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ABSTRACT
DAVID GALLUP: Efficient 3D Reconstruction of Large-Scale Urban Environments from

Street-Level Video
(Under the direction of Marc Pollefeys and Jan-Michael Frahm)

Recovering the 3-dimensional (3D) structure of a scene from 2-dimensional (2D) images

is a fundamental problem in computer vision. This technology has many applications in

computer graphics, entertainment, robotics, transportation, manufacturing, security, etc.

One application is 3D mapping. For example, Google Earth and Microsoft Bing Maps

provide a 3D virtual replica of many of the Earth’s cities. However, these 3D models are

low-detail and lack ground-level realism. Google Street View and Bing Street Side provide

high-resolution panoramas captured from the streets of many cities, but these stills cannot

provide free navigation through the virtual world. In this dissertation, I will show how to

automatically and efficiently create detailed 3D models of urban environments from street-

level imagery.

A major goal of this dissertation is to model large urban areas, even entire cities, which

is an enormous challenge due to the sheer scale of the problem. Even a partial data capture

of the town of Chapel Hill requires millions of frames of street-level video. The methods

presented in this dissertation are highly parallel and use little memory, and can therefore

utilize modern graphics hardware (GPU) technology to process video at the recording frame

rate. Also, the structure in urban scenes such as planarity, orthogonality, verticality, and

texture regularity can be exploited to achieve 3D reconstructions with greater efficiency,

higher quality, and lower complexity.

By examining the structure of an urban scene, a multiple-direction plane-sweep stereo

method is performed on the GPU in real-time. An analysis of stereo precision leads to

a view selection strategy that guarantees constant depth resolution and improves bounds

on time complexity. Depth measurements are further improved by segmenting the scene
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into piecewise-planar and non-planar regions, a process which is aided by learned planar

surface appearance. Finally, depth measurements are fused and the final 3D surface is

recovered using a multi-layer heightmap model that produces clean, complete, and compact

3D reconstructions. The effectiveness of these methods is demonstrated by results from

thousands of frames of video from a variety of urban scenes.
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CHAPTER 1

Introduction

Recovering the 3-dimensional (3D) structure of a scene from 2-dimensional (2D) images

is a fundamental problem in computer vision. This technology has many applications in

computer graphics, entertainment, robotics, transportation, manufacturing, security, etc.

Furthermore, cameras and their images are becoming increasingly available. In addition

to traditional video and still cameras, many mobile phones and automobiles now contain

one or more cameras, and the Internet, especially websites such as Flickr 1 and Picasa 2,

makes it easy to store and share these images. Computer vision provides the opportunity

to enhance current applications with 3D information and create new uses for cameras and

their images. One example pertinent to this dissertation is 3D digital mapping. Google

Earth and Microsoft Bing Maps provide a 3D virtual replica of many of the Earth’s cities.

However, these 3D models are low-detail and lack ground-level realism. Google Street View

and Bing Street Side provide high-resolution panoramas captured from the streets of many

cities, but these stills cannot provide free navigation through the virtual world. Using 3D

computer vision, specifically the methods presented in this dissertation, I will show how to

automatically and efficiently create detailed 3D models of urban environments from street-

level imagery. (See Figure 1.1).

Urban 3D modeling is an important domain that has received a lot of attention in

the computer vision research community (Teller, 1998; Teller et al., 2003; Wang et al.,

2002; Dick et al., 2001; Werner and Zisserman, 2002; Früh and Zakhor, 2003; Früh and

Zakhor, 2004; Schindler and Dellaert, 2004; Schindler et al., 2006; Zebedin et al., 2006;

1http://www.flickr.com

2http://picasaweb.google.com



Aerial-based reconstruction (Bing Maps 3D)

Google Street View 1 Interpolation Street View 2

Ground-based reconstruction (our methods)

Figure 1.1: 3D reconstruction produces high-detail models for free-viewpoint navigation.

Zebedin et al., 2008; Furukawa et al., 2009b; Furukawa et al., 2009a) as well as in industry.

Companies such as Google and Microsoft are investing much effort in acquiring digital maps

of the Earth including photograph and video imagery from the street and air. This data

can be used to reconstruct the world in 3D. Besides visualizing a 3D virtual world, these

3D models represent measurements which can be used for city planning, robot navigation,

disaster response, and digital archiving.

There are various techniques for 3D reconstruction including Light Detection And Rang-

ing (LiDAR) (Früh and Zakhor, 2004), structured light (Scharstein and Szeliski, 2003),

time-of-flight cameras (Guan et al., 2008; Schuon et al., 2008), and stereo (Scharstein and

Szeliski, 2002). Many of these methods are not well suited for large-scale outdoor recon-

struction. Structured light projectors are too weak relative to daylight, and time-of-flight

cameras have only a short operating distance. LiDAR is a suitable technology, and success-

ful city-scale reconstruction systems have been built for both aerial-based LiDAR (Morgan

2



and Tempfli, 2000; You et al., 2003) and ground-based LiDAR (Früh and Zakhor, 2003;

Früh and Zakhor, 2004). Stereo is now approaching the accuracy of LiDAR (Vu et al.,

2009), and has several advantages. First, it is a passive system, using cameras that only

capture the light energy naturally present in a scene. Compared to LiDAR, which must

emit its own light signal, cameras require less power, are safer to operate, and can be used

in clandestine operating scenarios (e.g. military). Also, LiDAR-based systems typically

also have cameras to capture surface appearance for texture mapping.

Stereo can be used to process aerial or terrestrial imagery. Reconstruction from aerial

and satellite imagery has long been studied in the photogrammetry community (Förstner,

1999; Baillard et al., 1999; Zebedin et al., 2006; Zebedin et al., 2008). However, many

mapping applications such as virtual tourism need ground-level detail which cannot be

captured from the air. Street-level video and photographs are a favorable solution, since

streets are naturally accessible to vehicles and the recording equipment they carry. Cap-

turing video or photographs from every street of a city can of course be expensive and time

consuming. Ideally, ground-based and aerial-based methods should be viewed as comple-

mentary, with ground-based methods providing higher resolution, and aerial-based methods

providing greater coverage, especially on rooftops or other areas invisible from the ground.

Reconstructing indoor environments is another complementary problem which has received

attention recently (Furukawa et al., 2009b; Saurer et al., 2010; Chen et al., 2010).

In this dissertation, I will present methods that automatically and efficiently reconstruct

detailed 3D models of large-scale urban environments from video using stereo. These meth-

ods are an integral part of a larger system called Urbanscape (Pollefeys et al., 2008). The

goal of the Urbanscape project is to capture street-level video from multiple automobile-

mounted cameras, and to efficiently process that video to produce detailed 3D models. See

Figures 1.2 and 1.3. The system uses structure from motion (SfM) as well as Global Po-

sitioning System (GPS) and inertial navigation system (INS) data to estimate the vehicle

and camera pose through the recorded video sequence. The camera pose information and

recorded video frames are then used to perform stereo to recover dense depth measurements

of the surfaces visible in the video. Finally, the depth measurements are fused together to

3



Video cameras and example recording vehicle.

Some recorded video frames.

Figure 1.2: Urbanscape capture system.

produce a final surface estimate in the form of a texture-mapped triangle mesh. A major

accomplishment of this project is that the system is able to process video in real-time, in

other words at the recording rate.

My methods have contributed to the latter half of the Urbanscape processing pipeline,

namely dense stereo, depthmap fusion, and surface modeling. These methods can handle

most types of data, and results are shown from handheld video, calibrated still photographs,

and even Internet photo collections. However, the main focus will be on reconstructing

street-level video.

A major goal of this dissertation is to model large areas, even entire cities, which chal-

lenging due to the sheer scale of the problem. Even a partial data capture of the town of

Chapel Hill requires 2.54 million of frames of video, equal to 1.97 terabytes of uncompressed

frames. (See Figure 1.4.) In order to handle problems of this size, several factors must be

considered:

4



Figure 1.3: Urbanscape example 3D reconstructions.

Speed The algorithm must be fast enough to process large amounts of data in a reasonable

amount of time. At the inception of the Urbanscape project, the state-of-the-art method

of Pollefeys et al. (2004) could process video at about 1 minute per frame. At this rate, it

would take a single PC 4.75 years to process 2.5 million frames. At present, the Urbanscape

system, using the method discussed in this dissertation, can process the same data at 13.33

frames per second, taking less than 53 hours on a single PC. This is due in part to advances in

CPU speed, but mostly due to the utilization of parallel algorithms which can be accelerated

significantly on modern graphics hardware (GPU).

Memory Memory usage during processing is also a concern. Algorithms must exhibit

locality, i.e. parts that can be processed independently, because such a large dataset cannot

be stored in main memory. This out-of-core capability is one of the main features of

the piecewise-planar reconstruction method presented in Chapter 6. Locality also enables

distributed processing on a cluster of computers, which is another way to achieve parallelism

besides GPUs.

5



(a) (b)

Figure 1.4: City-scale datasets require efficient, scalable processing. (a) The camera path
of 2.54 million frames of street-level video. (b) The entire dataset processed in less than 1
day.

Storage Finally, long-term storage of the data, both input video and output models, is

a significant challenge. The heightmap representation presented in Chapter 7 provides a

compact way to store 3D urban reconstructions. Also note that if processing speed is faster

than the recording rate, then in theory the input data does not need to be stored.

The key to successfully meeting these challenges is to take advantage of the unique and

prevalent structure in urban scenes. (However, we will not require this structure to be

present, and our methods can still process general scenes.) Figure 1.5 shows examples of

the following features of urban environments:

• planarity: Planar surfaces like walls, rooftops, and sidewalks, and to some extent

the ground, are prevalent in urban scenes.

• verticality: Walls are built vertically so as to support the weight of the structure

under gravity. Of course there are exceptions.

• orthogonality: Walls often meet at right angles. The ground may also be orthogonal

to walls, but in practice there is often some slope.

• texture regularity: Repeated surface structures such as brick, shingles, and siding

have a regular appearance or texture.

6



Figure 1.5: Urban scene structure includes planarity, orthogonality, verticality, and texture
regularity.

• color: Color is a useful cue for distinguishing between man-made objects such as

buildings and natural objects such as vegetation.

The methods presented in this dissertation aim to discover these types of structure in the

scene, and use that information to achieve more accurate and more efficient reconstructions.

Knowing the underlying structure, e.g. plane orientation or the vertical direction, the algo-

rithm can achieve greater accuracy by biasing the solution towards the structure, and the

algorithm can achieve greater efficiency by focusing on the discovered structure, avoiding

the need to consider all general shapes. Nevertheless, the algorithms in this dissertation are

capable of general shape reconstruction. One of the themes of this work is to enhance the

reconstruction when urban structure is present while preserving the ability to handle the

large variety of objects present in urban scenes.
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1.1 Thesis Statement

Dense 3D reconstruction of large-scale urban environments can be performed automatically

from video captured from street-level. By using parallelizable and scalable algorithms which

take advantage of urban scene structure, the 3D scene can be reconstructed accurately and

efficiently, even in real-time.

1.2 Contributions

My research makes the following contributions to urban 3D reconstruction:

Plane-sweeping stereo with multiple sweeping directions. (Chapter 4) I present

a plane-sweep stereo method which runs in real-time on the GPU and uses multiple sweeps

to achieve more accurate dense correspondence in urban scenes. The method consists of

the following:

• The method analyzes the sparse point cloud resulting from structure-from-motion and

computes the three principal surface normals of an urban scene: ground, facade, and

side wall.

• A plane sweep in each principal direction allows the real-time stereo method to

correctly handle slanted surfaces in the urban scene, and produces higher quality

depthmaps.

• A plane position prior constructed from the sparse point cloud improves accuracy in

weakly textured regions and additionally improves speed by rejecting unlikely plane

hypotheses a priori.

• A graph-cut labeling method is presented for selecting the principal surface normal

for each pixel of the image.

Variable Baseline/Resolution Stereo. (Chapter 5) In addition to recovering accu-

rate depth estimates, it is also important to know how accurate those measurements are.
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For stereo, depth uncertainty grows quadratically with depth, but it can be reduced by using

higher image resolution or greater baseline (distance between cameras). In more detail,

• An analysis describes the advantages and disadvantages of increasing image resolution

and/or baseline (camera distance) for improved depth precision.

• A view selection algorithm for balancing resolution and baseline guarantees constant

depth precision throughout the reconstruction, independent of scene depth.

• The time complexity to achieve a target depth precision up to depth z is O(z3) with

the proposed method, which improves over the basic view selection strategy that has

O(z6) complexity.

Piecewise Planar and Non-Planar Stereo. (Chapter 6) To further improve the

accuracy of the 3D reconstruction beyond the depth resolution limits of the stereo setup,

higher-level knowledge must be used. Imposing a piecewise-planar model of an urban scene

improves the reconstruction both quantitatively and qualitatively. However, not all elements

of an urban scene are planar. In this chapter,

• Images and depthmaps are used to segment a scene into several planar regions as

well as identifying non-planar regions. Non-planar regions are modeled by a general

surface as given by the input depthmap.

• The segmentation is made possible in part by using a classifier which learns the ap-

pearance of planar surfaces from training data.

• Before segmentation, plane hypotheses are clustered across multiple views which al-

lows a consistent piecewise-planar reconstruction to scale over videos of arbitrary

length.

A Heightmap Model for 3D Reconstruction. (Chapter 7) Converting depth mea-

surements into a surface is a non-trivial problem. Multiple redundant measurements must

be fused, and surface topology (depth discontinuities) must be discovered. A volumetric ap-

proach is a natural way to handle these problems, but such methods are memory-intensive
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and thus have low resolution. A heightmap model is a more efficient approximation to the

full 3D volume. In particular, I demonstrate the following:

• A heightmap model effectively models urban scenes and enforces strictly vertical walls

and continuous surfaces without holes.

• The method, based on probabilistic occupancy, fuses multiple measurements while

using little memory, running efficiently on the GPU, and producing low-complexity

output models.

• Multiple layers can be used to model more general structure with a heightmap. Dy-

namic programing is used to compute the optimal positions of the layers for a single

heightmap pixel.

• The heightmap method is also flexible enough to reconstruct scenes from photo col-

lections gathered from the web.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 describes how 3-

dimensional structure can be recovered from images. The main issues are establishing cor-

respondence across multiple views, understanding how that correspondence translates into

a 3D measurement, and recovering the scene’s surface from those measurements. Chapter

3 contains a literature review of urban 3D reconstruction and relevant stereo techniques.

Chapter 4 addresses the correspondence problem. The scene’s urban structure is ana-

lyzed and multiple plane-sweeps are performed to correctly compute matching scores in the

presence of slanted surfaces. The analysis of the scene’s structure also improves the speed of

the stereo method by focusing effort where the surfaces are likely to be found. This stereo

matching method runs in real-time on the GPU.

Chapter 5 analyzes how the camera baseline and image resolution influence the precision

of the depth measurements. A view selection algorithm takes advantage of the flexible

baseline provided by video and guarantees constant depth resolution by allowing the baseline
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and image resolution to vary during the stereo computation. This method has superior time

complexity compared to a fixed camera setup.

Chapter 6 improves the precision of the 3D reconstruction by selectively imposing a

piecewise-planar surface model on the scene. This reconstruction goes beyond just measur-

ing depth, and looks at the qualitative properties of the scene, segmenting it into planar

and non-planar surfaces based on the learned appearance of such surfaces. A multi-view

plane clustering step ensures the reconstruction scales to scenes of arbitrary size.

Chapter 7 presents a method for fusing all depth measurements into a single volume

and extracting a compact multi-layer heightmap representation of the scene. Surfaces are

extracted from the heightmap in such a way that vertical walls are strictly enforced. The

method efficiently runs on the GPU, and the produced heightmaps are a compact way to

store a 3D reconstruction of an urban environment.

Finally, Chapter 8 concludes with a summary and discussion of ideas for future work.
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CHAPTER 2

3D Reconstruction

In this chapter, I will describe how 3D structure can be reconstructed from 2D images of

a scene, and I will summarize the key challenges of 3D reconstruction addressed in this

dissertation. These are multi-view correspondence, 3D measurement geometry, and

surface estimation.

2.1 Camera Geometry

Before describing how 3D structure can be reconstructed from images, it is important to

understand how images are formed. Most images studied in computer vision are formed

by a camera. The name originates from camera obscura, literally dark chamber. It was so

named because the device blocks out all light, except the light passing through a pinhole,

which is then received by the retina that forms the image. Each point in the image is

illuminated by the light energy incoming along the viewing rays originating at the image

point and passing through the pinhole. Digital cameras use an array of sensors (CCD or

CMOS) that convert this light energy at each point into a number called the intensity. The

array of all intensities is called the image, and may contain multiple color channels (different

wavelengths of light). Modern cameras also have lens systems which gather and focus the

light; however, the mathematics of the pinhole camera are much simpler and are sufficient

for this dissertation (once lens distortion is accounted for).

Figure 2.1 illustrates how images are formed under the pinhole camera model. Figure 2.2

shows geometrically how a 3D point X = [X Y Z] is projected onto a point x = [x′ y′ z′]

on the image plane. This projection can be expressed by the following formulas which can



Figure 2.1: A pinhole camera. Image courtesy of Forsythe and Ponce (2002).

Figure 2.2: The pinhole camera model projects 3D point X onto point x in the image plane.

be derived from similar triangles:

x′ = f
X

Z
y′ = f

Y

Z
z′ = f (2.1)

where f is the focal length (distance of the image plane to the pinhole). Because the image

plane and the scene are on opposite sides of the pinhole, f and Z will have opposite signs

(typically f is negative and Z is positive), resulting in the inverted (flipped and mirrored)

image shown in the Figure 2.1. It is simpler to work with the virtual image which is not

inverted and where f is positive.

Note that all points λX (λ 6= 0) will also project to x since the scaling factor cancels in

Equation 2.1. This is equivalent to the fact that all points on the viewing ray project to

the same point on the image plane, meaning that the distance or depth of X is lost under

projection. 3D reconstruction is the process of recovering the depth of the scene and is the
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focus of this dissertation.

The fact that all points on the viewing ray project to the same point in the image plane

can be expressed conveniently using homogeneous coordinates. In homogeneous coordinates,

two points are considered equal if the vectors representing them are equal up to a non-zero

scale factor. This requires vectors to have one more coordinate than the dimension of the

space so that all points can be represented. As an example, a point [3 2] in Euclidean 2-

space could be represented by the vectors [3 2 1] and equivalently [6 4 2] in homogeneous

coordinates. In homogeneous coordinates, the image point is x = [x′ y′ z′ w′] (where

w′ = 1). We can scale x by Z to obtain

x′ = fX y′ = fY z′ = fZ w′ = Z. (2.2)

Since the point is already assumed to be on the image plane, the coordinate z′ is unnecessary,

and therefore x = [x′ y′ w′]T. Using homogeneous coordinates on the image plane,

projection can be expressed linearly:

x =


f 0 0

0 f 0

0 0 1

X. (2.3)

Up until now, we have ignored some important details. For example, points on the the

image plane are usually expressed in pixel coordintes where the origin is at the top left corner

of the image and pixels are spaced one unit apart. Also, when multiple cameras are used

(or the same camera at different positions/orientations), it is useful for each camera to have

it’s own coordinate system. The parameters that control how points in world coordinates

map to pixel coordinates are called the camera calibration. The camera calibration can

divided into intrinsic parameters and extrinsic parameters. Intrinsic parameters describe

the internal properties of the camera, namely how points on the camera’s image plane are

mapped to pixel coordinates in the image. The extrinsic parameters describe the external

properties of the camera, which are the camera’s position and orienation in the world.
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The intrinsic calibration can be expressed as a linear equation similar to Equation 2.3

but with addtional parameters:

x = KX where K =


f s px

0 αf py

0 0 1

 . (2.4)

The focal length f indicates the distance of the image plane to the pinhole measured in

pixel units. Larger focal length results in more pixels per unit viewing angle and can be

achieved either through magnification or with a higher resolution image. The other intrinsic

parameters are skew s, typically equal to 0, and the aspect ratio α, typically equal to 1

meaning square pixels. The principal point (px, py) is the point in the image closest to the

pinhole where the viewing ray (called the optical axis) is orthogonal to the image plane.

For most cameras, this point is close to the center of the image.

Equation 2.4 is derived according to the pinhole model. However, modern cameras have

lenses for gathering and focusing the light. Lenses introduce geometric distortion, which

causes the viewing rays to deviate from the pinhole model. This effect is often significant

and must be accounted for to obtain a good reconstruction. Most lens distortion can be

modeled with the radial distortion model. Let (x′, y′) be the ideal projection of a point

under the pinhole model. These are inhomogeneous coordinates obtained by dividing by

the third component. Let (x, y) be the distorted point which is obtained as follows:

 x

y

 =

 x′

y′

(1 + κ1r
2 + κ2r

4 + . . .
)

(2.5)

where r =
√

(x− px)2 + (y − py)2. (2.6)

The parameters κ1, κ2, . . . are part of the intrinsic parameters of the camera. Once they are

calibrated, radial distortion can be removed from the images as a preprocess.

The extrinsic parameters define the position and orientation in the world. They are R

and t where R is a rotation matrix that defines the orientation of the camera, and t is the
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Figure 2.3: A 3D point reconstructed from correspondence.

translation vector that defines the position of the camera. The location of the pinhole, also

called the camera center, is c = −RTt. Using homogeneous coordinates for the 3D point

X = [X Y Z 1]T, and once radial distortion has been accounted for, we can express the

camera as a 3× 4 matrix:

x = PX where P = K [R t]. (2.7)

2.2 Reconstruction from Correspondences

3D reconstruction depends on determining correspondence between images. Figure 2.3

shows a 3D point that has been reconstructed from a point correspondence in two images.

This involves two steps: obtaining the corresponding points in the image planes, and de-

termining their 3D positions. If the camera parameters are known, the 3D point can be

obtained by intersecting the viewing rays of the corresponding points as shown in the figure.

We will first discuss correspondence and reconstruction in general, and then we will consider

the case where the camera parameters are known.

When searching for correspondences, it is useful to have a metric to determine the
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likelihood of two or more points corresponding. We will call this metric the matching score.

Matching scores are based on the assumption that corresponding points have a similar

appearance. When a 3D point is imaged in multiple views, it is assumed that the images of

that point will have the same intensity. This is true if the camera exposure remains constant,

and if the surface of the point is Lambertian, meaning that it reflects light equally in all

directions. Given two candidate correspondences, their dissimilarity can be determined by

absolute or squared differences. Single pixels are too ambiguous to determine a reliable

match by differencing, so the surrounding patch of pixels are often differenced as well,

leading to the sum of absolute differences (SAD) and sum of squared differences (SSD)

matching scores. The method of normalized cross-correlation (NCC) first normalizes the

patches to achieve invariance to linear changes in intensity. Other metrics such as the rank

and census transforms achieve even greater invariance by considering only relative intensity

information (Hirschmuller and Scharstein, 2008).

Exhaustively searching the images for correspondence would be time consuming. This

would also lead to many false correspondences since many points do not have a distinct

appearance. Instead, candidate point correspondences can be determined by extracting

salient corners from the images and exhaustively comparing the two sets. The Harris corner

method (Harris and Stephens, 1988) is one example of this matching method. Tracking

methods such as the Kanade-Lucas-Tomasi (KLT) algorithm (e.g. Shi and Tomasi, 1994),

track the motion of salient feature points assuming the motion is small, as is often the

case in video. If the camera parameters (intrinsic and relative extrinsics) are known, the

search space can be reduced considerably, and exhaustive comparisons for all pixels can be

performed to achieve dense correspondence. This dense correspondence problem is often

referred to as stereo. Stereo correspondence will be the focus of this dissertation, but first

we will briefly discuss the case where the camera parameters are not known.

Even if the camera parameters are not known, then by the projective reconstruction

theorem (Hartley and Zisserman, 2000), both camera parameters and the 3D points can

be solved up to a projective ambiguity (an arbitrary 4 × 4 matrix transformation). This

is known as a projective reconstruction. If some parameters are known, or are known to
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be fixed across views, this ambiguity can be reduced. Even when all camera intrinsics

are known, there is still a scale ambiguity. This is known as a metric reconstruction.

Using correspondences to solve for the camera parameters and 3D points is a fundamental

problem in computer vision known as structure from motion (SfM). The SfM system used

in Urbanscape incorporates GPS and inertial sensors to eliminate the scale ambiguity and

make the camera parameter estimation extremely robust. This is known as a Euclidean

reconstruction. It is also geo-located because the coordinates of the reconstruction coincide

with standard Earth coordinate systems such as Universal Transverse Mercator (UTM).

The methods presented in this dissertation use the SfM results of Urbanscape and focus on

the case where the camera parameters are known.

When the camera parameters are known and the scene is static, the correspondence

search domain is reduced from 2 dimensions (the whole image) to 1 dimension (a single line

in the image called the epipolar line). Consider a 3D point X and its image x shown in

Figure 2.5a. To reconstruct X from x, we only need to consider all points on the viewing

ray. If the camera parameters are known, then the viewing ray is also known, and is given

by the following formula:

X(ρ) = c + ρRTK−1x where ρ > 0 (2.8)

Projecting the ray X(ρ) into another image yields the epipolar line for point x. This is only

a half-line because impossible points behind the camera (ρ ≤ 0) are discarded. In general,

two images can be rectified so that the epipolar lines are corresponding rows in the image.

Two rectified images are shown in Figure 2.4. In this case, correspondences have the same

y coordinate, and the difference between x coordinates is called the disparity.

More than two views cannot be rectified in general, but a ray search can again be

considered. Figure 2.5b shows points along the viewing ray projected into multiple views.

This leads to a simple multi-view stereo algorithm found in Algorithm 2.2. For every point

on a ray, the point is projected into all views, and matching scores are computed and

summed. The best matching point on each ray is then chosen resulting in a depthmap.
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Algorithm 1 A simple method for computing a depthmap.

for all points x in the image do
Dx ⇐ 0
Ex ⇐∞
for all ρ = ρmin to ρmax do

X⇐ c + ρRTK−1x
E ⇐ 0
for all views i do

// project X into view i
xi ← PiX
compute matching score Ei between x and xi
E ⇐ E + Ei

end for
if E < Ex then
Dx ⇐ ρ

end if
end for

end for

2.3 Stereo Correspondence and Reconstruction

There are several issues with computing matching scores that are important to stereo.

Many matching scores commonly used in stereo are computed from a neighborhood of pix-

els surrounding the candidate point. The patch of pixels surrounding the point is called

the matching window (or correlation window). Rectangular neighborhoods are commonly

used for simplicity and ease of implementation. It is assumed that the center pixel and

its neighbors will have the same appearance from view to view. If the window overlaps a

depth discontinuity or if the surface is highly slanted, then this will not be the case. Figure

2.6 shows several examples of corresponding points and their matching windows. Matching

scores of points near depth discontinuities lead to a phenomenon called boundary overex-

tension (Okutomi and Kanade, 1993) or foreground fattening. This problem is prevalent in

real-time stereo methods which use window-based matching due to its speed and paralleliz-

ability, and some real-time methods for handling overextension have been proposed (Gallup

et al., 2009; Hirschmüller et al., 2002).

The mismatches due to slanted surfaces can be corrected if the the slant of the surface is

known (or solved for). Figure 2.7 shows two views of a slanted surface. The mismatch due

to the slant has been corrected by warping the image with a homography. A homography
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Figure 2.4: Two rectified images.

(a) (b)

Figure 2.5: Correspondence search geometry. (a) Two view correspondence search. (b)
Multi-view correspondence search.

is a projective mapping between two spaces of the same dimension, and can be used to

map points between planes for example (Hartley and Zisserman, 2000). Because the images

are planes and the surface is planar, a homography can be used to map one image to the

other, correcting the perspective distortion induced by the slant. If camera and surface

plane parameters are known, then using homogeneous coordinates the homography can be

represented as a 3 × 3 matrix (linear transformation). Assuming the first camera has no

rotation (identity) and is located at the origin, the homography is given by the following

formula:

H = K1

(
R1 −

t1πn
T

πd

)
K−1

0 . (2.9)

where K0,K1 are the intrinsics for the first and second camera, R1 is the rotation of the

second camera, c1 is the center of the second camera, πn is the plane normal, and πd is

the distance of the plane to the origin. Chapters 4 and 6 use homographies to compute
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Figure 2.6: Difficulties with matching. (Red) The matching window overlaps a depth
discontinuity. (Green) The matching window is affected by perspective distortion. (Blue)
The matching window contains a reflection. (Yellow) A good match is obtained.

matching scores for plane hypotheses in the scene.

One way to avoid the overextension and slant problem is to compute matching scores

from single pixels. Without the supporting neighborhood, such matches become extremely

ambiguous and the solution must be regularized. A surface smoothness prior can be imposed

in the form of an energy functional:

E(D) =
∑
p∈I

Epdata(D(p)) + λ
∑

(p,q)∈N

E
(p,q)
smooth(D(p), D(q)). (2.10)

I is the set of all pixels in the image, and N is the set of all neighboring pixels. The goal is to

find a depth or disparity map D which minimizes E(D). Edata encodes the matching scores

and Esmooth penalizes large differences in neighboring values. λ controls the relative weight

of the two terms. Algorithm 2.2 in fact solves a special case of Equation 2.10 where λ = 0,

thus ignoring the smoothness term. Stereo methods which minimize only the data term

are typically called local while methods that use a pairwise smoothness term are typically

called global because the solution at each pixel depends on all other pixels through the

pairwise interactions. Global methods yield better results, but solving the global energy is

difficult, whereas the local energy can be solved exactly and efficiently especially due to the

independence among pixels (Scharstein and Szeliski, 2002).

The sampling of points along the ray in Algorithm 2.2 is also an important consideration.

Points should be chosen so that their projections lie less than one pixel apart. This is to
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Two views of a surface distorted by perspective.

Close-up after being corrected by a homography.

Figure 2.7: Surface slant can be corrected with a homography if the surface plane is known.

prevent aliasing in the matching cost function, essentially resulting in missing the correct

matching location. The image resolution and camera geometry determine the number of

samples required (Szeliski and Scharstein, 2004), which has important time complexity

ramifications as discussed in Chapter 5.

Occlusion is also a challenge. The correct 3D point X may not produce a good matching

score if it is projected into a view in which the point is occluded, i.e. another surface makes

X invisible in that view. Ignoring these occlusions results in unreliable matching scores and

errors in the depthmap. Methods for handling occlusions usually entail either explicitly

identifying occluded views or combining matching scores in a way that is robust to these

outliers (Kang et al., 2001).

2.4 Reconstruction Accuracy

A critical part of 3D reconstruction is to understand the accuracy of the reconstruction.

More formally, we will discuss the reconstruction in the following terms:

• measurement: The reconstruction obtained using an algorithm. For example, stereo
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computes a depth measurement for each pixel.

• ground truth: The true value of the reconstruction. For example, the true depth

value for each pixel.

• error: The difference between the measurement and ground truth (signed or abso-

lute).

• uncertainty: The expected distribution of error, derived from assumptions or from

calibration.

• accuracy: Used informally to describe the error of the reconstruction. Greater ac-

curacy means less error.

Reconstruction error is due to many sources: error in the camera parameters both in-

trinsic and extrinsic, and especially error in the correspondence estimation. Correspondence

error is proportional to the image sampling rate (pixels) and higher resolution results in

more accurate depth estimates. To illustrate how correspondence error translates into 3D

position or depth error, consider two rectified views, shown in Figure 2.8. In the figure,

z is the depth, b is the baseline or distance between the cameras, f is the focal length

measured in pixels, and d is the disparity also measured in pixels. By similar triangles we

have z = −bf/d. The disparity estimate of a correspondence has some error which we will

denote εd. This translates into depth error as follows:

εz =
bf

d
− bf

d+ εd

=
z2εd

bf + zεd

≈ z2

bf
· εd. (2.11)

The final step is obtained by taking the first order Taylor series approximation about εd = 0.

The depth error can be broken up into correspondence error, εd, and the geometric factor,

z2/(bf). The geometric factor depends on the geometry of the stereo setup: the baseline,

focal length, and distance to the point. Here we see that depth error is a quadratic function
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Figure 2.8: Depth error as a function of disparity error.

of the depth z of the point. This means there is a substantial difference in accuracy between

objects in the near and far ranges of the reconstruction. But, as is shown in Chapter 5, the

baseline and focal length can be adjusted to control the geometric factor to improve the

accuracy.

2.5 Surface Reconstruction

The next step is to convert depth measurements into a surface. Whereas depth measure-

ments represent isolated points in 3D, a surface is a 2 dimensional submanifold of the 3D

space, with the important distinction being that a surface has a notion of neighborhood

or connectedness between points. Inferring surface topology from a point cloud is a fun-

damental problem. It is addressed in general terms by Kazhdan et al. (2006), but here we

will address it specifically for 3D reconstruction from images. Image-based approaches use

the implied topology (adjacent pixels) of the depthmap, but depth discontinuities must be

determined. This can be done somewhat effectively by simple thresholding. More advanced
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approaches exist such as Birchfield and Tomasi (1999a). Another strategy for surface recon-

struction is volumetric. In such approaches, depth measurements are used to compute the

occupancy of every point in the volume, and then the surface is extracted as the boundary

between and occupied and unoccupied space (Zach et al., 2007). For an overview of other

surface reconstruction approaches, see Fabio (2003).

2.6 Summary

Thus 3D reconstruction can be performed in three steps:

• Correspondence: Correspondences are established across multiple views.

• Geometry: 3D points and possibly camera parameters are computed from the cor-

respondences.

• Surface: A surface is reconstructed from 3D point measurements.

In dense reconstruction (the focus of this dissertation), camera parameters are considered

known, but they still affect point positions and especially their uncertainty. Note that the

term “steps” applies only loosely. In fact, different algorithms may perform these steps

in different order, and steps can be combined or omitted. For example, while structure

from motion performs these steps in the order described, the stereo algorithm presented

in Algorithm 2.2 reverses the correspondence and geometry steps. Points along the ray

are considered and projected into the images according to the camera geometry. Then

correspondences are determined by examining the matching scores. Finally, some methods

adopt a surface-centric approach, hypothesizing a surface, projecting it into the images

according to the geometry, and then evaluating the induced correspondences in order to

update the surface (Vu et al., 2009). Regardless, each step plays an important role in 3D

reconstruction.

Each of the remaining chapters presents a method which targets one or more of these

steps.
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• Chapter 4 presents a multi-sweep stereo approach which aims to improve corre-

spondences by correctly handling slanted surfaces prevalent in urban scenes. This

addresses the correspondence error in Equation 2.11.

• Chapter 5 analyzes the camera geometry related to 3D reconstruction from video

and proposes a method to bound depth uncertainty and improve time complexity.

This addresses the geometric factor in Equation 2.11.

• Chapter 6 reduces correspondence error by inferring surface properties such as

planarity.

• Chapter 7 uses a heightmap model to fuse multiple depth measurements and recover

a surface.
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CHAPTER 3

Related Work

Now that I have given an overview and summary of 3D reconstruction, I will review the

body of literature relevant to this dissertation. First I will discuss papers related to the

3D urban modeling problem in general. Then I will review the stereo literature in general.

Finally I will narrow the focus to approaches that use stereo for street-level imagery.

3.1 Urban Reconstruction

Urban 3D reconstruction has been performed in computer vision and photogrammetry using

various techniques and modalities. Range data sources include satellite, aerial, and terres-

trial, and modalities include photography, light detection and ranging (LiDAR), and other

active ranging techniques such as synthetic aperture radar (SAR). Processing can either be

automatic or user-assisted (semi-automatic).

City reconstruction from aerial imagery has long been one of the problems studied in

photogrammetry. An overview of automatic and semi-automatic methods was given by

Förstner (1999). Semi-automatic methods such as that of Gulch et al. (1999), seek to

combine the strengths of humans and computers. The user drives the reconstruction by

selecting and grouping the important point or line features, and the computer refines their

locations based on the images. A notable automatic method is that of Baillard et al. (1999).

Line segments are extracted and matched over multiple aerial views using the trifocal tensor

(Hartley and Zisserman, 2000), and piecewise-planar rooftops are reconstructed. After the

lines are triangulated in 3D, the orientation of the roof planes is computed by maximizing the

matching score across views. Roof segments are then delineated by grouping and intersecting

the planes.



The work of Zebedin et al. (2006) is a more recent example of a fully automatic method

for aerial imagery. Whereas semi-automatic methods prefer to use only a few images to

reduce the amount of user interaction required, fully automatic methods can take advantage

of a large number of views. The high degree of overlap and redundancy improves the

robustness of automatic methods and allows this method to perform not just line matching

but fully dense stereo matching. Classification performed on multispectral images allows

buildings to be extracted and reconstructed in 3D. The follow-up work of Zebedin et al.

(2008) focuses on converting the buildings into simplified models composed of planes and

surfaces of revolution. This type of classification and planar reconstruction is one of the

inspirations for the method presented in Chapter 6. Since the target of our method is

street-level video, the problem is somewhat different, and our work deals with issues such

as scaling the reconstruction consistently over the video.

Light detection and ranging (LiDAR) is an alternative to purely image-based methods.

LiDAR measures distance by emitting laser pulses and measuring the time between trans-

mission and detection of the return signal. LiDAR is typically more robust and accurate

than stereo. Several methods have been developed to process aerial-based LiDAR data for

city reconstruction. Morgan and Tempfli (2000) and You et al. (2003) are automatic and

semi-automatic examples of methods that reconstruct buildings from LiDAR range data.

Buildings are segmented and the range measurements are refined. The final surface models

are obtained by fitting geometric primitives to the data.

Compared to terrestrial data, the aerial perspective provides greater coverage and en-

tire cities can be captured with relatively few images. However, the data contains mostly

rooftops, and building facades are occluded, heavily distorted, and/or captured with low-

resolution. Ideally, the large-area aerial perspective should complement a high-detail ter-

restrial perspective.

LiDAR technology has also been used to reconstruct cities from ground level. Früh and

Zakhor (2004) developed an automobile-mounted LiDAR system for capturing detailed city

models from the streets. A horizontally aligned LiDAR scanner measures a horizontal slice

of the scene which is used to compute the vehicle motion by iterative closest point (ICP)
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registration (Besl and McKay, 1992). Path estimation errors are corrected by aligning the

reconstruction with aerial views. A vertically aligned LiDAR scanner captures the building

facades as the vehicle drives through the city streets, and those scans can be fused with and

aerial-based LiDAR reconstructions to produce complete models (Früh and Zakhor, 2003).

Despite the robustness and accuracy of active ranging methods like LiDAR, performing

reconstruction from only images is still a major goal. Photographs and video are acquired

passively using the light naturally present in the scene. LiDAR in comparison requires more

power to operate, and the energy emitted poses a safety concern (even though LiDAR can

be rated eye-safe). Furthermore, cameras are relatively inexpensive and ubiquitous. For

city-scale urban reconstruction, cost is an important concern due to the massive scale of

the problem.

Several methods have been proposed for modeling architecture from photographs or

video. The Facade system presented by Debevec et al. (1996) is a user-assisted or semi-

automatic approach. Users indicate key edges in several images which are then formed

into blocks. Edge positions and the 3D structure are refined automatically. The user can

also specify relative position and symmetry constraints to further aid the reconstruction.

Finally, model-based stereo is performed to estimate small deviations from the block model.

The work of Sinha et al. (2009) presents a similar system which uses vanishing points to

further assist the user in specifying the model. By automatically aligning polygon edges to

vanishing directions, the user can create the model in fewer steps and with greater precision.

Another semi-automatic system is presented by Xiao et al. (2008). First the urban scene is

fully automatically reconstructed as a collection of rectilinear blocks. Then several simple

tools are provided to allow the user to correct the mistakes made by the system.

While having a user in the loop can increase the robustness of the system, semi-automatic

methods become impractical for large-scale reconstruction problems. Some of the earliest

ground-based automatic urban reconstruction works include the MIT City Scanning Project

(Teller, 1998). A mobile robotic platform is used to capture thousands of photographs from

the grounds of the MIT campus, and the camera parameters are automatically estimated

using structure from motion and GPS data. Vertical facades are extracted and texture-
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mapped (Coorg and Teller, 1999) and facade details such as windows are recovered (Wang

et al., 2002).

Schindler et al. also recovered camera poses and sparse edge structures in the 4D Cities

project (Schindler and Dellaert, 2004; Schindler et al., 2006). Methods for edge matching

and line-based structure from motion are presented. Also, given a database of historical

photographs of Atlanta, the temporal sequence of the photos and temporal changes in the

city were reconstructed (Schindler and Dellaert, 2010).

Examples that use explicit architectural models include the work of Dick et al. (2001).

The method uses a bayesian model describing architectural style, window and door dimen-

sions, and parameters of other architectural features. Priors are constructed from rules

found in architectural texts, and the model is solved using a Monte Carlo method. Müller

et al. (2007) developed a method for procedural modeling from photographs of architec-

tural scenes. Similarly, Venagas et al. (2010) assume a Manhattan-world (3D rectilinear)

structure and develop a grammar that describes constraints on building shapes. A model

is generated from the grammar that fits the images according to edges and multi-view

photoconsistency.

This related work focuses on modeling only the architecture of the scene. In contrast,

the methods presented in this dissertation are designed to model architecture as well as

the myriad objects found in urban scenes. The stereo and fusion techniques in this thesis

are developed to take advantage of urban scene properties like planarity, orthogonality, and

verticality, but these techniques are general enough to reconstruct objects of any shape.

3.2 Stereo

Recovering the shape of the scene from images is generally referred to as stereo. Stereo

reconstructs shape by establishing dense correspondences between views, a problem which

is ill-posed since an infinite number of shapes can generate the same images. Stereo can

use two or more views. The two view case is called binocular and the case of three or

more views is called multi-view. Scharstein and Szeliski (2002) give a survey and evaluation

of binocular stereo methods. Global methods (see Equation 2.10) are among the top per-
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formers and include graph cuts (Boykov et al., 2001), belief propogation (Felzenszwalb and

Huttenlocher, 2004a), and continuous methods (Pock et al., 2008). These methods solve

the energy minimization problem only approximately or require the energy to take a special

form. Furthermore, computation takes seconds to minutes, and even the fastest variants

(Yang et al., 2006) take seconds or can only achieve real-time performance at low resolu-

tion. Methods such as dynamic programming (Belhumeur, 1996) and semi-global matching

(Hirschmuller, 2008) simplify the global energy by considering pairwise smoothness con-

straints only along 1-dimensional paths. These represent a good balance between quality

and efficiency; however, these methods are still much slower than local methods.

This dissertation employs a local method in Chapter 4, semi-global matching in Chapter

5, and a graph cut method in Chapter 6 and optionally in Chapter 4. Since the stereo

method in Chapter 4 must be applied to every video frame, a fast local method is used. In

Chapter 5 semi-global matching is used to avoid the need for matching windows and places

the emphasis on the geometric factor of stereo precision. The formulation in Chapter 6

results in an energy function which is more difficult to optimize, so a graph-cut method

is used. Finding a faster solution is a matter of future work, but note that this graph-

cut method is used only on a fraction of video frames, and all frames can be processed in

parallel.

In the same spirit of the binocular stereo evaluation, Seitz et al. (2006) compare and

evaluate multi-view stereo methods. Space carving (Kutulakos and Seitz, 2000) is among the

earliest multi-view stereo methods. A shape which matches the input images is called photo-

consistent and the largest photo-consistent shape is called the photo-hull. Starting with an

initial shape, the method carves away points that are not photo-consistent, guaranteeing

at each step that the shape contains the photo-hull. At convergence, the remaining shape

is the photo-hull. Determining whether a point is photo-consistent or not is of course a

difficult problem due to image noise and calibration errors. Thus modern methods rely on

soft photo-consistency measures, and the term photo-consistency has become synonymous

with matching score.

Among the top multi-view stereo algorithms are Vu et al. (2009) and Furukawa and
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Ponce (2008). These methods use the most accurate matches to initialize the reconstruc-

tion which is then refined either by region growing or mesh deformation. Another powerful

approach, which is also GPU-friendly, is that of Zach et al. (2007). Depthmaps are com-

puted for each view using a local stereo method (plane-sweep). The depth measurements

are then used to estimate the occupancy of each point in a volume using total variation

as a regularizer. The method in Chapter 7 also computes volumetric occupancy, but it

introduces a 2.5D layer constraint that allows for a simpler, more memory efficient, and

faster computation.

A popular technique for multi-view stereo is plane-sweeping. Plane sweeping simplifies

the multi-view correspondence search because it avoids the need for rectification. Plane-

sweeping is similar to the ray search described in Algorithm 2.2, except that the rays are

searched plane by plane. Thus it can be seen as a plane that is swept through space, testing

each plane location according to photo-consistency. This is described in more detail in

Chapter 4. Testing points as plane hypotheses can be done efficiently and in parallel on

the GPU (Yang and Pollefeys, 2005). The advantages of multi-view matching are described

by Okutomi and Kanade (1993). Multiple views not only increase robustness to noise,

but reduce the chance of mismatches due to repetitive structures. One question in plane

sweeping is what planes to test, or what direction to sweep. Zabulis and Daniilidis (2004)

tested all possible orientations at each point on the surface which required a cluster of

computers to compute. The method presented in Chapter 4 avoids the need to test all

orientations by computing the dominant surface normals and sweeping planes in those

directions.

The method in Chapter 4 takes advantage of urban structure, namely the existence

of a few dominant surface normals, to reduce the number of planes to be tested. Scene

structure, particularly urban structure, was also used by Werner and Zisserman (2002).

Line and point features are searched to detect planes and dominant surface normals, and

plane locations are refined using plane-sweeping. Furukawa et al. (2009a) used an even more

strict Manhattan-world assumption where the scene is represented by purely orthogonal

planes. Less restrictive is the method of Sinha et al. (2009) which reconstructs the scene
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as a piecewise planar surface. The method targets urban scenes, and the strong planarity

assumption helps with surfaces that have low texture and surfaces like glass that are difficult

to match. The method of Bleyer et al. (2010) is even more general and segments the scene

into planar and b-spline surfaces. Similarly, the work of Labatut et al. (2009) reconstructs

a scene as a collection of plane, cylinder, cone, and sphere surfaces. The method presented

in Chapter 6 also fits simple plane primitives to the scene, but allows parts of the scene

to be modeled by a general depthmap surface. The method takes advantage of structured

texture and color cues to segment man-made planar objects from non-planar objects like

vegetation.

3.3 Street-Level Stereo Reconstruction

Works that are most related to this dissertation are those that reconstruct urban scenes

from street-level images using stereo. The work of Cornelis et al. (2008) uses a U-shaped

corridor model to reconstruct streets lined with vertical facades. Images are rectified to

the vertical direction, meaning that image columns correspond to vertical lines. The strict

vertical facade assumption allows all pixels in a column above the ground plane to be

assigned the same depth, and the scene can be reconstructed with dynamic programming.

The model cannot support non-facade objects like cars that are frequently parked in front of

buildings, so the method integrates car and pedestrian detectors to remove these artifacts.

The heightmap method in Chapter 7 is partially inspired by this vertical corridor approach,

but the heightmap, and especially the multi-layer heightmap, also allows more general

objects to be reconstructed.

The work of Micusik and Kosecka (2009) use images from Google Street View datasets

and perform a piecewise-planar reconstruction of the scene. Images are segmented into

superpixels, and each superpixel is assigned a depth and one of three urban scene normals.

This is similar in spirit to the method presented in Chapter 4 which in fact serves as

inspiration for their method.

The work of Xiao et al. (2008) demonstrates a system for urban street-side reconstruc-

tion which identifies facades and segments them into rectilinear patches. The position and
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orientation of each planar patch is obtained by minimizing multi-view photo-consistency.

The method requires user interaction at various steps to produce high-quality results; how-

ever, a follow-up paper (Xiao and Quan, 2009) presents a similar fully automatic system.

This system also uses a texture- and color-based classifier to segment buildings from ground,

sky, and vegetation. Only the buildings are reconstructed using the rectilinear model. The

piecewise planar method from Chapter 6 also uses a classifier in the same spirit. How-

ever, the class likelihood is combined with photoconsistency to simultaneously segment and

reconstruct the scene, and non-building surfaces are reconstructed as well.

Irschara et al. (2007) show a handful of compelling results of scenes modeled with the

volumetric stereo method of Zach et al. (2007). However, the method is not shown to scale

beyond the size of the volume that can fit in memory. In contrast, scalability is a major

concern in this dissertation.
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CHAPTER 4

Plane-Sweeping Stereo with Multiple

Sweeping Directions

4.1 Introduction

I will now introduce a plane-sweep stereo algorithm that is designed to take advantage of

the structure in urban scenes and achieves real-time performance. A typical urban scene

may contain a ground plane, two vertical, orthogonal facade planes, and other non-planar

objects. Our method computes the three planar surface normals and a plane-sweep is

performed in each direction. This approach is particularly accurate and efficient for typical

urban scenes, and also preserves the ability to perform reconstructions of general 3D shape.

Due to the enormous amount of video data required to reconstruct entire cities, the

stereo method needs to operate as efficiently as possible. Plane-sweep stereo is ideal for

efficient implementation due to its simplicity and parallelizability (Collins, 1996; Yang and

Pollefeys, 2003). The primary operation of the algorithm, rendering images onto planes, is

an operation at which the GPU is particularly adept.

Like other real-time stereo algorithms, plane-sweeping requires a matching window. As

discussed in Chapter 2, matching windows are less accurate for slanted surfaces, often

resulting in staircase artifacts. The typical approach is to sweep a plane which is fronto-

parallel (parallel to the reference view’s image plane), and so surfaces which are not fronto-

parallel will be matched poorly. However, plane-sweeping can correctly handle these slanted

surfaces by sweeping a plane which has a matching surface normal. In our approach, we

perform multiple plane-sweeps, where each plane-sweep is intended to reconstruct planar

surfaces having a particular normal. Our algorithm consists of three steps. First, we identify



Figure 4.1: The major surface normals of an urban scene: ground, facade, and side wall.

the surface normals of the three most prevalent planar surfaces in the scene, i.e. the ground,

facade, and side wall planes (see Figure 4.1). These normals are obtained by analyzing the

3D points obtained from structure from motion and by exploiting urban scene properties

such as planarity, orthogonality, and verticality. Second, we perform a plane-sweep for each

surface normal, resulting in multiple depth candidates for each pixel in the final depthmap.

Third, we select the best depth/normal combination for each pixel using a simple best-cost

approach or, optionally, a more advanced three-label graph cut which takes smoothness and

integrability into account.

Additionally, we incorporate priors obtained from sparse point correspondences into

our depth estimation. This aids in areas with little texture and produces a smoother

result. We can also significantly reduce computation time by sweeping planes only in those

regions with high prior probability according to the sparse data. Finally, we evaluate our

algorithm on several scenes, and demonstrate the accuracy gained over the basic plane-

sweeping algorithm.

The rest of the chapter proceeds as follows. Section 4.2 reviews some related work

specific to plane-sweeping, slanted surfaces, and urban reconstruction. Section 4.3 describes

plane-sweep stereo and points out the inherent problem of matching windows and plane

orientation. Section 4.4 proposes our solution of using multiple sweeping directions, and

section 4.5 presents experimental results.

The work in this chapter was presented in Gallup et al. (2007).
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4.2 Related Work

The plane-sweeping algorithm was introduced by Collins (1996) as a way to perform match-

ing across multiple images simultaneously without the need for rectification. The approach

was originally targeted at the reconstruction of sparse features. Yang et al. (2002) imple-

mented the plane-sweeping stereo algorithm on the GPU, achieving real-time dense depth

estimation.

An approach for reconstructing buildings was described by Werner and Zisserman (2002)

who use sparse point and line correspondences to discover the ground and facade planes.

When there is insufficient information to locate a plane, they sweep a hypothesized plane

through space to determine the position which best matches the images. We also use sparse

features to obtain information about the scene’s planar structure. However, rather than

estimating the location of a sparse set of planes, we seek to compute a depth estimate for

every pixel in the reference view. Our algorithm is therefore able to reconstruct objects

such as trees and cars that do not fit the planar model.

Several stereo algorithms explicitly handle slanted surfaces. Burt et al. (1995) advocates

pre-warping the images to a reference plane, such as the ground, before performing binocular

stereo. In this way, they achieve greater accuracy as well faster computation due to the

reduced disparity range. Our approach essentially achieves this pre-warping by adjusting

our sweeping plane to be parallel to the expected planar surfaces in the scene. Birchfield and

Tomasi (1999) cast the problem of stereo as image segmentation followed by the estimation

of affine transformations between corresponding segments. Processing iterates between

segmentation and affine parameter estimation for each segment using graph cuts (Boykov

et al., 2001). The energy function does not favor constant disparity surfaces, but accounts for

affine warping and thus slanted surfaces. Ogale and Aloimonos (2004) point out that if scene

surfaces exhibit horizontal slant, then M pixels on an epipolar line necessarily correspond to

N pixels in the other image. Therefore, requiring a one-to-one correspondence for every pixel

results in labeling |M−N | pixels as occluded. These pixels that are interleaved with matched

pixels, however, are visible in both images, just not at integer coordinate positions. An

algorithm based on dynamic programming is proposed to obtain correspondences between
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segments of scanlines rather than pixels.

Zabulis and Daniilidis (2004) explicitly addressed non-fronto-parallel surfaces by per-

forming correlation on 3D planes instead of the image plane. Thus, correlation kernels can

be aligned with the scene surfaces but the dimensionality of the search space is increased

from 1D (depth) to 3D (depth and two rotation angles). In this paper we present methods

for aligning the correlation windows with the surfaces without exhaustive search for urban

scenes. Zabulis et al. (2006) replaced the planes in plane-sweep stereo with spheres. They

argue that correlation on spherical sectors along the direction of camera rays is geometri-

cally more accurate since the surfaces where correlation takes place are always orthogonal

to the viewing ray.

4.3 Plane-sweeping Stereo

In this section we outline the basic plane-sweeping algorithm. For more details we refer

readers to Yang and Pollefeys (2003). Plane-sweeping stereo tests a family of plane hy-

potheses and records for each pixel in a reference view the best plane as scored by some

dissimilarity measure. The algorithm works with any number of cameras, and images need

not be rectified. The inputs to the algorithm are M planes for the depth tests, a reference

image and N matching images at different camera positions (we assume images have been

corrected for radial distortion), and their respective camera projection matrices Pk:

Pk = Kk[Rk tk] with k = 1, . . . , N, (4.1)

where Kk is the camera calibration matrix, and Rk, tk are the rotation and translation

of camera Pk with respect to the reference camera Pref. The reference camera is assumed

to be at the origin of the coordinate system. Accordingly, its projection matrix is Pref =

Kref[ I3×3 0 ]. The family of depth planes πm with m = 1, . . . ,M is defined in the

coordinate frame of the reference view by:

πm = [ nTm −dm ] for m = 1, . . . ,M (4.2)
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where nm is the unit length normal of the plane and dm is the distance of the plane

to the origin namely the center of the reference camera. (For a fronto-parallel sweep,

nTm = [ 0 0 1 ].) The depths dm of the planes πm fall within the interval [dnear, dfar].

It is best to space the planes to account for the sampling (pixels) in the images. This is

discussed in detail in Section 4.4.2.

In order to test the plane hypothesis πm for a given pixel (x, y) in the reference view

Iref , the pixel is projected onto πm and into the other images k = 1, . . . , N . The mapping

from the image plane of the reference camera Pref to the image plane of the camera Pk is a

planar mapping, and can therefore be described by the homography Hπm,Pk induced by the

plane πm. This homography is defined in Equation 2.9. The location (xk, yk) in image Ik of

the mapped pixel (x, y) of the reference view is computed using homogeneous coordinates:

[ x̃ ỹ w̃ ]T = Hπm,Pk [ x y 1 ]T

xk = x̃/w̃, yk = ỹ/w̃. (4.3)

If the plane is close to the surface projected to pixel (x, y) in the reference view, the colors

of Ik(xk, yk) and Iref (x, y) should be similar assuming Lambertian surfaces.

We use the sum of absolute differences (SAD) of intensities as the dissimilarity measure:

C(x, y, πk) =

N−1∑
k=0

∑
(i,j)∈W

|Iref (x− i, y − j)− I?k(x− i, y − j)|, (4.4)

where W is the matching window, and I?k is the image Ik warped by the homography

Hπm,Pk .

4.3.1 Extracting the Depthmap from the Cost

Once the cost function for all pixels and sweep planes has been computed the depthmap may

be extracted. The first step is to select the best plane at each pixel in the reference view.

This may simply be the plane of minimum cost, also called best-cost or winner-takes-all,
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defined as follows

π̃(x, y) = argmin
πm

C(x, y, πm). (4.5)

For a given plane πm at pixel (x, y), the depth can be computed by finding the intersection

of πm and the ray through the pixel’s center. This is given by

zm(x, y) =
−dm

[ x y 1 ]K−Trefnm

. (4.6)

More sophisticated approaches based on global optimization select π̃ that minimizes

C but also enforces smoothness between neighboring pixels. Such methods give improved

results but are too computationally expensive for real-time applications.

For occlusions, we use the solution proposed by Kang et al. (2001). For each pixel we

compute the cost for each plane using the left and right subset of the cameras and select

the minimum of the left and right scores. This scheme is very effective against occlusions,

since typically the visibility of a pixel changes at most once in a sequence of images.

4.3.2 Implications of Cost Aggregation

To minimize C at a given pixel (x, y), the plane πm = [nTm dm] should intersect not only

the surface imaged at (x, y), but at all the pixels in the neighborhood window W centered

at (x, y) as well. Assuming a locally planar surface, this is accomplished when nm aligns

with the surface normal. Misalignment of nm and the surface normal potentially leads to

errors in the computed depth map, depending on the size of the window, the degree of

misalignment, and the surface texture (see Figure 4.2).

4.4 Multiple Sweeping Directions

We extend plane-sweeping stereo to account for non-fronto-parallel surfaces in the scene.

A trivial extension would be to sample the hemisphere of all visible surface normals and

sweep planes in each direction. This would lead to a large number of plane hypotheses that

need to be tested, as in Zabulis et al. (2004). We propose a more efficient approach that
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Figure 4.2: Implications of cost aggregation over a window. Left: Slanted surfaces with
fronto-parallel plane-sweeping. Not all points over the window are in correspondence. Right:
Surface-aligned sweeping plane to handle slanted surfaces correctly. ( c©2007 IEEE.)

performs multiple plane sweeps where the sweeping directions are aligned to the expected

surface normals of the scene. This results in multiple depthmaps which we then combine

using best-cost or, optionally, a graph cut method.

4.4.1 Identifying Sweeping Directions

Instead of exhaustively sampling the set of potential surface orientations, we can identify

a much smaller set of likely surface normals either by application-specific heuristics or by

examining the scene’s sparse structure.

In many applications, images are captured by video or still cameras which are either

hand-held or mounted on a land-based vehicle. Camera motion can be recovered either by

structure from motion or from GPS/INS sensors. The motion of such cameras is generally

constrained to be parallel to the ground plane, especially for vehicle-mounted, but typically

also for hand-held cameras.

Additionally, a scene’s planar structure can be determined by sparse features such as

lines and points. This is especially true in urban environments where by examining lines

in a single image, vanishing points can be recovered which in turn can be combined to

give estimates of plane normals. In applications that use structure from motion, 3D point

or line features are recovered as well as the camera poses. These features are available,

but many algorithms do not utilize them. Many techniques have been explored to recover

planar surfaces from point and line correspondences and vanishing points (Bosse et al.,
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2003; Hoiem et al., 2006; Schindler and Dellaert, 2004; Werner and Zisserman, 2002).

We present an effective technique for recovering planar structure in urban environments

using 3D point features obtained from structure from motion. We first find the vertical

direction or gravity vector. This is either given by an INS system or can be computed

from vanishing points (Werner and Zisserman, 2002). Since most facades are vertical, the

vanishing point corresponding to the gravity vector is quite prominent in urban scenes. By

assuming the ground plane has zero slope in the direction perpendicular to the computed

camera motion, we can obtain a good estimate for the ground plane normal as

G =
(V×M)×M

‖(V×M)×M‖
(4.7)

where V is the gravity vector, and M is the camera motion direction. This formula for G

allows the ground normal to curve in the driving direction (pitch), but not roll. Thus it

constrains the road to be level perpendicular to the driving direction which is typically the

case. Note that obtaining the ground normal is particularly important, since the ground

appears highly slanted in the image.

To compute the facade normals, we assume that they are perpendicular to the gravity

vector, and are therefore determined by a rotation about the gravity vector. By assuming

the facades are orthogonal to each other, only one rotation determines the facade normals.

We recover the remaining rotation of the facades as follows. We first compute the orthogonal

projection of each 3D point in the direction of gravity to obtain a set of 2D points. Note

that 3D points on a common vertical facade will project to a line. We then evenly sample

the space of in-plane rotations between 0 and 90 degrees, and then test each rotation. For

each rotation R = [u v]T , we rotate the set of 2D points, and construct two histograms Hu

and Hv. Each bin in Hu (resp. Hv) counts the number of points with a similar u (resp. v)

component. We then compute the entropy of each histogram, and finally select the rotation

which has the lowest sum of entropies. As shown in Figure 4.3, entropy will be minimized

when points are aligned in directions u and v.
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4.4.2 Plane Selection

Once the sweeping directions have been computed, we generate a family of planes for each.

Referring to Equation 4.2, each family is parameterized by the distance of the plane to

the origin dm. The range [dnear, dfar] can be determined either by examining the points

obtained from structure from motion or by applying useful heuristics. For example, in

outdoor environments, it is usually not useful for the ground plane family to extend above

the camera center. The spacing of the planes in the range can be uniform, as in Zabulis et

al. (2004). However, it is best to place the planes to account for image sampling (Szeliski

and Scharstein, 2004). Ideally, when comparing the respective image warpings induced by

consecutive planes, the amount of pixel motion should be less than or equal to one. This is

particularly important when matching surfaces that exhibit high-frequency texture.

We define the disparity change between two planes Πm and Πm+1 to be the maximum

displacement over all pixels in all images.

∆D(Πm,Πm+1) = max
k=1,...,N

max
(x,y)∈Ik

√
(xmk − x

m+1
k )2 + (ymk − y

m+1
k )2 (4.8)

where (xmk , y
m
k ) (resp. (xm+1

k , ym+1
k )) are obtained by applying the homography HΠm,Pk

(resp. HΠm,Pk) as in Equation 4.3. To avoid orientation inversions we avoid using planes

(a) Arbitrary rotation (b) Minimum entropy

Figure 4.3: Minimum entropy direction optimization. The points on the facades are ob-
tained from structure from motion and projected in the direction of gravity. The points
are then rotated into the basis formed by u and v and histograms are generated. The his-
tograms of (a) have more entropy than those of (b). (b) corresponds to the correct surface
normals. ( c©2007 IEEE.)
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that intersect the convex hull of the camera centers. In general it is then sufficient to measure

the displacements only in the cameras most distant from the reference view. Furthermore

it is not necessary to compute the displacement for every pixel. The greatest displacement

will occur at the boundaries of the image. Thus, to compute the disparity, we warp the

polygon defined by the boundaries of image Ik into the reference view by applying the planar

homography HΠm,Pk . We then clip the polygon in the reference view, and compute the

displacement of the vertices of the clipped polygon. As only planes that do not intersect the

convex hull of the camera center are used, the polygon warped with HΠm+1,Pk is guaranteed

to remain convex, and thus the maximal disparity is bound by the maximum displacement

of its vertices. The family of planes is then constructed so that the disparity change of

consecutive planes is less than or equal to one pixel.

4.4.3 Incorporating Plane Priors

The minimum-entropy histograms computed in Section 4.4.1 also indicate the location of

the facades. They can be used as a prior in a maximum a posteriori (MAP) formulation

when selecting Π̃. The posterior probability of a plane Πm at pixel (x, y) is

P (Πm|C(x, y)) =
P (C(x, y)|Πm)P (Πm)

P (C(x, y))
(4.9)

where P (Πm) is the prior probability of the surface being located at plane Πm, and

P (C(x, y)|Πm) indicates the likelihood of the surface having matching cost C(x, y), given

that it is correctly represented by Πm. P (C(x, y)) is the marginal likelihood of the cost.

The prior is obtained by sampling the normalized histogram at the location of the plane.

For a plane Πm chosen from sweeping direction u, the location in the histogram Hu is given

by the depth component of the plane dm. The prior is

P (Πm) =
Hu(dm)∑
iHu(i)

. (4.10)

The cost likelihood depends on image noise, camera pose error, alignment of the plane

normal nm and the surface normal, as well as on the surface texture. This is extremely
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difficult to model correctly. Instead we choose an exponential distribution:

P (C(x, y)|Πm) = e
−C(x,y)

σ (4.11)

where σ is determined empirically. The exponential is self-similar, and so it makes no

assumptions about the minimum matching cost, which is often difficult to predetermine.

Since we are only interested in the maximum likelihood solution we ignore P (C(x, y))

and modify the plane selection Equation 4.5 as follows:

Π̃(x, y) = argmax
Πm

e
−C(x,y)

σ P (Πm). (4.12)

Maximizing this likelihood is equivalent to minimizing the negative logarithm of the likeli-

hood. Therefore

Π̃(x, y) = argmin
Πm

{− log e
−C(x,y)

σ P (Πm)}

= argmin
Πm

{C(x, y)− σ logP (Πm)}. (4.13)

Surfaces with little or no texture will exhibit a low matching cost over a range of planes,

the minimum of which may be determined more by noise than by true correspondence. The

prior distribution for the depth P (Πm) helps to eliminate such ambiguities and produce a

smoother surface. The implementation of Equation 4.13 comes at little additional cost and

contributes significantly to the results.

We can also use the prior to significantly reduce our computation time by not testing

plane hypotheses with a low prior probability. Typically a scene requires hundreds of planes

for each sweeping direction to adequately sample the disparity range. While our algorithm

is able to compute this many plane hypotheses at several Hz, we have found that we can

obtain quality reconstructions almost an order of magnitude faster by testing only a few

dozen of planes. The selected planes are those with the highest prior probability according

to Equation 4.10. In our implementation, we have always chosen a fixed number of planes

in order to guarantee a desired run-time. However, the number of planes could instead be
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adaptive to the complexity of the scene. For example, the number of planes could be chosen

to capture a fixed amount of the prior’s “energy”, say 50%.

Note that the prior is most effective when sweeping in multiple surface-aligned directions.

For example, if the sweeping direction were not aligned to the ground and were instead

fronto-parallel, it would require many plane hypotheses to reconstruct the ground. However,

having determined the ground’s surface normal and predicted its location from the prior,

we can reconstruct it with only a few plane hypotheses.

4.4.4 Selecting Depths from Multiple Sweeps

Once the plane sweeps have been performed and the best-cost solutions are selected for

each sweep, the remaining task is to determine which sweeping direction at each pixel is

correct. Selecting the best-cost solution already produces very good results, and most pixels

are assigned the correct surface normal. However, it is evident from Figure 4.4 that due

to noise some pixels are assigned incorrect normals. The immediate observation is that

many of the errors are small regions of erroneous pixels embedded in a sea of correctly

assigned pixels. This suggests minimizing an energy function which penalizes for abrupt

changes of the surface normal within a small neighborhood. Also, the correct depths should

minimize the distance between the depths of neighboring pixels. We formulate an energy

which encodes the matching cost, surface normal smoothness, and depth smoothness, and

minimize it using graph cuts (Boykov et al., 2001).

Typically, graph cut stereo algorithms compute the solution over a range of depth values.

For the scenes in which we are interested, this would require hundreds of labels to account

for the disparity range. Our energy function can be minimized efficiently since the solution

is chosen from typically only a handful of sweeping directions.

Although our algorithm can be generalized to any number of sweeping directions, for

simplicity the graph cut is defined in terms of three labels but can be simply extended to

multiple labels. We define the set of labels L = {lg, lf1 , lf2}, with one label for each sweeping
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Figure 4.4: Best-cost direction selection. The labeling on the right indicates the selected
sweeping direction. Ground points are labeled green, and facade points are labeled red or
blue. The changes in surface normal (blue amidst a sea of red and vice versa) are clearly
errors and suggest further optimization is possible. ( c©2007 IEEE.)

direction. Each direction also has an associated surface normal nl and best cost image

C̃l(x, y) = C
(
x, y, Π̃l(x, y)

)
− σ logP (Π̃l(x, y)). (4.14)

We define the energy function:

E =
∑

(x,y)∈I

Edata + λ1

∑
(x,y),(x′,y′)∈N

Esmooth + λ2

∑
(x,y)∈I

Eint (4.15)

where λ1 and λ2 adjust the relative magnitude for each penalty and (x, y), (x′, y′) ∈ N indi-

cates that (x, y) and (x′, y′) are 4-neighbors. The term Edata simply refers to the matching

cost of a particular label:

Edata(x, y) = C̃l(x, y). (4.16)

The term Esmooth penalizes neighboring pixels for having different surface normals according

to the Potts model (Boykov et al., 2001).

Esmooth(x, y) = δ(l 6= l′) (4.17)

where δ(·) is 1 when its argument is true and 0 otherwise.

The integrability penalty Eint penalizes depth discontinuities in the surface. In other

stereo algorithms, this is typically defined as the absolute or squared distance between the

depths of neighboring pixels. In our algorithm not only do we have the depth at each pixel,
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Figure 4.5: Integrability penalty for horizontal neighbors. Using the surface normals given
by the labeling, the surfaces are extended to the midpoint (x + 0.5). The penalty is then
defined as a function of the distance between the surfaces along the line x + 0.5. ( c©2007
IEEE.)

but we have the surface normal as well. We can therefore approximate the surface at each

pixel as a planar patch. For neighboring pixels, rather than compare the depths at the pixel

centers, we extend each surface to the midpoint between the two pixels and compare the

depths of the surfaces at this point. See Figure 4.5.

We define the integrability penalty for horizontal neighbors (x, y) and (x + 1, y) with

labels l and l′. (The definition for vertical neighbors is similar.) Let the plane at each pixel

be Π̃l and Π̃l′ . We find the intersection point of each plane and the ray passing through

the pixel (x+ 0.5, y) as in Equation 4.6. The integrability penalty is then defined as

Eint(x, y) = min(|zl(x+ 0.5, y)− zl′(x′ − 0.5, y′)|, Emaxint ) (4.18)

where zl(x + 0.5, y) is the intersection of the ray defined by pixel (x + 0.5, y) and Π̃l, and

similarly zl′(x+0.5, y) is the intersection with Π̃l′ . Notationally, this assumes the pixel with

label l is to the left of the pixel with label l′. The penalty saturates at value Emaxint so as

not to overly penalize true discontinuities in the surface. The integrability penalty can be

defined similarly for vertical neighbors. Figure 4.5 illustrates the integrability penalty. This

penalty has the important property that it incurs no penalty for slanted surfaces, which do

not have constant depth, as long as the depth gradient coincides with the estimated surface

normal.
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4.5 Experiments

We demonstrate our algorithm on video sequences captured by a hand-held camera as well as

a vehicle-mounted camera as part of the Urbanscape project. The vehicle is equipped with a

GPS/INS system. We compute the three sweeping directions as described in Section 4.4.1,

and then compute depthmaps from 11 grayscale images with 512 × 384 resolution. We

processed the data on an Intel Xeon 2.67 GHz PC with an NVIDIA GeForce GTX 285

graphics card.

Figure 4.6 shows an example of a depthmap computed with our algorithm from a hand-

held video sequence. (A 3D model of this scene is shown in Figure 4.10). A close-up of the

depthmap computed with a fronto-parallel sweep reveals the staircase artifact on the slanted

ground surface. Because only part of the matching window is in correct correspondence for

the correct plane, other parts of the window may dominate the matching score especially

if there is stronger texture than at the center pixel. Thus the nearby pixels will “lock on”

to the highest nearby frequency, producing the artifact. By aligning the sweeping plane to

the surface, the entire window is in good correspondence and the artifact is eliminated.

Rather than present depthmaps, we will use 3D models to present the remaining results.

As discussed in Chapter 2, obtaining 3D models from depth measurements is a non-trivial

problem which is addressed specifically in Chapter 7. For the present results, surfaces are

defined by pixel adjacency except where a depth discontinuity is detected by thresholding.

In the next experiment, we compare our algorithm with the basic fronto-parallel sweep.

The scene is a flat brick wall which is viewed obliquely and was captured by the Urbanscape

system. We reconstruct the scene using 144 plane hypotheses for both algorithms. For our

algorithm we selected the depths from the multiple sweeping directions using best-cost,

and achieved a processing rate of 11.76 Hz. (The graph-cut method was not used for this

experiment.)

Figure 4.7 compares a scanline of the depthmaps resulting from the fronto-parallel sweep

algorithm and our algorithm. The surface from our algorithm is much smoother and bet-

ter approximates the planar facade. Note that for both algorithms we compute sub-pixel

matches by parabolic fitting of the best cost. Despite this fact, the fronto-parallel sweep is
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(a) (b)

(c) (d)

Figure 4.6: (a) Original image. (b) Depthmap computed using our multi-sweep method.
Close-ups are shown for the marked area. (c) Close-up of the multi-sweep depthmap. (d)
Close-up of the fronto-parallel sweep depthmap. Notice the staircase artifacts.

unable to compute a smooth surface. Since only a percentage of the points in the aggrega-

tion window actually have the correct depth, the matching costs to which the parabola is

fit are less indicative of the depth of the surface.

The following scene is also captured by a vehicle-mounted camera from Urbanscape.

In this scene, shown in Figure 4.8, we demonstrate the graph-cut-based depth selection

from Section 4.4.4. Selecting the best-cost sweeping directions already produces a surface

normal labeling which is quite accurate. However, small errors remain. The graph cut is

able to eliminate the incorrectly labeled regions and straighten out the interface between

the two facades. The cross-sections in Figure 4.8 shows that by selecting the correct surface

normals labels the computed depthmap is improved. This graph cut, although unsuitable

for real-time, is quite efficient and takes less than 2 seconds to compute. As a follow-up

to this approach, Zach et al. (2008) developed a variational method for solving the 3-label

energy. Unlike graph-cuts, this method runs on the GPU, but it still takes 45 milliseconds

to compute which is too slow for real-time.

In Figure 4.9, we demonstrate the ability to compute accurate depthmaps with only a
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Figure 4.7: Comparison of the basic fronto-parallel plane sweep and sweeping in multiple
directions. Top left: the original viewpoint. Top right: The depthmap triangulated into a
polygonal mesh viewed from above. Bottom: A cross-section of the surface. Note the scale
on the axes. We measured the standard deviation of the surface from the best-fit line. This
was 1.31 cm for the fronto-parallel sweep and 0.61 cm for our algorithm. ( c©2007 IEEE.)

small number of plane hypotheses. By testing only the planes with highest prior probability,

we produced quality reconstructions with just 48 plane hypotheses per frame. This increases

the speed of our algorithm to 50.0 Hz. Although we assume the presence of planes in the

scene, our algorithm is a general stereo matcher (see Section 4.3), and we are still able to

reconstruct non-planar objects such as the bushes, even with only 48 distinct planes.

Finally, we present the reconstruction of a scene captured by a hand-held camera. We

computed the direction of the gravity vector from vertical vanishing points and computed

the sweeping directions as described in Section 4.4.1. The reconstruction of the scene is

shown in Figure 4.10. By rendering the scene with a synthetic light source we can see that

without aligning the sweeping plane to the surface normals, the reconstructed surface is

quite bumpy. Our algorithm produces a reconstruction which is much smoother.
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Figure 4.8: Top: The best-cost sweeping direction labeling (left) and the labeling after the
graph cut (right) Several mislabeled pixels are corrected by the graph cut. Bottom: The
improvement in accuracy after the graph cut. This shows the incorrectly labeled pixels were
indeed errors in depth. ( c©2007 IEEE.)

4.6 Discussion

In this chapter, I have presented a real-time multi-view stereo algorithm based on plane-

sweeping which correctly handles slanted surfaces. A real-time plane-sweeping approach is

needed to process the massive amounts of video data required to reconstruct at city-scale.

The algorithm runs on the GPU at up to 50 Hz on 512 × 384 video. To better handle

slanted surfaces, which are a problem for real-time stereo methods, we propose a multi-

sweep approach. An estimate of the normals of the planar surfaces in the urban scene is

obtained by analyzing sparse point correspondences, which are available from the structure

from motion estimation. Urban scene properties such as verticality and orthogonality allow

the building facade surface normals to be obtained by an efficient alignment procedure.

Plane-sweeps are then performed along these directions and results are combined according

to best-cost or, optionally, a simple three-label graph cut. Furthermore, by incorporating

52



Figure 4.9: The reconstruction produced by our algorithm from several hundred frames of
video. By testing only plane hypotheses with high prior probability, the reconstruction was
achieved with only 48 plane hypotheses per frame at a speed of 50.0 Hz.

plane priors given by the sparse point correspondences, we can reduce computation time

and improve results in ambiguous parts of the scene. Comparisons with ground truth show

a clear improvement over the basic fronto-parallel plane-sweeping algorithm. Thus this

algorithm can be seen as a method to reduce the correspondence error in Equation 2.11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: (a): Frame of video captured by a hand-held camera. (b): The best-cost
labeling of sweeping direction. (c) and (e): Novel views of the reconstructed scene. (d)
and (f): The reconstructed scene rendered as a polygonal mesh with a light source. (d)
is from the basic plane sweeping algorithm, and (f) is from our algorithm. The lighting
demonstrates a much smoother surface is obtained by aligning the sweeping plane to the
surface normals. ( c©2007 IEEE.)
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CHAPTER 5

Variable Baseline/Resolution Stereo

5.1 Introduction

In the previous chapter, more accurate correspondences were obtained by explicitly ac-

counting for slanted surfaces in stereo. In this chapter, the focus will be on determining the

uncertainty of the obtained depth measurements, and selecting views and working resolution

to balance that uncertainty with computational effort.

Recent state-of-the-art stereo methods have been very successful in solving the corre-

spondence problem, which is to decide which pixels in one image correspond to which pixels

in another. Techniques employing graph cuts and belief propagation can achieve error rates

of less than 1% on laboratory data (Scharstein and Szeliski, 2002). However, for many

applications, including urban 3D reconstruction, the goal is ultimately not pixel correspon-

dence but depth accuracy. Even with pixel-accurate correspondences, the depth error in

traditional stereo grows quadratically with depth (Equation 2.11), which means that the

accuracy in the near range far exceeds that of the far range. While the accuracy in the far

range is unusably bad, the accuracy in the near range is unnecessarily high and comes at

significant computational cost. Accuracy can be improved by incorporating multiple views.

These views provide additional information which aids in the correspondence problem, but

they can also improve the depth accuracy geometrically by increasing the angle of triangu-

lation. In many applications, such as structure from motion from video (Pollefeys et al.,

2008), or recently reconstruction from community photo collections (Goesele et al., 2007;

Furukawa et al., 2010), the choice of views for stereo is quite flexible. Our technique focuses

on selecting the best cameras, as well as the most appropriate sampling in the images, to

compute a depthmap that meets the desired geometric accuracy with minimal computation.



Figure 5.1: Left: Standard stereo. Note that the distance between depths increases quadrat-
ically. Right: Variable Baseline/Resolution Stereo. The distance between depths is held con-
stant by increasing the baseline and selecting the appropriate resolution. ( c©2008 IEEE.)

Specifically, we increase the baseline to increase accuracy in the far range, and we reduce

the resolution (using a gaussian pyramid) to reduce computational effort in the near range.

This approach is important for large-scale urban reconstruction, because scenes captured

from the ground exhibit a large depth range, i.e. objects can be observed both near and far

from the camera. Managing depth uncertainty over this large range is not only important

for obtaining accurate depth measurements in the far range, but it is also important for

reducing computational effort in order to efficiently process large amounts of video.

The motivation for our approach derives from the point of view of a system designer

wishing to employ stereo as a measuring device. Often, the definition of the stereo problem

assumes the camera parameters are given and fixed, but these parameters have a significant

effect on the depth accuracy of stereo. The system designer has some accuracy requirements

in mind and, with traditional stereo methods, must carefully select baseline, focal length,

and field of view in order to meet these requirements. Furthermore, computation time is

important in real systems, and so the designer must be conservative. It is unacceptable to

spend large amounts of time obtaining accuracy that far exceeds the minimum requirement.

Balancing accuracy and efficiency for standard stereo is difficult indeed due to its quadratic

error characteristics. Our novel algorithm enhances stereo to be able to efficiently use the
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additional information contained in dense image sets such as video by dynamically selecting

the appropriate baseline and image scale for each depth estimate. In contrast to traditional

stereo our technique guarantees a constant target accuracy throughout the greatest possible

volume with orders of magnitude less computational effort.

5.1.1 Variable Baseline/Resolution Stereo

The motivation for our algorithm is derived from the depth error in stereo, which in Equation

2.11 was shown to be

εz =
z2

bf
· εd (5.1)

where εz is the depth error, z is the depth, b is the baseline, f is the focal length of the

camera in pixels, and εd is the correspondence error in pixels (disparity values). The focus

of this algorithm will be on the geometric factor of the depth error, which is z2/(bf). This

quantity also determines how the resolution of the image translates into the resolution

of depth measurements in space. Since disparities are measured in pixels (spaced 1 unit

apart), the spacing between depth measurements, which we will call depth resolution, is

also z2/(bf). The depth resolution can be controlled by varying the baseline and focal

length. Dense image sets, such as video, allow the baseline b to be selected with great

flexibility, and because f is measured in pixels, the focal length can be varied by selecting

the appropriate scale in a Gaussian pyramid (up to the maximum value of f at full image

resolution). The principal idea of our algorithm is to set both b and f proportionally to z

throughout the depthmap computation, thereby canceling the quadratic z term, and leaving

the depth resolution constant w.r.t. depth. Thus matching scores for depths in the near

range are computed using a narrow baseline and coarse image resolution, while depths in

the far range use a wider baseline and finer image resolution.

While the focus of our approach is the geometric factor, multiple views as in video

can have a beneficial effect on correspondence error. Averaging (unbiased) measurements

over multiple views reduces uncertainty. The mean of n uncorrelated measurements with

variance σ2 is σ2/n, so the uncertainty (standard deviation) improves with
√
n. But depth

measurements from video are often highly correlated. For example, Geyer et al. (2006)
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found a correlation coefficient of 0.6. In our implementation, we do use multiple views

for matching, but it is a fixed number, regardless of baseline. Using a larger number of

views for larger baselines would help to reduce correspondence error, but in practice we

have not found a significant improvement by using more images. Also there are many

factors like texture which influence the correspondence error besides the number of views.

While we acknowledge that correspondence error can be improved somewhat with more

views over larger baselines, the focus of our algorithm is the geometric factor that scales

the correspondence error.

Our algorithm, which we call Variable Baseline/Resolution Stereo, exhibits three im-

portant properties:

1. By selecting the baseline and resolution proportionally to the depth, we can match

the quadratic term in the depth error, and achieve constant depth resolution over the

reconstructed volume.

2. Because the depth resolution is constant throughout the reconstructed volume, the

computational effort is also evenly spread throughout the volume.

3. The baseline grows linearly with depth, therefore the angle of triangulation remains

constant1.

To the best of our knowledge, our method is the first to exhibit all three properties.

In the following sections I will consider previous work relevant to this chapter, analyze

the error and time complexity of our algorithm as compared to traditional stereo, discuss

the implementation of our algorithm, and present results.

This work in this chapter was published in Gallup et al. (2008).

5.2 Related Work

While, to the best of our knowledge, no prior work on stereo with both variable baseline

and resolution has been published, there is a significant amount of research on each of

1The angle of triangulation is constant w.r.t. to depth. It varies slightly from pixel to pixel.
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these aspects separately. In this section, we briefly review some papers that deal with

multi-baseline or multi-resolution stereo. We also review reconstruction approaches that

explicitly model geometric uncertainty.

Early research on multi-baseline stereo includes the work of Okutomi and Kanade (Oku-

tomi and Kanade, 1993) who use both narrow and wide baselines, which offer different

advantages, from a set of cameras placed on a straight line with parallel optical axes. How-

ever the goal was to reduce mismatches, not to improve depth accuracy. Sato et al. (2002)

address video-based 3D reconstruction using hundreds of frames for each depth map com-

putation. The median SSD between the reference and all target views is used for robustness

against occlusions. In general, using multiple images improves matching, and employing

wider baselines can increase the depth resolution. However, none of these approaches guar-

antee bounds on depth resolution. Our approach is unique in that we use a different set of

images throughout the computation such that the baseline grows proportionally to depth.

Multi-resolution approaches are used for stereo to either speed up computation or to

combine the typically less ambiguous detection at coarse resolution with the higher precision

of fine resolution. The latter was the motivation for the approach of Falkenhagen (1997) in

which disparities are propagated and refined as processing moves from coarse to fine levels of

image pyramids. Yang and Pollefeys (2005) presented an algorithm in which cost functions

from several different resolutions were blended to take advantage of the reduced ambiguity

coming from matching at coarse levels of the image pyramids and the increased precision

coming from matching at fine levels. Koch et al. (1998) use a multi-resolution stereo algo-

rithm to approximately detect the surfaces quickly, since processing speed is important for

large scale reconstruction systems which operate on large disparity ranges. Reducing image

resolution results in an equivalent reduction of the disparity range. Sun (2002) presented

a method that aims at improving both the speed and reliability of stereo. It operates in

bottom-up fashion on an image pyramid in which stripes are adaptively merged to form

rectangular regions based on disparity similarity. A two-stage dynamic programming opti-

mization stage produces the final depth map. In these approaches, multiple resolutions are

used for speed and/or improved matching, but depth accuracy is not addressed. A key com-

59



ponent of our algorithm is that we use different resolutions at different depths. Specifically,

we use lower resolutions to estimate depths in the near range in order to avoid unnecessary

computations for resolution that far exceeds what is required.

Algorithms that take geometric uncertainty explicitly into account include Matthies et

al. (1989) and Koch et al. (1998). Matthies et al. introduced an approach based on Kalman

filtering that estimates depth and depth uncertainty for each pixel using monocular video

inputs. These estimates are refined incrementally as more frames become available. Koch

et al. proposed a similar approach that computes depth maps using pairs of consecutive

images. Support for each correspondence in the depth maps is found by searching adjacent

depth maps both forward and backward in the sequence. When a match is consistent with

a new camera, the camera is added to the chain that supports the match. The position of

the reconstructed 3D point is updated using the wider baseline. While these methods are

successful in reducing error in the reconstruction, they do not exhibit the properties from

Section 5.1.1. In particular, the computational effort is concentrated in the near range, and

as a result the depth accuracy in the near range exceeds that of the far range.

5.3 Analysis

Before analyzing the accuracy and time complexity of our stereo algorithm, we shall briefly

address the issue of depth sampling. As outlined in the simple example in Algorithm 2.2,

stereo seeks to determine the depth of the surface along the rays passing through each

pixel in a reference image. Each point along the ray is projected into any number of target

images, and a measure of photoconsistency is computed. This defines a function of depth,

the minimum (or maximum) of which indicates the depth of the surface and is discovered

by sampling the function at various depths. The number and location of the samples should

be defined by the pixels in the target images (disparities). While supersampling can obtain

a more accurate minimum, the depth resolution is still proportional to the pixels. Szeliski

and Scharstein (2004) observed that sub-pixel accuracy up to 1/4 pixel is typical. Note also

that subsampling the function without properly filtering the images will lead to aliasing,

and the minimum of the aliased function can often be far from the minimum of the original

60



function. Therefore the sampling rate should be on the order of one pixel. In stereo, one

cannot expect to obtain greater depth accuracy simply by finer disparity sampling, and in

order to use coarser sampling (to reduce computation time and accuracy), filtered lower-

resolution images must be used. For more details on sampling in stereo, see (Szeliski and

Scharstein, 2004).

5.3.1 Accuracy and Time Complexity

We now analyze the time complexity of traditional stereo and compare it to the time com-

plexity of our variable baseline/resolution algorithm. Our analysis assumes that the cameras

are separated by lateral translation and no rotation, so that all cameras share a common im-

age plane, and pixel correspondences have the same vertical image coordinate. This setup,

which is convenient for analysis, can be somewhat relaxed in the actual implementation of

our algorithm.

In our analysis we assume that the system designer specifies a desired accuracy: a

minimum depth resolution ∆z, and a maximum range zfar. Assuming correspondence

error is sub-pixel, stereo is expected to deliver depth measurements with error less than

∆z for all depths z ≤ zfar. The depth resolution is defined similarly to the depth error,

replacing εd with the pixel spacing, equal to 1:

∆z =
z2

bf
. (5.2)

Therefore meeting the target depth resolution depends on adjusting the baseline b and focal

length f .

We will now analyze the effect of baseline and focal length separately, then combined,

followed by an analysis of our algorithm. We focus our analysis on the target accuracy

parameters ∆z and zfar.

Fixed-baseline stereo. For a fixed-baseline stereo system, the depth resolution can be

adjusted by varying the focal length parameter f . Since f here is measured in pixels, it can

be increased either by narrowing the field of view (zoom), or by increasing the resolution

of the image sensor. We assume the field of view θfov has been carefully chosen for the
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application, meaning f describes the image resolution as

w = 2f tan
θfov

2
h =

w

a
, (5.3)

where w, h and a are the width, height and aspect ratio of the image. We can determine

the image resolution needed to meet the target accuracy by solving for f in Equation 2.11.

f =
zfar

2

b∆z
(5.4)

number of pixels = wh =
w2

a

=
zfar

4

∆z2

4 tan2 θfov
2

b2a
(5.5)

This shows that increasing the image resolution alone to meet the target accuracy re-

quires the resolution to grow proportionally to zfar
4! Note that a higher resolution sensor

does not necessarily increase the effective resolution. Higher quality lens optics may also be

required, making it prohibitively expensive, or impossible, to increase the resolution at this

rate. Another prohibitive factor is the processing time. In stereo, each pixel must be tested

against the pixels along the corresponding epipolar line within the disparity range of the

scene. Because the depth range is defined by the scene, the disparity range is some fraction

of the image width, and thus also increases with image resolution. Letting D be the ratio

of the disparity range to the image width, the number of pixel comparisons needed is

Tfixed = Dw2h =
Dw3

a

=
zfar

6

∆z3

8D tan3 θfov
2

b3a

= O(zfar
6∆z−3). (5.6)

This means the system designer is severely limited by depth range. For example, extending

the depth range by a factor of 2 would require 26 = 64 times more computational effort!

Fixed-resolution stereo. If the image resolution is held fixed, the depth resolution

can be increased by increasing the baseline b. To meet the target accuracy, we solve Equa-
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tion 2.11 for b, yielding b =
zfar

2

f∆z . One drawback of increasing the baseline is that the depth

where the fields of view begin to overlap also increases, and the near range is lost. The

depth where the overlap begins is znear = b
tan θfov/2

. Because znear depends on b, and b

grows quadratically with zfar , there is a point at which znear surpasses zfar , meaning that

the depth where the target accuracy is met is no longer in the overlapping field of view. In

general, one cannot rely on increasing the baseline alone to meet the target accuracy.

Variable baseline and resolution. In order to avoid znear surpassing zfar , the baseline

cannot grow faster than linearly with zfar . Thus we set b = βzfar where β can be chosen to

give a certain angle of triangulation at zfar . Given this constraint, we solve for the image

resolution needed to meet the target accuracy as follows:

f =
zfar

2

b∆z
=

zfar

β∆z
(5.7)

number of pixels =
zfar

2

∆z2

4 tan2 θfov
2

β2a
. (5.8)

From this equation we see that the baseline and the focal length both grow linearly with

zfar , and the required depth resolution grows proportionally with zfar
2 rather than zfar

4.

However, with a linearly growing baseline, znear also grows linearly, and overlap in the near

range is lost. Therefore, in order to accurately reconstruct the entire scene, wide baselines

must be used in the far range, and narrow baselines must be used in the near range.

We now analyze our method which uses multiple baselines and resolutions to recover

depths over the entire viewing volume with minimal computational effort. Unlike previous

approaches which combine measurements among multiple baselines and resolutions, our

method chooses a single baseline and resolution based on the depth being measured. This

approach has several advantages mentioned in Section 5.1.1: 1) the depth error is constant

for all depths, 2) the amount of computational effort is evenly distributed throughout the

volume, 3) the angle of triangulation does not vary with depth.

For the sake of analysis, assume that the stereo setup consists of a continuous set of

cameras with baselines given by the function B(x) = xb, 0 ≤ x ≤ 1, where b is the required

baseline from Equation 5.7. For each of these cameras there is an image Ix which has been

63



constructed as a scale pyramid, again, with a continuous set of scales. The focal length

(in pixels) of the scales is given by the function F(x) = xf, 0 ≤ x ≤ 1, where f is the

required focal length from Equation 5.7. In reality, baselines and scale pyramid levels are

discrete; however, the set of baselines acquired from a moving camera is quite dense, and

the continuous scale pyramid can be approximated by filtering between the two nearest

discrete levels.

Since our method uses multiple images, it is more convenient to parameterize correspon-

dences in terms of their triangulated depth z instead of their pixel coordinate disparity d.

Our approach varies the baseline and resolution with z. The baseline is chosen as B(z/zfar ),

and the resolution is chosen such that the focal length is F(z/zfar ). By substituting this

baseline and focal length into the depth resolution Equation 5.2, we see that the depth

resolution is equal to our target, ∆z for all z ≤ zfar .

To analyze the time complexity of our algorithm, we sum the number of pixel compar-

isons needed at each depth z. Since we step through depth at a constant rate ∆z, there

are zfar/∆z steps. Letting k∆z/zfar be the proportion of the width and height required at

depth k∆z, the time complexity can be expressed as a sum:

Tvariable =

zfar
εz∑
k=1

wh

(
kεz
zfar

)2

=
wh∆z2

zfar
2

zfar
∆z∑
k=1

k2

=
4 tan2 θfov

2

aβ2

(
zfar

3

3∆z3 +
zfar

2

2∆z2 +
zfar

6∆z

)
= O(zfar

3∆z−3). (5.9)

This is a considerable improvement over standard stereo which is O(zfar
6∆z−3) as shown

in Equation 5.6. Note that the reconstructed volume is a frustum (pyramid) ranging from

the camera to zfar . If we divide this volume into voxels with side length ∆z, the number

of voxels in the volume is also O(zfar
3∆z−3). Without prior knowledge, each voxel must

be visited, or at least a number of voxels proportional to the volume must be visited, to

reconstruct the volume. Under these assumptions, Ω(zfar
3∆z−3) is the asymptotic lower

bound for stereo, which our algorithm achieves.
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While our analysis has focused on image-centered stereo, we briefly mention a differ-

ent class of stereo, namely volumetric methods (Dyer, 2001; Kutulakos and Seitz, 2000).

By nature, the time complexity of volumetric stereo is proportional to the volume, and

the computation time is spread evenly over the volume (property 2 from Section 5.1.1).

However, these methods do not explicitly guarantee the target accuracy. In order to do

so, voxel size and camera selection must be chosen such that the projection of each voxel

differs from the projection of the neighboring voxels by exactly one pixel in some camera.

Assuming pixel accurate matching, this ensures that each voxel is visually distinguishable

from its neighbors, and therefore the surface can be located to within one voxel in space.

To the best of our knowledge, no volumetric method exists which guarantees uniform depth

resolution over the entire volume.

5.4 Algorithm

We use a plane-sweeping approach (see Chapter 4) to compute a depthmap for a reference

view using multiple target views. A key difference from the algorithm presented in Section

4.3, is that the matching views can be different for each plane. In our algorithm, for each

depth plane z, we choose a constant number of images whose baselines are evenly spread

between −B( z
zfar

) and B( z
zfar

). Finally, to ensure low correspondence error, and to focus

attention on depth resolution, we have used semi-global optimization (Hirschmuller, 2008)

which is a good balance between efficient local methods and accurate global methods. This

replaces the best-cost approach used in Section 4.3.1.

In the actual implementation of our algorithm, the set of cameras and their associated

image pyramids are finite and discrete, and we do not require that cameras be strictly

constrained to lateral translation and no rotation. Thus we can only approximate the

accuracy and pixel motion by the simple formulas previously mentioned. Instead we measure

the image sampling and accuracy directly by projecting the hypothesized depths into the

leftmost and rightmost views. As discussed in Section 4.4.2, we only need to measure at the

vertices of the projected and clipped image border polygon, which bounds the measurements

of all interior points.
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Algorithm 2 Variable Baseline/Resolution plane-sweep. The baseline and resolution in-
crease from narrow to wide and from coarse to fine as necessary to maintain the target error
bound.
z ⇐ znear

b′ ⇐ narrowest baseline
while z ≤ zfar do

compute matching scores for depth plane z
and store in cost volume

choose pyramid level f ′ = F(z/zfar )
while z2/(b′f ′) > ∆z do

increase baseline b′

end while
z ⇐ z + ∆z

end while
compute depthmap from cost volume

Algorithm 4.2 describes our method. The plane-sweep begins with the narrowest base-

line and coarsest resolution. As the sweep moves from near to far, the baseline and resolution

(pyramid scale) increase from narrow to wide and from coarse to fine as necessary to main-

tain the target accuracy. Once the full image resolution is attained, the plane-sweep can

continue with increasing baselines, but the depth resolution bound will no longer be met.

Matching scores are computed at each depth and stored in a cost volume, from which an

optimized surface is then extracted.

In our method we compare matching costs computed at different baselines and res-

olutions and expect that the minimum score indicates the correct match. For multiple

baselines, we expect this to be true based on the brightness constancy constraint. Although

appearance changes are a known problem in wide baseline matching, our method is not

wide baseline since the angle of triangulation is kept approximately constant and relatively

small. In Figure 5.2, we show an example of matching costs computed from various res-

olutions and baselines. This figure shows that the cost minimum is roughly the same for

all cost functions. We have evaluated this for a variety of scenes and pixels and found the

same general behavior in all of them.
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Figure 5.2: Matching cost functions for varying baselines (left) and resolutions(right). Cost
minima are roughly the same value at different resolutions and baselines, which makes stereo
matching possible across different resolutions and baselines. ( c©2008 IEEE.)

5.5 Experiments

We have evaluated our method and standard stereo against a scene for which ground truth

was acquired with a laser range finder. The scene, shown in Figure 5.3, is simple by design,

so that the focus is depth accuracy, not matching accuracy. The scene features a slanted

brick wall which ranges from 7 to 12 meters in depth. For our method, we set εz = 10cm

and β = tan 10◦ (i.e. 10◦ angle of triangulation). To evaluate error w.r.t. depth, we divided

the computed depths into bins spaced 25cm apart, and computed the standard deviation

of the (signed) difference from ground truth. As expected, the error in standard stereo

grows with depth, whereas the error from our method remains constant. Note that our

target accuracy is 10cm, whereas the average standard deviation is 5cm, from which we can

deduce the standard deviation of the correspondence error εd is 0.5 pixels (see Equation

2.11).

Next we evaluated our algorithm on challenging outdoor scenes. The first scene was

acquired with a 1024x768 pixel video camera undergoing lateral motion and capturing

images at 30 Hz. The field of view was 40 degrees. For this scene, we desired an accuracy

of ∆z = 30cm, and have found matching to be accurate at angles up to 6 degrees, i.e. .

β = tan 6◦. Given our resolution, the target accuracy can be maintained up to 45m. We

used a gaussian pyramid where the scaling factor between levels is 1/2, and filtered between
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Figure 5.3: We compared standard stereo and our algorithm against a scene for which
ground truth was acquired with a laser range finder. The depth of the wall ranges from 7
to 12 meters. Top: Some original images. Bottom Left: Standard deviation from ground
truth w.r.t. depth. The error of standard stereo increases with depth while the error of our
algorithm remains roughly constant. Bottom Right: Absolute error images (darker means
larger error). ( c©2008 IEEE.)

the two nearest levels to handle variable resolution. Depthmaps were computed using the

previously described plane-sweep, using 11 views, followed by semi-global optimization. We

have compared our results with standard stereo, also using 11 views. For a fair comparison,

we allowed standard stereo to use the widest baseline possible, while still keeping the objects

in the near range in view. The near range in this scene is 3m which limits the baseline to

2.5m. This baseline is in fact not sufficient to meet the target accuracy at the far range.

Except for the differences in baseline and resolution, all other settings are the same for both

methods. The two methods are compared in Figure 5.4. Our method is more than 6 times

faster, and analysis predicts that it is more than 4 times more accurate at the far range.

While no ground truth is available for this scene, the reconstruction produced using our

method is clearly many times more accurate.

For the second result, shown in Figure 5.5, we captured a series of images with a 10

megapixel camera. We processed the images with a target accuracy of ∆z = 1cm at zfar =
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Figure 5.4: First Row: Some original images. The middle image is the reference view. Sec-
ond Row, Left: Depthmap computed using standard stereo. Second Row, Right: Depthmap
computed using our method. Third Row: 3D model views of standard stereo and our
method. Because the correspondence accuracy is similar for both methods, the full views of
the depthmaps appear similar. However, a close-up view of the standard stereo depthmap
at the far range reveals the poor depth accuracy. In contrast, the close-up view of the
depthmap computed using our method is much smoother, the indentations from the win-
dows are more defined, and consequently the 3D model views are much cleaner, especially
in the far range. ( c©2008 IEEE.)
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(a) (b)

(c)

(d)

Figure 5.5: (a): The reference view image and depthmap from our method. (b): 3D model
view from our method. (c): Close-up 3D model views of the far range for standard stereo
and our method. (d): Depth resolution plot. ( c©2008 IEEE.)
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Scene 1 znear = 3m, zfar = 45m, ∆z = 30cm
Fixed1 F1/V Fixed2 F2/V Variable

resolution 0.8 Mp 1 15.2 Mp 19.0 0.8 Mp
# pixel comps 3.76x108 6.16 3.19x1010 523 6.10x107

resolution at zfar 1.32m 4.40 0.3m 1 0.3m
z where res. = ∆z 21.47m 0.48 45m 1 45m

Scene 2 znear = 0.6m, zfar = 6.1m, ∆z = 1cm
Fixed1 F1/V Fixed2 F2/V Variable

resolution 10 Mp 1 103 Mp 10.3 10 Mp
# pixel comps 1.75x1010 6.65 5.76x1011 219 2.63x109

resolution at zfar 0.032m 3.20 0.01m 1 0.01m
z where res. = ∆z 3.41m 0.56 6.1m 1 6.1m

Figure 5.6: This table compares our algorithm, Variable, to two versions of standard stereo,
Fixed1 and Fixed2. Both Fixed1 and Fixed2 use the widest baseline possible where the
near range, znear is still in view. In Fixed1, the resolution is not allowed to exceed that
of the actual camera, while in Fixed2, the hypothetical resolution is computed so that the
error bound ∆z is met at zfar . This resolution is much too high to be realized in practice.
Compared to Fixed1, our algorithm is about 6 times faster and about 3-4 times more
accurate at zfar .

6.1m, a maximum triangulation angle of 6◦, and used 7 views for each plane. Compared to

standard stereo using the widest baseline possible, our method is more than 6 times faster,

and more than 3 times more accurate at the far range.

Again, we allowed standard stereo to use the widest baseline possible, so long as objects

in the near range are kept in view. For the two scenes, the nearest object is 5-10% of the

distance to the farthest object, which we have observed to be typical in outdoor ground-level

imagery. Note that the near range has a significant effect on standard stereo, as it limits

the baseline and increases disparity range. In contrast, this variable has negligible effect

on our method because the baseline is variable, and because these near-range depths are

processed at low resolution. For standard stereo, the resolution is insufficient to meet the

target accuracy throughout the volume. In fact, the depth resolution degrades below ∆z

at about 50% of zfar , and grows to nearly 3-4 times worse than ∆z at zfar . Our method on

the other hand maintains the target accuracy throughout the volume, while still performing

about 6 times faster for both scenes. Now suppose the images were captured at a resolution

sufficient for standard stereo to meet the target accuracy. This resolution would be 10 to

20 times greater than that required by our method, and the processing time would be 200

to 500 times greater. Keep in mind that while the time complexity of both algorithms is
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proportional to ∆z
−3, that of our algorithm is proportional to zfar

3 as opposed to zfar
6,

which is a dramatic improvement, especially for scenes with large depth ranges.

In our experiments, we have found an angle of triangulation of between 6 and 10 degrees

to work best for our scenes. Larger angles can reduce the resolution required to meet the

accuracy goal (see β in Equation 5.8), but matching is more difficult, and mismatches are

more frequent.

5.6 Discussion

We have presented our Variable Baseline/Resolution Stereo algorithm, which varies the

baseline and resolution proportionally with depth in order to maintain constant depth reso-

lution throughout the reconstructed volume. This is in contrast to traditional fixed-baseline

stereo in which the error increases quadratically with depth. Our approach directly ad-

dresses the accuracy and efficiency needs of an application designer wishing to employ stereo

as a measuring device, and produces depthmaps which meet the desired accuracy while re-

quiring orders of magnitude less computation than standard stereo. We have demonstrated

our algorithm on real scenes in which our algorithm performs many times more accurately

and efficiently than what is possible with standard stereo.

Controlling the geometric factor of depth error is is important for urban reconstruction

from ground-level, because of the large depth range observed. Not only can the far range

be reconstruction with greater precision, but computational effort in the near range can be

reduced considerably, which is important for efficiently processing large amounts of video.

Knowing the uncertainty of the depth measurements is also important for the fusion

step in Chapter 7, and having uniform depth uncertainty can simplify the algorithm and

determine the resolution of the fusion volume.

At this time, the view selection algorithm in this chapter is designed only for a fronto-

parallel plane-sweep. While in theory, the multi-sweep approach could also be used, it is

a non-trivial extension to the current algorithm. The main reason is that for non-fronto-

parallel planes, each point on the plane has a different depth, and so baseline and image

resolution must be selected per pixel. This complicates the GPU implementation consid-
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erably. Selection of image resolution has been implemented with an image scale pyramid

(called a mip-map in graphics processing), and until recently, mip-map levels were deter-

mined automatically and could not be selected according to depth as is required by our

algorithm. Therefore combining the two approaches is currently left to future work.

One of the reasons for using semi-global matching (Hirschmuller, 2008) as opposed to

real-time window-based matching, was because only fronto-parallel sweeps were used. This

resulted in the slanted surfaces such as the ground to be reconstructed poorly. In the fixed

baseline case, the projective distortion due to slant would fall off towards the far range as

the triangulation angle decreased. But because the triangulation angle is held constant with

a variable baseline, the effects of projective distortion were worse than usual. Semi-global

matching was employed to remove the need for a matching window and allow pixel-to-pixel

matching. Combining variable baseline/resolution stereo with multiple sweeping directions

would remove this problem.
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CHAPTER 6

Piecewise Planar and Non-Planar Stereo

6.1 Introduction

Figure 6.1: (a) Original image. (b) Planes found by RANSAC in depthmap. (c) Planar
class probability. (d) Final plane labeling overlaid on depthmap. Colors = planes, gray =
no plane, and black = discarded. (e) Resulting 3D model with planes highlighted. ( c©2010
IEEE.)

In this chapter I will present a method for segmenting an urban scene into piecewise

planar and non-planar regions. Fitting a scene with a piecewise planar model has become

popular for reconstructing urban scenes (Furukawa et al., 2009a; Sinha et al., 2009; Zebedin

et al., 2008), as it has several advantages. The planarity assumption helps recover surfaces

that are difficult to match, such as textureless or specular surfaces that often occur in urban

scenes. The resulting models have a lower complexity, which is important for storing and

rendering large-scale urban scenes. Furthermore, simplified geometry can often look better,



even if the overall surface accuracy is lower, since piecewise planar surfaces better resemble

man-made urban structures.

However, a piecewise planar model performs poorly in the presence of highly non-planar

objects such as trees, cars, bushes, and other clutter present in urban scenes. Recent

work such as Furukawa et al. (2009a) and Sinha et al. (2009) produces very convincing

3D reconstructions for man-made architectural scenes, as long as the scene is piecewise

planar. But for non-planar objects and clutter, the reconstructions can appear unnatural

or even completely incorrect. To address this problem, we present a stereo method capable of

handling more general scenes containing both planar and non-planar regions. Our proposed

technique segments an image into piecewise planar regions as well as regions which are

labeled as non-planar. The non-planar regions are modeled by the output of a standard

multi-view stereo algorithm. Thus, our method maintains the advantages of piecewise

planar stereo, while also having the ability to fall-back to a general representation to handle

non-planar surfaces.

The inputs to our algorithm are a video sequence, calibration parameters, camera poses,

and depthmaps as captured by the Urbanscape system. Depthmaps can be computed using

the plane-sweep method of Chapter 4. The output is a refined set of piecewise planar and

non-planar depthmaps that are then used to generate a textured polygonal mesh represen-

tation of the scene. The following is an overview of our method, which will be explained in

more detail in the rest of this chapter.

From the initial set of depthmaps, a number of plane hypotheses are found using a

RANSAC method (Figure 6.1b). Similiar to Furukawa et al. (2009a) and Sinha et al. (2009),

for each input depthmap, we set up a Markov random field (MRF) problem where each pixel

is assigned a label corresponding to one of the previously obtained plane hypotheses. The

key difference in our approach is the addition of a non-plane label which represents the

input stereo depthmap. Label likelihoods are defined as the photoconsistency of the plane,

in case of a plane label, or of the depthmap, in case of the non-plane label. In the spirit of

model selection, the non-plane label incurs an additional penalty, due to the higher degrees

of freedom in the depthmap surface. A smoothness prior is defined that penalizes label
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transitions and is weighted by surface continuity and image gradients. The resulting energy

functional is minimized using graph-cuts (Boykov and Kolmogorov, 2004; Boykov et al.,

2001; Kolmogorov and Zabih, 2002; Szeliski et al., 2006).

To further help distinguish planar and non-planar surfaces, we have trained a classifier

based on image color and texture features. The training set includes image segments that

have been hand-labeled as either planar or non-planar. A k-nearest neighbor classifier then

produces a planar class membership probability for each segment of the oversegmented input

images (Figure 6.1c), and the probability is included in the label likelihood. The reason for

this additional constraint derives from our piecewise planar assumption. It may very well

be that a plane fits a bush or sloping ground, at least within the precision of the stereo

reconstruction. It is in fact the appearance of these image regions that indicate they are

non-planar. This constraint also helps to ensure the correct plane label for specular surfaces

such as windows which may have poor photoconsistency. The ability to distinguish between

planar and non-planar surfaces based on appearance is due to urban scene structure. It

is observed that manmade structures are often planar and exhibit regular texture. Non-

manmade structures, e.g. vegetation, are typically not planar, and the texture is irregular.

Color is also an important feature.

Additionally, our method links and fuses the initial plane hypotheses across overlapping

views, ensuring a consistent 3D reconstruction over an arbitrary number of images. Plane

segments for which the point-to-plane distances fall within a certain threshold are linked,

and the plane estimates are fused. Because overlapping views can share the same plane

hypotheses, the image labeling can be performed independently for each view, and the

resulting 3D model will be consistent, i.e. a single planar surface can be extended indefinitely.

Also, because each image is processed separately, our algorithm is out-of-core, needing only

enough memory for one view at a time, and is therefore highly scalable. Using our system,

we have reconstructed thousands of frames of street-level video. Results show our method

successfully recovers piecewise planar surfaces alongside general 3D surfaces in challenging

scenes containing large buildings as well as residential houses.

Compared to the methods in the other chapters in this dissertation, the method pre-
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sented in this chapter is not real-time. Nevertheless, more optimization could result in

near real-time performance. Memory usage is low, and few data dependencies exist be-

tween frames, so the algorithm is still scalable and could be distributed to achieve better

performance.

The work in this chapter has been published in Gallup et al. (2010).

6.2 Related Work

In this section, we recall related work and discuss how it specifically applies to this chapter.

Furukawa et al. (2009a) use a very specific Manhattan-world model, where all planes

must be orthogonal, and Sinha et al. (2009) use a general piecewise planar model. Non-

planar surfaces are not handled well and are either reconstructed with a staircase appearance

or are flattened to nearby planes. The work of Zebedin et al. (2008) focuses on aerial

imagery, and in addition to planar rooftops allows for a surface of revolution representation

to handle domes and spires. Our model allows for a general depthmap reconstruction as an

alternative to planes, which handles any non-planar surface.

Zebedin et al. (2008) require each building to be segmented in the input, and each

building is processed independently, making it trivial to scale to large datasets. Furukawa

et al. (2009) present a Manhattan-world fusion technique for the purpose of generating floor

plans for indoor scenes. Multiple views must be fused in a single volumetric representation,

limiting the overall size of the reconstruction. We use a multi-view plane linking approach

which allows images to be processed separately (out-of-core), and can produce consistent

reconstructions over datasets of arbitrary size.

The use of color and texture features to classify planar surfaces is inspired by Hoiem et

al. (2005) and Saxena et al. (2007) who use color, texture, and other image features to infer

geometric context. They are able to create a plausible 3D representation from a single view,

however no depth measurements are made. We use many of the same features as Hoiem

et al. (2005), although our classification problem is much simpler. Our planar versus non-

planar classifier is used in addition to photoconsistency and smoothness constraints in the

image labeling task. Xiao et al. (2009) use trained classifiers and multi-view constraints to
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Figure 6.2: Our piecewise planar and non-planar stereo system. ( c©2010 IEEE.)

segment street-side images into ground, tree, building, and sky regions. 3D models are then

fit to the buildings. We also combine learned image appearance with multi-view constraints,

but make no hard decision until the the final plane labeling.

6.3 Piecewise Planar and Non-Planar Stereo

The steps of our algorithm are laid out in Figure 6.2. The input to our algorithm is a

collection of images, camera poses, and depthmaps. Depthmaps are computed using the

real-time plane-sweeping in Chapter 4. This reconstruction is typically poor for weakly

textured and specular surfaces, but the result is sufficient to initialize our algorithm.

6.3.1 Plane Hypothesis Generation

We first obtain a set of plane hypotheses for every image using a RANSAC method. Typi-

cally one seeks to find a single model to fit all the data, but our objective is to find multiple

locally fit models. In this regard, there are several important aspects of our method that

are crucial to achieving a good set of planes.

• Sampling. A plane model can be obtained from three points in the depthmap sam-

pled at random. The first point is selected from a uniform distribution over the image.

The other two points are selected from normal distributions centered at the first point

with a standard deviation of σ.

• Scoring. Each model is only evaluated against points nearby the original samples.

Specifically, only points within M pixels of the first sample are considered. Instead
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of scoring simply by the inlier count (number of points within a threshold distance to

the plane), we score by the likelihood of each point fitting the plane, according to the

MLE-sac method (Torr and Zisserman, 2000).

• Contiguity. After RANSAC returns a plane, the inlier set is determined by comput-

ing the distance of each point to the plane. Additionally, the inlier set is restricted to

points that are connected (contiguous) to the initial sample, according to the image

graph. A new plane is obtained as the least-squares fit to the inlier points. Inliers are

again determined, and the process is repeated for several iterations. (This contiguity

constraint is not used inside the RANSAC sampling loop for performance reasons.)

The final set of inliers is then removed from the image, and RANSAC is again repeated

on the remaining points. For each image we obtain a set of N planes Π = {π1 · · ·πN}. This

tends to include most of the major planes in the scene, as well as some spurious planes which

happen to fit well to non-planar or quasi-planar structures. We add to each set the plane

at infinity, denoted π∞, which is useful for labeling sky or distant surfaces which are not

reconstructed by stereo. At this point, an initial labeling of each image can be performed,

simply by assigning each inlier set from RANSAC to its respective plane.

For all of our experiments we use σ = 8 pixels, M = 100 pixels, and N = 20 planes.

Note that our plane detection method is much simpler than that of Sinha et al. (2009).

One reason is that that method operates on points and lines while our method operates on

depthmaps.

6.3.2 Multi-View Plane Linking

For multi-view reconstructions, it is imperative to obtain consistent plane hypotheses across

overlapping views. A planar surface visible in several images will generate slightly varying

plane hypotheses, due to small variations in the depthmaps. Also, it is intractable to

consider every plane for every image when processing large datasets. Thus we perform

a single pass over all images and establish links across nearby views between mutually

supporting planes. All linked plane hypotheses are fused to give a single multi-view estimate

for the plane.
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Planes are linked as follows. For every plane πi, the set of all planes in nearby views,

including the planes in the same view as πi, is considered for linking. For every plane πj

in that set, if a sufficient number of points (90%) belonging to πi falls within a threshold

distance (1% of the camera-to-point distance) of πj , then πi and πj are linked. A new plane

is fit to the combined set of points belonging to all the linked planes. A global disjoint set

data structure is created which maintains each set of linked planes. The disjoint set can be

held in memory at all times, since only a few bytes are required to identify a plane. This

ensures that surfaces seen in multiple images have the exact same plane hypothesis. It also

serves to link similar planes from repeated structures, or single planes which appear disjoint

in the images due to occlusion. See Figure 6.3.

6.3.3 Graph-Cut Labeling

Once the plane hypotheses have been established, the next step is to perform a pixel-wise

labeling of each image. Each image is processed independently, but since plane hypotheses

have been fused, the resulting depthmaps will be globally consistent. For each image, an

MRF is defined, leading to a standard energy minimization problem involving data and

smoothness terms. Our goal is to obtain a labeling so as to minimize the energy functional

E(L) =
∑
p∈I

Edata(L(p)) +
∑
p,q∈N

λsmoothEsmooth(L(p), L(q)), (6.1)

where I is the set of pixels in the image, N is the standard 4-neighborhood, and L is the

labeling.

The set of labels is the union of all plane labels, a non-plane label, and a discard label.

The labeling function L : R2 → {π1, · · · , πN , π∞,non-plane, discard} identifies a label for

every pixel. The non-plane label indicates the original stereo depthmap, and the discard

label indicates no reliable reconstruction could be obtained.
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The Edata function is defined as

Edata(l) =


min(ρ(l), ρmax) if l ∈ {π1 · · ·π∞}

min(ρ(l), ρmax) + ρbias if l = non-plane

αρmax if l = discard

(6.2)

where ρ is a photoconsistency (dissimilarity) measure between the pixels in nearby views put

into correspondence by the assigned plane (using a homography), or by the original stereo

depthmap. For photoconsistency we use the Birchfield-Tomasi pixel-to-pixel dissimilarity

measure (1998). For occlusion handling we use the multi-view technique of Kang et al.

(2001). For the non-plane label, a penalty ρbias is given in order to penalize models with

more degrees of freedom. The dissimilarity measures have been truncated to ρmax in order

to handle poorly matching specular or reflective surfaces such as windows. The discard label

receives slightly less penalty than the maximum. Thus small, poorly matching regions will

be labeled according to their surroundings due to the smoothness term, but large poorly

matching regions will incur enough cost to be discarded. For all our experiments we set

ρmax = 6, ρbias = 0.5, and α = 0.9. (See Figure 6.3.)

The Esmooth function is defined as

Esmooth(lp, lq) = g ·


0 if lp = lq

dmax if lp or lq ∈ {π∞, discard}

d′ otherwise

(6.3)

d′ = min(d, dmax) + dmin (6.4)

g =
1

γ‖∂I/∂u‖2 + 1
(6.5)

where d is the distance between the 3D neighboring points according to their labels, and g

is the image gradient magnitude (color or grayscale) between the two neighbors. Our video

sequences were captured along with GPS data, so absolute distances can be measured. Oth-

erwise, distances can be defined relative to the median value in the depthmap for example.
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The term dmin is a minimum penalty given in order to prevent spurious transitions between

planes that are close to each other in 3D. The term dmax makes the penalty robust to dis-

continuities. For all our experiments we set λsmooth = 5, dmin = 2, dmax = 0.2 meters, and

γ = 10.

The energy can be minimized using the well-known multi-label graph-cut method (Boykov

et al., 2001). One limitation of graph-cuts, and discrete MRFs in general, is that of metri-

cation, which follows a Manhattan distance, not a Euclidean one. This leads to stair-case

and other artifacts. However, we use this to our advantage in man-made scenes, where

the vertical direction and dominant facade normal can be readily obtained as in Section

4.4.1. The image can then be rectified so that the horizontal and vertical vanishing points

correspond to the x and y axes. Then the Manhattan distance metrication actually helps

to enforce that label boundaries follow vertical and horizontal lines.

6.3.4 Planar Classifier

Even with the non-plane label available, surfaces such as bushes, trees, and grass are oc-

casionally detected and assigned to planes by the graph-cut solution. Ultimately for some

regions, within the uncertainty of the stereo depth, a plane may well fit those surfaces. To

handle such cases, we train a classifier based on color and texture features to distinguish

between surfaces that are typically planar, and those that are not. Features are computed

from image patches. Inspired by Hoiem et al. (2005), we use the following color features:

mean red, green, and blue (RGB color space), mean hue, saturation, value (HSV color

space), and the hue histogram (5 bins). We use the following features computed from

the edge orientation histogram (Kumar and Hebert, 2003): entropy, maximum value, and

number of modes. The texture features capture the fact that man-made objects tend to

have only a few consistent edge orientations, while natural objects have a less structured

appearance.

Each image is segmented into a grid of 16 × 16 pixel cells, and the feature vector is

computed for each cell. We experimented with commonly used oversegmentation (super-

pixel) algorithms (Ren and Malik, 2003; Felzenszwalb and Huttenlocher, 2004b), but in the
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end we preferred the regular grid. We have found that there is enough information in the

photoconsistency and smoothness penalties to find accurate object boundaries. Therefore

we prefer the grid as it ensures segments of a uniform size and density. The training data

consists of approximately 5000 segments in 5 images which were labeled by hand as planar

or non-planar. For a given input image, the planar class probability for each grid cell is

computed using k-nearest-neighbors. In this step we are interested in the class membership

probability, computed as the percentage of features labeled planar in the neighbor set, and

we will defer the final plane labeling decision until the graph-cut.

Let a ∈ [0, 1] be the planar class probability for a given segment, and l be the label of

a pixel within that segment. The data term now becomes

E′data(l) = Edata(l) + λclass


1− a if l ∈ {π1, · · · , π∞}

a if l = non-plane

0 if l = discard.

(6.6)

We have set λclass = 2 for all our experiments. Figure 6.4 demonstrates the effect the class

penalty has on the labeling result.

6.4 Experiments

To test our system, we have processed street-side video captured by the Urbanscape system.

The video was captured by two vehicle-mounted Point Grey Flea2 1024×768 color cameras.

The cameras are aimed perpendicular to the driving direction, with one camera pointed

horizontally and the other pointed upwards at 30 degrees. The composite camera system

has a horizontal field of view of 120 degrees, and a vertical field of view of 60 degrees. The

captured data contains a variety of street-level scenes with large buildings and residential

houses. These scenes contain large planar facade surfaces but also many non-planar objects

such as bushes, trees, and cars.

For all our experiments we have used the parameter values that have been given through-

out Section 6.3. Parameters were chosen empirically and without much difficulty. Also, the

same set of training data was used for all experiments. The fact that we used the same
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set of parameters and training data for several diverse datasets indicates that they are not

overly critical.

Although the end goal of our approach is to produce depthmaps, we have evaluated the

final graph-cut labels for accuracy against a hand-labeled test set of 31147 planar and non-

planar image segments in 28 images. Since the graph-cut labels are computed on the full

resolution, the segment label is determined by majority vote. Any of {π1, · · · , πN , π∞} count

as planar, non-plane counts as non-planar, and discard is not counted. 96.1% of the planar

segments and 86.0% of the non-planar segments were labeled correctly–an average accuracy

of 91.1%. (We will focus on the average because there are many more planar test examples

than non-planar ones.) We have performed additional evaluations using the classifier only,

using the graph-cut labeling without the classifier, and using the classifier with only texture

or color features. The results of these experiments are shown in Figure 6.5. Of particular

interest is the fact that the graph-cut labeling achieves an average classification rate of

64.4% without the classifier, 78.6% with the classifier trained with texture features, 89.2%

with the classifier trained with color features, and 91.1% with the classifier trained with

both types of features. This shows that the classifier has a significant effect, and while color

is clearly the most important type of feature, the texture features are also quite effective,

and they improve the accuracy. It is also interesting that planar classification rate using

the graph-cut labeling with the classifier is lower than when using the classifier alone. This

appears to be because not all planar surfaces are discovered by RANSAC, and the graph-cut

labeling must have a correct plane hypothesis in order to produce a planar label.

Figure 6.6 shows 9 images sampled from our results. For each image, the results of the

RANSAC plane detection, planar classification, and graph-cut labeling are shown. In each

scene, most of the major planes are found by our RANSAC method, although some planes

are occasionally missed, especially when they occupy only a small portion of the image. The

planar classifier performs well, despite its simplicity, and provides a good cue for the final

graph-cut labeling to select between plane labels and the non-plane label. The final graph-

cut labeling recovers broad planar surfaces while also identifying non-planar surfaces. Note

that even though the planar classifier is run on a coarse grid, the graph-cut result recovers
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fine object boundaries due to the photoconsistency constraint.

The number of input video frames ranges from 200 to 800 (see Figures 6.7-6.9 for exact

numbers), and a refined depthmap is computed for every 10th frame. Our unoptimized

C++ implementation ran on an Intel Xeon 2.67 GHz PC and took about 1 to 2 minutes

per depthmap for all steps. This has the potential to be sped up considerably by using

a real-time variant for the RANSAC step such as ARRSAC (Raguram et al., 2008) and a

faster MRF solver than graph-cuts such as the variational GPU-based meth of Zach et al.

(2008)

Figures 6.7-6.9 show the final 3D models produced by our system. Many textureless

and specular surfaces that were missed in the original reconstruction were recovered by

our system due to the piecewise planar model. Also, because our model enforces planes,

straight lines on planar surfaces remain straight in the 3D models. Especially note that

the non-planar surfaces are preserved, and are not flattened to planes as in other piecewise

planar stereo methods.

6.5 Discussion

In this chapter I have presented a piecewise planar reconstruction method that also handles

non-planar surfaces. Planar and non-planar surfaces are segmented with the aid of a clas-

sifier that exploits the structured texture and color of manmade objects in urban scenes.

Results have shown that our piecewise planar and non-planar method can successfully re-

cover planar surfaces alongside non-planar surfaces, even in highly cluttered scenes. One

of the weaknesses of our reconstructions is the lack of completeness. Many planar surfaces

that occupy only a small part of the image are missed by our system, and other surfaces are

simply not seen in any of the cameras. This can be addressed by adding a more complete

set of views to the dataset. Note that the scenes considered in our work are significantly

more cluttered than those addressed by previous piecewise planar stereo methods.

One direction for future work would be to use more surface primitives and classes.

Besides planes, other simple shapes appear in urban scenes like cylinders, spheres, and cones.

The RANSAC plane detection step could be extended to search for these objects as was
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done in Labatut et al. (2009). Also, using a richer set of classes besides planar/non-planar

could also help the reconstruction. For example, explicitly detecting glass windows would

be beneficial since stereo performs poorly on these reflective surfaces. This quickly leads

to the problem of image parsing where labeling the image with its semantic or geometric

class is the primary goal. Combining our stereo system with a more sophisticated parsing

method, such as Tighe and Lazebnik (2010), could possibly improve reconstruction and

labeling simultaneously.
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Multi-View
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Figure 6.3: The second row shows a subset of the images used to compute the depthmaps.
The third row illustrates the the plane detection results of our modified RANSAC technique.
The fourth row shows the plane labels after linking. Note that the same scene plane now
has a consistent label. The fifth row shows the classification results of the image into planar
or non-planar structure (planar class probability black=0, white=1). The sixth row shows
the results of the graph cut based plane assignment. See Figure 6.7 for the resulting 3D
model. ( c©2010 IEEE.)
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(a) (b)

(c) (d)

Figure 6.4: Result of graph-cut labeling with and without the planar class probability term.
(a) Original color image. (b) Planar class probability. (c) Graph-cut labeling result without
the class probability term. (d) Labeling result with the class probability term, which helps
to remove many false planes labeled in the bushes and grass. ( c©2010 IEEE.)

Classifier Only

Texture Color All

Planar 87.0 97.5 98.0
Non-Planar 61.8 80.6 81.3

Average 74.4 89.1 89.7

Graph-cut Labeling

No Classifier Texture Color All

Planar 66.2 88.1 96.8 96.1
Non-Planar 62.7 69.0 81.5 86.0

Average 64.4 78.6 89.2 91.1

Figure 6.5: Classification rates of the classifier alone and the graph-cut labeling with and
without the classifier. Also compared are the rates of the classifier trained with only texture
features, with only color features, and with all features.
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Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Scene 7 Scene 8 Scene 9

Figure 6.6: Results from the various steps of our algorithm for several scenes. Each of
the four panes is as follows. Top Left: original color image. Top Right: RANSAC planes.
Bottom Left: Planar class probability. Bottom Right: Final graph-cut labeling.
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Final 3D Model

3D Model with Highlighted Planes

Before After

Before After

Figure 6.7: 3D model produced by our piecewise planar and non-planar stereo algorithm
from 400 images (40 depthmaps). The before and after images show the improvements
of a piecewise planar model: textureless and specular surfaces (windows) are recovered,
straight lines remain straight, and 3D model complexity is reduced. Also note that the
reconstruction is able to preserve non-planar surfaces as well. ( c©2010 IEEE.)
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Final 3D Model

3D Model with Highlighted Planes

Before After Before After

Figure 6.8: 3D model produced by our piecewise planar and non-planar stereo algorithm
from 800 images (80 depthmaps). ( c©2010 IEEE.)

Before After Highlighted Planes

Figure 6.9: 3D model produced by our piecewise planar and non-planar stereo algorithm
from 200 images (20 depthmaps). ( c©2010 IEEE.)
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CHAPTER 7

A Heightmap Model for 3D

Reconstruction

7.1 Introduction

In this chapter, I will present a volumetric surface reconstruction method that uses a

heightmap representation. This addresses the problem of surface generation from depth

measurements. This surface can be represented implicitly by a volumetric function or ex-

plicitly by a polygonal mesh. Surface generation was also addressed to a degree in Chapter

6, where piecewise planar segmentation formed surfaces from single views. But in this chap-

ter, all the depth information (within a volume of interest) will be fused to form a single

unified surface. The method models the occupancy probability of each point in the volume

based on the depth measurements, and then extracts the surface as the boundary between

full and empty space. However, rather than reconstruct a general surface, greater speed

and lower memory usage can be achieved by using a heightmap constraint. In the simplest

case, each vertical column is assigned a single height value that optimally separates full and

empty space in that column. To handle more complex scenes, a multi-layer heightmap is

used, where each layer represents a transition between full and empty space. The heights of

all the layers in a column can be computed optimally with a dynamic programming method.

Compared to other volumetric methods (Zach et al., 2007), the heightmap model has

several advantages. First, it enforces that walls and facades are strictly vertical, since

they appear as discontinuities in the heightmap. Using a heightmap for ground-based

measurements has the advantage that the estimated parameter, height, is approximately

perpendicular to the dominant direction of measurement noise. This is ideal for urban



Sample Input Images Sample Input Depthmaps

Heightmap 3D Model Geometry Textured 3D Model

Figure 7.1: A heightmap model for 3D reconstruction.

Figure 7.2: Example cross-sections of n-layer heightmaps.

reconstruction where vertical walls are of particular interest. Second, because the height

estimate is constrained by all the data in the entire vertical column, good results can be

obtained wihtout regularization, leading to a highly parallel and efficient computation. In

fact, the occupancy probabilities of the column only need to be stored temporarily, thus

avoiding the need to store the entire volume during optimization. Third, heightmaps can

be stored more efficiently than polygon meshes. Therefore the heightmap representation

yields efficient computation and storage.

One limitation of our model compared to a general geometric representation is that it

does not accommodate complex surfaces that would require a large number of layers. Using

too many layers would approach general volumetric methods and without regularization

would lead to ambiguous and noisy layer positions. Thus our algorithm presents a trade-off

compared to more general 3D reconstruction methods. It is more efficient, robust, and

produces more compact models at the expense of losing some detail.
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Our method runs on the GPU, and the complete system can process video at 13 Hz.

We have demonstrated our approach on several challenging street-side video sequences from

the Urbanscape project.

Another data source for urban 3D reconstruction is images downloaded from photo

sharing websites such as Flickr. In this case, data acquisition is free but the datasets

are usually limited to popular tourist locations. Camera poses can be computed using

techniques such as the Photo Tourism system of Snavely et al. (2006) and the more recent

methods of Frahm et al. (2010) and Agarwal et al. (2009). Dense stereo and surface modeling

were first achieved by Goesele et al. (2007) and recently by Furukawa et al. (2010). We apply

our extended heightmap approach to 3D reconstruction from community photo collections

as well. Our approach is much simpler and faster, and yet results are surprisingly good.

In the rest of this Chapter, I will first present the heightmap reconstruction method in

Section 7.2, then I will describe how this method can be used to perform reconstruction

from video sequences and photo collections in Section 7.3.

The method presented in this chapter was published in Gallup et al. (2010a) and Gallup

et al. (2010b).

7.2 n-Layer Heightmap Method

A single layer heightmap defines a surface, which is the transition from occupied space to

empty space. In an n-layer heightmap, each layer defines a transition from full to empty

or vice versa. Figure 7.2 illustrates single- and multi-layer heightmaps where each layer is

represented by a different color. The number of layers needed to reconstruct a scene can

be determined with a vertical line test. For any vertical line, the number of surfaces that

the line intersects is the number of layers in the scene. In our approach, the user must give

the maximum number of layers beforehand, although model selection may determine that

fewer layers are sufficient.

The input to our method is a set of images with corresponding camera poses and their

depthmaps. In this section we will assume that the volume of interest has been defined.

Section 7.3 discusses how to lay out the volume for reconstructing video sequences and
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photo collections. The depth measurements from each camera are used to determine the

occupancy likelihood of each point in the volume, and an n-layer heightmap is fit.

In our approach we use the probability occupancy grid from the robotics literature (Mar-

garitis and Thrun, 1998; Pathak et al., 2007). The occupancy of each voxel is computed by

Bayesian inference, and our derivation is similar to that of Guan et al. (2008). We model the

measurement distribution as a combination of normal and uniform distributions in order to

better handle outliers. Robustness to outliers is critical since our input measurements are

stereo depthmaps.

We will now describe how to compute the probabilistic occupancy grid over the volume

of interest. Since the heightmap layers will be computed independently for each vertical

column of the volume, the occupancy grid does not need to be fully stored. Each column

must be stored only temporarily, which keeps the memory requirement low. We will first

derive the occupancy likelihood for each voxel independently. Voxel occupancy is in fact not

independent since it must obey the layer constraint, and we will later show how to compute

the layers for a column of voxels using dynamic programming. The variables used in our

derivation are summarized as follows:

• Op: a binary random variable representing the occupancy of voxel p.

• Zp = Z1 . . . Zk: depth measurements along rays intersecting p from cameras 1 . . . k.

• zmin, zmax: depth range of the scene.

• σ: depth measurement uncertainty (standard deviation).

• S: depth of surface hypothesis.

• Lx = l1 . . . ln: configuration of layers at point x in the heightmap. li is the vertical

position of layer i.

For simplicity we have assumed that all depth measurements have the same uncertainty σ

although this is not a requirement.

We will now derive the likelihood for Op. (We will drop the subscript p until multiple
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voxels are considered for dynamic programming):

P (O|Z) ∝ P (Z|O)P (O) (7.1)

P (Z|O) =
∏

i=1...k

P (Zi|O) (7.2)

Equation 7.2 states our assumption that the measurements are independent. We use the

occupancy prior P (O) to slightly bias the volume to be empty above the camera center and

full below. This helps to prevent rooftops extending into empty space since the cameras do

not observe them from the ground.

To determine P (Zi|O) we will follow Guan et al. (2008) and introduce a helper variable

S which is a candidate surface along the measurement ray. The depth measurement can

then be formulated with respect to S.

P (Zi|O) =

∫ zmax

zmin

P (Zi|S,O)P (S|O)dS (7.3)

P (Zi|S,O) = P (Zi|S) =

 N (S, σ)|Zi if inlier

U(zmin, zmax)|Zi if outlier
(7.4)

= ρN (S, σ)|Zi + (1− ρ)U(zmin, zmax)|Zi (7.5)

The measurement model is a mixture of a normal distribution N and uniform distribution

U to handle outliers. N|Z is the distribution’s density function evaluated at Z. ρ is the

inlier ratio, which is a given parameter. P (S|O) is the surface formation model defined as

follows where ε→ 0 and zp is the depth of the voxel.

P (S|O) =


1/(zmax − zmin) if S < zp − ε

(1− zp/(zmax − zmin)) /ε if zp − ε ≤ S ≤ zp

0 if S > zp

(7.6)

This model states that the surface must be in front of the occupied voxel, but not behind it.

We will also need the measurement likelihood given that the voxel is empty, which we will

denote by ¬O. The derivation is the same, replacing O with ¬O, except that the surface
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formation model is

P (S|¬O) = 1/(zmax − zmin). (7.7)

We will now define our n-layer model and show how to recover it with dynamic pro-

gramming. We will derive the likelihood of Lx which is the layer configuration at pixel x in

the heightmap. This pixel contains a vertical column of voxels, which we will denote as Oi

where i is the height of the voxel ranging from 0 to m.

P (L|Z) ∝ P (Z|L)P (L) (7.8)

P (Z|L) =

l1−1∏
i=0

P (Z|Oi)
l2−1∏
i=l1

P (Z|¬Oi) . . .
m∏
i=ln

P (Z|¬Oi). (7.9)

P (L) =

l1−1∏
i=0

P (Oi)

l2−1∏
i=l1

P (¬Oi) . . .
m∏
i=ln

P (¬Oi). (7.10)

Note that the measurement likelihoods alternate between the full condition P (Z|Oi) and the

empty condition P (Z|¬Oi) as dictated by the layer constraint. Also note that the number

of layers is assumed to be odd, giving the final product the empty condition. This is true for

outdoor urban scenes where the the bottom of the scene terminates with the full condition

(the ground) and the top of the scene terminates with the empty condition (the sky). For

indoor scenes, an even number of layers could be used.

We will now define our cost function C by taking the negative log-likelihood of P (L|Z),

which will simplify the dynamic programming solution.

C = −ln P (Z|L)P (L) = −
l1−1∑
i=0

(ln P (Z|Oi) + ln P (Oi))

−
l2−1∑
i=l1

(ln P (Z|¬Oi) + ln P (¬Oi)) . . . (7.11)
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To simplify the sums over the layers we will define the following:

Iba = −
b∑
i=a

(ln P (Z|Oi) + ln P (Oi)) (7.12)

Ība = −
b∑
i=a

(ln P (Z|¬Oi) + ln P (¬Oi)) . (7.13)

The sums Ib0 (resp. Ī) for all b can be precomputed making it easy to compute Iba = Ib0 − I
a−1
0

(resp. Ī).

We can now write our cost function recursively in terms of Ck which is the cost only up

to layer k.

Ck(l) =

 I ll′ + Ck−1(l′) if odd(k)

Ī ll′ + Ck−1(l′) if even(k)
(7.14)

l′ = argmin
l′≤l

Ck−1(l′) (7.15)

C0(l) = 0 (7.16)

The original cost function is then C = Cn(m) where n is the number of layers and m is the

number of voxels in the vertical column.

The layer configuration that minimizes C can be computed with dynamic programming.

In order for this to be possible, the problem must exhibit optimal substructure and over-

lapping subproblems (Cormen et al., 2001). The problem has optimal substructure because

of the independence between non-adjacent layers, i.e. an optimal configuration of layers

1 . . . i − 1 will still be optimal regardless of the position of layer i. (As in Ck, we consider

only the voxels below the layer.) The overlapping subproblems occur since computing the

optimal position of any layer greater than i requires computing the optimal configuration

of layers 1 . . . i. Therefore, the optimal configuration can be solved with dynamic program-

ming. The recursive formulation in Equation 7.14 lends itself easily to the table method,

and the solution can extracted by backtracking. See Figure 7.3 for an example.

Many parts of the heightmap will not need all n layers. The extra layers will be free to

fit the noise in the measurements. To avoid this, we incorporate the Bayesian Information
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Figure 7.3: The optimial layer configuration is computed with dynamic programming.

Criterion (BIC):

CBIC = −ln P (Z|L)P (L) +
1

2
n ln |Zx| (7.17)

where |Zx| is the number of measurements interacting with the heightmap pixel x. The

first part of the equation is exactly C and the second part adds a penalty of ln |Zx| for

every layer in the model. We can add this penalty into our recursive formulation by adding

ln |Zx| at each layer unless the layer position is the same as the preceding layer.

CBIC
k (l) =

 I ll′ + Ck−1(l′) + T (l 6= l′)1
2 ln |Zx| if odd(k)

Ī ll′ + Ck−1(l′) + T (l 6= l′)1
2 ln |Zx| if even(k)

(7.18)

(7.19)

Thus model selection is performed by preferring layers to collapse unless there is sufficient

evidence to support them. The table required to solve the problem is of size m × n, and

the sum variables are of size m. Therefore the algorithm takes O(mn) time and space per

heightmap pixel, and the whole w × h heightmap takes O(whmn) time and O(wh + mn)

space.
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We have implemented the heightmap algorithm on the GPU using NVIDIA’s CUDA

platform (Nvidia). While our method can be parallelized using any technology, we found

CUDA to have a number of advantages. First, CUDA provides shared memory which

multiple threads can access. We use this to our advantage by having a different thread

compute the occupancy likelihood for each voxel in a vertical column, writing the results to

an array in shared memory. After the likelihood computation, one of the threads performs

the dynamic programming computation. Second, CUDA allows for divergent branching at

the block level. (Each block is composed of multiple threads, see NVIDIA’s CUDA (Nvidia)

for details.) This allows for greater efficiency when all cells assigned to a block have been

masked out due to overlapping the previous heightmap in a video sequence (See Section

7.3.1). In that case, the block of threads can terminate quickly, freeing up resources for the

next block. Figure 7.5b shows the blocks of a heightmap layout that can take advantage of

this early exit divergence.

7.3 3D Reconstruction with Heightmaps

We will now describe how to use the heightmap method to reconstruct scenes from video

or photo collections. Reconstruction consists of the following steps:

1. Lay out the volume of interest.

2. Compute the n-layer heightmap.

3. Extract the surface mesh and generate texture maps.

Step 2 was already described in Section 7.2.

7.3.1 Layout

The volume of interest for heightmap computation is defined by its position, orientation,

size, and resolution. Note that the x and y resolution of the heightmap directly influence

the memory consumption of our computation, but the z (height) resolution does not (ex-

cept for temporary local storage). The heightmap computation assumes that the vertical
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Figure 7.4: Volume of interest layout for processing video. Each volume is processed inde-
pendently.

direction is known. Besides that constraint, the volume of interest can be defined arbitrar-

ily. For processing large datasets like video of an entire street, it makes sense to define

several volumes of interest and process them independently. For video, a frame is chosen

as reference, and the volume of interest is defined with respect to the camera’s coordinate

system for that frame. Reference frames are chosen at irregular intervals where the spacing

is determined by overlap with the previous volume. See Figure 7.4 for an example.

For photo collections, the views are unordered so heightmaps cannot be laid out in

sequence. Some photo collections are small enough that a single heightmap can be used,

but usually there are too many views and too much area. Instead, the area occupied by

the 3D points (from SfM) is broken up into tiles depending on the desired resolution of the

reconstruction. Only tiles with a reasonable number of 3D points in them are computed.

Computing the vertical direction is essential for the heightmap method. For video

captured with the Urbanscape system, the vertical direction is given by the GPS/INS

measurements. Otherwise it can be computed by examining vanishing points as described

in Section 4.4.1. For photo collections, the vertical direction can be found using a heuristic

derived from photography practices. Most photographers will tilt the camera, but not allow

it to roll. In other words, the x axis of the camera stays perpendicular to gravity. This

heuristic can be used to compute the vertical direction as a homogeneous least squares

problem as shown by Szeliski (2005).

Facades and other vertical surfaces will appear as discontinuities in our heightmap. To
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(a) (b) (c)

Figure 7.5: (a) Heightmap computed without axis alignment. (b) Heightmap computed
with axes aligned to dominant surface normal. Dark red indicates complete blocks where a
CUDA kernel can diverge with an early exit. (c) Bright red indicates detected heightmap
discontinuities.

avoid staircase discontinuities due to the pixel grid, we align the grid’s x and y axes to the

facade’s surface normal. This can be done using the method in Section 4.4.1. See Figure

7.5a-b.

7.3.2 Mesh Extraction and Texturing

Once a heightmap is computed, the next step is to create a polygonal mesh. This could be

done easily by generating a quadrilateral mesh for each heightmap layer. However, we wish

to pay special attention to large changes in height since they usually represent vertical walls.

We can detect these height discontinuities by thresholding the height gradient magnitude.

For every discontinuity between two pixels, a vertical quadrilateral is generated between

full and empty space. This can be done by sorting all the layer heights from both pixels

and considering them one pair at a time. Unless the height values in a pair are equal, a

vertical surface must be generated.

Now that the surface geometry has been generated, the next step is to compute the tex-

ture map for the mesh. In previous chapters, the surfaces were generated from depthmaps,

so the geometry and the color were determined from the same view. In that case, texture

mapping was simply a matter of back-projecting the image onto the surface. In this case,
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the surface is composed from many views, some of them occluded. In the case of photo

collections these views have very different appearances. Therefore, we compute the tex-

ture map by combining the color information from all views with a median method. For

each surface point, the color is determined by projecting that point into all the images and

accumulating an intensity histogram for each color channel. The histogram vote is down-

weighted if the depthmap for that view differs from the depth of the reconstructed surface

indicating an occlusion. The final color is then computed simply as the median value of the

histogram for each color channel.

7.4 Experiments

We have tested our n-layer heightmap method on street-level video from Urbanscape and

photo collections downloaded from the web. For the video datasets, the depthmaps were

computed with the plane-sweeping stereo method in Chapter 4. To compute the camera

poses for the photo collections, we used the method of Frahm et al. (2010). The output of

their system also gives a clustering of the images which can be used to select compatible

views for stereo. We computed a depthmap for each photograph by selecting the 20 views in

the same cluster with the most matched and triangulated SIFT points in common. Because

views in a cluster have similar viewpoint and appearance, the simple plane-sweep method

can be used. However, NCC is used instead of the SAD matching score, since there is still

some appearance variation between images. Results are shown in Figure 7.6.

Figures 7.7 and 7.8 show 3D heightmap reconstructions before and after texture map-

ping. Figure 7.9 shows the improvement gained by using multiple layers in the heightmap.

Overhanging structures are recovered while the clean and compact nature of the reconstruc-

tion is preserved. Figures 7.10 show the results of the reconstructions from video. Figures

7.11 show the results of the reconstructions from photo collections. Most reconstructions

required only 3 layers. 5 layers were used for some models, and the model of the Roman

Coliseum used 7 layers. Note that even though the model selection adapts to the number

of layers in the scene, it is more efficient to specify fewer layers if possible.

Our system can process video at 13.33 Hz. Computing a 3-layer 100x100 heightmap
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with 100 height levels from 48 depthmaps takes only 69 ms on the GPU. The other steps

are not as fast as we did not focus as much on optimizing them. Converting the heightmap

into a mesh takes 609 ms, and generating texture maps takes 1.57 seconds. The total time

for processing a heightmap is 2.25 seconds. However, heightmaps only need to be computed

about every 30 frames of video. Therefore, our system can process video at 13.33 frames

per second. Reconstructing photo collections is more challenging. Each scene takes 20-30

minutes, and most of that time is spent computing NCC stereo.

7.5 Discussion

We have proposed a novel n-layer heightmap method for depthmap fusion and surface gener-

ation. The structure of urban scenes allows a multi-layer heightmap to model most aspects

of the scene, and the heightmap is ideal for reconstructing vertical walls since the model

does not support noise variations perpendicular to the wall. One of the main advantages of

this approach is that it is highly parallel and memory efficient and can therefore be imple-

mented on the GPU. This efficiency comes at a cost, since not all the detail of a scene can

be captured with a heightmap.

Experiments have shown our heightmap method to be effective at reconstructing a wide

variety of urban scenes both from street-level video and from Internet photo collections. As

is expected, the resulting 3D models do not capture all the detail of the scene, but they are

clean, compact, and the surface is continuous without holes. One of the weaknesses at this

point is the texture maps. The simple method used blends color information from many

views. This inevitably results in a loss of resolution since not all the views are perfectly

calibrated, the surface geometry is not perfect, and the images have all been sampled

differently. Thus the images back-projected onto the surface will be slightly misaligned,

so blending results in low-pass filtering. To obtain higher quality texture maps, an image

mosaicking approach such as Gracias et al. (2009) could be used.

Another direction for future work would be to incorporate spatial regularization to

enforce smoothness between neighboring height pixels. While we have shown that regular-

ization is not necessary to obtain a good result, it could help in some cases where too few
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depth measurements lead to noisy results.
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Figure 7.6: Original photos and depthmaps computed from Internet photo collections.
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Figure 7.7: Untextured and textured 3D models produced by our system. This challenging
scene features many reflective cars and glass store-front facades.
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Figure 7.8: Untextured and textured 3D models of a residential scene reconstructed by our
algorithm.
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Figure 7.9: 1-layer and 3-layer reconstructions.

109



Figure 7.10: More 3D reconstructions from video.
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Figure 7.11: 3D reconstructions from Internet photo collections.
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CHAPTER 8

Conclusion

8.1 Summary

I will now discuss how this dissertation has supported the claims of the thesis statement:

Dense 3D reconstruction of large-scale urban environments can be performed

automatically from video captured from street-level. By using parallelizable and

scalable algorithms which take advantage of urban scene structure, the 3D scene

can be reconstructed accurately and efficiently, even in real-time.

The thesis statement highlights the main challenge of this work: scale. Reconstructing

cities from ground-level requires processing an enormous amount of data. Algorithms must

be scalable. Processing speed, memory usage, and output model size are all challenges

derived from the scale of the problem. Chapter 4 presents a multi-sweep stereo that runs in

real-time on the GPU. This allows depthmaps to be computed for every frame, and these

then serve as inputs to the other methods in Chapters 6 and 7. Chapter 5 discusses a

variable baseline/resolution view selection method for stereo that achieves a target depth

resolution in O(z3) time compared to O(z6) time for the fixed-baseline approach. The

method is particularly useful for street-level imagery for which the scene exhibits a large

depth range. The piecewise-planar stereo in Chapter 6, although not real-time, is scal-

able. All images can be processed independently, and the reconstruction is still globally

consistent since plane hypotheses are linked over multiple views. Finally, Chapter 7 uses a

heightmap representation to perform volumetric fusion in real-time and with less memory.

The simplified scene can be stored compactly as a heightmap rather than a 3D mesh.



Accuracy is another goal of the thesis. Using multiple sweeping directions in Chapter

4 resulted in more than twice as precise depth measurements compared to a single plane-

sweep. Chapter 5 addresses the geometric factor of depth measurement precision, and shows

how varying the baseline and resolution appropriately can yield constant depth resolution

over the depth range (compared to fixed baseline stereo where depth resolution declines

quadratically with depth). Experimental results on ground truth show this theory to hold.

Chapter 6 looks for planes in the scene to improve the accuracy of the reconstruction. The

heightmap used in Chapter 7 cannot capture all the detail of the scene but it ensures walls

are vertical thereby improving accuracy when this is the case.

The thesis also claims that these algorithms achieve their performance by taking advan-

tage of urban scene structure. The plane-sweep method of Chapter 4 finds the principal

surface normals in a planar urban scene by using orthogonality, verticality, and camera

motion. Furthermore, the planarity of the scene allows the algorithm to construct a dis-

criminative prior on the location of planes in the scene. Chapter 6 identifies planar regions

by looking at the texture regularity and color of the scene. Chapter 7 shows that urban

scenes can effectively be modeled with heightmaps which rely on and enforce verticality.

The methods presented in this dissertation address each of three major aspects of dense

3D reconstruction, namely multi-view correspondence, triangulation geometry, and surface

generation. Chapter 4 computes more accurate correspondences by aligning the plane-sweep

directions to the surfaces in the scene. Chapter 5 varies the baseline and resolution to

specifically deal with the geometric factor of depth precision. Chapter 6 selectively enforces

planar surfaces which improves accuracy, and Chapter 7 uses a heightmap representation

to model the scenes surfaces.

8.2 Future Work

For future work, I consider the following directions and ideas:

Line Features Line features are an important part of urban scene structure that we

have so far overlooked. Similar to texture regularity, lines indicate planar surfaces, and are
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important features to reconstruct correctly. These high frequency edges are quite salient,

and so it is important that they remain lines in the 3D reconstruction. Converging line

features could also identify vanishing points which could identify the urban scene normals.

In the piecewise planar reconstruction, lines could be used in the planar surface classifier or

3D lines could be used in the data term to favor planes that intersect them as in Sinha et al.

(2009). Line features could be particularly helpful for reconstructing indoor environments

where textureless walls are prevalent.

Improved Classification and Reconstruction Finding planes based on manmade sur-

face appearance is a promising direction. This concept could be expanded to handle other

types of geometric primitives such as cylinders, spheres, and cones, similar to Labatut et

al. (2009), or b-splines similar to Bleyer et al. (2010). These primitives would allow a much

wider range of surfaces to be reconstructed with simple shapes. This simplification not only

reduces model size but also produces a cleaner, more accurate reconstruction. In addition

to more primitives, more classes could be considered. Knowing the surface type allows the

appropriate reconstruction technique to be used, or at the very least allows the method’s

parameters to adapt to the surface. For example, pixels classified as glass window should

not be matched using typical matching scores since the glass surface’s reflections can change

the appearance significantly from view to view. Instead, a matching score based on edges

that seeks to identify the window’s frame might perform better for this type of surface.

Reconstruction should be able to improve classification as well. Scene parsing approaches

like Tighe et al. (2010) could be applied and updated to take into account 3D features like

curvature, height above the ground, absolute scale, and object depth boundaries. The rela-

tionship between reconstruction and recognition problems has been shown to be important

by Cornelis et al. (2008).

Heightmap Reconstruction Including regularization between neighboring heightmap

pixels could prove helpful in cases where little depth data is available. One approach

could be to smooth or denoise each layer after the initial computation. But this would not

allow large errors to be corrected. Adding regularization into the multi-layer computation is
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difficult however. Adding dependence between neighboring layers would mean that dynamic

programming could no longer solve the problem. Graph-cut methods which are typically

used for these image optimization problems could not handle multiple labels per pixel.

Using graph-cuts to update one layer at a time will also not work because each layer would

easily get stuck in local minima. Moving two layers together will avoid this, but the set of

possible locations would become quadratic. As an approximation, one could compute the

data term for each layer as if all other layers were in their optimal positon disregarding

smoothness penalties. This would be a lower bound approximation to the true data term,

but it would allow a single layer to move because the data term would behave as though

the other layers were moving to reduce the energy as well.

Besides regularization, other enhancements could be made to the method. For example,

texture maps could be generated using a texture mosaicing approach like Gracias et al.

(2009). Currently the texture maps lose quality because all views are blended together. All

the misalignments due to geometry error and camera calibration error act as a low-pass

filter when blending. Computing a mosaic would attempt to select a single crisp image to

texture the region on the surface.

Finally, because the heightmap uses the probabilistic occupancy grid framework, it

should be trivial to fuse data from different modalities, provided that their noise charac-

teristics are known. Fusing aerial-based stereo or LiDAR measurements would result in

greater completeness, especially for the roof-tops which are not observed from the ground.

Completing the System At this point, not all the methods presented in each chapter

work together as a complete system. Currently the variable baseline/resolution view selec-

tion strategy only works for fronto-parallel sweeps. Handling non-fronto-parallel planes is

a non-trivial extension to the current algorithm. The main reason is that for non-fronto-

parallel planes, each point on the plane has a different depth, and so baseline and image

resolution must be selected per pixel. This complicates the GPU implementation consid-

erably. Selection of image resolution has been implemented with an image scale pyramid

(called a mip-map in graphics processing), and until recently mip-map levels were deter-

mined automatically and could not be selected according to depth as is required by our
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algorithm. If this were implemented, the variable baseline/resolution approach could be

used both for the multi-sweep stereo and to compute the matching scores for the plane

hypothesis in the piecewise planar reconstruction. This would allow these methods to re-

construct the scene at a greater distance and would reduce computation in the near range.

116



BIBLIOGRAPHY

Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. (2009). Building rome in
a day. In ICCV.

Baillard, C., Schmid, C., Zisserman, A., and Fitzgibbon, A. (1999). Automatic line matching
and 3d reconstruction of buildings from multiple views. In In ISPRS Conference on
Automatic Extraction of GIS Objects from Digital Imagery.

Belhumeur, P. N. (1996). A bayesian approach to binocular stereopsis. International Journal
of Computer Vision (IJCV).

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE
Transactions on Acoustics, Speech and Signal Processing (PAMI), 14.

Birchfield, S. and Tomasi, C. (1998). A pixel dissimilarity measure that is insensitive to
image sampling. Pattern Analysis and Machine Intelligence (PAMI).

Birchfield, S. and Tomasi, C. (1999a). Depth discontinuities by pixel-to-pixel stereo. Inter-
national Journal of Computer Vision (IJ, 35:269–293.

Birchfield, S. and Tomasi, C. (1999b). Multiway cut for stereo and motion with slanted
surfaces. In Int. Conf. on Computer Vision (ICCV), pages 489–495.

Bleyer, M., Rother, C., and Kohli, P. (2010). Surface stereo with soft segmentation. In
Computer Vision and Pattern Recognition (CVPR).

Bosse, M., Rikoski, R., Leonard, J., and Teller, S. (2003). Vanishing points and 3d lines
from omnidirectional video. The Visual Computer, 19(6):417–430.

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. Pattern Analysis and Machine Intelli-
gence (PAMI).

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via
graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239.

Burt, P., Wixson, L., and Salgian, G. (1995). Electronically directed ”focal” stereo. In Int.
Conf. on Computer Vision (ICCV), pages 94–101. IEEE Computer Society.

Chen, G., Kua, J., Shum, S., Naikal, N., Carlberg, M., and Zakhor, A. (2010). Indoor
localization algorithms for a human-operated backpack system. In Int. Symp. on 3D
Data, Processing, Visualization and Transmission (3DPVT).

Collins, R. (1996). A space-sweep approach to true multi-image matching. In Int. Conf. on
Computer Vision and Pattern Recognition, pages 358–363.

Coorg, S. and Teller, S. (1999). Extracting textured vertical facades from controlled close-
range imagery. In Computer Vision and Pattern Recognition (CVPR).

Cormen, T. H., Leisorson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. The MIT Press.

117



Cornelis, N., Leibe, B., Cornelis, K., and Gool, L. V. (2008). 3d urban scene modeling
integrating recognition and reconstruction. International Journal of Computer Vision
(IJCV).

Debevec, P., Taylor, C., and Malik, J. (1996). Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach. In SIGGRAPH, pages
11–20.

Dick, A. R., Torr, P. H. S., Ruffle, S. J., and Cipolla, R. (2001). Combining single view
recognition and multiple view stereo for architectural scenes. In International Confer-
ence on Computer Vision (ICCV).

Dyer, C. R. (2001). Volumetric scene reconstruction from multiple views. Foundations of
Image Analysis, pages 469–489.

Fabio, R. (2003). From point cloud to surface: The modeling and visualization problem. In
International Workshop on Visualization and Animation of Reality-based 3D Models.

Falkenhagen, L. (1997). Hierarchical block-based disparity estimation considering neigh-
bourhood constraints. In Int. workshop on SNHC and 3D Imaging.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004a). Efficient belief propagation for early
vision. In Compute Vision and Pattern Recognition (CVPR).

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004b). Efficient graph-based image segmen-
tation. International Journal of Computer Vision (IJCV).

Förstner, W. (1999). 3d-city models: Automatic and semiautomatic acquisition methods.
Proc. Photogrammetric Week, Univ. of Stuttgart, Inst. for Photogrammetry. 291-303.

Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall.

Frahm, J.-M., Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn,
E., Clipp, B., Lazebnik, S., and Pollefeys, M. (2010). Building rome on a cloudless day.
In European Conference on Computer Vision (ECCV).

Früh, C. and Zakhor, A. (2003). Constructing 3d city models by merging aerial and ground
views. IEEE Computer Graphics and Applications, 23:52–61.

Früh, C. and Zakhor, A. (2004). An automated method for large-scale, ground-based city
model acquisition. International Journal of Computer Vision (IJCV).

Furukawa, Y., Curless, B., Seitz, S. M., , and Szeliski, R. (2009a). Manhattan-world stereo.
In Computer Vision and Pattern Recognition (CVPR).

Furukawa, Y., Curless, B., Seitz, S. M., , and Szeliski, R. (2009b). Reconstructing building
interiors from images. In International Conference on Computer Vision (ICCV).

Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2010). Towards internet-scale
multi-view stereo. In CVPR.

Furukawa, Y. and Ponce, J. (2008). Accurate, dense, and robust multi-view stereopsis.
Pattern Analysis and Machine Intelligence (PAMI).

118



Gallup, D., Frahm, J.-M., Mordohai, P., and Pollefeys, M. (2008). Variable base-
line/resolution stereo. In Computer Vision and Pattern Recognition (CVPR).

Gallup, D., Frahm, J.-M., Mordohai, P., Qingxiong, Y., and Pollefeys, M. (2007). Real-
time plane-sweeping stereo with multiple sweeping directions. In Computer Vision and
Pattern Recognition (CVPR).

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2009). Real-time depth boundary optimization
for local area-based stereo. In 3DSM.

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010a). A heightmap model for efficient 3d
reconstruction from street-level video. In 3DPVT.

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010b). Piecewise planar and non-planar
stereo for urban scene reconstruction. In CVPR.

Gallup, D., Pollefeys, M., and Frahm, J.-M. (2010c). 3d reconstruction using an n-layer
heightmap. In DAGM.

Geyer, C., Templeton, T., Meingast, M., , and Sastry, S. S. (2006). The recursive multi-
frame planar parallax algorithm. In 3DPVT.

Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. (2007). Multi-view stereo
for community photo collections. In International Conference on Computer Vision
(ICCV).

Gracias, N., Mahoor, M., Negahdaripour, S., and Gleason, A. (2009). Fast image blending
using watersheds and graph cuts. Image and Vision Computing, 27.

Guan, L., Franco, J.-S., and Pollefeys, M. (2008). 3d object reconstruction with heteroge-
neous sensor data. In Int. Symp. on 3D Data, Processing, Visualization and Transmis-
sion (3DPVT).

Gulch, E., Muller, H., and Labe, T. (1999). Integration of automatic processes into semi-
automatic building extraction. IAP, 32.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Fourth Alvey
Vision Conference.

Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cam-
bridge University Press.

Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 30(2):328–
341.

Hirschmüller, H., Innocent, P. R., and Garibaldi, J. (2002). Real-time correlation-based
stereo vision with reduced border errors. Int. J. Comput. Vision, 47(1-3):229–246.

Hirschmuller, H. and Scharstein, D. (2008). Evaluation of stereo matching costs on images
with radiometric differences. Pattern Analysis and Machine Intelligence (PAMI).

119



Hoiem, D., Efros, A., and Hebert, M. (2006). Putting objects in perspective. In Proc. of
Computer Vision and Pattern Recognition (CVPR), pages 2137–2144.

Hoiem, D., Efros, A. A., and Hebert, M. (2005). Geometric context from a single image. In
International Conference on Computer Vision (ICCV).

Irschara, A., Zach, C., and Bischof, H. (2007). Towards wiki-based dense city modeling. In
VRML Workshop in conjunction with ICCV 2007.

Kang, S., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view stereo.
In Computer Vision and Pattern Recognition (CVPR), pages I:103–110.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In
Eurographics Symposium on Geometry Processing.

Koch, R., Pollefeys, M., and Gool, L. V. (1998). Multi viewpoint stereo from uncalibrated
video sequences. In European Conference on Computer Vision (ECCV).

Kolmogorov, V. and Zabih, R. (2002). What energy functions can be minimized via graph
cuts? Pattern Analysis and Machine Intelligence (PAMI).

Kumar, S. and Hebert, M. (2003). Discriminative random fields: A discriminative frame-
work for contextual interaction in classification. In International Conference on Com-
puter Vision (ICCV).

Kutulakos, K. N. and Seitz, S. M. (2000). A theory of shape by space carving. International
Journal of Computer Vision.

Labatut, P., Pons, J.-P., and Keriven, R. (2009). Hierarchical shape-based surface recon-
struction for dense multi-view stereo. In 3-D Digital Imaging and Modeling (3DIM).

Margaritis, D. and Thrun, S. (1998). Learning to locate an object in 3d space from a
sequence of camera images. In Proc. of Int. Conf. on Machine Learning (ICML).

Matthies, L., Szeliski, R., and Kanade, T. (1989). Kalman filter-based algorithms for
estimating depth from image sequences. IJCV.

Micusik, B. and Kosecka, J. (2009). Piecewise planar city 3d modeling from street view
panoramic sequences. In Computer Vision and Pattern Recognition (CVPR).

Morgan, M. and Tempfli, K. (2000). Automatic building extraction from airborne laser
scanning data. Proc. 19th Intl Soc. Photogrammetry and Remote Sensing Congress
(ISPRS),.

Müller, P., Zeng, G., Wonka, P., and V., G. L. (2007). Image-based procedural modeling of
facades. SIGGRAPH.

Nvidia. Cuda. http://www.nvidia.com/cuda.

Ogale, A. and Aloimonos, Y. (2004). Stereo correspondence with slanted surfaces: Critical
implications of horizontal slant. In Computer Vision and Pattern Recognition (CVPR),
pages I: 568–573.

120



Okutomi, M. and Kanade, T. (1993). A multiple-baseline stereo. Pattern Analysis and
Machine Intelligence (PAMI).

Pathak, K., Birk, A., Poppinga, J., and Schwertfeger, S. (2007). 3d forward sensor modeling
and application to occupancy grid based sensor fusion. In International Conference on
Intelligent RObots and Systems (IROS).

Pock, T., Schoenemann, T., Graber, G., Bischof, H., and Cremers, D. (2008). A convex
formulation of continuous multi-label problems. In European Conference on Computer
Vision (ECCV).

Pollefeys, M., Gool, L. V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., and Koch, R.
(2004). Visual modeling with a hand-held camera. International Journal of Computer
Vision (IJCV).

Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels,
C., Gallup, D., Kim, S.-J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L.,
Yang, Q., Stewenius, H., Yang, R., Welch, G., and Towles, H. (2008). Detailed real-
time urban 3d reconstruction from video. International Journal of Computer Vision
(IJCV).

Raguram, R., Frahm, J.-M., and Pollefeys, M. (2008). A comparative analysis of ransac
techniques leading to adaptive real-time random sample consensus. In European Con-
ference on Computer Vision (ECCV).

Ren, X. and Malik, J. (2003). Learning a classification model for segmentation. In Inter-
national Conference on Computer Vision (ICCV).

Sato, T., Kanbara, M., Yokoya, N., and Takemura, H. (2002). Dense 3-d reconstruction of
an outdoor scene by hundreds-baseline stereo using a hand-held video camera. Inter-
national Journal of Computer Vision (IJCV).

Saurer, O., Fraundorfer, F., and Pollefeys, M. (2010). Omnitour: Semi-automatic generation
of interactive virtual tours from omnidirectional video. In Int. Symp. on 3D Data,
Processing, Visualization and Transmission (3DPVT).

Saxena, A., Chung, S. H., and Ng, A. Y. (2007). 3-d depth reconstruction from a single
still image. International Journal of Computer Vision (IJCV).

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision (IJCV).

Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured
light. In Computer Vision and Pattern Recognition (CVPR).

Schindler, G. and Dellaert, F. (2004). Atlanta world: an expectation maximization frame-
work for simultaneous low-level edge grouping and camera calibration in complex man-
made environments. In Computer Vision and Pattern Recognition (CVPR), pages
203–209.

Schindler, G. and Dellaert, F. (2010). Probabilistic temporal inference on reconstructed 3d
scenes. In Computer Vision and Pattern Recognition (CVPR).

121



Schindler, G., Krishnamurthy, P., and Dellaert, F. (2006). Line-based structure from motion
for urban environments. In Int. Symp. on 3D Data, Processing, Visualization and
Transmission (3DPVT).

Schuon, S., Theobalt, C., Davis, J., and Thrun, S. (2008). High-quality scanning using time-
of-flight depth superresolution. In Computer Vision and Pattern Recognition (CVPR).

Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A comparison and
evaluation of multi-view stereo reconstruction algorithms. In Computer Vision and
Pattern Recognition (CVPR).

Shi, J. and Tomasi, C. (1994). Good features to track. In Computer Vision and Pattern
Recognition (CVPR).

Sinha, S. N., Steedly, D., and Szeliski, R. (2009). Piecewise planar stereo for image-based
rendering. In International Conference on Computer Vision (ICCV).

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring photo collections
in 3d. In SIGGRAPH, pages 835–846.

Sun, C. (2002). Fast stereo matching using rectangular subregioning and 3d maximum-
surface techniques. International Journal of Computer Vision (IJCV).

Szeliski, R. (2005). Image alignment and stitching: A tutorial. In Microsoft Research
Technical Report.

Szeliski, R. and Scharstein, D. (2004). Sampling the disparity space image. Pattern Analysis
and Machine Intelligence (PAMI).

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen,
M., and Rother, C. (2006). A comparative study of energy minimization methods for
markov random fields. In European Conference on Computer Vision (ECCV).

Teller, S. (1998). Automated urban model acquisition: Project rationale and status. In
Image Understanding Workshop, pages 455–462.

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., and Master, N. (2003).
Calibrated, registered images of an extended urban area. Int. Journal of Computer
Vision (IJCV), 53(1):93–107.

Tighe, J. and Lazebnik, S. (2010). Superparsing: Scalable nonparametric image parsing
with superpixels. In European Conference on Computer Vision (ECCV).

Torr, P. H. S. and Zisserman, A. (2000). Mlesac: a new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding (CVIU).

Vanegas, C. A., Aliaga, D. G., and Benes, B. (2010). Building reconstruction using
manhattan-world grammars. In Computer Vision and Pattern Recognition (CVPR).

Vu, H. H., Keriven, R., Labatut, P., and Pons, J.-P. (2009). Towards high-resolution large-
scale multi-view stereo. In Computer Vision and Pattern Recognition.

122



Wang, X., Totaro, S., Taillandier, F., Hanson, A., , and Teller, S. (2002). Recovering
facade texture and microstructure from real-world images. In Proc. 2nd International
Workshop on Texture Analysis and Synthesis (ECCV Workshop).

Werner, T. and Zisserman, A. (2002). New techniques for automated architectural recon-
struction from photographs. In European Conf. on Computer Vision (ECCV), pages
541–555.

Xiao, J., Fang, T., Tan, P., Zhao, P., Ofek, E., and Quan, L. (2008). Image-based facade
modeling. SIGGRAPH Asia.

Xiao, J., Fang, T., Zhao, P., Lhuillier, M., and Quan, L. (2009). Image-based street-side
city modeling. In SIGGRAPH Asia.

Xiao, J. and Quan, L. (2009). Multiple view semantic segmentation for street view images.
International Conference on Computer Vision (ICCV).

Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., and Nister, D. (2006). Real-time global
stereo matching using hierarchical belief propagation. In The British Machine Vision
Conference (BMVC).

Yang, R. and Pollefeys, M. (2003). Multi-resolution real-time stereo on commodity graphics
hardware. In Int. Conf. on Computer Vision and Pattern Recognition (CVPR), pages
I: 211–217.

Yang, R. and Pollefeys, M. (2005). A versatile stereo implementation on commodity graphics
hardware. Journal of Real-Time Imaging, 11(1):7–18.

Yang, R., Welch, G., and Bishop, G. (2002). Real-time consensus-based scene reconstruction
using commodity graphics hardware. In Pacific Graphics.

You, S., Hu, J., Neumann, U., and Fox, P. (2003). Urban site modeling from lidar. In Intl
Workshop Computer Graphics and Geometric Modeling (CGGM).

Zabulis, X. and Daniilidis, K. (2004). Multi-camera reconstruction based on surface normal
estimation and best viewpoint selection. In 3DPVT.

Zabulis, X., Kordelas, G., Mueller, K., and Smolic, A. (2006). Increasing the accuracy of
the space-sweeping approach to stereo reconstruction, using spherical backprojection
surfaces. In Int. Conf. on Image Processing.

Zach, C., Gallup, D., Frahm, J.-M., and Niethammer, M. (2008). Fast global labeling for
real-time stereo using multiple plane sweeps. In VMV.

Zach, C., Pock, T., and Bischof, H. (2007). A globally optimal algorithm for robust tv-l1
range image integration. In ICCV.

Zebedin, L., Bauer, J., Karner, K., and Bischof, H. (2008). Fusion of feature- and area-based
information for urban buildings modeling from aerial imagery. In European Conference
on Computer Vision (ECCV).

Zebedin, L., Klaus, A., Gruber-Geymayer, B., and Karner, K. (2006). Towards 3d map
generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote
Sensing.

123


