
Programmable Ethernet Switches and Their
Applications

A DISSERTATION PRESENTED

BY

SRIKANT SHARMA

TO

THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

STONY BROOK UNIVERSITY

August 2008

UMI Number: 3406709

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3406709

Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

Copyright by

Srikant Sharma

2008

 ii

Stony Brook University

The Graduate School

Srikant Sharma

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor Tzi-cker Chiueh, Dissertation Advisor,
Department of Computer Science, Stony Brook University

Professor Yuanyuan Yang, Chairperson of Defense,
Department of Electrical and Computer Engineering, Stony Brook University

Professor Erez Zadok,
Department of Computer Science, Stony Brook University

Professor Jennifer Wong,
Department of Computer Science, Stony Brook University

Dr. Bruce Montague,
Symantec Research Labs, Mountain View, CA

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation

Programmable Ethernet Switches and Their Applications

by

Srikant Sharma

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

Simplicity, cost effectiveness, scalability, and economies of scale make Ethernet

a popular choice for (a) local area networks (LAN), as well as for (b) storage area

networks (SAN), and increasingly (c) metropolitan-area networks (MAN). Appli-

cations of Ethernet in the SAN and MAN arena elevate it from a LAN technology

to a ubiquitous networking technology. With the expanded applicability of Ethernet

there are certain adaptability issues which prompt rethinking of some of its archi-

tectural features. The Spanning-Tree based switching mechanism, considered to

be very efficient at avoiding loops in LAN environments, is a performance bottle-

neck in the metro network context. Absence of an explicit switching path selection

mechanism prohibits traffic engineering in metro networks. Prolonged spanning

tree reconstruction periods after failures make Ethernet unsuitable to support criti-

cal applications. Lack of usage regulation mechanisms leads to insufficient isolation

between different users, resulting in QoS problems.

iii

Modern Ethernet switches support many advanced features which can be con-

trolled through programmable interfaces. These features are VLAN tagging, rate

limiting, and status monitoring. Conventionally, these features are mostly used to

statically configure an Ethernet switch. This research proposes to use these features

as dynamic control mechanisms in the context of metro and cluster networks to:

1. Maximize physical network link resources by enabling MPLS like traffic en-

gineering,

2. Minimize failure recovery time, and

3. Enforce QoS requirements.

With these programmatic configurable control mechanisms, standard Ethernet

switches can be used as effective building blocks for metropolitan-area Ethernet

networks (MEN), storage-area networks (SAN), and computation cluster inter-

connects. We validated the usefulness of this new level of control over Ethernet

switches with a MEN architecture that features multi-fold throughput gains and

sub-second failure recovery time.

We discuss how a comprehensive resource management system can be devised

using these mechanisms that can result in high performance and fault tolerant metro

Ethernet, Storage, and Cluster networks. We also discuss how a network topology

can be efficiently evolved by correlating the traffic profile characteristics of the end

users and the traffic engineering required in the network. We describe a design

methodology for Ethernet-based SAN fabrics utilizing this network evolution tech-

nique.

To this effect, we develop a network topology planning tool to minimize net-

work infrastructure deployment cost. This topology planning work is specifically

targeted towards providing automated tools to design Ethernet storage area network

and cluster interconnect topologies with redundancy and fault-tolerance support.

iv

To

Shachi, Ma, Nana,

and

My Family

Contents

List of Figures ix

Acknowledgments xii

1 Introduction 1

1.1 Ethernet Evolution: Beyond Local Networks 2

1.2 Ethernet Challenges . 4

1.3 Dissertation Overview . 7

1.4 Dissertation Outline . 9

2 Ethernet Preliminaries 10

2.1 Switched Ethernet . 10

2.2 Spanning Tree Protocol (STP) . 14

2.2.1 Tree Construction Process 15

2.2.2 Rapid Spanning Tree Protocol (RSTP) 19

2.3 Link Aggregation . 20

2.4 Virtual LANs . 21

2.4.1 VLAN Membership . 21

2.4.2 Per-VLAN Spanning Trees 23

2.5 Managed Ethernet Switches . 23

vi

3 Related Work 25

3.1 Traffic Engineering . 25

3.1.1 Traffic Engineering in Ethernet 26

3.1.2 Altering The Switching Mechanism 28

3.1.3 Network Planning and Load Balancing 32

3.1.4 Standard Support and Enhancements 33

3.2 Storage Area Network Design . 35

3.2.1 Generic Network Design 36

3.2.2 Automatic SAN Design 38

4 Viking: A Multi-Spanning Tree Ethernet Architecture 42

4.1 Metropolitan Area Networks . 42

4.1.1 MAN Infrastructure . 43

4.1.2 Metro Ethernet . 45

4.1.3 Motivation behind Viking 48

4.2 VLAN-based switching . 50

4.3 Resource Provisioning . 54

4.3.1 Path Selection . 55

4.3.2 Path Aggregation and Spanning Tree Construction 60

4.4 Fault Tolerance . 64

4.5 System Implementation . 67

4.5.1 Viking Proxy Clients . 67

4.5.2 The Viking Manager and Viking Status Monitor 69

4.6 QoS Enforcement . 72

4.7 Evaluation of Viking . 77

4.7.1 Simulations . 77

4.7.2 Empirical Performance . 82

vii

5 Cassini: A SAN Provisioning Tool 89

5.1 Storage Area Networks . 89

5.1.1 Shared Storage Architecture 90

5.1.2 SAN Technologies and Protocols 93

5.1.3 Motivation behind Cassini 101

5.2 SAN Design Considerations . 103

5.2.1 SAN Topologies: Mesh or Core-Edge? 103

5.2.2 Clustered Deployment in SAN 106

5.2.3 MultiPathing . 113

5.2.4 Zoning and Masking . 116

5.2.5 Capacity Planning in SAN 117

5.3 Switch Allocation and Topology Generation 118

5.3.1 Input Specification . 118

5.3.2 Edge Design . 119

5.3.3 Core Design . 130

5.3.4 Path Computation and VLAN Grouping 141

5.4 Evaluation of Cassini . 145

5.4.1 Efficiency of SAN Design 145

5.4.2 Analysis of Core Design 160

5.4.3 Analysis of Edge Design 165

5.4.4 Trunking and VLAN Grouping 169

5.4.5 Summary . 172

6 Conclusion 174

6.1 Summary of the Dissertation . 174

6.2 Future Research . 176

Bibliography 178

viii

List of Figures

2.1 Effect of cable fault on a shared bus Ethernet network 11

2.2 Ethernet star topology . 12

2.3 Multi-segment Ethernet . 13

2.4 Spanning tree creation in an Ethernet LAN 17

3.1 Load imbalance scenario in spanning tree based switching 27

4.1 An example of Metro Area Networks 44

4.2 Metropolitan Area Networks technological landscape 47

4.3 Different possible spanning trees for a given topology. 51

4.4 Example of route selection . 55

4.5 Link Criticality Based Route Selection Algorithm 59

4.6 Path Aggregation algorithm . 62

4.7 Constructing desired spanning trees 63

4.8 Event monitoring based failure recovery mechanism 65

4.9 The overall Viking system architecture 71

4.10 Total end-to-end traffic in a network with uniform traffic pattern . . 78

4.11 Total end-to-end traffic in network with skewed traffic pattern 79

4.12 Load distribution in a 7x7 grid network 80

4.13 VLANs required for different number of paths 81

4.14 VLANs required for different proportion of network coverage . . . 81

ix

4.15 Performance with trunks . 83

4.16 Behavior of TCP across fail-over 84

4.17 NFS performance with multiple and single spanning tree 85

4.18 Total time spent in recomputing path selection. 87

5.1 Direct Attached Storage Organization 91

5.2 Network Attached Storage Organization 92

5.3 Storage Area Network architecture 92

5.4 SAN Technology Landscape . 95

5.5 SCSI connection schematics . 96

5.6 Mesh Topology Example . 103

5.7 Core-Edge topology example . 104

5.8 Different stages in Core-Edge SAN design 107

5.9 Typical I/O traffic in data-center and enterprise SANs 108

5.10 Traffic distribution for master-slave and parallel/distributed clusters 110

5.11 Zoning and multipathing in SANs 115

5.12 Complete-switch-disjoint paths between nodes 115

5.13 Edge Switch allocation for a cluster 123

5.14 Edge design for multiple clusters 127

5.15 Final topology of an edge after merge 128

5.16 Core design process after edge design 131

5.17 Cluster to core-switch assignment 133

5.18 Core switch utilization after merge 134

5.19 Traffic Locality based merge . 136

5.20 Computation of path(s) between a node pair 142

5.21 Load balancing over inter-switch-links by using trunking 144

5.22 Input for design of a small sized SAN 147

5.23 Required number of switches in small SAN design 149

x

5.24 Average edge switch utilization in small SAN design 149

5.25 Average core switch utilization in a small SAN design 150

5.26 Input for a large SAN design . 152

5.27 Required number of switches in large SAN design 153

5.28 Average Edge Switch Utilization in large SAN design 154

5.29 A fully utilized SAN configuration 154

5.30 Distribution of ports for different clusters 155

5.31 Average Core Switch Utilization in large SAN design 156

5.32 Required number of switches in large SAN design with varying

number of flows . 157

5.33 Average Edge Switch Utilization in large SAN design with varying

number flows . 157

5.34 Average Core Switch Utilization in large SAN design with varying

number of flows . 158

5.35 Required inter-switch-links and degree of cluster connectivity . . . 160

5.36 Impact of the degree of cluster connectivity on port utilization . . . 161

5.37 Impact of the degree of cluster connectivity on required number of

switches . 162

5.38 Comparison of Locality based and Greedy core merge 164

5.39 Additional switch requirement to support multipathing 166

5.40 Overhead of automatic edge partitioning 168

5.41 Reduction in ISL count due to trunking 170

5.42 Impact of trunking on required number of VLANs 171

xi

Acknowledgments

At the onset, I would like to express my gratitude to my advisor, Professor Tzi-

cker Chiueh for showing me by example how to do systems research. He directed

me to interesting problems to work on and provided me with stimulating research

environment at Experimental Computer Systems Lab (ECSL). He taught me how to

develop research aptitude and always strove to make me conscious about quality of

my work. He instilled a sense of pride in me and my colleagues about our research.

He was always present for me when I needed his advice in technical as well as

personal matters. I will always be grateful to him for the support he provided me at

every juncture in the course of my doctoral studies at Stony Brook.

My dissertation committee members, Professor Yuanyuan Yang, Professor Erez

Zadok, and Professor Jennifer Wong from Stony Brook University and Dr. Bruce

Montague from Symantec Research Labs have helped me with my dissertation at

every possible stage. Dr. Montague’s advice has been extremely important to me

in improving my dissertation quality. Advice from Professor Yang and Professor

Zadok has been very beneficial for me while presenting my research to research

community outside Stony Brook. I would like to thank my thesis proposal com-

mittee member, Professor R. Sekar for his guidance throughout my studies at Stony

Brook University.

Special thanks go to my collaborators Kartik Gopalan and Susanta Nanda, who

helped me fortify my dissertation research. ECSL has provided me with a great

technical and personal environment for my research. This environment was created

by my friends and colleagues: Pradipta De, Ningning Zhu, Kartik Gopalan, Gang

Peng, Manish Prasad, Ashish Raniwala, Fanglu Guo, Jiawu Chen, Fu-Hau Hsu, and

others.

There are other people in Stony Brook and outside whose invaluable company

has directly or indirectly helped me with my work at Stony Brook. They are

Venkatkrishnan VN, Pravin Nair, Prem Uppuluri, Arnab Ray, Ajay Gupta, Swarn-

ima, Miti and others.

I am also thankful to Shardul Divatia, my supervisor at Symantec, for helping

me balance my academic life and work life effectively. He provided me with sup-

port whenever I needed it most. He helped me in balancing my work priorities

and focus on important things at hand. My colleagues at Symantec Taher Vohra

and Rahul Fiske have been very helpful to me by acting as sounding boards for my

various research approaches. They provided me with much needed second person

perspective about my research in SAN design. My other colleagues at Symantec:

Grizel, Abhay, Rohit, Arun, and Deepak provided me with a very encouraging and

cheerful work environment.

I owe most this achievement to my parents and my family who encouraged

me when I needed encouragement, cheered for me when I was happy, and gave

me advice when I needed it most. They stood by me throughout my life and this

dissertation is possible mainly because of my family.

Last but not least, this dissertation is dedicated to my wife Shachi, who gave me

inspiration, strength, energy, endurance, and solace to pursue my dreams.

Chapter 1

Introduction

In late 1972 Robert Metcalfe and David Boggs, researchers at Xerox PARC, de-

veloped an experimental networking system to interconnect a few Xerox Altos per-

sonal workstations with laser printers, servers, and each other. This experimental

network derived its signal clock from the Altos system clock and supported a data

transmission rate of 2.94 Mbps. It was based on the AlohaNet system developed

at the University of Hawaii. Robert Metcalfe named this experimental network the

Alto Aloha Network.

By late 1973 the Alto Aloha network was capable of supporting connectivity

between any computers, not just Altos workstations. The network mechanism had

also evolved well beyond the Aloha system. The network was capable of providing

connectivity over different physical media, such as radio waves, telephone lines,

and co-axial cables. The physical medium was dubbed the “Ether” that transferred

data to all stations in the network, the same way as the luminiferous ether that was

once assumed to be the medium for propagation of light. To highlight the fact that

this new network was capable of functioning without Altos workstations and was

an advancement over the AlohaNet, it was renamed the “Ethernet”.

1

1. INTRODUCTION 2

1.1 Ethernet Evolution: Beyond Local Networks

In 1976 Robert Metcalfe published a paper titled, “Ethernet: Distributed Packet-

Switching For Local Computer Networks [MB76].” This was the beginning for a

computer networking technology that has dominated not just Local Area Networks,

but also increasingly important in Wide Area Networks, Cluster Interconnects, Stor-

age Area Networks, and recently, even Super Computing Interconnects.

In the last three decades, Ethernet technology has come a long way, from its

initial shared-media 3 Mbps capability, to today’s switched-media form providing

throughput up to several Gbps. Its simplicity, cost effectiveness, and economies

of scale have enabled it to make inroads into practically all scales of networks,

such as storage area networks (SAN), and Metropolitan Area Networks (MAN).

Recent technological advances, such as Ethernet in the First Mile, which enables

subscribers to connect to an Ethernet-based core network over a wide variety of

media, ranging from voice grade copper to multi-mode fiber, further reinforce the

case for metropolitan Ethernet network (MEN) architecture [IEE04b].

Availability of bandwidth up to 10 Gbps and micro-second level message laten-

cies also make Ethernet a low-cost alternative to widely-used cluster interconnects

(CI) such as Myrinet [BCF+95], Quadrics [PFH+02], and Infiniband [inf01]. To-

day (in June 2008), 284 out of the top 500 super computers in the world use Gigabit

Ethernet as the interconnect of choice [Top].

Finally, with increasing growth of IP storage, iSCSI [isc], and Fibre Channel

over Ethernet [Fib07] - Ethernet-based storage area networks are becoming serious

alternatives to against Fibre Channel-based SAN because of lower cost and ex-

tended flexibility. Such new applications of Ethernet elevate it from a simple LAN

technology to a ubiquitous networking technology.

At the heart of the success of Ethernet lies the fact that Ethernet standards have

1. INTRODUCTION 3

always kept pace with continuously changing demands of the networking world.

The growth in network traffic was always accompanied by increased line speeds

in Ethernet technology. The initial standardized line speed of 10 Mbps in 1980

was improved by Fast Ethernet, providing 100 Mbps in 1995. At the same time

the shared bus architecture was replaced by a switching architecture with point-to-

multipoint connectivity of nodes. This addressed both performance and scalability

requirements of networks deployed at that time. As the demand for line speed in

enterprises increased because of bandwidth intensive applications and networked

storage. Gigabit Ethernet debuted in 1998 in a timely manner. The current push

for 10 Gbps Ethernet and future offerings of 40 Gbps and 100 Gbps Ethernet pave

the way for increasing use of Ethernet in cluster interconnects, storage networks,

and super computing interconnects. The evolution of Ethernet has always been

gradual and backward compatible. As a result, the migration path for deployments

has always been smooth and never required disruptive upgrades.

The evolution has not been just with regard to speed. There have been several

advances in Ethernet manageability and extensibility. The virtual LAN feature sim-

plifies management of large deployments by dividing them into smaller broadcast

domains. Ethernet switches have grown to be more intelligent and provide several

advanced features, such as Quality of Service, redundancy, bandwidth optimization,

access control, remote monitoring, and remote management.

The attractiveness of Ethernet comes from the following factors:

• Performance Scalability: Ethernet is suitable for deployments where band-

width requirements range from just a few Mbps to 100s of Gbps.

• Distance Scalability: Ethernet can be deployed for short range Local Area

Networks to long range Metro Area Networks.

1. INTRODUCTION 4

• Economies of Scale: Ethernet is the most widely deployed networking tech-

nology in the world. A technology being used on such a scale benefits from

economies of scale. The cost of Ethernet equipment is significantly cheaper

than other networking technologies.

• Flexibility and Interoperability: Ethernet deployments are incredibly flex-

ible. An Ethernet network can be grown and shrunk by simply adding or re-

moving Ethernet switches. There are no tedious reconfiguration procedures

to be followed and no provisioning efforts to be carried out. Ethernet net-

works are true plug and play networks. The Ethernet standards are so robust

that, if followed properly, an Ethernet device is an Ethernet device. Interop-

erability problems between equipment from different vendors are practically

never seen.

• Administrative Ease: Ethernet equipment is simple and easy to manage.

Moreover, large number of deployments produce a large knowledge base.

Familiarity and experience witwith technology increases with its wide spread

penetration in enterprises. This directly reflects in ease of administration of

deployments.

1.2 Ethernet Challenges

Though Ethernet has managed to gain a foothold at all scales of network technology,

the primary reason has always been cost advantage rather than performance. Even

though Ethernet is capable of satisfying high performance requirements, it is always

seen as a low cost alternative to the established technologies. When performance

comes into the picture, Ethernet deployment is always treated with skepticism.

For instance, in metropolitan networks Ethernet has proved to be an attractive

1. INTRODUCTION 5

service. Increasing numbers of enterprise campuses spread over metropolitan ge-

ographic spans are being interconnected with metro Ethernet services. Despite in-

creasing availability of metro Ethernet, these services today are actually built on

circuit switched technologies such as SDH/SONET [BC89] and ATM or packet

switching technologies like RPR [IEE04c] and MPLS [RVC01] etc. These ser-

vices are provided by means of Ethernet tunnels set up over carrier technologies.

Deployment of standard Ethernet as the carrier network in the core is still rare.

Though inertia in abandoning legacy deployment of conventional circuit switched

technologies is one of the reasons for this, it is not the primary reason. Deploy-

ment of Ethernet in the metro core has yet to take off because there remain some

architectural deficiencies with switching in Ethernet that do not justify forklift net-

work upgrades to core networks that will extensively depend on Ethernet technol-

ogy [Cor03, For02].

A similar attitude is observed when Ethernet is used to build cluster intercon-

nects (CIs) or storage area networks (SANs). Ethernet is treated as a low cost alter-

native to SAN technology, such as Fibre Channel, or interconnects like Myrinet and

Infiniband. Because of capacity planning complexities with Ethernet, the general

practice is to deploy Ethernet CIs and SANs using a small number of switches with

high port density. Clusters are aggregated over a small number of large switches.

This kind of deployment removes all network planning complexity, but primarily

utilizes only the crossbar backplane of Ethernet switches, rather than the Ethernet

network. The aggregation cost of switching networks increases rapidly with the

size of the cluster, which in turn raises the per-port cost factor. With increased

port density, the ratio between per-port bandwidth and total backplane processing

bandwidth rapidly decreases, as the underlying crossbar switching technology re-

mains unchanged. Apart from cost and performance issues, aggregation also poses

a reliability issue. Aggregation of nodes on a single switch or a limited number of

1. INTRODUCTION 6

switches presents a small set of points for complete failure. This reduces reliability

and increases chances of complete failure in the event of a switch failure. All these

issues limit Ethernet SAN and CI to small deployment sizes. Ethernet is seldom a

choice of interconnect for large and high performance SANs and CIs.

There are several reasons why carrier Ethernet deployments are rare and why

Ethernet cluster interconnects are not considered for large high performance inter-

connects.

Ethernet networks use a spanning tree protocol (IEEE 802.1d) to establish a

loop-free path between every pair of nodes [IEE90]. The spanning tree approach

fails to exploit all physical network resources, because in any network of N nodes

there are at most N−1 links actively forwarding traffic. This produces an imbalance

of load in the network. This is impractical in large scale metro networks. Further,

switch and link failures require rebuilding the spanning tree, which is a lengthy

process. IEEE 802.1w, the rapid spanning tree configuration protocol (RSTP), mit-

igates this problem by providing mechanisms to detect failures and quickly recon-

figure the spanning tree [IEE00b]. The recovery period, however, can still range

from an optimistic 10 milliseconds to more realistic multiple seconds after failure

detection, which is not adequate for many applications.

Ethernet does not support any mechanism akin to MPLS, which allows users to

route packets/flows along a particular path [RVC01]. As a result, it is impossible

to apply any traffic engineering techniques to balance traffic load across the net-

work [Ash01]. Traffic engineering may not be critical in small local area networks,

but it is very important in the context of metro networks. In particular, the ability

to route traffic on a given route can greatly help enforce QoS by leveraging a traffic

prioritization scheme (IEEE 802.1p), which prioritizes certain classes of traffic over

others [IEE98a].

Ethernet does not support a redundancy mechanism such as multipathing for

1. INTRODUCTION 7

load balancing and fault-tolerance in cluster interconnects and SANs. Multipathing

is an integral feature of SAN deployments. The per-port-cost factor, scalability

of port and backplane bandwidth, and reliability issues provide grounds for moving

away from an aggregation approach in clusters. This requires a solution which takes

into account the issues that arise out of segregation of cluster nodes across multiple

switches, specifically, capacity planning and fault tolerance in Ethernet.

1.3 Dissertation Overview

In this dissertation we address two important issues that prevent wide acceptance

of Ethernet in metro area networks and storage area networks. (1) The challenge

faced by Ethernet in the metro arena is that of traffic engineering. Ethernet lacks

traffic engineering support, which prevents it from being used as a carrier network

technology in the metropolitan network core. (2) In the context of storage area

networks, in addition to the traffic engineering issue, Ethernet faces the challenge

of capacity planning with redundancy and fault-tolerance support.

The key insight of this research is that modern Ethernet switches incorporate

advanced network control mechanisms that are programmatically configurable and

can be used to improve aggregate throughput, availability, and QoS in the network.

Virtual LAN (VLAN) technology provides a mechanism to tag packets with differ-

ent VLAN identifiers and logically divide a physical network into multiple broad-

cast domains on the basis of VLAN tags [IEE98b]. This mechanism aids the secu-

rity and performance of LANs by limiting the size of broadcast domains. Multiple

spanning tree (MST) protocol makes it possible to program multiple spanning tree

instances on a network, each associated with a distinct VLAN, isolating traffic from

one another [IEE02]. Finally, most Ethernet switches can limit the rate of incoming

or outgoing flows over their physical interfaces using built-in rate-limiting features.

1. INTRODUCTION 8

Most of these structuring mechanisms in modern Ethernet switches are accessi-

ble through SNMP, HTTP, or command-line interfaces. It is possible to program-

matically configure VLANs and their associated spanning trees, as well as interface

rate limits using management protocols. It is also possible to remotely monitor

switches for failures and different activities can be triggered in reaction to these

failure events. These features are thus referred to as the configurable features of

modern Ethernet switches.

In the first part of this dissertation, we show that the programmatically config-

urable control mechanisms of modern Ethernet switches can be used to build the

following high-level features that are critical to MEN, SAN, and CI applications:

• Traffic engineering that routes packet traffic to balance the load on physical

network links. Routes obtained from switching path selection are enforced

by means of VLAN tags in a fashion similar to MPLS labels.

• Proactive switch and link disjoint backup path provisioning to provide a high

degree of tolerance for switch or link failures.

• Use of rate limiting features in Ethernet switches to regulate the bandwidth

consumption by end nodes in order to isolate different traffic flows from one

another.

In the second part of this dissertation, we address the issue of capacity planning

in storage area networks. The goal is to identify the issues faced by Ethernet in

SAN environments and address those issues.

• To this effect, we develop a network topology planning tool to minimize net-

work infrastructure deployment cost. This topology planning work is specif-

ically targeted towards providing automated tools to design Ethernet storage

1. INTRODUCTION 9

area network and cluster interconnect topologies that provide redundancy and

fault-tolerance support.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 presents an overview

of Ethernet relevant to this dissertation. Chapter 3 reviews the related research in

the area of traffic engineering and network planning. Chapter 4 gives an overview

of metro area networks and metro Ethernet technology and we describe a multi-

spanning-tree Ethernet architecture called Viking aimed at solving the traffic engi-

neering problem in metropolitan Ethernet deployments. In Chapter 5, we give an

overview of storage area networks and related technologies. In this chapter, we de-

scribe and evaluate Cassini, a tool developed for Ethernet SAN capacity planning

In Chapter 6, we present a summary of research and conclude the dissertation with

future research directions.

Chapter 2

Ethernet Preliminaries

In this chapter we provide a brief overview of Ethernet. The discussion is limited

to technology aspects of Ethernet which are directly relevant to the dissertation.

We specifically look into (1) Switched Ethernet architecture, (2) the Spanning Tree

Protocol, (3) Link Aggregation, and (4) Virtual LANs.

2.1 Switched Ethernet

In its early days, Ethernet used coaxial cable as a shared bus. Nodes1 connected

to the shared bus accessed it using the CSMA/CD media access protocol. The

nodes communicated with each other by sending data frames over the shared bus.

The electrical integrity of the coaxial cable was of utmost importance for proper

functioning of the network. Any minor fault or improper electrical termination of

the coaxial cable would result in network disruption. Figure 2.1 shows an example

of a cable fault on a shared bus Ethernet network. Addition or removal of network
1We use the terms Devices and Nodes interchangeably to refer to the end nodes connected to the

network.

10

2. ETHERNET PRELIMINARIES 11

Cable Fault

Improper Termination

Figure 2.1: Effect of a cable fault on a shared bus Ethernet network. The fault
partitions the network, isolating multiple nodes. The improper termination caused
by the fault affects all transmissions and the network cannot function.

nodes also had a disruptive impact on network operation. At any point in time, a

node could either only transmit or receive frames over the shared bus. This was

half-duplex operation. The shared architecture also enforced that at any point in

time there could be only one node pair communicating with each other. The shared

bus architecture limited the scalability of Ethernet networks.

The solution to the bus topology problem was a star topology. In star topology,

the shared bus was replaced with an active device called a hub. The hub was re-

sponsible for providing the entire functionality provided by the bus. Additionally,

it was responsible for isolating faulty nodes/cables from the network. Nodes were

connected to the hub using low-cost unshielded twisted pair (UTP) cable. Node

connection points on the hub were called ports. The hub was also responsible for

terminating open ports. Multiple hubs could be connected to each other to form an

extended shared bus. Figure 2.2 shows a typical star topology utilizing a hub as the

central connection point.

Although hubs replaced the shared bus, they were still collectively a resource

shared among all the connected nodes. At any point in time only one node could

transmit data. Data transmission still remained half-duplex. Thus, hubbed Ethernet

2. ETHERNET PRELIMINARIES 12

Cable Fault

Open Port

HUB

Figure 2.2: Ethernet star topology using a hub as the central connection point.
Nodes are connected to the hub using a low-cost unshielded twisted pair (UTP)
cable. The hub is responsible for detecting and isolating faults in the network. It is
also responsible for terminating open ports.

did not provide scalability solution. The respite came from Ethernet bridges which

connected multiple hubs together and isolated the Ethernet data link layer from the

physical layer. This isolation allowed a network to be broken down into multiple

segments where each hub, together with connected nodes, formed an independent

segment. The bridges forwarded data packets from one segment to another only

when required. This allowed multiple segments to carry out data transmission in

parallel. Figure 2.3 shows an example of multi-segment Ethernet connected with a

bridge.

In early bridges the bridging logic was implemented in software. Bridging was

a CPU intensive and slow process. With hardware advances, it became possible

to implement the entire bridging logic in hardware. Such all-hardware bridges

were capable of forwarding data at line2 speed. Also, with mass production, cost

2Line speed means the maximum possible speed on the connected medium.

2. ETHERNET PRELIMINARIES 13

HUB
HUB

HUB HUB

Bridge

Ethernet Segments

Figure 2.3: Multi-Segment Ethernet connected together using a bridge. The bridge
forwards data packets from one segment to another only when required. Each seg-
ment acts as a separate collision domain. Data transmission can proceed in each
segment independent of the other segments.

2. ETHERNET PRELIMINARIES 14

of all-hardware bridges was significantly reduced and it was possible to manufac-

ture bridges with a large number of ports. This cost reduction allowed elimination

of hubs. Nodes could be directly connected to bridges. Elimination of hubs re-

sulted in elimination of collision domains and allowed connected nodes to operate

in full-duplex mode. This was a significant development for Ethernet. All-hardware

bridges were commercially called Ethernet Switches and the network mode with

no collision domains, where nodes could operate in full-duplex mode, came to be

known as the Switched Ethernet.

Switched Ethernet eliminated the shared bus and shared hubs. This elimination

resulted in increased network throughput, by allowing multiple nodes to commu-

nicate in parallel. Further, full-duplex mode allowed nodes to transmit and receive

data frames at the same time. Full-duplex mode, in effect, doubled the possible

network throughput. Switched Ethernet is currently the default mode of deploy-

ment for Ethernet networks. Throughout this dissertation, we loosely use the term

Ethernet to refer to switched Ethernet. Also, bridges and switches are used inter-

changeably.

2.2 Spanning Tree Protocol (STP)

In switched Ethernet, switches are responsible for forwarding data packets to ap-

propriate ports. Switches keep track of node-to-port mapping by using a technique

called reverse path forwarding. Each node connected to the network is assigned

a unique MAC address by its manufacturer. Each data packet bears destination

and source MAC addresses. These addresses identify the recipient and the origina-

tor node of the packet. Whenever a node transmits a packet, the receiving switch

makes a note of the port on which the packet is received. It associates the source

MAC address with the port in its internal forwarding table. Forwarding decisions

2. ETHERNET PRELIMINARIES 15

for each packet are made by looking up the destination address in the forwarding

table and finding the associated port. If the lookup fails, the packet is broadcast over

all the ports on the switch. Eventually switches learn about port connectivity of all

the connected nodes and populates the forwarding table with complete information.

Occasionally new nodes are added or the ports of attachment change for old nodes.

Switches respond to this situation by updating the forwarding tables.

If multiple switches are connected together, each switch associates the MAC

addresses of all the nodes on every other switch with the port connecting the corre-

sponding switch.

Reverse path forwarding works well as long as there are no loops in the net-

work topology. Reverse path forwarding involves broadcasting of packets when the

destination lookup fails. Packets broadcast by each switch are broadcast again by

all the other connected switches. If there are loops in the network topology, the

broadcast packets are eventually received back by the originating switch — only to

be broadcast again. This results in a broadcast storm in the network.

To ensure that there are no broadcast storms in a network, a loop-free network

topology has to be guaranteed. Ethernet uses the Spanning Tree Protocol (STP)

to ensure a loop free network topology [Per85]. The STP was included in IEEE

Standard 802.1D for Ethernet bridges [IEE90].

2.2.1 Tree Construction Process

Given a network topology as a graph, it is easy to compute a spanning tree for the

topology. If the spanning tree construction has to be done without overall topology

knowledge and in a distributed manner, it becomes an involved process. Ethernet

switches using STP participate in the following distributed spanning tree construc-

tion process.

2. ETHERNET PRELIMINARIES 16

2.2.1.1 Root Election

Every Ethernet switch is assigned a unique 48 bit MAC address and a 16 bit priority.

The MAC address is always fixed and the priority can be configured by users. The

default priority is usually 0x8000. During spanning tree construction all switches

exchange information with each other using special packets called Bridge Protocol

Data Units (BPDU). The switch with the lowest priority value is elected as the root

of the spanning tree. If there is a tie, the switch with the lowest MAC address and

the lowest priority is elected as the root.

2.2.1.2 Computing Least Cost Paths

After the root of the spanning tree is elected, switches start computing costs asso-

ciated with all the paths that connect them to the root switch. The final spanning

tree is such that the path from every node to the root switch is always the path with

the least possible cost. The cost of a path is computed by summing up the cost

associated with each link contained in the path. The path cost for the root switch is

always 0. The path cost for all the neighboring switches is the cost associated with

all the links connecting them to the root switch. The link cost depends on the data

rate of the link. Table 2.1 shows the costs associated with different data rates. Once

the path with the least cost to the root switch is identified for a switch, all links that

would cause loops are disabled and a loop-free topology is achieved. In the active

topology, ports that lead paths to the root switch are termed root ports and all other

active ports are termed designated ports.

2.2.1.3 Port States

Every port on a switch can be in one of the following states:

2. ETHERNET PRELIMINARIES 17

BP

LP

DP

DP

DPDP

RP

RP

RP: Root Port

BPLP

RP RP

DP: Designated Port

LP: Listening Port BP: Blocked Port

100 Mbps link

10Mbps link

Cost = 0

Cost = 38

Cost = 19 Cost = 100

Cost = 38

A B

C D

Root

Figure 2.4: Spanning tree creation in an Ethernet LAN. The Root node is elected
based on switch priority and MAC address. All switches advertise their path cost
to neighboring switches. Switches compare each other’s path cost and determine
the status of each port. In this figure switches A and B can reach directly to the
root with path cost 0. Switch A advertises a path cost of 19 to switch B. Switch
B advertises a path cost of 100 to switch A. Switch B blocks its port to switch A
because it can reach the root switch with a lower cost. Switch A keeps its port to
switch B in listening mode because a lower cost path may become available through
it. Switch D chooses connectivity through A rather than through B because of lower
cost.

2. ETHERNET PRELIMINARIES 18

Data Rate Link Cost

4 Mbps 250

10 Mbps 100

16 Mbps 62

45 Mbps 39

100 Mbps 19

155 Mbps 14

200 Mbps 12

1 Gbps 4

2 Gbps 3

10 Gbps 2

Table 2.1: Link costs for different data rates

• Blocking: This port is identified as a port that would cause a loop in the

network. It does not participate in forwarding data packets. It still receives

and forwards spanning tree construction-related BPDUs.

• Listening: A blocked port is changed to a listening port if the switch de-

termines that an alternate path with lower cost to the root may be available

through it. The listening port may become a forwarding port or may get

blocked again, based on information received from other switches.

• Learning: A listening port is changed to a learning port before it starts to

forward packets. A port stays in this state till a forward delay timer (usually

15 seconds) expires. In this state the switch learns about the nodes attached

to the port.

• Forwarding: This is the active state for a port. The port participates in all

switch activities while in this state.

2. ETHERNET PRELIMINARIES 19

• Disabled: This state corresponds to a completely non-functional port. In this

state no packets are received by the port.

Figure 2.4 shows an example of spanning tree creation in an Ethernet LAN.

2.2.2 Rapid Spanning Tree Protocol (RSTP)

STP had certain drawbacks. The first was long convergence time. It took almost

30 to 60 seconds for a spanning tree to be constructed. The second problem was

response to topology changes. Any topology change triggered by the addition and

deletion of switches or switch failures was dealt with by another round of tree con-

struction. This reduced the availability of the network.

The Rapid Spanning Tree Protocol (RSTP) was introduced as IEEE Standard

802.1w to provide faster recovery from topology changes [IEE00b]. RSTP is based

on STP and is backward compatible.

In RSTP, each switch actively monitors the link status of each port and in the

event of status change triggers a recovery process. It improves on recovery time by

adding a new port designation, an alternate port. During spanning tree construction,

information about alternate paths to the root switch is retained. Instead of blocking

out alternate ports to the root, these are kept active. In the event that connectivity to

the root port is lost, an alternate port is quickly converted to the root port.

RSTP changes the possible states that a port can be in. The blocking and listen-

ing states specified in STP are no longer used. There are only three possible states.

These are discarding, learning, and forwarding.

RSTP aims to reduce recovery time for topology changes from minutes to a few

seconds.

2. ETHERNET PRELIMINARIES 20

2.3 Link Aggregation

Spanning trees impose a restriction on Ethernet networks. At any point in time,

there will be exactly one active link between any two switches. This restriction lim-

its the maximum traffic between the two switches to the speed of the link connecting

them.

Link Aggregation or Trunking is a way of combining multiple physical network

links into a single logical link [IEE00a]. The logical link increases the capacity and

availability of bandwidth between the connected switches.

Link aggregation is very useful in setting up high-speed backbone or core net-

works, where data transfer over the backbone is much more than what a single node

can transmit.

Many LAN deployments usually a fat-tree-architecture where, the capacity re-

quirement in the vicinity of root switches is significantly more than the capacity

required elsewhere in the network. This increased capacity is provided by means of

link aggregation.

IEEE Standard 802.3ad defines the specifics of link aggregation in Ethernet.

Some of the goals of the 802.3ad standard are as follows:

• Increased bandwidth and availability, along with load sharing.

• Complete transparency to the end-nodes and higher-layer protocols.

• Backward compatibility with aggregation-unaware switches.

• Deterministic behavior of the link aggregation mechanism.

• Aggregation should be point-to-point. No multi-point support is possible.

• Only full-duplex operation is supported.

2. ETHERNET PRELIMINARIES 21

• Link aggregation between dissimilar links (with different data rates) is not

supported.

2.4 Virtual LANs

The concept of VLANs is open to several interpretations. Each networking equip-

ment vendor has different implementation strategies and hence there are different

features of VLANs. Broadly speaking, VLAN is an abstraction over physical LANs

which defines a limited broadcast domain independent of physical location. Essen-

tially VLAN is a technology to group certain end-hosts together and segment large

LANs into smaller broadcast domains. The grouping can be done according to

some high-level membership policy. VLANs offer several advantages over tradi-

tional LANs. Some of these advantages are improved performance, ability to form

virtual workgroups, simplified network administration, reduced cost of segregation,

and improved security.

It is possible to define VLAN membership of end-hosts in several different

ways. VLANs can be categorized by the way VLAN membership is defined.

2.4.1 VLAN Membership

Port-Based VLANs are defined by grouping physical ports of switches together.

This approach was used in some initial implementations of VLANs. In this scheme,

network switches are explicitly programmed to form VLAN port membership asso-

ciations. This mode of VLAN membership is supported even today. The limitation

of this method is that network administrators have to explicitly reconfigure the as-

sociation with every physical topology change.

2. ETHERNET PRELIMINARIES 22

MAC Address Based VLANs use the physical addresses of the network interfaces

to carry out membership assignment. This approach allows for physical topology

changes, while retaining VLAN membership without the need of explicit recon-

figuration. One of the limitations of this approach is the tediousness involved in

keeping track of MAC addresses and their VLAN associations.

Protocol-Based VLANs concentrate on defining broadcast domains based on the

traffic generated by end-hosts, rather than the end-hosts themselves. This scheme

allows for segregating traffic based on its network-layer or transport-layer protocol.

Unlike other schemes, this scheme allows end-hosts to be members of multiple

VLANs. This scheme is less popular, as the usual tendency is to group based on

hosts rather than protocols. Further, most of the traffic in networks today is IP-based

making the distinction on protocol alone less advantageous.

IP Address Based VLANs determine membership from layer-3 IP addresses,

rather than layer-2 fields. These VLANs need advanced switches which can pro-

cess layer-3 information. There are other variations of this scheme, such as using

layer-3 addresses in conjunction with the higher-layer protocol of the traffic.

Explicit Tag Based VLANs use explicit VLAN identifiers in the frames transmitted

by the end-hosts. These identifiers, termed VLAN IDs or tags, specify the mem-

bership of transmitting end-hosts. This way a particular end-host can be a member

of multiple VLANs. IEEE 802.1q standard provides the specification for tag-based

VLANs on switched Ethernet [IEE98b]. Though membership can be explicitly

specified by the end-hosts transmitting the frames, the membership of end-hosts

can be restricted by specifying a list of allowed VLAN membership for each switch

port. Frames transmitted with tags other than the allowed VLAN membership are

2. ETHERNET PRELIMINARIES 23

silently discarded by the switches.

The IEEE 802.1q standard specifies the VLAN identifier to be a 12-bit field

embedded in the Ethernet frame header. The maximum number of possible 802.1q

VLANs in an Ethernet network is limited to 4096.

2.4.2 Per-VLAN Spanning Trees

When there are multiple VLANs configured in a network, it is possible to increase

network utilization by allowing construction of independent spanning trees for each

VLAN. A spanning tree in a network of N switches enables only N − 1 links. All

other links are blocked. If there are multiple spanning trees in a network, the overall

utilization of the network can be increased by enabling more links and reducing the

number of blocked links.

The Multiple Spanning Tree Protocol (MSTP) defined in IEEE 802.1s defines

an extension to the 802.1d spanning tree protocol to enable multiple spanning trees

in an Ethernet LAN [IEE02]. Each VLAN has its own spanning tree, with its own

set of active and blocked links. Blocked links may be active in spanning trees

corresponding to some other VLAN.

The MSTP protocol is totally backward compatible with the RSTP. This allows

intermixing switches supporting MSTP and switches that do not support MSTP.

2.5 Managed Ethernet Switches

With technological advances, the complexity of Ethernet switches increased. Bridg-

ing functionality was enriched with several features, such as priority management

for STP, VLAN management, port monitoring and mirroring, MAC filtering, switch

health monitoring, statistics gathering, etc. It was possible to statically configure

Ethernet switches and deploy them for enhanced operation.

2. ETHERNET PRELIMINARIES 24

It later became possible to manage Ethernet switch configurations without dis-

rupting their operation. These were managed Ethernet switches which allow access

to their configuration parameters.

The managed Ethernet switches allow access to their configuration through

SNMP, HTTP, or command-line interfaces. It is possible to programmatically con-

figure VLANs and their associated spanning trees, as well as interface rate limits

using management protocols. It is also possible to remotely monitor switches for

failures and different activities can be triggered in reaction to these failure events.

These features are thus referred to as the configurable features of modern Ethernet

switches.

We rely on these programmable features of managed Ethernet switches to en-

able application of Ethernet in Metro Area Networks and Storage Area Networks.

Chapter 3

Related Work

In this chapter we review prior research in the area of traffic engineering in networks

and network topology design.

3.1 Traffic Engineering

Traffic engineering in networks deals with performance optimization in terms of

capacity utilization. The main focus of such an optimization is to minimize over-

utilization of certain capacity when other capacity is available in the network. Traf-

fic engineering includes traffic measurement, modeling, characterization, control,

and application of techniques to achieve performance objectives. It also includes

capacity management through network design [Ash01].

Traffic control can be carried out at various granularities. For example, in IP

networks each packet is routed independently. Routing decisions are taken at inter-

mediate routers depending on the conditions prevailing at the time of packet arrival.

Routing protocols deduce the utilization of network capacity by computing the cost

25

3. RELATED WORK 26

associated with each available routing path. The cost function can take into ac-

count several factors, such as congestion levels on certain routes, delays involved,

etc. While this approach is good for Layer-3 protocols such as IP, it is not prac-

tical to implement a traffic control solution of packet granularity at Layer-2, for

performance and complexity reasons. Another approach suitable for Layer-2 proto-

cols can be continuous monitoring, measurement, and periodic route configuration.

With this approach, a dynamic reconfiguration can be carried out to balance the

load among different network components. Though this approach cannot deal with

instantaneous overload, long term control can be carried out effectively by simple

reconfigurations after periodic monitoring and measurement.

3.1.1 Traffic Engineering in Ethernet

Traffic engineering in Ethernet is a complicated problem. In Ethernet, packets are

always switched along the spanning tree of the network. The sending nodes do not

have any control over the switching path. In large scale networks, such as MAN,

the number of network elements (links and switches) involved in a path between

distant end-hosts is usually high. Failure of any of these elements can cause a

complete communication breakdown between the given pair of end-hosts. Further,

the intermediate links are shared by multiple switching paths. This sharing may

lead to an overload situation and the absence of alternate switching paths precludes

load balancing by offloading traffic to other links. Figure 3.1 depicts a typical load

imbalance scenario when switching is done along a spanning tree.

The IEEE 802.1s Multiple Spanning Tree Protocol extends the original Ether-

net architecture by allowing multiple spanning trees to co-exist in the same physi-

cal network [IEE02]. Each spanning tree is associated with a unique virtual LAN

(VLAN) as defined by IEEE 802.1q tag based VLAN mechanism [IEE98b]. We

enable traffic engineering in Ethernet networks by leveraging on tagged VLANs to

3. RELATED WORK 27

Root

Blocked link

Switch A Switch B

Root−to−BA−to−Root

A−to−B

Active Links

Figure 3.1: A load imbalance scenario in spanning tree based switching. Three
different flows, A-to-B, A-to-Root, and Root-to-B share the same set of links, de-
spite the presence of a link between switch A and B. If somehow flow A-to-B can
be switched along link A-B, the overall network throughput can be significantly
improved.

implement load-balanced switching paths [SGNcC04]. These paths are explicitly

selected by specifying the VLAN tags associated with the corresponding spanning

trees. This selection can be carried out by the end-hosts explicitly rather than by the

network switches.

Another important facet of traffic engineering is network capacity design and

planning. This requires a priori knowledge about the traffic in the network. Since

we aim to provide traffic engineering solution for metro Ethernet, where this kind of

a priori knowledge is hard to come by, we focus on traffic provisioning independent

of the network design. We provides a mechanism to identify the critical portions

of networks which need to be strengthened in terms of bandwidth or backplane

processing. We defer our discussion about network planning and tuning in depth to

Section 3.2 in the context of Cassini SAN designer.

Network traffic engineering is a widely researched topic for LAN and WAN.

Further, the performance problems because of the single spanning tree in Ethernet

3. RELATED WORK 28

is a well known issue. We now look at some prior work which tries to address

deficiencies in Ethernet switching and improve performance. Prior research on im-

proving network scalability and performance can be classified in three areas. One

approach addresses the fundamental spanning tree issue by suggesting alterations

to Ethernet switching. Another approach takes a holistic view of the network and

focuses on proper planning and utilization of the network. Yet another approach

addresses the Ethernet standard itself and attempts to improve the standard as a

whole.

Research work in all three of these areas is now described.

3.1.2 Altering The Switching Mechanism

3.1.2.1 EtheReal

EtheReal is a real-time Ethernet switch aimed at providing connection-oriented

bandwidth guarantees to multi-media/real-time applications [VC99]. This is a sig-

nificant departure from the best-effort operation of Ethernet. To achieve real-time

capabilities, EtheReal has stringent fault-tolerance requirements. EtheReal uses

propagation-order spanning tree based fault recovery to improve failure detection.

To do failure-recovery, EtheReal uses blocked links in one spanning tree while con-

structing another tree to recover from link failures.

Our traffic engineering approach in Viking is similar to EtheReal, but instead of

using blocked links during spanning tree construction, Viking provisions multiple

spanning trees in advance. This enables Viking to handle possible failures at most

of the links (wherever possible) by using redundant links to construct backup paths.

This saves time in recovering from failures. In EtheReal, all connections going

through the failed link are terminated and are re-established after a new spanning

tree is rebuilt. Whereas, Viking uses pre-calculated backup paths to route traffic in

3. RELATED WORK 29

the link-failure cases, without causing any harm to existing connections.

EtheReal also suggests using multiple spanning tree based routing model to

maximize bandwidth utilization. The goal of multiple spanning trees in EtheReal

is to maximize the number of active links in the network. EtheReal was developed

when the concept of VLANs was just taking shape and Ethernet switches did not

have VLAN and multiple spanning tree support. With VLAN and multiple spanning

tree support in commercial switches, the need for specialized switches like EtheReal

was reduced. In many ways EtheReal can be considered a precursor to the Viking

architecture.

3.1.2.2 AutoNet

AutoNet is an Ethernet-like self-configuring LAN architecture [RS91]. Unlike Eth-

ernet, the switching/forwarding paths in AutoNet are not learned on demand but

are precomputed. To support configurability, AutoNet uses a dedicated processor

to monitor the network’s physical configuration. In response to network topology

changes, the forwarding tables in each switch are directly computed and updated.

AutoNet demonstrates the feasibility of reconfiguring network settings to pick

proper paths to the destination by directly updating the forwarding table in switches.

It operates by employing a monitor at the link level to detect error rates and link

failures which triggers the recovery process. The recovery process initiates a dis-

tributed algorithm in all of the switches for topology acquisition and forwarding

table recalculation. Once the recovery process is complete, newly populated for-

warding tables identify the links that forward packets to their destination. AutoNet

requires the switches in the network to be AutoNet compliant.

Ethernet in its earlier form relied on missing BPDUs to detect failure and in-

voke configuration changes. Fault detection in Ethernet was reactive rather than

pro-active. Fault detection was a delayed process because missing BPDUs could

3. RELATED WORK 30

be detected only after several seconds. This delayed failure detection and recov-

ery affected the availability of the network. Today the situation is much different.

Ethernet switches provide active link monitoring and fault detection mechanism,

although the reconfiguration mechanism in Ethernet is still a lengthy process.

3.1.2.3 SmartBridge

SmartBridge is a bridge architecture proposed to address the scalability problems

associated with spanning trees in LANs [RTA00]. In large LANs the root switches

become traffic bottlenecks because the majority of traffic has to pass through them.

SmartBridges try to bring the scalability advantages of IP routing to LANs by

staying within the confines of spanning-tree based switching but still somehow find-

ing the shortest paths between end hosts.

SmartBridges require complete topology knowledge. This complete topology

knowledge is acquired by inventory construction and topology acquisition logic

built into every SmartBridge. SmartBridges also acquire knowledge about points of

connectivity for every host in the network. Packet forwarding in the SmartBridge

architecture is done along the shortest paths. Shortest paths are computed using the

topology knowledge acquired during the acquisition phase.

Although shortest path switching may provide a low latency path, it does not

address load balancing in the network. Reconfiguration times in the event of topol-

ogy changes are remarkably low, around 10 ms to 20 ms. This, however, requires

all bridges in the network to be SmartBridge compliant.

3.1.2.4 Spanning Tree Alternate Route

K-S. Lui et al. propose Spanning Tree Alternate Route (STAR) to find and for-

ward frames over alternate paths that are probably shorter than their corresponding

3. RELATED WORK 31

spanning-tree paths [LLN02]. This forwarding is done by making use of links that

are traditionally blocked by the IEEE 802.1D standard.

In STAR bridging each switch maintains a distance vector which keeps track

of its distance from other STAR switches. Each bridge further maintains a host

location table which keeps track of the association between different hosts and the

STAR bridges to which the hosts are connected. Using the distance vector and the

host location, STAR bridges compute the shortest paths and forward packets along

these shortest paths.

Although this approach reduces latency between most of the source and des-

tination pairs, it risks overloading critical links, as the paths that it selects always

remain static for a given network topology. Moreover, it is not obvious how it fares

in recovering from a link or switch failure, as several records in all the tables then

need to be recalculated.

3.1.2.5 Transparent Bridging

R. Garcia et al. describe a transparent bridge protocol for local area networking

that accommodates topologies with active loops [GDS98]. The traditional IEEE

802.1D bridges are based on the spanning tree algorithm and thus disallow any

presence of active loops in the topology resulting in wastage of bandwidth. This

work, however, uses an improved routing scheme to allow highly-connected regular

topologies, such as meshes, to be used without blocking any of the links. This

protocol does not consider load on individual links while making routing decisions,

The protocol involves substantial modification of frames, making it more complex

and transferring additional data.

3. RELATED WORK 32

3.1.3 Network Planning and Load Balancing

3.1.3.1 Planning and Tuning

Network planning and tuning research by W. Qiao et al. addresses load balancing in

networks by configuring an appropriate inexpensive topology based on source-and-

destination pair load statistics [QN98]. They use block design principles to come up

with the initial topology and a method for fine tuning to optimize parameters such

as routing path length, traffic locality, inter-switch traffic, and channel utilization.

In contrast, Viking tries to balance load at the link level, without any assumption

about network topology, and develops an appropriate forwarding table, which is

more useful in a practical scenario.

3.1.3.2 Valiant Load Balancing

Zhang-Shen and McKeown argue that traditional wide area networks and metro

networks are grossly over-provisioned because of inherent issues with traditional

routing mechanisms [ZSM08]. They suggest the use of a novel routing technique

called Valiant Load Balancing (VLB) which deals with fault-tolerance and utiliza-

tion. They demonstrate the utility of VLB in the context of Internet backbone net-

works.

In the Valiant Load Balancing architecture, the backbone network consists of a

complete mesh of backbone routers. Each router acts as a connection point for an

access network to the backbone. For a backbone network of N nodes with routing

capacity of r, the links have capacity 2r/N . The traffic entering the backbone is

balanced equally by the ingress router to all N routers, regardless of the destination.

All other routers forward the traffic to the egress router. Thus every packet in a

traffic flow is forwarded twice in the backbone network. Every traffic flow is split

3. RELATED WORK 33

into N sub-flows to be merged back at the egress router. The network is over-

provisioned to only twice the required capacity. This is a very resilient network as

it can respond quickly to any failures by simply not using the failed portion of the

network.

Valiant Load Balancing tries to address the network utilization problem by sug-

gesting the use of a mesh topology and load balanced routing. In the context of

Ethernet networks, however, a mesh topology is not possible because of spanning

tree issues.

Metro Ethernet providers can use Valiant Load Balancing in conjunction with

VLAN based switching described in this dissertation to achieve a high utilization

and fault tolerance in metro core networks.

3.1.4 Standard Support and Enhancements

3.1.4.1 MPLS

Multi-protocol label switching (MPLS) provides a framework for efficient desig-

nation, forwarding, routing, and switching of packets that flow through the net-

work [RVC01]. It provides a means to map addresses to simple, fixed-length labels

that can be used by switching and forwarding technologies to route packets. It is

independent of the layer-2 or layer-3 protocols and manages traffic flows of vari-

ous granularity, starting from hardware to applications. Viking can be thought of

employing a similar idea where each packet contains a tag, the VLAN identifier

(similar to MPLS labels) and the packet is routed to the destination host through the

path in the corresponding spanning tree.

Our traffic control approach in Viking can be viewed as analogous to the estab-

lishment of virtual circuits in ATM networks or labeling in MPLS networks. Once

Viking selects a switching path for any pair of end-hosts, the path is identified by

3. RELATED WORK 34

the VLAN tag associated with the corresponding spanning tree. The VLAN tag can

be considered similar to the labels in MPLS schema. Like ATM virtual circuits and

MPLS labels, Viking tag assignment is also long-term persistent.

3.1.4.2 Rapid Spanning Tree Protocol

The IEEE standard 802.1w added changes to MAC bridge operation to provide a

rapid reconfiguration capability [IEE00b]. These changes aim at a substantial re-

duction in the time taken to reconfigure and restore service in the existing spanning

tree protocol upon a link failure or restoration. To achieve this, significant changes

are introduced in the way the spanning tree algorithm works but backward com-

patibility with the 802.1D version is still maintained. Many metro Ethernet service

vendors employ this approach to provide a superior level of fault tolerance com-

pared to conventional Ethernet networks.

On a comparative note, Viking saves convergence time in building up the new

spanning tree by maintaining a pre-computed VLAN tree, even before link failure

occurs. Thus, once link failure is detected, switching to the new VLAN takes ef-

fect immediately unlike 802.1w. Viking assumes the use of IEEE standard 802.1s,

a supplement to 802.1q This adds the facility for VLAN bridges to use multiple

spanning trees that lets traffic for different VLANs to flow over potentially different

paths in the virtually bridged LAN. This extension provides both rapid convergence

and load balancing in a VLAN environment.

Cisco’s Per-VLAN spanning tree (PVST) is a simple VLAN-sensitive imple-

mentation that relies on unique Bridge Protocol Data Units (BPDUs) transmitted

by each switch for every VLAN, on a separate spanning tree process (STP) running

on every switch for every VLAN. An enhanced implementation that extends the

PVST, known as Multiple-VLAN Spanning Tree (MVST), allows similarly con-

nected VLANs to be grouped into a single STP, making it more scalable without

3. RELATED WORK 35

compromising any advantages. Viking relies on PVST implementation of Cisco.

3.2 Storage Area Network Design

Network topology design has been studied since the advent of computer networks.

Research in optimal topology design is as old as networking technology itself. M.

Gerla and L. Kleinrock present a survey of network design research during the

initial deployment of the ARPANET [GK77]. In this survey they argue that many

early computer networks were designed to provide access to a centralized computer

service by a large number of remote users. Such centralized networks required

a tree topology. A significant body of research focused on optimizing such tree

topologies [FFCS71]. Gerla and Kleinrock pointed out that a tree structure is not

appropriate for distributed resource sharing networks where traffic demands can

arise between any two nodes of the network.

The SAN design problem can be considered a distributed network design prob-

lem, since there is no single traffic source or sink, but instead there can be commu-

nication between several storage clients and storage servers.

For distributed networks, the minimum-cost topology-design problem is a com-

plicated problem with no efficient and exact solution. Certain heuristics were ex-

plored, namely, the Branch and X-Change (BXC) method [FFC70, SWK69] and

the Concave Branch Elimination (CBE) method [Ger73, Yag71]. These methods

were evaluated and several improvements, such as cut-saturation [Net74] and the

Concave Link Elimination (CLE) procedure [SEA00] were suggested. All these

methods tried to improve network connectivity while minimizing the overall cost

of setting up network links. Although these methods are relevant to SAN topology

design, the solutions cannot be directly applied. The reason is that the emphasis

of these methods is on overall link cost optimization while interconnecting a fixed

3. RELATED WORK 36

number of nodes. Whereas in SAN topology design, the SAN fabric needs to be

designed to minimize the overall cost of both SAN switches and SAN links. SAN

switches contribute to a large portion of SAN costs. The above mentioned methods

do not address minimizing the number of switches and hence these methods are not

directly applicable to SAN topology design.

We studied different approaches to network design. Although there is a sig-

nificant body of research in generic network design, there is little research in SAN

design. We review some generic design research. We also review some SAN-design

research.

3.2.1 Generic Network Design

Khalil and Spencer present a LAN topology design mechanism which exploits the

locality of traffic that occurs in any distributed network [KS91]. In this mecha-

nism, nodes are combined into clusters so that the traffic locality index is min-

imized. Clusters are then assigned to different LAN segments with appropriate

routing paths such that the overall traffic balance index is maximized. The idea is

to split the entire topology design problem into two sub-problems and solve each

one of them separately. Unfortunately, these two sub-problems are not independent

of each other. Hence, it is not possible to find the local optimization point of each

sub-problem such that the overall topology design problem is optimized.

Elbaum and Sidi stress that there is little advantage in solving the topology

design problem by dividing it into sub-problems. For an efficient solution the design

problem needs to be tackled as a complete problem [ES95]. To this effect they

present a solution based on genetic algorithms. They improve upon the solutions

presented by Khalil and Spencer with Ethernet networks in mind. They derive

spanning tree topology for local area networks. Their optimization criteria is to

minimize the average network delays. With decreasing communication latencies

3. RELATED WORK 37

and increasing speeds in modern networks, average communication delays are less

of concern than the overall network costs.

Kershenbaum et al. present a fast design algorithm for mesh and distributed

networks called MENTOR [KKG91]. The inputs to the algorithm are the cost of

the links between all pairs of nodes and the internode traffic requirements. The em-

phasis of the algorithm is on finding a good design, rather than an optimal design,

which can serve as a starting point for further optimization. The cost functions are

assumed to be concave functions depending on distance and capacity. A concave

function suggests that the link costs do not increase linearly but sub-linearly, ex-

ploiting the economies of scale while adding extra link capacity. This algorithm

can be embedded within other design procedures which subsequently refine the ini-

tial topology to seek alternative efficient topologies.

Selecting an appropriate initial topology is a very important activity in the over-

all topology design problem. Since topology refinement is based on heuristics and

there is no single solution for appropriate final topology, the topology evolution

is clearly influenced by the initial topology. There is significant advantage in us-

ing MENTOR algorithm to derive an initial topology for creating WAN topologies.

The applicability of MENTOR in SAN topology design, however, is limited. The

MENTOR algorithm is designed specifically for large networks where link costs

dominate, rather than switching costs. There is an implicit assumption in MEN-

TOR design that the end hosts can act as switching nodes. While this assumption is

valid for networks with large geographical span, it is not valid for storage area net-

work end-hosts. SAN end-hosts have limited amount of ports which can act only as

sources and sinks for SAN traffic. Also, link costs do not have a significant bearing

on network costs in SAN fabrics.

3. RELATED WORK 38

Qiao et al. address the topology design problem by configuring an appro-

priate inexpensive topology based on the source and destination pair load statis-

tics [QN98]. Their approach is somewhat similar to the approach by Khalil and

Spencer. They use block design principles to derive the initial topology and a

method of fine tuning to optimize various parameters such as routing path length,

traffic locality, inter-switch traffic, and channel utilization. Their emphasis is on

minimizing the maximum and average path length between communication node

pairs. With decreasing average path length, the number of network elements re-

quired for each flow is minimized and thus network cost is also reduced. It is

network resource sharing between different flows, however, that brings the network

cost further down. The implicit assumption is that the overall network cost is min-

imized in the end. Minimization of path length, however, results in clustering of

network nodes together and the optimizations are effective only in pockets of the

network, resulting in load imbalance in the network.

Most of the above mentioned work emphasized network costs due to links alone,

average delay, and/or path-length optimizations. The number of nodes and the traf-

fic within them is an invariable factor for all the above algorithms. This assumption

is not valid while designing a SAN fabric. With increasing link speeds and de-

creasing latencies, average delay is not much of a concern for SAN traffic. Further,

SAN fabric incurs network costs primarily due to network switches rather than net-

work links. To address these issues, these existing techniques need to be adapted to

optimize both link costs and the cost of network switches.

3.2.2 Automatic SAN Design

There are a limited number of tools specifically targeted towards SAN design. Fur-

ther, we have not come across any tool which aids Ethernet0based SAN design.

This makes Cassini, the Ethernet SAN design tool described in this dissertation, as

3. RELATED WORK 39

perhaps the only existing tool focusing on Ethernet SANs.

3.2.2.1 Appia SAN designer

Appia is one of the few tools specifically targeted towards the design of storage

area network fabrics using Fibre Channel [WOSW02]. Appia was developed to

work in concert with other storage area networking design tools, which focus on

workload and device performance information to configure storage devices and de-

termine data placement. Appia also uses workload data-flow information to come

up with a SAN topology design. Appia consists of two independent algorithms,

namely QuickBuilder and FlowMerge. These algorithms differ from each other in

terms of their applicability and strengths. FlowMerge is a computationally inten-

sive algorithm used to design SAN topologies which require sparse connectivity.

QuickBuilder is useful in designing densely connected networks. The primary re-

quirement of these algorithms is that the nodes form a bipartite set of hosts and

devices. The data-flow information is always about flows between hosts and de-

vices and never across hosts or devices.

Appia formulates the SAN design problem as an integer programming prob-

lem. Heuristics are developed to substitute the computationally expensive integer

programming solution.

The topologies generated by Appia are layered topologies that do not conform

to any reference topology. The topmost layer consists of all hosts in the network

and the bottom layer is all the storage devices in the network. The middle layers

consist of switches and hubs. The network elements at a particular layer connect to

network elements in preceding and following layers. This forces switching paths to

consist of links from different layers. Though this kind of switching is symmetric

with short switching paths, capacity in one layer cannot be utilized in other layers,

resulting in load imbalance and wasted capacity.

3. RELATED WORK 40

3.2.2.2 SANTK: SAN Tool Kit

SANTK (Storage Area Network Toolkit) is a tool developed to aid SAN designers

design Core-Edge topologies [Str01]. This tool is very similar to Cassini. Major

differences, however, exists in capacity planning within the network and the com-

prehensiveness of connectivity planning.

SANTK uses pre-designed network topologies as building blocks and puts them

together in a pre-defined pattern, so as to satisfy the port requirements imposed by

the SAN design input. The SAN design process focuses only on port requirements

and no capacity planning is carried out to satisfy flow requirements. Further, only

the connectivity of Fibre Channel switches is provided and no planning for inter-

connecting hosts and devices to the fabric is provided.

The emphasis of this tool is on visualization of SAN topology to aid SAN de-

signers to manually tune a generated SAN topology. It also performs scalability

analysis on designed SANs by identifying the over-provisioning of ports. SANTK

acts as a design and visualization aid, rather than a full-fledged automated SAN

designer.

3.2.2.3 Integer Programming based SAN Designer

Thompson presents a formulation of integer program developed in Appia tailored

in the context of Core-Edge topology [Tho04].

This research focuses on finding an optimal Core-Edge SAN connecting all

hosts and devices together such that the cost of the SAN is minimized. This is

perhaps the only automation solution that focuses on Core-Edge topology for SAN

design. The SAN design, however, is only for small sized Fibre Channel fabrics.

This is a computationally expensive approach of solving the SAN design problem

and does not scale with SAN size. Further, the focus is entirely on connecting

3. RELATED WORK 41

individual hosts with individual storage devices.

In contrast, Cassini focuses on the clustered architecture of hosts and devices

in modern data centers and carries out automated SAN topology design. Cassini

focuses on Ethernet specific issues such as spanning tree problems. It also focuses

on providing features, such as zoning and multipathing in Ethernet environment.

Chapter 4

Viking: A Multi-Spanning Tree

Ethernet Architecture

4.1 Metropolitan Area Networks

Metropolitan Area Networks (MAN) are networks where the geographical span

extends to the boundaries of metropolitan cities. Typically, a MAN is a set of inter-

connected LANs that work together to provide access and services within a metro

region. Similar to the Internet, MAN are not owned by a single organization. The

network resources used in MAN are usually owned by either a consortium of users

or by MAN Service Providers who charge users for MAN services. The level of

service provided to different users depends on the service level agreement (SLA)

between the provider and the users. Since metro services are provided on mone-

tary returns basis, service providers strive to maximize revenues by maximizing the

utilization of their network resources.

The users of metro networks are enterprises seeking to interconnect their branch

offices in a city, academic institutions trying to interconnect various campus LANs,

42

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 43

or organizations connecting to Internet service providers located within the city.

Figure 4.1 shows how a Metro Area Network connects multiple enterprise cam-

puses.

4.1.1 MAN Infrastructure

The geographic span of MAN extends to the metropolitan limits. This span ranges

from 3 to 30 miles. The bandwidth requirement in MAN is usually several 100

Mbps to a few Gbps. For such distances and bandwidth requirements, copper-based

cabling is not a suitable option. Copper-based cabling can give high performance

when used for short distances, up to 100 to 200 meters. Optical networks are more

suitable for medium-haul metro networks.

The network infrastructure in MAN is predominantly optical-networking based

protocols and equipment supporting those protocols. The technologies widely used

to deploy metropolitan networks include, but are not limited to, SONET/SDH,

ATM, etc. Recently there is a growing shift from these circuit-switched technolo-

gies toward packet-switched technologies such as RPR, MPLS, etc. The reason

behind this shift is that conventional MAN technologies are primarily tuned for

voice traffic, whereas packet switching is more appropriate for data, voice, and

video convergence. Today, primary users of Metropolitan networks are enterprises

seeking Internet connectivity or other services, such as Virtual Private Networks,

between geographically separated sites. Thus, the bulk of the transmission over

Metro networks is not voice but data, which can be handled more effectively by

packet-switched transport mechanisms rather than circuit-switched technologies.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 44

Customer 2: site A

Customer 2 : site B

Customer 1

Customer 3

3 to 30 miles

Service Provider
Core network

RPR
SONET/SDH

ATM

Metro Area Network

Figure 4.1: An example of a Metro Area Network. The geographic span of MAN
is usually 3 to 30 miles. Service providers maintain the core of metro networks.
Metro networks provide connectivity to multiple enterprises to transparently inter-
connect their campuses. Service provider core networks use technologies such as
SONET/SDH, ATM, MPLS, RPR, and Ethernet.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 45

Name Distance Standard Remarks

100BASE-BX10 10 km 802.3 100Mbps over single-mode–fiber (SMF)

100BASE-LX10 10 km 802.3 100Mbps over a pair of SMF

1000BASE-LX 2 km 802.3 1Gbps over SMF

1000BASE-LX10 10 km 802.3 1Gbps over a pair of SMF

10GBASE-LR 10 km 802.3ae 10Gbps over SMF

10GBASE-ER 40 km 802.3ae 10Gbps over SMF

Table 4.1: Different Ethernet physical-layer technologies and supported distances

4.1.1.1 Metro Ethernet Technology

Ethernet is an emerging technology in the long-range optical-networking arena. Re-

cent advances in Ethernet physical-layer technology and standardization of Gigabit

and 10 Gigabit Ethernet for long distance have made Ethernet a serious contender

for metropolitan core switching. The IEEE standards 10G-BASE-LR and 10G-

BASE-ER define long-range and extended-range operation of Ethernet for distances

up to 10 km and 40 km respectively [IEE04a]. There is also work in progress

to make 40 Gbps and 100 Gbps Ethernet for operation over these distances. Ta-

ble 4.1 lists different Ethernet physical-layer specifications for long-haul networks

and their relative operating distances.

4.1.2 Metro Ethernet

Ethernet is the dominant Local Area Networking technology. The end-user net-

works of MAN clients are almost invariably Ethernet LANs. Almost 98% of data

traffic in corporate LANs is over Ethernet networks [For02]. The most convenient,

cost effective, and transparent way of interconnecting these LANs is to use Ethernet

bridging to bring them together. One of the most popular services in metropolitan

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 46

networks is Metro Ethernet Service.

4.1.2.1 Metro Ethernet Services

There is a subtle distinction between the terms Metro Ethernet Services and Metro

Ethernet Technology. Metro Ethernet services are typically provided by Metro Eth-

ernet Network providers to their end users. These services form the access ser-

vices in the network. Whereas, metro Ethernet technology is the carrier technology

that is deployed by service providers in core metro networks to provision various

metropolitan services, including metro Ethernet services. With the advent of Giga-

bit and 10 Gigabit capabilities, Ethernet has become an attractive metropolitan car-

rier technology. There are multiple reasons behind the quick acceptance of Ethernet

in metro networks. Some of these reasons are cost effectiveness, ability to provision

connectivity and bandwidth on demand, ease of inter-working, and a large existing

user base which enables ubiquitous adoption [For02].

Metro Ethernet Forum (MEF) is a consortium of network service providers

and other organizations with interest in metro Ethernet [mef]. MEF is responsi-

ble for standardizing metro Ethernet service specifications [For03]. According to

MEF, end-users can avail themselves of metro Ethernet services in two basic forms.

Namely, the Ethernet Line (E-Line) service and the Ethernet LAN (E-LAN) service.

End-users are provided with User-Network Interfaces (UNI), which are the points

of presence for service providers at the end-user premises. The E-Line service pro-

vides a point-to-point Ethernet virtual connection between any two UNIs and thus

it provides point-to-point Ethernet connectivity between end-users. E-LAN service,

on the other hand, provides multipoint-to-multipoint Ethernet connectivity between

multiple UNIs. Ethernet frames sent from one UNI may be received at one or more

of the other UNIs. From an end-user perspective, E-LAN services present a LAN

abstraction over a metropolitan network core. These services do not depend on the

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 47

ATM/MPLS
RPR

Ethernet

C
F

IP

Metro Ethernet Services

Optical Physical Layer (DWDM)

SONET/SDH

Figure 4.2: Metropolitan Area Networks technological landscape. Optical fiber
technology forms the basis of medium-haul communication in the metropolitan net-
works. The majority of services are provisioned using circuit-switched data-link
technologies, such as SONET/SDH. Other packet-switching technologies, such as
MPLS and RPR are actually built on top of SONET/SDH. Metro Ethernet services
are typically provisioned over these established technologies. Service provisioning
using Ethernet technology in the core is still rare.

underlying metro transport network and can be provisioned over any possible metro

transport protocols, such as SONET, RPR, MPLS etc.

It is natural to expect that the majority of Ethernet services would be provisioned

using Ethernet technology as the underlying transport technology. This is, however,

not the case. Although metro service providers have been quick to accept Ethernet

as one of the carrier technologies, they have been hesitant to completely depend on

it for provisioning major services for reasons mentioned below. The majority of

services are still provisioned using legacy technologies, such as SONET/SDH. The

current technology and service landscape in metro networks is shown in Figure 4.2.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 48

4.1.2.2 Limitations of Ethernet Technology in Metro Ethernet

The Metro Ethernet Forum has identified key issues faced by incumbent and new-

entrant service providers in metro networks that use Ethernet as the carrier technol-

ogy [mef]. Some of these issues are quality of service guarantees, in-service oper-

ation and maintenance, protection mechanisms, and network utilization [For02].

In terms of QoS, Ethernet lacks support for any sort of admission control mech-

anism. When new flows are added to existing traffic, there is no way to ensure

that the existing flows will have their requirements honored. There is no way of

ensuring an optimal path for a traffic flow, because the spanning tree of the network

dictates the switching paths for all flows. In terms of protection mechanisms, the

glaring problem is that of recovery after network failures. The resource utilization

problem again arises out of the spanning tree protocol, wherein Ethernet networks

fail to utilize all the links in the network because not all get included in the spanning

tree of the network. We recognize all these issues as offshoots of the lack of traffic

engineering capability in Ethernet.

Several other operational and maintenance issues also need to be addressed.

Two of the issues are in-service troubleshooting capabilities that do not disrupt

network operation and fine-grained packet level scheduling and packet coloring,

etc.

4.1.3 Motivation behind Viking

One of the goals of this dissertation is to address these traffic engineering issues

in Ethernet, making it a viable option as a carrier technology in the metro core.

The goal is to provide a technological solution that can enable Ethernet technology

in metro networks. Our research aims to do this, while staying within the con-

fines of existing standards and relying on existing capabilities of current Ethernet

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 49

equipment. We develop a multiple spanning tree based architecture called Viking to

address the traffic engineering problem in Ethernet.

In Viking we propose a performance and fault-tolerant solution for Metro Ether-

net. The root cause of the performance bottle-neck and lower fault-tolerance thresh-

old is the single spanning tree switching methodology used by these networks. A

single spanning tree also precludes the possibility of multiple switching paths be-

tween a pair of end-hosts.

One simple way to provision multiple switching paths between a pair of end-

hosts is to use multiple spanning tree instances. Since each spanning tree is respon-

sible for providing a switching path between any pair of end-hosts, availability of

multiple paths directly ensues from the presence of multiple spanning trees. The

overall performance of the network can be improved by increasing the number of

active links and reducing the number of blocked links in the network. The over-

all throughput can also be increased by providing multiple redundant links, all of

which are active. This can be achieved by constructing the spanning trees in a

careful fashion that do not overlap with each other.

If spanning tree instances are constructed in an intelligent fashion, it is possible

to distribute the respective root switches across the network topology. Since the

majority of switching load is also distributed across various roots, the need for faster

links in the vicinity of roots is eliminated by making use of multiple redundant links.

Viking addresses the traffic engineering problem by coupling the use Virtual

LAN (VLAN) technology with the multiple spanning tree approach. The IEEE

802.1s standard provides a provision for maintaining multiple spanning tree in-

stances on individual VLAN basis. Viking leverages this facility to derive load bal-

anced switching paths that can be explicitly selected by specifying the VLAN tags

associated with the corresponding spanning trees. This selection can be performed

by the end-hosts, rather than the network switches.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 50

In this chapter we describe and evaluate in detail how Viking addresses the

traffic engineering problem.

4.2 VLAN-based switching

The IEEE 802.1s MST protocol allows for the existence of multiple spanning trees

in an Ethernet network, where each spanning tree corresponds to a different VLAN.

These multiple spanning trees can be used to provide load balanced and fault-

tolerant switching paths for different communicating nodes. The path selection

can be done in two ways. In the top-down approach, one can configure a large

number of spanning trees such that the combination of all these trees encompasses

all the links in the network. The switching paths can be selected at run time based

on utilization of different links so that the overall network throughput is maximized.

Alternatively, in the bottom-up approach, given the traffic profile or traffic require-

ments of any network, one can come up with different load balanced switching

paths such that the overall network utilization is efficient [Gop03]. These load bal-

anced switching paths can be aggregated together such that there are no loops in the

aggregation. Such a constrained aggregation would yield multiple spanning trees.

Each spanning tree can further be associated with a unique VLAN tag and every

packet can be switched along the corresponding spanning tree, based on the VLAN

tag.

The IEEE 802.1q VLAN specification can accommodate a maximum of 4096

VLANs. The number of spanning trees required in a top-down approach increases

drastically with the network size and hence the top-down approach cannot be used

effectively in large scale networks. In a bottom-up approach, the number of span-

ning trees, and hence the number of required VLANs, depends on the number of

switching paths. Based on this restriction we opted to use the bottom-up approach

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 51

1 2

8

0

43 5

76

(a) Network Topology

1 2

8

0

43 5

76

(b) VLAN X Spanning Tree

1 2

8

0

43 5

76

(c) VLAN Y Spanning Tree

1 2

8

0

43 5

76

(d) VLAN Z Spanning Tree

Figure 4.3: Different possible spanning trees for a given topology. Each span-
ning tree can be associated with a unique VLAN tag. Switching paths from different
spanning trees can be selected by appropriate VLAN tags. (a) represents an exam-
ple mesh network topology, (b), (c), and (d) represent spanning trees corresponding
to VLAN X, VLAN Y, and VLAN Z. A communication between hosts connected to
switch 0 and switch 6 would take paths 0-1-4-7-6 with VLAN X, 0-1-4-3-6 with
VLAN Y, and 0-3-6 with VLAN Z. Availability of alternate switching paths enables
load balancing, which can form a basis for efficient traffic engineering. Further,
different spanning trees load different links to different extents. An intelligent span-
ning tree configuration approach can provide uniform load distribution across all
links, so that the overall end-to-end network throughput is maximized.

in VLAN-based switching.

For every incoming packet, Ethernet switches analyze the packet header for

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 52

VLAN tags. If a VLAN tag is found, the packet is switched along the correspond-

ing spanning tree. Thus, any specific switching path can be selected by simply

inserting the appropriate VLAN tag in the packet header. A host can insert different

VLAN tags while communicating with different destination nodes and thus can se-

lect different load balanced switching paths. Figure 4.3 shows an example scenario

where different spanning trees yield different switching paths which can be used

to balance the network load. This mechanism is very much analogous to MPLS,

where the packet switching paths are selected based on the labels present in packet

headers. The difference is that, in MPLS, the labels are inserted by ingress routers,

whereas here the VLAN tags need to be inserted by the end-hosts.

This VLAN-based switching is feasible only if desired VLAN spanning trees

can be imposed (configured) on any network. This is where the configurable fea-

tures of Ethernet switches come into the picture. Almost all switches, which pro-

vide support for the 802.1s MST protocol, facilitate configurability of links in terms

of associated VLANs. Usually, whenever a VLAN is associated with different

switches (links) in a switched network, the switches participate in a distributed

spanning tree setup process and build a packet forwarding spanning tree for that

VLAN. If the links with which a particular VLAN is associated already form a

spanning tree, this spanning tree becomes the default switching spanning tree for

that VLAN. Thus, with the availability of VLAN configurable features in switches,

it is possible to realize controlled VLAN-based switching, which enables efficient

traffic engineering.

To provide an effective traffic engineering solution, Viking needs to address the

following issues :

Topology Knowledge

Since Viking can be used independent of network design and planning, it needs

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 53

to acquire knowledge about network topology by external means. This knowl-

edge can be acquired in an automated fashion by using available network topology

discovery tools. Some of the works that facilitate topology discovery of Ethernet

are Topology-d [OG98], IDMaps [JJJ+00], and Remos [BGM+99]. Alternatively,

topology information can be manually provided by network administrators. This

does not pose any problem since, for large scale and planned networks such as

metro Ethernet, topology information has to be maintained in some configuration

database for efficient management. This information can readily be provided to

Viking after appropriate transformations.

Load Characterization

Viking needs to measure and monitor the network load continuously, so as to carry

out spanning tree reconfigurations for efficient load balancing. It addresses this

by implementing a statistics gathering mechanism. Statistics are continuously col-

lected at end-hosts during network activity. The distributed traffic information is

periodically integrated to obtain periodic pair-wise network utilization information.

This information is used by Viking traffic management logic to determine switching

paths, which utilize the network resources in a load balanced fashion.

Resource Provisioning

Resource provisioning is perhaps the most important part of Viking. Once the in-

formation about network topology and the pair-wise load statistics are obtained,

Viking needs to derive appropriate switching paths between given node pairs. These

switching paths further need to be combined to form spanning trees which can be

associated with different VLANs. This task is divided into three primary sub-tasks,

namely Path Selection, Path Aggregation into spanning trees, and Spanning tree

configuration. Path information also needs to be percolated to the end-hosts for

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 54

final path selection. This is because ultimately the end-hosts are responsible for

transmitting frames with appropriate VLAN tags, so that the frames are switched

along the selected paths. Further, in the event of reconfiguration, the end-hosts need

to be informed about changes in switching paths in a transparent fashion. Details of

path selection, path aggregation, spanning tree construction, and information per-

colation are provided later in this section.

Fault-Tolerance

Apart from load balancing and efficient resource utilization, Viking also needs to

address the issue of switch and link failures in the network. To effectively tackle

failures, Viking pre-computes backup switching paths for each pair of end-hosts.

The backup paths need to be node-and-edge disjoint paths, when compared to the

primary paths. Viking strives to provide backup paths in a fashion that minimally

impacts the load balance scenario. In the event of failures, the end-hosts can be

simply informed to use the backup paths by inserting into the frames the VLAN

tags corresponding to the backup path spanning tree. Viking needs an effective

failure detection mechanism so that the end-hosts can be informed about alternate

path selection within a short duration of failure occurrence. For this purpose, Viking

relies on the failure detection support provided by the network switches.

4.3 Resource Provisioning

As described earlier, traffic management in Viking consists of three primary tasks,

Path Selection, Path Aggregation into spanning trees, and Spanning tree construc-

tion.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 55

S1

S2

C D

BA
D1

D2

Figure 4.4: A simple problem of selecting a route from S1 to D1. Selecting the route
(S1, C,D, D1) leaves the critical link (A, B) free for future virtual connections
between S2 and D2.

4.3.1 Path Selection

The goal of the path selection algorithm is to maximize network resource utilization

by supporting the expected traffic between as many source and destination nodes

as possible. To achieve this goal we use a primary-backup path selection algorithm

called Link Criticality Based Routing (LCBR) [Gop03]. The main intuition behind

this route selection algorithm is to find routes that balance the loads across different

parts of the network and, to the maximum extent possible, avoid critical links in the

network that will carry significant load.

Consider the network topology shown in Figure 4.4. We need to select a route

between nodes S1 and D1. There are two candidate routes: (S1, A,B,D1) and

(S1, C,D, D1). Which of these two routes is better from the perspective of network

usage efficiency? Say we also expect traffic between nodes S2 and D2. Then the

best route to select between S1 and D1 would be (S1, C,D, D1), because it leaves

the resources along the link (A, B) free for traffic between S2 and D2. The chal-

lenge here is to identify that link (A, B) is a critical link.

The path selection algorithm selects a primary route X and a backup route Y

that can support an expected bandwidth requirement of B(s, d) between a given

source s and destination d. The backup route Y provides the guarantee that, if at

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 56

most one network element (link or node) fails and the network element happens to

lie on the primary route X , then the corresponding source-destination traffic will

be diverted to Y . Thus we are guarding against the possibility of a single network

element failure. Note that the basic requirement for being able to tolerate single-

element failures is that the primary and backup routes must be completely disjoint

with respect to all intermediate network elements. This is to ensure switch-over to

the backup route if any one element fails along the primary route.

We say that two primary routes intersect with each other at network element e

if both the primary routes pass through element e. Whenever a network element e

fails, we need to activate backup routes for all the primary routes that intersect at e.

Every link l has one primary set Prim(l) that contains the IDs of all the primary

routes that pass through link l. In addition, each link has a total of (m + n) backup

sets of reservations, where each set corresponds to one network element; m is the

number of links and n is the number of nodes in the entire network. Each backup

set at link l is represented by Bkp(l, e), 1 ≤ e ≤ (m + n), where each backup set

corresponds to one network element e. The backup set Bkp(l, e) contains IDs of

those primary routes whose backup routes traverse link l and whose primary routes

intersect at the network element e. In other words, Bkp(l, e) represents the set

of backup reservations at link l that need to be activated in the event of failure of

network element e.

Recovery from failure of a network element occurs as follows. During normal

operations, each link carries traffic for its primary set Prim(l). Whenever a net-

work element e fails, its corresponding backup sets Bkp(l, e) are activated at all

the links l of the network. Activating a backup set at a link l implies that, in addi-

tion to the traffic for routes in primary set Prim(l), the link carries the traffic for

reservations in its backup set Bkp(l, e).

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 57

Assuming that at most one network element can fail at a time, the residual ca-

pacity Rl of a link l is calculated as follows.

Rl = Cl −
∑

(s,d)∈Prim(l)

B(s, d)−max
All e

∑
(s,d)∈Bkp(l,e)

B(s, d) (4.1)

In other words, the residual capacity Rl is obtained by deducting the sum of pri-

mary reservations and the maximum of the sum of the backup reservations, in each

backup set, from the total link capacity Cl.

First we define a network-wide metric cost(G) that measures the extent of load

on resources in network G. An important factor in computing cost(G) is the notion

of expected load φl on link l. The expected load φl indicates the importance of

a link l in terms of how critically all the source-destination pairs in the network

need the link for carrying their traffic. Assume that a total of x network routes are

possible between a source-destination pair (s, d). Out of these, say y routes pass

through link l. Then the criticality of the link l with respect to source-destination

pair (s, d) is defined as the fraction of routes between s and d that pass through link

l, i.e. φl(s, d) = y/x.

Assume we have the knowledge of expected traffic demand B(s, d), which rep-

resents the total bandwidth demand expected between the source-destination pair

(s, d). The expected load φl on link l is defined as the sum of fractional expected

demands on the link from all possible source-destination pairs in the network, i.e,

φl =
∑

(s,d) φl(s, d)B(s, d). Link criticality φl(s, d) is largely static since it is

completely determined by network topology and changes only when the topology

changes. Also, B(s, d) changes relatively infrequently, such as on a daily basis.

Thus the values of φl can be periodically pre-computed offline and kept ready for

use in the online route selection phase.

Let Cl be the total capacity and Rl be the residual capacity of the link l at any

instant. The cost metric cost(l) of link l is defined as cost(l) = φl

Rl
. The metric

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 58

cost(l) represents the expected load per unit of available capacity on the link. A link

l with more residual capacity Rl is less critical whereas one with more expected load

φl is more critical. Note that the most dynamic component of the link cost is the

residual link capacity Rl. The minimum value of link cost cost(l) is φl/Cl when

the residual capacity is maximum at Rl = Cl.

The metric cost(G) for the entire network G is defined as follows.

cost(G) =
∑
l∈G

(
cost(l)− φl

Cl

)2

(4.2)

The metric cost(G) represents the squared magnitude of the distance vector be-

tween the current link costs and the minimum link costs in the network G. Ideally,

we would like the state of the network to be as close to the idle-state operating

point (φ1/C1, . . . , φm/Cm). The squared sum has the advantage that it captures

the impact of both the magnitude of individual link costs and the variations among

them.

The LCBR algorithm for selecting both primary and backup routes is presented

in Figure 4.5. As input to the algorithm, we supply a list of pre-computed route

pairs (X, Y) of potential primary and backup routes between source s and des-

tination d. These candidate route pairs are pre-computed by first finding the k

shortest primary routes between s and d. Next, for each primary path X , we find

the k shortest backup routes from the residual graph that excludes links and nodes

along X . Efficient algorithms for finding the k shortest routes have been proposed

in [Fox75,Epp98]. The final route pair is selected from among the k2 shortest route

pairs that are pre-computed, since these are most likely candidates to yield low val-

ues of metric cost(G). The parameter k can be tuned to increase or decrease the

accuracy of the algorithm in minimizing cost(G).

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 59

Input: Network topology G.

New route request between nodes s and d

Average bandwidth requirement B(s, d)

For all links l: φl, Rl and Cl

List L of candidate primary-backup route pairs (X, Y)

Output : Primary route X(s, d) and backup route Y (s, d)

costmin = ∞; X(s, d) = Y (s, d) = nil

For each route pair (X, Y) in the list L.

If B(s, d) cannot be satisfied along X or Y

then skip to next route.

Recompute the residual capacities R′
l for each link l ∈ X ∪ Y .

Recompute the cost(l) = φl

R′
l

for each link l ∈ X ∪ Y .

Recompute the cost(G) =
∑

l∈G

(
cost(l)− φl

Cl

)2

.

If cost(G) < costmin then

costmin = cost(G)

X(s, d) = X and Y (s, d) = Y .

If (costmin > cost threshold) then

Reject the route request

else

Select route-pair (X(s, d), Y (s, d)) as

primary-backup route-pair between s and d

Figure 4.5: Link Criticality Based Route Selection Algorithm to select both the

primary and backup routes between source s and destination d with bandwidth of

B(s, d).

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 60

For each candidate primary-backup pair (X, Y) between s and d, the LCBR al-

gorithm checks if the bandwidth requirement B(s, d) can be satisfied by the avail-

able residual capacities along both the routes X and Y . If there are sufficient re-

sources, then the LCBR algorithm recomputes the projected residual capacities R′
l

at each link l along routes X and Y . The projected R′
l values are then used to com-

pute the projected cost cost(G). Request for a route between s and d is rejected

if either (a) no route has sufficient resources to satisfy the bandwidth demand be-

tween s and d or (b) the minimum value of cost(G) is greater than a pre-defined

threshold. The latter case indicates that selecting a route between s and d would

take the network to a highly critical state that may not be conducive for admitting

future paths.

The LCBR algorithm is executed for every potential source-destination pair to

determine their primary and backup routes. Nodes are admitted in increasing order

of min-hop distance. This ensures that traffic between nodes that are topologically

close to each other can indeed traverse over short primary and backup routes. Hav-

ing more short paths as primary and backup routes in turn helps later in the path

aggregation phase, by reducing the number of VLANs required to support all the

routes.

4.3.2 Path Aggregation and Spanning Tree Construction

Once the primary and backup switching paths are determined, these paths need to be

grouped together to form spanning trees. Each distinct spanning tree corresponds to

a distinct VLAN. The maximum number of spanning trees, and hence the number

of VLANs that can be supported in a network, is dependent on the capabilities of

network switches. Since the number of VLANs is a scarce resource, it is essential to

group paths together so that the number of spanning trees that need to be constructed

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 61

is minimized.

Aggregating different paths into a minimal number of spanning trees can be re-

duced to an instance of the classical minimum set cover problem. Formally, the set

cover problem is as follows:

Input:

The universal set U such that U = {1, . . ., n}
A set of subsets S1, . . ., Sm of U i.e. S = { Si ⊆ U | i = 1,. . .,m}

Goal:

Find the smallest subset of subsets T ⊂ S such that ∪{ti∈T}ti = U

Each instance of the path aggregation problem could have been solved by first

constructing all possible spanning trees (set S) using the load balanced paths (set

U) and then finding the smallest collection of these spanning trees (set T) by solv-

ing the minimum set cover problem. The minimum set cover problem, however, is

known to be a computationally NP hard problem and the greedy heuristic is com-

monly the approach used to solve it [Sla96]. Further, computation of all the possible

spanning trees is akin to the computation of the power-set of set of all paths, with

the additional restriction of eliminating subsets which incorporate loops. This com-

putation is exponential. Thus finding a minimal number of spanning trees for a

given set of paths is a computationally hard problem.

Viking uses a simple heuristic-based greedy algorithm to achieve this goal with-

out expending too much computation. Instead of constructing all the possible span-

ning trees and then greedily selecting trees in the order of the number of paths

covered by trees, Viking carries out a greedy construction of spanning trees such

that a large number of paths are grouped together to form spanning trees. Since the

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 62

Input:

Network topology G.

Load balanced paths P .

Output:

Spanning Trees encompassing all paths.

Let the set of all load balanced paths be P .

Let the set of all edge pairs be EP .

Let the set of spanning trees be S.

Let S = φ.

Sort the members of P in the descending order of path length.

While (EP ! = φ and P ! = φ)

Sort the members of EP in descending order of their

frequency of appearance in members of P .

Let ep = Next element in EP .

While ∃ p ∈ P such that ep ⊂ p

Remove p from P .

Find s ∈ S such that p and s do not form a loop.

Merge p with s.

If no such s is found, add p to S.

Figure 4.6: Path Aggregation algorithm. For the given input of selected paths P
and the network topology G, the algorithm computes a set of spanning trees. Each
spanning tree can be associated with a unique VLAN which can be used to select
the desired switching paths.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 63

1 2

8

43 5

76

Y, Z

Y, ZX, Y

X, Y, Z

X, Y, Z X, Z

Z

X, Y

X, Y

X, Z X, Y, Z

0

Figure 4.7: Constructing desired spanning trees on an interconnect of Ethernet
switches. By selectively enabling and disabling different VLANs on different links,
the desired spanning trees can be forced on the interconnect. This figure shows
the VLAN configuration on different links required to construct the spanning trees
shown in Figure 4.3.

number of overall spanning trees required is inversely proportional to the number of

paths grouped together, the number of spanning trees can be reduced by grouping

a larger number of paths together. To increase the number of paths per spanning

tree, Viking tries to merge paths which share common features. Common feature

based merging is accomplished by the order in which paths are selected for merger.

The common features can be sub-paths, edges, or simply nodes. For computational

ease, Viking limits the length of sub paths to a pair of edges. The complete algo-

rithm for path aggregation is described in Figure 4.6. After the termination of this

algorithm, the output obtained is a collection of spanning trees. These spanning

trees can then be used to create independent VLANs. Specific paths can then be

selected by transmitting frames over the associated VLANs.

In conventional bridged networks, the spanning tree construction process is car-

ried out by the participating switches in a distributed manner. The final spanning

tree structure depends on the bridge protocol data unit (BPDU) message latencies

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 64

and the order in which the BPDUs get exchanged. Most modern Ethernet switches

provide configurability options, so one can specify the relative switching priority

for packets of different VLANs over different ports. Using this VLAN priority, it

is possible to enable or disable association of particular VLANs to different ports.

This enabling and disabling of VLANs can be extended to different links, by en-

abling or disabling VLAN switching on the corresponding switch ports. Thus, one

can enable or disable packet switching corresponding to different VLANs on differ-

ent links. Using these configurability features, one can force a spanning tree on an

interconnection of switches. If the set of links that have a particular VLAN enabled

on them already interconnect together in a spanning tree fashion, these links consti-

tute the default spanning tree for that VLAN since this is the only active topology

for the VLAN.

Configuration can be carried out remotely through SNMP interfaces. Viking

uses the topology and spanning tree information obtained from the path aggregation

phase to force the desired spanning trees on the interconnect of switches. Figure 4.7

shows how the spanning trees corresponding to Figure 4.3 can be constructed by

selectively enabling different VLANs on different links.

4.4 Fault Tolerance

Most managed (configurable) switches provide status monitoring facilities where

one can remotely setup traps, which can get triggered by various events, such as

link failures, neighboring switch failures, link recovery, switch recovery, neighbor

discovery, etc. Using these traps one can detect topology changes and failures in

the network. If for every communicating host-pair, a backup path is provisioned,

it is easy to deal with a failure scenario by simply switching communication to

the VLAN that corresponds to the backup path. In order to deal with failure of

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 65

1 2

8

0

43 5

76

Status Monitor

Backup Path
(VLAN "Q")

(VLAN "P")
Primary Path

A

B

(3) VLAN Change Notification

(2) Failure Notification

(1) Failure
Detection

Figure 4.8: Event monitoring based failure recovery mechanism. The Status Mon-
itor registers with all switches (0-8) for event notifications. Node A and Node B
communicate with each other using path 0-3-6-7-8 over VLAN P. The failure of link
3-6 is detected by switch 3 and the status monitor is notified of it. The status monitor
determines the list of all affected sender nodes and sends them notifications to start
using alternate VLANs. In this case, Node A receives a notification to use alternate
VLAN Q, which provides the path 0-1-4-5-8. The entire recovery period consists of
failure detection, failure notification to the status monitor, status monitor lookup of
alternate VLANs, and notification to the affected nodes.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 66

any switch or link in the communication path, the backup path must be a link-and-

switch disjoint path1 to the primary path. Due to this disjoint nature, the primary

and backup paths belong to different spanning trees (and hence different VLANs).

Failures in one spanning tree do not affect other spanning trees that do not include

the failed links. Since in Viking the primary and backup paths are pre-provisioned

through traffic engineering, the fail-over duration is limited to failure detection de-

lay and failure communication latencies between switches and status monitoring

nodes. The failure detection latencies for commercially available low-end managed

switches, such as the Cisco Catalyst 2924, range from 400 to 500 milliseconds.

The fail-over period observed in this case does not exceed 500 to 600 milliseconds

and is consistently in the sub-second range. This is a significant improvement over

the multiple-second fail-over latency of 802.1w RSTP deployments. Note that the

802.1w failure recovery period does not take into account the failure detection pe-

riod and is just the convergence period for spanning tree recovery. Further, the rapid

recovery of 802.1w depends upon fast failure detection. The fault tolerance mech-

anism in Viking can also greatly benefit from any such fast failure detection. Thus,

on a comparative note, failure recovery of Viking is dependent solely upon message

latencies.

One caveat about the above mentioned detection and recovery mechanism is that

it requires the presence of status monitoring node(s) in the network which is(are)

aware of the entire network topology and the traffic provisioning therein. Further, it

is essential that the status monitoring node is always reachable from all the switches

in the network and from all nodes which need to be notified about the failure and

the new VLAN tags that need to be used. If a network failure disrupts the communi-

cation path between the failure-detecting switch and the monitoring node itself, the

fail-over mechanism cannot proceed. This situation, however, can be overcome by

1The disjoint nature of backup paths does not extend to the ingress and egress links and switches.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 67

dispatching the failure notification over multiple communication paths to the status

monitoring node. Another possibility is to have multiple status monitoring nodes

strategically located in the network, such that at least one status monitoring node

can communicate with the failure-detecting switch and all the affected nodes. An

example failure recovery scenario is depicted in Figure 4.8.

4.5 System Implementation

Though Viking relies on configurable features of Ethernet switches to realize load-

balanced VLAN-based switching, there are other tasks that the Viking system needs

to perform in a distributed manner and yet other tasks in a centralized manner, out-

side the switch logic. For example, the final VLAN selection logic has to reside

on end-hosts, as it needs to be integrated with the network stack on the end-hosts.

Also, load measurement and monitoring can be done at the end-hosts which are the

originating and terminating points for traffic. Other tasks, such as traffic manage-

ment, etc., can be done efficiently in a centralized manner. Further, network status

needs to be monitored continuously for failures. Failure recovery requires of sta-

tus monitors at strategic locations in the network, so that failure notifications are

delivered without getting affected by the very failures being notified.

For this purpose, Viking implementation is based on the client-server model.

In Viking terminology, the clients are Viking Proxy Clients (VPC), the server(s)

Viking Manager(s) (VM), and the status monitors Viking Status Monitors (VSM).

The overall Viking architecture is shown in Figure 4.9.

4.5.1 Viking Proxy Clients

Each of the end-hosts needs to run a Viking Proxy Client (VPC) module which is

responsible for load measurement and VLAN selection during network operation.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 68

In the metro Ethernet service environment, however, it is not possible to modify

the network stack of every end-host. The Viking client software is a thin layer in

the protocol stack responsible for run-time VLAN selection and traffic characteri-

zation. This activity can be performed non-intrusively by proxy clients present at

the service provider point of presence at the customer location.

Run-time VLAN Selection: In order to carry out run-time VLAN selec-

tion, the VPC needs to alter Ethernet frames before these are sent to the service

provider network. VLAN selection logic is implemented as a Viking Virtual Inter-

face (VVIF). Each VVIF is associated with a physical network interface connected

to the network. The network stack on proxy clients uses VVIF for sending and

receiving packets on the network. VVIF, on reception of the first frame for any

specific destination, sends an association query to the Viking Manager and obtains

the VLAN id for the path which was preselected in the path selection process. This

VLAN identifier is cached and inserted in every subsequent frame for this desti-

nation. The cached entries are periodically invalidated, to take into account any

network reconfiguration carried out by the Viking Manager. In the event of link or

switch failures, the VM pro-actively informs the VPCs that are the users of affected

VLANs to change their VLAN association to select the backup switching paths. In

response, the VVIF refreshes the cached VLAN ids with the ids corresponding to

the backup paths.

Load Measurement: The VVIF on every VPC is the sole pass-through point

for the entire network traffic. This makes it an ideal choice for measuring and

monitoring the traffic load. The VPC keeps track of all peer nodes and the amount of

traffic exchanged with these peers through the VVIF. VPC then periodically sends

updates to the Viking Manager, which uses them for future load balancing.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 69

4.5.2 The Viking Manager and Viking Status Monitor

The Viking Manager is the central component responsible for traffic engineering

and fault tolerance. Further, the VM also needs to inform the end-hosts about the

VLAN information when required. Since all end-hosts update the VM with their

respective traffic information, the VM has a global view of the network resource

utilization. The resource utilization information, in conjunction with network topol-

ogy can be used to identify the critical portions of the network and carry out appro-

priate network tuning.

Traffic Engineering: All VPCs periodically send traffic monitoring updates

to a VM. In the long term, the VM has global knowledge about pair-wise load

statistics in the network. This load characterization and the network topology in-

formation are used to select the load balanced primary and backup paths. These

paths are further aggregated into different spanning trees and are associated with

VLANs. The VM then reconfigures switches in the network to use the constructed

spanning trees. The VM continuously monitors the load characteristics between all

node pairs. Should there be a considerable change in load characteristics resulting

in overload of links, the VM reconfigures the spanning trees to adapt to the changed

traffic pattern. Once the spanning trees are configured, the per-node pair paths, the

spanning tree information, and the VLAN information are stored in hash tables for

fast lookup. The VPCs send query messages to the VM whenever they encounter

packets meant for destination for which the VLAN association is not known. The

VM responds to these queries after looking up the response in the hash tables.

Fault-Tolerance: For failure detection, Viking relies on switch support for

SNMP traps. Each of the switches in the network is configured to send SNMP traps

to the Viking Status Monitor whenever any event of interest takes place. Typically,

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 70

events of interest are link failures, port failures, carrier loss, etc. Switches notify

VSMs of failure using SNMP. The VSMs use this notification to find the VLANs,

and hence the paths, in which the affected links are active. The source VPCs of

the affected paths are then pro-actively informed to use the backup paths instead of

failed primary paths. Further, the VMs initiate the reconfiguration process for the

changed topology, to tackle subsequent failures. Since VMs are the central nodes

responsible for overall Viking operation, the reliability of VM is crucial. To avoid

making VM a single point of failure, the VM itself may be a fault-tolerant server,

where a secondary VM can work as a hot-standby server ready to take over the role

of primary in the event of failures.

Ethernet switches use a reverse path learning mechanism to populate their for-

warding tables. In the absence of forwarding information, the default action is to

send the packets over all interfaces. In the event of failover, the sending nodes are

forced to use backup paths from different VLANs. In most cases, it is quite proba-

ble that the forwarding tables corresponding to the backup VLAN are not populated

or may not have entries corresponding to the receivers. Thus, after failover there

may be a surge of traffic on all the links constituting the spanning tree of the backup

VLAN. This may result in lowering the throughput of the network and, in the worst

case, may lead to congestion. Further, if the direction of traffic is unidirectional or

if the reverse communication takes place over a different path covered by a different

VLAN, reverse path learning may never take place successfully. This problem can

be addressed by expediting the reverse path learning gratuitously. The VMs inform

the VPC corresponding to the receiver nodes to send gratuitous ARP replies on

the backup VLAN, so that the forwarding tables are quickly populated and traffic

surges are avoided.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 71

VPC

VPC
VPC

VSM

VSM

VM

VM

Customer 2: site A

Customer 2 : site B

Customer 1

Customer 3

VSM

Service Provider
Core network

Figure 4.9: The overall Viking system architecture. The customer sites are con-
nected with the service provider core network through Viking Proxy Clients (VPC).
The VPCs insert appropriate VLAN tags and maintain load statistics. The Viking
Manager(s) (VM) interact with VPCs and carry out traffic engineering in the core
network, based on load statistics. The VMs are also responsible for configuring
the VLAN spanning trees in the core network. The Viking Status Monitors (VSMs)
monitor the network for failures and reconfigurations. VSMs send change VLAN
notification to the appropriate VPCs to switch to backup paths.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 72

4.6 QoS Enforcement

Traffic engineering and bandwidth provisioning alone cannot provide quality of ser-

vice in a network. It requires network usage policing, regulation, and adaptation to

provide a desired degree of QoS in the network. Without usage regulation, the best

one can do is to provide QoS on the lines of the priority based DiffServ in the Inter-

net [BBC+98,FKSS98]. This kind of mechanism is inadequate to insulate different

traffic flows from one another and is not an acceptable scenario in MAN, where

adherence to service level agreements (SLA) is a crucial requirement. Ethernet also

specifies a DiffServ-like traffic-class prioritization mechanism which is supported

by almost all Ethernet switches [IEE98a]. But it is clearly inadequate, because of

lack of global enforcement.

One way to regulate network usage and insulate different traffic flows from one

another is to monitor and enforce usage right at the ingress points in the network.

If the amount of inflow traffic does not exceed the total engineered traffic, different

traffic flows cannot affect each other, unless some of the network elements have

failed. If traffic engineering is performed with proper backup provisioning, it can

be ensured that all traffic flows are insulated from each other even after failures.

Many mid-end and high-end Gigabit Ethernet switches support configurable

rate-limiting features. For efficient wire speed, these features are usually imple-

mented in hardware. Rate-limiting can be used to provide restricted bandwidth

usage, based on a predefined profile or on per-physical port usage. Excess traffic

can either be dropped or re-prioritized. Though typically supported configurable

parameters for rate-limiting are quite extensive, rate-limiting can simply be speci-

fied in terms of raw bandwidth limitations and burst size limits. Using these rate-

limiting features, it is possible to regulate the inflowing traffic at the ingress ports.

The amount of allowed inflow traffic can be determined from the SLA, in the metro

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 73

network scenario, or from the traffic characterization in the cluster interconnect sce-

nario. Further, 802.1p traffic classification and prioritization can be used to mark

as lower priority the traffic that is sent in excess of the allowed traffic, so that this

traffic is serviced only if there is spare bandwidth available on every link and every

switch along the path.

It is worth exploring whether all switches in a network need to support this fea-

ture. Rate-limiting is essential only when an end-host is connected to a switch. In

MAN a setup, the switches can be classified as core switches and edge switches,

where the edge switches serve as ingress points. The core switches need not partici-

pate in the rate limiting activity, as the edge switches ensure that the traffic reaching

core switches is already rate-limited. This mechanism is analogous to ingress filter-

ing in the Internet. An alternate viewpoint is that usually there is spare bandwidth

available at the edges but the core of the network carries most traffic, so it should

be the core where bandwidth regulation takes place rather than at the edges. This

argument has some merit to it. The final decision, however, can be made only after

traffic engineering. But unfortunately traffic engineering requires the knowledge

of the topology which can be acquired only after deployment. Thus, rate-limiting

at the core or at the edge can performed after careful analysis of the traffic load

distribution in network.

In cluster and storage networks, potentially all switches may support end-hosts.

This makes it essential to support rate-limiting at all switches. Also, the traffic

profile may change from time-to-time. Strict rate-limiting on a changing traffic

profile fails to capture the changing requirement and hence is inappropriate. The

proper way to tackle this is to adapt soft rate-filtering with re-prioritization of excess

traffic, so that no traffic is dropped as long as there is network capacity available

to service it. In addition, if the current traffic profile differs significantly from the

profile used for bandwidth provisioning, traffic re-engineering needs to be carried

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 74

out.

The approach of regulating traffic at ingress ports works well if the total provi-

sioned bandwidth is the same as the bandwidth stipulated in the service level agree-

ment. This kind of bandwidth provisioning, however, leads to under-utilization of

network resources. Service providers cannot take advantage of possible statistical

multiplexing. Viking is designed to take the load characteristics into account during

the traffic engineering phase. If the load characteristics vary significantly from the

peak demand stipulated in the SLA this may lead to congestion in the network. In

particular, the following three scenarios are possible in the network.

• If the instantaneous traffic profile of a client does not deviate from the traffic

profile used for traffic engineering, there is no congestion in the network and

the SLA terms are not violated.

• If the instantaneous traffic profile of a client significantly differs from the traf-

fic profile used for traffic engineering, congestion in the network may result.

If the traffic load does not exceed the load stipulated in the SLA, it should

not be regulated by using the rate limiting features of Ethernet switches. This

would lead to SLA violation.

• If the instantaneous traffic profile exceeds the SLA stipulated traffic, it can

be regulated by using the rate-limiting features of Ethernet switches. It is,

however, imperative to avoid any congestion that may result because of under

provisioning due to statistical multiplexing.

Thus, the rate-limiting features of Ethernet switches are effective in insulating

different flows from different clients, when the clients misbehave or exceed the traf-

fic limits allowed by SLA. Rate-limiting, however, is not an effective solution when

SLA terms are not violated by clients and when service providers resort to statistical

multiplexing for under-provisioning, in order to increase network utilization.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 75

Rate-limiting in Ethernet is inadequate to provide a complete QoS solution be-

cause one can only police and regulate network usage using rate-limiting. The

requirement of adaptation to a changing traffic profile cannot be satisfied with a

rate-limiting mechanism. In order to adapt to changing traffic profiles, one needs to

consistently monitor the traffic between different clients and carry out re-routing,

if required. In addition, individual links in a network also need to be monitored to

detect any signs of congestion. Changes in traffic profile are easy to detect. Since

the VPCs are sole pass-through points for all the traffic in the network and are re-

sponsible for load characterization, it is trivial to detect changes in traffic profile

at the VPCs directly. If the traffic profile change is beyond a certain threshold,

the VMs can be notified about the changes and a traffic re-engineering can be car-

ried out. to select new congestion-free paths for all affected clients. Further, all

managed switches support remote monitoring of switch ports for relevant statis-

tics. Port statistics include many useful parameters, such as total frames sent and

received, frames dropped, collisions encountered, amount of data transferred etc.

Periodic monitoring of these statistics can infer the status of the connected links.

Impending network congestion can be detected by increased use of different links

and an appropriate action can be taken to alleviate the traffic load in the congested

region.

Superficially it may appear that monitoring the traffic profile at VPCs and trig-

gering traffic re-engineering after a change in characteristics alone should be suf-

ficient to address the problem of congestion. Re-engineering traffic, however, is

computationally and administratively time consuming. It is not an effective so-

lution to address minor traffic profile variations. Traffic re-engineering should be

triggered only at coarse granularity of traffic profile variation. Thus, it is not just

appropriate, but essential, to react to traffic profile changes only after they exceed a

certain predetermined threshold. It may so happen that the traffic profile of several

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 76

node pairs may vary below the threshold without triggering the re-engineering, but

the variations may result in increased load at certain bottleneck links, leading to

congestion. To address this problem it is essential to monitor both the traffic profile

and the individual link status periodically.

Thus an effective QoS solution requires the following steps to be taken by any

Viking-like system:

• The VM should configure the rate-limiting parameters at the ingress switches

according to the available traffic profile. The rate-limiting should be soft,

such that all excess traffic should be serviced as long as there is capacity

in the network. The excess traffic should be marked as low-priority traffic,

so that eventually when faced with congestion this excess traffic is dropped.

This approach ensures insulation and isolation among different clients.

• VPCs should monitor traffic characteristics continuously and trigger an alarm

to the VM if the traffic profile change exceeds a predetermined threshold.

• VSMs should monitor individual links using the port statistic feature of Eth-

ernet switches. If the traffic on any link exceeds the total engineered traffic,

some of the traffic should be diverted to alternate links and the corresponding

VPCs should be informed pro-actively to switch to different VLANs.

• After receiving alarms from VPCs or VSMs, the VM should either tune the

paths, by rerouting traffic so that the impending congestion is avoided, or

should re-engineer the traffic, if required. After re-engineering, the ingress

switches should be reconfigured according to the new traffic profile.

These steps ensure that the network is constantly monitored for usage and the

usage is regulated. Further, path selection in the network can be adapted to traffic

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 77

changes, so that a dynamic rerouting similar to IP networks is performed to utilize

the spare capacity in the network, alleviating the congestion scenarios.

4.7 Evaluation of Viking

Performance evaluation of Viking was carried out through extensive empirical mea-

surements of a prototype. To verify the usability of Viking in large-scale networks,

performance evaluation was done through simulations.

4.7.1 Simulations

The Viking system was evaluated for its performance at path selection and path

aggregation. Simulations were carried out to determine the maximum bandwidth

that could be supported in the network. The network topology was assumed to

be a grid topology, which can represent metro Ethernet and cluster networks. The

simulations were carried out with both a uniform traffic pattern, with each node

communicating with other nodes with an equal traffic load, and a skewed traffic load

with client-server and peer-to-peer communication. The uniform traffic distribution

is representative of cluster networks and the skewed traffic distribution represents a

typical scenario in metro Ethernet. The simulations were run with grids of sizes 16,

25, 36, 49, and 64 nodes connected using links with a capacity of 100 Mbps. In the

uniform load scenario, the traffic between nodes is 10, 8, 5, 2, and 1 Mbps for grids

of size 16, 25, 36, 49, and 64 respectively. In the skewed distribution, each network

is assumed to have around 10% of the nodes as servers. All other nodes are assumed

to be clients communicating with all servers. The client-server bandwidth in this

case is 30, 20, 15, 8, and 5 Mbps. The peer-to-peer communication bandwidth in

this case is similar to the uniform load scenario. Each node has around 10% of the

other nodes as peers. The effectiveness of path selection was compared for possible

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 78

0 10 20 30 40 50 60 70 80
Number of switches

1000

2000

3000

4000

T
ot

al
 e

nd
-t

o-
en

d
tr

af
fic

 (
M

bp
s)

Single SPN tree
Multi SPT with backup
Multi SPT without backup

End-to-End traffic with Multiple Spanning Trees
uniform traffic

Figure 4.10: Total end-to-end traffic in a network with a single spanning tree and
traffic in multiple spanning trees with and without backup provisioning. The net-
work follows a uniform traffic pattern while communicating between switches.

throughput against the single spanning tree case. Path selection was carried out for

both cases, with and without backup redundancy. All traffic contained at least one

hop between the switches.

Figure 4.10 shows the comparative maximum throughput for a single spanning

tree network versus the Viking path selection. The traffic pattern is assumed to have

a uniform distribution across all node pairs. This is a representative distribution for

cluster networks. It can be seen that the total aggregate end-to-end throughput is

always better in Viking. As the number of nodes increases, the performance of

the Viking system shows considerable advantage. This is because of availability

of more active links in the topology. Thus, Viking has scalable performance, a

desirable feature for growing networks.

Figure 4.11 shows similar scenario with a skewed traffic pattern. For a network

of 49 nodes, there is a performance dip compared to the 36 node network. The

reason for this is the positioning of servers in the network. Figure 4.12 shows the

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 79

0 10 20 30 40 50 60 70 80
Number of switches

0

1000

2000

3000

4000

T
ot

al
 e

nd
-t

o-
en

d
tr

af
fic

 (
M

bp
s)

Single SPT
Multi SPT with backup
Multi SPT without backup

End-to-End traffic with Multiple Spanning Trees
skewed traffic

Figure 4.11: Total end-to-end traffic in a network with a single spanning tree and
traffic in multiple spanning trees with and without backup provisioning. The net-
work follows a skewed traffic pattern while communicating between switches. The
case with 49 switches shows a dip in performance because of saturation of links
near servers.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 80

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�

�

������
���
������
���

�

�

�

������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
 � �
 �

!�!!�!
!�!
"�""�"
"�"

#�##�#
#�#
$�$$�$
$�$

%�%%�%
%�%
&�&&�&
&�&

'�''�'
'�'
(�((�(
(�(

)�))�)
)�)
*�**�*
�

+�++�+
+�+
,�,,�,
,�,

-�--�-
-�-
.�..�.
.�.

/�//�/
/�/
0�00�0
0�0

1�11�1
1�1
2�22�2
2�2

3�33�3
3�3
4�44�4
4�4

5�55�5
5�5
6�66�6
6�6

7�77�7
7�7
8�88�8
8�8

9�99�9
9�9
:�::�:
:�:

;�;;�;
;�;
<�<<�<
<�<

=�==�=
=�=
>�>>�>
>�>

?�??�?
?�?
@�@@�@
@�@

A�AA�A
A�A
B�BB�B
B�B

C�CC�C
C�C
D�DD�D
D�D

E�EE�E
E�E
F�FF�F
F�F

G�GG�G
G�G
H�HH�H
H�H

I�II�I
I�I
J�JJ�J
J�J

K�KK�K
K�K
L�LL�L
L�L

M�MM�M
M�M
N�NN�N
N�N

O�OO�O
O�O
P�PP�P
P�P

Q�QQ�Q
Q�Q
R�RR�R
R�R

S�SS�S
S�S
T�TT�T
T�T

U�UU�U
U�U
V�VV�V
V�V

W�WW�W
W�W
X�XX�X
X�X

Y�YY�Y
Y�Y
Z�ZZ�Z
Z�Z

[�[
[�[
[�[

\�\
\�\
\�\

]�]
]�]
]�]

^�^
^�^
^�^

�
�
`�`
`�`

a�a
a�a
b�b
b�b

54 50 60 64 52 60 96 96 74 80 96 96 96 96

84 84 8096 96

96 96

64 58

34 40

34 26

82 86

82 82

66 62

34 34

22 28

78 86

78 80

66 62

50 42

28 26

96 96

74 72

58 62

36 32

22 18

88

72 74

62 62

32 38

22 20

80 86

68 74

50 40

26 26

20 16

64 62

50 38

30 18

20 12

68 72
80

96
88

68
62

84
7468

66
66

64
64

68
66

96
96

96
96

68
72

44
50

96
96

48
50

28
34

28
26

26
40

40
52

28
40

52
48

54
64

66
64

70
76

56
68

58
70

40
40

42
44

44
34

40
36

44
68

56
70

72
66

60
70

56
66

50
68

32
26

34
24

18
12

12
22

38
38

38
46

66
72

Figure 4.12: Load distribution in a 7x7 grid network. The edges represent duplex
links of 100 Mbps capacity. The links are marked with the total provisioned band-
width. Note that certain links in the vicinity of servers (marked as squares) are
completely saturated. This network can be tuned by adding new links in parallel to
the existing links.

traffic distribution across different links for this network of 49 nodes. Because of

saturation of links in the vicinity of server nodes, the performance of the entire

network is bottle-necked. This can be tackled by using additional links to connect

the switches facing high load.

We performed a simulation study to understand the performance of the path

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 81

0 10000 20000 30000 40000 50000 60000 70000
Num Paths

0

500

1000

1500

2000

2500

3000

N
um

 V
L

A
N

s

Required VLANs
for different paths

Figure 4.13: The number of required VLANs with a different number of paths. The
required number increases sub-linearly with increase in the number of paths. For a
large network with around 65,000 paths, around 2,600 VLANs are enough to cover
all paths.

0 20 40 60 80 100
% coverage

0

500

1000

1500

2000

2500

3000

N
um

 V
L

A
N

s

225 Nodes
256 Nodes

Required VLANs
for different coverage

Figure 4.14: The number of required VLANs with different proportion of network
coverage. When communication is limited to only a portion of the network, the
number of paths are less and hence the number of required VLANs is also less.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 82

aggregation algorithm and the required total number of spanning trees in large net-

works. Figure 4.13 shows the number VLANs required to accommodate a different

number of paths. The simulations were run for different grid networks varying in

size from 16 nodes to 256 nodes. The simulations were performed to consider the

maximum number of required paths in every network, so that each node could com-

municate with every other node in the network. The maximum number of required

paths in a grid network of 256 nodes is close to 65,000. The maximum number of

spanning trees, and hence VLANs, required for these paths is around 2600. This

requirement is well within the limit of 4096 VLANs.

In metro networks, it is highly unlikely that there will be traffic between all

the switches in the network. In a more realistic scenario, traffic is always between

switches, which are connected to different sites of the same customers. Thus the

number of paths required is much less than the total number of distinct switch pairs

in the network. Figure 4.14 shows the requirement of VLANs in large networks

containing 225 and 256 nodes, with varying amount of path coverage. It can be

seen that the actual number of VLANs required is much lower, because of efficient

path aggregation.

4.7.2 Empirical Performance

A Viking prototype was implemented using Cisco Catalyst 2924 switches. The pro-

totype included 3 switches connected in a triangular fashion. Each pair of switches

was connected by Fast Ethernet trunks. Each switch supported 4 Pentium-4 class

end-hosts with Fast Ethernet network interface cards. The prototype was evaluated

for throughput performance and fault tolerance.

The Viking Virtual Interface overhead on packet latency was insignificant. Pro-

cessing each packet required around an additional 15 microseconds, on average.

This latency is attributed to the lookup and insertion of the VLAN ID in transmitted

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 83

1 2 3
Number of trunks

0

100

200

300
A

va
ila

bl
e

ba
nd

w
id

th
 (

M
bp

s)

TCP
UDP

Throughput with trunking

Figure 4.15: Throughput for different numbers of active links acting as trunks. The
performance is linear in the number of active links.

packets.

An experimental verification of the advantage of additional active links was

carried out. In this setup, two switches were connected using a single link, 2 ac-

tive links, and 3 active links. The total throughput for UDP and TCP traffic was

measured. The performance was observed to increase linearly with increasing link

capacity. Figure 4.15 shows the TCP and UDP throughput for varying numbers of

active links.

Figure 4.16 shows the effect of link failure on TCP throughput. The experiment

was run with a setup where two switches were connected by two links. These

links were then configured to belong to two different VLANs. To have a more

realistic scenario, we introduced enough background traffic to keep link utilization

at the maximum level in the VLAN that served the main traffic. Upon link failure,

the TCP traffic passing through this link falls back onto the backup VLAN, which

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 84

0 2000 4000 6000
Time in Milliseconds

0

20

40

60

80

100

B
an

dw
id

th
 in

 M
bi

ts
/s

ec

13Mbps flow falling back over 50Mbps
43Mbps flow falling back over 50Mbps
73Mbps flow falling back over 20Mbps

Behavior of TCP across failover

Figure 4.16: Behavior of TCP across fail-over. After fail-over, TCP has to adapt
to the existing traffic on backup links. The amount of traffic on backup links was
maintained at a sufficiently high level so that the links are saturated after fail-over.
This was the worst case scenario for fail-over. It was observed that TCP takes
around 300 ms to 400 ms to recover from fail-over.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 85

0 200 400 600 800 1000

File Size (MBytes)

0

50

100

150

200

T
im

e
(s

ec
on

ds
)

NFS Read in Single Spanning Tree
NFS Read in Multiple Spanning Tree
NFS Write in Single Spanning Tree
NFS Write in Multiple Spanning Tree

NFS Throughput

Figure 4.17: Performance of NFS in the multiple spanning tree and single span-
ning tree cases. In presence of two active links, the performance is exactly double
compared to the performance in single spanning tree scenario.

passes through the other link. There was an expected drop of bandwidth for the

recovery period (around 600 milliseconds). Once the backup VLAN was in use, the

TCP flow regained its momentum, hardly suffering any more delay, and attained

stability, in around 300ms to 400ms.

In another set of experiments, the three switches were connected with each other

using two links each. There were 6 different VLANs configured to make all the

links active. The maximum end-to-end throughput in Viking was observed to be

around 1.2 Gbps for single-hop communication and around 600 Mbps for two-hop

communication. Whereas, in the case of a single spanning tree, it was 400 Mbps

for single-hop communication and 200 Mbps for two-hop communication.

Figure 4.17 shows the performance of Viking in a typical NFS server cluster.

In this scenario there are 2 NFS servers serving multiple NFS clients. The clients

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 86

reside on a separate switch. In Viking’s setup, these 2 switches are connected using

2 active links participating in different VLANs. The files on servers are accessed

parallely by different clients. The total time for NFS read and write operations on

files of different sizes is shown. The performance for the two active link scenario

is observed to be double, compared to the performance of the single spanning tree

case.

The fault-tolerance mechanism was tested by manually unplugging links from

switches. The down-time because of failures can be broken down into 3 parts,

namely, the failure detection period, the alternate VLAN lookup period, and the

failure notification to end-hosts period. The failure detection period ranged from

400 milliseconds to 600 milliseconds. In comparison, the alternate VLAN lookup

required only a few milliseconds and the notification time was less than a millisec-

ond. Thus, the overall down-time was dominated by failure detection. The data loss

for UDP streams at different rates was proportional to the data rate.

After failures, the Viking Manager recomputes the selected paths to brace for

subsequent failure. Thus, the total time required to recompute paths and reconfig-

ure the spanning trees is the critical period during which another failure in paths

with affected nodes cannot be tolerated. Path selection is a computationally inten-

sive process. The computations can be minimized by reducing the search space

for appropriate paths. The reduced search space may result in a less efficient path

selection. Efficiency of path selection is deduced by the number of paths that can

be actually provisioned without causing a load imbalance situation in the network.

Viking path selection was evaluated for total duration of computation against the

search space. The evaluation was done for a grid network of 64 nodes. The traf-

fic distribution was assumed to be uniform across all possible node pairs in the

network. The search space for the primary path was varied from 1 path to 15 dif-

ferent paths. Each primary path search was accompanied by a search space for 5

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 87

0 20 40 60 80 100 120
Paths Explored per Node Pair

0.9

0.92

0.94

0.96

0.98

1
L

oa
d

B
al

an
ce

 I
nd

ex

99% Max Provisioning
98% Max Provisioning
97% Max Provisioning

0 5 10 15

Paths Explored per Node Pair

0

100

200

300

C
om

pu
ta

tio
n

T
im

e
in

 S
ec

on
ds

16-Node Grid
25-Node Grid
36-Node Grid
49-Node Grid
64-Node Grid

Figure 4.18: Total time spent in recomputing path selection. With increased search
space the re-computation time increases. For grid networks of sizes from 16 to 64
nodes, the re-computation is shown on the bottom. The graph on the top shows the
load balance index for a limited number of searches in a 64 node grid network.
Even for a limited search, the number of paths is within 97% of maximum possible
load balance.

4. VIKING: A MULTI-SPANNING TREE ETHERNET ARCHITECTURE 88

backup paths. Figure 4.18 shows the relation of re-computation time to the size of

the search space. With a larger search space, the amount of traffic that can actu-

ally be provisioned also increases while reducing the load imbalance. We define

the load balance index as the ratio of the total traffic that can be provisioned after

a limited search to the total traffic that can be provisioned after exploring a large

search space, such as 5,000 alternate paths. Figure 4.18 shows the comparative load

balance achieved after a limited search. It can be seen that a limited search space of

a small number of paths has a load imbalance within 97% of the maximum possi-

ble load balance. Thus, limiting the search space does not impact the load balance

scenario significantly. Whereas, it significantly reduces the computation time.

This path selection is followed by reconfiguration of spanning trees in the net-

work.

Thus, the complete failure recovery time can be broken down into the following

components: A failure detection time of around 400 to 600 milliseconds; the VLAN

change notification time of a few milliseconds; and finally, the reconfiguration time

which depends on the topology. The total down-time incurred is in the sub-second

range, which is around 30 to 60 times less than for conventional single spanning

tree architectures.

Chapter 5

Cassini: A SAN Provisioning Tool

5.1 Storage Area Networks

Storage Area Networks (SANs) are special-purpose high-speed networks that inter-

connect front-end servers, such as NFS servers and DBMS servers, to back-end stor-

age devices. Front-end servers can access back-end storage devices over the SAN

using the same disk access interfaces as for local disks, such as SCSI disks. SAN

storage architecture eliminates the strict one-to-one association between servers and

storage devices and enables sharing storage across multiple servers. Today, the

preferred storage access technology in enterprise and data center environments is

invariably Storage Area Network technology. Networked storage architecture has

become immensely popular because it is more flexible, scalable, manageable, and

robust than the conventional Direct Attached Storage (DAS) architecture.

89

5. CASSINI: A SAN PROVISIONING TOOL 90

5.1.1 Shared Storage Architecture

The appetite for storage capacity in enterprises and data centers has grown rapidly.

Storage demand is fueled by increased data retention requirements as well as com-

pliance regulations and fault tolerance needs. At the same time, the enterprise ap-

plication model has shifted from centralized mainframe and mid-range systems to

clustered application servers and distributed file and data servers. The traditional

DAS approach of provisioning each server with dedicated persistent storage is in-

adequate to meet the scalability, management, and availability requirements of en-

terprise and data center environments.

The DAS approach fails to meet today’s enterprise needs because of some in-

herent issues. It forces a strict one-to-one association between servers and stor-

age devices. In order to avoid frequent storage provisioning, each server needs to

be (over)provisioned with sufficient storage, without any scope for sharing. This

leads to storage fragmentation. All the dedicated storage needs to be physically

connected to corresponding servers. There is a limit to direct connectivity beyond

which adding additional storage becomes difficult, resulting in scalability problems.

A server crash or malfunction makes the associated storage unavailable unless it is

physically detached and reattached to some other server reducing the overall data

availability.

Conventionally, storage dedicated to a server is treated as a peripheral of the

server and is managed as a storage island. There is certainly significant value in

recognizing storage as a distinct resource and treating it as a subsystem rather than a

peripheral in enterprise environments. Enterprise-wide storage consolidation offers

such an opportunity and alleviates storage management problems.

The growing trend of server virtualization and physical server consolidation in

data center environments exacerbates the inadequacy of DAS and provides an addi-

tional impetus to decouple dedicated storage from servers and move it to a shared

5. CASSINI: A SAN PROVISIONING TOOL 91

Internet
Router to

Direct Attached Storage

LAN
[front network]

Servers

Figure 5.1: Direct Attached Storage architecture. Each server has dedicated stor-
age connected to it over an I/O bus and a protocol such as SCSI. Storage cannot
be physically shared by multiple servers. This architecture fails to scale in enter-
prise environments because of fragmentation of storage capacity and management
problems.

environment for consolidation. As enterprises move to consolidate their previously

separately administered data storage islands into centrally managed shared storage

facilities, SAN technology will play a critical role.

Sharing of storage resources among multiple computer systems requires peer-

to-peer interconnection of computers and storage devices. This interconnection can

be achieved by using Network Attached Storage (NAS) devices or by accessing the

storage through a SAN. Even though NAS and SAN technologies have significant

differences, there is sufficient overlap between the two to cause confusion. In the

context of the research work of this dissertation, SAN is a dedicated network in-

frastructure that enables shared storage and where the majority of storage traffic is

block SCSI data. In contrast, NAS devices piggyback storage traffic over existing

network infrastructure and the majority of storage data is accessed in terms of files

and/or objects [Cla03].

5. CASSINI: A SAN PROVISIONING TOOL 92

Internet
Router to

NAS

LAN
[front network]

Servers

Figure 5.2: Network Attached Storage architecture. Storage can be pooled together
and shared by multiple servers that access it over the network. Storage pooling and
sharing reduces fragmentation and improves manageability. The servers interact
with NAS devices by using file and object semantics.

Internet
Router to

[front network]
LAN

[rear network]
SAN

Storage

Servers

Figure 5.3: Storage Area Network. The SAN is a dedicated network infrastructure
to enable shared storage, where the majority of storage traffic is block SCSI data.
The SAN complexity is hidden from the applications and the operating systems on
the servers by Host Bus Adapters (HBAs) that make the shared storage appear as if
it is direct attached storage.

5. CASSINI: A SAN PROVISIONING TOOL 93

Figure 5.1 shows the conventional direct attached storage architecture where

each server has dedicated storage connected to it over an I/O bus and a protocol such

as SCSI. Figure 5.2 shows the network attached storage architecture where shared

storage devices are connected to a production LAN and data movement between

the storage devices and servers is in terms of files and/or objects. Figure 5.3 shows

the storage area network architecture, where shared storage devices are connected

to servers by means of a dedicated network.

The Storage Networking Industry Association (SNIA) formally defines a SAN

as:

• A network whose primary purpose is the transfer of data between computer

systems and storage elements and among storage elements. Abbreviated

SAN. A SAN consists of a communication infrastructure, which provides

physical connections, and a management layer, which organizes the connec-

tions, storage elements, and computer systems so that data transfer is secure

and robust. The term SAN is usually (but not necessarily) identified with

block I/O services rather than file access services.

• A storage system consisting of storage elements, storage devices, computer

systems, and/or appliances, plus all control software, communicating over a

network.

5.1.2 SAN Technologies and Protocols

SANs are often referred to as the networks behind servers, to distinguish them from

the front Local Area Networks that are used to interconnect the servers with each

other and with the end-user workstations [Cla03].

The SNIA definition of SAN does not refer to any specific technology or proto-

col. Rather, the definition focuses on the services offered by the SAN infrastructure

5. CASSINI: A SAN PROVISIONING TOOL 94

and on the management of those services. The reason behind this refrain from re-

ferring to any specific technology is that there are different technologies available to

realize different services from a SAN infrastructure. Unlike LANs, where the tech-

nology landscape is dominated by Ethernet and TCP/IP, the technology for SANs

is different and crowded. Fibre Channel (FC) is the dominant SAN technology. In

addition to FC, there are other SAN technologies such as Fibre Channel over Ether-

net (FCoE), Internet SCSI (iSCSI), Fibre Channel over IP (FCIP), and Internet FCP

(iFCP). All these technologies are competing for share in SAN space. Figure 5.4

lists some of these technologies and shows the protocol stack associated with each

technology. Designing a SAN for a set of applications requires a thorough under-

standing of the applications and their requirements as well as the technology that is

appropriate for application specific SAN deployment.

5.1.2.1 SCSI

SCSI (Small Computer System Interconnect) is a set of standards developed to pro-

vide an efficient way of connecting and transferring data between computers and

peripheral devices. It is primarily used to connect storage devices to computers us-

ing a parallel bus. SCSI can also be used to connect printers, scanners, and other

peripherals to computers. SCSI is responsible for transferring data blocks between

an initiator device and a target device in a reliable fashion.

SCSI is not responsible for assembling data blocks for transfer or placement

of data on storage devices. This demarcation helps in hiding the complexity of

physical formats, which in turn enables a uniform way of connecting all devices to

the SCSI bus.

Figure 5.5 shows the typical way of connecting SCSI devices to computers. A

computer is equipped with SCSI host adapters. An adapter is connected to multiple

SCSI controllers by means of the SCSI bus. These individual controllers control

5. CASSINI: A SAN PROVISIONING TOOL 95

Ethernet

iSCSI iFCP FC

FC

FCIP FCoE

FCP (FC4)

FC3

FC2/FC1

FCP (FC4)

FC2/FC1
FC3

PHY (optical/copper media)

SCSI

FCP

TCP/IP

Ethernet Enhanced

Figure 5.4: Storage Area Network technologies and protocols. The dominant tech-
nology in SAN space is Fibre Channel (FC). Along with FC there are other tech-
nologies such as iSCSI, FCIP, iFCP, and FCoE. All these technologies have some
distinction and some overlap. Despite their distinctions, one significant common
feature is that all the technologies provide SCSI semantics for accessing storage
devices.

5. CASSINI: A SAN PROVISIONING TOOL 96

SCSI BUS

SCSI Controllers and Devices
SCSI Host
Bus Adaptor

High

Disk

Speed

Figure 5.5: The standard way of connecting SCSI devices to a computer. The
computer is equipped with a SCSI HBA connected to multiple SCSI controllers by
means of the SCSI bus. These individual controllers control the connected devices.

the connected devices. The SCSI host adapter and device-specific SCSI controllers

hide the complexity of communication over the bus from the host and the devices.

Depending on the type of bus used there are different variants of SCSI. In the very

beginning, there was parallel SCSI, which utilized an 8-bit parallel bus. The SCSI

standards defined various aspects of communication on this parallel bus, such as

voltage-signaling mechanism, connector type, frequency of operation, etc. The

original parallel SCSI evolved into different variants with changing bus character-

istics: Fast SCSI, Fast Wide SCSI, Ultra SCSI, and Ultra Wide SCSI just to name a

few. These variants are termed SCSI interfaces.

Over time, the increasing number of SCSI interfaces gave rise to the SCSI Ar-

chitecture Model to provide a common basis for the coordination of SCSI standards

and to specify those aspects of SCSI I/O behavior that are independent of a par-

ticular technology and common to all implementations [Int06]. This architecture

model allowed the SCSI protocol to be agnostic about the underlying physical tech-

nology. The SCSI bus could be replaced with any communication infrastructure,

5. CASSINI: A SAN PROVISIONING TOOL 97

without impacting communication between the host and the devices. This trans-

parency is precisely the reason that SCSI has emerged as the default higher-level

storage protocol for SANs. In SAN environments the SCSI bus is replaced with

the network fabric and the SCSI host adapters and device controllers take care of

hiding the complexity of communication over the SAN. Figure 5.4 highlights that

all SAN protocols, despite their differences, provide SCSI semantics for accessing

storage devices. All the SAN protocols shown in Figure 5.4 conform to the SCSI

Architecture Model and thus are part of SCSI suit of standards.

5.1.2.2 Fibre Channel

Fibre Channel (FC) is the dominant Gigabit-speed SAN technology. Despite its

name, FC is not confined to communication over optical fiber. It supports commu-

nication over fibers as well as copper cabling. It currently supports data rates of

4 Gbps and distance up to 10 km. between end-points. FC is essentially a high-

performance serial link supporting its own, as well as higher-level protocols, such

as FDDI, ATM, HIPPI, IP, IPI, and SCSI. The SCSI interface protocol on FC is

called the Fibre Channel Protocol (FCP).

5.1.2.3 Fibre Channel Topologies

The communicating end-points in a Fibre Channel network are called ports and

the network itself is termed the fabric. There are three primary FC topologies,

depending on the way ports are connected to the fabric. These are:

• Point-to-Point: This is the topology in absence of any fabric. An initiator is

directly connected to a target. There can be only one initiator and one target

in each point-to-point topology.

5. CASSINI: A SAN PROVISIONING TOOL 98

• Arbitrated Loop: In this topology up to 126 devices can be connected to

each other in the form of a physical or a logical loop. The connected devices

share the entire available bandwidth. The disadvantage of loop topology is

that any localized failures or changes in the loop cause the entire loop to stop

working.

• Switched Fabric: Switched Fabric uses switches to connect hosts and de-

vices, either directly or on arbitrated loops. Switched mode ensures an effi-

cient use of bandwidth by enabling a fabric configured for servers and storage

resources. This fabric architecture is similar to switched Ethernet networks.

Fabric switches manage the state of the fabric and provide optimized inter-

connects.

Regardless of topology, the core protocol used in Fibre Channel SAN is the Fi-

bre Channel Protocol (FCP), a SCSI interface that defines communication between

SCSI initiators and targets (hosts and storage devices) over FC. All FC devices sup-

port FCP, which is a clear and consistent way of converting SCSI commands to

serial format and transmitting them over a network.

5.1.2.4 iSCSI

iSCSI (Internet Small Computer System Interface) is a TCP/IP-based protocol for

establishing and managing connections between IP-based storage devices, hosts,

and clients. With the advent of Gigabit Ethernet, the bandwidth and latency con-

cerns of IP networks are alleviated and IP networks meet the performance require-

ments of fast system interconnects and, as such, are good candidates to “carry”

SCSI. The iSCSI specification describes a means of transporting SCSI packets over

TCP/IP, providing for an interoperable solution that can take advantage of exist-

ing Internet infrastructure and Internet management facilities and that can address

5. CASSINI: A SAN PROVISIONING TOOL 99

distance limitations.

5.1.2.5 FCIP

Fibre Channel over IP (FCIP or FC/IP) is an IP-based storage networking technol-

ogy developed by the Internet Engineering Task Force (IETF). FCIP mechanisms

enable the transmission of Fibre Channel (FC) information by tunneling data be-

tween two SANs over IP networks. This tunneling mechanism facilitates data shar-

ing over a geographically distributed enterprise. One of the two main approaches

to storage data transmission over IP networks, FCIP is among the key technologies

expected to help bring about rapid development of the storage area network market.

5.1.2.6 iFCP

iFCP (Internet Fibre Channel Protocol) is a standard for extending Fibre Channel

SANs across the Internet. iFCP provides a means of transferring data between Fibre

Channel storage devices in a local SAN and devices on the Internet, using TCP/IP.

TCP provides congestion control as well as error detection and recovery services.

iFCP merges existing SCSI and Fibre Channel networks with the Internet. iFCP can

either replace or be used in conjunction with existing Fibre Channel protocols, such

as FCIP (Fibre Channel over IP). iFCP is a gateway-to-gateway protocol, where

TCP/IP switching and routing components complement and enhance, or replace,

the Fibre Channel fabric.

iFCP addresses some problems that FCIP fails to deal with. For instance, FCIP

is a tunneling protocol that simply encapsulates Fibre Channel data and forwards

it over a TCP/IP network, as an extension to the existing Fibre Channel network.

FCIP, however, is only equipped to work within the Fibre Channel SAN environ-

ment, while the storage industry trend is increasingly towards Internet-based storage

area networks. Because iFCP gateways can either replace or complement existing

5. CASSINI: A SAN PROVISIONING TOOL 100

Fibre Channel fabrics, iFCP can be used to facilitate migration from a Fibre Chan-

nel SAN to an IP SAN or hybrid network.

5.1.2.7 Fibre Channel over Ethernet (FCoE)

While Fibre Channel is the dominant SAN technology, Ethernet is the dominant

networking technology. There is a strong market interest in a converged Ethernet-

based networking protocol for SANs. Converged Ethernet-based networking offers

economy of scale, IT expertise, and simplified networking.

Though iSCSI, iFCP, and FCIP offer storage networking using IP, and hence

Ethernet, the proponents of Fibre Channel over Ethernet (FCoE) claim that these

technologies have inherent issues that prevent their widespread acceptance.

Though iSCSI is popular in small enterprises, workgroups, and remote offices,

it has not been able to gain strong foothold in large enterprise data centers. The

justification cited is that large enterprises are heavily invested in FC SANs. It is not

cost effective for them to replace their expensive FC SANs and management infras-

tructure with iSCSI and associated tools. Also, iSCSI is not trusted with mission

critical applications.

FCIP and iFCP do offer an integration of FC technology and IP technology and

protect existing investment in FC technology. Proponents of FCoE, however, claim

that IP-based Ethernet cannot reliably carry Fibre Channel traffic at the Quality of

Service levels that production environments require. The reason behind this inade-

quacy is that the reliability requirements of higher-level protocols are not satisfied

by the underlying Ethernet and the overhead of TCP to provide reliability is unac-

ceptable from a latency and jitter perspective.

The solution to this problem is found in developing a converged enhanced Eth-

ernet layer that adds reliability features to the conventional Ethernet.

FCoE enables FC traffic to run over a single enhanced Ethernet segment in the

5. CASSINI: A SAN PROVISIONING TOOL 101

data center and supports SAN management by maintaining logical FC SANs across

the Ethernet. This is done without any performance degradation and changes to the

Fibre Channel frames. Converged enhanced Ethernet provides reliability and con-

gestion management. It also dispenses with IP and provides seamless connectivity

between native FC devices and FCoE devices.

FCoE is still a standard/technology under development. It remains to be seen to

what degree it become accepted by the market and what is the real potential of this

technology.

5.1.3 Motivation behind Cassini

Ethernet has several advantages over Fibre Channel. First and foremost is the cost

advantage. Ethernet equipment is more cost-effective than Fibre Channel equip-

ment. A typical 10 Gigabit Ethernet switch with 48 ports costs just a few thousand

dollars. A comparable Fibre Channel switch may cost several tens of thousands

of dollars. Next advantage is in terms of complexity. Ethernet deployments are

inherently less complex than Fibre Channel deployments. The additional invest-

ment required in Ethernet management knowledge and training is significantly less

compared to expenditure for Fibre Channel.

While development of iSCSI was the first step in enabling SANs to use Ethernet

technology, FCoE is a clear testament that there is tremendous interest in migrating

to Ethernet for SAN deployments. However, for Ethernet technology to succeed as

a viable alternative to Fibre Channel, it must provide support for all Fibre Channel

primitives. While FCoE can deal with complete feature compatibility with Fibre

Channel, there are a few FC primitives, such as multipathing and zoning, which

native Ethernet infrastructure and FCoE do not support.

Another overlooked problem of SAN design is that of topology design. Usual

5. CASSINI: A SAN PROVISIONING TOOL 102

business practice is to treat SAN design as a mere connectivity problem for initia-

tors and targets, without appropriate capacity planning. The problem for Ethernet

SANs is worse. Ethernet SAN design and deployment is carried out according to

the conventional Ethernet LAN topologies, which are not really tuned for SAN op-

erations. At times, even the boundaries between regular local area networks and

SANs are blurred and the Ethernet SANs are overlaid on top of enterprise LANs.

Although this practice results in significant cost saving, the trade-off comes at the

cost of reduced reliability and performance.

Topology design has to be one of the first tasks that SAN designers should un-

dertake when designing Ethernet SANs. The topology design for Ethernet SANs,

however, is not similar to FC SAN topology design. There are some differences

in these inter-networking technologies that make FC SAN topologies incompatible

with Ethernet deployments. Fibre Channel can support loops in network topology,

while Ethernet is averse to loops in a network. Fibre Channel can support multi-

ple paths between any two nodes, while Ethernet blocks out links by virtue of its

spanning tree algorithm. Fibre Channel supports zoning for access control, while

Ethernet does not have any explicit zoning features.

The Viking architecture readily addresses the problem of multipathing. By us-

ing VLAN mechanism, Viking supports backup path provisioning in Ethernet. Inci-

dentally, the VLAN mechanism is also a perfect counterpart of zoning in FC SANs.

VLANs are conventionally used to simplify network administration, reduce cost of

segregation, and improve security. Using VLANs, one can easily implement a zon-

ing mechanism. If one ensures that only communicating initiator and target pairs

are included in a VLAN then the zoning objective is automatically achieved.

Ethernet SAN design should be done by taking into account Ethernet-specific

constrains and features. To this effect, we propose a design tool, called Cassini,

that automates the topology design-task for Ethernet (or FCoE) SANs. Cassini

5. CASSINI: A SAN PROVISIONING TOOL 103

End Nodes

Mesh Switches

Mesh Switches

Figure 5.6: Mesh topology. End-points are connected to a mesh of switches with
small-to-moderate port density.

specifically targets current data center and enterprise environments, where clusters

of application servers and redundant storage are used for high availability. Cassini

takes into account the constrains imposed by the spanning tree protocol while de-

signing the SAN topology. It makes use of Ethernet VLAN technology to provide

an Ethernet alternative to the zoning and multipathing facilities of Fibre Channel

SANs. It leverages on Viking architecture while addressing these issues. It carries

out SAN design by taking into account the clustered architecture in data centers.

5.2 SAN Design Considerations

5.2.1 SAN Topologies: Mesh or Core-Edge?

One of the key requirements of any automated topology generator is that, regard-

less of generation method, the final design must be able to support all the traffic

and at the same time it should be manageable and flexible. A low-cost SAN with

5. CASSINI: A SAN PROVISIONING TOOL 104

Edge Switches

Edge Switches

Core Switches

Figure 5.7: Core-Edge topology. End-points are connected to edge-switches with
small-to-moderate port density. The edge switches are in turn connected together
through high port density and high performance core-switches

highly optimized capacity planning but that is complex to visualize may not be

easily manageable, whereas a symmetrical and well organized topology is easy to

manage. Flexibility and manageability are qualitative terms. There is no precise

measure to determine the flexibility and manageability of a SAN. Conventional

wisdom, however, suggests that there are two preferred topologies for SANs. These

are Core-Edge and Mesh topologies. Figure 5.6 shows a typical mesh topology and

Figure 5.7 shows a typical core-edge topology.

A standard managed Gigabit Ethernet switch, such as the Cisco Catalyst 2960,

provides connectivity for 8 to 48 GigE ports with a backplane switching capacity

varying between 16 to 32 Gbps [cis]. A small SAN with a limited number of end-

points can easily be supported using a few such switches. These switches can be

connected together to form a mesh. The mesh SAN is a very simple SAN, which

provides any-to-any connectivity across all the switch ports. There is no capac-

ity planning necessary, since the backplane switching capacity of all the switches

exceeds the overall requirement of the end-points.

5. CASSINI: A SAN PROVISIONING TOOL 105

Mesh topology, though simple to construct, cannot scale beyond four or five

switches. With increasing number of switches, the number of ports required for a

mesh interconnect grows exponentially and the number of available ports for end-

points decreases drastically.

Core-edge topology is a scalable topology suitable for large SANs. Switches

in core-edge topology are divided into two categories, edge-switches and core-

switches. The servers and storage devices in the SAN are connected to edge-

switches. The edge-switches are inter-connected together by means of a small

number of core switches. Expansion overhead of this topology is minimal. Ca-

pacity planning for edges and core can be done independent of each other with

room for expansion, such that the number of edge-switches grows only when they

run out of ports to connect to cluster-nodes. The core grows when it runs out of

switching capacity or ports to support the edge network(s). This kind of capacity

planning enables SAN expansion in phases, without requiring a complete overhaul.

Core-Edge topology makes it easy to organize end-nodes into different edge net-

works according to their function. For instance, there can be multiple edge networks

each dedicated to application servers, appliances, storage devices, etc. This segre-

gation according to function enhances the manageability aspect of SANs. Keeping

the manageability aspect in focus, we decided to pursue generation of core-edge

topology in Cassini.

Though core-edge topology is the preferred topology for FC SANs, there are

certain differences in Fibre Channel and Ethernet technologies which pose prob-

lems while deploying core-edge SANs using Ethernet. A core-edge topology allows

users to provision multiple paths between source and destination. These multiple

paths are used for redundancy and load balancing. Whenever there are multiple

paths between a pair of nodes, there are bound to be loops in the network. This

loop formation and the subsequent spanning-tree construction in Ethernet alters the

5. CASSINI: A SAN PROVISIONING TOOL 106

active topology. Any alternations in active topology that disable active links in the

network result in removal of switching capacity. This reduction in network capacity

results in unused network resources affecting the capacity utilization. Cassini ad-

dresses these spanning tree issues in SAN while carrying out topology generation.

5.2.1.1 Modularity of Core-Edge Topology

There are several ways to generate a network topology. One way is to combine sev-

eral building blocks together according to some predetermined rules and generate a

topology in a single pass. Another way is to iteratively refine some seed topology

until the final outcome meets some acceptance criterion.

An advantage of core-edge topology is its modularity, which makes it suitable

for automation. The SAN design problem can be split into multiple sub-problems

of designing edge networks and a core network to interconnect them. Each edge

network can be designed independently, for a set of end-points with adequate con-

nectivity and capacity to the core of the SAN. Once the design of all the edges is

finalized, an appropriate core can be designed that provides sufficient connectivity

and capacity for the edges to communicated with each other. This eliminates the

need for end-to-end provisioning and the design process can focus on local edge

and core provisioning independently. Figure 5.8 shows the different stages of SAN

topology generation for a core-edge design.

5.2.2 Clustered Deployment in SAN

The first step in network planning is to begin with a network load specification. In

its most basic form, the load specification is a matrix where every source and des-

tination pair is enumerated along with the amount of network traffic between the

end-points. With such a load matrix, the network topology generation problem can

5. CASSINI: A SAN PROVISIONING TOOL 107

SAN

A

Core

Edges

B

Core

Edges
C D

Figure 5.8: Different stages in Core-Edge SAN design. (A) Information about
different traffic flows and end-points in the SAN is compiled. (B) The overall SAN
design problem is divided into simple sub-problems of Core and Edge design. (C)
Each edge is designed independent of other edges. (D) Finally, a core is designed
providing connectivity to all the edges, with adequate capacity.

5. CASSINI: A SAN PROVISIONING TOOL 108

Database Server Cluster Mail Servers

Tier−1 Storage Tier−2 Storage Tier−3 Storage

SAN

OLTP Cluster

Replication

Filers

Cluster

Traffic Flows

VA LINUX

VA LINUX

VA LINUX

VA LINUX

VA LINUX

VA LINUX

Figure 5.9: Typical I/O traffic in data-center and enterprise SANs. The end-points
in enterprise SANs are typically clusters of (a) application servers, (b) appliances,
and (c) storage servers. Application users can easily specify the I/O traffic between
such clusters generated by a specific application. It is, however, very difficult to
attribute traffic share to individual nodes within a cluster.

5. CASSINI: A SAN PROVISIONING TOOL 109

be formalized as a graph generation problem, where the generated graph accom-

modates all the traffic flows. This generated graph can be refined further, such that

it has the lowest possible cost. The Appia FC SAN designer adopts this two step

approach [WOSW02]. It generates an initial graph to accommodate all traffic flows

and then uses integer programming to refine it further, to minimize the cost.

In reality, network load cannot be specified in simple terms. The end-points in

SANs are seldom single nodes. Most applications are often deployed on clusters of

servers. Clustering of servers provides high-availability, scalability, and reliability.

Storage is often mirrored over multiple storage devices for redundancy. Applica-

tion clusters are tightly integrated with other disaster recovery and data protection

appliances, such as replication, backup, and filing appliances. These appliances are

also clustered together for high-availability and scalability.

Based on their roles, the end-points in an enterprise SAN can be broadly catego-

rized as (1) application clusters, (2) appliance clusters, and (3) storage clusters. The

emphasis on clusters is to recognize the fact that it is difficult to specify I/O traffic

between every node pair. It is, however, possible to predict the traffic generated by

a particular application across a set (cluster) of nodes. Given an application, the ad-

ministrators/users of the application can easily provide a fair estimate of I/O traffic

generated by the application. Figure 5.9 shows a typical clustered environment in

enterprise SANs.

Clustered deployment of servers provides high-availability, redundancy, and

parallelism. There are primarily two configurations in which a cluster can be de-

ployed. There is the master-slave configuration where only one server from the

cluster is active and all other nodes are kept as hot standbys. The hot standby

servers are used only in the event of failures. There is also a distributed/parallel

model of cluster deployment where multiple servers in the cluster are active simul-

taneously, to leverage parallelism. In a master-slave deployment, it is fair to assume

5. CASSINI: A SAN PROVISIONING TOOL 110

Master−Slave Cluster deployment
Master

Parallel/Distributed Cluster deployment

STOREFAST

STOREFAST

Figure 5.10: Traffic distribution for different clustered deployments. In master-
slave deployment, 100% of the traffic originates and terminates at the master node.
In parallel/distributed deployment, the traffic load is almost equally shared by all
the nodes. The resource provisioning requirements are different for the different
types of deployment.

5. CASSINI: A SAN PROVISIONING TOOL 111

that the entire, or majority of, traffic corresponding to the cluster is directed at a sin-

gle master node. In such a case every node can potentially carry the entire traffic

corresponding to the cluster. Whereas, in case of a parallel cluster all the nodes in

the cluster can potentially share the traffic load in a balanced manner. Figure 5.10

shows how traffic can spread across multiple nodes in case of parallel/distributed

and master-slave cluster deployment.

Usually, the entire traffic on an edge-switch gets aggregated over the links that

connect the edge-switch to the core-switches. If a cluster is limited to a single

edge-switch, then it is easy to attribute traffic between the edge-switch and the

core-switch, corresponding to the cluster. The links from the edge-switch to the

core can be provisioned accordingly. If the cluster has to be split across multiple

edge-switches, it becomes difficult to predict the load on each edge-switch and

consequently it is difficult to determine the load distribution of the cluster on edge-

switches.

In order to ensure proper resource provisioning it is important to take into ac-

count the extent to which the traffic load of a cluster is carried by a single node or

a group of nodes connected to a single edge-switch. In other words, it is important

to know the extent of traffic load balancing across the nodes of every cluster. Since

SAN administrators and users have this knowledge about cluster behavior, it is best

to obtain this information as part of the traffic specification. Cassini thus relies on

obtaining traffic load balancing information as part of the input specification. This

information is specified in terms of the percentage of traffic load carried by a single

node. For example, in the case of a master-slave cluster configuration, this would

be 100% for every node in the cluster. For a distributed cluster with 5 nodes and

perfect load balancing, this percentage would be 20% of the load.

In a core-edge topology end-nodes are always connected to the edge switches.

Traditionally SAN designers have designed SANs with just two edges. One edge

5. CASSINI: A SAN PROVISIONING TOOL 112

is for initiator nodes (application servers) and the other edge is for target nodes

(storage servers). This restriction to two edges limited the complexity of manual

design. If design automation is available, the restriction is not relevant. Further,

it becomes desirable to segregate clusters into different edges based on their func-

tionality. For instance, in data centers there are (a) application clusters, (b) storage

clusters, and (c) appliance clusters; which should be separated into different edges.

Cassini supports SAN design for multiple edges.

5.2.2.1 Edge Membership of Clusters

As mentioned before, traditionally core-edge SANs were designed such that there

were only two edges in the network. One edge encompassed storage initiator nodes

and the other storage target nodes. This convention is not relevant when storage ap-

pliances come into the picture. Storage appliances are special purpose devices that

are designed to perform specific storage-related tasks, such as virtual tape libraries,

backup devices, replication devices, etc. These appliances act as storage devices

(targets) for application servers but act as initiators towards their own dedicated

storage [HB06]. Such devices cannot be classified as pure targets or pure initiators.

The motivation behind segregating clusters into different edges is to classify

them into different physical groups such that initiators and targets do not get in-

cluded in the same edge. The reason for this convention is that core-switches are

generally the enforcing points for zoning, masking, and other policy-related fea-

tures. It is imperative that communicating nodes communicate through the core-

switches. Communication through core-switches can be ensured if devices are in-

cluded in different edges.

In Ethernet SANs this is an artificial restriction, because the notion of initiator

and target nodes is not relevant in the context of Ethernet devices. The relationship

in Ethernet is a peer-to-peer relationship. The initiator and target relationship exists

5. CASSINI: A SAN PROVISIONING TOOL 113

only in the higher-level storage protocols. Nevertheless, it is still desirable to en-

sure that each communicating node pair communicates through the core-switches,

conforming to the uniform structure of the SAN and enabling policy mechanisms

such as rate control.

Manually determining the cluster-to-edge membership becomes a tedious task

with increasing number of clusters. Cassini supports automation that partitions

clusters into different edges, such that the overall number of edges is minimum and

communicating clusters are always included in different edges.

A SAN design tool like Cassini should take clustering into account. The SAN

design process should begin with information about cluster deployment and the traf-

fic specification for all the applications supported by the SAN. The design process

should end with a topology with appropriate capacity and connectivity for all the

nodes belonging to different clusters.

5.2.3 MultiPathing

One of the major advantages of shared storage is high availability of data. Sep-

aration of storage from application servers allows storage to be shared between

multiple servers. This is achieved by replacing the SCSI bus connecting servers

and storage with a network. If one of the network components itself fails the stor-

age becomes unavailable. The availability of the network itself becomes a crucial

factor in a SAN configuration.

Multipathing provides a redundancy solution to SAN connectivity failures.

Multiple paths between initiators and targets are provisioned to deal with failures.

Every server and storage device is equipped with multiple HBAs so that the con-

nectivity loss because of a bus adapter failure is also tolerated.

5. CASSINI: A SAN PROVISIONING TOOL 114

Multipathing software running on servers keeps track of the availability of stor-

age through different paths. In the event of access failure over one path, multi-

pathing software transparently switches over to alternate paths, without any appli-

cation disruptions.

Fibre Channel uses the Fabric Shortest Path First (FSPF) protocol to determine

switching paths between initiator and target nodes. FSPF supports multipath routing

while providing a loop-free topology. Ethernet uses a distributed spanning tree pro-

tocol (IEEE 802.1d) to construct and impose a logical spanning tree on the physical

network and it routes packets along the links of this spanning tree [IEE90]. Be-

cause of this spanning-tree architecture, some of the physical links are left unused

and the effective network topology is a spanning tree of the physical topology. If

the physical topology has loops in it, the active topology is only a subset of the

physical topology. The VLAN based solution in Viking enables us to bridge the

gap between FC SANs and Ethernet SAN by enabling multipathing in Ethernet.

5.2.3.1 Complete-Switch-Disjoint Paths

Multipathing in a SAN provides multiple paths between two end-points for redun-

dancy and load-balancing. Figure 5.11 shows how core-edge topology facilitates

multiple paths between two nodes. Multipathing is achieved by means of having a

redundant path through the core to inter-connect edge-switches together. Though

this multipathing provides protection against core-switch failures, it is not adequate

protection against edge-switch failure. If an edge-switch fails, all the the nodes con-

nected to the failed switch face disruption of their traffic. SAN administrators prefer

to protect crucial cluster nodes by connecting them to multiple edge-switches. Such

crucial nodes are equipped with multiple NICs (HBAs for FC SANs) which are

connected to different edge-switches. Figure 5.12 shows an example of complete-

switch-disjoint path allocation in a SAN.

5. CASSINI: A SAN PROVISIONING TOOL 115

Core Switches

Edge Switches

Edge Switches

Core Switches

Targets

Initiators

A B

Figure 5.11: Zoning and multipathing in SANs. Zoning provides access control
within a SAN and determines which initiators and targets can communicate with
each other. Multipathing provides multiple paths between two end-points for re-
dundancy and load-balancing. Multipathing introduces loops in network topology.

Core SwitchesEdge Switches Edge Switches

VA LINUX

Figure 5.12: Cassini supports complete-switch-disjoint paths between end-nodes.
Each node is equipped with multiple network interfaces (ports). Cassini ensures
that these ports are connected to different edge switches during topology design.
These edge-switches are in turn connected to different core-switches. These switch-
disjoint paths provide protection against core as well as edge-switch failures.

5. CASSINI: A SAN PROVISIONING TOOL 116

Cassini supports complete-switch-disjoint multiple paths if cluster nodes are

equipped with multiple ports (NICs). If the input specification indicates that each

cluster node has multiple ports and a complete-node disjoint path is desired, Cassini

makes sure that ports from a single node are distributed over at least two different

edge-switches, to protect paths against edge-switch failure.

5.2.4 Zoning and Masking

Zoning is an essential feature for trouble-free SAN operation. Because of SAN

transparency, operating systems on application servers cannot distinguish between

direct attached storage and SAN storage. All storage visible to a server is assumed

by operating systems to be exclusive to the server. In a SAN, every storage device

is connected to every server. There are two problems with this complete visibility.

First, there may be performance issues because of the large number of devices visi-

ble to an operating system. Second, there is a potential for data corruption because

wrong devices may get accessed.

Zoning and Masking are access control mechanisms in SANs which limit the

visibility of certain storage devices to only specific servers. Nodes (servers and

storage) which are zoned together can communicate with each other. Nodes which

are masked out are not even aware of the presence of other servers and devices in

the SAN.

SANs use zoning to provide isolation between a set of initiators and targets.

Zoning provides a mechanism to partition a SAN into smaller zones to facilitate

access control. The main advantage of zoning comes from reduction of data cor-

ruption, by limiting the number of targets and initiators that can communicate with

each other. For large SANs, zoning is an very essential feature. In absence of

a mechanism such as zoning, all initiators and targets can potentially communi-

cate with each other. Zoning addresses performance issues as well. Time spent

5. CASSINI: A SAN PROVISIONING TOOL 117

in scanning the SCSI bus on an initiator is directly proportional to the number of

connected devices. With a large number of connected devices, system startup and

failure recovery times are much longer. Figure 5.11 shows how zoning limits the

communication in SAN in small groups.

Zoning also provides rudimentary security in a SAN, controlling access to the

data. It is not, however, a comprehensive data security solution in SAN.

Cassini supports zoning facility by leveraging on VLAN mechanism. Cassini

ensures that only communicating initiator and target pairs are included in a VLAN.

5.2.5 Capacity Planning in SAN

Most SAN designers resort to manual topology design. The usual practice is to pick

a standard/stock network topology and handcraft it to resolve connectivity issues

for all initiator and target devices in the SAN. This manual design process only

ensures a connectivity path for all I/O traffic flows. It does not address capacity

planning requirements. In manual design, visualizing and understanding interac-

tions of different traffic flows and deducing their impact on each other is very hard.

Because of this, required network capacity cannot be estimated properly and SAN

designers end up either over-provisioning or under-provisioning network capacity.

For small SANs this may not pose any problem. For large deployments, however,

over-provisioning is clearly not desirable. The manual design process also requires

a subsequent continuous tuning to achieve proper SAN utilization. This process is

manual trial-and-error design method and is clearly tedious, inaccurate, and time

consuming. SAN designers can greatly benefit from automated design tools like

Cassini, which can:

• Analyze the interactions of different traffic flows and deduce their impact on

each other.

5. CASSINI: A SAN PROVISIONING TOOL 118

• Estimate required physical resources and determine an efficient way to orga-

nize them.

In effect, automation tools like Cassini address the issue of capacity planning

and connectivity planning. Such a tool reduces equipment cost and the time to

deploy networks resulting in significant savings.

5.3 Switch Allocation and Topology Generation

The goal of Cassini is to a generate core-edge topology for a given set of clusters

adhering to a given traffic specification. The actual process for topology design

involves accepting user input, designing multiple edge topologies pertaining to the

input, and designing a common core to interconnect all the edge topologies.

5.3.1 Input Specification

Cassini assumes the clustered deployment of end-points in SAN. The required in-

formation about clusters involves details like number of nodes in the cluster, number

of ports per node, and multipathing requirements. The traffic specification lists the

bandwidth requirement of traffic between all communicating clusters. The clusters

are always connected to the edge switches. Proper capacity planning ensures that

there are sufficient links handling the traffic between every cluster and the core.

Cassini generates a core-edge topology for SANs. There are two distinct

network building blocks involved in topology design, edge-switches and core-

switches. The edge-switches have small-to-moderate port density. The core-

switches have high port density and a high performance backplane. Cassini’s input

specification describes details about these network elements.

The overall input to Cassini includes the following details:

5. CASSINI: A SAN PROVISIONING TOOL 119

• Number of Clusters.

• Description of each cluster. This description includes:

– Number of nodes in the cluster.

– Number of ports per node.

– Desirability of a complete-switch-disjoint path.

– The extent of the cluster load carried by each node.

• The characteristics of edge-switches and core-switches are:

– Number of ports.

– Link speed of each port.

– Backplane switching bandwidth.

• Details about the traffic load of every application running on the different

clusters. This includes traffic generated by an application between every rel-

evant cluster. It should be noted that a cluster may appear in traffic specifi-

cations corresponding to multiple applications. For example, a single backup

server may be responsible for backing-up data of multiple applications on

different application servers and hence may appear in multiple application

traffic specifications.

5.3.2 Edge Design

The first step of the edge design process is to partition the clusters into multiple

edges, if necessary. The second step of edge design is to compute the number

of edge-switches required to accommodate nodes from all the clusters that belong

to an edge. The third step is to generate a connection topology for cluster nodes

5. CASSINI: A SAN PROVISIONING TOOL 120

and the switches included in every edge. While accommodating all the nodes onto

edge-switches, both connectivity and capacity issues are worked out. The switches

must have enough ports to accommodate all the nodes and at the same time none

of the switches should be subjected to more traffic than it can handle. Each edge-

switch has to be connected to two distinct core-switches, for protection against

core-switch failures. Further, if complete-switch-disjoint paths are desired for any

of the clusters, the switch assignments must be such that every node from the cluster

is connected to at least two edge-switches. Capacity and connectivity planning must

also take into account the connectivity and capacity required to connect the edge-

switches to the core-switches.

The edge design steps can be enumerated as follows:

1. Partition the clusters into multiple edges, such that initiators and targets are

included in different edges.

2. Estimate the number of switches required to support all the clusters that be-

long to each edge.

• Ensure that sufficient capacity and connectivity is provided to connect

cluster nodes with the edge-switches and also the edge switches with

core-switches.

• Ensure that the fault-tolerance of connectivity requirements are satis-

fied. Protection against core-switch failures can be provided by plan-

ning connectivity of every edge-switch with at least two core switches.

Edge switch redundancy can be provided by provisioning complete-

switch-disjoint paths.

3. Minimize the edge-switch resource cost.

4. Generate a topology for the edges being designed.

5. CASSINI: A SAN PROVISIONING TOOL 121

5.3.2.1 Cluster-to-Edge Assignment

The key requirement for automated partitioning of clusters into multiple edges is

that the number of edges be minimized. The advantage in keeping the number

of edges low is that it increases the number of cluster members in each edge and

reduces possible fragmentation of the switch resources allocated to each edge.

In a conventional core-edge SAN, the traffic pattern is such that communication

is always between hosts (initiators) and devices (targets). There is no (SCSI-related)

communication between a pair of hosts or between a pair of devices. The desired

connectivity graph of a SAN is always a bipartite graph, where the end nodes are

pure initiators or targets. It is easy to classify clusters into initiator and target cate-

gories by simply analyzing the connectivity graph.

The problem changes when appliances come into the picture. Application hosts

communicate with appliances. The appliances in-turn communicate with their own

dedicated storage. Multiple appliances may also communicate with each other. This

changed communication pattern results in a connectivity graph that, instead of being

bipartite, is a k-partite graph with k >= 3. This means that the minimum number

of edges required to ensure that every pair of clusters use the core infrastructure for

communication is k.

Determining the partiteness of a graph is an instance of the vertex coloring prob-

lem. The minimum number of colors required to paint the vertices with different

colors such that no two adjacent vertices are painted with the same color defines the

chromatic number, or the partiteness of a graph.

Determining the chromatic number (or the partiteness) of a graph is an NP-hard

problem. Fortunately there is a well-known heuristic, the Welsh-Powell algorithm,

that solves the vertex coloring problem. Cassini applies the Welsh-Powell heuris-

tic to partition the clusters into different edges [WP67]. The cluster partitioning

problem is simply converted into the vertex coloring problem.

5. CASSINI: A SAN PROVISIONING TOOL 122

The application of Welsh-Powell heuristic is as follows. Cassini constructs a

connectivity graph G from the traffic specification. Every cluster is denoted as a

vertex in the graph. Vertices in the connectivity graph are connected together if

there is any communication between the corresponding clusters. The partitioning

involves the following steps:

1. Sort the clusters in non-increasing order of

degree of connectivity.

2. Reset the edge membership of every cluster.

3. Traverse the clusters in order, doing the following

for each cluster:

Mark the cluster as a member of Edge 1 if it is not

a member of any edge and if it does not communicate

with any other cluster from Edge 1

4. Repeat step 3 for Edge 2, Edge 3, . . . until no cluster

is left without edge membership.

This procedure ensures that clusters included in each edge do not communicate

with each other. Further, the number of edges required is low. After the cluster

membership for each edge is determined, Cassini designs an edge topology for

clusters included in each edge.

5.3.2.2 Switch Allocation

Cassini does not aim to compute the absolute minimum number of required edge-

switches. Such a tight requirement would result in a complicated assignment of dif-

ferent nodes from same cluster to different edge-switches. Moreover, tight capacity

planning would warrant mixing nodes from different clusters, so that some nodes

from a low-traffic cluster offset the high traffic generated by nodes from some other

5. CASSINI: A SAN PROVISIONING TOOL 123

Links to Core

Fully utilized
Edge Switches

Partially Utilized
Edge Switch

Figure 5.13: Edge Switch allocation for a cluster. The maximum number of cluster
nodes an edge-switch can handle is computed. A topology map of the edge is gener-
ated, with all the nodes connected to edge-switches. The generated map is such that
all the edge-switches are fully utilized with connections from cluster nodes, with the
possible exception of one partially-utilized switch.

clusters. Such a mix-and-match of cluster nodes can easily lead to fragmentation of

cluster nodes across several edge switches. This fragmentation is a manageability

nightmare for network administrators. Instead, Cassini aims at simple assignments

that will be more manageable and flexible. Cassini tries to minimize cluster frag-

mentation and tries to place nodes of a single cluster on an edge-switch, to the

maximum extent possible.

Cassini follows a simple switch allocation policy for every cluster. First, the

maximum number of cluster nodes that an edge-switch can accommodate is com-

puted. This computation is performed by taking into account the traffic that needs

to be sustained over the switch and the number of ports required to connect the

cluster nodes, as well as the inter-switch-links required to connect the edge-switch

to core-switches. Once the maximum number of cluster nodes per edge-switch is

determined, a topology map of the edge is generated, with all the nodes connected

to edge-switches. The generated map is such that all the edge-switches are fully

5. CASSINI: A SAN PROVISIONING TOOL 124

utilized with connections from cluster nodes, with the possible exception of a sin-

gle switch which is partially utilized. This process is repeated for every cluster that

belongs to the edge being designed.

Input for edge topology design algorithm for a cluster is the information about

the cluster and the edge-switches. Cluster information includes the number of nodes

in the cluster — n, the number of ports per-node — p, and the traffic load —

L. Edge switch information includes switch details, such as number of ports —

EdgePorts, line speed of each port — LinkSpeed, and backplane switching ca-

pacity – SwitchCapacity.

The edge design algorithm processes the input to compute the maximum num-

ber of nodes, NumNodes, that an edge switch can support. It also computes the

number of links, LinksToCore, that are required to connect each edge switch to

the core. It then outputs the topology for all the nodes in the cluster such that at

most NumNodes nodes in the cluster are connected to every edge switch. The

edge switch is provisioned with LinksToCore ports for connecting links to the

core and remaining ports are connected to the cluster nodes. Figure 5.13 shows the

manner in which edge-switches are populated for a cluster.

The following steps describe the edge design algorithm for a single cluster:

Input:

Cluster C with n (N1 to Nn) nodes.

Each node Ni has p ports.

(2p if a complete-switch-disjoint path is desired.)

The cluster load L and maximum traffic load l between

a single node/port and core is computed from

the traffic specification.

Edge-switch characteristics EdgePorts each port with

speed LinkSpeed and capacity SwitchCapacity

5. CASSINI: A SAN PROVISIONING TOOL 125

Output:

Topology T with pn ports connected to e (E1 to Ee)

edge-switches.

Details about the cluster edge-links between each

edge-switch Ei and the core.

Algorithm:

If a complete-switch-disjoint path is requested, divide 2pn

ports into 2 symmetrical sets of pn ports each.

Solve the problem for pn ports.

Compute the maximum number of nodes an edge-switch

can support using the following steps:

Set NumNodes = 0

Repeat the following steps until

explicit BREAK is called:

Set i = NumNodes + 1

Set SwitchLoad = MIN(L, l ∗ i)

Set LinksToCore = 2 ∗ CEIL(SwitchLoad/LinkSpeed)

If SwitchLoad <= SwitchCapacity

AND EdgePorts >= p ∗ i + LinksToCore

NumNodes = i

Else

BREAK out of loop

Set e = CEIL(n/NumNodes)

Allocate e edge-switches in topology T.

Divide the n nodes into e groups of NumNodes each.

5. CASSINI: A SAN PROVISIONING TOOL 126

Connect NumNodes nodes with p ports each, to e switches.

Reserve LinksToCore ports from each edge-switch to connect

them to the core.

Mark these ports as belonging to the cluster C.

Associate each of the LinksToCore ports with

(NumNodes/LinksToCore) nodes.

The edge layout generated by the previous algorithm is shown in Figure 5.13.

If a complete-switch-disjoint configuration is desired then two symmetrical edge

topologies are generated, such that each node has presence in both the topologies.

The topologies are such that all the edge-switches, with the possible exception of a

single switch are fully utilized.

5.3.2.3 Switch Cost Reduction

Once all the clusters are accommodated on edge-switches, the switches can be cat-

egorized into two classes, namely, fully utilized and partially utilized. Here Cassini

finds an opportunity to reduce the resource cost without sacrificing manageability

of the network. Cassini tries to merge partially utilized switches together, such

that the number of highly-utilized switches is maximum ensuring that switching

capacity and switch ports are not wasted by under-utilizing them. Finding the best

possible merge is a hard and computationally expensive problem. Cassini resorts to

standard bin-packing heuristics to achieve this goal.

Thus, the Cassini edge design process is divided into two phases. The first

phase results in each cluster being connected to some fully utilized edge-switches

and at most a single partially utilized edge-switch. In the second phase, all partially

utilized switches from different clusters are merged together, resulting in a reduced

number of highly utilized switches.

5. CASSINI: A SAN PROVISIONING TOOL 127

Cluster node

Cluster

Legend:

formed by merging

Fully Utilized Switch

Partially Utilized Switch

partially utilized switches

Highly Utilized Switch

Figure 5.14: Edge design for multiple clusters. Fragments of clusters on partially
utilized switches are merged together using a bin-packing algorithm to improve
overall switch utilization.

5. CASSINI: A SAN PROVISIONING TOOL 128

Edge

Links to Core

Figure 5.15: The final topology of an edge after the merge of partially utilized
switches is complete. The number of partially utilized switches is reduced and the
overall utilization of existing switches is improved.

This merging problem is a simple variation of the classical bin-packing prob-

lem. The bin-packing problem is a combinatorial NP-hard problem. In bin-packing,

objects of different volumes must be packed into a finite number of bins of capac-

ity V in a way that minimizes the number of bins used. The difference in switch

merging is that instead of bins we have edge-switches with finite capacity. Further,

instead of a single resource, the packing activity has to be performed with respect

to two resources. These resources are the utilized ports and the utilized switching

capacity on the edge-switch.

There are two heuristics to solve the bin-packing problems. These are best

fit decreasing and first fit decreasing strategies. It has been established that these

heuristics have an upper bound of 11/9 OPT + 1 bins, where OPT is the num-

ber of optimal bins [Min91].

Cassini uses the first fit decreasing strategy to solve the edge-switch merging

problem. Input to the edge switch merge algorithm consists of a list of all partially-

utilized switches, SwitchList in the edge. The details of each switch E in the

5. CASSINI: A SAN PROVISIONING TOOL 129

SwitchList include the utilized port count EP and the backplane load on each

switch EL. The edge-switch merge algorithm merges the switches together using

first fit decreasing strategy and outputs the new topology after the merge. The

algorithm is as follows:

Input:

A list SwitchList of n switches, E1 to En.

Each switch Ei with utilized port count EPi and

switch load ELi

Output:

A list of m edge-switches, such that m < n

All connections on switches from the input switch list

reassigned to new switches.

Algorithm:

Sort the input list of switches in decreasing

order of utilized port count Pi.

For switches with the same utilized port count use

switch load Li as a second parameter for sorting

Repeat the following steps until SwitchList ! = φ:

Allocate a new switch ESwitch with available

ports as ESwitchP and capacity as ESwitchL

While ∃ E ∈ SwitchList such that

EP <= ESwitchP AND EL <= ESwitchL

Find first such E by scanning through

the list.

Remove E from SwitchList

Merge E with ESwitch as follows

Reassign EP ports to ESwitch

5. CASSINI: A SAN PROVISIONING TOOL 130

Set ESwitchP = ESwitchP − EP

Set ESwitchL = ESwitchL − EL

The merge process is shown in Figure 5.14. The outcome of the merge is shown

in Figure 5.15. The number of partially utilized switches is reduced and the overall

utilization of existing switches is improved.

5.3.3 Core Design

Once all edge topologies in the SAN are completely designed, these edges have to

be connected together through the common core. The core must provide connec-

tivity to all the edges and also enough switching capacity to handle communication

across all the edges. If the port and capacity requirements of all edges can be han-

dled by a single core-switch, the core design is trivial. Links emanating out of all

the edges are connected to a single core-switch and the SAN design is complete.

For small SANs this may well be the case. For large SANs which require more than

a single core-switch, however, the core design is somewhat more involved.

The goals of core design are similar to the edge design goals. The core has

to provide connectivity and capacity to the edges. Also, resource cost has to be

minimized.

Core design involves the following four steps:

1. Estimating the required number of core-switches.

2. Determining the distribution of different edge-links to the core-switches.

3. Interconnecting the core-switches together with the appropriate number of

inter-switch-links.

5. CASSINI: A SAN PROVISIONING TOOL 131

Edge−3

Edge−1

Edge−2
. . ?? . .

??

??

Core

Figure 5.16: Core design process. Once the edge design is complete, Cassini
estimates the number of core-switches, determines the connectivity between edge
and core-switches, and determines the connections between the core-switches.

5. CASSINI: A SAN PROVISIONING TOOL 132

4. Minimizing core-switch cost.

These core design tasks are illustrated in Figure 5.16.

5.3.3.1 Differences with Edge Design

Conceptually edge-design and core-design are similar to each other. In both cases

we need to determine the number of switches required and interconnect the switches

together. There are, however, key differences in both design requirements that war-

rant totally different design processes. Unlike edge design, capacity planning and

inter-switch-link provisioning in the core cannot be performed without complete

knowledge of the traffic load over a switch and its neighboring switches. Edge-

switches do not communicate with each other. This allows us to do capacity plan-

ning on an edge-switch independent of other edge-switches.

The input traffic specification provides traffic load information at the cluster

granularity. Every edge-link connecting edge-switches and core-switches carries

only a portion of the entire cluster traffic. Though each edge-link carries a different

amount of load, depending on the number of cluster nodes associated with the link

during the first phase of edge design, the aggregate load carried by all edge-links

corresponding to a cluster is always the total traffic load of the cluster. From a core

design process perspective, it is beneficial to deal with the aggregate load rather

than fractional load, as this simplifies the task of capacity planning. If all the edge-

links corresponding to a cluster are connected to a single core-switch, the task of

distributing edge-links is converted into a simple task of assigning different clusters

to different core-switches. This has the added benefit of avoiding fragmentation

of cluster traffic. Further, estimating traffic across different core-switches becomes

easy, as it is just a matter of computing traffic between clusters assigned to different

switches. This simplification is shown in Figure 5.17.

5. CASSINI: A SAN PROVISIONING TOOL 133

Cluster−3Cluster−1

Cluster−2Edge

Cluster−3

Edge Links
Cluster−2

Edge Links

Cluster−1
Edge Links

Cluster−Z
Cluster−X

Cluster−Y

Figure 5.17: Cluster to core-switch assignment. The task of distributing edge-
links to core-switches is simplified if all the edge-links corresponding to a single
cluster are treated as aggregates. Capacity provisioning becomes easy, because
entire cluster traffic is localized to a single switch. Fragmentation of cluster traffic
is avoided. Estimating traffic across different switches also becomes easy, as it is
just a matter of computing traffic between different clusters.

5. CASSINI: A SAN PROVISIONING TOOL 134

C1 C2 C1 C2

C1−C2 traffic C1−C2 traffic C1−C2 traffic

Figure 5.18: Core switch utilization after a merge. The merging of two core-
switches does not result in the sum total of the switch load and the used port count.
The merged switches eliminate the traffic over the inter-switch-links and the ports
used by these inter-switch-links.

Thus, all edge-links from a single cluster are always connected to the same core

switch. In edge design, however, this is not the case. The nodes from a single

cluster are connected to multiple edge-switches.

Core-switches cannot be merged together using the same bin-packing technique

used in the edge design phase. The key difference here is that the switch load after

a merge is not the sum total of the individual switch loads. Also, the used port

count after the merge is not the sum total of the used port counts before the merge.

The final load after merge is actually less than the sum total of individual switch

loads. The final load differs from the sum-total by the amount of traffic over the

inter-switch-links. Ports used by inter-switch-links are also freed up by the merge,

reducing the overall count of used ports. Figure 5.18 shows an example of how the

switch load and used port count is actually reduced after the merge. Bin-packing

cannot deal with such dynamic values for a merge.

These differences require a different core design process and the edge design

algorithms are not applicable for core design.

5. CASSINI: A SAN PROVISIONING TOOL 135

5.3.3.2 Core-switch Allocation and Edge-link Assignment

Though assigning entire clusters to core-switches simplifies the task of edge-link

distribution, it does not solve the problems of determining how many core-switches

are required and which clusters should be assigned to which core-switches.

If the convention of connecting all the edge-links from a cluster to the same

core-switch is followed, determining the number of required core-switches is trivial.

The maximum number of core-switches required will never exceed the total number

of clusters for which the SAN is being designed. The implicit assumption here is

that a single core-switch can always handle an entire cluster in terms of capacity

and connectivity. Given that core-switches are typically high port density and high

backplane-capacity switches, this assumption is a reasonable assumption.

Thus, the core design process begins by allocating the maximum number of

core-switches and assigning clusters to them. The number of inter-switch-links be-

tween each pair of core-switches is easily computed from the traffic between them.

A core with the maximum number of switches is clearly an over-provisioned and

under-utilized core. Almost every core-switch would have significant amount of

unused ports and spare backplane switching capacity. Such under-utilized switches

can be merged together to improve resource utilization and reduce the required

number of core-switches.

5.3.3.3 Merging Core-Switches

Core-switches are typically high port density and high performance switches. The

ratio of backplane switching capacity to port bandwidth is usually very high. If

the source and destination nodes of traffic connect to different core-switches, the

traffic has to be sent over the inter-switch-links connecting the two switches. Large

5. CASSINI: A SAN PROVISIONING TOOL 136

A

B

D

E

C

E

F

A+B+C+D

F

Figure 5.19: Traffic Locality based merge. Switch A is the core-switch with the max-
imum number of inter-switch-links. Switches B, C, and D can be merged together
with A to improve the locality of traffic and reduce the number of inter-switch-links.

amounts of inter-switch traffic requires large number of inter-switch-links. Dedi-

cating more switch ports to inter-switch-links reduces the number of available ports

for cluster edge-links and hence increases the number of core-switches required to

support the edge-links. Also, the traffic flowing through inter-switch-links adds to

the backplane switching load of all the connected switches. The key to improving

resource utilization in the core is to merge core-switches in such a way that the

count of inter-switch-links is reduced.

Traffic Locality-based Merge

Reduction in the number of inter-switch-links is possible if the distribution of

clusters over core-switches takes into account the locality of traffic. If multiple

clusters with heavy traffic between each other are placed on the same core-switch,

traffic gets localized on the single switch and traffic over inter-switch-links is re-

duced. Cassini follows this guideline to improve traffic locality while merging

core-switches.

Figure 5.19 illustrates how traffic locality based merge is carried out. Consider

the initial core design as described in this Figure. Switch A can be identified as the

switch with the maximum inter-switch-traffic. Neighboring switches B, C, and D

can be merged with A, if A has sufficient spare capacity and spare ports. This merge

5. CASSINI: A SAN PROVISIONING TOOL 137

reduces the inter-switch-traffic by localizing traffic within a single core-switch. If

switch A still has spare capacity and ports, a further merge can be carried out with

switches E and F.

Input to the locality-based merge algorithm consists of all list of all the clusters

— C, the traffic load of of each cluster — Loadc, and the pairwise traffic specifi-

cation Trafficij between every cluster pair Ci and Cj . The essence of locality-

based merge is to allocate a core-switch for each cluster, connect corresponding

edge-links to the core-switch and then merge these switches together. The merge

process identifies a PivotSwitch with the maximum number of inter-switch-links

and then repeatedly tries to merge neighboring switches with this pivot switch, till

the pivot switch either runs out of ports or runs out of backplane switching capacity.

Whenever a PivotSwitch gets saturated, a new PivotSwitch is identified and the

merge continues till no more merges are possible. The output of the locality-based

merge is a merged topology of core-switches. The algorithm for core design using

locality-based merge is as follows:

Input:

A list of all the clusters.

Edge-links associated with every cluster C.

Traffic load Loadc associated with every cluster C.

The pairwise load specification Traffici,j between every

cluster pair Ci and Cj.

Output:

Topology for the Core and the interconnections to Edges

Algorithm:

For every cluster C allocate a core-switch and connect

corresponding edge-links to the allocated switch.

Determine the backplane load on every switch, based on

traffic load Loadc of the connected cluster.

5. CASSINI: A SAN PROVISIONING TOOL 138

Determine the inter-switch-traffic and inter-switch-links

between all the core-switches using the pairwise load

specification Traffici,j.

try merge :

Sort the switches in non-increasing order of

the number of inter-switch-links to each.

Identify PivotSwitch as the first non-saturated switch

in the sorted switch list.

Sort the neighbors of PivotSwitch in decreasing order

of their inter-switch-traffic with the PivotSwitch

Traverse the neighbors in order and merge them with

PivotSwitch if possible.

After every merge recompute the load on the

PivotSwitch and the number of inter-switch-links

to other switches.

If the PivotSwitch cannot be merged with any of

its neighbors, mark it as saturated.

Repeat the process from try merge until no PivotSwitch

can be identified.

Output the topology obtained from the merges.

Greedy Merge

The traffic locality-based merge focuses on a pivot switch and tries to merge

it with neighboring switches until it gets saturated. Once the pivot switch is satu-

rated, a new pivot switch is identified and the merge process continues. Merging

of any two switches, however, results in a change in traffic dynamics, as shown in

5. CASSINI: A SAN PROVISIONING TOOL 139

Figure 5.18. Because of this change, the pivot switch may not remain the best can-

didate for subsequent merges after the first merge. To contend with this we use a

greedy merge strategy. In the greedy merge process, instead of a single pivot switch

a pair of switches are identified as candidates to merge. The candidates are chosen

such that the inter-switch-traffic between them is higher than any other switch pair.

If neither of these candidates is saturated and a merge between them is possible,

the merge is carried out. If either one of the switches is saturated or they cannot be

merged, the next suitable pair of candidates is chosen.

This process greedily attempts to always merge the switches with highest inter-

switch-traffic. Input to the greedy merge algorithm is the same as the input to

locality based merge. It consists of all list of all the clusters — C, the traffic load

of of each cluster — Loadc, and the pairwise traffic specification Trafficij be-

tween every cluster pair Ci and Cj . The essence of greedy merge is merge is to

allocate a core-switch for each cluster, connect corresponding edge-links to the

core-switch and then merge these switches together. The merge process identifies

two switches SWx and SWy, which can be merged together. The switches are such

that the inter-switch-traffic SwitchTrafficxy between them is higher compared to

any other switch pair in the core. These two switches are merged together. Merge

process repeats till all the core-switches are saturated and no additional merge is

possible. The output of the greedy merge is a merged topology of core-switches.

The algorithm for core design using greedy merge is as follows:

The algorithm for greedy merge is as follows:

Input:

A list of all the clusters.

Edge-links associated with every cluster C.

Traffic load Loadc associated with every cluster C.

The pairwise load specification Traffici,j between every

5. CASSINI: A SAN PROVISIONING TOOL 140

cluster pair Ci and Cj.

Output:

Topology for the Core and the interconnections to Edges

Algorithm:

For every cluster C allocate a core-switch and connect

corresponding edge-links to the allocated switch.

Determine the backplane load on every switch, based on

the traffic load Loadc of the connected cluster.

try merge :

Determine the inter-switch-traffic and

inter-switch-links between all the core-switches

using the pairwise cluster load specification Traffici,j.

For every pair of core-switches SWx and SWy and

SwitchTrafficx,y between them, construct a tuple

< SWx, SWy, SwitchTrafficx,y >.

Sort all the tuples in decreasing order of SwitchTrafficx,y.

Find the first tuple from the sorted list such that SWx

and SWy can be merged.

Merge SWx and SWy.

Repeat the process from try merge until no merge can be

performed.

Output the topology obtained from the merges.

5.3.3.4 Dual-Core Topology

The entire traffic in a SAN with a core-edge topology flows through a small number

of core-switches. If any of the core-switches fails, the potential for traffic disruption

5. CASSINI: A SAN PROVISIONING TOOL 141

is very high. For high availability of a SAN it is important to have some fail-

over strategy to deal with such core-switch failures. Most SAN designers opt for

redundant core topologies, where every edge-switch is connected to at least two

or more core-switches. In the event of a single core-switch failure, traffic can be

diverted through alternate switches without major disruption.

Cassini also uses a dual-core topology model for fault-tolerance. During the

first phase of edge design, as described in section 5.3.2.2, edge-links are provi-

sioned such that each edge-switch is connected to two different core-switches. The

edge design process always allocates edge-links as pairs, where each edge-link has

an associated counterpart that connected to a different core-switch. For simplicity

of the design process, it always generates two symmetrical core topologies. The

edge-links are distributed across these two core topologies. Topology generated in

this way is provisioned with two core-disjoint paths for every communicating node

pair. The locality-based merge and greedy merge algorithms described earlier are

core design algorithm for a single core. To deploy dual-core topology, two identi-

cal/isomorphic cores are designed and deployed.

5.3.4 Path Computation and VLAN Grouping

The edge and core design processes address the SAN topology design problem

effectively. There is more to SAN design than just topology design. Topology

design addresses connectivity and capacity provisioning in SAN. There remains an

important operational issue of routing that must be addressed to utilize the designed

topology. The core-edge topology designed by Cassini is mainly targeted towards

Ethernet SANs. The underlying infrastructure is built using Ethernet switches. As

illustrated in Figure 5.12, Cassini supports multiple paths between every pair of

nodes in communicating clusters. There are two problems in Ethernet networks

because of multipathing.

5. CASSINI: A SAN PROVISIONING TOOL 142

Core Switches

Node Ports associated

with Edge Links

Cluster Nodes

Figure 5.20: Computation of path(s) between a node pair. During edge design
each edge-link is associated with a set of nodes. This association determines the
communication paths to the core for all the nodes. A path between two nodes can
be formed by connecting their respective half paths to the core. When complete-
switch-disjoint paths are required, two symmetrical cores are provisioned. Each
node has two switch-disjoint paths to each core. Complete-switch-disjoint paths
can be formed simply by connecting respective paths to the core for each core.

The first problem is how to select the appropriate path between the nodes from

several possible paths. The appropriate paths are the paths that are provisioned dur-

ing edge and core topology design. The next problem is how to actually use the

selected paths. Ethernet uses a distributed spanning tree protocol (IEEE 802.1d) to

construct and impose a logical spanning tree on the physical network, the routes

packets along the links of this spanning tree. Thus, in conventional Ethernet net-

works it is not possible preselect the switching path.

The path computation and VLAN grouping phase of Cassini address these is-

sues. The edge and core design phases do not directly provision the . Rather,

5. CASSINI: A SAN PROVISIONING TOOL 143

capacity and connectivity is provisioned in these phases, which automatically re-

sults in provisioning of paths. Path computation phase simply enumerates paths

that conform to the provisioned connectivity and capacity.

Each communication path between every node pair has the following pattern.

Cluster1Node

m
EdgeSwitch

m
CoreSwitch [⇔ CoreSwitch]

m
EdgeSwitch

m
Cluster2Node

Computing Half Paths

In the last step of the edge design phase, (described in Section 5.3.2.2), every

edge-link is associated with a set of cluster node ports. This association determines

which node will use which edge-link to communicate with other nodes. Every edge-

link connects an edge-switch to a core-switch. Thus, the node to edge-link mapping

automatically determines the communication path for a node to the core. The node-

to-core path happens to be exactly a half portion of every path between two nodes.

A complete path between two nodes can be formed simply by connecting their

respective half paths to the core.

If complete-switch-disjoint paths are desired for a cluster to communicate with

other clusters, every cluster node is equipped with multiple network ports connected

to different switches. There are two symmetrical cores in such a case. Thus, there

5. CASSINI: A SAN PROVISIONING TOOL 144

Inter−Switch−Links

A single trunk from multiple ISLs

Figure 5.21: Load balancing over inter-switch-links in the core. When there are
multiple inter-switch-links between two core-switches, the load can be balanced by
including all the inter-switch-links in roughly equal number of paths. Alternatively,
all the inter-switch-links can be combined together into a single trunk.

are two different paths to each of the cores, for every node. Two complete-switch-

disjoint paths are formed by connecting respective paths to each core.

Figure 5.20 shows how half paths can be identified in the topology designed by

Cassini.

Connecting Half Paths and Trunking

The complete path between any two nodes is formed by connecting their re-

spective paths to the core. If both the nodes are connected to the same core-switch,

then connecting the half paths is a trivial process. The common point for both the

half paths is the common core-switch. The complete path is formed by simply

augmenting the half paths with each other. If the nodes are connected to different

core-switches, however, there is no common point for the half paths. The complete

path must be formed by using the inter-switch-links provisioned during the core

design phase.

If there is a single inter-switch-link between the core-switches, the complete

path is formed using that link. If there are multiple inter-switch-links connecting

5. CASSINI: A SAN PROVISIONING TOOL 145

two core-switches, the path can be formed by using any of the links. Alternatively

the inter-switch-links can be combined together to form a single trunk that acts as

a single logical inter-switch-link [IEE00a]. Trunking has another benefit, reducing

loops in the network. Two inter-switch-links between the same pair of switches al-

ways form a loop. This loop can be avoided if both inter-switch-links are combined

to act as a single link. Figure 5.21 shows how trunking is carried out.

VLAN Grouping

Computing paths between all communicating node pairs is just half the task. A

mechanism must enable these paths and make them available for use by the end-

nodes. Also, there must exist a mechanism to fail-over from one path to another

switch-disjoint path in the event of failure. Cassini uses the same mechanism as

Viking [SGNcC04]. The path aggregation algorithm 4.6 described in Chapter 4 is

followed to come up with VLAN assignment for every link.

The failure detection and fail-over strategy is also borrowed from Viking. The

fault tolerance mechanism described in Chapter 4, section 4.4 is applicable verbatim

in SANs designed using Cassini.

5.4 Evaluation of Cassini

The goals of Cassini are to generate an appropriate SAN topology for a given input,

devise communication paths between different nodes of communicating clusters,

and determine VLAN assignments for different paths.

5.4.1 Efficiency of SAN Design

The effectiveness of the Cassini design algorithms can be measured by the appro-

priateness of the SAN topology produced for a given input. Appropriateness is a

5. CASSINI: A SAN PROVISIONING TOOL 146

qualitative measure. Though resource cost minimization is one desired factor, it is

not the prime focus of topology design. Along with resource cost minimization,

there are other goals, such as avoiding cluster fragmentation, conforming to core-

edge structure, high availability, etc. These goals aid the manageability of the SAN.

The hypothetical best case scenario for resource cost minimization occurs when

there are no resources wasted in the designed SAN. Thus, a simple measure of ef-

fectiveness of a SAN design can be performed by comparing utilized and wasted

resources. Wasted resources in a SAN are manifested by over-provisioning of re-

sources. In an Ethernet SAN there are two primary resources, namely, switch ports

and switching bandwidth. If the utilization of available switch ports and switch-

ing bandwidth is high, the efficiency of the SAN design can be deemed superior.

We examined the extent of utilization and over-provisioning in SANs designed by

Cassini, to get an insight into the efficiency of our design algorithms.

We define port utilization of a switch as the percentage of total number of ports

actually in use out of the total available ports on the switch. Thus, for a switch with

16 ports, if only 8 of the ports are actually in use, the switch port utilization is 50%.

If all of the ports are actually in use, the switch port utilization is 100%. Similarly,

we define the bandwidth utilization of a switch as the percentage of total backplane

switching bandwidth actually in use out of the total available backplane bandwidth

of the switch. If a switch has backplane switching bandwidth of 16 Gbps and the

total traffic handled by the switch is only 8 Gbps, its bandwidth utilization is only

50%.

We define the average port and bandwidth utilization of edge-switches as the

average of port and bandwidth utilization of each edge-switch. Similarly, we define

the average port and bandwidth utilization of core-switches as the average of port

and bandwidth utilization of each core-switch.

We evaluated the effectiveness of Cassini at designing small-sized SANs as well

5. CASSINI: A SAN PROVISIONING TOOL 147

SAN

APP2 APP3

Storage3

nodesXports 3X2

nodesXports 1X10

nodesXports 3X2

nodesXports 4X2

nodesXports 3X2

nodesXports 2X2

nodesXports 4X2 nodesXports 2X2

Storage1 Storage2 Storage4

APP1

APPLNC4

APPLNC3

APPLNC2

APPLNC1

Figure 5.22: Representation of an input for design of a small-sized SAN. The SAN
was designed for 3 application clusters, 4 appliance clusters, and 4 storage nodes.
Each cluster consists of multiple nodes with multiple ports. The arrows indicate
traffic flows to be accommodated by the designed SAN.

as large SANs. Small-sized SANs are usually deployed in small test and develop-

ment environments or SMB (small-medium-business) environment. Small SANs

provide storage connectivity to a few nodes/cluster using a small number of storage

devices. In large data centers, however, SANs connect several hundred application

servers with similar number of storage arrays. The small and large SAN designs we

chose, are representative of these two different environments.

5. CASSINI: A SAN PROVISIONING TOOL 148

5.4.1.1 Designing Small SANs

Figure 5.22 shows representation of a small-sized input for which the SAN design

process was carried out. The SAN was designed for a total of 11 clusters. These 11

clusters consisted of 3 application clusters, 4 appliance clusters, and 4 storage clus-

ters. Each cluster contained multiple nodes with multiple ports. The clusters were a

mix of master-slave and distributed clusters. The arrows in the Figure indicate traf-

fic flows that were to be accommodated by the designed SAN. There were 12 traffic

flows. All were equal in terms of bandwidth requirement. The SAN design was

done using small switches. The edge-switches had 16 ports each and a backplane

switching capacity of 16 Gbps. The core-switches were slightly larger switches,

with 24 ports each and a similar backplane switching capacity of 16 Gbps. Several

instances of the SAN were designed for varying traffic requirements. These various

instances were analyzed for port and bandwidth utilization.

Figure 5.23 shows the number of switches required to deploy the SAN designed

for input sketched in Figure 5.22. The SAN was designed with multipathing sup-

port. It required 10 edge-switches, for a low traffic requirement of 80 Mbps per

flow. As the traffic flows increased, the number of required switches also increased.

For a traffic requirement of 640 Mbps per flow, the number of edge-switches in-

creased to 14 switches. The number of required core-switches ranged from a single

core-switch for low traffic, to 3 core-switches for high traffic. Cassini designs a

dual-core topology for supporting multipathing. Thus, two isomorphic cores were

designed to support complete-switch-disjoint paths between every pair of commu-

nicating nodes.

Figure 5.24 shows the utilization of edge-switches in the designed SAN in-

stances. In edge-switches, initial port utilization is steady, around 80%. Bandwidth

utilization is low for SANs designed for low traffic and increases linearly with in-

creasing traffic. A fairly high level of port utilization signifies that the limiting

5. CASSINI: A SAN PROVISIONING TOOL 149

0 80 160 240 320 400 480 560 640
Per Flow Bandwidth Requirement (Mbps)

0

2

4

6

8

10

12

14
Sw

itc
h

C
ou

nt

Edge Switch Count
Core Switch Count

Number of Required Switches

Figure 5.23: Required number of switches to deploy for a small SAN designed
for the input sketched in Figure 5.22. Different SAN topologies were designed for
different traffic requirements.

0 80 160 240 320 400 480 560 640
Per Flow Bandwidth Requirement (Mbps)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Port Utilization
BW Utilization

Average Edge Switch Utilization

Figure 5.24: Average edge switch utilization in a small SAN design. Port uti-
lization is around 80%. Bandwidth utilization is low for low traffic and increases
linearly with increasing traffic. Fairly high port utilization signifies that the limiting
resource in this SAN is switch ports, rather than bandwidth.

5. CASSINI: A SAN PROVISIONING TOOL 150

0 80 160 240 320 400 480 560 640
Per Flow Bandwidth Requirement (Mbps)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Port Utilization
BW Utilization

Average Core Switch Utilization

Figure 5.25: Average core switch utilization in a small SAN design.

resource in these SAN design instances is switch ports, rather than backplane band-

width. With increasing traffic the number of required edge-to-core links also in-

creases. These edge-to-core links increase port utilization by a marginal amount. If

these additional links cannot be accommodated on existing edge switches, however,

additional edge-switches may be required, and thus all available switch ports may

not be utilized. This reduces overall switch port utilization. This scenario can be

seen in Figure 5.24, as a dip between utilization occurs between 240 Mbps flows

and 320 Mbps flows. Figure 5.23 shows the corresponding increase in switch count,

from 10 edge-switches to 12 edge-switches.

Figure 5.25 shows port and bandwidth utilization for core-switches. Initial port

utilization is fairly high, around 90%. With increasing traffic, the required num-

ber of edge-to-core links increases and the utilization goes up to 100%. Further

increase in the number of edge-to-core links requires additional core-switches. In-

troduction of new core switches brings in a significant number of additional ports

5. CASSINI: A SAN PROVISIONING TOOL 151

and a significant amount of additional bandwidth, which cannot be fully utilized.

This reduces port utilization as well as bandwidth utilization. These utilization dips

can be observed in Figure 5.25. The port utilization design corresponding to traffic

flows of 320 Mbps drops to 60%. The port and traffic utilization steadily increases

for further design instances and reaches 90% port utilization for the SAN design

instance corresponding to 480 Mbps traffic flows. At this point, increased num-

ber of edge-to-core links requires an additional core-switch and the port utilization

decreases further.

It should be noted that, in a scenario where connectivity dominates capacity, the

SAN designed by Cassini maintains a fairly high level of port utilization, from 80%

to 90%.

5.4.1.2 Designing Large SANs

Figure 5.26 shows representation of an input which results in a large SAN design.

The SAN design was done for 50 clusters. The 50 clusters consisted of 20 appli-

cation clusters, 20 appliance clusters, and 10 storage nodes. Each cluster contained

multiple nodes with multiple ports. In all, there were 416 node-ports connected to

the SAN. The designed SAN had to support 300 traffic flows. The first 100 flows

were generated by randomly pairing application clusters with appliance clusters.

The next 100 flows were generated by randomly pairing appliance clusters with

storage nodes. The final 100 flows were generated by randomly pairing application

clusters with storage nodes.

The SAN design was done using large switches. The edge-switches had 24

ports each and a backplane switching capacity of 16 Gbps. The core-switches were

larger switches with 64 ports each and a backplane switching capacity of 48 Gbps.

Multiple instances of the SAN were designed for varying traffic requirements.

Figure 5.27 shows the number of core and edge-switches required to deploy

5. CASSINI: A SAN PROVISIONING TOOL 152

10 Storage Devices (100 ports)

20 Application Clusters (156 ports)

SAN 100

100

100

random flows

(160 ports)

20
Appliance

Clusters

Figure 5.26: Representation of an input for a large SAN design. The SAN design
was done for a large number of clusters communicating with each other. Input
included 20 application clusters, 20 appliance clusters, and 10 storage clusters.
Each cluster contained multiple nodes with multiple ports. In all there were 416
ports connected to the designed SAN. The designed SAN had to support 300 traffic
flows. The flows were generated by randomly pairing clusters from different edges.

5. CASSINI: A SAN PROVISIONING TOOL 153

60 80 100 120 140 160 180 200 220 240 260
Per Flow Bandwidth Requirement (Mbps)

0

10

20

30

40

50

60

70

Sw
itc

h
C

ou
nt

Edge Switch Count
Core Switch Count

Number of Required Switches

Figure 5.27: Required number of switches to deploy a large SAN designed for the
input represented by Figure 5.26.

the large SAN designed for the input represented by Figure 5.26. Multiple SAN

instances were designed by varying the traffic from 60 Mbps per flow to 260 Mbps

per flow, in each direction. These SAN instances were designed with multipathing

support. We examined variations in the different SANs designed to analyze the

impact of an increase in traffic load on the resulting SAN design. It required 30

edge-switches and 2 core-switches to support 300 flows between 416 ports, with

a traffic requirement of 60 Mbps per flow. As the traffic increased, the number of

required switches also increased. For traffic of 140 Mbps per flow, the number of

edge-switches is 40 and the core-switches is 5. For traffic of 200 Mbps, the number

of edge-switches increased to 62. The number of core-switches also increased from

6 to 9. This amounts to a jump of 50% in the required resources.

The reason for this significant increase is explained by analyzing the edge-

switch utilization shown in Figure 5.28 and Figure 5.29. Port utilization for edge-

switches is consistently high, in the range of 85% to 90%. When the traffic flow

5. CASSINI: A SAN PROVISIONING TOOL 154

60 80 100 120 140 160 180 200 220 240 260
Per Flow Bandwidth Requirement (Mbps)

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Port Utilization
Bandwidth Utilization

Average Edge Switch Utilization

Figure 5.28: Average edge switch utilization in a large SAN design. Port utiliza-
tion ranges from 80% to 90%. The bandwidth utilization increases with traffic and
ranges from 30% to 70%.

0 5 10 15 20 25 30 35 40
Switch Number

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Port Utilization
Bandwidth Utilization

Utilization Levels of Different Edge Switches

Figure 5.29: Edge switch utilization for a SAN designed for input represented
by Figure 5.26, with a traffic flow requirement of 190 Mbps. Almost all of the
edge-switches in this SAN are fully saturated, with little spare ports and capacity
available.

5. CASSINI: A SAN PROVISIONING TOOL 155

12

15

7

10

6

0

5

4 6 8 10 12 14 16
Port Count

0

5

10

15

20

N
um

be
r

of
 C

lu
st

er
s

Port Count for Different Clusters

Figure 5.30: Distribution of ports for different clusters. The 416 ports in large SAN
input are not evenly distributed among all the clusters. Ports-per-cluster vary from
4 ports to 16 ports. Bandwidth utilization of edge-switches connected to clusters
with low port count is high and it is low for edge-switches connected to high port
count.

requirement increases from 180 Mbps to 200 Mbps, almost all edge-switches need

additional edge-to-core links. Incidentally, at this point the average bandwidth uti-

lization is around 70%, which is also very high. This high port and bandwidth uti-

lization signifies that almost all of the switches are saturated, with little spare ports

and capacity left. Figure 5.29 illustrates bandwidth and port utilization of every

edge-switch in the SAN instance designed to support a traffic flow requirement of

190 Mbps. Thus, when the traffic requirement in the SAN increases from 190 Mbps

per flow to 200 Mbps per flow, a significant number of additional edge-switches are

needed to support the increased bandwidth and connectivity. This increase in the

number of edge-switches raises the required number of core-switches as well.

Figure 5.31 shows the port and bandwidth utilization for core-switches. Port

utilization is steady, around 75% to 85%, and bandwidth utilization ranges from

45% to 65%. This level of utilization is fairly high. A high utilization is a desirable

5. CASSINI: A SAN PROVISIONING TOOL 156

60 80 100 120 140 160 180 200 220 240 260
Per Flow Bandwidth Requirement (Mbps)

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Port Utilization
Bandwidth Utilization

Average Core Switch Utilization

Figure 5.31: Average core switch utilization in a large SAN design. Port utilization
is steady around 75% to 85% and bandwidth utilization ranges from 50% to 65%.

attribute of any SAN.

Figure 5.29 illustrates utilization of every edge-switch in the SAN instance de-

signed to support a traffic flow requirement of 190 Mbps. It shows that almost

every edge-switch is either port saturated or bandwidth saturated. It also shows that

edge-switches are not utilized in a uniform fashion. This behavior is intriguing con-

sidering that the traffic pattern between clusters is pretty uniform. The reason for

uneven utilization of switches can be explained by Figure 5.30, which shows that

different clusters have different port count. Out of 50 clusters in large SAN input,

12 clusters had only 4 ports, the port-count for clusters varied from 4 ports to 16

ports each. The uniform traffic from all these clusters was distributed over different

number of ports. This variation in port-count per-cluster resulted in high bandwidth

utilization of edge-switches connected to clusters with low port-count. The port

utilization for edge-switches connected to high port-count clusters was high and

bandwidth utilization was low.

5. CASSINI: A SAN PROVISIONING TOOL 157

150 180 210 240 270 300 330 360 390 420 450
Number of flows

0

10

20

30

40

50

60

70

Sw
itc

h
C

ou
nt Edge Switch Count

Core Switch Count

Number of Required Switches

Figure 5.32: Required number of switches to deploy a large SAN designed with
varying number of flows for the input represented by Figure 5.26.

150 180 210 240 270 300 330 360 390 420 450
Number of flows

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Port Utilization
Bandwidth Utilization

Average Edge Switch Utilization

Figure 5.33: Average edge switch utilization in a large SAN designed with varying
number of flows for the input represented by Figure 5.26. Port utilization ranges
from 80% to 95%. The bandwidth utilization increases with number of flows and
ranges from 45% to 70%.

5. CASSINI: A SAN PROVISIONING TOOL 158

150 180 210 240 270 300 330 360 390 420 450
Number of flows

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Port Utilization
Bandwidth Utilization

Average Core Switch Utilization

Figure 5.34: Average core switch utilization in a large SAN designed with varying
number of flows for the input represented by Figure 5.26. Port utilization is steady
around 75% to 90% and bandwidth utilization ranges from 50% to 65%.

We examined the impact of number of flows on SAN design. In previous SAN

design instances, the number of flows were set at constant 300 flows and we varied

the bandwidth per flow. In another set of experiments we varied the number of flows

from 150 flows to 450 flows while keeping the bandwidth requirement constant at

200 Mbps per flow.

Figure 5.32 shows the required number of edge-switches and core-switches for

such a SAN design. The number of switches varied from 30 edge-switches and 3

core-switches to 66 edge-switches to 12 core-switches when the number flows were

varied from 150 flows to 450 flows.

Figure 5.33 shows utilization levels for edge-switches in these SAN design in-

stances. Port utilization ranges from 80% to 95%. Bandwidth utilization increases

with number of flows and ranges from 45% to 70%.

Figure 5.34 shows utilization levels for core-switches. Port utilization is steady

5. CASSINI: A SAN PROVISIONING TOOL 159

around 75% to 90% and bandwidth utilization ranges from 50% to 65%.

This behavior is not much different from traffic variation in SAN designs.

5.4.1.3 Bandwidth Utilization

In all of the utilization related measurements, the SAN designs were port limited

rather than bandwidth limited. Figure 5.24, Figure 5.25, Figure 5.28, and Fig-

ure 5.31 all show that bandwidth utilization of switches is lower than port utiliza-

tion. There are two reasons for this observed behavior. The utilization described

in all the measurements average port and bandwidth utilization. Some switches

indeed get saturated either by bandwidth or by ports. Figure 5.29 shows differ-

ent levels of utilization for each switch in large SAN design. Once a switch gets

saturated any additional traffic would require introduction of a new switch. Both

bandwidth and port utilization for new switches are significantly low. This low uti-

lization of the new switches affects the average port and bandwidth utilization of

the entire SAN. Another reason for low bandwidth utilization is the relationship

between port bandwidth, switch size, and the backplane switching capacity. For

switches used in small SAN design, 16 Gbps of backplane capacity is sufficiently

high for 16 ports each with 1 Gbps link speed. For these edge-switches to become

bandwidth saturated the traffic on every port has to be 1Gbps. It is possible for

bandwidth utilization to exceed port utilization, but only in cases where backplane

switching capacity is insufficient to handle traffic from all the ports.

The bandwidth utilization in large SAN designs is higher than bandwidth uti-

lization in small SAN designs because of switch characteristics. The switches used

in designing large SANs are larger switches in terms of ports but the backplane

switching capacity for these switches is same as that of small switches. Edge-

switches used in designing large SANs had 24 ports but 16 Gbps backplane capac-

ity. This is why bandwidth utilization in large SAN design was higher than small

5. CASSINI: A SAN PROVISIONING TOOL 160

Nodes with Degree = 4 Nodes with Degree = 3

6 ISLs required after merge 4 ISLs required after merge

ISL
Ports

Ports
ISL

Merged
Nodes

Merged
Nodes

Figure 5.35: Required inter-switch-links and the degree of cluster connectivity.
Merging clusters with a higher degree of connectivity requires more ports for inter-
switch-links.

SAN design.

5.4.2 Analysis of Core Design

5.4.2.1 Impact of Communication Degree of Clusters

An important factor that determines the efficiency of core-switch merging is the

average degree of connectivity of clusters. The degree of a cluster is defined as the

number of other clusters with which a given cluster communicates. If the average

degree of the clusters in a SAN is high, it becomes more difficult to accommodate

all clusters using small core-switches. The reason behind this difficulty is simple.

The number of additional ports required to merge two core-switches is directly de-

pendent on the degree of the clusters using them. With clusters of a higher degree,

a larger number of inter-switch-links are required. Figure 5.35 illustrates this situa-

tion. Two switches cannot be merged together if their inter-switch-links cannot be

accommodated after the merge. For small switches, the likelihood of this situation

occurring is greater with clusters of a higher degree of connectivity. When a switch

cannot be merged with any other switch, an internal fragmentation of unused ports

takes place and port utilization goes down. With larger switches this situation is

less likely.

5. CASSINI: A SAN PROVISIONING TOOL 161

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Core Switch Size (Ports)

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 P
or

t U
til

iz
at

io
n

(%
)

Degree = 6
Degree = 8
Degree = 10

Port Utilization Vs Switch Size
Impact of Degree of Connectivity

Figure 5.36: Impact of the degree of cluster connectivity and switch size on port
utilization. With a higher degree of connectivity port utilization is lower for smaller
switch sizes, because of internal fragmentation. The impact is less pronounced for
larger switch sizes.

We analyzed the impact of the degree of connectivity and switch size on port

utilization. We designed different SAN instances for the large SAN represented

by Figure 5.26. In choosing the traffic flows, we controlled the degree of cluster

connectivity. Each traffic flow was set to consume a bandwidth of 260 Mbps. SAN

instances were designed with the degree of cluster connectivity set to 6, 8, and 10.

The core-switch size was varied from 25 ports to 150 ports.

Figure 5.36 shows how port utilization is affected by the degree of connectiv-

ity. For SANs designed with small core-switches with 30 ports, port utilization is

around 40% for an average degree of connectivity of 10. In contrast, port utilization

is at 60% when the average degree of connectivity is 6. Port utilization improves

with increased switch sizes. The improvement is more significant for a higher de-

gree of connectivity than for a lower degree of connectivity. When the core-switch

size reaches around 80 ports, the difference between port utilization for different

5. CASSINI: A SAN PROVISIONING TOOL 162

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Switch Size (Ports)

0

5

10

15

20

25

30

35

40

45

N
um

be
r

of
 S

w
itc

he
s

Degree = 10
Degree = 8
Degree = 6

Number of Switches Required Vs Switch Size
Impact of Degree of Connectivity

Figure 5.37: Impact of the degree of cluster connectivity and core-switch size on
the required number of switches. A higher degree of connectivity reduces the over-
all port utilization for small switches. Reduced port utilization results in a larger
number of required switches. The impact is less pronounced for larger switches.

5. CASSINI: A SAN PROVISIONING TOOL 163

degrees of connectivity becomes minimal and port utilization varies between 70%

and 80%.

Figure 5.37 shows the impact of the degree of connectivity on the number of

required core-switches. Since the port utilization is low when core-switches are

small and the degree of connectivity is high, the number of required switches is

larger. When core-switch size is around 30 ports, around 40 switches are required,

corresponding to a connectivity degree of 10. The same configuration requires 35

switches, with a connectivity degree of 8, and 30 switches with a connectivity de-

gree of 6. The number of required switches reduces significantly with an increase in

core-switch size. Similar to port utilization, the reduction in the number of required

switches is more significant for a higher degree of connectivity. When switch size

reaches around 80 ports, the effect of the degree of connectivity largely disappears.

Figure 5.36 and Figure 5.37 show that the degree of connectivity of clusters

affects the required number of core-switches. If the degree of connectivity is high, it

is preferable to choose larger core-switches, to avoid fragmentation. If the degree of

connectivity is very low, SAN design can be done by choosing small core-switches,

keeping infrastructure costs low.

5.4.2.2 Greedy and Locality Based Core Merge

The core-switch merge process can be done in two different ways. One way is

locality-based merge and the other way is greedy merge. Computationally these are

similar in complexity. We analyzed efficiency of both algorithms.

Figure 5.38 shows a comparison of locality based and greedy core merge. The

port utilization and bandwidth utilization for locality-based merge is higher than

greedy merge, by 1% to 2%. When comparing there two algorithms, however, the

higher utilization in case of locality-based merge does not mean that the perfor-

mance of locality-based merge is better. On the contrary, the higher port utilization

5. CASSINI: A SAN PROVISIONING TOOL 164

60 80 100 120 140 160 180 200 220 240 260
Flow Bandwidth (Mbps)

40

50

60

70

80

90

100

U
til

iz
at

io
n

(%
)

Bandwidth Utilization Locality Merge
Port Utilization Locality Merge
Port Utilization Greedy Merge
Bandwidth Utilization Greedy Merge

Comparison of Greedy and Locality Merge

Figure 5.38: Comparison of locality-based and greedy core merge. There is only a
small difference between port and bandwidth utilization achieved by either merge
algorithm.

signifies that more inter-switch-links in the core are required when locality-based

merge is performed. These inter-switch-links carry traffic from one core switch to

another. Traffic over inter-switch-links increases the bandwidth used on the con-

nected switches and increases overall bandwidth required.

The data point corresponding to 220 Mbps flows in Figure 5.38 is interesting.

This is the only data point where the port and bandwidth utilization for greedy

merge is higher than for locality-based merge. For this input the locality based

merge resulted in 11 core-switches, while, greedy merge required 10. Because of

this tighter merge and fewer switches, the port and bandwidth utilization was greater

for greedy merge.

Both greedy merge and locality merge perform almost equally well. Greedy

merge gives slightly better results than locality-based merge. This behavior is

counter-intuitive. The reason why locality-based merge does not perform better

5. CASSINI: A SAN PROVISIONING TOOL 165

than greedy merge can be explained by focusing on the dynamic variation of inter-

switch-traffic during merge. After a core switch is identified as a pivot-switch, it

is merged with one of its neighboring switches with which it has highest inter-

switch-traffic. This results in localizing a significant amount of traffic on a single

(merged) switch. As shown in Figure 5.18, the switch load and the used port count

of the merged switch are lower than earlier. The pivot-switch does not remain an

ideal candidate for subsequent merges as the advantage of inter-switch-traffic of

pivot-switch reduces with every merge. On the contrary, the greedy merge always

chooses candidate switches which have the highest inter-switch-traffic and can be

merged together. This is like identifying a pair of new pivot-switches after every

merge. The greedy algorithm is more responsive to change in measure inter-switch-

traffic that takes place after every merge. Further, the greedy algorithm attempts to

merge switches by considering every possible switch pair in the core. Even when

there is no inter-switch-traffic between two core switches, the greedy algorithm tries

to merge them. Locality based merge does not try to merge switches if they are not

immediate neighbors of each other. This aggressive behavior and quick adapta-

tion to change in inter-switch-traffic makes greedy algorithm perform better than

locality-based merge.

5.4.3 Analysis of Edge Design

5.4.3.1 Multipathing Resources

Multipathing ensures that there exist a pair of complete-switch-disjoint paths be-

tween every communicating node pair. These complete-switch-disjoint paths pro-

vide protection against switch and link failures. Support for multipathing requires

that every node be equipped with at least 2 ports which can be connected to differ-

ent edge-switches. These edge-switches are connected to different core-switches.

5. CASSINI: A SAN PROVISIONING TOOL 166

60 80 100 120 140 160 180 200 220 240 260
Flow Bandwidth (Mbps)

0

10

20

30

40

50

60
N

um
be

r
of

 S
w

itc
he

s
Multipath Edge Switch Count
Singlepath Edge Switch Count
Multipath Core Switch Count
Singlepath Core Switch Count

Switch Requirement
with and without multipathing

Figure 5.39: Additional switch requirement to support multipathing. Edge switch
requirement is higher for multipathing support. Core switch requirement for
both the cases is almost the same. However, multipathing requires two identi-
cal/isomorphic cores. This doubles up the core-switch requirement.

Thus complete redundancy of paths is established.

The number of edge-switches required to support multipathing is naturally

higher than if the multipathing is not supported. Further, Cassini uses dual core

topology to support multipathing. A dual core topology requires provisioning two

identical/isomorphic cores. This doubles the required number of core-switches.

Figure 5.39 shows a comparison of the number of switches required with and

without multipathing support. The input was the same as in previous experiments.

There were two sets of experiments. One set of experiments was run to design

SANs with multipathing and the other to design SANs without multipathing.

All connected ports on an edge-switch can be divided into two categories,

namely, cluster-facing ports and core-facing ports. Ports that are connected to clus-

ter nodes are cluster-facing and ports that carry edge-to-core links are core-facing

5. CASSINI: A SAN PROVISIONING TOOL 167

ports. The number of cluster-facing ports for a specific input of a SAN design is

always constant. The number of core-facing ports is determined by the connectiv-

ity between edge and core-switches. When the traffic load in a SAN is low, the

additional number of edge-switches required for multipathing is solely governed by

the additional number of core-facing ports required to connect the edge-switches

to the second core. When bandwidth requirement in SAN increases, the number

of required edge-to-core links also increases, while the cluster-facing ports remain

unchanged in number. Thus the increase in the number of edge switches with an

increase in traffic is actually due to the increased number of edge-to-core links re-

quired to support the additional traffic.

The difference in the required number of switches increases with increased traf-

fic. For a flow bandwidth of 60 Mbps in the experiments, the number of switches

for multipathing is around 30, while without multipathing it is 23. This amounts to

a difference of 25%. Whereas, at a flow bandwidth of 260 Mbps these numbers are

62 and 39, a difference of around 40%.

These measurements provide an insight into the multipathing overhead of a

SAN. For small SANs multipathing does not require too many resources. The re-

source requirement increases significantly with increase in SAN size. It is more

important to have multipathing in larger SANs because the mean time between

failures for larger SANs is much lower. Failure in any portion of a SAN will rip-

ple through the entire SAN and affect the performance of every connected cluster.

Multipathing ensures that failures in a SAN are contained and do not ripple through

the entire network.

5. CASSINI: A SAN PROVISIONING TOOL 168

2 3 4 5 6 7 8 9 10
Required Number of Edges Determined by Automatic Parititioning

0

10

20

30

40

50

60
N

um
be

r
of

 E
dg

e
Sw

itc
he

s
Multiple Edges
Single Edge

Overhead of Edge Partitioning

Figure 5.40: Overhead of automatic edge partitioning. This bar graph shows the
overhead of automatically partitioning clusters into multiple edges vs provisioning
them into a single edge. Partitioning clusters into multiple edges increases the
required number of edge-switches by 5% to 10%.

5.4.3.2 Overhead of Edge Partitioning

Cassini provides a facility to automatically partition clusters into multiple edges.

Automatic edge partitioning can be used to separate out storage initiators from stor-

age targets.

In some cases, the number edges in a SAN are pre-determined based on SAN

structure. For example, in small and large SAN design inputs the number of edges

were pre-determined to be 3 based on the communication pattern of clusters in these

inputs.

There can be different organizational and geographical constraints which re-

sult in multiple edges for SAN design. Cassini can deal with all these structural

constraints by performing automatic cluster-to-edge assignment. We synthesized

several inputs with 50 clusters and multiple traffic flows. We studied the overhead

5. CASSINI: A SAN PROVISIONING TOOL 169

of automatic cluster-to-edge assignments when it resulted in different number of

edges, varying from 2 edges to 10 edges.

Figure 5.40 shows the overhead of automatically partitioning clusters into mul-

tiple edges, as opposed to keeping them in a single edge. When automatic parti-

tioning results in 2 or 3 edges, the required number of edge-switches does not vary

much from the single edge case. At 4 partitions and beyond, however, a steady

overhead of an extra 5% to 10% edge-switches is observed.

The overhead of automated partitioning is limited. Partitioning clusters into

multiple edges has the advantage of reducing overall network size at one physi-

cal location. These measurements establish that partitioning can be done without

increasing the network cost significantly.

5.4.4 Trunking and VLAN Grouping

Cassini uses trunking (link aggregation) to combine together all inter-switch-links

between a pair of switches. This aggregation has two advantages. First, the task of

load balancing traffic between two switches over multiple ISLs is delegated to the

switches. Switch-level load balancing is always better than explicit load balancing

by communicating nodes. Next, parallel ISLs between the same pair of switches

always form a loop. This loop has to be broken by including the ISLs in different

VLANs. If there are multiple parallel ISLs, there are more loops, so the number of

required VLANs also increases. Ethernet switches can support a maximum of 4096

VLANs. If there are too many parallel ISLs, the VLAN requirements may become

untenable.

To study the ISL and VLAN requirements and the advantage of trunking support

in Cassini, we examined various SAN instances. The input for the SAN designs was

the same as previous inputs described in Figure 5.26. We studied ISL and VLAN re-

quirement with both multipathing support and lack of that support (singlepath). For

5. CASSINI: A SAN PROVISIONING TOOL 170

60 80 100 120 140 160 180 200 220 240 260
Flow Bandwidth (Mbps)

0

50

100

150

In
te

r
Sw

itc
h

L
in

ks
Multipath ISLs - before Trunking
Multipath ISLs - after trunking
Singlepath ISLs - before trunking
Singlepath ISLs - after trunking

Advantage of Trunking on ISL count

Figure 5.41: Reduction in ISL count due to trunking. This reduction does not
signify any change in the required number of physical ISLs. Rather it signifies a
reduction in the number of loops in the SAN topology.

300 input flows there were 18772 exclusive paths between different communicating

nodes. With multipathing support there were 37544 paths.

The number of ISLs in a network depends on two factors, namely the number of

switches and the amount of traffic across the switches. Both factors were controlled

by varying the flow bandwidth between clusters. SAN instances were designed for

varying bandwidths.

Figure 5.41 shows the count of ISLs in various SAN instances. For multi-

pathing, two identical cores are required. Dual-core topology increases the number

of ISLs in a SAN significantly. Comparatively, the number of ISLs in the multi-

pathing case is almost double the ISL requirement in the singlepath case. The ISL

requirement with multipathing ranges from 14 ISLs, for a low traffic of 60 Mbps

per flow, to 180 ISLs, for a traffic of 260 Mbps per flow. In contrast, the ISLs

required for singlepath support vary from 5 ISLs to 94 ISLs, for the same traffic

5. CASSINI: A SAN PROVISIONING TOOL 171

60 80 100 120 140 160 180 200 220 240 260
Flow Bandwidth (Mbps)

25

125

625

3125

R
eq

ui
re

d
N

um
be

r
of

 V
L

A
N

s

Multipath VLAN requirement - before trunking
Multipath VLAN requirement - after trunking
Singlepath VLAN requirement - before trunking
Singlepath VLAN requirement - after trunking

Impact of Trunking on VLAN requirement

Figure 5.42: Impact of trunking on required number of VLANs. Trunking elimi-
nates significant number of loops in the core. This gives a better result for path
aggregation into VLANs.

input. Trunking converts all parallel ISLs into a single logical link. After trunking,

the number of logical ISLs in the multipathing case varies from two logical links,

for 60 Mbps traffic flows, to 108 logical links, for 260 Mbps traffic flows. For the

singlepath case, the number of logical links reduces to a single logical link for low

traffic and increases up to 58 logical links for high traffic.

Trunking has a desirable impact on the number of required VLANs. Figure 5.42

shows the required number of VLANs, for both the multipathing and singlepath

cases. When trunking is not used, the required number of VLANs is very high.

For a small SAN with only 5 ISLs, the number of required VLANs is around 350.

This increases to 3881 for a traffic of 180 Mbps per flow. After this, the designed

SAN size grows significantly and the number of VLANs increases beyond 8000.

This is clearly untenable. When trunking is used, the number of required VLANs

5. CASSINI: A SAN PROVISIONING TOOL 172

drops drastically. For SANs designed with multipathing support, the VLAN num-

ber varies between 118 and 140 VLANs. For SANs without multipathing support,

this number ranges from 17 to 43. Such a small number of VLANs can easily be

supported by all Ethernet switches.

With trunking support, the number of required VLANs is drastically reduced,

such that a SAN can be deployed using a VLAN-based Viking-like multi-spanning-

tree Ethernet architecture. If trunking is not used, the scalability of SANs is not

possible, because the required number of VLANs becomes very large. There are

two problems with a large number of VLANs. One is the limitation on number of

VLANs. Ethernet supports a maximum of 4096 VLANs. A deployment of more

than this is impossible. Further, each VLAN requires an independent spanning tree.

Having a large number of spanning trees has its own overhead. Thus, limiting the

total number of VLANs by using trunking is a significant benefit to SAN deploy-

ments.

5.4.5 Summary

We evaluated Cassini for designing small and large SANs. Our evaluation shows

that Cassini SAN designs are efficient and produce limited over-provisioning of

resources. The Cassini design process can scale from small SANs to large SANs.

Evaluation of the Cassini SAN design process by using synthetic inputs provides an

insight into the factors that influence the SAN design process. For instance, using

the Cassini designer we explored the impact of the degree of connectivity of clus-

ters on SAN costs for various switch sizes. Cassini provides a design mechanism

for multipathing and lets us explore the cost of providing redundancy. We experi-

mentally verified that Cassini does automatic partitioning of clusters into multiple

edges without inducing significant overhead. Cassini also uses trunking effectively

to reduce the overall requirement of VLAN space. Cassini provides details about

5. CASSINI: A SAN PROVISIONING TOOL 173

trunking and VLAN assignment for the final deployment of a SAN using a Viking-

like architecture.

Probably one of the most significant advantage of Cassini is that it allows SAN

designers to efficiently answer several “What if?” questions by running a simula-

tion. These questions could not be answered during manual design process.

Chapter 6

Conclusion

6.1 Summary of the Dissertation

The primary tenet of this dissertation is that switched Ethernet technology has

reached a level of maturity that enables it to be the exclusive solution for several net-

working requirements other than LAN. We argue that Ethernet is no longer merely

a LAN technology. It is an all-encompassing universal networking technology with

applicability to metro networks, cluster networks, storage networks, and even super

computing networks.

Unfortunately, the universal applicability of Ethernet is not always obvious.

Ethernet does have certain drawbacks that prevent it from displacing other estab-

lished technologies. For instance, lack of a fine-grained path selection mechanism

and spanning tree issues in Ethernet networks are major barriers to the application

of traffic engineering technology. This restriction has been a limiting factor for

Ethernet deployment in core carrier networks. Though Ethernet popularity is in-

creasing, it is from the network access perspective and not from the core service

perspective.

174

6. CONCLUSION 175

We showed that Ethernet has enough configurable features that address its short-

comings. We can make Ethernet applicable to any networking requirement if these

features are used intelligently and automatically. In this dissertation, we described

how the configurable VLAN mechanisms in modern Ethernet switches can support

MPLS-like load-balanced path selection, providing multi-fold network-throughput

gains. When combined with status monitoring in Ethernet, this fine-grained path

selection can provide sub-second level fault tolerance, which is a required feature

in core metro networks. We also discussed how rate limiting features in Ethernet

switches can provide QoS guarantees in Ethernet deployments.

We also extended the same VLAN-based traffic engineering mechanism to Stor-

age Area Networks. We also identified topology design as an important but oft-

ignored issue for SANs. To facilitate the applicability of Ethernet in the SAN arena,

we described an approach to designing Ethernet SAN topologies in an automated

manner. We developed Cassini, a tool which can aid SAN designers in topology

planning and deployment. We verified the efficacy Cassini by using synthesized

inputs and studying the resultant SAN topologies.

To summarize, the major research contributions from this dissertation are:

• A VLAN-based path selection mechanism for metro Ethernet networks. This

path selection mechanism enables MPLS-like traffic engineering functional-

ity in Ethernet networks by circumventing the limitations of the spanning tree

based switching of Ethernet networks.

• The VLAN-based path selection enables proactive switch-and-link-disjoint

backup path provisioning, providing a high degree of fault-tolerance to switch

or link failures.

• We discussed how rate limiting features of Ethernet switches can be used to

isolate different traffic flows from one another, in order to provide QoS in

6. CONCLUSION 176

Ethernet networks.

• We developed and analyzed an automated SAN topology design-tool which

can aid SAN designers devise efficient Ethernet SAN topologies with a high

degree of resource utilization.

These research contributions demonstrate that Ethernet switches have config-

urable features that can be controlled programmatically to make Ethernet technol-

ogy a useful technology for any networking application.

6.2 Future Research

In terms of a broader research perspective, we believe there are many more high-

level functions that can be composed from Ethernet’s basic configurable control

mechanisms. One of the future directions for this work is to explore and build high-

level functionality that can enhance large-scale networks as a whole. We addressed

applicability of Ethernet to MAN and SAN networks. In the context of super com-

puting networks or specialized industrial SCADA (Supervisory Control and Data

Acquisition) networks, the issues are slightly different. These issues are managing

latencies, traffic prioritization, lossless packet forwarding, etc. One can identify key

Ethernet issues in these specialized networks and develop Viking-like mechanism

to solve pertinent problems.

Cassini is a proof-of-concept automated SAN designer. There are many issues

that remain to be addressed in Cassini. Cassini designs only the initial topologies

for SANs. Over time, the constituents of a SAN change. Storage devices get up-

graded, the cluster composition changes, the application traffic flows change, and

old devices and clusters get decommissioned. For any change in SAN usage, a SAN

redesign from scratch is not warranted. One can identify stumbling blocks during

6. CONCLUSION 177

SAN upgrade process and explore efficient SAN upgrade mechanisms that are least

disruptive and give maximum utilization of already deployed SAN resources. This

task is harder than initial topology design and deployment Cassini.

SAN topology design when virtual machines are used is another important re-

search direction. Virtual machines can migrate from one physical machine to an-

other. This migration changes the traffic characteristics in a SAN. The issues in-

volved in designing SANs, that are adaptive to traffic changes, are of great interest

to data center environments. Given the trend of increasing virtualization of re-

sources, such an automation tool would prove beneficial to SAN designers.

Network convergence in data centers is a burgeoning research area. While Fibre

Channel over Ethernet tries put forward a migration path from FC SANs to Ethernet

SANs, Data Center Ethernet goes one step further and tries to address the conver-

gence of LAN, SAN, and High Performance Computing (HPC) applications. The

converged data center networks require high-performance and low-latency guar-

antees, lossless network operation, high fault-tolerance, traffic prioritization, and

cross layer optimizations with higher-layer protocols. Basic features to support all

these functionalies exist in Ethernet switches even today. The research challenge is

to devise configuration mechanisms that are suitable for converged data center envi-

ronments. For example, low latency guaratees for HPC can be provided by shortest

path switching using Viking-like VLAN-based switching. But in converged envi-

ronment not all traffic is latency sensitive. Thus differentiation of traffic in data

center is an important requirement. A converged environment often places conflict-

ing requirements on the network infrastructure. Identifying these requirements of

Data Center Ethernet and addressing them while staying within the contraints of

existing Ethernet capabilities is an interesting and important research area.

Bibliography

[Ash01] G. Ash. Traffic Engineering & QoS Methods for IP-, ATM-, & TDM-

Based Multiservice Networks. Internet Draft, Oct 2001.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

Architecture for Differentiated Service. IETF RFC 2475, Dec 1998.

[BC89] R. Ballart and Y.-C. Ching. SONET: now it’s the standard optical

network. IEEE Communications Magazine, 27(3):8–15, Mar 1989.

[BCF+95] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E.

Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su.

Myrinet: A Gigabit-per-Second Local Area Network. volume 15,

pages 29–36, 1995.

[BGM+99] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and

A. Silberschatz. A resource query interface for network-aware appli-

cations. In Cluster Computing, volume 2, pages 139–151, 1999.

[cis] Data Sheet: Cisco Catalyst 2960 Series Switches. URL:

http://www.cisco.com last accessed Dec 21 2007.

178

BIBLIOGRAPHY 179

[Cla03] Tom Clark. Designing Storage Area Networks: A Practical Reference

for Implementing Fibre Channel and IP SANs. Addison-Wesley, 2nd

edition, Jul 2003.

[Cor03] Alcatel Corporation. Enabling Profitable Metro Ethernet Services:

The Next Step in Metro Networking. Alcatel Whitepaper, 2003.

[Epp98] D. Eppstein. Finding the k shortest paths. volume 28(2), pages 652–

673, 1998.

[ES95] R. Elbaum and M. Sidi. Topological design of local area networks

using genetic algorithms. In IEEE INFOCOM, 1995.

[FFC70] H. Frank, I.T. Frisch, and W. Chou. Topological Considerations in

the design of the ARPA Computer Network. In AFIPS Conference

Proceedings, volume 36, pages 581–587, 1970.

[FFCS71] H. Frank, I.T. Frisch, W. Chou, and R.V. Slyke. Optimal Design of

Centralized Computer Networks. Networks, 1:43–57, 1971.

[Fib07] Fibre Channel Industry Association. Fibre Channel over Eth-

ernet in the Data Center: An Introduction, 2007. URL:

http://www.fibrechannel.org last accessed 19th June 2008.

[FKSS98] W. Feng, K. Kandlur, D. Saha, and K. Shin. Adaptive packet marking

for providing differentiated services on the Internet. In International

Conference on Network Protocols, Oct 1998.

[For02] Metro Ethernet Forum. Metro Ethernet Networks — A Technical

Overview. Metro Ethernet Forum Whitepaper, Jul 2002.

BIBLIOGRAPHY 180

[For03] Metro Ethernet Forum. Metro Ethernet Services — A Technical

Overview. Metro Ethernet Forum Whitepaper, 2003.

[Fox75] B.L. Fox. k-th shortest paths and applications to probabilistic net-

works. In ORSA/TIMS Joint National Mtg., 23:B263, 1975.

[GDS98] R. Garcia, J. Duato, and J. Serrano. A New Transparent Bridge Pro-

tocol for LAN Internetworking Using Topologies with Active Loops.

pages 295–303, 1998.

[Ger73] Mario Gerla. The Design of Store-and-Forward Networks for Com-

puter Communications. Ph.D. Dissertation, School of Enginnering

and Applied Sciences, UCLA, Jan 1973.

[GK77] Mario Gerla and Leonard Kleinrock. On the Topological Design of

Distributed Computer Networks. In IEEE Transactions on Communi-

cations, 25:48–60, 1977.

[Gop03] Kartik Gopalan. Efficient network resource allocation with QoS guar-

antees. Technical Report TR-133, Experimental Computer Systems

Labs, Department of Computer Science, State University of New York

at Stony Brook, March 2003.

[HB06] Dave Hitz and Akshay Bhargava. A Storage Network-

ing Appliance. Technical report, NetApp, Feb 2006.

http://media.netapp.com/documents/tr-3001.pdf last accessed Jul

2008.

[IEE90] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Media Access Control (MAC) Bridges. Institute of Electrical and

Electronics Engineers, 1990.

BIBLIOGRAPHY 181

[IEE98a] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Supplement to Media Access Control (MAC) Bridges: Traffic Class

Expediting and Multicast Filtering. Institute of Electrical and Elec-

tronics Engineers, 1998.

[IEE98b] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Virtual Bridged Local Area Networks. Institute of Electrical and Elec-

tronics Engineers, 1998.

[IEE00a] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Link Aggregation for Parallel Links. Institute of Electrical and Elec-

tronics Engineers, 2000.

[IEE00b] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Rapid Configuration of Spanning Tree. Institute of Electrical and

Electronics Engineers, 2000.

[IEE02] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Multiple Spanning Trees. Institute of Electrical and Electronics Engi-

neers, 2002.

[IEE04a] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

CSMA/CD access method and physical layer specifications. Institute

of Electrical and Electronics Engineers, 2004.

[IEE04b] IEEE. IEEE Standard for Local and Metropolitan Area Networks:

Ethernet in the First Mile. Institute of Electrical and Electronics En-

gineers, 2004.

BIBLIOGRAPHY 182

[IEE04c] IEEE. Part 17: Resilient packet ring (RPR) access method & physical

layer specifications. Institute of Electrical and Electronics Engineers,

2004.

[inf01] Infiniband Specification. Infiniband Trade Association, Jun 2001.

[Int06] International Committee for Information Technology Stan-

dards (INCITS) T10 Technical Committee. Information

technology SCSI Architecture Model - 4, Jan 2006. URL:

http://www.t10.org/ftp/t10/drafts/sam4/sam4r05.pdf last accessed

19th Jun 2008.

[isc] iSCSI. http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-19.pdf.

[JJJ+00] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the

placement of internet instrumentation. In IEEE INFOCOM, 2000.

[KKG91] Aaron Kershenbaum, Parviz Kermani, and George A. Grover. MEN-

TOR: An Algorithm for Mesh Network Topological Optimization and

Routing. IEEE Transactions on Communications, 39(4):503–513, Apr

1991.

[KS91] K.M. Khalil and P.A Spencer. A Systematic Approach for Planning,

Tuning and Upgrading Local Area Networks. In Proceedings of IEEE

Globecom, pages 658–663, 1991.

[LLN02] K. Lui, W. Lee, and K. Nahrstedt. STAR: A Transparent Spanning

Tree Bridge Protocol with Alternate Routing. In ACM SIGCOMM,

volume 32 of 3, pages 33–46, 2002.

BIBLIOGRAPHY 183

[MB76] Robert MetCalfe and David Boggs. Ethernet: Distributed Packet-

Switching For Local Computer Networks. Communications of the

ACM, 19(7):395–404, Jul 1976.

[mef] Metro Ethernet Forum. http://www.metroethernetforum.org/.

[Min91] Yue Minyi. A simple proof of the inequality FFD (L) 11/9 OPT

(L) + 1, L for the FFD bin-packing algorithm. Acta Mathematicae

Applicatae Sinica, 7(4):321–331, Oct 1991.

[Net74] Network Analysis Corp. Issues on Large Network Design. ARPA

report, Jan 1974.

[OG98] K. Obraczka and G. Georghiu. The performance of a service for

network-aware applications. In ACM Sigmetrics SPDT’98, 1998.

[Per85] Radia Perlman. An Algorithm for Distributed Computation of a Span-

ning Tree in an Extended LAN. ACM SIGCOMM Computer Commu-

nication Review, 15(4):44–53, Sep 1985.

[PFH+02] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The

Quadrics Network: High-Performance Clustering Technology. IEEE

Micro, 22(1):46–57, 2002.

[QN98] W. Qiao and L. Ni. Network Planning and Tuning in Switch-Based

LANs. In T. Lai, editor, ICPP’98, pages 287–294, 1998.

[RS91] T. Rodeheffer and M. Schroeder. Automatic reconfiguration in au-

tonet. In ACM SIGOPS, volume 25 of 5, pages 183–197, 1991.

[RTA00] T. Rodeheffer, C. Thekkat, and D. Anderson. Smartbridge: A scalable

bridge architecture. In ACM SIGCOMM, 2000.

BIBLIOGRAPHY 184

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label

Switching Architecture. IETF RFC 3031, Jan 2001.

[SEA00] C.H.E. Stacey, T. Eyers, and G.J. Anido. A Concave Link Elimination

(CLE) Procedure and Lower Bound for Concave Topology, Capacity,

and Flow Assignment Network Design Problems. Telecommunication

Systems, 13:351–371, 2000.

[SGNcC04] Srikant Sharma, Kartik Gopalan, Susanta Nanda, and Tzi cker Chiueh.

Viking: A Multi-Spanning-Tree Ethernet Architecture for Metropoli-

tan Area and Cluster Networks. In Proceedings of the IEEE INFO-

COM‘04, Mar 2004.

[Sla96] P. Slavik. A Tight Analysis of The Greedy Algorithm for Set Cover.

In Annual ACM Symposium on Theory of Computing, pages 435–441,

1996.

[Str01] Staffan Bo Strand. Storage Area Networks and SANTK. Master’s

thesis, University of Minnesota, Dec 2001.

[SWK69] K. Steiglitz, P. Weiner, and D.J. Keleitman. The Design of Mini-

mum Cost Survivable Network. IEEE Transactions on Circuit Theory,

pages 455–460, Nov 1969.

[Tho04] Timothy David Thompson. Optimal core-edge storage area network

design. In 39th Annual ORSNZ Conference, Nov 2004.

[Top] Top 500 Supercomputers project. Interconnect Family share for

06/2008. URL: http://www.top500.org/charts/list/31/connfam last ac-

cessed 19th June 2008.

BIBLIOGRAPHY 185

[VC99] Srinidhi Varadarajan and Tzi-cker Chiueh. Automatic fault detection

and recovery in real time switched ethernet networks. In IEEE INFO-

COMM, volume 1, pages 161–169, 1999.

[WOSW02] Julie Ward, Michael O’Sullovan, Troy Shahoumian, and John Wilkes.

Appia: automatic storage area network fabric design. In Confer-

ence on File and Storage Technologies (FAST’02), pages 203–217,

Jan 2002.

[WP67] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic

number of a graph and its application to timetabling problems. The

Computer Journal, 10(1):85–86, 1967.

[Yag71] B. Yaged. Minimum Cost Routing for Static Network Models. Net-

works Journal, 1:139–172, 1971.

[ZSM08] Rui Zhang-Shen and Nick McKeown. Designing a Fault-Tolerant Net-

work Using Valiant Load-Balancing. In Proceedings of IEEE Infocom

Mini-Conference, APR 2008.

	Title Page
	Abstract
	Table of Contents
	List of Figures
	Acknowledgments
	Introduction
	Ethernet Evolution: Beyond Local Networks
	Ethernet Challenges
	Dissertation Overview
	Dissertation Outline

	Ethernet Preliminaries
	Switched Ethernet
	Spanning Tree Protocol (STP)
	Tree Construction Process
	Rapid Spanning Tree Protocol (RSTP)

	Link Aggregation
	Virtual LANs
	VLAN Membership
	Per-VLAN Spanning Trees

	Managed Ethernet Switches

	Related Work
	Traffic Engineering
	Traffic Engineering in Ethernet
	Altering The Switching Mechanism
	Network Planning and Load Balancing
	Standard Support and Enhancements

	Storage Area Network Design
	Generic Network Design
	Automatic SAN Design

	Viking: A Multi-Spanning Tree Ethernet Architecture
	Metropolitan Area Networks
	MAN Infrastructure
	Metro Ethernet
	Motivation behind Viking

	VLAN-based switching
	Resource Provisioning
	Path Selection
	Path Aggregation and Spanning Tree Construction

	Fault Tolerance
	System Implementation
	Viking Proxy Clients
	The Viking Manager and Viking Status Monitor

	QoS Enforcement
	Evaluation of Viking
	Simulations
	Empirical Performance

	Cassini: A SAN Provisioning Tool
	Storage Area Networks
	Shared Storage Architecture
	SAN Technologies and Protocols
	Motivation behind Cassini

	SAN Design Considerations
	SAN Topologies: Mesh or Core-Edge?
	Clustered Deployment in SAN
	MultiPathing
	Zoning and Masking
	Capacity Planning in SAN

	Switch Allocation and Topology Generation
	Input Specification
	Edge Design
	Core Design
	Path Computation and VLAN Grouping

	Evaluation of Cassini
	Efficiency of SAN Design
	Analysis of Core Design
	Analysis of Edge Design
	Trunking and VLAN Grouping
	Summary

	Conclusion
	Summary of the Dissertation
	Future Research

	Bibliography

