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CHAPTER 1: Introduction

A social network is a social structure made up of a set of social actors (such as individuals

or organizations) and a set of the dyadic ties between these actors. The social network

perspective provides a set of methods for analyzing the structure of whole social entities as

well as a variety of theories explaining the patterns observed in these structures [88]. The

study of these structures uses social network analysis to identify local and global patterns,

locate influential entities, and examine network dynamics. Social networks and the analysis of

them is an inherently interdisciplinary academic field which emerged from social psychology,

sociology, statistics, and graph theory. Georg Simmel authored early structural theories in

sociology, emphasizing the dynamics of triads and “web of group affiliations [72].” Jacob

Moreno is credited with developing the first sociograms in the 1930s to study interpersonal

relationships. These approaches were mathematically formalized in the 1950s and theories

and methods of social networks became pervasive in the social and behavioral sciences by the

1980s [26, 88]. Social network analysis is now one of the major paradigms in contemporary

sociology, and is also employed in a number of other social and formal sciences. Together

with other complex networks, it forms part of the nascent field of network science [7, 19].

Social networking is among the fastest growing information technologies, as evidenced

by the popularity of such online social network sites as Facebook, Twitter, LinkedIn, and

Google+ that continue to experience explosive growth. Several features of online social

networks are common to each of the more than 300 social networking sites currently in

existence. The most basic feature is the ability to create and share a personal profile. This

profile page typically includes a photo, some basic personal information (name, age, sex, and

location), and extra space for listing your favorite bands, books, TV shows, movies, hobbies,



and Web sites. Most social networks on the Internet also let you post photos, music, videos,

and personal blogs on your profile page. But the most important feature of online social

networks is the ability to find and make friends with other site members. These friends also

appear as links on your profile page so visitors can easily browse your online friend network

[70].

In contrast to the popular web-based online social networks that rely on the Internet

infrastructure (including cellular systems) for communication, this dissertation focuses on

mobile opportunistic networks formed by mobile users who share similar interests and

connect with one another by exploiting the Bluetooth and/or WiFi connections of their mobile

phones or portable tablets. A mobile opportunistic network is often created for a local

community where the participants have frequent interactions, e.g., people living in an urban

neighborhood, students studying in a college, or tourists visiting an archaeological site. Its

size varies from a large group (for instance, all the students in a university) to a small cluster

(such as members of a school band). It may serve a community over a long span of years, or

be temporary to last for as short as a few hours only (e.g., for social networking among a

group of tourists).

An application that can be applied into mobile opportunistic networks is the

device-to-device (D2D) communication in 5G network. 5G (5th generation mobile networks

or 5th generation wireless systems) denotes the next major phase of mobile

telecommunications standards beyond the current 4G/IMT-Advanced standards. 5G is also

referred to as beyond 2020 mobile communications technologies. 5G does not describe any

particular specification in any official document published by any telecommunication

standardization body. 5G is a super-efficient “universal” mobile network that is always
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attentive to demand and where resources are continuously optimised to deliver a performance

that is “always sufficient” - so users will perceive that they are connected to a network of

infinite bandwidth; a super-fast “mobile” network comprising the next generation of small

cells densely clustered together to give a contiguous coverage over at least urban areas and

delivering peak data rates of up to 1 Gb/s; and a converged wireless-fiber network that uses,

for the first time for wireless Internet access, the millimeter wave bands (20 - 60 GHz) so as to

allow very wide bandwidth radio channels able to support data access speeds of up to 10 Gb/s.

Device-to-device (D2D) communication refers to a radio technology that enables devices to

communicate directly with each other, that is without routing the data paths through a network

infrastructure [25].

In this dissertation, I first study the problem of QoS-aware data query in mobile

opportunistic networks. I develop a distributed data query protocol. The proposed protocol is

based on two key techniques. First, it employs “reachable expertise” as the routing metric to

guide the transmission of query requests. Second, it exploits the redundancy in query

transmission, which can effectively improve the query delivery rate in practice if it is properly

controlled. To demonstrate the feasibility and efficiency of the proposed data query protocol

and to gain useful empirical insights, I carry out a testbed experiment using off-the-shelf Dell

Streak tablets. The experiment involves 25 volunteers and lasts for 15 days. Moreover,

extensive simulations (based on codes extracted from the prototype implementation) are

carried out to learn the performance trend under various network settings, which are not

practical to build and evaluate in laboratories.

After the QoS-aware data query in mobile opportunistic networks is discussed, I

introduce how to enable efficient QoS-aware data dissemination in mobile opportunistic
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networks. The QoS-aware delivery probability (QDP) is first introduced to reflect the

capability of a node to deliver data to a destination within a given delay budget. Each node

maintains a set of QDPs to make autonomous decisions for QoS-aware data delivery. At the

same time, a prioritized queue is employed by each mobile node. In order to support efficient

prioritization and redundancy control, the priority is determined by a function of traffic class

and data redundancy. The former is pre-determined by the corresponding application, while

the latter is dynamically estimated during data delivery. Two experiments are carried out to

demonstrate and evaluate the proposed QoS-aware data delivery scheme. The first experiment

involves multiple clusters of static Crossbow Micaz sensors that are connected by three

mobile nodes carried respectively by a flying vehicle (with high mobility) and two people

(with low mobility). All mobile nodes move according to predefined routes and speeds. The

second experiment is under a mobile social network setting, where the experimental program

is implemented on Dell Streak Android tablets carried by 23 volunteers with arbitrary and

diverse mobility patterns for a period of two weeks. Moreover, simulation results are obtained

under DieselNet trace and power-law mobility model to study the scalability and performance

trend with the increase of network size, traffic load, and nodal mobility.

After the problem of delivering a data packet from a single source to a single destination

within a predefined delay budget is studied, I also investigate the problem of delivering a data

packet to a set of destinations within a predefined delay budget, which is the delay-constrained

least-cost multicast problem in mobile opportunistic networks. While there are a handful of

studies on multicasting in mobile opportunistic networks [6, 22, 27, 28, 29, 42, 49, 54, 58, 98],

they all deal with unconstrained, best-effort data transmissions. Note that although delay is

often considered as a metric in performance evaluation, none of the existing solutions
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formulate the problem with an explicit delay constraint. I formally formulate the problem and

show it is essentially a NP-complete 0-1 integer program. While the 0-1 integer programming

model can yield optimal results, it is computationally expensive and thus unpractical for

real-world implementation. Given the NP-completeness of the problem, I explore efficient

and scalable heuristic solutions. I first introduce a centralized heuristic algorithm which aims

to discover a tree for multicasting, in order to meet the delay constraint and achieve low

communication cost. While the centralized solution can be adapted to a distributed

implementation, it is inefficient in a mobile opportunistic network, since it intends to apply a

deterministic transmission strategy in a nondeterministic network by transmitting all data

packets via a predetermined tree. In mobile opportunistic networks, even if the optimal

routing tree can be computed, it is the “best” only on a statistic basis for a large number of

data packets. It is not necessarily the best solution for every individual transmission. Based on

the above observation, I develop a distributed online algorithm that makes an efficient

decision on every transmission opportunity. When a node meets another node, the former

needs to decide whether to transmit a packet to the latter. Such a routing decision is made

based on a delay/cost-aware multicast routing metric, which indicates if the latter helps reduce

the cost to deliver the packet to its destinations while reaching a desired delivery probability

within a given delay budget. I prototype the proposed distributed online multicast algorithm

using off-the-shelf Nexus tablets and conduct an experiment that involves 37 volunteers and

lasts for 21 days to demonstrate its effectiveness. I also carry out simulations to evaluate the

scalability of the proposed schemes under large-scale networks.

The rest of this dissertation is organized as follows. Chapter 2 discusses the background,

related work and motivation of this dissertation. Chapter 3 presents efficient data query in

5



mobile opportunistic networks. Chapter 4 introduces efficient quality-of-service (QoS)

support in mobile opportunistic networks. Delay-constrained least-cost multicasting in mobile

opportunistic networks is discussed in Chapter 5. Finally, Chapter 6 concludes the

dissertation.
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CHAPTER 2: Background and Related Work

In this chapter, I introduce the background and motivation of the proposed research and

related work.

2.1 Background

2.1.1 Mobile Opportunistic Network

In recent years, mobile opportunistic networks emerged as a new mechanism of

communications in wireless networks. Unlike mobile ad hoc networks (MANETs) that

require end-to-end communication paths for message exchange, the communication in mobile

opportunistic networks takes place on the establishment of opportunistic contacts among

mobile nodes, without availability of end-to-end message routing paths. As the mobile

devices can make contact only when humans come into contact, such networks are tightly

coupled with human social networks. Therefore, the mobile opportunistic networks exploit

the human behaviors and social relationships to build more efficient and trustworthy message

dissemination schemes [47].

It is reported that the estimated number of mobile phone users are 3.3 billion worldwide,

which is more than half of the world’s population [15]. Most of the mobile phones in the

current era are equipped with Wi-Fi, Bluetooth, cameras, sensors, and numerous other

components. Moreover, most of the modern vehicles are also installed with communication

interfaces and sensory equipment. Such a widespread use and availability of mobile

communication devices create a huge number of contact opportunities among humans, and

are key to the establishment of opportunistic mobile social networks [45]. The human

mobility is the key factor in opportunistic communications, and there could be delays in

message transfers as long as the humans carrying mobile devices do not come into each



other’s transmission range. Therefore, several research projects are conducted in various parts

of the world to analyze the human mobility and social interaction patterns, and on the basis of

that to build efficient message routing models that incur minimum message delays.

2.1.2 Quality of Service

Quality of service is the ability to provide different priority to different applications,

users, or data flows, or to guarantee a certain level of performance to a data flow. For example,

a required bit rate, delay, jitter, packet dropping probability, and/or bit error rate may be

guaranteed. Quality of service guarantees are important if the network capacity is insufficient,

especially for real-time streaming multimedia applications such as voice over IP, online games

and IP-TV, since these often require fixed bit rate and are delay sensitive, and in networks

where the capacity is a limited resource, for example in cellular data communication.

Mobile opportunistic networks are characterized by intermittent and nondeterministic

connectivity, often due to interruptible wireless links, sparse network deployment, and/or

nodal mobility. Such opportunistic networking has been discussed in the context of

delay/disruption-tolerant networks, sporadically connected sensor networks, vehicular

networks, and peer-to-peer mobile social networks [2, 9, 20, 27, 86, 95, 96]. How to discover

and utilize opportunistic communication resources for efficient data transmission has been

one of the central research issues in such networks as evidenced by extensive discussions in

the literature [2, 4, 9, 10, 17, 20, 24, 27, 32, 37, 38, 39, 43, 44, 46, 48, 50, 55, 56, 60, 61, 62,

64, 65, 66, 73, 74, 77, 81, 84, 86, 87, 89, 90, 95, 96, 99]. However, limited prior work has

addressed Quality-of-Service (QoS). While long data delivery delay is generally unavoidable

given the unique intermittent connectivity, QoS, especially the guarantee for end-to-end

delivery delay, is highly desired in a variety of applications. For example, the dissemination of
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a data message (such as an advertisement or coupon [27, 63, 67, 96]) in a mobile social

network must meet a delay budget no longer than its expiration date, and different data

messages are often associated with different delay budgets. Separately, in wildlife tracking

applications, interactive control and event report must be delivered within a short end-to-end

delay bound, as opposed to routine transmissions of ambient environmental data that can

tolerate long delay [2]. Data delivered beyond their delay budgets often lead to reduced or

completely forfeited value.

2.2 Related Work and Motivation

Data query in Mobile opportunistic networks is a very unique, interesting, and

challenging problem, rendering not only conventional data query schemes for well-connected

computer systems but also distributed solutions for mobile ad hoc

networks [3, 12, 35, 75, 82, 92] and mobile (online) social networks [53] inapplicable here.

Only a handful of works have considered data query in opportunistic network settings. For

example, Osmosis [41] employs an epidemic approach to perform file lookup in pocket

switched networks. While it is simple and reliable, the communication overhead is very high

due to the flooding-like epidemic routing. DelQue [23] aims to query geo-location-based

information. It assumes each node moves according to a given schedule and adopts a

semi-Markov model to predict nodal meeting events, in order to identify a proper relay to

carry the query to the target location and bring the interested information back to the source.

[94] proposes a distributed database query framework based on several communication and

computing techniques specifically tailored for RFID networks. Neither of them efficiently

supports data queries in moible opportunistic networks. On the other hand, although several

routing algorithms have been proposed for opportunistic networks by exploiting social
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relations among mobile users to achieve efficient routing [16, 27, 40, 52, 59, 100], they are

developed for generic communications, without consideration of the unique needs and

constraints in data query. Among them, [100] is the most recent one, which exploits a

distributed community partitioning algorithm to divide a DTN into smaller communities. For

intra-community communication, a utility function convoluting social similarity and social

centrality with a decay factor is used to choose relay nodes. For inter-community

communication, the nodes moving frequently across communities are chosen as relays to

carry data to destinations efficiently. Although [100] introduces a solution for DTNs which

leverages social properties and mobility characteristics of users, it is not truly applicable for

the data query in mobile opportunistic networks, because it does not capture the inherent

features for the query delivery in mobile opportunistic networks, hence the nodes are not

helpful for each other by making the correct decisions to carry queries to satisfactory nodes.

Quality-of-Service (QoS) is a critical issue in mobile networks, with a diversity of

approaches proposed recently [1, 18, 31, 51, 78, 91]. However, none of them are developed

for QoS support in mobile opportunistic networks. Given the unique characteristics of mobile

opportunistic networks (especially the intermittent, nondeterministic network connectivity),

solutions for QoS support in conventional networks are not applicable here. In general, QoS

provisioning in mobile opportunistic networks is a less-studied area with limited existing

solutions.

In opportunistic networks, the delivery of a single copy data message is often subject to

high loss rate or extremely long delay. Therefore, redundancy (achieved by duplication or

coding [86]) is commonly employed for desired communication performance. However,

redundancy increases overhead, and worse yet, excessive redundancy may degrade overall
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network performance due to congested channels and frequent buffer overflow [84, 97]. For

example, Epidemic routing [84, 97] simply replicates data messages at each communication

opportunity. It is essentially a store-and-forward flooding, able to achieve minimum delay

under the assumption of unlimited buffer space and link bandwidth. However, in a practical

IPN setting, such naive flooding wastes resources and can severely degrade performance. To

this end, a series of approaches [4, 10, 43, 56, 77, 81, 89] have been developed to limit

redundancy for efficienct resource utilization. However, none of them truly support traffic

differentiation or QoS. Among them, [4] is most relevant to this dissertation, where a node

sorts its packets in its queue in decreasing order of the ages and makes routing decision

according to a marginal utility function to improve the probability of delivering packets within

their deadlines. While this scheme maximizes the overall deadline-satisfied delivery rate, it

does not differentiate traffic and is not equivalent to the support of QoS. For instance, a data

flow with high QoS priority can be submerged by a large volume of background low-priority

data that have stayed in the network long enough and thus occupied the head of queue. As a

result, the transmission of high-priority data is delayed, resulting in poor QoS provisioning.

Moreover, a “control channel” is required in [4] to timely share global information among

nodes, but such a channel is not always available in a practical network. Separately, there are

a handful of studies dedicated to QoS support in delay-tolerant networks [57, 68, 83].

However, they are either based on simplified settings or operate at the level of individual links

only. For example, both [68] and [57] are based on epidemic routing, which itself is

inefficient. The former adapts forwarding probabilities and time-to-live parameters to control

the usage of network resources, while the latter chooses appropriate transmission probability

to enable QoS differentiation in epidemic routing. Despite their value as initial efforts to
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develop QoS-aware DTN protocols, they are not yet ready for practical application due to the

inefficient underlying epidemic routing scheme, and neither of them can be readily extended

to other DTN routing algorithms. On the other hand, a few works concentrate on QoS-aware

scheduling at individual links for point-to-point space communication [14, 79, 83]. The DTN

architecture [11] centers on a new end-to-end message-oriented overlay protocol called

Bundle Protocol, which is a middleware between the application layer and the transport layer.

The bundle protocol developed for delay-tolerant networks supports class-of-service [2],

which is reliability-centric, aiming to ensure correct data transmission but does not support

delay constraints. In addition, delay budget is considered in [74], which mainly concerns

incentive provisioning based on pairwise tit-for-tat (TFT). Note that very few of the existing

works on DTN routing consider the problem of providing QoS to ensure the ongoing

communications. [68] presents a method called Delay-Differentiated Gossiping to assure a

certain probability of meeting the packets delay requirements while using as little network

resources as possible. The idea adapts a set of forwarding probabilities and time-to-live

parameters to control the usage of network resources based on how the delay requirements are

being met. The DTN routing scheme considers only one base node, while the other nodes

have only one destination. [74] proposes the use of pair-wise tit-for-tat (TFT) to develop an

incentive-aware routing protocol that allows selfish nodes to maximize their own performance

while conforming to TFT constraints. Due to different networking and application settings,

they are not readily applicable in this dissertation.
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CHAPTER 3: Efficient Data Query in Mobile Opportunistic Networks

In this chapter, I address the problem of how to enable efficient data query in a mobile

opportunistic network, formed by mobile users who share similar interests and connect with

one another by exploiting Bluetooth and/or WiFi connections. The data query in mobile

opportunistic networks faces several unique challenges including opportunistic link

connectivity, autonomous computing and storage, and unknown or inaccurate data providers.

The goal is to determine an optimal transmission strategy that supports the desired query rate

within a delay budget and at the same time minimizes the total communication cost. To this

end, I develop a distributed data query protocol for practical applications. To demonstrate the

feasibility and efficiency of the proposed scheme and to gain useful empirical insights, I carry

out a testbed experiment by using 25 off-the-shelf Dell Streak tablets for a period of 15 days.

Moreover, extensive simulations are carried out to learn the performance trend under various

network settings, which are not practical to build and evaluate in laboratories.

3.1 System Overview

An individual mobile opportunistic network is incomparable with online social networks

in terms of the population of participants, the number of social connections, and the amount

of social media. However mobile opportunistic networks gain significant value by serving as a

supplement and augment to online social networks and by effectively supporting local

community-based ad-hoc social networking. For example, it helps discover and update social

links that are not captured by online social networks and allows a user to query localized data

such as local knowledge, contacts and expertise, surrounding news and photos, or other

information that people usually cannot or do not bother to report to online websites but may

temporarily keep on their portable devices or generate upon a request.



This chapter addresses the problem of how to enable efficient data query in mobile

opportunistic networks. Consider a mobile opportunistic network with N nodes. Each node

can be a query issuer or a data provider, or more commonly act in both roles for different

query requests. The queries fall into C categories. Each node has certain expertise to answer a

query. Let E denote the expertise matrix, where Ec
i indicates the expertise of Node i to answer

a query in Category c, i.e., the probability that Node i can provide a satisfactory answer to a

query in Category c. A query is created by a query issuer. It is delivered by the network

toward the nodes that can successfully provide an answer (i.e., data providers). If a data

provider receives the query, it sends the query reply to the query issuer.

The goal is to determine an optimal transmission strategy that supports the desired query

rate and at the same time minimizes the total communication cost.

3.2 Unique Challenges

The use of free, short-range radio is highly desired for a diversity of mobile opportunistic

network applications. At the same time, however, it results in a distinctive communication

paradigm characterized by intermittent link connectivity and autonomous computing and

storage. More specifically, the data query in mobile opportunistic networks faces the

following unique challenges.

(1) Opportunistic link connectivity: The connectivity of mobile opportunistic networks is

very low and intermittent, forming a sparse network where a node is connected to other nodes

only occasionally. This is in a sharp contrast to online social networks, where users always

have reliable Internet connections. The data delivery delay in mobile opportunistic networks

is potentially long, due to the loose connectivity among nodes. Fortunately, such delay,

thought not desirable, is usually tolerable by many data query applications in mobile
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opportunistic networks that are often delay insensitive.

(2) Autonomous computing and storage: Central servers are employed to store and

process user data in online social networks. Such servers are, however, no longer available in

mobile opportunistic networks, where individual portable devices must perform distributed

data storage and computation. It is well known that portable devices have limited computing,

storage and energy capacity. Nevertheless, such constraints are particularly disadvantageous

to mobile opportunistic networks, because a node must process data in a distributed manner

and store them locally for a much longer time before sending them to another node, due to

intermittent connectivity.

(3) Unknown or inaccurate expertise: When a node issues a query, it is often unaware of

the nodes that have sufficient expertise to answer the query, since the cost is prohibitively high

to construct a structure to index data and data providers like P2P networks. It is obviously

inefficient either to frequently flood queries, which are expensive and often considered spams.

Worse yet, in practice, a mobile node hardly knows its probability to answer queries in each

category precisely. It may initially claim its expertise based on the mobile user’s social roles

and available resources. But such initially claimed expertise is often inaccurate.

3.3 Proposed Data Query Scheme

While mobile opportunistic networks offer interesting opportunities to support ad hoc

data query, its capacity is unsurprisingly low compared to many other data networks due to its

extremely limited and nondeterministic communication opportunities. A distributed data

query protocol is proposed, aiming to enable highly efficient ad hoc query under practical

mobile opportunistic network settings.
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3.3.1 Protocol Design

I introduce a distributed protocol for the data query in mobile opportunistic networks. It

is based on two key techniques. First, it employs “reachable expertise” as the routing metric

to guide the transmission of query requests. Second, it exploits the redundancy in query

transmission.

3.3.1.1 Routing Metric

The delivery of query depends on a routing metric, which is updated routinely and

maintained separately from the routing algorithm itself. I first introduce such a metric, i.e.,

reachable expertise, that guides query transmission.

Each node has certain expertise to answer a query. Let Ec
i denote the expertise of Node i

to answer a query in Category c. In practice, it is nontrivial to properly define the expertise,

because a mobile node hardly knows precisely its probability to answer queries in each

category. It may initially claim its expertise based on the mobile user’s social roles (e.g.,

professions), interests, and available resources. But such initially claimed expertise is often

inaccurate. Therefore, after initialization, the expertise should be updated according to the

feedbacks from other nodes, especially the query issuers.

In this dissertation, I adopt the exponentially weighted moving average (EWMA) to

maintain and update expertise. More specifically, I have

Ec
i ← (1−µ)[Ec

i ]+µFc
i , (3.1)

where 0≤ µ≤ 1 is a constant weight to keep partial memory of historic status, [Ec
i ] is the

expertise before it is updated, and Fc
i is the feedback score for queries that Node i has

answered in Category c. Various feedback rating schemes can be adopted to determine Fc
i . In

this dissertation, I employ a simple scheme, which supports quick convergence as to be
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discussed in Sec. 3.4 and shown in Fig. 3.1h.

The expertise indicates the capability of a node to answer queries, but itself is insufficient

to guide query transmission. For example, a node may have high expertise, but is not

reachable by the query issuer and thus becomes less helpful to answer the query. To this end, I

define k-hop reachable expertise. As discussed earlier, the mobile opportunistic network users

can often tolerate long delay. Thus, the delay random variables may be reduced to simple

nodal contact probabilities. Let pi j denote the probability that Nodes i and j meet. The

maintenance and update of pi j have been discussed extensively in DTN

networks [4, 21, 44, 76]. The k-hop reachable expertise is calculated as follows:

Ec
i (k) = 1−∏

j∈Φ

(1− pi j ·E
c
j (k−1)), (3.2)

where Φ is the set of nodes that Node i meets frequently. Ec
i (k) indicates the probability that

Node i can deliver the query within k hops to a node that can answer the query. Clearly,

Ec
i (0) = Ec

i and Ec
i (1) = 1−∏ j∈Φ(1− pi j ·E

c
j ). Node i collects

{Ec
j (k−1)|∀ j ∈Φ and 0 < k≤ N} whenever it meets other nodes, and periodically makes an

update on Ec
i (k) according to Eq. (3.2).

Based on the k-hop reachable expertise, I define the aggregated reachable expertise,

AEc
i = 1−

N

∏
k=1

(1−Ec
i (k)), (3.3)

which indicates the overall ability of Node i to help a query in Category c to be answered. It

serves as the routing metric to guide query delivery as to be discussed next.

3.3.1.2 Routing with Dynamic Redundancy Control

Based on the routing metric, i.e., reachable expertise, I now introduce the routing
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algorithm. The delivery of a query is guided by the aggregated reachable expertise, where the

query is generally forwarded from the node with a lower aggregated reachable expertise to the

node with a higher one. In contrast to the conventional store-and-forward data transmission

where a single copy of data is transmitted across the network, redundancy is often employed in

opportunistic networks. Generally speaking, the higher the redundancy, the higher probability

the query is answered successfully. However, redundancy must be properly controlled as

excessive redundancy may exhaust network capacity and thus degrade the performance.

A naive approach is to create a fixed amount of redundancy for each query. For example,

a predetermined number of copies of the query can be created and distributed to other nodes

in the network. This approach, however, is often inefficient, because the effectiveness of

redundancy depends on the nodes that receive, carry and forward the query. In an extreme

case, all redundant copies of the query may be transmitted and carried by the nodes that have

little chance to meet the node(s) that can answer the query and thus become ineffective. As a

matter of fact, the effectiveness of redundancy highly depends on the reachable expertise of

the nodes that carry the redundant copies. To this end, I introduce a parameter to dynamically

reflect the effective redundancy.

More specifically, the proposed routing algorithm with dynamic redundancy control is

outlined below. Let R
q
i denote the redundancy of Query q as observed by Node i. The

parameter is the estimated probability that at least one copy of the query is answered by any

other nodes in the network. It is maintained and updated in a distributed way. Assume Query

q is in Category c. R
q
i is initialized to zero when the query is created and subsequently

updated during its transmission. Since communication opportunity is low, transmission is

often between two nodes only. If more than two nodes are within communication range, I
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assume an underlying medium access control protocol that randomly selects one node as the

sender. Therefore I consider a general scenario where Node i meets Node j in the following

discussions.

First, Nodes i and j exchange their k-hop reachable expertise and update their aggregated

reachable expertise according to Eqs. (3.2) and (3.3).

Then, Node i fetches the query with the lowest redundancy in its queue. The queue holds

the queries that Node i creates or receives from other nodes. It is sorted according to the

redundancy level such that the query with the lowest redundancy (denoted as Query q in

Category c) is at the head of the queue. If Node j has a high expertise for queries in Category

c (i.e., Ec
j ≥ α where α is a predefined constant), it directly answers the query by creating and

sending a query reply to the query issuer. Since the destination of the query reply (i.e., the

query issuer) is known, it can be delivered via any existing routing protocol for opportunistic

networks [4, 5, 10, 17, 20, 21, 27, 33, 39, 43, 44, 46, 52, 55, 59, 60, 61, 77, 80, 81, 85, 86, 87].

I adopt the scheme proposed in [44] in the implementation. Note that the answer of Node j is

not always satisfactory. It has a probability of Ec
j to be satisfied by the query issuer.

Therefore, Node i removes the query from its queue with a probability of Ec
j .

Otherwise, if Node j cannot answer the query directly (i.e., Ec
j < α), Node i checks the

redundancy of Query q. If R
q
i ≥ β where β is the desired query delivery probability, it implies

that high enough redundancy has been created for the query. Thus no action will be taken.

Node i simply holds the query until it meets a node that can directly answer the query or the

query must be dropped due to queue overflow. An overflow happens when a new query is

added into the queue which is already full. In this case, the query with the highest redundancy

(i.e., at the end of the queue) is dropped.
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If R
q
i < β, the query should be further propagated. But it is transmitted to Node j only if

AEc
i < AEc

j (i.e., the latter has a better chance to deliver the query). This transmission creates

two copies of the query, each sharing partial responsibility to get the answer. The

redundancies for the two copies are assigned as follows:

R
q
j ← 1− (1−R

q
i )(1−Ec

i (0)), (3.4)

R
q
i ← 1− (1−R

q
i )(1−Ec

j (0)). (3.5)

In both formulas, (1−R
q
i ) denotes the estimated probability that none of other nodes (except

Nodes i and j) can get the answer for Query q, and (1−Ec
i (0)) and (1−Ec

j (0)) give the

probability that Node i and Node j cannot directly answer the query. Therefore the updated

R
q
i (or R

q
j ) indicates the probability that at least one copy of the query can be answered by

other nodes except Node i (or Node j).

The transmission of Query q continues upon future communication opportunities until,

as discussed earlier, the query is answered by a node or dropped due to queue overflow. Upon

receiving the query reply, the query issuer evaluates it and constructs a feedback packet,

which is delivered to the node that answers the query, again, via an existing routing protocol

for opportunistic networks. The latter then updates its expertise according to Eq. (3.1).

3.4 Prototype and Experiment

To demonstrate the feasibility and efficiency of the proposed data query protocol and to

gain useful empirical insights, I have carried out a testbed experiment using off-the-shelf Dell

Streak tablets. In this section, I first introduce the testbed setup and then present experimental

results.
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3.4.1 Prototype and Testbed Setup

I have developed a prototype system by using Dell Streak 5 and 7 tablets that are of the

smartphone/tablet PC hybrid operating on Android 2.2. The communication between the

tablets is enabled via Bluetooth. A Streak tablet has 16 GB internal storage adequate to keep

large amounts of experimental data. I have implemented the proposed data query protocol by

using standard Android APIs, closely following the description in the previous section. In

order to save power, each node initiates neighbor discovery once every a random interval

(between 5 to 10 minutes).

The experiment involves twenty five volunteers including faculty members and students.

They are marked as Node 0 to Node 24. In the experiment, I define three categories of

queries, i.e., history, science, and arts (which are named Category 0, 1, and 2, respectively).

Each participant has a claimed initial expertise for answering queries in each category and

generates twelve queries per day in randomly chosen categories. Note that the initial expertise

is not accurate. The true expertise is arbitrarily set by letting a small set of nodes to have an

expertise of 1 to answer queries in each category. More specifically, Nodes 3, 13, and 19 can

answer queries in Category 0; Nodes 4, 14, and 20 can answer queries in Category 2; and

Node 1 can answer queries in any category. Other nodes initialize expertise to be (0-1)

randomly and learn and update their aggregated expertise during the experiment. The

experiment had run for fifteen days, starting from Monday 16:00 p.m. in the first week to

Monday 17:00 p.m. in the third week.

I compare several variations of the proposed scheme and related schemes. In the

following discussions, 0-hop, 1-hop, 2-hop, and 3-hop stand for the proposed scheme that

allows up to 0 hop, 1 hop, 2 hops, and 3 hops relaying, respectively; No Feedback means the
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Table 3.1: Results under Experiment.

Query Rate Delay Ave. Replies Ave. Copies

0-hop 0.34 4.56h 10 1

1-hop 0.73 7.52h 30 2

2-hop 0.96 8.83h 42 2

3-hop 0.86 9.42h 56 4

No Feedback 0.83 9.12h 50 3

Flooding 0.39 4.68h 13 7

Gossip 0.52 7.28h 21 5

Willingness 0.51 6.23h 17 6

Spray and Wait 0.46 5.67h 12 6

Social-based 0.68 9.68h 58 5

proposed scheme (with 2-hop relay) but without the feedback mechanism to rectify expertise;

Flooding is the simple flooding scheme for query delivery; Gossip [34] considers multiple

categories and assigns the queries in each category a transmission probability for data

transmission; Willingness [36] is a scheme that a query is delivered based on willingness,

which is the degree to which a node actively engages in trying to re-transmit a query; Spray

and Wait [80] is considered as a baseline opportunistic delivery protocol; Social-based [100]

is a social-based routing scheme.

I am primarily interested in two parameters: (1) the success query rate, i.e., the ratio of

successfully answered queries to the total generated queries, and (2) the query delay which is

the period from the time when a node generates the query to the time when it receives the

answer.

3.4.2 Experimental Results

Table 3.1 shows the overall performance of different schemes. The 2-hop scheme

achieves the highest query rate. It is not surprising to find the 1-hop scheme with a lower

query rate since a node merely tries to answer the queries via up to one hop relay. The 0-hop

scheme has the lowest query rate as a query can be answered only when the query issuer
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meets the data provider directly. On the other hand, it seems anti-intuitive that allowing a

longer relay path (e.g., the 3-hop scheme) leads to a negative gain. But this is reasonable

because excessive redundancy is created when too many nodes are involved in relaying

queries, subsequently overloading the network and resulting in degraded performance. For a

similar reason, the Flooding scheme has a even lower query rate given its extremely high

redundancy. Under the No Feedback scheme, the inaccurate expertise is not rectified,

resulting in misleading reachable expertise and thus lower query rate. Gossip [100] considers

multiple categories and assigns the queries in each category a transmission probability for

data transmission. However, as a gossiping approach, its data transmission is randomized.

Therefore a query is often answered and carried by nodes with insufficient expertise, thus

inducing many non-satisfactory replies. Willingness [36] is a scheme that a query is delivered

based on willingness, which is the degree to which a node actively engages in trying to

re-transmit a query. The willingness does not reflect the expertise based on which a node

replies queries, therefore the nodes are not helpful for each other to carry queries to nodes

with sufficient expertise. I also compare with Spray and Wait [36] which is considered as a

baseline opportunistic delivery protocol. [36] fixes the number of copies for each query which

limits the queries to go through correct paths to be replied by nodes with sufficient expertise,

making query rate even lower. Social-based [100] exploits a distributed community

partitioning algorithm to divide a DTN into smaller communities. For intra-community

communication, a utility function convoluting social similarity and social centrality with a

decay factor is used to choose relay nodes. For inter-community communication, the nodes

moving frequently across communities are chosen as relays to carry data to destinations

efficiently. Although [100] introduces a solution for DTNs which leverages social properties
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and mobility characteristics of users, it is not truly applicable for the data query in mobile

opportunistic networks, because when a node issues a query, it is often unaware of the nodes

that have sufficient expertise to answer the query. The cost is prohibitively high to construct a

structure to index data and data providers like P2P networks. It is obviously inefficient either

to frequently flood queries, which are expensive and often considered spams. It is not

surprising that the proposed scheme has better performance than Social-based, since

Social-based does not capture the inherent features for the query delivery in mobile

opportunistic networks, hence the nodes are not helpful for each other by making the correct

decisions to carry queries to satisfactory nodes.

In general, when more hops are allowed in relaying queries, the overhead increases,

because a query is more aggressively propagated. As a result, more copies of the query are

transmitted in the network and the query issuer often receives more replies. At the same time,

since a query may potentially go through a longer path to reach the data provider, the average

delay also increases. Compared with the 2-hop scheme, No Feedback has longer delay and

more number of replies because incorrect expertise often leads the queries to wrong routes.

More than 96% queries are answered successfully. The unanswered queries are all

generated during the final hours of the experiment. Fig. 3.1a illustrates the number of queries

answered on each day of the experiment. As can be seen, the results vary among days,

reflecting the moving patterns of the participants. More queries are answered during

weekdays than weekends due to the lower interactive activities of students and faculty on

Saturday and Sunday. In fact, many queries cannot be answered during weekends and have to

wait until Monday of the next week. This explains the peak on the second Monday. It is worth

mentioning that the first and the third Monday are not the whole days, hence the number of
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(h) Convergence of expertise.

Figure 3.1: Experimental results.

answered queries is less than the second Monday. The activity pattern is also evidenced by the

delay variation shown in Fig. 3.1b. Queries generated in weekends have longer delay

compared with those in weekdays. The delay of queries generated on Friday is also high

because no classes are scheduled on Friday afternoon and many offices are closed after 1:00

p.m.. Fig. 3.1b also shows the total traffic in the network, which follows a similar pattern of

nodal activities.

Figs. 3.1c and 3.1d further zoom in to show the results in each hour of a day. The data
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are averaged over 15 days. Both the network traffic and the number of answered queries are

high during daytime and low at night, which again shows the query heavily depends on the

activity of students and faculty who carry the tablets. Likewise, I expect lower delay during

daytime. However, the results are just the opposite (as depicted in Fig. 3.1d). Such

anti-intuitive observation is due to the queries from a few nodes, which experienced extremely

long delay that dominates the overall performance. In fact, most queries generated during

daytime indeed have short delay. But a set of nodes (including Nodes 3-12) rely on a single

node (Node 2) to carry their queries in Category 2 to corresponding data providers. Such

delivery happens around 9:00 a.m. daily. The queries generated after 9:00 a.m. must wait

until the next day, thus inducing unusually long latency that significantly elevates the overall

average. If I exclude such queries (see the lower purple bars in Fig. 3.1d), the average delay

becomes much lower, and the daytime delay is generally shorter than that during night.

The average delay and traffic of different nodes are illustrated in Fig. 3.1e. In general,

delay and traffic vary among different nodes due to the randomness in nodal mobility and

query generation and transmission. Node 0 has extremely poor connectivity (either directly or

indirectly) to the nodes with high expertise, resulting in very long delay compared with other

nodes. Contrarily, since Node 1 is able to answer all the queries of three categories, it has the

minimum delay. In addition, Node 2 has the heaviest traffic load because it frequently meets

other nodes, while Node 0 carries the least traffic due to few interactions between it and other

nodes.

The delay distribution is shown in Fig. 3.1f. More than 65% queries are answered within

two hours. The queries with longer delays are either generated by Nodes 3-12 as discussed

above, or generated during weekends and thus cannot be replied until the next Monday.
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Fig. 3.1g illustrates the distribution of path length. All queries are answered within three hops.

Fig. 3.1h shows the convergence of the claimed expertise to the ground truth. A node is

chosen as an example, while similar results are observed in other nodes as well. As can be

seen, the feedback mechanism effectively adjusts the node’s expertise, gradually approaching

to the true value within a few hours.

3.5 Simulation Results

Besides the experiment discussed above, extensive simulations are carried out to learn

the performance trend of the proposed data query algorithm under various network settings,

which are not practical to evaluate by using lab equipments. The simulation codes are

extracted from the prototype implementation, and the simulation results are obtained under

real-world traces and power-law mobility model. Each node maintains a maximum queue size

of 1,000.

3.5.1 Simulation under Haggle Trace

I have evaluated the proposed scheme under several real-world traces available at

CRAWDAD. Table 3.2 shows the results based on Haggle trace [71], which includes 98

participants carrying small devices (iMotes) during Infocom 2006. I run the simulation for a

period of 342,916 seconds (or about 4 days). Each node generates 1.08 queries per hour. The

queries fall into five categories, and each category is associated with three expert nodes that

can provide satisfactory replies. Similar to the results in Table 3.1, Table 3.2 shows the results

under Haggle trace.

The distributions of query rate and delay are illustrated in Fig. 3.2. About 90% of nodes

can achieve a query rate of 80% or higher under the proposed scheme. At the same time, more

than half of the queries are answered within an hour.
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Table 3.2: Results under Haggle Trace.

Query Rate Delay Ave. Replies Ave. Copies

0-hop 0.31 1.58h 9 1

1-hop 0.68 2.62h 26 2

2-hop 0.88 3.06h 39 3

3-hop 0.79 3.25h 52 4

No Feedback 0.76 3.16h 46 3

Flooding 0.36 1.61h 12 6

Gossip 0.46 2.56h 20 5

Willingness 0.45 2.16h 16 5

Spray and Wait 0.39 1.98h 11 5

Social-based 0.62 3.32h 56 4

3.5.2 Simulation under Power-Law Mobility Model

Besides the above results based on Haggle trace, I have carried out a simulation under

power-law mobility model, which enables convenient study of performance trend with the

variation of several network parameters. More specifically, I simulate an area that is

partitioned into a grid of 20×20 cells. Each node is associated with a randomly-chosen home

cell, in which it initially resides. In a time slot, it may move in one of the four directions, i.e.

up, down, left, and right, or stay in its home cell. Let Pi(x) denote the probability for Node i to

be at Cell x. Pi(x) = ki(
1

di(x)
)σ where ki is a constant, σ is the exponent of the power-law

distribution and di(x) denotes the distance between Cell x and Node i’s home cell. The default

network parameters include a network of 100 nodes, a σ of 2, 10 categories of queries, 5

experts per category, and a generation rate of 0.02 queries per time unit per node.

In an opportunistic network, the communication capacity highly depends on the meeting

opportunities among mobile nodes. As shown in Fig. 3.3a, query reply rate grows with the

increase of the network density, because the nodes have more opportunities to meet each other

and exchange their queries. Fig. 3.3b depicts the impact of the power-law factor σ. When σ is

large, the nodes tend to stay in their home cells, i.e., have low mobility, resulting in small
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(b) Delay distribution.

Figure 3.2: Distributions under Haggle trace.

probabilities to meet each other and consequently small network capacity. Therefore the

query reply rate is low. When σ is extremely large, the query reply rate may approach as low

as zero. On the other hand, when σ is small, the nodes have uniform mobility, i.e., similar

probabilities to visit all cells and accordingly similar routing metric (i.e., k-hop reachable

expertise), rendering routing ineffective. Under the simulated network setting, σ = 2 results in

the best performance.

The impact of traffic load is illustrated in Fig. 3.3c. While the query reply rate keeps
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stable at the beginning under all schemes, it starts to drop when the generation rate exceeds

0.03. In general, with a higher query generation rate, the overall traffic load increases,

resulting in more frequent queue overflow and consequently lower query reply rate.

As discussed in Sec. 3.3.1, a threshold β is employed for dynamic redundancy control. A

larger β allows more redundancy to be created, aiming to achieve a higher query reply rate.

However, if β is too large, the excessive redundancy degrades the utilization of

communication and storage resources and lowers the overall performance accordingly (see the

Fig. 3.3d). Fig. 3.3e shows that a higher query reply rate is achieved with the increase of

queue size, because more queries and replies can be kept in the queue until they are delivered.

The number of experts for each category is also studied in this dissertation. As shown in

Fig. 3.3f, more experts for a category result in higher query reply rate because more nodes can

answer the queries in this category.

3.6 Conclusion

I have studied the problem of data query in a mobile opportunistic network, aiming to

determine an optimal transmission strategy that supports the desired query rate within a delay

budget and at the same time minimizes the total communication cost. I have developed a

distributed data query protocol for practical applications. To demonstrate the feasibility and

efficiency of the proposed scheme and to gain useful empirical insights, I have carried out a

testbed experiment by using 25 off-the-shelf Dell Streak tablets for a period of 15 days.

Moreover, I have run extensive simulations to learn the performance trend under various

network settings, which are not practical to build and evaluate in laboratories.
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(c) Traffic load.
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(d) Redundancy threshold.
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Figure 3.3: Performance trend under power-law mobility model.
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CHAPTER 4: Efficient QoS Support in Mobile Opportunistic Networks

In this chapter, I aim to support Quality-of-Service (QoS) provisioning, especially the

guarantee for end-to-end data delivery delay, in mobile opportunistic networks. The

QoS-aware delivery probability (QDP) is introduced to reflect the capability of a node to

deliver data to a destination within a given delay budget. Each node maintains a set of QDPs

to make autonomous decisions for QoS-aware data transmission. At the same time, a

prioritized queue is employed by each mobile node. In order to support efficient prioritization

and redundancy control, the priority is determined by a function of traffic class and data

redundancy. The former is pre-determined by the corresponding application, while the latter is

dynamically estimated during data delivery. Two experiments are carried out to demonstrate

and evaluate the proposed QoS-aware data delivery scheme. The first experiment involves

multiple clusters of static Crossbow sensors that are connected by air and ground mobile

nodes with controlled mobility. The second experiment is under a mobile social network

setting, where 23 Dell Streak Android tablets are carried by volunteers with arbitrary and

diverse mobility patterns during a period of two weeks. Moreover, simulation results are

obtained under DieselNet trace and power-law mobility model to study the scalability and

performance trend. The experiments and simulations demonstrate that the proposed scheme

achieves efficient resource allocation according to the desired delay budget, and thus supports

effective QoS provisioning.

4.1 Introduction

Mobile opportunistic networks are characterized by intermittent and nondeterministic

connectivity, often due to interruptible wireless links, sparse network deployment, and/or

nodal mobility. Such opportunistic networking has been discussed in the context of



delay/disruption-tolerant networks, sporadically connected sensor networks, vehicular

networks, and peer-to-peer mobile social networks [2, 9, 20, 27, 86, 95, 96]. How to discover

and utilize opportunistic communication resources for efficient data transmission has been

one of the central research issues in such networks as evidenced by extensive discussions in

the literature [2, 4, 9, 10, 17, 20, 24, 27, 32, 37, 38, 39, 43, 44, 46, 48, 50, 55, 56, 60, 61, 62,

64, 65, 66, 73, 74, 77, 81, 84, 86, 87, 89, 90, 95, 96, 99]. However, limited prior work has

addressed Quality-of-Service (QoS). While long data delivery delay is generally unavoidable

given the unique intermittent connectivity, QoS, especially the guarantee for end-to-end

delivery delay, is highly desired in a variety of applications. For example, the dissemination of

a data message (such as an advertisement or coupon [27, 63, 67, 96]) in a mobile social

network must meet a delay budget no longer than its expiration date, and different data

messages are often associated with different delay budgets. Separately, in wildlife tracking

applications, interactive control and event report must be delivered within a short end-to-end

delay bound, as opposed to routine transmissions of ambient environmental data that can

tolerate long delay [2]. Data delivered beyond their delay budgets often lead to reduced or

completely forfeited value.

4.1.1 Challenges in QoS Provisioning in Mobile Opportunistic Networks

QoS has been extensively studied in wireless networks [13]. However, there are unique

challenges to support QoS in an opportunistic communication setting. First of all, due to the

nondeterministic connectivity, it is intrinsically infeasible to provide hard guarantee of

end-to-end delivery delay. Thus, a probability-based delay budget is introduced in this

dissertation. More specifically, let Qm(δ,γ) denote the desired QoS of Message m, which must

be delivered to its destination within δ time units with a probability no less than γ.
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Second, since end-to-end paths often do not exist in the network, a routing decision must

be made based on predicted future connections. To this end, temporal and/or spatial

information in nodal contacts is exploited by mobile nodes to estimate their probabilities to

deliver data to corresponding destinations [4, 27, 86]. Such delivery probability serves as a

routing metric to guide data transmission, where a data message is always forwarded to nodes

with higher delivery probabilities. However, most prior studies do not consider delay budget.

Therefore the delivery probabilities may become misleading for QoS support. For example, a

node with a high delivery probability to a destination may in fact experience long average

delay, thus deceptively attracting many data messages by following the routing scheme

described above but frequently failing to meet the desired QoS requirements.

Third, the QoS priority associated with a data message is static, i.e., does not change

during its transmission, in conventional networks. However redundancy is commonly

employed in opportunistic networks for dealing with high data loss probability and achieving

desired delivery rate. Consequently, the importance of a message varies during its

transmission depending on the amount of redundancy created. For example, a newly generated

message is the sole copy, and should be processed with high priority and protected from being

lost. When multiple copies of the message are produced during its transmission, deferring or

losing a copy would not significantly degrade the delivery probability of the message. In

general, data messages that are in the same traffic class may have diverse redundancy (even if

they were created by the same node at the same time) and accordingly should be associated

with different priority levels. Therefore, data messages must be prioritized not only by QoS

requirement but also according to their dynamically changing redundancy.
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4.2 Proposed QoS-Aware Delivery Scheme

To address the unique challenges in QoS provisioning in opportunistic networks with

intermittent and nondeterministic network connectivity, I propose a QoS data communication

scheme based on QoS-aware delivery probability and adaptive queue prioritization as outlined

below. The former serves as the QoS routing metric, which guides a data message through the

best routing path that meets the desired QoS requirement with high probability. The latter

supports efficient resource utilization by proper redundancy control.

4.2.1 QoS-Aware Delivery Probability (QDP)

As discussed in Sec. 4.1.1, I adopt a probability-based delay budget, denoted by

Qm(δ,γ), as the QoS metric, demanding Message m to be delivered to its destination within δ

time units with a probability no less than γ. A node often has a number of messages in its data

queue. It may transmit a message directly to the destination or to an intermediate node which

subsequently continues to forward the message directly or indirectly to the destination. When

a node meets another node, the former needs to decide whether to transmit a message to the

latter. Such a routing decision must be made based on a QoS-aware routing metric, which

indicates if the latter has a higher probability to deliver the message to its destination within

the delay budget. To this end, I introduce a new routing metric for QoS provisioning in mobile

opportunistic networks, dubbed QoS-aware delivery probability (QDP).

Since a data message may be associated with any arbitrary delay budget and any

destination, it is imperative for a node to maintain a set of QDPs to make autonomous

decisions for QoS provisioning. Let Pi = {pk
i (t)|0≤ t ≤ ∞,k ∈Φ} denote the QDPs of Node

i, where pk
i (t) is the probability that a message can be delivered from Node i to Node k within

t time units, and Φ is the set of mobile opportunistic network nodes. For a given k, pk
i (t),
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0≤ t ≤ ∞, is intrinsically the cumulative distribution function of delivery delay, which is ideal

to support QoS data delivery, but impractical to maintain in continuous time. Thus, a finite set

of discrete delays, denoted by ϒ, is employed, arriving at Pi = {pk
i (t)|t ∈ ϒ,k ∈Φ}.

While QDP is defined above, it is obviously challenging to be obtained in a distributed

manner, since a node is connected to other nodes only occasionally. With no end-to-end

connections, it is extremely difficult, if not impossible, to gain up-to-date global knowledge to

compute accurate QDPs. But at the same time, I notice that the accurate QDPs are, though

desired, not imperative. As a matter of fact, the QDP can be over- or under-estimated across

the network, due to the approximation in QDP update. The approximate QDPs can effectively

support QoS routing as long as they are proportional to the real QoS-aware delivery

probabilities, i.e., a node with a truly higher (or lower) QoS-aware delivery probability

maintains a higher (or lower) approximate QDP. Despite such QDPs are inaccurate, they

efficiently guide data messages through the best routing paths for QoS provisioning. This

observation is verified by the simulations.

To this end, I propose a light-weight distributed algorithm to learn approximate QDPs.

The overall idea is to let individual nodes maintain their approximate QDPs, which are

updated based on locally learnt information upon meeting events. Initially, a node only knows

the QDP with itself as the destination, which is obviously one. It learns the QDPs to other

destinations via recursive information exchange, during which the QoS delivery probabilities

are updated in a ripple manner propagated from the corresponding destinations. More

specifically, Node i initializes pk
i (t) as follows
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pk
i (t) =















1, i = k

0, i 6= k,

(4.1)

and updates them autonomously according to its transmission history, in both direct and

cascaded deliveries, as outlined below. Each node divides time into windows. The size of a

window can be chosen to be the maximum delay budget interested by the node. The windows

of different nodes do not have to be synchronized. This is because each node updates its QDP

autonomously. It can choose any arbitrary window size and start its window at an arbitrary

time instance. The process does not require synchronization among different nodes.

QDPs are updated based on time windows. Let’s consider Node i. It maintains a

parameter ξk
i (t), which is used to calculate the QDP of Node i to Node k in each window, for

each k ∈Φ and t ∈ ϒ. It intrinsically indicates the probability that the message is failed to be

delivered to the destination within the delay budget in a time window. In each time window,

ξk
i (t) is initialized to 1. When Node i meets Node j, it compares pk

i (t) and pk
j(t) for every

k ∈Φ and t ∈ ϒ. If pk
i (t)< pk

j(t), the former transmits the corresponding message with

Destination k and Delay Budget t to the latter and at the same time updates ξk
i (t) as follows:

ξk
i (t)← ξk

i (t)(1− pk
j(t)), (4.2)

where 1− pk
j(t) is the probability that Node j cannot deliver the message to Destination k

within the required delay budget of t. If j = k, it is a direct delivery. According to Eq. (4.1),

pk
j(t) = 1 and thus 1− pk

j(t) = 0. Otherwise, it is an indirect delivery where Node j may or

may not successfully transmit the message to its destination. Consequently, Node i cannot

receive a confirmation immediately from Node j. Therefore, it estimates the probability that

Node j delivers the message by pk
j(t).
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By the end of the window, Node i calculates its window-based QDP as

p̂k
i (t) = 1−ξk

i (t), (4.3)

which essentially equals 1−Π(1− pk
j(t)), i.e., the probability that at least one of such

transmissions delivers the message to its destination by its delay budget. Clearly, once Node i

delivers the message directly to its destination (i.e., Node k), p̂k
i (t) becomes one and there is

no need to further transmit the message.

p̂k
i (t) is a window-based QDP. Its value often varies from window to window, exhibiting

undesired instability. It is highly preferable to keep QDPs stable, since they are employed to

guide data transmission. In this dissertation, I adopt the exponentially weighted moving

average (EWMA) to maintain and update QDPs. More specifically, I have

pk
i (t)← (1−µ)pk

i (t)+µp̂k
i (t), (4.4)

where 0≤ µ≤ 1 is a constant weight to keep partial memory of historic status. It has been

shown in [93] that the above EWMA-based average converges to a constant under statically

distributed mobility. pk
i (t) indicates the probability that Node i delivers a message to Node k

within a delay budget of t. Node i performs similar calculation for all k and t to yield the QDP

matrix Pi = {pk
i (t)|t ∈ ϒ,k ∈Φ}.

Every node follows the above algorithm to learn its QDPs. I observe in the simulations

that, since Node i is only aware of pi
i(t) (i.e., with itself as the destination) during

initialization, QDPs are updated in a ripple manner starting from the corresponding

destinations. While the simulation details are deferred to Sec. 4.4, Fig. 4.1 illustrates the

converged QDP indeed reflects the true QoS-aware delivery probability after the warmup

period of simulations, thus serving as an efficient routing metric for QoS provisioning.
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Figure 4.1: QDP vs. Delivery Rate (average of t ∈ ϒ).

4.2.2 Adaptive Data Queue Prioritization

For the sake of low complexity in queue management, most QoS-aware systems (e.g.,

IEEE 802.11e) employ multiple FIFO queues, one for each traffic class. In opportunistic

networks, however, it is often inevitable and at the same time affordable to deal with more

complicated queuing strategies. In contrast to conventional store-and-forward networks where

only a single copy of a data message is actively transmitted at a time, redundancy (by either

simple duplication or coding) is commonly employed for desired communication

performance, especially for QoS support, in opportunistic networks. However, the creation

and distribution of redundancy depend on nondeterministic nodal meeting events, thus

exhibiting high dynamics. At a given time, data messages in the same traffic class may have

very different redundancy. For example, multiple copies may have been created for a message

that has been circulated in the network for some time, and thus its preferred delivery

probability can be maintained even if a copy is delayed or dropped. On the other hand, a

newly created message may be the sole copy that should be absolutely protected from being

lost. Consequently, data messages in the same traffic class must be prioritized according to
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their redundancy level, naturally leading to prioritized queues with a logarithm time

complexity for message insertion and removal. Although such computing time is undesired

and may become performance bottleneck in conventional networks, it is affordable in

opportunistic networks, where a node has plenty of time to manipulate its queue before the

next transmission opportunity becomes available.

Based on the above observations, a single prioritized queue is employed by each node.

The queue is sorted according to the priority of data messages, which is a function of traffic

class and redundancy. The former is pre-determined by the corresponding application and

remains unchanged during the transmission of the messages, while the latter is dynamically

estimated as to be discussed next. More specifically, let qm
i denote the priority of Message m

in the message queue of Node i. A smaller qm
i indicates a higher priority. qm

i is calculated as

follows:

qm
i = (1−λ)Cm

i +λFm
i , (4.5)

where Cm
i denotes the traffic class of Message m, Fm

i is the redundancy level of Message m

estimated by Node i, and 0≤ λ≤ 1 is a constant to balance the weight of traffic class and

redundancy for queue prioritization. λ is a tunable parameter that can be determined

according to specific application needs. I simply set it to 1/2 in the implementation.

As discussed earlier, while the traffic class (i.e., Cm
i in Eq. (4.5)) is known, the

redundancy of a message (i.e., Fm
i ) needs to be dynamically estimated. In a typical

store-and-forward network, messages are deleted from a node’s buffer after they are

transmitted to the next hop successfully. In opportunistic networks, however, multiple copies

of the data message are often created and stored by different nodes in the network, in order to
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maintain necessary redundancy for achieving the desired QoS. In general, the higher the

redundancy, the higher the message delivery probability when network capacity is not a

concern. In this dissertation, I define the redundancy of a message to be the estimated

probability that at least one copy of Message m is delivered to its destination within t time

units, where t is updated during transmission to reflect the up-to-date remaining delay budget.

The redundancy of a message (Fm
i ) is initialized to zero and updated during its

transmissions. I consider a general scenario where Node i has an opportunity to communicate

with Node j. It fetches Message m that is destined to Node k. First, the delay budget of

Message m is updated as t = t− τ where τ is the time for which the message has stayed in the

queue. Node i simply transmits the message to Node j and removes it from its queue if j = k.

Otherwise, if Fm
i ≥ β where β is a predefined desired delivery probability, no action will be

taken, because there is already sufficient redundancy. Node i will hold the message until it

encounters the destination directly or the delay budget expires. If the delay budget expires,

Node i simply discards the message from its queue. Generally, the more the redundancy, the

higher the probability. Fm
i ≥ β means current redundancy (e.g., number of copies of Message

m) is large enough to ensure a delivery probability no less than β. Note that, even with

Fm
i ≥ β, there is no guarantee that Message m will be delivered to the destination within the

delay budget. However, if I look at a large number of such data messages, the protocol

delivers them with an overall probability of β, thus achieving the goal. If Fm
i < β and

pk
i (t)< pk

j(t), the message is transmitted to Node j. This transmission creates two copies of

Message m, each sharing partial responsibility to deliver the data to its destination.

Appropriate redundancy needs to be assigned to them, i.e.,

Fm
j ← 1− (1− [Fm

i ])(1− pk
i (t)), (4.6)
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Figure 4.2: Evolvement of redundancy over time.

Fm
i ← 1− (1− [Fm

i ])(1− pk
j(t)). (4.7)

In both formulas, (1− [Fm
i ]) gives the probability that none of other nodes (except Nodes i

and j) can deliver the message, where [Fm
i ] is the value before it is updated due to this

transmission. Therefore the updated Fm
j (or Fm

i ) indicates the probability that at least one

copy of Message m can be delivered by other nodes except Node j (or Node i). In general, the

more times a data message is forwarded, the more redundancy is created. For example,

Fig. 4.2 shows that average message redundancy grows with the message’s life span (where

the simulation details are to be discussed in Sec. 4.4). At the same time, a node often holds a

set of data messages in its queue. Fig. 4.3 illustrates that their redundancies largely fall into a

normal distribution.

The above scheme is efficient in redundancy control and queue management, limiting

redundancy to be just enough to achieve the desired delivery probability, β. How to choose the

optimal β still remains an open issue. It is affected by such parameters as nodal contact

probabilities, maximum queuing capacity, and traffic load and patterns. In a specific scenario,

I can run simulations to identify the approximate optimal β.
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Figure 4.3: Distribution of message redundancy.
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Figure 4.4: An example of transmission between Nodes i and j.

4.2.3 QoS-Aware Data Delivery

Since communication opportunity is low, transmission is often between two nodes only.

If more than two nodes are within communication range, I assume an underlying medium

access control protocol (e.g., IEEE 802.11) that randomly selects one node as the sender and

another as the receiver. Therefore I focus on the scenario where Node i transmits a data

message to Node j in the following discussions. Node i first learns the QDPs of Node j (i.e.,

Pj) via a two-way handshaking. Then it fetches the first message in its queue, denoted by

Message m to Destination k and with a remaining delay budget of t. If t = 0, Node i simply

drops the message. Otherwise, if Node j is the destination (i.e., j = k), Node i transmits the

message to Node j and removes it from its queue. If Node j is not the destination, Node i

transmits Message m to Node j if and only if Fm
i < β and pk

i (t)< pk
j(t).
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Upon a message transmission, two copies of the message are created, with their

redundancies calculated according to Eqs. (4.6) and (4.7) and their priorities updated by

Eq. (4.5), respectively. Then both nodes insert their copies into their data queues according to

the updated priorities (see Fig. 4.4). If a queue is full, the message at the end of the queue

(i.e., the one with the lowest priority) is dropped.

The above process repeats with a randomly chosen node as the sender, until the

communication link is broken (e.g., due to nodal mobility) or no messages are available for

transmission.

4.2.4 Complexity Analysis

In general, the computational complexity at individual nodes is linear to the network size.

More specifically, the communication between two nodes has a computational complexity of

O(k), where k is the buffer size of the message queue of each node. Update of QDPs for each

node at the end of each time window has a complexity of O(nl), where n is the total number

of nodes in the network and l is the number of delay budget levels. Therefore, the overall time

complexity of the proposed QoS-aware delivery algorithm is O(k+nl). In addition, the

overall space complexity of the proposed QoS-aware delivery algorithm is O(nl). Note that k

and l are often constant values. Therefore the time complexity is essentially O(n), and the

space complexity is O(n) as well.

4.3 Prototype and Experiments

To demonstrate the feasibility of the proposed QoS-aware data delivery scheme and gain

useful empirical insights, I have carried out two sets of experiments using the off-the-shelf

Crossbow Micaz motes and Dell Streak Android tablets, respectively. The first experiment

involves multiple clusters of static sensors that are connected by a small set of mobile nodes
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Table 4.1: Experiment Parameters.

Experiment I Experiment II

Number of nodes 39 23

Buffer size 50 1000

Duration 3.5 mins 2 weeks

Message size 10 KB 1 KB-1 MB

Message generation rate 1 per 5 seconds 20 per day

Delay budget 3-90 seconds 4 hours-3.5 days

with regular movement patterns, while the second experiment is under the setting of a mobile

social network where the nodes have diverse and uncontrolled mobility. The reason I carry out

the two experiments is that they are representative examples in mobile opportunistic networks

that need QoS support. For both of the experiments and the simulation presented in Sec. 4.4,

the first fraction of system time is used to warm up for nodes to accumulate QDPs. Only

source address, destination address and delay budget are generated during this period, data is

generated and forwarded during the remaining part of time. Table 4.1 summarizes the

experimental settings and configuration parameters. Sec. 4.3 is organized as follows. I present

two experiments in Sec. 4.3.1 and 4.3.2, respectively. In each subsection, I first introduce

testbed setup and configuration, and then discuss experimental results and related

observations.

4.3.1 Experiment I: Opportunistic Sensor Network

4.3.1.1 Testbed Setup

The sensor network testbed consists of 36 static Crossbow Micaz sensors and 3 mobile

nodes. The static sensors are randomly deployed at four corners of a parking lot, forming four

isolated clusters (see Clusters A, B, C and D in Fig. 4.5b). The sensors in a cluster are

well-connected. I created such an experiment setting because it is common under practical
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applications. For example, when biologists study animals in a field, it is obviously too costly

to cover the entire field with sensors. However, they are often interested in several target

spots, and thus can deploy a cluster of sensors at each spot. The sensors in a cluster are

closely located, within radio communication range. Therefore they are well-connected. At the

same time, the distance between any two clusters is farther than the maximum radio

transmission range of Micaz, and hence the clusters are isolated, calling for mobile nodes to

carry data between them.

The mobile sensors act as Datamule [73] for data transmission among the sensor clusters.

They are carried by a quadrotor and two students, with high and low mobility, respectively.

The quadrotor is built upon the Mikrokopter platform. It can fly up to several hundred meters

high and at a speed between 0 to 40 kilometers per hour, and thus is well suitable for remote

sensor fields. Fig. 4.5a illustrates the ground Micaz motes and the mobile node on a

quadrotor. In the experiment, the quadrotor is controlled by an independent remote controller

and commutes among the four sensor clusters. It flies according to a pre-determined route as

shown in Fig. 4.5b. More specifically, it begins its journey from Cluster A, then sequentially

visits Clusters B, C, A, and D, and finally returns to Cluster A. It repeats the above routine

flight during the experiment. The average flying height is about 2.2 meters based on the

barometer readings on the flying platform. I say the quadrotor visits a cluster if its onboard

sensor can communicate with any sensor in the cluster. The average time between it visiting

two adjacent clusters is 12 seconds. The average waiting times (i.e., the average interval for a

cluster to meet the quadrotor) at Clusters A, B, C, and D are 10, 20, 10, and 15 seconds,

respectively. The other two mobile nodes are carried by two students. One student moves in

clockwise direction and the other counter-clockwise. It takes about 3.5 minutes to complete a
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(a) A cluster of ground sensors in the experimental field

and the flying quadrotor that carries a sensor.

1

2

3

4

5

B C

A
D

(b) Topology of the testbed and the moving pattern of the

quadrotor.

(c) The Android tablets used in the mobile social network

experiment.

Figure 4.5: Testbed setup. (a) and (b) illustrate Experiment I, while (c) shows the Android

tablets used in Experiment II.
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round of visits to the four clusters. Note that, although the routes are pre-determined, the

communication is opportunistic due to dynamic mobility (e.g., unavoidable dynamics in

moving speed and height) and varying channel conditions.

Each ground sensor generates a data message of 10 KB every 5 seconds to a randomly

selected destination. A message is associated with a delay budget between 3 and 90 seconds.

4.3.1.2 Experimental Results

For performance comparison, I have implemented four schemes, dubbed QoS-aware,

Best Effort, DDG, and Incentive, respectively. QoS-aware is the proposed QoS-aware delivery

scheme; Best Effort is a delivery protocol without QoS support [86], which makes the decision

on when and where to transmit data messages only according to the delivery probability. It is

not a surprise to find the Best Effort approach results in low delivery rate because it does not

differentiate traffic at all. DDG is the Delay-Differentiated Gossiping approach [68], which

considers multiple traffic classes, and dynamically assigns the packets in each class a

transmission probability and a Time-To-Live which together govern the total overhead for

data transmission. Although DDG supports QoS provisioning, its data transmission is

randomized. Therefore a packet is often delivered via a long path and consequently subject to

high dropping probability due to the expiration of its delay budget. Incentive is the pair-wise

tit-for-tat approach [63], which adopts an incentive-aware routing protocol that allows selfish

nodes to maximize their own performance while conforming to TFT constraints. The

Incentive scheme exhibits unsatisfied delivery rate because of its “candidate path generation”

process, which results in high overhead under the experiment setting. At the same time, it

does not consider different delay budgets for different messages when formulating the linear

programming model. For fair comparison, trace data are collected to run comparable schemes.
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Table 4.2: Results under Experiment I (Opportunistic Sensor Network)

QoS-aware Best Effort DDG Incentive

Avg. Del. Rate (overall) 72% 38% 42% 58%

Avg. Del. Rate (3 Sec) 2% 2% 2% 2%

Avg. Del. Rate (5 Sec) 8% 3% 5% 6%

Avg. Del. Rate (10 Sec) 32% 5% 16% 26%

Avg. Del. Rate (60 Sec) 98% 96% 97% 97%

Avg. Del. Rate (90 Sec) 100% 100% 100% 100%

I am primarily interested in data delivery rate. A message is delivered if it reaches its

destination within its delay budget. The data delivery rate is defined as the ratio of the total

number of delivered messages to the number of generated messages. Table 4.2 shows the

overall average delivery rate and the delivery rates for messages with delay budgets of 3, 5,

10, 60, and 90 seconds, respectively. As can be seen, the proposed QoS-aware scheme

achieves an overall delivery rate of 72%, significantly higher than other approaches. It is not a

surprise to find the Best Effort approach results in low delivery rate because it does not

differentiate traffic at all. DDG considers multiple traffic classes, and dynamically assigns the

messages in each class a transmission probability and a Time-To-Live which together govern

the total overhead for data transmission. However, as a gossiping approach, its data

transmission is randomized. Therefore a message is often delivered via a long path and

consequently subject to high dropping probability due to the expiration of its delay budget.

The Incentive scheme exhibits unsatisfied delivery rate because of its “candidate path

generation” process, which results in high overhead under the experiment setting. At the same

time, it does not consider different delay budgets for different messages when formulating the

linear programming model.

I also observe that the proposed QoS-aware data delivery scheme achieves the best
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performance compared with other schemes under moderate delay constraints. When the delay

budget is extremely low, the QoS-aware scheme does not improve the performance because

there is simply no way to deliver the data message within its time budget. As the delay budget

increases, the QoS-aware scheme shows superior performance since it prioritizes messages

and allocates resource to deliver more urgent and possibly deliverable data messages. It is

obvious that, if the delay budget is very high, most data messages can always be delivered, no

matter which scheme is employed.

4.3.2 Experiment II: Mobile Social Network

4.3.2.1 Testbed Setup

The second experiment is carried out under a mobile social network setting that involves

twenty three volunteers including faculty members, senior Ph.D. students (who do not have

classes), and graduate students at M.S. level (who go to classrooms regularly). A mobile

social network is often created for a local community where the participants have frequent

interactions, e.g., people living in a neighborhood, students studying in a college, or tourists

visiting an archaeological site. It exploits Bluetooth and WiFi connections to form a sparse ad

hoc network to support social networking. This is in a sharp contrast to web-based online

social networks that rely on the Internet infrastructure (including cellular systems) for

communication.

Unlike the first experiment where the mobile nodes move under regular patterns, the

volunteers in this experiment have arbitrary and diverse mobility. Every volunteer carries a

Dell Streak 5 or Streak 7 tablet (See Fig. 4.5c for a photo of the tablets used in the

experiment), which operates on Android 2.2. The mobile nodes are paired and ready to

communicate with each other via Bluetooth. In order to save power, a Service is created
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which runs on background to adaptively adjust the scanning frequency of the Bluetooth

interface. The default scanning interval is set to 10 minutes during night and 1 minute during

daytime. A node creates 20 data files everyday with the file size varying from 1 KB to 1 MB

and time budget ranging from 4 hours to 3.5 days. The destination for a data file is randomly

selected. The experiment lasts two weeks.

4.3.2.2 Experimental Results

Similar to Experiment I, the proposed QoS-aware scheme outperforms other comparable

schemes, i.e., Best Effort, DDG, and Incentive, in this mobile social network experiment. The

results are omitted here for conciseness. Instead, I focus on investigating the impact of human

activity on QoS-based data delivery. Fig. 4.6a illustrates the average delivery rate for data files

with different delay budgets. Clearly, the larger the delay budget, the higher the delivery rate.

When the delay budget reaches 3 days, an average delivery rate of more than 80% can be

achieved.

Fig. 4.6b presents a detailed look of daily experimental data. More specifically, it

illustrates the delivery rate of data files generated on different days during a week. As can be

seen, data files generated during weekend always have lower delivery rate than those on

weekdays. This is due to the low interactive activities of students and faculty on Saturday and

Sunday. As a result, many data files cannot be delivered timely and eventually must be

dropped due to their limited delay budgets. The data delivery rate on Friday is lower than

other weekdays because no classes are scheduled on Friday afternoon and many offices are

closed after 1:00 p.m..

Fig. 4.6c further zooms in to show the delay of data files generated from the first to the

24th hour of a day. The second Tuesday of the experiment is chosen as an example, while
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similar results are observed on other days as well. The delivery rate is high during the day

time and low at the night, which again shows the QoS-aware delivery scheme heavily depends

on nodal mobility.

4.3.3 Further Discussion

The buffer size indicates the maximum messages each of the nodes in both of the

experiments can have in its message queue. The buffer size of Experiment I is much smaller

than that of Experiment II, because Crossbow Micaz sensors are used in Experiment I which

is a tiny wireless measurement system with a low-power microcontroller with very limited

storage, while Experiment II use Dell Streak Android tablets with very large internal and

external storage. The second experiment is carried out under a mobile social network setting

that involves twenty three volunteers including faculty members, senior Ph.D. students (who

do not have classes), and graduate students at M.S. level (who go to classrooms regularly).

Based on the mobile node’s social roles (e.g., professions), interests, and available resources

and messages’ utilities, each node creates messages with the size varying from 1 KB to 1 MB.

For example, a professor may deliver a homework to students which needs larger message

size, while a student may send a sport news to his friends which requires smaller message

size. The messages are randomly generated, so there is no average message size. The second

experiment is under a mobile social network setting, where 23 Dell Streak Android tablets are

carried by volunteers with arbitrary and diverse mobility patterns during a period of two

weeks. Unlike the first experiment where the mobile nodes move under regular patterns, the

volunteers in this experiment have arbitrary and diverse mobility. Therefore, the messages

generated in Experiment II will experience longer time than that in Experiment I to be

delivered to the destinations. All the parameters I set for the two experiments are all based on
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(c) Hourly delivery rate on the second Tuesday.

Figure 4.6: Results under Experiment II (Mobile Social Network).
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the charateristics of the two experiments.

Overall, the experimental results demonstrate that the nodal mobility, and accordingly

the contact opportunity among nodes, is decisive for the overall network performance as

already revealed in earlier works [2, 4, 9, 27, 86]. The proposed scheme efficiently allocates

resources according to the delay budgets of data messages, and thus supports effective QoS

provisioning, achieving significant higher delivery rate in comparison with other schemes.

4.4 Simulation Results

Besides the experiments presented above, I carry out two separate simulations. The first

is based on DieselNet trace to study QoS provisioning in vehicular networks. The second

simulation is performed under power-law mobility model for evaluating the scalability of the

proposed scheme with the increase of network size, traffic load, and nodal mobility.

4.4.1 Simulation under DieselNet Trace

The DieselNet testbed comprises 33 buses, serving an area of approximately 150 square

miles. Each bus carries a node with WiFi. The simulation is based on the trace data obtained

in 2008 [8]. As shown in Fig. 4.7a, the proposed QoS-aware scheme achieves the highest data

delivery rate under all delay budgets. For example, it delivers more than 90% of the messages

with delay budget between 90 to 100 time units (minutes), in comparison with 52% in the

Best Effort approach, 66% in the DDG approach, and 72% in the Incentive approach. At the

same time, it well controls transmission overhead as illustrated in Fig. 4.7b. To deliver a data

message, an amount of redundancy (i.e., a number of copies) of the message are generated,

hoping that at least one of them can reach the destination. The overhead is the average number

of such copies per message. The high efficiency of the QoS-aware scheme is attributed to the

fact that the estimated QDP enables efficient use of communication resource (i.e., the capacity
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of nodes and their meeting opportunities) and that the adaptive prioritization scheme supports

effective queue management and redundancy control. With the increase in delay budget, the

delivery rate increases accordingly under all approaches, because data messages have more

time and better chance to reach their destinations. In addition, I observe similar average delay

under all schemes (see Fig. 4.7c). But note that the average delay is calculated for delivered

messages only. Due to the low delivery rate in Best Effort, DDG, and Incentive, many

messages that in fact experience long delay are not included in the calculation.

4.4.2 Simulation under Power-Law Mobility Model

The experiments and trace-based simulation have provided a comprehensive evaluation

of the proposed scheme in several practical settings including sensor networks, vehicular

networks, and mobile social networks. I next present simulation results based on power-law

mobility model, which offer valuable performance trend by scaling several network

parameters.

The simulated area is divided into a grid of 10×10 cells. Each node has a home cell

where it initially locates, and moves according to power-law distribution, which is deemed a

realistic model for human mobility. Two nodes communicate only if they are in the same cell.

Let Pi(x) denote the probability for Node i to be at Cell x. Pi(x) = ki(1/di(x))
δ where ki is a

constant, δ is the exponent of the power-law distribution, and di(x) denotes the distance

between Cell x and Node i’s home cell. Under this model, δ is the key parameter governing

node behavior. When δ is large, nodes tend to move among a very small subset of cells. With

the decrease of δ, the moving range becomes wider. By default, I set the maximum queue size

to be 500. The message generation of each node follows a random process with an average

interval of 30 time units out of 100 time units. The FTD threshold is set to be β = 0.7. The
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Figure 4.7: Performance comparison under DieselNet trace.
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results are illustrated in Fig. 4.8 for the data messages with delay budget of 90-100 time units.

The results under other delay budgets exhibit similar trend and thus are omitted here.

Fig. 4.8a shows the performance of different schemes by varying the number of nodes in

the network. With the increase of network size, nodes have more opportunities to meet each

other and to reach the destinations. Thus, the messages have better chances to be delivered

within their delay budgets. This explains why the delivery rate of all schemes increases.

With the increase of message generation rate, the proposed QoS-aware delivery scheme

exhibits a graceful degradation of data delivery rate (see Fig. 4.8b), because it differentiates

traffic and makes efficient use of communication and storage resources to meet the QoS

needs. For example, when more messages with low delay budgets are generated, the protocol

postpones the transmission of some messages with long delay budgets, such that more

messages are delivered within their delay budgets in total. On the other hand, Best Effort,

DDG, and Incentive do not effectively support traffic differentiation, thus suffering dramatic

decrease of delivery rate.

The power-law factor δ determines the mobility patterns of nodes. As illustrated in

Fig. 4.8c, if δ is small, all nodes tend to have similar, wide mobility, and thus almost identical

QDPs, which consequently result in ineffective data transmission and low delivery rate. With

a large δ, on the other hand, a node stays close to its home cell, i.e., can hardly reach any

remote cells. Lower mobility leads to lower network capacity, and thus lower delivery rate.

Fig. 4.8d shows the impact of queue size. With an increase in queue size, all schemes

enjoy higher delivery rate because more messages can reside in the queue without being

dropped.

I have also studied nodal scanning frequency. A node has a duty cycle. It wakes up to
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explore possible communication opportunities by scanning nearby nodes. The lower the

scanning frequency, the less the meeting events, which leads to lower communication

capacity. As a result, a lower delivery probability is observed in Fig. 4.8e. Clearly, a higher

scanning frequency is at the cost of higher energy consumption.

The FTD (Fault Tolerant Degree) threshold β is introduced for redundancy control. In

Fig. 4.8f, I first observe a higher delivery rate with the increase of β, because a larger β

permits more redundancy and accordingly increases data delivery probability. However, when

β is greater than 0.7, the delivery rate starts to decrease. Due to the given constraints on

communication bandwidth and nodal queue size, the excessive redundancy created under high

β often does not contribute to improving delivery rate. Worse yet, it leads inefficient use of

communication opportunities and storage space, resulting in degraded overall performance. It

still remains an open problem to find optimal β. As a rule of thumb, the highest delivery rate

is achieved when β is around 0.7-0.8 in the simulations and experiments.

4.5 Conclusion

In this chapter, I have proposed a QoS-aware data delivery scheme for mobile

opportunistic networks. It employs QoS-aware delivery probability (QDP) to reflect the

capability of a node to deliver data to a destination within a given delay budget, and maintains

a prioritized queue, where the priority is determined by a function of traffic class and dynamic

redundancy in order to support efficient prioritization and redundancy control. Two

experiments have been carried out to demonstrate and evaluate the proposed QoS-aware data

delivery scheme. The first experiment involves multiple clusters of static Crossbow sensors

that are connected by air and ground mobile nodes with controlled mobility. The second

experiment is under a mobile social network setting during a period of two weeks, where the
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Figure 4.8: Performance trend under power-law mobility model. The results are obtained for

data messages with delay budget of 90-100 time units.
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prototype is implemented on Dell Streak Android tablets carried by 23 volunteers with

arbitrary and diverse mobility patterns. Moreover, simulation results have been obtained

under DieselNet trace and power-law mobility model to study the scalability and performance

trend. The experiments and simulations have shown that the proposed scheme achieves

efficient resource allocation according to the desired delay budget, thus supporting effective

QoS provisioning.
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CHAPTER 5: Delay-Constraint Least-Cost Multicast in Mobile Opportunistic Networks

In this chapter, I study the problem of delay-constrained least-cost multicast in mobile

opportunistic networks. I formally formulate the problem and show it is NP-complete. Given

its NP-completeness, I explore efficient and scalable heuristic solutions. I first introduce a

centralized heuristic algorithm which aims to discover a tree for multicasting, in order to meet

the delay constraint and achieve low communication cost. While the centralized solution can

be adapted to a distributed implementation, it is inefficient in a mobile opportunistic network,

since it intends to apply a deterministic transmission strategy in a nondeterministic network

by delivering all data packets via a predetermined tree. Based on such observation, I develop a

distributed online algorithm that makes an efficient decision on every transmission

opportunity. When a node meets another node, the former transmits the packet to the latter if

the latter helps reduce the cost to deliver the packet to its destinations while reaching a desired

delivery probability within a given delay budget. I prototype the proposed distributed online

multicast algorithm using Nexus tablets and conduct an experiment that involves 37

volunteers and lasts for 21 days to demonstrate its effectiveness. I also carry out simulations

to evaluate the scalability of the proposed schemes.

5.1 System Overview

Efficient multicasting is indispensable for supporting a variety of applications in mobile

opportunistic networks. In a multicast event, a source node intends to deliver data to a set of

destinations. Each node in a mobile opportunistic network can be a source node or a receiver

or more commonly both. Multicasted data span a range of categories, including, among many

others, advertisements, coupons, deals, newsletters, product catalogs, and event invitations.

While long data delivery delay is generally unavoidable given the intermittent



connectivity in mobile opportunistic networks, the constraint on end-to-end delivery delay is

highly desired in a variety of applications. For example, the dissemination of advertisements

or coupons must meet a delay budget no longer than its expiration date [27, 67, 96].

Separately, in wildlife tracking applications, interactive control commands must be

multicasted within a short end-to-end delay bound, as opposed to the routine transmissions of

ambient environmental data that can tolerate long delays. Data delivered beyond their delay

budgets often lead to reduced or completely forfeited value. However, due to nondeterministic

connectivity, it is intrinsically infeasible to provide a hard guarantee of end-to-end delivery

delay. Thus, a probability-based delay budget is adopted in this dissertation, which concerns

the probability to deliver a data packet to its destinations within a predefined delay budget.

Besides the delay constraint, it is obviously desired to minimize the total cost for

multicasting in mobile opportunistic networks. To this end, I study the delay-constrained

least-cost multicast problem in this dissertation, aiming to minimize the overall

communication cost and at the same time achieve a desired probability to deliver data to every

destination within a predefined delay budget. The formal problem formulation will be given

in Sec. 5.2.

5.2 Problem Formulation and 0-1 Integer Programming

In this section, I formally formulate the problem of delay-constrained least-cost multicast

in mobile opportunistic networks. I show it is essentially a NP-complete 0-1 integer program,

and present numeric results and discuss useful insights for developing heuristic and

distributed solutions.

Assume there are n nodes in the network and they form k opportunistic links. The delay

of each link is a random variable denoted by Tl , ∀1≤ l ≤ k. To formulate the delay-aware
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multicast problem, I define a 1× k binary transmission vector, X , for a data delivered from a

source s to a given set of destinations Φ. Each element of the vector is a 0-1 variable to be

optimized. If Xl = 1, the link l is employed for data dissemination; otherwise, the

communication opportunity will not be utilized. A transmission strategy, i.e., X , induces a

total communication cost (defined as CX ) and a random variable that represents the delay to

deliver the data to each destination (denoted as τd
X ,∀d ∈Φ). For analytic tractability, I assume

communication delay is dominated by nodal meeting intervals. In addition, I assume a node

receives and forwards the same data packet only once.1

Therefore the optimization problem is formulated as follows:

Minimize : CX ,

S.t. : Pr{τd
X ≤ δ} ≥ γ,∀d ∈Φ,

(5.1)

aiming to minimize the overall communication cost and at the same time reach a desired

probability γ to deliver data to every destination within a delay budget δ. Note that, due to

nondeterministic connectivity, it is intrinsically impossible to provide a hard guarantee of

end-to-end delivery delay. Thus, a probability-based delay budget is adopted in this

dissertation to achieve a desired probability of delivering data within a predefined delay

budget.

While the problem formulated above appears simple, it is nontrivial to be solved, since

the nondeterministic network setting dramatically increases the complexity to derive CX and

Pr{τd
X ≤ δ}. To derive the delay constraint in Eq. (5.1), I define a k×1 vector Y d for each

destination d, where an element of the vector is a 0-1 variable. I also define two matrices, A

1If other delay factors (e.g., communication delay) become significant or redundant copies of data are intro-

duced in transmissions, the problem formulation and the 0-1 integer programming still hold, but with difference

in the calculation of delay, i.e., τd
X .
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and B. A is a n× k network topology matrix, where Ai j = 1 if Node i is on Link j. B is a

n×|Φ| source-destination matrix, where Bi j = 1 if Node j is the source node s, Bi j =−1 if

Node j is the i-th destination, and Bi j = 0 otherwise. Then I introduce two constraints:

AY d = Bd, (5.2)

and

Pr{
k

∑
l=1

TlY
d
l ≤ δ} ≥ γ,∀d ∈Φ. (5.3)

The former ensures the links with Y d
l = 1 form a valid end-to-end path from s to d. The latter

enforces a desired probability of delivering data within a given delay budget. While it is

difficult to derive a close-form solution for Pr{∑k
l=1 TlY

d
l ≤ δ} under an arbitrary distribution

of Tl , ∀1≤ l ≤ k, it can be numerically calculated. More specifically, given the known delay

distribution of Tl , ∀1≤ l ≤ k, the distribution of ∑k
l=1 TlY

d
l can be derived by convolution. Of

course, under special distributions, the calculation can be dramatically simplified. Finally, I

create a set of constraints,

Y d
l ≤ Xl,∀1≤ l ≤ k, (5.4)

such that X captures all links used for data transmissions. The communication cost is often

proportional to the number of transmissions. Thus I simply let

CX =
k

∑
l=1

Xl. (5.5)

With such manipulation by plugging Eqs. (5.2)-(5.5) into Eq. (5.1), I have arrived at a 0-1

integer program. It is known NP-complete, but existing tools (such as Matlab [30]) can be

employed to determine X when the network is small.

I have carried out simulations to validate the above optimization model. The network is
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deployed in an area of 10×10, with 6 nodes following random walk mobility. The Tl of each

opportunistic link is obtained via online learning, and used in optimization calculation for

determining the transmission strategy X . The desired delivery probability is 0.6. Based on the

optimal X , I run a simulation and compare the simulation results with the numeric results

obtained from Eqs. (5.2)-(5.5). Fig. 5.1 depicts the results. In general, I observe a good match

in both cost and delivery ratio between the simulation and numeric calculation. Under very

small δ, no paths can be used to deliver packets to destinations within the desired delay budget

by following the optimization model. Therefore, no cost and delivery ratio are obtained by the

numeric calculation. In the simulation, packets are not transmitted according to any strategy

but only delivered when the source meets the destination directly, thus the cost is 1. With a

longer delay budget, cost increases too because more transmissions with longer delay are

aggressively attempted. At the same time, more packets can reach the corresponding

destinations and thus the delivery ratio naturally increases. However, when δ is sufficiently

large, many options of routing paths become available (that all satisfy the delay budget),

allowing the optimization model to choose the one with the lowest cost (i.e., the one that

involves the least transmissions). This explains why cost decreases under large δ.

5.3 Centralized Heuristic Algorithm

While the above 0-1 integer programming model can yield optimal results, it is

computationally expensive and thus unpractical for real-world implementation. Given the

NP-completeness of the problem, I explore efficient and scalable heuristic solutions.

I first introduce a centralized heuristic algorithm which aims to discover a tree for

multicasting (denoted by T), in order to meet the constraint in Eq. (5.1) and achieve low

communication cost. T can be considered as an approximation of the optimal X yielded from
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Figure 5.1: Comparison of the simulation and numeric results based on the 0-1 integer pro-

gramming model.

the 0-1 integer programming.

Initially, the tree T includes the source node only and all destinations are put into the set

Φ. The algorithm runs in iterations. Each iteration includes the following steps.

• First, it computes a path from every destination in Φ to the current tree, which satisfies

the constraint in Eq. (5.1) and at the same time introduces the least additional cost (e.g., the

fewest links in addition to the current tree). How to efficiently determine such a path is to be

discussed below.
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Figure 5.2: An example of the centralized heuristic algorithm.

• Second, the above step essentially creates |Φ| hypothetical new trees, each augmenting

the current tree by a path. A metric, named radiation, is computed to describe the goodness of

each hypothetical tree. The destination that results in the smallest radiation is chosen. It is

removed from Φ, and the corresponding hypothetical tree replaces the current tree.

• The above steps repeat until Φ is empty.

Fig. 5.2 shows an example of augmenting the tree under the algorithm, until it covers all

destinations. The algorithmic details are elaborated below.

5.3.1 Delay-Constrained Least-Cost Single Path Construction

The multicast tree T is initialized to include the source node s only and then augmented

to cover the destinations. In each iteration of the algorithm, I first discover a delay-constrained

least-cost (DCLC) path from each node in Φ (i.e., the set of remaining destinations) to the

current tree T. The DCLC path for a destination node d is the path with the least additional

cost while meeting the delay constraint. Note that, here I am concerned about the additional

cost to reach the destination d. The path from s to d may utilize some existing links in the

current multicast tree T. Such links do not contribute to the additional cost. By minimizing

the additional cost, I essentially encourage the reuse of existing links. The additional cost to

reach destination d is denoted by Cd
T

. Similar to the previous discussion, the delay constraint

71



is represented by Pr{τd
T
≤ δ} ≥ γ, where τd

T
is the delay from the source node s to the

destination node d via the chosen path. Again, since the distribution of any individual

opportunistic link delay (i.e., Tl) is known, the distribution of a path delay can be derived by

convolution. Thus once the path to d is determined, Pr{τd
T
≤ δ} can be calculated accordingly.

To solve the above DCLC problem between a node and a tree, I convert it to a standard

DCLC problem between two nodes. More specifically, I create a virtual node v and connect it

to every node in T via a virtual edge (as shown in Fig. 5.3a). Each virtual edge has a cost of

zero. Thus the DCLC path between v and a node d in Φ is equivalent to the DCLC path from

d to the multicast tree T.

The DCLC problem between two nodes is NP-hard in conventional networks with stable

links (unless all link costs are equal or all link delays are equal) [69]. It obviously remains

NP-hard in opportunistic networks. Thus I adopt a heuristic approach based on the idea

introduced in [69]. More specifically, from the current node x (which is initialized as v), I

recursively determine the next hop node, in order to achieve low cost while meeting the delay

constraint.

More specifically, I identify two paths between x and d by using Dijkstra’s algorithm: a

path with the least cost (see x,a1,a2, ...,d in Fig. 5.3b) and a path with the highest delivery

probability within delay budget δ, i.e., the highest Pr{τd
T
≤ δ} (see x,b1,b2, ...,d in Fig. 5.3b).

Then, I discover the path from a1 to d such that the path from x through a1 to d has the

highest delivery probability within delay budget δ (see x,a1,c1,c2, ...,d in Fig. 5.3b). If such

probability is greater than γ, I choose a1 as the next hop node; otherwise, b1 is chosen as the

next hop node.

Whenever the next hop is determined, I update x by the next hop node and repeat the
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Figure 5.3: DCLC problem.

above steps, until x = d, i.e., the destination is reached.

The above heuristic algorithm obviously results in a path that satisfies the delay

constraint, i.e., Pr{τd
T
≤ δ} ≥ γ. It intends to reduce the path cost by always using the least

cost path whenever it is possible. Of course, it does not guarantee the final cost (Cd
T

) is

minimized.

5.3.2 Selection of Best Hypothetical Tree Based on Radiation

The above step establishes a DCLC path from each node in Φ to the current tree T. If a

DCLC path does not exist for a destination, it is marked unreachable. It essentially creates up

to |Φ| hypothetical new trees, denoted by {Td|∀d ∈Φ}. Next I introduce a metric, named

radiation, to choose the best hypothetical tree.
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Each node d in Φ induces a hypothetical tree. Its radiation is defined as

Rd =
1

|Φ|−1
∑

i∈Φ,i 6=d

Ci
Td
, (5.6)

which is intrinsically the average least cost from the remaining destinations to the

hypothetical tree Td .

The hypothetical tree with the lowest radiation is selected, since it minimizes the average

cost for future destinations to join the tree. Accordingly, T is replaced by Td with minimum

Rd , and the corresponding d is removed from Φ.

The algorithm repeats the above process until all destinations have been added into the

tree, i.e., Φ = /0.

5.4 Distributed Online Algorithm

The above centralized algorithm can be adapted to a distributed implementation. For

example, each node can run it in a distributed manner according to its best-known knowledge

of the network. However, such algorithm, no matter in a centralized or distributed

implementation, is essentially an offline solution. It intends to discover an optimal routing tree

based on the network graph and transmits data according to the tree. This approach is well

accepted in conventional, deterministic networks. However, it is inefficient in a mobile

opportunistic network, since it intends to apply a deterministic transmission strategy in a

nondeterministic network by transmitting all data packets via a predetermined tree. In mobile

opportunistic networks, the optimal routing tree is the “best” only on a statistic basis when I

consider a large number of data packets. It is not necessarily the best solution for every

individual transmission.

For example, assume that under the optimal routing tree, Node A should transmit data
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packets to Node B, which is the statistically optimal strategy. But when Node A intends to

transmit a particular packet, it might not be able to establish a link with Node B within the

delay budget. Therefore, the transmission would fail if it is determined to wait for Node B.

Instead, it is obviously favorable to deliver the packet via other nodes it meets

opportunistically. In general, Node A may meet a sequence of nodes, similar to a stochastic

process. It must make an adaptive, online decision on which communication opportunity

should be exploited to deliver the packet, in order to achieve the optimization goal given in

Eq. (5.1).

Based on the above observation, I propose a distributed algorithm, where the online

routing decision is made when two nodes meet. A node often has a number of packets in its

data queues. It may transmit a packet directly to the destination or to an intermediate node

which subsequently continues to forward the packet directly or indirectly to the destination.

When a node meets another node, the former needs to decide whether to transmit a packet to

the latter. Such a routing decision must be made based on a delay/cost-aware multicast

routing metric, which indicates if the latter helps reduce the cost to deliver the packet to its

destinations while reaching a desired delivery probability within a given delay budget.

The proposed algorithm consists of two components, which respectively establish an

approximate multicast tree for each node and make appropriate online routing decisions, as

outlined below.

5.4.1 Approximate Multicast Tree

It is straightforward to establish an approximate multicast tree. Briefly, each node

discovers a set of opportunistic links with its direct neighbors and maintains the corresponding

delay distributions. In the implementation, I adopt discrete time slots for constructing
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approximate delay distributions, where a slot is ∆ minutes. The delay distribution of a direct

link between Nodes i and j can be represented by a vector [P1
i j,P

2
i j, ...,P

K
i j ], where Pk

i j is the

probability that their inter-meeting time is greater than (k−1)∆ and less than k∆. Such an

approximate delay distribution can be built via a trivial online learning algorithm according to

historical inter-meeting times. The nodes exchange such information when they meet, to learn

the remote opportunistic links up to a certain number of hops. Each node can thus employ the

heuristic algorithm introduced in Sec. 5.3 to compute a transmission strategy, i.e., a multicast

tree, in a distributed manner according to its best-known knowledge of the network.

Note that, for the sake of low communication overhead and computation complexity, the

approach is based on partial network information, and thus does not guarantee a complete

multicast tree. As a matter of fact, it often results in a tree that covers partial destinations only.

5.4.2 Online Dynamic Routing

To facilitate the discussion, I assume that each multicast data packet is associated with a

descriptive metadata, which includes a source (i.e. s), a set of multicast destinations (i.e. Φ),

and a sequence number (i.e. m).

After the packet is created by the source, it will be transmitted to a set of intermediate

nodes based on the routing scheme to be introduced below. Each node carries a responsibility

to deliver the packet to a subset of destinations. For example, let’s assume Node i currently

holds a multicast packet. It is responsible to deliver the packet to a set of destinations, Φi ⊆Φ.

Initially, Φi = Φ if Node i is the source, and Φi = /0 for all other nodes. Let Ti(Φi) denote the

multicast tree at Node i that intends to cover the destinations in Φi. It is built according to the

algorithm discussed in Sec. 5.3. The cost of the tree is denoted by CTi(Φi). If Ti(Φi) covers all

destinations in Φi (i.e., satisfies the constraint that Pr{τd
T
≤ δ} ≥ γ,∀d ∈Φi), CTi(Φi) is simply
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the sum of all link costs. Otherwise, the cost is set to be infinity. In other words, I have

CTi(Φi) =















∑l∈Ti(Φi)Cl, Φi ⊆ Ti(Φi),

∞, Φi 6⊆ Ti(Φi),

(5.7)

where Cl is the cost of an opportunistic link l ∈ Ti(Φi), which is set to 1 for simplicity in the

implementation.

Since communication opportunity is low, transmission is often between two nodes only.

If more than two nodes are within communication range, I assume an underlying medium

access control protocol (e.g., IEEE 802.11) that randomly selects one node as the sender and

another as the receiver. Therefore I focus on the scenario where Node i transmits a data packet

to Node j in the following discussion.

When Node i meets Node j, the former instructs the latter to compute a multicast tree,

aiming to cover the destination set Φi. Node j may or may not be able to cover the entire Φi.

Let T j(Φ j) denote the tree constructed by Node j, where Φ j ⊆Φi.

Node i transmits the packet to Node j, if and only if the following condition is satisfied:

CTi(Φi−Φ j)+CT j(Φ j)+1≤CTi(Φi). (5.8)

The above condition indicates that the cost can be reduced by splitting the delivery

responsibilities between Nodes i and j.

If Node i does transmit the packet to Node j, it updates its destination set to be

Φi , Φi−Φ j. (5.9)

Node i stops transmitting the multicast packet when either Φi = /0 or the delay budget expires.

A key advantage of the online algorithm is to exploit nondeterministic communication

opportunities. This is in a sharp contrast to the centralized algorithm that relies on a

77



precomputed static routing tree.

5.5 Prototype and Experiment

To demonstrate the feasibility and efficiency of the proposed algorithms and to gain

useful empirical insights, I have carried out a testbed experiment using off-the-shelf Nexus

tablets. In this section, I first introduce the testbed setup and then present experimental results.

5.5.1 Prototype and Testbed Setup

The experiment is carried out under a mobile social network setting that involves 37

volunteers including faculty members, senior Ph.D. students (who do not have classes), and

graduate students at M.S. level (who go to classrooms regularly). A mobile social network is

often created for a local community where the participants have frequent interactions, e.g.,

people living in a neighborhood, students studying in a college, or tourists visiting an

archaeological site. It exploits Bluetooth and WiFi connections to form a sparse ad hoc

network to support social networking. This is in a sharp contrast to web-based online social

networks that rely on Internet infrastructure (including cellular systems) for communication.

The volunteers in this experiment have arbitrary and diverse mobility. Every volunteer

carries a Nexus 7 tablet powered by Android 4.4, KitKat. The mobile nodes are paired and

ready to communicate with each other via direct WiFi. In order to save power, a Service is

created which runs on background to adaptively adjust the scanning frequency. The default

scanning interval is set to 10 minutes during night and 1 minute during daytime. A node

generates 24 multicast events everyday with delay budgets randomly distributed between 0.5

to 5 days. The number of destinations and the destination nodes for each multicast are

randomly selected. The experiment had run for 21 days, starting from Tuesday 11:00 a.m. in

the first week to Tuesday 1:00 p.m. in the third week. The first week is used as a warm-up
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period for nodes to accumulate network information.

I use the following metrics to evaluate the performance of the proposed schemes: (1)

cost, i.e., the average number of hops used for each destination to receive a data packet; (2)

delivery ratio, i.e., the ratio of the number of delivered packets to the total number of packets

generated; (3) success rate, i.e., the ratio of multicast jobs that meet the delay constraints to

the total number of multicast jobs; and (4) delay, i.e., the average delay for a destination to

receive a data packet.

5.5.2 Experimental Results

Fig. 5.4 compares the performance of different schemes, including “Direct Delivery”

where a data packet is only delivered from the source to the destinations directly; “Epidemic”

where data packets are transmitted to the destinations via epidemic routing [84];

“Social-Aware” multicast [29] which selects relays according to social-based metrics for

forwarding data to the destinations; and “Centralized” and “Distributed” that stand for the

proposed centralized and distributed schemes, respectively. Under the centralized algorithm,

each source collects network information to compute a multicast tree.

As illustrated in the figure, the proposed distributed algorithm performs the best.

Fig. 5.4a shows it achieves significantly lower cost than other schemes. More specifically, its

average cost is 72% of that of Social-Aware and 83% of that of the centralized algorithm.

Although it appears anti-intuitive to observe the lower performance of the centralized scheme,

it is actually reasonable. As discussed earlier, the centralized solution intends to apply a

deterministic transmission strategy in a nondeterministic network by delivering all data

packets via a predetermined tree. This is inefficient in a mobile opportunistic network. As

shown in Fig. 5.4b, the distributed algorithm shows 21% increase in the overall delivery ratio
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compared with the centralized algorithm and 36% increase compared with Social-Aware.

Similar results are illustrated in Fig. 5.4c in terms of delay. The distributed algorithm shows

over 20% decrease compared with the centralized algorithm and Social-Aware.

Figs. 5.5a-5.5i depict the performance variation among different days. In general, there

are more communication opportunities during weekdays than weekends, due to the lower

interactive activities between students and faculty on Saturday and Sunday. As a result, more

packets are received during weekdays than weekends. The packets generated in weekends

have longer delay compared with those in weekdays. The delay of packets generated on

Friday is also high because no classes are scheduled on Friday afternoon and many offices are

closed after 1:00 p.m. In addition, the cost is also higher during weekends, because there are

less options to deliver data packets.

Figs. 5.5d-5.5f further zoom in to show the results in each hour of a day. Delivery ratio is

high during daytime and low at night, which again shows the packet delivery heavily depends

on nodal mobility. Likewise, as shown in Fig. 5.5f, the daytime delay is generally shorter than

that during night, and in Fig. 5.5d the daytime cost is generally less than that during night.

The cost, delivery ratio, and delay distributions are illustrated in Fig. 5.5g-5.5i. In

general, the performance of different multicast packets varies due to the randomness in nodal

mobility. As can be seen, more than 65% packets reach destinations within eight hours, and

all packets are delivered within four hops.

5.6 Simulation Results

Besides the experiment discussed above, extensive simulations are carried out to learn

the performance trend of the proposed algorithms under various network settings, which are

not practical to evaluate by using lab equipments. The simulation codes are extracted from the
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Figure 5.4: Performance comparison under the testbed experiment.
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(h) Delivery ratio distribution.
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(i) Delay distribution.

Figure 5.5: Experimental results based on the proposed distributed scheme.
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prototype implementation, and the simulation results are obtained under real-world traces and

random walk mobility model. Each simulation with a delay constraint is repeated 100 times

with a random source node and a fixed number of randomly selected destinations for

statistical convergence. The desired delivery probability is 0.8.

5.6.1 Simulation under DieselNet Trace

I have evaluated the proposed schemes under several real-world traces. Fig. 5.6 shows

the results based on DieselNet trace [8], which comprises 33 buses, serving an area of

approximately 150 square miles. Fig. 5.6 shows the simulation results of different schemes,

which demonstrate a similar trend as the experimental results in Fig. 5.4.

Fig. 5.7 illustrates the performance of the proposed distributed online algorithm under

different delay budgets. Increasing the delay budget results in more aggressively attempted

transmissions, including longer paths, thus leading to higher average cost. At the same time,

the delivery ratio and delay naturally increase with larger delay budget. However, when the

delay budget is sufficiently large (e.g., larger than 3 days in these simulations), there are more

options of data delivery paths. As a result, the algorithm is able to choose the one with lower

cost. Accordingly, the overall cost decreases. In addition, higher probability threshold γ

generally results in higher cost, delay, and average delivery ratio, because it enforces the

nodes to adopt more aggressive approaches for data delivery. However, I would like to point

out that the success rate (i.e., the faction of multicast jobs that meet the delay requirements)

decreases when γ increases as shown in Fig. 5.7d. This is because it becomes more difficult to

achieve Pr{τd
X ≤ δ} ≥ γ, ∀d ∈Φ, when γ is large.

Fig. 5.8 illustrates the results when I vary the size of destination set. In general, it is more

challenging to achieve a delay-constrained multicasting for a larger destination set, thus
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Figure 5.6: Performance comparison under DieselNet trace.
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(d) Success rate vs. delivery ratio.

Figure 5.7: Simulation results with different delay constraints under DieselNet trace.

leading to higher cost and longer delay. At the same time, the average delivery ratio and

success rate both decrease as shown in the figure.

5.6.2 Simulation under Random Walk Mobility Model

Besides the above results based on traces, I have carried out a simulation under random

walk mobility model, which enables convenient study of performance trend with the variation

of several network parameters. More specifically, the network is deployed in an area of

20×20. The default network parameters include a network of 100 nodes and a generation rate

of 0.02 (or one packet per 50 time units) per node.

In an opportunistic mobile network, the communication capacity highly depends on the

meeting opportunities among mobile nodes. As shown in Fig. 5.9a, the delivery ratio grows

with the increase of network density, because the nodes have more opportunities to meet each

other and exchange their packets. The impact of traffic load is illustrated in Fig. 5.9b. While

the delivery ratio keeps stable at the beginning under all schemes, it starts to drop when the

generation rate exceeds 0.03. In general, with a higher packet generation rate, the overall
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(b) Success rate vs. delivery ratio.
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Figure 5.8: Simulation results with different size of destination sets under DieselNet trace.
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traffic load increases, resulting in more frequent data overflow and consequently lower

delivery ratio. Fig. 5.9c shows that a higher delivery ratio is achieved with the increase of

queue size, because more packets can be kept in the queue until they are delivered.

5.7 Conclusion

In this chapter, I have studied the problem of delay-constrained least-cost multicast in

mobile opportunistic networks. I have formally formulated the problem and shown it is

NP-complete. Given its NP-completeness, I have first introduced a centralized heuristic

algorithm which aims to discover a tree for multicasting, in order to meet the delay constraint

and achieve low communication cost. While the centralized solution can be adapted to a

distributed implementation, it is inefficient in a mobile opportunistic network, since it intends

to apply a deterministic transmission strategy in a nondeterministic network by delivering all

data packets via a predetermined tree. Based on such observation, I have developed a

distributed online algorithm that makes an efficient decision on every transmission

opportunity. When a node meets another node, the former transmits the packet to the latter if

the latter helps reduce the cost to deliver the packet to its destinations while reaching a desired

delivery probability within a given delay budget. I have prototyped the proposed distributed

online multicast algorithm using Nexus tablets and conducted an experiment that involved 37

volunteers for 21 days. I have also carried out simulations to evaluate the scalability of the

proposed schemes under large-scale networks.

90



10 25 50 75 100 125 150
0

10

20

30

40

50

60

70

80

90

100

 

 

Epidemic
Social−Aware
Centralized
Distributed
Direct Delivery

10 25 50 75 100 125 150
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

D
el

iv
er

y 
R

at
io

 (
%

)

(a) Network density.

0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

60

70

80

90

100

 

 

Epidemic
Social−Aware
Centralized
Distributed
Direct Delivery

0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

60

70

80

90

100

Generation Rate (Packets/Time Unit)

D
el

iv
er

y 
R

at
io

 (
%

)

(b) Traffic load.

100 250 500 750 1000
0

10

20

30

40

50

60

70

80

90

100

 

 

Epidemic
Social−Aware
Centralized
Distributed
Direct Delivery

100 250 500 750 1000
0

10

20

30

40

50

60

70

80

90

100

Queue Size

D
el

iv
er

y 
R

at
io

 (
%

)

(c) Queue size.

Figure 5.9: Performance comparison under random walk mobility model.
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CHAPTER 6: Conclusion

In this dissertation, I have studied QoS-aware data query and dissemination in mobile

opportunistic networks. The major contributions are summarized as follows.

• I have studied the problem of data query in mobile opportunistic networks, aiming to

determine an optimal transmission strategy that supports the desired query rate within a delay

budget and at the same time minimizes the total communication cost. I have developed a

distributed data query protocol for practical applications. To demonstrate the feasibility and

efficiency of the proposed scheme and to gain useful empirical insights, I have carried out a

testbed experiment by using 25 off-the-shelf Dell Streak tablets for a period of 15 days.

Moreover, I have run extensive simulations to learn the performance trend under various

network settings, which are not practical to build and evaluate in laboratories.

• I have proposed a QoS-aware data delivery scheme for mobile opportunistic networks.

It employs QoS-aware delivery probability (QDP) to reflect the capability of a node to deliver

data to a destination within a given delay budget and maintains a prioritized queue, where the

priority is determined by a function of traffic class and dynamic redundancy in order to

support efficient prioritization and redundancy control. Two experiments have been carried

out to demonstrate and evaluate the proposed QoS-aware data delivery scheme. The first

experiment involves multiple clusters of static Crossbow sensors that are connected by air and

ground mobile nodes with controlled mobility. The second experiment is under a mobile

social network setting during a period of two weeks, where the prototype is implemented by

Dell Streak Android tablets carried by 23 volunteers with arbitrary and diverse mobility

patterns. Moreover, simulation results have been obtained under DieselNet trace and

power-law mobility model to study the scalability and performance trend. The experiments



and simulations have shown that the proposed scheme achieves efficient resource allocation

according to the desired delay budget, thus supporting effective QoS provisioning.

• I have studied the problem of delay-constrained least-cost multicast in mobile

opportunistic networks. I have formally formulated the problem and shown it is NP-complete.

Given its NP-completeness, I have first introduced a centralized heuristic algorithm which

aims to discover a tree for multicasting, in order to meet the delay constraint and achieve low

communication cost. While the centralized solution can be adapted to a distributed

implementation, it is inefficient in a mobile opportunistic network, since it intends to apply a

deterministic transmission strategy in a nondeterministic network by delivering all data

packets via a predetermined tree. Based on such observation, I have developed a distributed

online algorithm that makes an efficient decision on every transmission opportunity. When a

node meets another node, the former transmits the packet to the latter if the latter helps reduce

the cost to deliver the packet to its destinations while reaching a desired delivery probability

within a given delay budget. I have prototyped the proposed distributed online multicast

algorithm using Nexus tablets and conducted an experiment that involved 37 volunteers and

lasted for 21 days. I have also carried out simulations to evaluate the scalability of the

proposed schemes under large-scale networks.
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ABSTRACT 

        Mobile opportunistic networks are formed by mobile users who share similar interests 

and connect with one another by exploiting Bluetooth and/or WiFi connections. Such 

networks not only re-assemble the real-world interaction between people, but also can 

effectively propagate data among mobile users. This dissertation focuses on QoS-aware data 

query and dissemination in mobile opportunistic networks. 

        Firstly, I develop a distributed data query protocol for practical applications. To 

demonstrate the feasibility and efficiency of the proposed scheme and to gain useful 

empirical insights, I carry out a testbed experiment by using 25 off-the-shelf Dell Streak 

tablets for a period of 15 days. Moreover, extensive simulations are carried out to learn the 

performance trend under various network settings, which are not practical to build and 

evaluate in laboratories. 

        Secondly, the QoS-aware delivery probability (QDP) is introduced to reflect the 

capability of a node to deliver data to a destination within a given delay budget. Two 

experiments are carried out to demonstrate and evaluate the proposed QoS-aware data 

delivery scheme. Moreover, simulation results are obtained under DieselNet trace and power-

law mobility model to study the scalability and performance trend. Our experiments and 

simulations demonstrate that the proposed scheme achieves efficient resource allocation 
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according to the desired delay budget, and thus supports effective QoS provisioning. 

        Finally, I study the problem of delay-constrained least-cost multicast in mobile 

opportunistic networks. I formally formulate the problem and show it is NP-complete. Given 

its NP-completeness, I explore efficient and scalable heuristic solutions. I first introduce a 

centralized heuristic algorithm which aims to discover a tree for multicasting, in order to 

meet the delay constraint and achieve low communication cost. I develop a distributed online 

algorithm that makes an efficient decision on every transmission opportunity. I prototype the 

proposed distributed online multicast algorithm using Nexus tablets and conduct an 

experiment that involves 37 volunteers and lasts for 21 days to demonstrate its effectiveness. 

I also carry out simulations to evaluate the scalability of the proposed schemes. 
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