li +(Σt

p j
)−1xt

p j

)
(5.11)

When a point is used to first initialize a landmark, the landmark’s location and covariance

are simply taken to be the point’s location and covariance.

The landmark’s feature database is updated by adding to it the matching point’s

feature vector dt
p j

and the viewing direction to the point from the robot’s camera. The

viewing direction is taken to be the vector from the camera’s optical point, OL (Figure 4.1),

to the point’s location, xt
p j

. To find the coordinates of the camera’s optical point in the map

coordinate frame we set xcam to (0,0,0)T in Equation (4.3) and use Equation (4.4). The

feature vector in the database, with the closest viewing direction to the landmark’s current

viewing direction is the one whose viewing direction vector has the smallest angle to the

landmark’s viewing direction. This feature vector is used as the landmark’s feature vector,

dt
li , at time t.

5.1.3 Identifying Permanent and False Positive Landmarks

As mentioned, newly initialized landmarks are temporary to begin with. Only after a mini-

mum number of points, cmin, match the landmark within a given number of frames, f max,
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of the landmark being initialized, is the landmark made permanent 5. If enough matches

are not found, the landmark is removed. This removes false positive range readings from

the set of observed points.

The parameter cmin is of importance as it controls the amount of noise in the 3D

model. A high value of cmin means that a temporary landmark needs to have several

matches before it will be made into a permanent landmark – so setting a high value for

cmin will lead to false positive range readings being removed aggressively. However, this

can also lead to correct range readings being removed as well which can be dangerous to

the robot. In Chapter 8 we measure the effect of cmin on the quality of the safety maps

constructed.

5.1.4 Overlaying a 3D Grid on the Point Cloud

At the end of performing all the above updates for a given stereo image frame at time t,

we get a set of permanent landmarks along with an estimate of their locations. A 3D grid

is overlaid on top of this cloud of point landmarks. All voxels in the grid in which any

permanent landmark falls are marked as occupied and all other voxels are marked as being

free.

The length of a voxel’s side is denoted as lv and is taken to be 0.1m in our exper-

iments. We determine the indices of the voxel (u,v,w)T in which a point (x,y,z)T falls as

follows, 
u

v

w

 =


[x/lv]

[y/lv]

[z/lv]

 (5.12)

where [·] represents a rounding operator.

Figure 5.3 shows an example of overlaying a grid on top of the landmarks. The set

of permanent landmarks at time t and the grid together form the 3D model available to the

5In the experiments reported in Chapter 8 we let f max = cmin and only change the value of cmin.
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robot at that time.

5.1.5 Results and Discussion

In this section we discuss some properties of the probabilistic data association method and

present qualitative results. Quantitative results and comparison with the occupancy grid

method for building 3D models are presented in Chapter 8.

Figure 5.1 shows a picture of an outdoor wheelchair ramp and a 3D reconstruction

of the ramp’s railing using the probabilistic data association method. Qualitatively, the 3D

reconstruction obtained is quite good. Figure 5.2 shows another example of the quality of

3D reconstructions obtained. The figure also demonstrates the advantage of using 3D stereo

information over 2D laser range data. Figure 5.3 shows the effect of overlaying a 3D grid

on top of the cloud of point landmarks.

As can be seen from all the figures, the probabilistic data association method is very

effective at removing false positive range readings. The readings are effectively removed

by the two constraints of minimum number of required point matches, cmin, and maximum

Mahalanobis distance, Mmax between locations. Not using either of these, particularly the

Mahalanobis metric, leads to poor maps. Figure 5.4 shows what happens when, instead of

the Mahalanobis distance, standard Euclidean distance is used as a metric (the stereo maps

shown the figure are made by stereo points obtained using SIFT features as explained in

the figure). Both figures show a laser generated map of the lab overlaid with a map built

using stereo. In the stereo map on the left, false positives are eliminated which results in

the visual landmarks lining up well with the laser map. In the map on the right, Euclidean

distance fails to eliminate false positives leading to an unusable stereo map 6.

The Mahalanobis distance proves to be a very effective metric for building 3D mod-

els even when we only use point locations and no visual features. The stereo map shown

on the left in Figure 5.4 was made using both location information and visual feature vec-

6It is possible to use a tighter threshold when working with Euclidean distance but then this leads to a map
with few landmarks that is not adequate for safety.
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(a) (b)

Figure 5.1: (a) A wheelchair ramp with a wooden railing (this is a sample image from
our TAYLORRAMP dataset). (b) 3D point cloud of the ramp railing constructed using the
probabilistic data association method. The correlation stereo method of Section 4.2 was
used for computing the stereo range readings.

tors consisting of scale and orientation information associated with SIFT features [Lowe,

2004]. However, when we used only location information to build the map we got very

similar results. In fact the 3D models shown in Figures 5.1, 5.2, and, 5.3 were all built

using only location information.

To conclude, the probabilistic data association method presented here, successfully

gets rid off most false positive range readings and also reduces the effect of random noise

in the remaining range readings. A nice feature of the method is that it combines the use

of point locations and visual features for matching into a single framework. An added

advantage of the method is that it works with both sparse (Figure 5.4) and dense stereo

range data (Figures 5.1 to 5.3) unlike the occupancy grid method that we present next which

only works well with dense stereo data.

Computation Time. The average computation time taken by the data association method

(excluding the time taken for overlaying the grid) for a region about 8m× 8m× 3m in

size is 1.4 seconds per frame for an unoptimized C++ implementation. We believe that an

optimized version can run at a cycle rate of 2-3 Hz.

72



(a)

(b) (c)

(d) (e)

Figure 5.2: (a) A sample image from our TAYLORLAB dataset. Note that there is a table in
the image to the right. (b) A 2D laser map of the lab with obstacles shown in black and clear
areas in white. (c) Top view of a 3D landmark map of the same environment constructed
using the probabilistic data association method and stereo range information (Section 4.2).
In addition to containing all obstacles (in black), the stereo map also explicitly represents
the ground plane (in grey), unlike the laser map where clear areas are assumed to represent
flat ground. (d) and (e) Zoomed in views of the table in image (a), as represented in the
laser map (only the table legs are seen) and in the stereo map (almost the entire table is
visible), showing another advantage of using 3D stereo data over 2D laser data.
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(a) (b)

Figure 5.3: (a) 3D point landmark model of a long corridor style environment with two
wheelchair ramps at each end (this is a model of the BIORAMP environment shown in
Figure 8.1(b)). The points are color coded according to height. (b) The 3D grid model
overlaid on top of the point cloud model. All voxels in which a landmark falls are shown.

Figure 5.4: Left: Laser map (red) overlaid with a stereo map (blue dots) made using Ma-
halanobis distance. Right: Laser map overlaid with stereo map made with Euclidean dis-
tance. The Mahalanobis distance is much more effective at removing false positive range
readings than Euclidean distance. The stereo maps shown here were made using SIFT fea-
tures [Lowe, 2004]. SIFT features are detected in a stereo image pair and their disparities
computed by matching features in the left image to the right image. This gives a set of
range readings that are then used in the probabilistic data association method to give the
stereo maps shown. The feature vector associated with each SIFT stereo point consisted of
the scale and orientation of the SIFT point [Lowe, 2004].
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5.2 3D Occupancy Grid

In this section we briefly discuss our implementation of an occupancy grid based method

for building 3D models. Our method is a variation of the method presented in [Konolige,

1997] and in addition is used to build a 3D grid instead of a 2D grid.

Let the stereo range reading corresponding to a point, p j, observed in the current

time step (or frame), be r j = D j, where D j is the distance from the camera to the point p j

(D j is computed as the Euclidean-norm of p j’s camera coordinates obtained from Equa-

tion (4.1)). Let v be a voxel in the 3D occupancy grid and let occ(v) denote the proposition

that voxel v is occupied. We denote by O(occ(v)) the log odds probability that v is occupied,

defined as,

O(occ(v)) = log
p(occ(v))

p(¬occ(v))
. (5.13)

We are interested in finding the log odds probability, O(occ(v) | r j = D j), that voxel v is

occupied given range reading r j = D j. It can be shown that this log odds probability is

given by [Konolige, 1997],

O(occ(v) | r j = D j) = λ (r j = D j | occ(v)) + O(occ(v)) (5.14)

where,

λ (r j = D j | occ(v)) =
p(r j = D j | occ(v))

p(r j = D j | ¬occ(v))
. (5.15)

is the sensor model and is called the likelihood ratio. The numerator in the likelihood ratio,

p(r j = D j | occ(v)), measures the probability of a range reading, r j = D j, being produced

when voxel v is occupied. Similarly, the denominator, p(r j = D j | ¬occ(v)), measures the

probability of a range reading, r j = D j, being produced when voxel v is not occupied. So,

for a range reading that is produced in the neighborhood of a voxel, we expect the numerator

to have a large value and the denominator to have a small value, giving a large value for the

likelihood ratio. Similarly, for a range reading produced far away from a voxel, we expect
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the likelihood ratio to have a small value.

Sensor Model. Based on the above, we use a simple sensor model as follows. For each

range reading, r j, a ray is cast from the camera to the 3D point, p j. Only voxels along the

ray have their occupancy probabilities affected by the range reading. The likelihood ratio,

for a voxel in which the range reading ends (i.e., the voxel in which point p j falls), will

be a high positive value, denoted by incr1, and is going lead to an increase in the log odds

probability of occupancy of the voxel. For voxels just before and just after the above voxel

we also expect the likelihood ratio to have a high (but slightly lower than incr1) positive

value, denoted by incr2. For all other voxels, between the camera and the above voxels, we

expect the log odds probability of occupancy to decrease as they are likely to be unoccupied.

The likelihood ratio is negative for such voxels and is denoted by decr.

Occupancy Grid Update. We use Equation (5.14) to update the 3D occupancy grid given

the current set of range readings. From the equation we get that for each range reading, the

log odds probability of a voxel v being occupied, given that range reading, is simply the

sum of the likelihood ratio of the range reading and the prior log odds probability of the

occupancy of the voxel. We start with the assumption that the occupancy of all voxels is

unknown in the beginning, and so the prior probability of occupancy is 0.5 leading to a log

odds probability of O(occ(v)) = 0. Then for each range reading, r j at the current time, a

ray is cast from the camera to the 3D point, p j, and voxels along the ray have their log odds

probability of occupancy O(occ(v) | r j = D j) updated by adding to their prior log odds

probability the value of the likelihood ratio as discussed above. At the next time step, the

value of O(occ(v) | r j = D j) calculated in the current time step, is used as the value of the

prior log odds probability O(occ(v)).

Tuning the occupancy grid algorithm amounts to tuning the values of the increment

parameters, incr1 and incr2, and the decrement parameter decr 7. In Chapter 8 we examine

7We have manually tuned the sensor model parameters in this work. Ideally, we would like to learn the
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the effect of different decrement values (decr ∈ {−1,−3,−5}) on the quality of the 3D

models constructed for fixed increment values (we use incr1 = 10 and incr2 = 4).

Dealing with Correlated Stereo Data. One of the extensions that we make to the occu-

pancy grid algorithm is to deal with the fact that occupancy grid algorithms assume that

range readings are independent, whereas stereo range readings are highly correlated. Since

stereo returns a large number of range readings, several readings can fall in a single voxel

and so to reduce the effect of correlation we update the grid for only one range reading per

voxel per timestep (we just use the first range reading that falls in a voxel). All other range

readings that fall in the voxel are discarded. This reduces the effect of correlation because

range readings that fall in a voxel are from neighboring rays (and hence neighboring pixels)

and discarding some approximates the independence assumption. Furthermore, we also

discard entire stereo frames when the robot is stationary since range readings across such

frames are highly correlated.

Point Database. In addition to the occupancy grid, a point database is also updated at

each frame. For each voxel a list of the points corresponding to the range readings that fall

in the voxel over time is maintained. The list is of a fixed size and at each frame the list

is updated with the current range point that falls in the voxel. Each voxel’s list is ordered

according to the distance of the camera from the point the moment it was seen. This way

when the list is pruned, points seen from closer distances are given preference over other

points since closer points have lower error. This point database corresponds to the landmark

database created by the probabilistic data association method.

The final 3D model at a given time then consists of the occupied voxels in the 3D

occupancy grid and the list of sorted points associated with each occupied voxel (voxels

that have a log odds probability of occupancy greater than a certain threshold occt = 100

parameters and even the whole model from the data [Stronger and Stone, 2008]. This is a direction for future
work.
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are considered occupied).

5.2.1 Results and Discussion

Figure 5.5 shows an occupancy grid model of our ACESRAMP dataset obtained after pro-

cessing 459 stereo frames. The figure shows how ramps and drop-offs appear in the 3D grid

models we create. Ramps are discretized into a set of long low steps whereas a drop-off

edge is characterized by unoccupied or unknown voxels near it (although this is not al-

ways the case). Low drop-offs can also appear as steps, similar to the ramp, and hence can

even be mistaken for a ramp – we show this happening for the ACES2302 environment in

Chapter 8. This makes detecting drop-offs and ramps and distinguishing them from stairs

hard. Figure 5.6 shows the occupancy grid created for the BIORAMP dataset and also the

corresponding 3D point database that is maintained with the occupancy grid.

Computation Time. The average computation time taken by the occupancy grid method

for a region about 8m× 8m× 3m in size is 1 second per frame for an optimized Matlab

implementation. A real-time C++ version of the algorithm gives a cycle rate of 4-9 Hz.

5.3 Related Work

The probabilistic data association method for building 3D models introduced here draws

on several earlier pieces of work. The idea of using Kalman filters to track the locations of

visual features is well established, e.g., in the localization method of Harris [1993], Kalman

filters are used to track 3D points in the environment. Likewise the Mahalanobis distance

has been used in landmark based SLAM techniques [Dissanayake et al., 2001]. Probabilistic

methods for solving data association problems have been around for some time, particularly

in the tracking literature. For example, Reid [1979] solves the data association problem

associated with tracking multiple moving objects such as airplanes using radar (and other

sensors) by maintaining multiple hypotheses and computing their likelihoods.
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(a) (b)

Figure 5.5: (a) Sample image from the ACESRAMP dataset with a ramp to the right and
a drop-off to the left of a railing. (b) 3D occupancy grid of the environment showing all
occupied voxels, colored according to height (produced after processing 459 stereo frames
in the dataset). The grid is shown from a viewpoint different from viewpoint of the image.
The image is obtained by looking down the ramp whereas the grid image is obtained by
looking from the other direction, up the ramp. This is done to show how the ramp and
drop-off appear in a 3D grid. The ramp is seen as a set of long steps whereas the drop-off
is characterized by unoccupied voxels near it.

(a) (b)

Figure 5.6: (a) Point cloud and (b) grid model of the BIORAMP environment shown in
Figure 8.1(b) produced using the occupancy grid method.

The main points that distinguish our probabilistic data association method from the

other methods are: (i) the principled combination of landmark locations and visual feature

vectors into a single framework; (ii) the ability to handle large numbers of landmarks; and

79



(iii) the ability to handle many false positive landmarks. These properties of our method,

particularly the last two, allow our method to be used for tracking dense stereo data points.

The other methods, described above, have been developed for tracking sparse landmarks,

e.g., corner features in robot mapping, or for tracking objects such as airplanes which are

also very sparsely distributed. Furthermore, the incidence of false positives is much lower

in such problems.

5.4 Summary

In this chapter we presented two methods for building 3D models from stereo range data.

The 3D models consist of a 3D point cloud with a 3D grid overlaid on top. Both methods

for building the 3D models are able to handle noisy and false positive stereo range readings.

The first method, which we propose, is a probabilistic data association method that

uses the Mahalanobis distance between point locations and visual features to find matches

between stereo points across several images. This helps in getting rid of false positive range

readings and allows good quality 3D models to be built, as the results show. The results also

show the effectiveness of using the Mahalanobis metric as opposed to Euclidean distance at

finding correct matches. One of the important characteristics of the data association method

is its ability to handle a large number of densely packed landmarks.

The second method we present is based on occupancy grids. The qualitative results

for this method show that it also builds good quality 3D models from stereo range data. In

Chapter 8 we evaluate and compare both methods based on the quality of the safety maps

constructed using them.
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Chapter 6

Safety Analysis of 3D Models

In this chapter we present ways of analyzing 3D models for safety. Figure 6.1 shows an

example of a 3D model, consisting of a 3D grid and a 3D point cloud, built for the ACES-

RAMP environment after several hundred stereo frames have been processed. We introduce

three methods of analyzing such models in order to construct local safety maps of the envi-

ronment. The methods, in increasing order of complexity, are as follows.

1. Safety Analysis based on Height Thresholds: Simple height thresholds on the 3D

grid are used to create safety maps.

2. Safety Analysis based on Grid Traversability: A more sophisticated analysis of the

3D grid is done that considers the reachability of regions from the robot’s current

location. This process also results in a segmentation of traversable ground regions in

the grid.

3. Safety Analysis based on 3D Planes: Planes are fit to the 3D point cloud utilizing the

above segmentation. The planes and their relationships with neighboring planes are

analyzed to create the safety maps 1.

1The second and third methods described here have also been presented in [Murarka and Kuipers, 2009b].

81



(a) (b)

Figure 6.1: 3D model of the ACESRAMP environment (shown in Figure 5.5(a)) built after
the first 459 stereo frames of the dataset have been processed. On the left is the 3D grid
and on the right is the 3D point cloud model. The voxel size in the grid shown is 0.1m×
0.1m×0.1m. This model was built using the occupancy grid method of Chapter 5 and the
correlation stereo method of Chapter 4. Note that the environment has a ramp on the left
and a drop-off edge on the right in the models shown. Also note the discretization imposed
on the ramp by the 3D grid model. The 3D model shown here has been truncated by the
planning radius discussed in Section 6.1 so as to allow easier comparison with the rest of
the figures in this chapter. The full 3D grid part of the model is shown in Figure 5.5.

In addition to constructing the local safety maps, we also construct hybrid 3D models. Such

models are a hybrid of a 3D grid and 3D planes. The grid is used to represent obstacles and

other non-ground regions in the world whereas the planes are used to represent traversable

ground regions in the world. The planes are annotated as being either “Level” or “Inclined”

(the hybrid 3D models can be thought of as 3D versions of the local safety maps).

Notation. We introduce a bit of notation to assist us in explaining the algorithms in this

chapter. The grid part of the 3D model in Figure 6.1(a) consists of voxels indexed using the

variables u, v, and, w along the x, y, and z directions (with the z direction along the vertical)

respectively (see Section 5.1.4). Thus a voxel is addressed as (u,v,w) and, a column of

voxels is addressed as (u,v). The height of a voxel is taken to be the index w (also referred

to as the indexed height of the voxel). Let the location of the ground above which the robot

is currently located be wg. The ground height is known since we know the robot’s pose
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and height. The robot’s height is denoted by wr and can be computed by dividing the z-

coordinate of the position of the highest point on the robot by the length of a voxel’s side lv

(see Equation (5.12)). The voxel column on which the robot is located is denoted as (ur,vr).

6.1 Safety Analysis based on Height Thresholds

We begin with a simple scheme for building safety maps using 3D models. The method

labels regions that are within a certain height of the ground plane as safe and labels the

rest as unsafe or unknown. The safety map thus created is called a threshold-based safety

map (to distinguish it from the other two safety maps created in this chapter). The purpose

of this analysis here is to show the drawbacks associated with a simple analysis of the 3D

models and provide a base case to which we can compare the two methods presented later

in the chapter 2.

Height Map. The first step in building a safety map using this method, is the creation of a

2D height map. The height map is a 2D grid with the same dimensions as the 3D grid along

the x and y axes. Each cell c = (u,v) in the 2D grid contains the height wc of the highest

occupied voxel in the corresponding voxel column (u,v). Only occupied voxels in the 3D

grid that are below the robot’s height wr are considered. This is because the robot can travel

under occupied voxels that are higher than it – such as voxels corresponding to the roof.

Such occupied voxels higher than the robot’s height are called overhanging voxels. In later

sections we will also refer to wc(u,v) as the height of voxel column (u,v).

Creating the Threshold-based Safety Map. The safety map is also a 2D grid with the

same dimensions as the height map. Let L denote the label attached to cell c = (u,v) in the

safety map. All cells in the safety map are initialized with the label “Unknown”. The cells

are then re-labeled as follows based on the height wc of the corresponding cell c = (u,v) in

2In addition we use the safety maps created by this method to illustrate certain points in Chapter 7.
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the height map,

L(u,v) =


Level if −wT ≤ wc(u,v)≤ wT

Non-ground if wc(u,v) <−wT or wc(u,v) > wT

Unexamined if [(u−ur)2 +(v− vr)2]1/2 > Rplan

where wT is a threshold on the maximum and minimum height of traversable ground regions

and thus determines the cells that should be considered “Level” and safe. The last label

“Unexamined” is applied to all cells in the safety map that are more than a certain distance,

Rplan (called the planning radius), away from the robot’s current location (ur,vr). This is

because stereo returns good range data only within a limited distance and considering cells

far away results in many errors (see Section 8.3.2 for an experimental justification). We use

a planning radius of 4 meters in our implementation (this corresponds to Rplan = 40 for a

grid size of 0.1 meters).

The threshold-based safety map thus created labels all cells corresponding to voxel

columns in the 3D grid that are within a certain vertical distance of the known ground

(where the robot is currently located), as “Level”. All other voxels columns that are much

too high, e.g., those representing walls, or too low, e.g., those representing a downward

staircase, have their corresponding cells in the safety map marked as “Non-ground” and

hence unsafe.

Results. Figure 6.2 shows a threshold-based safety map for the ACESRAMP environment

and also the corresponding ground truth safety map. As can be seen, the ramp in the envi-

ronment gets incorrectly labeled. The part of the ramp that is within the height threshold of

the ground (where the robot is currently located) is marked as “Level” whereas the part of

the ramp that goes below the height threshold is marked “Non-ground”. Hence this simple

scheme for creating local safety maps can only work in environments where the ground is

horizontal and there are no inclines.
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(a) (b)

Figure 6.2: (a) Threshold-based safety map corresponding to the 3D grid of the ACES-
RAMP environment (Figure 6.1(a)). Regions in white are “Level” and safe whereas regions
in black are marked “Non-ground” and hence unsafe. Grey areas inside the circle are “Un-
known” and regions outside the circle are labeled “Unexamined”. The robot is located at
the center of the circle (not shown). (b) Ground truth safety map with the portion corre-
sponding to the safety map highlighted. Note that half of the region corresponding to the
ramp in the threshold-based safety map gets marked as being safe and the other half gets
marked as being unsafe. This is the main disadvantage in using such a simple scheme -
inclined surfaces cannot be handled.

6.2 Safety Analysis based on Grid Traversability

In the second method for creating safety maps, a more sophisticated analysis is performed

on the grid part of the 3D model. Voxels in the 3D grid are classified based on their height

and reachability from the robot’s current location into traversable ground regions and non-

ground regions and a safety map is constructed using the classification. The traversable

ground regions are identified by a process in which the grid is segmented into regions with

the same height. We call the safety map constructed using this method a traversability-

based safety map.
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Algorithm 1 Finding Traversable Ground Segments in a 3D Grid
Require: 3D grid (with occupied voxels marked) and the robot’s location in the grid.

1: Construct a height map as described in Section 6.1.
2: Initialize c = (ur,vr) – the cell in the height map where the robot is currently located.
3: k← 1.
4: Create an empty list LU . The list will contain cells that have to be examined.
5: Create a new segment Sk and add to it the voxel column corresponding to cell c.
6: while A cell ci ∈ Sk can be found whose height has not yet been compared to that of its

neighbors do
7: Let wci be cell ci’s height.
8: Find the list of cells, Nc, neighboring ci.
9: for each cn ∈ Nc do

10: Let wcn be cell cn’s height.
11: if wcn = wci then
12: Add the voxel column corresponding to cn to segment Sk.
13: else if |wcn−wci | ≤ wT (= 1) then
14: Add cn to LU . cn’s height is not that different from ci’s and hence it can lead to

the creation of a new segment.
15: end if
16: end for
17: Mark ci as a cell whose height has been compared to that of its neighbors.
18: end while
19: if LU 6= φ then
20: Pop LU (i.e., remove cells from LU ) until a cell c not yet part of any segment is found.

If no such cell is found: Return the list of segments Sk ∀k found.
21: k← k +1
22: Goto step 5.
23: else
24: Return the list of segments Sk ∀k found.
25: end if

Segmentation of the 3D Grid. Segmentation of the 3D grid into regions with the same

height is achieved as explained in Algorithm 1. Figure 6.3(a) shows the segments obtained

for the ACESRAMP 3D grid. Each segment consists of a set of connected voxel columns

that have the same height. The segments are found using the height map since each cell

(u,v) in the height map contains the height wc of the corresponding voxel column. Starting

from the cell (ur,vr) in the height map where the robot is currently located, the cell’s neigh-
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bors with the same height wc(ur,vr) as the cell, are added to the first segment. Then cells

with the same height neighboring the cells that have already been added to the first segment

are added and process is carried on recursively until no more cells can be found to add to

the first segment.

Next, cells neighboring the first segment’s cells that are within a certain height wT

of wc(ur,vr), and not equal to wc, are used to initialize new segments (these segments are

then the neighbors of the first segment). All the cells belonging to the new segments are

found (cells part of each segment are connected and have the same height) and the process is

continued recursively by finding neighboring segments of the existing segments (such that

the neighboring segments have heights within wT of the existing segment heights), until all

segments in the 3D grid have been found.

Note that we can think of the segments as both 3D and 2D entities. As 3D entities

the segments can be thought of as consisting of voxel columns, and as 2D entities they can

be thought of as consisting of cells (corresponding to the voxel columns).

The use of the height threshold wT above ensures that the height difference from

one segment to the next is not much allowing a mobile robot to travel from one segment to

another. As Figure 6.1(a) shows, the grid based representation discretizes inclined surfaces

in the world, forcing us to use a threshold like wT to determine if it is possible for the robot

to go from one segment to the next.

Creating the Traversability-based Safety Map. All the cells and the corresponding

voxel columns that are part of the segments are considered to be traversable ground regions.

All remaining cells and corresponding voxel columns that are not part of any segments are

either outside the height threshold (and thus obstacles) or not reachable from the robot’s cur-

rent location and are considered to be non-ground regions. The traversability-based safety

map captures this information: traversable ground cells are marked “Level” and are safe and

non-ground cells are marked “Non-ground” and considered unsafe. Cells corresponding to

voxel columns with no occupied voxels are marked “Unknown”. Cells outside the planning
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(a)

(b)

Figure 6.3: (a) Grid segmentation. Segments (coded by color) produced for the the 3D
grid (Figure 6.1(a)) of the ACESRAMP environment. Each segment consists of connected
voxel columns with each column having the same height (as given by the height map).
(b) Traversability-based safety map. The color scheme is the same as that used for the
threshold-based safety map in Figure 6.2(a). The region corresponding to the ramp gets
correctly identified as being safe this time – although it gets labeled as “Level”. The below-
ground region on the other side of the railing is incorrectly classified as being safe (see text
for more details).

radius are marked “Unexamined” as done for the threshold-based safety map.
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Results. Figure 6.3(b) shows the traversability-based safety map for the ACESRAMP

3D grid model. As can be seen, this safety map correctly identifies the ramp as being

traversable unlike the threshold-based safety map. However, the traversability-based safety

map cannot identify the region corresponding to the ramp as being an incline because that

region might as well be a series of steps with little height difference between the steps.

Thus, the traversability-based safety map cannot distinguish between inclined regions and

steps. As a result we label all traversable ground regions as “Level” in this safety map.

The below-ground region on the other side of the railing, as the ramp, is incorrectly

identified as being reachable 3 via the ramp even though there is a railing between the

ramp and the region. This happens because of two reasons: (i) the top of the railing is

not modeled completely in the 3D model causing the regions between the vertical rails

to appear as free space, and, (ii) the height difference between the ramp segment and the

below-ground segment is within the height threshold wT making the below-ground appear

reachable. Figure 6.4(b) later in the chapter shows that there is actually a fairly significant

height difference between the two regions and so the below-ground region is in fact not

reachable by the robot. This case gets handled correctly when we fit planes to the 3D grid.

Computation Time. The average computation time for segmenting the 3D grid and cre-

ating the traversability-based safety map is around 250ms for a 3D grid about 8m×8m×3m

in size for unoptimized code written in MATLAB. For C++ code, the computation time is

4ms for a 3D grid of size 10m×10m×3m on a 1.83 GHz dual core CPU.

Using Mean Height. We describe here a slight variation on the method for segmenting the

3D grid. In addition to computing the height of voxel columns as described in Section 6.1,

we can compute another type of height for each voxel column that we refer to as the mean

height of the voxel column. The mean height, m, of a voxel column, (u,v), is the average

3The below ground region is actually reachable via the ramp in the environment. However, given the robot’s
limited planning radius the robot cannot (and should not) infer the below-ground region as being reachable.
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value of the z-coordinate of all points (from the 3D point cloud) that are associated with the

voxel column. The variation consists of replacing step 14 in Algorithm 1 with the following

steps:

1. If [mn/lv] = [mi/lv] then

2. Add the voxel column corresponding to cn to segment Sk.

3. else

4. Add cn to LU . cn’s height is not that different from ci’s and hence it can lead to the

creation of a new segment.

5. end for

Here mn and mi are the mean heights of the voxel columns corresponding to cells cn and

ci respectively and lv is the voxel size. [mn/lv] gives the mean height in terms of the grid

indices where [·] is a rounding operator.

The use of the mean height helps in finding larger sized segments. It is an extra

check, done in addition to that done using the indexed heights w, for making sure that cell cn

is assigned to the correct segment. The indexed height can be incorrect sometimes because

of stereo noise or lack of range data that leads to regions where the cells or voxel columns

have different indexed heights although ideally they should all have the same height. How-

ever, even if the indexed height is different, it is possible that the mean height of the voxel

columns is the same. Thus, whenever the indexed height of two voxel columns does not

differ by much (Step 13 in Algorithm 1) we compare the mean heights to make sure the two

columns indeed belong to different segments.

We use the mean height in our real-time implementation of a safety map algorithm

in Chapter 8 to provide an additional level of robustness to the analysis 4.
4Running an algorithm in real-time on a robot can be different from running an algorithm on a dataset. This

is because in real-time situations the system is forced to forgo processing stereo frames when it falls behind
whereas when running on datasets one has the luxury of processing every frame. As a result, lesser data is
available to the system in real-time situations leading to models with more unknown areas.
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6.3 Fitting Planes to 3D Grid Segments

The above segmentation of ground regions in the 3D grid proves to be very useful and allows

us to model the ground using planes. The segmentation identifies potentially distinct ground

regions in the robot’s environment, e.g., the segmentation in Figure 6.3(a) finds regions that

are level (dark blue in the figure) and distinguishes them from regions that form part of

the ramp (light blue and green and on the left in the figure). The method over-segments

the ramp but the segments are large enough to allow good planes to be found. Since we

are interested in wheeled mobile robots, surfaces with high inclines are considered non-

traversable and not considered (by appropriately setting the height threshold wT ). This

ensures that an incline is not broken up into numerous small segments.

Once we have the segmentation, the plane fitting process is straightforward. For all

cells in a segment S, we find the corresponding (occupied) voxel columns and fit a plane of

the form,

z = bS1x+bS2y+bS3 (6.1)

to points associated with the voxel columns. We use a standard linear least squares formu-

lation to find the best fitting plane parameters bS = (bS1 ,bS2 ,bS3)
T .

Figure 6.4(a) shows the fitted planes for the segmentation produced in Figure 6.3(a).

Qualitatively the plane fits seem very good and we verify this quantitatively in Chapter 8.

The grid segmentation algorithm and the least squares plane fitting process taken

together can be thought of as a method for fitting planes to 3D point clouds. In Section 6.5

we go over related methods for fitting planes to point clouds and explain the advantages of

the method introduced here over other methods.

6.4 Safety Analysis based on 3D Planes

The final method analyzes the traversability-based safety map, the segments, the planes fit

to the segments, and the relationships between neighboring segments (or planes) to create a
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(a)

(b)

(c)

Figure 6.4: (a) The planes obtained for each of the ground segments after fitting – the colors
used for the planes here are the same as those used for the segments in Figure 6.3(a). (b)
and (c) show two different cross-sectional views of the planes to show more detail and the
quality of the fit.

plane-based safety map. In the following discussion we (mostly) treat the segments as 2D

entities.

Constructing the Plane-based Safety Map. The first step of the safety analysis consists

of finding the boundary and interior cells of all segments. Interior cells are those that have

eight neighboring cells, with all of those neighbors belonging to the segment itself. Bound-

ary cells are those that have either fewer than 8 neighbors or some neighbors that belong
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to other segments (or neighbors that are labeled as either “Non-ground”, “Unknown”, or

“Unexamined” in the traversability-based safety map.). Next we find neighboring segments

by identifying two segments as neighbors if any of their boundary cells are neighbors.

The segments are then analyzed for connectivity and labeled for safety as described

in Algorithm 2. The segment labels parallel those assigned to cells in a safety map. To

assign labels to the segments we start with the first segment on which the robot is cur-

rently located and label it as ”Safe”. Next the height differences at the boundaries between

this segment and neighboring segments are computed using the plane parameters (see Algo-

rithm 2 for details). If the height difference at a sufficient number of boundary cells between

two neighboring segments is within a threshold then it is assumed the boundary between the

two segments is traversable. This allows us to determine which of the segments neighboring

the first segment are reachable by the robot. The process is then continued recursively start-

ing with the segments deemed reachable from the first segment. All reachable segments are

labeled “Safe” and unreachable segments are labeled “Non-ground”. The “Safe” segments

are re-labeled as ”Level” or ”Inclined” depending on their slope.

Before the above process is started, small and thin segments are labeled as “Un-

known” since such segments are usually a result of insufficient or poor depth information

(most of these segments disappear with additional stereo data). In addition, segments with

a large incline are labeled “Non-ground”.

Cells in the traversability-based safety map are then updated with the labels of the

segments to which they belong to give the plane-based safety map.

Drop-off Edges. The boundary cells of segments labeled “Level” or “Inclined”, can be

further annotated as being drop-off edges. Drop-off edges at boundary cells can be found

with the help of the following two criteria.

1. When some of the cells neighboring a boundary cell have a lower height than the

boundary cell, it indicates a drop-off edge.
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Algorithm 2 Labeling Segments and their Planes for Connectivity and Safety
Require: Segment and plane list with neighborhood information.

1: Initialize by labeling all segments in the segment list as “Unexamined”.
2: Label segments with planes with a slope greater than θmax(= 10o) as “Non-ground”.
3: Label small segments with less than nsmall(= 6) cells as “Unknown”.
4: Label thin segments as “Unknown”. Thin segments are those for which:

#interior cells < rthin× #boundary cells where rthin = 0.1. Small and thin segments
are usually poorly observed and hence not considered.

5: Create an empty list LS. LS will contain segments to be examined further for safety.
6: Label the segment on which the robot is located as “Safe” and add it to LS.
7: while LS 6= φ do
8: Pop LS (i.e. remove segments from LS) until a segment S is obtained that has not had

its neighbors examined.
9: Find neighboring segments, NS, of S.

10: for each R ∈ NS do
11: Find neighboring boundary cells cRS of S and R.
12: numRS← 0
13: for each cell c ∈ cRS do
14: Compute the xy-coordinates (xc,yc) of the center of cell c = (u,v) as follows:

xc = u · lv and yc = v · lv (From Equation 5.12).
15: Compute the expected ground height at cell c’s center using the plane param-

eters of both segments R and S (Equation 6.1): hS
c = bS1xc + bS2yc + bS3 and

hR
c = bR1xc +bR2yc +bR3 .

16: Compute the height difference, hc(S,R) = |hS
c−hR

c |.
17: if hc(S,R) < hT (where hT = 0.05m) then
18: numRS← numRS +1
19: end if
20: end for
21: if numRS ≥ numT (= 5) then
22: Segment R is reachable from S. Label R as “Safe” and add R to LS.
23: end if
24: end for
25: Mark S as having had all its neighbors examined.
26: end while
27: Re-label all remaining segments still labeled “Unexamined” as “Non-ground” as they

are unreachable from the robot’s current position.
28: Re-classify all segments labeled “Safe” into “Level” or “Inclined” segments depending

on the slope of their planes. If the slope is greater than θT = 3 degrees label the segment
as “Inclined” else label it as “Level”.

29: Return all segments with their labels.
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2. When some of the cells neighboring a boundary cell are labeled “Unknown” it might

indicate the presence of a drop-off edge. This condition exploits the fact that some

drop-off edges occlude regions beyond them causing cells in those regions to be la-

beled as “Unknown”.

Both criteria find cells that are drop-off edges but the second criteria also finds cells that are

not drop-off edges. Therefore, we only label boundary cells satisfying the first condition as

“Drop-off Edges”. Many non drop-off segment boundary cells satisfy the second condition

– this is specially true of boundary cells that are at the edge of the stereo sensing horizon

since the cells beyond these are necessarily labeled “Unknown”.

Therefore, we modify the second condition to lower the incidence of false positive

boundary cells. In the modified condition only boundary cells that are next to “Unknown”

cells and that are also close to cells that are lower in height than them are considered to be

“Potential Drop-off Edges”. Figure 6.5(a) shows the results of this method. We are able

to identify correctly the only drop-off edge in this environment but we also get a few false

positive drop-off edges in areas where stereo information is lacking. In Chapter 8 we omit

labeling cells using the modified second condition to avoid cluttering the safety maps 5.

In the next chapter (Chapter 7) we look at a method that explicitly identifies drop-

off edges for which the second condition, as originally stated, is satisfied. It uses motion

and occlusion cues and its output can be used to enhance the safety maps created here.

Parameters. The parameters θmax, hT , numT in Algorithm 2 are determined using the

motion capabilities and dimensions of the robot for which the safety maps are being cre-

ated. θmax is determined by the maximum incline the robot can navigate (10 degrees in

our implementation). hT is the maximum height difference between two adjoining surfaces

that the robot can navigate (5cm in our implementation) and numT is the number of cells

5Unfortunately, in all of our datasets we do not get a single instance of a drop-off edge for which the first
criteria is met. While we do not have a dataset, we did come across such a drop-off edge while testing our
real-time safety mapper implementation – see Figure 2.2 in Chapter 2.
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that make up the width of the robot (the robot is assumed to have a width of 5 cells in our

implementation which corresponds to 0.5m).

Thus, the safety map as created, is weakly dependent on the robot’s dimensions

and navigation capabilities but independent of the trajectories that the mobile robot may

take when navigating. We believe that it is the task of the path planner to generate and test

the feasibility of different trajectories based on the safety map annotations. This clearly

demarcates the goals of the mapping and path planning modules.

Results. Figure 6.5(a) shows a plane-based safety map created for the ACESRAMP envi-

ronment. As we can see the region corresponding to the wheelchair ramp in the environment

is correctly identified as “Inclined” and the below-ground region next to the ramp is cor-

rectly determined as non-reachable and labeled “Non-ground”. In addition cells determined

to be “Potential Drop-off Edges” are also shown.

We can combine the 3D grid and the segments and their planes using the plane-

based safety map to create a hybrid 3D model where traversable ground regions are rep-

resented using planes and non-ground regions are represented using voxels. Figure 6.5(b)

shows such a hybrid 3D model for the ACESRAMP environment.

Computation Time. The average computation time for fitting planes to the grid segments

and creating the plane-based safety map is around 35ms for an 8m×8m grid using unopti-

mized code written in MATLAB.

6.5 Related Work

In this section we review prior work in the robotics literature on fitting planes to point

cloud data for the purpose of modeling a robot’s surroundings. The process of fitting planes

usually consists of two steps: (i) finding the assignments of points to planes, or a segmen-

tation of the data such that all points in a segment belong to a single plane; and (ii) finding
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(a)

(b)

Figure 6.5: (a) Plane-based safety map obtained after analyzing the segments and fitted
planes for safety. The color scheme is the same as used in Figure 6.2(a) with the addi-
tional use of yellow to denote “Inclined” regions and blue for denoting “Potential Drop-off
Edges”. (b) Hybrid 3D model. Ground regions are represented using planes with “Level”
planes shown in green and “Inclined” planes in yellow. “Non-ground” regions are repre-
sented using voxels (in grey).

the plane parameters themselves by fitting planes based on the assignments/segmentation.

There are many different kinds of plane fitting algorithms. These include Expectation Max-

imization (EM) based methods [Thrun et al., 2004], methods that take an incremental ap-

proach [Poppinga et al., 2008], and RANSAC based methods [Fitzgibbon and Zisserman,
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1998].

Of these methods, EM-based methods are amongst the more popular ones. Such

methods iterate between finding the probabilities of point assignments and finding the plane

parameters themselves based on the current best estimate of the probabilities [Thrun et al.,

2004]. However, EM-based methods require that the correct number of planes in the envi-

ronment be estimated in some manner beforehand and are subject to local minima that can

be difficult to avoid. The local minima partly arise due to the fact that EM-based methods

don’t take point locality into account when assigning points to planes.

Incremental methods start by fitting a plane to a small collection of neighboring

points and incrementally adding new points to the initial group followed by refitting to test

the quality of the fit [Poppinga et al., 2008]. Since incremental methods start by fitting

planes to small regions their results depend on the seed regions requiring that these be

carefully chosen. Such methods are also sensitive to the thresholds used and are usually

computationally expensive. Like incremental methods, RANSAC-based methods also start

off by fitting planes to small collections of points and are iterative like EM.

If the range data is in the form of an “image”, plane fitting can be formulated as

a range image segmentation problem. Hoover et al. [1996] review and evaluate several

methods for segmenting range image data into planes – these methods are fast and give

good results [Jiang and Bunke, 1994]. Unfortunately, they cannot be applied to our 3D

models since our range data is in the form of a unorganized point cloud.

Recently, Gaussian Processes [Plagemann et al., 2008] have become popular for

fitting surfaces to laser range data for modeling terrain. However, GPs require heavy com-

putation and in addition, fitting surfaces using Gaussian Processes also requires that the

assignment/segmentation problem be solved. The hard part of plane or surface fitting is

finding the number of planes/surfaces and determining the point assignments. Once the re-

gions have been found it is straightforward to either fit planes using a least squares process

or fit surfaces using a Gaussian Process or other method.
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The plane fitting method we have introduced here consists of Algorithm 1 for seg-

mentation and the least squares method of Section 6.3. By taking advantage of the fact that

the robot can travel only on horizontal or gently inclined surfaces such as ramps, the Algo-

rithm 1 segments the point cloud data very efficiently – albeit only finding a segmentation

of points that belong to ground regions. Efficiency arises partly because the method is not

iterative unlike EM or RANSAC-based methods, etc. The segmentation produced is very

stable and produces fairly large segments that allow good fits to be found. Another strength

of the segmentation method is that it is able to detect small changes in slope – the ramp

found for the ACESRAMP environment has a slope of only about 6 degrees. We believe

that this method is particularly suitable for the purposes of mobile robot navigation.

It might be possible to extend this method to vertical or sharply inclined surfaces.

This will require that the normals of local patches in the point clouds be determined. Know-

ing the normals will allow the method to determine the directions along which to compute

the “heights” in different regions which can then be used for segmenting those regions.

6.6 Summary

In this chapter we introduced three methods for building safety maps from 3D models. The

threshold-based and traversability-based methods analyzed only the 3D grid whereas the

plane-based method used both the grid and point cloud parts of the 3D model.

The threshold-based method was shown to be only suitable for environments that

had no inclines. The traversability-based method was able to correctly identify inclined

regions as being safe but was unable to identify them as being inclined. This is because

the method could not distinguish between inclines and a series of steps. The plane-based

method for building safety maps overcame this problem by analyzing planes fit to the

3D point cloud in addition to the 3D grid. The plane-based method successfully found

traversable level and inclined regions and also identified drop-off edges.

We also introduced a fast method for fitting planes to level and gently inclined
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ground regions in point clouds. The method produced a fast segmentation of the point

cloud by overlaying a 3D grid on top of the point cloud and using the grid to find segments.

We presented representative results of all methods introduced in this chapter on the

ACESRAMP environment. Chapter 8 presents more qualitative results obtained using the

plane-based safety map method and also presents a quantitative analysis of the quality of

the safety maps and the plane fits.
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Chapter 7

Detecting Drop-offs using Motion

and Occlusion Cues

We present a novel motion and occlusion based method that identifies drop-offs directly in

front of the robot. Such drop-offs have an occluding edge and this method uses the relative

motion (across several images) between this edge and other image features for detecting the

drop-off.

The method works on a sequence of monocular images and does not require any

stereo information. It can, however, be used in conjunction with the stereo-based meth-

ods for constructing safety maps. It provides redundancy and robustness in case the stereo

method fails to detect a drop-off. Also unlike stereo methods, where drop-off edges have

to be sometimes inferred (for example, the existence of an “Unknown” region next to a

“Level” region can imply a drop-off edge), the motion and occlusion based method explic-

itly identifies drop-off edges. The method consists of two main steps:

1. In the first step, all occluding edges in front of the robot, that might be drop-off edges,

are detected. The algorithm for doing this is purely image based and does not utilize

any camera information, such as focal length.
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2. In the second step, the identified edges are projected onto a horizontal 2D motion

grid. The purpose of this step is threefold: it identifies the drop-offs edges amongst

the occluding edges; it provides the 3D location of the edges in the world; and it also

reduces the incidence of false positives.

Information about the drop-off edges from the 2D motion grid can be added to 2D metrical

maps, such as the safety maps, to provide additional safety information to the robot.

7.1 Detecting Occluding Edges

Drop-offs on the ground have an occluding edge. If a robot moves towards an occluding

edge, regions initially occluded by the edge come into view, and when the robot moves

away from the edge, regions that were initially visible, disappear. If the robot were to

track a fixed point (or feature) beyond the occluding edge and another point before the edge

across several images, it would notice that the point beyond the edge moves “faster” than

the point before, due to new regions coming into view beyond the edge (or going out-of

view, depending on the robot’s direction of motion). The same would not be true for a

non-occluding edge – both points would appear to move at the same rate. We utilize this

difference in the apparent “speed” of points relative to the edge to identify occluding edges

and distinguish them from non-occluding edges.

The algorithm for detecting occluding edges, consists of matching edges across

images and detecting invariant features around the edges. The average speeds of features

above an edge and below an edge 1 are estimated and the difference thresholded to identify

occluding edges. The threshold, δT , is set such that the method identifies occluding edges

aggressively, resulting in a relatively high false positive rate (that is some non-occluding

edges get incorrectly identified as occluding edges). This is preferred to the other scenario

in which occluding drop-off edges are missed, as missing a drop-off carries a higher risk

1Features that are beyond an edge in 3D space appear above the edge in image space, and features that are
before an edge in 3D space appear below the edge in image space.

102



for the robot.

The pseudo-code for the method is presented in Algorithm 3. Figure 7.1 shows the

various stages of Algorithm 3 when applied to a pair of images separated by several frames

in an outdoors environment. For ease of explanation we assume that the robot is moving

towards a drop-off.

As mentioned, the drop-off detection method detects all occluding edges in the

environment that have the potential to be drop-offs. Figure 7.1 provides an instance of this

– in the last row of the Figure, the occluding edge of a pipe in the distance is also treated as

a potential drop-off even though it is not one.

Matching Edges. One of the major steps in Algorithm 3 is matching edges across im-

ages. We propose a method for doing so in Algorithm 4. Matching edges is tricky because

the lengths of edges change from image to image. This is partly due to the robot’s motion,

but mostly due to the edge detection process – an edge in one image can appear as two

smaller edges in another image. Therefore, we need a matching method that is invariant

to the length of the edge. The method we propose matches edges across images by com-

paring histograms of intensities in regions around the edges – since the number of bins in

an intensity histogram is independent of the edge length. The histograms are compared

using the Jensen-Shannon divergence [Wikipedia, 2009b] which measures how similar two

histograms are to one another. We expect that the regions around matching edges should

look similar and hence the histograms of the regions should be similar – so pairs of edges

for which the Jensen-Shannon divergence is low are considered for matching.
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Algorithm 3 Motion-based Detection of Occluding Edges.
Require: A pair of images, I1, I2 separated by N = 5 frames.

1: Initialize the set of occluding edges, O1, in image I1, to φ .
2: Find all edges in images I1 and I2 (we use code available online [Kovesi, 2008]). An

edge is defined as a straight line segment.
3: Only consider edges that are, (i) nearly horizontal in the image (slope ≤ 30o), and (ii)

not very far off (distance ≤ 20m) – accomplished by discarding all edges above the
horizon.

4: Match edges in I1 with edges in the previous image, I2 (Algorithm 4 describes the
method we use). The separation of five frames ensures appreciable motion thereby
increasing the signal-to-noise ratio. Let ne = number of matched edges.

5: for i = 1 to ne do
6: Denote matched edge i by ei.
7: Find invariant features [Mikolajczyk and Schmid, 2004] above and below edge ei in

I1 and I2, and within a certain region around the edge.
8: Match the features across I1 and I2. Features above and below the edges are matched

separately – the method used is a variation of the one in [Lowe, 2004]. Let na and nb
be the number of matched features above and below the edge respectively.

9: for j = 1 to na do
10: Let f j be matched feature j above edge ei

11: Compute the distance a j1 (in pixels), of f j to ei in image I1. Similarly compute
distance a j2.

12: Compute the distance that f j moves between images I1 and I2: δ j = |a j1−a j2|
13: end for
14: Similarly compute δk for all features, fk, k = 1..nb, below ei

15: Histogram all distances, δ j, j = 1..na, and pick the bin with the highest count as the
best estimate of the average distance, δa, moved by features above ei relative to ei.

16: Similarly compute δb.
17: if δab = |δa−δb| > δT then
18: Add ei to the set of occluding edges, O1.
19: end if
20: end for
21: Return O1.
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Figure 7.1: Images illustrating Algorithm 3 as applied to an outdoor environment. The
robot is moving towards the drop-off edge. 1st Row: The edges detected in a pair of images
separated by several frames. 2nd Row: Edges are filtered and matched across the image
pair (matching edges have the same color in both images). 3rd Row: For a pair of matched
edges, features are found both above (red crosses) and below (blue boxes) the edge and
matched across the image pair. The distance moved by the matched features, above and
below the edge, is computed separately. 4th Row: The occluding edges found – note that a
pipe in the distance is also correctly identified as an occluding edge.
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Algorithm 4 Matching Edges using Histogram Similarity
Require: A pair of images, I1, I2 and the ordered set of edges E1 and E2 in each.

1: Initialize the ordered set E12, that will contain edges from E2 that match edges in E1, to
φ .

2: for i = 1 to |E1| do
3: Denote by e1i, edge i in E1
4: Define an oriented rectangular search region, parallel to and centered on e1i, in image

I2, whose size is based on the maximum expected amount of edge movement between
the two images.

5: Create a set, Mi, containing those edges from E2 that might match e1i. Mi includes
any edge in E2, a substantial part of which falls within the above search region.

6: Define two oriented rectangular histogram regions around edge e1i - one above it and
the other below.

7: Compute normalized histograms hia and hib (i.e., probability distributions) of pixel
intensities in the histogram regions above and below e1i.

8: for j = 1 to |Mi| do
9: Denote by e2 j edge j in Mi

10: Similar to that done for e1i, compute normalized intensity histograms h ja and h jb
above and below edge e2 j.

11: Compute the Jensen Shannon divergence, DJS, between hia and h ja:

DJS(hia||h ja) = (1/2)(DKL(hia||ha)+DKL(h ja||ha)) (7.1)

where ha = (1/2)(hia + h ja) and DKL is the Kullback-Leibler diver-
gence [Wikipedia, 2009c], defined as DKL(P||Q) = ∑k P(k)(P(k)/Q(k)), between
two discrete distributions P and Q.

12: Similarly, compute DJS(hib||h jb).
13: Let D j = DJS(hia||h ja)+DJS(hib||h jb).
14: end for
15: Find edge j∗ in Mi for which D j is smallest. We expect the sum of the Jensen

Shannon divergences to be small for edges whose surrounding regions look similar.
16: if D j∗ ≤ T (= 0.1) then
17: Add e2 j∗ to set E12.
18: else
19: Add the empty edge eφ to E12. Essentially, if D j∗ is greater than T , it means a

good match was not found.
20: end if
21: end for
22: Return E12
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7.2 Projection onto a 2D Grid: Identifying Drop-off Edges

For a given image, Algorithm 3 finds a set of occluding edges that can potentially be drop-

off edges. The next stage of the drop-off detection method, that of projecting the occluding

edges onto a horizontal 2D grid, helps to identify true drop-off edges amongst these occlud-

ing edges.

If we assume the robot is travelling on level ground and that drop-off edges are

also on level ground surfaces, we can compute the 3D location of edge pixels in the map

coordinate frame using the equations in Section 4.1 – this is because the height of level

ground is always known in the robot’s coordinate frame. Section 7.2.1 describes the math

behind computing drop-off locations. Knowing the 3D location of drop-off edge pixels

allows us to project them onto a 2D horizontal grid in the map coordinate frame, called

the motion grid. This motion grid is essentially a 2D map of the robot’s local environment

like the local safety maps, except that in this case the map only contains the locations of

drop-off edges (cells in the grid are marked as drop-off edges or not)

The motion grid also helps to get rid of occluding edges that are not on the ground

plane and hence are not drop-offs. For every image in which occluding edges are detected,

we compute the 3D locations of those edges using the equations in Section 7.2.1. Then

each cell in the motion grid through which a drop-off edge passes is incremented by a fixed

amount. Only cells with values above a threshold are marked as being drop-off edges 2.

Hence, each cell has to accumulate evidence over several images for being marked as a

drop-off edge.

The 3D locations of occluding edges not on the ground, computed using the equa-

tions in Section 7.2.1, are not consistent across images. Hence different cells in the motion

grid get incremented each time eliminating such occluding edges. Thus the process of pro-

jecting drop-off edges onto a 2D grid, identifies drop-off edges and also handles the high

number of false positives generated by Algorithm 3, in addition to providing the 3D loca-

2In our code we require that a cell be incremented at least 6 times before it is marked as a drop-off edge.
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tions of drop-off edges. Figure 7.2 shows the drop-offs detected and the motion grid for the

ACESRAMP environment (Figure 7.3 has additional results).

In the case when the robot travels on inclined surfaces of the sort we consider in this

work, projecting the drop-off edge pixels using the equations in Section 7.2.1 should still

work. This is because we only consider travel on surfaces with relatively low slopes and

so the level ground assumption approximately holds. The locations of the drop-off edges

won’t be as precise as for level ground, but the drop-offs themselves should be detected.

Computation Time: Both steps of the motion based method take a total of 6.7 seconds

on average per image using un-optimized Matlab code. We believe the method can be made

to run in real-time using optimized C++ code.

7.2.1 Computing Drop-off Edge Locations

For an image point (or pixel) z = (r,c,d)T , on a drop-off edge on level ground, let xr =

(xr,yr,zr)T be its location in the robot’s coordinate frame. In our work, the ground plane is

always at height zero in the robot’s coordinate frame, and so we can set zr = 0 for the point.

Substituting this into Equation (4.3) in Section 4.1 we get,

xr =


xr

yr

0

 = Rcxcam +Tc =


rT

1

rT
2

rT
3

xcam +


t1

t2

t3


or, 0 = rT

3 xcam + t3 (7.2)

or, −t3 = (r31 r32 r33)


xcam

ycam

zcam

 = r31xcam + r32ycam + r33zcam

We can substitute Equation (4.1) for xcam in the above equation to solve for a value of the
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(a) (b) (c)

(d) (e)

Figure 7.2: Figures showing the 2D motion grid and its combination with a safety map.
(a) An image showing a scene from the ACESRAMP environment with a drop-off edge
(marked 1). (b) A ground truth safety map of the environment, obtained using height thresh-
olds (Section 6.1), showing the location of the drop-off in the map. The arrow shows the
direction from which the scene in the previous image was taken. (c) A 2D motion grid
showing two drop-off edges found using the motion-based drop-off detection method de-
scribed in this Chapter. The correct drop-off edge, marked 1, is identified in addition to a
false positive drop-off edge marked 2. (d) A safety map of the environment obtained us-
ing a color-segmentation stereo method [Murarka et al., 2008] (similar to that described in
Section 4.3.1). (e) The same safety map after being combined with the motion grid. The
location of the drop-off edge marked 1, has now been added to the safety map. Drop-off
edge 2 happened to fall on the right wall, allowing us to eliminate it. Thus combining the
motion grid with the safety map led to a better map overall.

(virtual) disparity d of the point,

− t3 = r31
b f
d

+ r32
b(c0− c)

d
+ r33

b(r0− r)
d

(7.3)

or, d =
−b
t3

(r31 f + r32(c0− c)+ r33(r0− r))

Once we have d we can use Equations (4.1), (4.3), and (4.4) in order to solve for the 3D

position of the edge point, xm, in the map coordinate frame.
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7.3 Adding Detected Drop-offs to a Safety Map

The motion-based drop-off method returns a horizontal 2D grid with drop-off cells marked.

This grid can be combined with a safety map, created using one of the stereo methods, to

obtain a combined stereo and motion safety map. In the combined safety map, cells in the

stereo safety map marked “Level” or “Inclined” are further annotated as “Drop-off Edges”

if the corresponding cells in the motion grid are marked as drop-off edges. If cells in the

motion grid fall on any other type of cell in the stereo safety map it is assumed that the

drop-off is a false positive and ignored. Figure 7.2 shows the results of combining a stereo

safety map with a motion grid.

7.4 Evaluation and Results

The motion-based drop-off detection method was evaluated on four stereo video data sets

(with 350-500 stereo image pairs in each dataset) collected by driving the robot through

two indoor and two outdoor environments. Sample images from the environments and the

results on those environments are shown in Figures 7.2 and 7.3.

The method was evaluated based on the drop-offs detected in the 2D motion grids

that were created for all environments. The method was able to detect all 5 frontal drop-

offs present in the four environments. This corresponds to a true positive rate of 100% (a

drop-off edge correctly detected is a true positive) or a false negative rate of 0% showing

that this method can be relied on for detecting drop-off edges in front of the robot.

However, the motion grids also contained a total of 7 false positive drop-offs. We do

not report the corresponding false positive rate as it does not make much sense in this case.

In order to calculate the false positive rate we need to divide the number of false positives

by the number of safe edges in the environment (i.e., edges that are not drop-off edges) that

are considered by our algorithm. There are several different plausible ways of finding the

total number of safe edges that can give varying estimates of the total number. For example,

110



(a) ACES2402 environment. (b) (c)

(d) ENSCSA environment. (e) (f)

(g) OSCAFE environment. (h) (i)

Figure 7.3: Results of applying the motion-based drop-off detection method on three envi-
ronments. The first column shows scenes from the environments with numbers indicating
the location of drop-off edges in each image. The second column shows ground truth safety
maps along with the locations of the drop-off edges identified in the first column. The third
columns shows the motion grids built for the three environments and all drop-offs that were
identified. In Figure (c), both drop-offs in the environment were identified successfully
although a false-positive drop-off, marked 3, was also identified. In Figure (f), three false-
positive drop-offs (marked 2, 3, and 4) were identified in addition to the correct one. In
Figure (i), two false positive drop-offs (marked 2 and 3) were identified in addition to the
correct one.

should we consider edges that are only seen once by the robot or do we only consider edges

that have been observed several times? Also, what do we do about edges that are caused due

to lighting conditions but are nevertheless considered by our algorithm? Due to these factors
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we omit computing the false positive rate as it does not seem to convey much additional

information. Instead a more useful number is the average number of false positive edges

found per environment which happens to be 1.75 false positives per environment for our

experiments.

How do these false positive drop-off edges affect motion planning? When the mo-

tion grid is combined with a stereo safety map most of the false positives go away since

usually these are produced by occluding edges not on the ground. Examples of this include

edge 2 in Figure 7.2. The edge disappears on combining with the stereo map as it corre-

sponds to a hand rail on the wall. Similarly, in Figures 7.3(c) and 7.3(i) all false positive

edges would disappear if we were to combine the motion grid with the stereo safety maps

of the environments. However, in some cases the drop-offs edges do not disappear, for

example, edge 2 in Figure 7.3(f) will appear as a drop-off edge. However, since the edge

is close to an actual drop-off, in this case too the false positive should not prove to be a

hindrance to motion planning.

Therefore based on the above examples, we believe that the majority of false posi-

tive edges found using this method will not be a significant hindrance to motion planning.

7.5 Related Work

Here we briefly discuss work that is most directly related to our method for detecting drop-

offs. Other work on detecting drop-off edges using stereo vision and other sensors is dis-

cussed in Chapter 3.

We believe that the method presented in this chapter is the first time that drop-

off edges have been detected in this manner. There has been work on finding occluding

edges using optical flow in the computer vision community but our work differs from that

work in the sense that we use “relative” optical flow as opposed to traditional “absolute”

optical flow. In traditional optical flow the absolute motion of pixels between two images is

computed. In our method we compute the motion of pixels relative to fixed features (edges)
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in two images - hence the word “relative”.

An example of a work where “absolute” optical flow is used to detect occlusion

boundaries is the work by Stein and Hebert [2006]. They use “absolute” optical flow to

detect occlusion boundaries corresponding to moving objects in video sequences. The pres-

ence of motion makes it easier to detect the object boundaries. The “relative” optical flow

method we use is more sensitive at detecting occlusions and works even when the occluding

objects (drop-off edges in our case) in question are not moving.

7.6 Summary

In this chapter we have presented a novel motion and occlusion based method for detecting

drop-offs edges in front of the robot. The method works by first detecting occluding edges

in the environment and then projecting these edges onto a 2D motion grid to give the drop-

offs. In experiments the algorithm has been demonstrated to detect all such drop-offs in

four different environments. The method also finds several false positive drop-off edges.

However, most of these edges disappear when the motion grid is combined with metrical

maps of the environments, such as the local safety maps.

The motion based drop-off detection method does not detect lateral drop-offs. How-

ever, the stereo methods are good at detecting lateral drop-offs since the edges of such

drop-offs are roughly parallel to the camera axis providing good parallax. On the other

hand, drop-offs in front are not as easy for stereo methods to detect. So, in some sense,

the motion method is complementary to stereo methods for detecting drop-offs. Thus in

combination with the stereo local safety maps, the motion based algorithm gives us a fairly

robust method for the detection of drop-offs.
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Chapter 8

Evaluation and Results

Through Chapters 4, 5, and 6 we have presented several algorithms for the three main steps

involved in building a safety map, namely,

(i) computing a stereo depth map,

(ii) building a 3D model, and,

(iii) analyzing the 3D model for safety.

The overall algorithm for building a safety map then consists of a combination of algo-

rithms, one from each of the three steps. In this Chapter we evaluate and compare algo-

rithms from steps (i) and (ii) based on the quality of the safety maps that are constructed

using them 1. When evaluating different algorithms from step (i), we keep the algorithms in

the remaining steps constant. Similarly, when evaluating step (ii) algorithms, we keep the

algorithms in steps (i) and (iii) the same.

In addition to providing us with an assessment (and comparison) of the performance

of the individual algorithms involved in the three steps of building safety maps, the above

1Of the three algorithms presented for step (iii) in Chapter 6, only the third one which involves plane fitting
is considered here. As shown in that chapter, the other two algorithms are not suitable for environments with
ramps, such as the ones considered in this chapter.
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evaluation also allows us to compare the overall performance of different combinations of

algorithms. The best performing algorithm combination is then evaluated further. We also

provide an analysis of the error rates that we compute for the safety maps and what these

mean to the robot in terms of the safety of the paths planned.

We implement a real-time version of the best algorithm combination and provide

qualitative results of the algorithm’s performance when used on the intelligent wheelchair.

We also demonstrate the algorithm’s integration with path planning and the HSSH.

We begin this Chapter with an overview of our evaluation methodology and the

stereo video datasets that we test our algorithms on. The evaluation methodology is gen-

eral and should allow comparison with, and evaluation of, other vision-based mapping al-

gorithms. Towards this end we plan to make our datasets and evaluation code publicly

available [Murarka and Kuipers, 2009a].

8.1 Evaluation Methodology

In the first part of the evaluation in Section 8.2, we measure the accuracy of the algorithms

from steps (i) and (ii) at constructing safety maps. We do this by running the algorithms on

five stereo video datasets and comparing the constructed safety maps to ground truth safety

maps and computing error rates. We also provide a qualitative evaluation of the algorithms

by showing the constructed safety maps, the 3D models, and the planes that are found, for

selected datasets.

In the second part of the evaluation in Section 8.3, we further evaluate the algorithm

combination that is deemed to give the best overall performance as determined from the first

part of the evaluation. In particular, we measure the following quantities.

• Plane accuracy: We measure the accuracy of the plane fitting process by comparing

planes that are fit against ground truth planes.

• Frame latency: We measure latencies that arise due to building the 3D model and
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(a) ACESRAMP environment. (b) BIORAMP environment. (c) ACES2302 environment.

(d) OSCAFE environment. (e) NANORAMP environment.

Figure 8.1: Sample images from the five stereo video datasets on which the safety map
algorithms are evaluated.

noise filtering. Information has to be accumulated over several image frames before

the existence of an object is confirmed and it is shown in the safety map.

8.1.1 Datasets

As mentioned, the algorithms are evaluated on five stereo video data sets collected in a

variety of environments using the Intelligent Wheelchair (Figure. 1.1). The datasets have

between 350-500 stereo image pairs each. Sample images from the datasets are shown in

Figure 8.1. Two of the datasets, ACESRAMP and NANORAMP, have a ramp and a drop-

off. One dataset, BIORAMP, has two ramps, and the remaining two datasets, ACES2302

and OSCAFE, have drop-offs only. Most environments have large poorly textured regions,

and both indoor and outdoor areas are represented. Lighting varies from good to fair.

Laser range data from both the horizontal and vertical laser range-finders on the

wheelchair was collected simultaneously with video data and was used to provide ground
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truth for our evaluation. Laser based maps of the environment were created and then manu-

ally annotated and corrected to give the ground truth safety maps used in the first part of the

evaluation (the laser maps provided excellent starting points for the ground truth maps). We

also manually fit planes to laser range points to give ground truth planes used in the second

part of the evaluation.

8.1.2 Algorithms

The algorithms compared are as follows. Three algorithms from step (i) (computing stereo

depth maps) from Chapter 4 are compared:

1. CS: The correlation stereo algorithm from Section 4.2.

2. SS: The color segmentation-based stereo algorithm from Section 4.3.1. In particular

we evaluate the SS-Used version of this algorithm described in Section 4.4.

3. ES: The edge segmentation-based stereo algorithm from Section 4.3.2. We evaluate

the ES-Used version of this algorithm described in Section 4.4.

Two algorithms from step (ii) (building 3D models) from Chapter 5 are compared:

1. DA: The data association method presented in Section 5.1.

2. OG: The occupancy grid based method presented in Section 5.2.

To compare the step (i) stereo algorithms, we have to use the same algorithms in the

second and third steps of the overall algorithms that are used to build the safety maps. We

use the occupancy grid algorithm, OG, in the second step and the plane fitting algorithm,

denoted PF, algorithm in the third step giving the following overall algorithm combinations

that are compared: CS+OG+PF versus SS+OG+PF versus ES+OG+PF.

Similarly, to compare the step (ii) 3D modeling algorithms, we use the correlation

stereo algorithm, CS, in first step and the PF algorithm in the third step. This results in the

following algorithm combinations being compared: CS+DA+PF versus CS+OG+PF. Note
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that the algorithm combination CS+OG+PF is common to both step (i) and (ii) evaluations.

Thus we evaluate four algorithm combinations in all.

Based on the evaluation of the above algorithms, we can pick the best algorithms

from steps (i) and (ii), to give us the best algorithm combination for building maps 2, which

turns out to be CS+OG+PF.

8.2 Evaluation Part 1: Comparison of Step (i) and Step (ii)

Algorithms

The first part of the evaluation measures the accuracy of the algorithms by comparing the

constructed safety maps against ground truth safety maps and computing error rates. For

each constructed safety map we can identify the following types of cells.

• False Positives (FP): cells marked unsafe in the constructed safety map but labeled

safe in the ground truth safety map.

• False Negatives (FN): cells marked safe in the constructed safety map but labeled

unsafe in the ground truth map.

• True Positives (TP): cells marked unsafe in the constructed map that are also labeled

unsafe in the ground truth maps.

• True Negatives (TN): cells marked safe in the constructed map that are also labeled

safe in the ground truth maps.

For the purpose of evaluation, cells marked “Level” or “Inclined” in a safety map are con-

sidered safe and only cells marked “Non-ground” are considered unsafe. Cells marked

“Unknown” or “Unexamined” are considered to be un-classified and hence play no role.

2Since steps (i) and (ii) are relatively independent of each other we don’t need to test all possible algorithm
combinations – simply using the best algorithm from each step should give us the best combination.
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For a given dataset and algorithm, a safety map is created for every stereo image

frame in the dataset 3. For image frame k, we find the total number of FP cells, Nk
f p, and

the total number of FN cells, Nk
f n, in the corresponding safety map. Also, of all classified

cells in a constructed safety map, we find the total number of true safe cells present Nk
sa f e

(the cells have to be classified by the ground truth map as well). Similarly, we find the total

number of true unsafe cells in each safety map, Nk
unsa f e.

We can then compute overall false negative and false positive rates for a dataset (for

a particular algorithm) as follows,

f prate =
∑k Nk

f p

∑k Nk
sa f e

(8.1)

f nrate =
∑k Nk

f n

∑k Nk
unsa f e

(8.2)

where the sum is over all images k in the dataset. Once these error rates have been computed

for each dataset, they are averaged across all five datasets to give the average false positive

rate, f pavg, and average false negative rate, f navg for the algorithm. In addition, the standard

deviations f pstd and f nstd are also computed 4.

Tables 8.1 and 8.2 show these averaged error rates (and corresponding standard

deviations) for each of the four algorithm combinations described in the previous section

(8.1.2). The error rates are computed for three different settings of the parameter decr

mentioned in section 5.2 for algorithms CS+OG+PF, SS+OG+PF, and ES+OG+PF; and

for three different settings of the parameter cmin mentioned in section 5.1.3 for algorithm

CS+DA+PF. Figure 8.2 shows graphically, as ROC curves, the f pavg and f navg values pre-

sented in the tables (the ROC curves actually show t pavg = 1− f navg).

3In practice, safety maps are created for about 90-95% of all stereo frames in a dataset. Image frames
that capture exactly the same scene as previous image frames (this happens when the robot is stationary) are
discarded to avoid temporally correlated stereo range readings. See section 5.2 for more details.

4Since the standard deviations are computed over only five values they are large in some cases.
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Error Rate (%)→ f navg± f nstd f pavg± f pstd

Parameter→ decr =−1
CS+OG+PF 3.0 ± 1.8 9.3 ± 4.7
SS+OG+PF 14.0 ± 17.9 8.9 ± 5.2
ES+OG+PF 13.1 ± 16.7 8.6 ± 4.7
Parameter→ decr =−3
CS+OG+PF 8.5 ± 5.3 6.2 ± 3.7
SS+OG+PF 22.1 ± 14.4 4.3 ± 2.7
ES+OG+PF 12.1 ± 6.7 8.7 ± 9.6
Parameter→ decr =−5
CS+OG+PF 11.2 ± 7.3 5.2 ± 2.4
SS+OG+PF 17.4 ± 8.9 3.6 ± 1.6
ES+OG+PF 11.7 ± 8.8 11.6 ± 11.2

Table 8.1: Error rates (%) for step (i) algorithms: CS+OG+PF, SS+OG+PF, and
ES+OG+PF. FN and FP error rates averaged across all five datasets, are shown for three
values of the decr parameter for the three algorithms. Standard deviations are also given.

Error Rate (%)→ f navg± f nstd f pavg± f pstd

Parameter→ cmin = 3
CS+DA+PF 0.9 ± 0.7 27.1 ± 18.2
Parameter→ cmin = 5
CS+DA+PF 1.4 ± 1.0 15.6 ± 10.2
Parameter→ cmin = 7
CS+DA+PF 2.2 ± 1.2 21.3 ± 16.9

Table 8.2: Error rates (%) for step (ii) algorithm: CS+DA+PF. FN and FP error rates
averaged across all five datasets, are shown for three values of the cmin parameter for the
CS+DA+PF algorithm. Standard deviations are also given.

The algorithms were deemed to be sensitive to the decr and cmin parameters and

hence we measured their effect on the error rates. We expect this sensitivity because both

parameters determine the weight we give to individual stereo range readings when building

the 3D models and therefore control the amount of noise in the 3D models.

In addition to the quantitative evaluation, we also present qualitative results com-

paring the performance of the different methods. Figure 8.3 shows safety maps built for

three datasets using all four algorithm combinations. These safety maps correspond to a
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Figure 8.2: ROC curves showing the average true positive rate t pavg = 1− f navg versus the
average false positive rate f pavg for different parameter values. The curve for CS+DA+PF
is shown for three values of the cmin parameter. The curves for the remaining algorithms
are shown for three values of the decr parameter.

particular image time/frame in the dataset 5. Figure 8.4 shows the corresponding 3D hybrid

models, while Figures 8.5, 8.6, and 8.7, show the corresponding planes that were found.

Figure 8.8 shows 3D grids created using the CS+DA+PF and CS+OG+PF algorithms.

Of the two types of errors, false positive and false negative, false negative errors are

of greater importance since the presence of false negative cells (unsafe cells marked safe)

places the robot at risk of damage. It should be noted that a particular false negative rate

does not translate directly into the chances of an accident, e.g., a value of 3 for f navg rate

(such as that for CS+OG+PF in Table 8.1) does not mean the robot has a 3 percent chance

of having an accident. False negative cells are usually at some distance from the robot,

most likely arising because the robot has insufficient information about distant objects, and

don’t pose an immediate danger to the robot. Furthermore, robots usually have a margin of

5We would like to note that there is no “final” safety map for a dataset, e.g., a map obtained after processing
all image frames in the dataset. Navigation is a continuous process and hence the safety map at any given
timestep is the best and “final” map available to the robot at that time.
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safety and so in general the effect of a particular false negative rate is expected to be less

than what the numbers suggest.

False positive cells (safe cells marked unsafe), while not posing a danger to the

robot, can be a hindrance to navigation because the robot might see obstacles where there

are none. This would indeed be the case if false positives were distributed randomly across

the safety map. However, based on the safety maps constructed (Figures 8.3 and 8.10) we

see that most of the false positive cells occur adjacent to existing objects - that is most

false positives are caused by objects “bleeding” into nearby regions. Furthermore, as the

robot comes closer to the objects and gets more information about them, the false positives

disappear.

In Section 8.4 we present a preliminary analysis of what false negative and false

positive rates actually mean to a robot in terms of navigation and safety.

The ROC curves in Figure 8.2 show that we can trade-off the false positive and false

negative rates by changing the values of the decr or cmin parameters. Usually increasing

the false positive rate leads to a decrease in the false negative rate and vice versa. This

is not true for SS+OG+PF and CS+DA+PF. For CS+DA+PF, what happens is that for a

parameter setting of cmin = 5 the algorithm performs well on all datasets giving a lower

false positive rate than that for the other parameter values. For SS+OG+PF for decr =−5,

the algorithm performs very well on one dataset (on which the algorithm performs poorly

for the other two parameter values) leading to a lower false negative rate even though on

the other datasets SS+OG+PF gives poorer performance for decr =−5.

Comparison between step (i) stereo algorithms: CS, SS, and, ES. Based on the results

(Table 8.1 and Figures 8.2 to 8.7) for algorithms CS+OG+PF, SS+OG+PF, and, ES+OG+PF

, we make the following observations.

• CS has the lowest average FN rates (or highest TP rates).

• SS has the lowest FP rates but the highest FN rates.
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• However, even the lowest FN rates of ES and SS are higher than the highest FN rates

of CS.

• If we compare CS to ES, we can say that CS provides better performance because on

the whole it has lower FN and FP rates.

• If we compare CS to SS, we see that SS has lower FP rates than CS although not by

much. CS thus provides the best compromise between the FP and FN error rates of

the three methods.

• SS and ES fail to detect the drop-off in the ACES2302 environment (Figure 8.3

and 8.4). This happens due to the presence of incorrect range readings at the drop-off

edge that cause an inclined plane being found at the edge. This leads the robot to

believe that there is a traversable incline where the staircase step is.

• Qualitatively the planes found using the CS method on the whole seem to be better

than the planes found using the SS and ES methods (Figures 8.5, 8.6, and 8.7).

Based on these observations, it appears that CS has the best overall performance and pro-

vides the best compromise between the two error rates.

As mentioned in Chapter 4, these results are contrary to those obtained using the

evaluation framework of [Scharstein and Szeliski, 2002] using which SS and ES were

shown to perform better than CS. As discussed in Section 4.4, this suggests that we need

to be careful when interpreting the actual performance of stereo algorithms based on their

evaluation on very few images as done in [Scharstein and Szeliski, 2002]. In our video

datasets, the algorithms are tested on several hundred images. We therefore believe that

the evaluation of the three stereo methods done here is is a better reflection of the stereo

algorithms capabilities than the evaluation of [Scharstein and Szeliski, 2002].
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Figure 8.3: Safety maps of 3 datasets (columns) made by 4 algorithms (rows). Rows 2
to 5: Safety maps for CS+DA+PF (cmin = 5), CS+OG+PF, SS+OG+PF, and, ES+OG+PF
(all for decr = −1) algorithms. Row 1 shows corresponding parts of the ground truth
safety maps. Columns 1 to 3: Safety maps for ACESRAMP, BIORAMP, and, ACES2302
datasets. Color Scheme: white for “Level”; yellow for “Inclined”; black for “Non-ground”;
and grey for “Unknown” regions. Outside circle regions are “Unexamined”. SS+OG+PF
and ES+OG+PF fail to detect the drop-off in the ACES2302 environment.
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Figure 8.4: 3D Hybrid Maps corresponding to the safety maps from Figure 8.3. Rows 1
to 4: Hybrid maps for CS+DA+PF (cmin = 5), CS+OG+PF, SS+OG+PF, and ES+OG+PF
(all for decr =−1) algorithms. Columns 1 to 3: Safety maps for ACESRAMP, BIORAMP,
and, ACES2302 datasets. Color Scheme: green for “Level” planes; yellow for “Inclined”
planes; red and grey for “Non-ground” regions (where we use red for unsafe planes and
grey for obstacles). SS+OG+PF and ES+OG+PF incorrectly detect unsafe planes as safe
for the ACES2302 environment.
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Figure 8.5: A cross-sectional view of the planes found (in color) for the ACESRAMP en-
vironment for the four algorithms, CS+DA+PF, CS+OG+PF, SS+OG+PF, and ES+OG+PF
(in order from the top), corresponding to the safety maps in Figure 8.3. The planes found
are compared to laser range data shown as black dots to show the quality of the fit.

Figure 8.6: Planes (in color) found for the BIORAMP environment for the four algo-
rithms, CS+DA+PF, CS+OG+PF, SS+OG+PF, and ES+OG+PF (in order from the top),
corresponding to the safety maps in Figure 8.3.
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Figure 8.7: Planes (in color) found for the ACES2302 environment for the four algo-
rithms, CS+DA+PF, CS+OG+PF, SS+OG+PF, and ES+OG+PF (in order from the top),
corresponding to the safety maps in Figure 8.3. This figure shows why SS+OG+PF and
ES+OG+PF fail to detect the drop-off in this environment. In both cases incorrect range
readings just beyond the first drop-off edge on the left result in a incorrect inclined plane
being found (in green). This plane causes the drop-off to appear as a traversable incline.

Comparison between step (ii) stereo algorithms, DA and OG. Based on the results

(Tables 8.1 and 8.2 and Figures 8.2 and 8.8) of CS+DA+PF and CS+OG+PF we make the

following observations.

• The data association method, DA, has a very low FN rate for all parameter values,

lower than OG and in fact the lowest amongst all algorithms that we evaluate.

• However, DA has a fairly high FP rate.

• The 3D grid models built using the DA method look noisier than those built using the

OG method in Figure 8.8. This is also true of the safety maps and hybrid 3D models.

The data association method is very promising in that it gives very low false negative rates

for all parameter values. However, the relatively high false positive rates can be an issue

in navigating narrow areas as they lead to thick walls that might make it impossible for the

robot to move through such areas (see the hybrid map for the ACESRAMP environment in
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Figure 8.8: The 3D grids obtained as an intermediate step in the CS+DA+PF (top) and
CS+OG+PF (bottom) algorithms for the OSCAFE (left) and NANORAMP (right) datasets.
These images show qualitatively the difference between the data association, DA, and oc-
cupancy grid, OG, methods of Chapter 5 with the data association models appearing to be
noisier. The hole in the center of the NANORAMP environment is due to the camera not
seeing that area when exploring the environment.

Figure 8.4 created using CS+DA+PF). We believe the reason for the high FP rate of the DA

method is the lack of a mechanism for incorporating negative (freespace) evidence while

building 3D models (unlike the occupancy grid method OG).

In comparison, the CS+OG+PF method has higher FN rates than the CS+DA+PF

method, but for one particular parameter setting (decr =−1) the CS+OG+PF method pro-

vides a fairly low FN rate while at the same time providing a significantly lower FP rate

than the CS+DA+PF method. For this particular parameter setting, we believe that the

CS+OG+PF algorithm provides the best compromise between competing requirements on

the mapping system. We evaluate the CS+OG+PF method further in the next section.
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A final point that we would like to make based on the constructed safety maps is

the need for active sensing. The safety maps of Figure 8.3 have several cells in the middle

of safe regions that are marked “Unknown”. Such cells could be removed if the mapping

algorithms were to have more information available about those areas. On a real robot it is

possible to provide this extra information through the use of active sensing. The robot can

move its camera to point at regions where it requires more information, thereby allowing it

to build better maps and navigate more safely. The use of active sensing will also help in

handling false positives, since they tend to evaporate as more information becomes available

to the robot. In the real-time implementation of the CS+OG+PF method (Section 8.5) we

simply have the camera pan left to right from time-to-time (a very primitive form of active

sensing) which nevertheless helps the robot in building better maps.

8.3 Evaluation Part 2: Further Evaluation of CS+OG+PF

We provide two more quantitative evaluations of the CS+OG+PF algorithm, for the param-

eter setting of decr =−1, to help identify its capabilities and limitations better.

8.3.1 Plane Fitting Accuracy

We evaluate the accuracy of the planes that are found using the CS+OG+PF algorithm by

comparing them against ground truth planes. The ground truth planes were obtained by

manually segmenting the laser-range finder data and fitting planes to it. We compute two

error measures.

1. Angle between normals: The angle between the normal of a detected plane and the

normal of the corresponding ground truth plane.

2. Average distance: The average distance between points on the detected plane and the

ground truth plane.
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The average distance is computed as follows. The detected plane is obtained by

fitting a plane of the form, z = b1x+b2y+b3, to several stereo range data points. For each

such range point, say xi = (xi,yi,zi)T , we re-compute the point’s z-coordinate obtained

using the fitted plane parameters: ẑi = b1xi +b2yi +b3. We then compute the perpendicular

distance of x̂i = (xi,yi, ẑi)T , to the ground truth plane for all range points i on the detected

plane. The average of these distances gives the required distance.

From each of the five data sets, we randomly choose 5 image frames and compute

the above two measures for all “Level” and “Inclined” planes detected in those frames. We

average across all planes and all data sets to get the overall average and standard deviation

values for the angle and average distances shown in Table 8.3.

Measure Angle between normals (degrees) Average distance (cm)
CS+OG+PF 1.2 ± 0.5 1.9 ± 0.8

Table 8.3: Plane Accuracy: The overall averages and standard deviations of the angle be-
tween normals and of average distances are shown.

The low values of these error measures shows that plane fitting works very well

and that we are able to accurately estimate both the normals and locations of safe planes.

Figures 8.5, 8.6, and, 8.7 show examples of fitted planes.

8.3.2 Latencies in Detecting Objects

The use of the occupancy grid for noise filtering leads to latencies in hazard detection.

However, such filtering is necessary because in its absence the robot may be too “paralyzed

with fear” to move because of a high number of false positives. To evaluate the effect of

filtering we compute the frame latency, defined as the number of camera frames between

the appearance of an object in a video sequence and its detection by the robot. Knowing the

frame latency is important for a mapping algorithm as it allows constraints on the robot’s

speed to be computed (using the robot’s estimated stopping distance at various speeds).

The value of frame latency depends on object properties, in particular on the amount
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(a) (b)

Figure 8.9: Frame Latency. (a) Plot showing number of frames that go by, before 50
percent of (the width of) a board is visible in the robot’s occupancy grid, as a function of
the initial distance to the board and the board’s texture. Both textured and untextured boards
are detected in about the same number of frames. (b) Plot showing frame latency for the
case when we re-define detection as being when 90% of the board is visible. In this case the
robot reaches the untextured board before 90% of it is visible - hence we plot the maximum
value of frame latency for this case.

of texture present on the object, and the initial distance of the object from the robot. To mea-

sure frame latency as a function of these properties, we drive the robot towards two boards,

one textured and one without texture, placed at various initial distances from the robot. For

each board, we count the number of frames between the board’s first appearance in the

video sequence and its detection in the occupancy grid. To make the notion of detection

concrete, we defined it to be the event when a certain percentage of the width of the board

is visible in the occupancy grid. The results are plotted in Figure 8.9 for two different de-

tection events, one when 50% of the board is visible, and the other when 90% of the board

is visible.

As Figure 8.9(a) shows, when the board is at an initial distance of 5 meters or less,

the robot is able to detect 50% of both textured and untextured boards within 8 frames. It is

surprising that we get similar results for textured and untextured boards. However, when we

re-define detection as being the event when 90 percent of the width of the board is visible
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(Figure 8.9(b)), it takes significantly more time for the untextured board to be detected. In

fact, the robot reaches the board before 90% of it is visible 6.

It is worth noting that as the initial distance to the board increases to more than 4

meters in Figure 8.9(b), for the textured board, the number of frames taken to detect the

board jumps. This means that it can take a long time before objects at a distance of more

than 4 meters are seen properly with our stereo camera. This provides an experimental

justification for the use of a restricted planning radius in Section 6.1 as analysis of objects

far away is going to be unreliable.

8.4 Relationship between Error Rates and Path Safety

In Section 8.2 we mentioned that a particular false negative (FN) rate does not translate

directly into the chances of a robot having an accident. In this section we present a prelimi-

nary analysis of what false negative rates mean for the possibility of unsafe travel by a robot

when it is planning paths using the safety map. In addition we also attempt to understand

how much false positive (FP) errors can hinder path planning.

To do the analysis, we have a robot plan thousands of paths between several pairs

of starting and goal points in simulated safety maps. Then we find the number of cases for

which unsafe paths are found, no paths are found, and safe paths are found. A simulated

safety map is obtained by sampling from a ground truth safety map: we randomly convert

unsafe cells into safe cells and safe cells into unsafe cells in the ground truth safety map.

To create simulated safety maps that approximate real safety maps well enough,

we need to model how FN and FP errors occur. Figure 8.10 shows a safety map for the

BIORAMP environment with FN and FP errors highlighted. We can see that FN and FP

errors mostly occur at the boundaries between safe and unsafe regions. Therefore when

sampling we only flip cells that occur at the boundaries between safe and unsafe regions.

6This sounds like it can be a bit dangerous for the robot, but what happens is that different parts of the
untextured board are detected, making it appear as an impassable obstacle nevertheless.
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Figure 8.10: Safety map of the BIORAMP environment showing false positive cells in
green and false negative cells in red. Most of these cells occur on the boundary between
safe and unsafe regions.

Error Rates (%)→ FN FNB FP FPB
Algorithms ↓
CS+DA+PF (cmin = 5) 1.4 6.9 15.6 67.2
CS+OG+PF (decr =−1) 3.0 9.9 9.3 53.7
CS+OG+PF (decr =−3) 8.5 21.6 6.2 38.4

Table 8.4: False negative (FNB) and false positive (FPB) error rates in the boundary regions
of safety maps for different algorithms. Also shown are the corresponding FN and FP
error rates of the algorithms for the safety maps as a whole. The leftmost column lists the
algorithm and parameter setting for which the FP and FN rates were obtained (see Tables 8.1
and 8.2).

Furthermore, since we only flip cells in boundary regions we cannot use the FN and FP rates

that we have computed for the safety maps as a whole. We have to instead compute FN and

FP rates for boundary regions. Table 8.4 shows the boundary FN and FP errors we get for

the three pairs of FN/FP error rates that we consider in this analysis. The three pairs of error

rates correspond to actual error rates that we get for some of our safety map algorithms. As

we can see from Table 8.4, the FN error rates in boundary regions are roughly 2-5 times

greater than the overall FN error rates. Similarly, the boundary FP rates are about 4-6 times

greater than the overall FP rates.

Another observation we make from Figure 8.10 is that the FN and FP cells occur
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in clumps indicating that their occurrences are correlated. However, in the analysis here,

we assume that the FN and FP cells are independently and identically distributed (I.I.D) for

simplicity. While this assumption may seem unrealistic it is in fact a somewhat reasonable

assumption to make when FN and FP errors are either high or low. For the FN and FP

errors that we consider in Table 8.4, we can see that the (boundary) FN errors are mostly

low whereas the (boundary) FP errors are mostly high. Therefore, even with the I.I.D.

assumption, we hope that we can still identify general trends – fulfilling the purpose of this

preliminary analysis.

In the analysis, we create 200 simulated safety maps for a particular FN/FP error

rate pair from the ground truth safety maps of each of our 5 datasets to give a total of 1000

simulated safety maps. We also randomly pick 5 starting and 5 goal points for each ground

truth map. We then plan paths between every pair of start and goal points (25 pairs in all)

for all simulated maps to get a total of 25000 (=1000x25) different start/goal pairs between

which paths can possibly be found.

We assume the robots, for which we plan paths, are cylindrical. We plan paths for

two different values of the robot’s radii - 20cm and 30cm. We assume that both robots

keep a 10cm margin of safety all around them. A robot with a radius of 30cm is a fairly

large robot for the environments considered in our datasets. For example, the ramp in the

ACESRAMP environment is about 80-90cm wide giving such a robot very little room to

maneuver. As a result we expect FN and FP errors to have a greater effect on the safety of

the 30cm robot as compared to the 20cm robot.

We use Dijkstra’s shortest path algorithm [Wikipedia, 2009a] for planning paths.

Once paths have been planned for all possible start/goal pairs we compute the following

numbers: (i) UF: Percent of pairs for which unsafe paths are found. (ii) NF: Percent of

pairs for which no paths are found. (iii) SF: Percent of pairs for which safe paths are found.

Tables 8.5 and 8.6 show the results we get for the three FN and FP rates that we

consider for the two robot radii. In addition to the three pairs of FN/FP error rates we also
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Error Rates (%)→ FN FP UF NF SF
Comments ↓
Both false negative 1.4 15.6 0.00 3.62 96.38
& false positive 3.0 9.3 0.00 3.00 97.00
errors present 8.5 6.2 0.01 2.40 97.59

1.4 0.0 0.00 0.00 100.00
Only false negative 3.0 0.0 0.00 0.00 100.00
errors present 8.5 0.0 0.04 0.00 99.96

0.0 15.6 0.00 3.62 96.38
Only false positive 0.0 9.3 0.00 3.00 97.00
errors present 0.0 6.2 0.00 2.40 97.60

Table 8.5: Error rates and path safety for a 20cm radius cylindrical robot.

consider the cases when either FN or FP errors are zero. We do this to see the effect that FP

errors can have on path safety. We make the following observations based on Tables 8.5

and 8.6.

• For the 20cm robot, the percent of unsafe paths is at least two orders of magnitude

lower than the percent FN rate. The percent of cases for which no paths are found are

several times lower than the percent FP rate.

• For the 30cm robot, the percent of unsafe paths found are about two orders of magni-

tude lower than the percent FN rate when FP errors are also present. However, when

no FP errors are present, the percent of unsafe paths is about one order of magnitude

lower. Thus FP errors actually help the robot by reducing the percent of unsafe paths.

However, too many FP errors can be a hindrance to navigation as we see next.

• For the 30cm robot, the percent of cases for which no paths are found are quite

high. This is expected because of the large size of the robot and also because the

environments we consider have narrow regions. Since we randomly pick start and

goal points, several of these points fall in the narrow regions meaning that paths

cannot be found for the 30cm robot.

• FN errors have almost no effect on the percent of cases for which no paths are found.
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Error Rates (%)→ FN FP UF NF SF
Comments ↓
Both false negative 1.4 15.6 0.00 35.04 64.96
& false positive 3.0 9.3 0.03 33.09 66.88
errors present 8.5 6.2 0.07 29.10 70.83

1.4 0.0 0.24 0.00 99.76
Only false negative 3.0 0.0 0.49 0.00 99.51
errors present 8.5 0.0 1.09 0.00 98.91

0.0 15.6 0.00 35.04 64.96
Only false positive 0.0 9.3 0.00 33.09 66.91
errors present 0.0 6.2 0.00 29.10 70.90

Table 8.6: Error rates and path safety for a 30cm radius cylindrical robot.

While the model used in our analysis is not fully realistic it does make three trends stand

out. First, for a low FN rate, the percent of unsafe paths are in general significantly lower

(one to several orders of magnitude lower) than the percent FN rate. Second, a high FP rate

can be a hindrance to navigation in narrow regions for large robots. Third, robot size has a

significant effect on how safely and easily a robot is able to move about. Thus, the analysis

gives more meaning to the FP and FN rates that we calculated for our various algorithms.

For example, we now know that a FN rate of 1% means that a large robot has roughly a one

in a thousand chance of planning a dangerous path.

There are numerous ways in which this preliminary analysis can be extended. The

most obvious is having a better model for creating simulated safety maps. Another way

to extend the analysis is by understanding how FP and FN errors change with distance.

Qualitatively, we observe that FP and FN errors are lower in regions close to the robot.

Thus, simply planning a dangerous path does not necessarily mean the robot will have an

accident. As the robot follows the path and gets closer to dangerous regions, better stereo

data will help the robot identify the regions as such and avoid them. We expect that if

we take the effect of distance into account in the above analysis we should see significant

reductions in both the percent of unsafe paths and percent of cases in which no paths are

found.
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8.5 Real-time Implementation of CS+OG+PF

and Integration with the HSSH

A real-time version of the CS+OG+PF algorithm was implemented and integrated with the

Hybrid Spatial Semantic Hierarchy [Murarka et al., 2009]. We present results showing

safety maps of several environments built successfully by the real-time algorithm and the

use of these safety maps for motion planning and extracting local topological structures.

The individual components of the real-time CS+OG+PF algorithm are as described

in Chapters 4 to 6. The main differences between the CS+OG+PF algorithm tested in the

previous sections and the real-time version are as follows.

1. The real-time version uses mean height in addition to the indexed height to segment

the 3D model, as described in Section 6.2. This results in fewer and larger segments

being found and increases the speed of the algorithm.

2. The real-time version uses an optional post-processing step whereby small “Non-

ground” and “Unknown” regions that appear as islands within larger “Level” regions

in the safety maps are re-labeled as “Level”. This did not seem to unduly increase

the instances of false negatives in the environments that we tested and helped get rid

of random false positive cells at some distance from the robot 7.

3. In algorithm 2, we set nb = 1 for the real-time CS+OG+PF version as opposed to 5

for the version evaluated above. We also used a parameter setting of decr = −3 for

the real-time version.

The above changes (specially those in bullet 2) were necessitated by the limited field of

view our stereo camera (about 45o) and limited processing power available to the robot. To

overcome the rather limited field of view of the camera, we occasionally had the camera

pan from side-to-side to gather more information about the robot’s surroundings.
7The false positive cells could have been taken care off in a more principled way through the use of active

sensing.
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The real-time algorithm was able to run at a minimum cycle rate of 4 Hz (with

bursts of upto 9 Hz) when building local safety maps of size 10m×10m on a 1.83 GHz dual-

core laptop with several other components of the HSSH code base running simultaneously.

The correlation stereo algorithm and the Player robot server [Player/Stage, 2009] ran on a

separate computational backpack on the robot.

8.5.1 Motion Planning using Safety Maps

The HSSH motion planning module consists of a path planner and a trajectory generator.

The planner used is a Rapidly-exploring Random Tree (RRT) planner [Kuffner and LaValle,

2000] that finds safe piecewise linear paths in space. The planner works with discrete

representations such as 2D grids, allowing it to be used in a straightforward manner with

the safety maps. The trajectory generator [Gulati et al., 2009] uses the output of the RRT

planner to generate velocity and acceleration profiles (aka trajectories) for the wheelchair

to follow. The trajectories smooth the paths returned by the planner while at the same time

ensuring comfortable motion for the wheelchair user.

Figure 8.11 illustrates the successful integration between the HSSH motion planner

and the safety map algorithm. Figure 8.11 also illustrates the advantage of using vision to

build the safety maps – the bench in Figure 8.11(a) has an overhang that is too high to be

seen by the horizontal laser range-finder on the wheelchair. However, the stereo camera

is able to detect the bench and represent it in the safety map (Figure 8.11(b)) allowing the

robot to avoid it. Figure 8.13 shows another instance of the motion planner being used

successfully with safety maps.

8.5.2 Extracting Local Topology from Safety Maps

One of the main steps in the HSSH is that of extracting the local topology of places in the

environment (Section 2.2.3). Knowing the local topology allows the HSSH to build large

scale maps of the environment.
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(a) (b) (c)

Figure 8.11: (a) The Intelligent Wheelchair following a trajectory in an indoor environment.
(b) The safety map of the environment showing the wheelchair at its destination after hav-
ing successfully followed the planned trajectory. The planned trajectory is shown in blue
and black and the path followed by the wheelchair is shown in pink. (c) The same safety
map showing the piecewise linear path planned by the RRT planner. We can see that the
trajectory is a smoothed version of this path that also specifies velocity and acceleration
profiles for the robot to follow.

Currently, the HSSH extracts local topologies from laser-based 2D grid maps called

local perceptual maps (LPMs). Since the vision-based safety maps are also represented

using 2D grids we are able to use them for extracting local topologies. The LPMs classify

space into three categories: “Obstacles”, “Free”, and, “Unknown”. We can convert safety

maps into LPMs, by mapping “Level” and “Inclined” regions in the safety maps to “Free”

regions, “Non-ground” regions to “Obstacles”, and “Unknown” regions to “Unknown” re-

gions. These vision-based LPMs can then be used by the HSSH to extract local topologies.

Figure 8.12 illustrates the gateways (Section 2.2.3) found using the vision-based

LPM for a particular environment. The figure also shows how the places and their local

topology determined using the vision-based LPM differ from the places and topologies

determined using the laser-based LPM.

Lastly, Figure 8.13 shows an example of the integration of the safety mapping al-

gorithm with both the motion planner and local topology algorithms. The figure shows an

outdoors sidewalk that the wheelchair can navigate using the vision-based LPM but cannot

139



(a) (b) (c)

(d) (e)

Figure 8.12: (a) A laser-based LPM showing the wheelchair robot in a large open inter-
section with a railing and a staircase in the middle (the green blobs represent dynamic
obstacles, which occur due to the lasers not seeing the railing poles consistently). (b) The
four gateways found using the laser-based LPM. The gateway algorithm removes “island”
obstacles (in this case the railing poles) resulting in the gateways shown. The robot identi-
fies the region as a place with a + intersection. (c) When using the vision-based LPM, the
robot finds four very different gateways in the same region. This is because the stereo cam-
era does a better job of detecting the railing poles than the laser range-finder. (d) On closer
examination, the robot detects a drop-off due to a downward staircase using the stereo cam-
era. (e) Upon detecting the drop-off, the gateways found using the vision-based LPM are
updated and the robot identifies the place as a Y intersection. The laser-based LPM does
not see the drop-off, which could be catastrophic.

navigate using the laser-based LPM.
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(a) (b)

(c) (d)

Figure 8.13: Integration of the vision-based LPM with motion planning and local topology.
(a) The wheelchair travels down a cluttered sidewalk. (b) The wheelchair is able to detect
the cars and the sidewalk drop-off edge on the left and represents these in its safety map.
This allows the local topology algorithm to correctly identify the sidewalk as a path with
two gateways. (c) The wheelchair plans safe trajectories using the motion planner and is
able to successfully navigate the sidewalk. (d) The laser-based LPM misses the drop-off
edge on the left and this results in an unsafe map for the robot.

8.6 Summary

In this chapter we evaluated several different algorithms for building local safety maps

using stereo vision and provided a comparison of the algorithms. In particular we showed

the following.

• Amongst the three algorithms for computing stereo depth maps, the correlation stereo

algorithm, CS, gave the lowest false negative error rates whereas the color segmenta-
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tion stereo algorithm, SS, gave the lowest false positive error rates.

• The data association method, DA, for building 3D models gave by far the lowest false

negative error rates amongst all mapping methods. However, it also had the highest

false positive rates.

• The safety mapping algorithm, CS+OG+PF, based on correlation stereo and the oc-

cupancy grid method, was deemed to give the best compromise between competing

requirements on the mapping algorithms. The CS+OG+PF was also shown to find

accurate planes.

We did a preliminary analysis to evaluate what the false positive and false negative rates

mean to a robot in terms of planning unsafe paths or finding any paths at all. We showed

that, at the least, the chance of a robot planning unsafe paths is about one order of magnitude

lower than the corresponding percent false negative rate.

We also implemented a real-time version of the CS+OG+PF algorithm and showed

it working successfully on a physical robot supporting safe motion planning and large scale

map building. Finally we believe the evaluation methodology introduced in this chapter,

consisting of finding error rates, measuring plane accuracy and detection latency, is very

general and can be used for comparing the performance of various vision-based metric

mapping systems.
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Chapter 9

Conclusion

9.1 Summary

The major contribution of this work is the idea of the safety map for safe local robot naviga-

tion and ways to create the safety map from sensor input. The local safety map captures in

2D the information required by wheeled mobile robots to navigate safely and autonomously

in 3D urban environments. We have focussed on using vision as the robot’s sensory input

because of the very large and varied amount of information that vision provides and also

because it has the potential to be a ubiquitous robot sensor.

We have presented several vision-based algorithms for constructing safety maps that

detect and model different hazards present in urban environments. The hazards we focus

on include static obstacles, overhangs, drop-off edges, and inclines. Where possible we

have drawn upon existing methods in the literature [Videre Design, 2006; Hong and Chen,

2004; Konolige, 1997] for the algorithms, and where necessary we have introduced our own

algorithms [Murarka et al., 2006, 2008; Murarka and Kuipers, 2009b; Murarka et al., 2009].

The algorithms for constructing the safety maps consist of three main steps: (i)

computing stereo depth maps, (ii) building 3D models, and, (iii) analyzing the 3D models

for safety. The stereo depth computation algorithms that we have introduced in this work are
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the color-based and edge-based segmentation stereo algorithms. We also discuss a standard

correlation-based stereo algorithm.

For building 3D models we introduced a probabilistic data association method that

works with both sparse and dense stereo range data. We also implemented a 3D occupancy

grid method. The main algorithm we introduce for safety analysis consists of a fast segmen-

tation method for identifying potentially traversable ground regions in a 3D grid, followed

by fitting planes to the segments and then analyzing the planes and segments to produce the

final safety map. We also construct a 3D hybrid map that uses planes to represent traversable

ground surfaces and a grid to represent non-ground regions.

In addition to the above stereo based methods for detecting hazards, we also in-

troduced a stand-alone motion and occlusion based method for detecting drop-off edges

perpendicular to the robot’s direction of motion. The method works on a stream of monoc-

ular images and its results can be used to augment the safety maps produced using stereo

methods.

We have presented qualitative results for all the algorithms showing that they are

able to detect obstacles, drop-offs, and ramps and produce good quality safety maps. We

have also quantitatively evaluated the various algorithms on several datasets and provided a

comparison of their performance. In particular we showed the following.

• Amongst the stereo depth computation algorithms, the correlation stereo based method

gave the lowest false negative rate whereas the color segmentation stereo method gave

the lowest false positive rate.

• Amongst the 3D model methods, the probabilistic data association method gave very

low false negative rates whereas the occupancy grid method gave lower false positive

rates.

• The correlation stereo algorithm combined with the occupancy grid method and the

plane fitting algorithm gave the best overall algorithm, CS+OG+PF, providing the

best compromise between the false negative and false positive rates.
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We also do a preliminary analysis to understand what the error rates mean to a robot in

terms of planning. We show that, at the least, the chance of a robot planning unsafe paths

is about an order of magnitude lower than the corresponding percent false negative rate.

We implemented a real-time version of the CS+OG+PF algorithm and showed it

working successfully with motion planning algorithms and a large scale mapping method

(the Hybrid Spatial Semantic Hierarchy). We plan to make the evaluation code, datasets,

and the corresponding ground truth data, publicly available so as to provide a common

testing ground for other robot mapping systems [Murarka and Kuipers, 2009a].

We believe that with this work we have a taken a significant step towards achieving

our goal of building robots that can navigate safely using vision-based sensors. Also by

providing an evaluation framework to the community we hope to provide an objective way

for comparing different mapping algorithms and helping the field move forward.

9.2 Future Work

There are several ways in which the work presented here can be extended. We discuss a

few of these extensions.

Detecting Additional Hazards. To navigate successfully it is important that the robot

learn to identify and track dynamic obstacles [Modayil and Kuipers, 2004]. A combination

of image based and stereo based tracking will probably be required to detect dynamic ob-

stacles. This is due to the presence of false positive range readings in stereo data that can

be difficult to filter in the short time periods available when tracking dynamic objects.

An interesting challenge to navigating autonomously in urban environments is the

presence of transparent glass doors and walls. It is extremely difficult to detect such glass

surfaces using cameras and will require the use of sophisticated top-down processing. It

seems that using additional sensors such sonar and bump sensors will be necessary for the

near future.
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Using Non-geometric Cues for Classification. In the current work we have mostly used

geometric information about objects in the world to classify them as safe or unsafe (except

in Chapter 7). As mentioned in Section 2.3.1, there are instances where geometric infor-

mation is clearly not enough. As an example, consider a flat sidewalk with a dirt shoulder

that is also flat but not traversable from the robot’s perspective – geometry alone cannot

distinguish between safe and unsafe surfaces in this instance. The use of additional visual

cues such as texture and color [Ulrich and Nourbakhsh, 2000] will be important for han-

dling such cases. Learning from experience will also play an important role in this kind of

inference since it won’t be possible to program-in this kind of knowledge beforehand.

Better Stereo Methods. The stereo methods that we have presented in this work are fairly

good but it is clear that they can be improved upon. We believe that one direction that needs

to explored further in the domain of stereo methods, are methods that are a mix of local

and global techniques. While optimizing an objective function over the whole image makes

sense, it seems that it would be better to optimize different objective functions over different

regions of the image taking the characteristics of those regions into account. For example,

in a region with good texture it makes sense to give less weight to the smoothing term

whereas in regions of low texture the smoothing term should have a higher weight.

6-DOF Localization. There has been much progress in visual localization methods in

recent times [Comport et al., 2007] and a useful extension to the current work would be the

addition of a vision-based 6 DOF localization module.

Incorporating Negative Evidence. The probabilistic data association method of Chap-

ter 5 does not use free space (or negative) evidence like the occupancy grid method does.

This is probably why it has a high false positive rate, because, once a false positive range

reading has been added to the map there is no way to remove it. On the other hand, the

low false negative rates it provides consistently across different parameter settings makes it
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an attractive method, worth extending to incorporate negative evidence. One way to do so

might be to enforce a “soft” visibility constraint utilizing the uncertainties associated with

landmark locations.

Learning Sensor Models. For both the occupancy grid method and the probabilistic data

association method, we use hand tuned sensor noise models. Ideally, however, we would

like to learn both the parameters and the form of the sensor models [Stronger and Stone,

2008].

Fitting Surfaces to Non-ground Regions. One way to reduce the effect of stereo noise

would be to fit planes (or other surfaces) to non-ground regions in addition to traversable

ground regions as we currently do. However, this is a much harder problem as obstacles and

other objects in the environment can have complex topologies. For example, the rails next

to the ramps in the ACESRAMP and TAYLORRAMP datasets can be very hard to model

by fitting surfaces to 3D point cloud models.

Incorporating Stronger Constraints on Robot Capabilities. When analyzing planes

and segments for safety, we look at height differences between adjacent planes to determine

if one plane is reachable from another. We currently assume that if the robot is capable of

going from plane A to plane B it is capable of going from plane B to A. However, this may

not be necessarily true for all robots – some robots might find it easier to go downhill as

opposed to travelling uphill – making it necessary to take into account such kinds of asym-

metrical capabilities in robots when building safety maps. This might require extending our

current safety map representation to include annotations indicating the direction of travel

possible in different regions of the map. Thus, in the future, we would like to incorporate

stronger constraints on robot capabilities, such as asymmetric motion capabilities, when

building safety maps.
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Active Sensing. Active sensing has the potential to further reduce false positive and false

negative error rates and in general, the effects of stereo noise. The limited field of view

of the camera and limited processing power available means that a robot needs to choose

carefully where it should look (such as focussing attention on unknown regions that are in

the robot’s current path). Information theoretic techniques can be used to select pan and tilt

actions that should be applied to the camera based on the robot’s safety map and 3D model

of its surroundings.

Understanding Error Rates. We would like to extend the analysis presented in Sec-

tion 8.4 relating error rates to the safety of the paths planned. Some ways to do so, including

the two ways mentioned earlier in Chapter 8, are as follows:

• Having a better model for creating simulated safety maps.

• Understanding and modeling how false positive and false negative errors change with

distance to objects. We expect the error rates to decrease with distance meaning that

the percent of expected unsafe paths for a given percent FN error rate (and percent

of cases in which paths are not found for a given percent FP error rate) should be

significantly lower than what we have computed.

• Doing the analysis for several different kinds of robots with different motion capabil-

ities (holonomic vs. non-holonomic) and different dimensions.

• Doing the analysis for several path planning methods that work for the different kinds

of robots. We would like to understand the true safety of paths planned by robots not

only as a function of the error rates and but also as a function of the robot’s navigation

capabilities.
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