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ABSTRACT

This dissertation presents LAISYC, a modular location-aware architecture for intelligent
real-time mobile applications that is fully-implementable by third party mobile app
developers and supports high-precision and high-accuracy positioning systems such as
GPS. LAISYC significantly improves device battery life, provides location data
authenticity, ensures security of location data, and significantly reduces the amount of
data transferred between the phone and server. The design, implementation, and
evaluation of LAISYC using real mobile phones include the following modules: the GPS
Auto-Sleep module saves battery energy when using GPS, maintaining acceptable
movement tracking (approximately 89% accuracy) with an approximate average doubling
of battery life. The Location Data Signing module adds energy-efficient data authenticity
to this architecture that is missing in other architectures, with an average approximate
battery life decrease of only 7%. The Session Management and Adaptive Location Data
Buffering modules also contribute to battery life savings by providing energy-efficient
real-time data communication between a mobile phone and server, increasing the average
battery life for application data transfer by approximately 28% and reducing the average
energy cost for location data transfer by approximately 38%. The Critical Point
Algorithm module further reduces battery energy expenditures and the amount of data
transferred between the mobile phone and server by eliminating non-essential GPS data

(an average 77% reduction), with an average doubling of battery life as the interval of

Xi



time between location data transmissions is doubled. The Location Data Encryption
module ensures the security of the location data being transferred, with only a slight
impact on battery life (i.e., a decrease of 4.9%). The LAISYC architecture was validated
in two innovative mobile apps that would not be possible without LAISYC due to energy
and data transfer constraints. The first mobile app, TRAC-IT, is a multi-modal travel
behavior data collection tool that can provide simultaneous real-time location-based
services. In TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location
Data Buffering, Critical Point algorithm, and the Session Management modules all
contribute energy savings that enable the phone’s battery to last an entire day during real-
time high-resolution GPS tracking. High-resolution real-time GPS tracking is critical to
TRAC-IT for reconstructing detailed travel path information, including distance traveled,
as well as providing predictive, personalized traffic alerts based on historical and real-
time data. The Location Data Signing module allows transportation analysts to trust
information that is recorded by the application, while the Location Data Encryption
module protects the privacy of users’ location information. The Session Management,
Adaptive Location Data Buffering, and Critical Point algorithm modules allow TRAC-IT
to avoid data overage costs on phones with limited data plans while still supporting real-
time location data communication. The Adaptive Location Data Buffering module
prevents tracking data from being lost when the user is outside network coverage or is on
a voice call for networks that do not support simultaneous voice and data
communications. The second mobile app, the Travel Assistance Device (TAD), assists
transit riders with intellectual disabilities by prompting them when to exit the bus as well

as tracking the rider in real-time and alerting caregivers if they are lost. In the most

Xii



recent group of TAD field tests in Tampa, Florida, TAD provided the alert in the ideal
location to transit riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session
Management, Adaptive Location Data Buffering, Critical Point algorithm, and the
Session Management modules all contribute energy savings that enable the phone’s
battery to last an entire day during real-time high-resolution GPS tracking. High-
resolution GPS tracking is critical to TAD for providing accurate instructions to the
transit rider when to exit the bus as well as tracking an accurate location of the traveler so
that caregivers can be alerted if the rider becomes lost. The Location Data Encryption
module protects the privacy of the transit rider while they are being tracked. The Session
Management, Adaptive Location Data Buffering, and Critical Point algorithm modules
allow TAD to avoid data overage costs on phones with limited data plans while still
supporting real-time location data communication for the TAD tracking alert features.
Adaptive Location Data Buffering module prevents transit rider location data from being
lost when the user is outside network coverage or is on a voice call for networks that do

not support simultaneous voice and data communications.
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CHAPTER 1: INTRODUCTION

Mobile phones have become one of the most ubiquitous computing devices in modern
history. As a result of mass production, cellular carrier subsidies, and decreasing
technology costs, more people have access to mobile phones today than any other time in
world history. As of late 2011, there were an estimated 5.9 billion mobile-cellular
subscriptions worldwide yielding a global penetration rate of 87%, with a 79%

penetration rate in developing countries [1].

In developed countries such as the United States, mobile phones are becoming so
common that wireless penetration is reaching the point of saturation with only a small
percentage of the population not owning mobile phones. For example, in the United
States as of June 2011 there are 322.9 million mobile subscriptions with a penetration
rate of 102.4%, indicating that a large number of individuals have multiple subscriptions
[2]. A contributing factor to this growth is that many individuals are giving up their
landline telephones in favor of mobile phones. In April 2011, 26.6% of U.S. households
were wireless—only, meaning that they use only a cell phone instead of a landline
telephone to make calls [3]. As a result of increasing penetration and reliance on cell
phones for a variety of everyday tasks, mobile phones have become important devices to
many individuals around the world. A 2009 survey indicates that 82% of Americans
never leave their house without their phone, while 42% stated “they cannot live without

their phone” [4].



1.1  Mobile Applications

Cell phones have become immensely popular not only for their ability to make phone
calls, but also for their ability to perform general computing tasks that previously
required expensive personal computers. Perhaps one of the most popular features of
modern smart phones is the ability to execute mobile applications. Mobile applications,
or “apps,” are software products that are typically developed by a third-party that does
not have a direct relationship with the device manufacturer (e.g., HTC, Samsung,
Motorola, Apple, Research in Motion), cellular carrier (e.g., Sprint-Nextel, AT&T,
Verizon Wireless), or operating system vendor (e.g., Google, Microsoft). Instead, the
mobile app is created by software engineers and then directly sold and distributed to the
customer, often through online software vending services such as the Google Android
Market [5], Apple AppStore for the iPhone [6], Blackberry AppWorld [7], Amazon
AppStore for Android [8], and GetJar for Java Micro Edition and Android [9]. As a
result of these vending services and an increasing availability of smart phones, the
number of mobile apps downloaded has proliferated over the last few years. An
estimated 29 billion apps were downloaded worldwide in 2011 [10], an astounding
increase of 20 billion downloads since 2010 [10]. Revenues for app developers are
expected to increase rapidly over the next few years, with an estimated global app

revenue of $7.3 billion in 2011 and $36.7 billion by 2015 [11].

1.2 Positioning Technologies

One key difference between mobile phones and desktop computers is that mobile phones
constantly change geographic location, unlike desktop computers, which are tethered to a

single physical location for months or years. Even laptops do not have the level of



mobility that cell phones offer. Laptops can be moved from one place to another, but
typically they are in operation for only several hours at a time and then shut down before
being moved. In contrast, mobile phones typically remain on during the entire day and

can be actively used when the user is in motion.

During the emergence of cell phones in the late 1990s, the U.S. Federal Communication
Commission (FCC) became concerned that extreme mobility of cell phones could cause
problems for emergency responders attempting to locate a mobile 911 caller, since,
unlike a landline phone that is associated with a street address, little is known about the
real-time location of a mobile phone. Even if the 911 operator knows what cellular tower
a mobile phone is communicating with, this information is of little help to responders
since the coverage area of a single cell tower can be several square miles. As a result of
the lack of positional knowledge for mobile 911 callers, the FCC issued the E911
mandate, requiring cellular carriers to implement technologies that could accurately
locate mobile 911 callers within 50 to 300 meters, depending on the underlying
technology [12]. U.S. carriers tested a wide variety of positioning technologies for their
networks. Global System for Mobile Communication (GSM)-based U.S. carriers such as
AT&T and T-Mobile chose network-based Uplink Time Difference of Arrival (U-
TDOA) to support E911 position requests [13]. Code Division Multiple Access
(CDMA)-based U.S. carriers such as Sprint and Verizon chose handset-based Global
Positioning System (GPS) solutions for devices on their networks because GPS
technology was already integrated into the network as a time reference for CDMA-based

wireless communications [13, 14].



Since U.S. cellular carriers were mandated to invest a significant amount of time, effort,
and funds into positioning technology implementations, carriers immediately began to
investigate commercial applications of these technologies for mobile phone users so they
could recover a portion of their investments through user fees. Early deployments of
these technologies for commercial purposes become known as location-based services
(LBS), which are a general class of services that provide users with some type of

information based on their real-time or historical location.

Of the positioning technologies implemented for E911 purposes, GPS-based solutions are
by far the most accurate, with an estimated 3-5 meters of positional accuracy under ideal
conditions [15-19]. Since this level of accuracy is also sufficient to provide commercial
services such as real-time driving directions to mobile phone users, GPS became an
attractive technology not only for E911 purposes but also for general consumer LBS. As
a result, U.S. T-Mobile and AT&T have since implemented GPS-based positioning
technologies in their handsets in order to provide commercial services based on the
technology [14]. Global trends of GPS penetration in handsets to support commercial
services have also surged upwards, with 79.9% of cell phones shipped in the fourth

quarter of 2011 (318.3M) having integrated GPS [20].

1.3 Location-Aware Mobile Applications

With the availability of positioning technologies such as GPS in mobile phones, and the
advent of apps, third-party application developers became interested in utilizing location
information within their applications. There were two major developments in mobile

phones that made widely deployable location-aware mobile applications possible: the



emergence of cross-platform application environments for mobile phones such as Java 2
Micro Edition, now referred to as Java Micro Edition (Java ME), and the ability to run
applications in the background (i.e., a Multitasking Virtual Machine). Both

developments are discussed below.

1.3.1 Cross-Platform Application Environments

The diversity and rapid evolution of mobile phone hardware creates a significant
challenge for application developers. If the developer were to design and implement
software that directly interfaced with the hardware and operating system for each phone,
they would be forced to redesign the application for nearly every single mobile phone
model that is released by each manufacturer, an extremely costly task. To ease the
burden on developers and create a sustainable mobile application ecosystem, applications
platforms that hide some of the lower-level detail of the hardware and operating system
(OS) implementation have emerged. Instead of directly accessing these hardware and OS
components, application instead interact with interfaces that abstract the underlying
implementation details. This design allows the underlying hardware or OS to change and
evolve without modifying the higher-level interfaces. Applications can therefore
indirectly interact with the underlying hardware without the burden of rapidly

redesigning their applications for every new mobile phone model.

Java ME, designed after the cross-platform Java virtual machines initially created for
portability of desktop and server applications, was the first cross-platform application
environment to emerge for mobile phones. Google’s Android is a newer cross-platform

environment for smart phones that has recently emerged, although in this dissertation the



majority of focus is on Java ME since at the time of this research Java ME was the
primary cross-platform environment that was widely accepted in the telecommunications

industry [21, 22].

One drawback to the standardization of high-level application programming interfaces
across multiple hardware and operating system platforms is that there must be consensus
in the industry for how this interface is designed, and this can take time to develop. For
example, the introduction of positioning technologies in mobile phones for E911
purposes in the late 1990s and early 2000s did not mean that this technology was
immediately available to third-party application developers. In fact, a location
application programming interface (API) was not standardized for Java ME until
September 2003 [23]. The Java Specification Request (JSR) 179 Location API for Java
ME, and the subsequent JSR 293 Location API 2.0, defined a set of functions that a
mobile application developer could use to access location information on a Java ME
handset that implemented the JSR 179 or JSR 293 standards [22-24]. For the first time,
an application developer could develop a location-aware application that accessed
positioning technologies such as GPS and could work on devices from many different
manufacturers and cellular carriers without significant modification, a critical

development in the emergence of location-aware mobile apps.

1.3.2 Multitasking Virtual Machines

The second major development in the emergence of location-aware mobile applications
was the ability to run applications in the background. Many of the first Java ME mobile

phones released in the early 2000s did not have Multitasking Virtual Machines (MVMs),



which prevented applications from being executed in the background while the user
performed a different task (e.g., phone call, web browsing, phone in standby mode) in the
foreground. In other words, only a single application could be executed at a time, and
that application could not be executed in the background. This limitation prevented an
application from monitoring the location of the phone unless the user was actively using
the application, which severely restricted the scope of location-aware mobile applications
that could be implemented by third party software developers. MVVMs for Java ME were
introduced in Motorola iDEN phones circa 2004 [25], which opened up opportunities for
a new breed of location-aware applications that could monitor and act upon a user’s

geographic location, even if the user was not actively using the phone.

1.4 Problem Statement

The ubiquity of mobile phones, the availability of positioning systems to application
developers, and the popularity of cross-platform mobile apps creates an environment rich
for innovation in the area of location-aware applications. However, while location-aware
applications have been implementable since the mid-2000s, there have been few popular
real-time commercial mobile applications that are based primarily on high-precision and
high-accuracy positioning systems (e.g., GPS). The lack of evolution of location-aware

apps can be attributed to several key limitations in current commercial applications:

1) Commercial location-aware apps are a “black box”
2) Commercial location-aware apps require active user management of location
features due to impact on device resources (e.g., battery life)

3) Commercial location-aware apps are often limited to “locate->send” functionality



4) Commercial location-aware apps are often lacking device-based intelligence

These limitations are discussed in the context of existing mobile applications in Chapter 2

of this dissertation.

Typically, architectures discussed in academic literature would gradually address the
difficulties faced by location-aware apps and provide solutions that could help advance
the industry. However, there has also been little evolution of the capabilities of location-
aware architectures over the last 10 years. Due to the potential negative impact of some
hybrid positioning technologies (e.g., assisted GPS) on the cellular network, cellular
carriers have limited access to Location APIs on Java ME devices to industry partners
[22]. Limited access to Location APIs, as well as the significant financial costs of mobile
devices and data service plans, have largely reduced academic experimentation to the use
of software emulators or laptops as proxies for cell phones. Emulators and laptops are
simplistic models of logical program execution for mobile applications and do not
appropriately model real-world conditions such as energy consumption of positioning

technologies or wireless communication.

Lack of sufficient real-world experimentation with actual mobile devices has produced

four primary shortfalls in known location-aware architectures:

1) Battery energy limitations are not addressed. Many architectures are designed
without acknowledging that mobile devices have a finite energy supply, and that
positioning systems such as GPS, wireless communications, and use of the CPU
to execute the architecture components all have a significant impact on battery
energy levels. Recent research [26-38] confirms that battery life is a significant

8



limiting factor for mobile applications running on modern mobile devices, and
that GPS is a significant consumer of energy [28, 29, 32, 33, 35, 36, 38, 39].
Currently, only two existing location-aware architectures [32, 33] even directly
address battery life. Comparison between these two architectures and our research
is provided in Chapter 2.

2) Cellular data transfer limitations are not addressed. Many architectures are
designed without consideration of constrained cellular network bandwidth and
potential financial charges to the end-user for excessive data traffic.

3) Lack of integration with existing platforms on commercially-available devices
(e.g., Java Micro Edition, Android). Many existing location-aware architectures
presented in literature utilize custom operating systems or protocols which are not
readily available on commercially-available mobile phones, and therefore cannot
be widely deployed as mobile apps to existing phones.

4) Lack of evaluation of efficacy of location-aware architectures. Few location-
aware architectures have actually been evaluated on real mobile devices, and as a
result there is little quantifiable evidence of these architectures’ efficacy with real
devices. Only one existing location-aware architecture performs experiments
with actual mobile devices [33], and we compare this location-aware architecture

to our research in Chapter 2.

As a result, there is a demand for a new location-aware architecture that meets following

needs:



e Need #1: Intelligently manage limited device and network resources. The
architecture must acknowledge that location-aware apps can deplete significant
device and network resources, and the architecture must demonstrate features that
conserve these resources.

e Need #2: Support real-time applications. A significant portion of the architecture
must be implemented on the mobile device to allow software to immediately act
upon new data in real-time and immediately interact with the mobile user.

e Need #3: Support high-precision and high-accuracy positioning systems.
Positioning technologies such as high-sensitivity assisted GPS must be usable
within the architecture to support the most innovative types of location-aware
apps that require highly accurate and precise location information.

e Need #4: Is fully implementable by third party mobile app developers. The
architecture must take into account the availability of application programming
interfaces (APIs) in existing cross-platform application environments such as Java
Micro Edition or Android and ensure that the architecture can be implemented on

such devices.

However, there are many challenges that must be addressed when creating a new
architecture that meets these needs. Challenges can be categorized into the following key

areas:

1) Collecting and acting on real-time data consume limited device resources. When

an application is executed to record and process data, this requires use of CPU
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1.5

2)

3)

4)

and memory resources, which in turn use battery energy, and, if communicating
with a server, increases network data traffic

Using high-precision and high-accuracy positioning systems consume limited
device resources. GPS is the most accurate and precise positioning system widely
available on mobile phones. However, it is also one of the highest consumers of
battery energy, and for assisted or hybrid GPS solutions, network bandwidth.
Balancing tradeoffs between real-time app requirements and limited device
resources is not trivial. Since monitoring and reacting to information also
consumes the same limited device resources the software is trying to preserve,
there are no simple solutions for highly accurate and precise location-aware
applications that are always active.

Mobile hardware is proprietary and rapidly changing. Hardware and operating
system functionality is abstracted by high-level software layers APIs (e.g.,

Android, Java ME), which limit control of underlying hardware

Contributions

This dissertation presents the Location-Aware Information SYstems Client (LAISYC), a

modular mobile software architecture that meets the needs of intelligent real-time mobile

applications and is fully implementable by third party mobile application developers.

Table 1 shows the relationship between each LAISYC module and the needs of

intelligent real-time mobile applications that it addresses.
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Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules are
designed to meet the various critical needs of intelligent real-time mobile
applications in Location-Based Services

Need #1: Need #2: Need #3: Need #4:
Intelligently Still Supports high- | Fully
manages supports precision and implementable
limited real-time high-accuracy by 3" party
LAISYC device/network | applications? | positioning mobile app
Modules resources systems developer
Session *
Management X X X
GPS Auto- X X X x(*
Sleep
Critical
Point X X X X
Algorithm
Adaptive
Location X X X*
Buffering
Location
Data X X X
Encryption
Location
Data Signing X X X

*Interacts directly with the mobile device platform via Application Programming
Interfaces (APIS)

We reference the needs listed in Table 1 throughout this dissertation as we discuss

specific examples of how LAISYC meets each need.

Each module in LAISYC has been implemented and tested on mobile devices in Java
Micro Edition as part of our research to demonstrate that each module is fully
implementable by third party mobile application developers (Need #4). This prototype
testing is especially important for the Session Management, GPS Auto-Sleep, and
Adaptive Location Buffering modules because they interact with and depend upon

features implemented in the mobile device platform. While we discuss the characteristics
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of each module in detail in Chapter 3, the following paragraphs briefly state how each

module meets the needs, as shown in Table 1.

The general communication framework between the mobile device and server is
implemented in the Session Management module using a strategic combination of the
HyperText Transfer Protocol (HTTP) [40], used for occasional transfer of application
data, and the User Datagram Protocol (UDP) [41], a lightweight connectionless protocol
used to transport real-time location data. Chapter 4 of this dissertation presents
experiments showing that by using UDP as the main location data transfer protocol
instead of the Transmission Control Protocol (TCP) [42], the impact on mobile device
battery life is reduced (Need #1) while still supporting real-time location services (Need
#2). The Location Data Buffering module supports efficient real-time communication
(Needs #2 and #4) by increasing the probability of UDP location data being successfully
received by the server via an occasional verification of an open data connection using

TCP.

The GPS Auto-Sleep module intelligently adjusts the frequency of GPS recalculations
(Need #3) based on the real-time and historical movement of the user (Need #2). This
allows high-resolution tracking of the user using GPS when moving with a gradual
transition to less frequent GPS fixes when the user stops moving, thereby conserving
battery life and network traffic to transfer this data back to the server (Need #1). The
Critical Point Algorithm filters a real-time stream of location data points (Need #4) and
eliminates redundant points to produce a smaller data set that still accurately represents

the path of the mobile device (Need #3). By reducing the amount of data required to send
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a device’s path from a mobile device to a server, the Critical Point Algorithm reduces the
impact of path data transfer on the mobile device battery as well as the amount of

information sent over the cellular network (Need #1).

To meet the security and data authentication needs of real-time mobile applications (Need
#2), our research also presents the implementation of Location Data Encryption and
Location Data Signing modules (Need #4) and evaluates the impact of these technologies

on mobile device resources (Need #1).

1.6 Structure of Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 provides a detailed
review of known LBS architectures discussed in literature and compares existing
literature to our work. Chapter 3 presents the proposed LAISYC architecture that is the
main subject of this dissertation, and Chapter 4 presents an evaluation of the key
LAISYC architecture components as well as two innovative real-time mobile apps,
TRAC-IT and the Travel Assistance Device (TAD), that use LAISYC. Chapter 5
concludes the dissertation with an overview of the contributions and future research

directions related to LAISYC.
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CHAPTER 2: KNOWN LBS ARCHITECTURES

This chapter reviews existing commercial LBS applications and known LBS system

architectures, and explains the current limitations of these technologies.

2.1

Commercial LBS Applications

There are a number of LBS applications that are commercially available as of 2011,

which can be organized into the following categories:

Location data recording: These apps, such as My Tracks [43], records GPS trails and
generates statistics/maps based on the path of the user as the user is biking or hiking.
These applications typically store GPS data locally on devices, and can execute a bulk
upload of data to online data stores such as Google Docs after an entire track has been
recorded.

Navigation, mapping, and real-time traffic information: Apps such as Google Maps
[44], Google Navigation [45], Telenav [46], and INRIX [47] provide directions to the
user for businesses and other locations and provide real-time turn-by-turn directions
and/or real-time or predicted traffic information. These apps typically use GPS for
navigation, cell network/Wi-Fi/GPS for location.

Social location apps: Foursquare [48], Facebook [49], and Google Latitude [50] are
all examples of applications that allow the user to manually “check in,” which

indicates to their friends in their social network that they have arrived at a location.
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Some apps, such as AT&T FamilyMap [51] and Sprint Family Locator [52], are
designed to allow parents to see where a child is, based on the location of their child’s
phone.

e Location-based search catalogs: WHERE [53] and Poynt [54] are examples of
location-based search engines that allow a social search of places based on the user’s
friends’ ratings. They can also provide electronic coupons, local gas prices, and local
weather information. WeatherBug [55] also provides local weather information.

e Phone finders: Apps such as Find My iPhone [56] and Where’s My Droid [57]
provide low-resolution or on-demand tracking capabilities that are designed to locate

a lost phone from a website interface.

While providing a variety of services to the user, these apps and other apps that fall into

the same general categories are all subject to the same limitations:

1) Commercial location-aware apps are a “black box.” The design of the application
and underlying functionality is not publically available and cannot be used to
integrate with or improve other applications (an exception is MyTracks [43],
which is open-source, but is a stand-alone mobile app without an active
connection to a server). Therefore, each location app developer must start from
scratch in implementing location-aware functionality in an application.

2) Commercial location-aware apps require active user management of location
features due to the impact on device resources (e.g., battery life). Users are
responsible for turning location-aware functionality on and off, which burdens the

user whenever location-aware features are used. For example, if a user leaves the
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MyTracks app on in order to record the phone’s location using GPS, the mobile
phone battery will die within a few hours. Instead, the user must repeatedly turn
the MyTracks app on when traveling, and turn the MyTracks app off when they
get to the destination. This effectively prevents a convenient 24/7 tracking
application from being possible, given the energy demands of GPS.

3) Commercial location-aware apps are often limited to “locate->send” functionality.
Phones are often simply used to access the positioning technology in the device
and send this information to a server, and the primary application features are
available via desktop or web apps, not the mobile app. In other words, the
software simply runs in the background and occasionally reports the rough
location of the device to a server.

4) Commercial location-aware apps are often lacking device-based intelligence.
Location information is not often processed locally on the device, which limits the
abilities of the app to intelligently manage constrained device resources while
using positioning systems and wireless communication. This lack of on-board
intelligence limits the frequency of use of GPS as well as the frequency of
location reporting to a server to a large static interval (e.g., 10 minutes) to avoid

having a severe impact on device battery life and cellular network data traffic.

The next section discusses known location-aware architectures and their limitations for

supporting further innovation beyond today’s location-aware features.
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2.2 Known Location-Aware Architectures

Since the E911 mandate in the late 1990s, many location based services architectures

have been presented in academic literature.

Some of the initial papers following the E911 mandate targeted the implementation of
positioning technologies by cellular carriers. Zhao [13], Kupper [16], Barnes [58], and
Rao et al. [59] provide a survey of the different technologies and standards under
consideration for implementation by carriers, while Porcino [15] and Sunay [60] provide
evaluations of various positioning technologies. In this dissertation we are concerned
primarily with device-based (i.e., mobile terminal (MT)-based, mobile station (MS)-
based) assisted GPS, since it is the most accurate and precise positioning technology
widely available on mobile phones [13, 15-19] and is also the positioning technology
typically exposed to application developers via APIs [18]. Soliman et al. [61], Ashjaee
[62], Langley [63], Richton et al. [19], and Liu [64] all discuss the implementation details
of first-generation assisted GPS systems for mobile phones which utilize both assistance
information from the cell network as well as GPS hardware in the mobile phone. A
weakness of first-generation GPS is that it could not acquire a positional fix indoors [65].
Subsequent evolutions of GPS technology, termed “high-sensitivity” or “indoor” GPS,
are aided by a new hardware design that enables the GPS hardware to detect satellite
signals and compute a position even in highly obstructed environments, such as indoors.
Van Diggelen discusses the design, implementation, and testing of high-sensitivity GPS
in his work [66-69]. Vittorini et al. [70], Lachapelle [71, 72], Zhang et al. [73, 74],
Beauregard [75], and DeSalas et al. [76] all discuss further improvements to general

high-sensitivity GPS design for additional accuracy and availability of position and
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velocity measurements. Ballantyne et al. discuss integrated circuit (1C) designs within
the mobile phone that can help reduce the amount of energy an individual GPS fix
consumes [77]. Zandbergen et al. provide empirical accuracy evaluations of GPS data
from mobile phones [17, 18], while Blunck et al. provide an analysis of the impact of
body of the user on GPS signal reception in phones [78]. Other publications [79-85]
examine issues related to increasing the precision and accuracy of indoor tracking via
other technologies such as WiFi, ultrawideband, and Radio Frequency IDentifiers
(RFID), although these techniques are not currently available positioning options for

mobile application developers, and therefore are beyond the scope of this research.

While these papers on the intimate details of positioning systems served a critical role in
the development of positioning systems for mobile phones, they are of greatest use to the
engineers implementing these positioning systems in cellular networks and do not
provide guidance to applications developers, other than to provide a rough order-of-
magnitude analysis of the accuracy and precision of the underlying positioning
technologies. These works discuss technologies which are largely hidden beneath
application platform APIs, and therefore application developers do not directly interface

with these technologies.

Once positioning technologies for cellular devices had matured and were implemented in
cellular networks, the focus of many academic works turned to the realization of location-
based services based on these positioning technologies. Mintz-Habib et al. [86] present a
Voice over Internet Protocol (VolP) emergency services architecture and prototype which

is aimed at providing location information to public safety answering points (PSAPS)
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when a mobile user calls 911. Jose et al. [87] present an architecture based on the
Service Location Protocol (SLP) [88], but this work is designed for relative location
between entities in the Internet and is not designed for high-accuracy or high-precision

GPS-based devices.

Since the business model and cellular carriers’ ultimate role in providing commercial
LBS was initially uncertain, several papers presented architectures that could be
implemented by cellular carriers or a commercial partner of the carrier. These
architectures are either tightly coupled to the cellular infrastructure or maintain a
centralized location data store and interface for all location-aware mobile applications
running on the network. Zundt et al. present a peer-to-peer location architecture that is
tightly-integrated with GSM networks [89], and Taheri et al. present a network location
management scheme to enhance the efficiency of base station handoffs for GSM
networks by using Hopfield Neural Networks [90]. Spanoudakis et al. [91], Kupper et al.
[92, 93], and Treu et al. [94] all present architectures that enforce centralized control over
all location-aware applications for mobile phone users, as the architecture serves as the
location gateway for connecting applications. These architectures all assume that the
carrier or commercial partner of the carrier has total control over the location-based
services that are offered to cellular users on their network. In other words, application
developers must enter into an agreement with the carrier or commercial partner to
provide services to mobile phone users. This dissertation instead focuses on a location-
aware architecture that can be fully-implemented at the application level by third party
application developers and does not require a commercial relationship or programmatic

interaction with a centralized system which controls all LBS for a cellular network.
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Some location architectures provide conceptual models for location exchange between
entities in a system, but do not define the exact protocols for the exchange of the location
information and do not evaluate the impact of the architecture on important mobile
device characteristics such as battery life or amount of data transfer over the cell network.
Spanoudakis et al. [91] present their PoLoS Kernel server, which is designed to receive
location information from cell phones using the Extensible Markup Language (XML)-
based Simple Object Access Protocol (SOAP) [95] and share this information with
Internet clients via a “Services Deployer.” Leonhardi et al. [96, 97] describe the
conceptual exchange of XML-formatted documents between hierarchical entities in a
location system that was implemented using a wearable computing system prior to GPS
being available in mobile phones. Nord et al. [98] describe an architecture that has a
primary purpose of abstracting positioning technologies used by a mobile device to
network servers that wish to discover the location of the device using an XML-based
“General Positioning Protocol.” Wu et al. [99] proposes a location architecture in which
device positions are only sent on-demand to a server when a viewer requests to see the
device’s position. The PoSIM system presented by Bellavista et al. [100] multiplexes
between positioning technologies based on a rules defined by the software developer at
compile time and asserted at runtime by a rule engine, and exchanges XML-based
messages within the system. Chen et al. [101, 102] propose an XML-based “location
operating reference model (LORE),” designed primarily for location-based messaging
based on client subscriptions (e.g., user is subscribed to receive e-coupons to a store
when they are in proximity of the store). For user privacy, Chen [101] also proposes that

instead of sending location updates from the device to the server, the server sends all geo-
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stamped XML-based subscription messages to all devices. Each device then compares
the message’s location area to its own location and determines if the message should be
shown to the user. Ananthanarayanan et al. [103] propose StarTrack, a server-focused
framework for abstracting spatial database operations on recorded user tracks to a set of
conceptual primitives, alleviating the application developer from needing to understand

low-level spatial database functionality.

In all these architectures, the impact of position updates (a function of both the frequency
of GPS recalculations and the frequency of the data being sent to a server) on mobile
device battery life is not directly considered. For architectures that use XML,
experiments in Chapter 4 of this dissertation illustrate the drawbacks of using a verbose
formatting scheme such as XML and SOAP for the transfer of location data between
mobile phones and a server, as such a scheme has a significant impact on mobile device

battery life due to the large amount of overhead data exchanged.

Several past LBS architectures have focused on the use of the Session Initiation Protocol
(SIP), an application-layer protocol that is often used in the context of VVoIP applications
[86, 89, 104-109]. However, none of these SIP-based architectures were designed for
GPS-enabled mobile phones in the Java ME environment. The optional SIP API for Java
ME has not been widely implemented in mobile devices and therefore typically is not an
available protocol for mobile developers to use in an application [110]. In fact, in the
roadmap for the Java ME platform defined by the Mobile Services Architecture (MSA)
specifications, the SIP API is only required to be supported in the high-end device

segment, such as Personal Digital Assistants, in order for the device to be MSA-
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compliant [111, 112]. Therefore, location-aware architectures targeting the majority of

Java ME devices should not require support for SIP.

Some location-aware architectures have focused on the routing of location data between
servers as part of a distributed system. In these systems, the mobile devices connect to a
server on the periphery of the distributed system network, and then the server acts as a
proxy for the mobile device to contact other entities in the distributed system, retrieve
data, and relay that data back to the mobile device. Zhang et al. [113] present their
GeoGrid architecture which maps the location of servers in the topography network to the
actual geographic position of the servers, and provides routing algorithms for load-
balancing and redundancy. Perez et al. [114] present Geotella, a peer-to-peer routing
protocol modeled after Gnutella, as part of their scalable G-Sense global architecture to
link location information from wireless sensor networks and mobile devices. These
systems have the advantage of scaling to a larger number of simultaneous global users
than traditional client-server architecture with a single centralized server. However,
neither of these architectures directly considers the connection between the mobile device
and server, which still must be a client-server architecture, and neither evaluates the
impact of this exchange of location information on the mobile device’s limited resources.
In fact, Perez et al. [114] cites our research as the client-server architecture used in their

system to exchange data between the mobile device and the server.

Out of the many location-aware architectures that have been presented in literature, only

two have been designed with awareness of the negative impact that location-based
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services can have on limited mobile device resources. The difference between our

research and these existing location-aware architectures is presented below.

Kjaergaard et al. [33, 36, 37] presents Entracked, a software system for the Nokia N95
and N96 smart phones running the Symbian operating system that adjust the GPS
recalculation frequency and position reporting frequency based on a software model of
power consumption. The power consumption model is generated and updated via data
from a power-sampling API on the device at the rate of 4Hz, and also samples GPS at a
rate of 1Hz and an embedded accelerometer at a rate of 30Hz. However, the Entracked
system is designed to deliver location information to network applications, not mobile
applications. In other words, network applications query the Entracked server, which in
turn queries the Entracked mobile software for the device position, and then relays this
position information back to the network application. Therefore, Entracked does not
support mobile real-time location-aware applications, which is the focus of our research.
Also, since Entracked relies primarily on the accelerometer to decide when to turn GPS
on and turn off, this software model cannot be used on devices that do not have
embedded accelerometers. Entracked assumes that even when sampling GPS positions at
large intervals (e.g., every 200 seconds) the GPS hardware would still need to remain
constantly powered on (i.e., the hardware could not enter a low-power state in between
samples). While this assumption is true for older GPS devices, for modern cell phones
with high-sensitivity GPS even modest adjustments of sampling intervals (e.g., four
seconds) in the app can yield significant energy savings, as we show in Chapter 4. This
savings is produced by the internal GPS quickly acquiring a positional fix and then

powering down between samples. Our research leverages these observations and

24



presents a power-saving technique, GPS Auto-Sleep, which does not require embedded
accelerometers and therefore can function on even severely resource-constrained devices
that have only embedded GPS. Another difference between Entracked and our work is
that Entracked uses the Transmission Control Protocol (TCP) [42] to transfer location
data between the device and the server. In Chapter 4, we demonstrate that the User
Datagram Protocol (UDP) [41] is preferable for real-time location data transfer, and
therefore UDP was chosen for our architecture. Langdal et al. [115] reimplement the
features of Entracked in their modular graph-based PerPos middleware. However, the

limitations discussed above also apply to the PerPos implementation of Entracked.

Farrell et al. [32] present an Early Distance-Based Reporting (EDBR) algorithm, a
position reporting method which considers both the energy used by positioning sensors
such as GPS as well as the energy used in the wireless transmission of this information.
However, this method was designed primarily for reporting positions to a server for
network-based applications, and not in the context of real-time mobile applications. The
focus on network applications, and the tight coupling of the positioning sensor refresh
interval and interval between location updates to a server, creates several limitations for
real-time mobile applications. For example, Farrell et al. support only a distance-based
reporting method, which will not produce any location updates to a server if the device
does not move. Therefore, distance-based reporting does not support the use-case of a
mobile application that is required to report a position to a server at a minimum time
interval, regardless of movement. Also, since distance-based reporting sends a position
to the server after a certain distance is exceeded, it can produce needless updates if the

user is traveling in a straight line for an extended period of time (e.g., driving on a
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highway). Our research presented in the next chapter de-couples the position reporting
method (i.e., the Critical Point Algorithm) from the method used to refresh the
positioning sensor (i.e., GPS Auto-Sleep) in order to support independent operations of
each method, thus modularizing the system and extending the use cases for various
positioning sensing refresh and position update reporting intervals. This allows our
LAISYC framework to support various types of position update methods in the Critical
Point Algorithm without changing the positioning sensor refresh rate. Additionally, the
positioning sensor refresh rate can then be adjusted based on logic other than detecting
movement for server updates. One example of alternate refresh logic is the manipulation
of the refresh rate for a mobile navigation application that wants to only occasionally
refresh a position when a large distance from the goal, but then needs to increase the
refresh rate when getting closer to the goal. By reducing the GPS refresh rate and only
updating the location occasionally when miles from a goal, the application can produce

significant battery life savings, as we demonstrate in Chapter 4.

Farrell et al. also do not evaluate their algorithm on actual mobile devices; instead, they
synthesize random positions from a simulator, with the assumption that objects move
linearly and in a uniform manner, and use this data to evaluate their algorithm. Synthetic
path data generated in this manner is problematic from several perspectives. Farrell et al.
do not consider the uncertainty and error of a GPS position when evaluating their
algorithm. As we show in Chapter 4, even with high-sensitivity GPS indoor position
tracking produces a significant amount of errors in position that do not reflect the true
geographic position of the device due to environmental noise [17, 18]. When a GPS

device calculates a position repeatedly in the same geographic location, the error in
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position creates a normal distribution [116]. Therefore, Farrell et al.’s assumption that

the change in GPS positions while a user is stationary will be uniform is invalid. In our
work, the LAISYC architecture is evaluated while it executes on actual mobile devices

with real assisted GPS data, therefore removing the assumptions and limitations

discussed above.

Our past research has investigated location-aware architectures in the context of
bidirectional, multimedia, location-based messaging [117]. That architecture focuses
primarily on a messaging infrastructure which piggy-backs location data in Multimedia
Messaging Service (MMS) messages sent through a cellular carrier’s publicly-accessible
messaging gateway, thus avoiding the use of short-codes and messaging aggregators.
However, the use cases for this architecture are the occasional exchange of messages, and
therefore only occasional use of GPS. Since GPS is not used in an ongoing manner, this
messaging architecture does not consider the impact of GPS on mobile device battery

life, or the amount of data being sent over the cellular network.

This dissertation presents LAISYC, an architecture that supports real-time mobile
applications that are “always-on” and in continuous communication with a server, as in
traditional IP-based networks. LAISYC focuses primarily on the intelligent device-based
modules but also discusses the structure of communication with the server and server-
side components that support the overall framework. Unlike the other known
architectures discussed in this chapter, LAISYC meets the needs of intelligent real-time
mobile applications in Location-based Services as discussed in Chapter 1. Our research

presents the results of field tests in Chapter 4 which evaluate key LAISYC modules in
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order to quantitatively assess their impact on mobile device battery life in the context of
the presented architecture. Our work on LAISYC is also summarized in publications in
IEEE Pervasive Computing [118], Proceedings of IEEE UBICOMM Conference [119],
the Transportation Research Record: Journal of the Transportation Research Board [120],
Proceedings of the Intelligent Transportation Systems World Congress [121], the Journal
of Navigation [18], and several issued [122-126] and pending patents [127-129].
LAISYC has been used to enable several real-time location-aware applications as part of
research projects, including the Travel Assistance Device (TAD) mobile application that
assists transit riders with intellectual disabilities in using public transportation through
real-time navigation instructions [130], as well as TRAC-IT, a mobile app that supports
simultaneous travel behavior data collection and real-time location-based services [131,
132]. TAD and TRAC-IT’s relationship with LAISYC is discussed in detail in Chapter 4
as a demonstration of innovative location-aware applications implemented using

LAISYC.
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CHAPTER 3: PROPOSED ARCHITECTURE - LOCATION-AWARE
INFORMATION SYSTEMS CLIENT (LAISYC)

3.1 Note to Reader

Material presented in this chapter has been published in IEEE Pervasive Computing [118]
(© 2011, IEEE), and we have received permission to reprint this work. The University of
South Florida also has patents pending and issued on various technologies discussed in
this chapter. The GPS Auto-Sleep technology is protected under U.S. Patent # 8,036,679
“Optimizing performance of location-aware applications using state machines” [122] by
the University of South Florida. Material on GPS Auto-Sleep has also been published in
the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted here with
permission of IEEE. The Session Management technology is protected under pending
U.S. Patent Application # 13/082,094 and International Patent Application #
PCT/US2009/059825 “Architecture and Two-Layered Protocol for Real-time Location-
Aware Applications” [128] by the University of South Florida. Adaptive Location Data
Buffering technology is protected under a pending U.S. Patent Application # 13/082,722
and International Patent Application #. PCT/2009/059985 “Adaptive Location Data
Buffering for Location-Aware Applications” [129] by the University of South Florida.
The Critical Point Algorithm is protected under pending U.S. Patent Application #
12/196,673 “Method For Determining Critical Points In Location Data Generated By
Location-Based Applications” [127] by the University of South Florida and has also been
published in the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted
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here with permission of IEEE. The Spatial Analysis technology is protected under
pending U.S. patent Application # 11/855,694 “System and Method for Real-Time Path
Prediction and Automatic Incident Alerts” and U.S. patent Application # 11/277,403
“System and Method for Transportation Demand Management” by the University of

South Florida.

3.2 Architecture Overview

LAISYC was created to meet application needs for real-time, high-accuracy and high-
precision location-aware applications. This architecture was designed to be fully-
implementable by third party mobile app developers, and can intelligently manage
limited device and network resources. LAISYC can support various types of location-
aware applications, including real-time tracking, as well as delay-tolerant applications
that record the user’s travel path. For maximum flexibility, an application can
dynamically manipulate LAISYC module parameters according to real-time application
needs, and therefore hybrid applications with both real-time and delay-tolerant features

are also possible.

To support the needs of modern LBS discussed in Chapter 1, LAISYC is separated into
device-based modules, which are implemented in software on the mobile device, and
server-based modules, which reside on a web application server, such as Glassfish [133].
Figure 1 shows the high-level view of this device-server architecture. The mobile and
web portions of the application supported by LAISYC sit on top of the respective
LAISYC modules. The web application server supports a large number of client devices

simultaneously and tracks individual sessions for each device.
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Figure 1 - The LAISYC architecture consists of software on the mobile device and
web application server, with a database server holding persistent server-side data

The web application server also acts as a proxy for the mobile device to access the
database server, as mobile devices are not capable of directly interfacing with database

servers due to a lack of mobile database drivers.

The following sections discuss each of the modules of LAISYC, and their respective

position on either the device or the web server.

3.3  Mobile Device-Side Components

This dissertation focuses primarily on the design, implementation, and evaluation of the

mobile device-side modules in LAISYC.

The LAISYC modules that reside on the device can be broken down into two categories,

as shown in Figure 2:

1) Positioning Systems Management (Blue shaded modules in Figure 2)

2) Communications Management (Green shaded modules in Figure 2)
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Figure 2 - LAISYC mobile phone-based modules. [118] © 2011 IEEE

LAISYC modules in each of these categories process two types of data:

1) Application data — all non-location information that is required for the successful
operation of the application (e.g., usernames, passwords, application logic
parameters). This data is typically exchanged with the server on an occasional
basis, and its loss is not tolerable.

2) Location data — data generated by positioning systems (e.g., GPS) that represent
the geographic position of a mobile device. This data can be frequently
exchanged with the server with a rate of up to one transmission per second, and
timeliness is of greater importance than 100% reliability. Therefore, occasional

loss of individual device positions is tolerable for many applications.

Location data is generated from the positioning system (e.g., GPS) on the mobile device
and is passed to the LAISYC framework through the Location API (i.e., JSR179 or
JSR293 in Java ME, Location APl on Android) that is part of the underlying platform.

The location data is first received by the bottom layer of Positioning Systems
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Management (i.e., GPS Auto-Sleep), and is passed through each module until it reaches
the application. The application can send control signals to each module, deactivating it
if necessary. If the application deactivates a module, the location data pass through that

module without any action by LAISYC.

After location data passes through Positioning Systems Management, the application can
send location data to the server by passing it into the first module in the Communications
Management group (i.e., Critical Point Algorithm). The data then propagates to the right
until it reaches the Session Management module, which activates the wireless
transmission of the location data. The mobile application also sends application data to

the server by interfacing with the Session Management module.

Positioning Systems Management modules are discussed first in the following section,

and Communications Management modules in a subsequent section.

3.3.1 Positioning Systems Management Modules

The Positioning Systems Management modules include GPS Auto-Sleep and Location

Data Signing.

3.3.1.1 GPS Auto-Sleep
The purpose of the GPS Auto-Sleep module is to save battery energy by dynamically

adjusting the GPS sampling interval based on user movement.

Mobile phone platforms such as Java ME and Android typically provide two general
modes of interaction between a mobile application and the underlying GPS hardware via

a Location API [22-24, 134]:
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1) Single-shot GPS request — In this mode, the application requests a single GPS
position update from the platform using the Location API. The platform activates
the GPS hardware, waits until a GPS position is calculated, and returns the
calculated position to the application. The platform may support an application-
defined or platform-defined timeout value, which is used to limit the length of
time the GPS hardware remains active after a request. If the GPS cannot achieve
a position fix within this timeout period, a null value may be returned to the
application indicating a failure to locate the device (e.g., due to environmental
obstructions).

2) Periodic GPS request — In this mode, the application specifies that it would like to
receive recurring GPS updates from the platform at a fixed interval of time by
registering a LocationListener with the Location API. The platform proceeds to
calculate GPS positions using the underlying GPS hardware at the defined
interval and executes an asynchronous callback to the application’s
LocationListener when each new position is calculated. Timeout values can also
be used in this mode to establish an upper limit on the length of time the GPS
hardware is active on each fix attempt. A parameter maxAge (i.e., maximum age)
can also be passed into the LocationListener to define the maximum time allowed
between when a location fix was calculated and when it can be returned to the
application. MaxAge is typically used in a multitasking environment to allow the
Location API to return the same location fix to more than one application that
may be on a slightly different GPS update schedule. For example, if applicationa

uses an interval value of 30 seconds started at time t, and a maxAge value of 10
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seconds, and applicationg triggers a GPS update from the Location API at times,
at timeso the Location API could return the same GPS fix to applicationa because

the GPS fix is less than 10 seconds old.

For long-term tracking of a device, developers use the periodic GPS request feature of the

Location API.

As discussed earlier, battery life is a key limitation for LBS on mobile devices. Since
GPS technology requires GPS receiver hardware in the mobile device so the device can
locate itself using satellite radio broadcasts, the use of GPS costs a significant amount of

energy when activating this hardware.

In the early stages of our research with high-definition tracking on GPS-enabled mobile
phones, it quickly became apparent that even on devices using modern high-sensitivity
GPS, a simple solution of setting the LocationListener to periodically refresh its position
every few seconds is energy-prohibitive, as this would exhaust the battery in a matter of
hours. Typically, a mobile phone’s battery must be operational during the day
(approximately 16 hours) until the user can plug the device in and recharge the battery at

night.

With further experimentation, we found that an application could request periodic
updates at a larger time interval, such as five to ten minutes, and this would extend
battery life to an acceptable length that would bridge the gap from one nightly battery
recharge to another. However, GPS samples five to ten minutes apart do not meet our

requirements for high-precision and high-accuracy tracking or real-time LBS.
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This experimentation with larger time intervals between GPS fixes on high-sensitivity

GPS-enabled mobile phones led to a valuable observation: high-sensitivity GPS

hardware is still able to successfully achieve a GPS position fix even with long time

delays between consecutive fixes. This ability to rapidly acquire a new GPS fix even if

there has been significant delay since the most recent GPS fix is new to high-sensitivity

GPS receivers [18, 68].

Previous generation GPS receivers exhibited a strong dependence on prior GPS

observations when calculating a new GPS fix. These GPS receivers typically had three

tracking modes: cold start, warm start, and hot start [135].

Low-sensitivity GPS receivers
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Figure 3 - High-sensitivity GPS receivers can acquire a GPS position more rapidly,
and with less dependence on the time elapsed since the most recent GPS fix, than

low-sensitivity receivers
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These modes are illustrated in Figure 3, which shows the amount of time needed to

acquire a GPS fix with different amounts of time elapsing since the most recent GPS fix.

A device starts in cold start mode, and even in complete open view of the sky it would
typically take a minimum of 30 seconds to a minute to acquire a first GPS fix. This time
period is known as the Time-To-First-Fix (TTFF). As an initial GPS fix is acquired, the
GPS hardware then enters a hot state, in which it has current knowledge of satellite
positions in the sky and the appropriate signal frequency offsets and code delays needed
to successfully calculate the next GPS fix. However, as time begins to elapse from the
initial hot fix, the GPS hardware’s knowledge of the state of the GPS system begins to
quickly decay as satellites change position in the sky and environmental factors change
the GPS signal environment. As a result, while subsequent GPS fixes occurring within
ten seconds following the initial hot fix will likely succeed if there is an open view of the
sky, the likelihood of a successful GPS fix decays with the elapsed time after the most

recent GPS fix.

The GPS receiver is said to enter a warm state, which can be from around 10 seconds to 1
hour after the most recent GPS fix, and then return to a cold state if more than 1 hour has
elapsed since the most recent fix. Once in a cold state, the GPS receiver loses significant
knowledge of the state of the GPS system and must enter an initial startup mode, which is
again the TTFF. The exact decay time transitions from hot to warm to cold states can
vary depending on the GPS manufacturer, as some receivers are only able to sustain a

warm state for a few minutes after the most recent GPS fix.
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High-sensitivity GPS largely eliminates the concept of hot, warm, and cold states, as
high-sensitivity GPS hardware is quickly able to acquire a fix even from a cold start state,
bringing the TTFF down to a few seconds or less, depending on the strength of the GPS
signals. For example, in the view of an open sky, high-sensitivity GPS receivers can
calculate a fix from a cold start in less than a second. Figure 3 illustrates that even if the
length of time has been significant since the most recent GPS fix, high-sensitivity
receivers still only require the GPS hardware to be on for a limited amount of time before

successfully calculating a new fix.

Through these experiments, we recognized that significant independence from previous
GPS observations meant that, unlike older generation GPS, on high-sensitivity GPS-
enabled mobile phones we could dynamically vary the interval of time between GPS fix
attempts and produce significant battery energy savings. If a similar technique had been
attempted on older generation GPS receivers, the length of time the GPS hardware would
have been active during the TTFF to achieve a position fix from a cold start state would

have largely offset any energy saved by using dynamic GPS sampling rates.

In LAISYC, the GPS Auto-Sleep module intelligently adjusts the GPS sampling rate of
the mobile device based on real-time location information in order to save battery energy
when the user is stationary, but still maintains a high-resolution sampling rate when the
user is actively moving. For example, if a mobile device is indoors and cannot calculate
a position due to GPS signal obstruction, a large amount of energy is wasted as the device
continuously attempts to calculate a GPS fix every few seconds. The interval of time

between position recalculations can gradually be increased (i.e., towards a sleep mode) in
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order to prevent calculating the relatively same position information repeatedly. The
application can be woken up and transition to a rapid position recalculation when it is
determined the device is moving again with a high degree of confidence. The mobile
application interfaces with the GPS Auto-Sleep module via the LAISY C Positioning API,
which allows the application to turn GPS Auto-Sleep on and off and receive location

updates from GPS Auto-Sleep.

We implement GPS Auto-Sleep using a finite state machine, as shown in Figure 4.

Move directly to state[0] when current_speed >
<}:| high_speed_threshold.

Gradually move towards state[0] when
(low_speed_threshold < current_speed <
<:| high_speed_threshold) OR
(distance_between_fixes >
moved_distance_threshold).

State
[n]

GPS Sampling
Interval = 256 sec.

State
(0]

GPS Sampling
Interval = 4 sec.

State
[1]

GPS Sampling
Interval = 8 sec.

GPS Sampling
Interval = 128 sec,

. Initial state is state[0]. After leaving state[0], gradually
. Upon startup, if a GPS fix can’t be acquired only move move towards state[n] when
from state[0Q] after first_fix_timeout expires ((current_speed < low_speed value) |::>
e  When in state[0] and a GPS fix can be acquired, back- AND (distance_between_fixes <
off timer starts when current_speed < moved_distance_threshold))
stopped_speed_threshold OR current_hor_accuracy OR if a GPS fix can't be acquired.

> high_horizontal_accuracy_threshold.

. Back-off timers is reset to 0 if current_speed >
stopped_speed_threshold OR
distance_between_fixes > moved_distance threshold.

e When back-off timer expires, transition to state[1],
and save the current location information for later
moved_distance_thresholds comparisons.

Figure 4 - GPS Auto-Sleep uses a state machine with various logic evaluations that
control the transition between states, which represent changes to the GPS sampling
interval values. [119] © 2008 IEEE
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Changes between states in the state machine represent changes to the GPS sampling
interval (i.e., time between sequential GPS samples), with a variety of rules based on
real-time location data and previously observed location data controlling the state
transitions. In addition to the GPS intervals, each state can also contain values for the

timeout and maxAge parameters to be used with the respective GPS interval value.

The Java ME Location API provides the following values to GPS Auto-Sleep for each

successful GPS position calculation [23, 24]:

e Latitude and longitude: the position of the user on the surface of the earth in
decimal degrees, using World Geodetic System (WGS) 84 datum.

e Altitude: the altitude of the location in meters, defined as height above the
WGS84 ellipsoid.

e Timestamp: the time at which the GPS position was calculated, based on the GPS
receiver clock, which is synchronized to the GPS system.

e Speed: the device’s current ground speed in meters per second (m/s) at the time
of measurement.

e Heading: the heading of the device when the GPS fix was recorded, in degrees
relative to true north, in range of 0-360 (e.g., 0, 360 = north, 90 = East, 180 =
South, 270 = West).

e Estimated horizontal accuracy: the estimated accuracy of the location as the
radius of a circular area indicating the 68% confidence level. In other words, the

true location of the user should fall within a circle having the center of the
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calculated position and a radius of the estimated horizontal accuracy value at a

probability of approximately 68%.

During execution of GPS Auto-Sleep, several thresholds are used and compared against

the location data provided by the Location API:

e first_fix_timeout: atime in seconds for which GPS Auto-Sleep will remain in
state[0] when the mobile application is first started, if the device cannot achieve a
GPS fix. After this amount of time has elapsed on startup, this threshold is not
used for the duration of application execution. If the GPS receiver is refreshing
its knowledge of the GPS system on startup, we do not want to immediately start
transitioning to lesser sampling frequencies to give the receiver the best chance at
achieving a first fix. This value should be set high enough to let the GPS receiver
operate for enough time to refresh assistance data and observe GPS signals, but no
longer than the amount of time expected for the receiver to calculate a GPS fix
under typical conditions (e.g., outside, in light building coverage). In experiments
with Sanyo 7050 and Sanyo Pro 200 phones, we have used 20 seconds for this
threshold.

e stopped_speed_threshold: a speed value in meters per second that is used to
determine if the user is currently stopped (i.e., current_speed <
stopped_speed_threshold). This threshold should be set so that the device has a
high degree of confidence that the device is truly stopped if the current_speed <
stopped_speed_threshold. In experiments with Sanyo 7050 and Sanyo Pro 200

phones, we have used 1 m/s as this threshold.
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high_speed_threshold: a speed value in meters that is used to jump-start the GPS
Auto-Sleep machine immediately and snap to a high GPS sampling frequency
immediately if a very large speed value is observed. This value should be set so
that the software has a high degree of confidence that the device is moving if the
current_speed > high_speed_threshold. In experiments with Sanyo 7050 and
Sanyo Pro 200 phones, we have used 1.5 m/s as this threshold.
moved_distance_threshold: a distance value in meters that is used to determine if
the user has moved from a location when the GPS location was last sampled and
the user was considered stationary (i.e., distance_between_fixes >
moved_distance_threshold). This threshold should be set so that the device has a
high degree of confidence that the device has truly moved if
distance_between_fixes > moved_distance_threshold. In experiments with Sanyo
7050 and Sanyo Pro 200 phones, we have used 100 meters as this threshold. We
used Vincenty’s Inverse formula [136] to calculate the distance between two
points on the WGS84 ellipsoid, which were shown by Vincenty to be accurate to
within 0.5mm [136].

high_horizontal_accuracy_threshold: a distance in meters that is used to
determine if the user has stopped moving and is inside a building, based on the
high level of estimated horizontal accuracy uncertainty of the GPS fix. The
general assumption is that if estimated horizontal accuracy is very high, then GPS
signals are greatly obstructed and it is likely the user is inside a building. This
value should be set so that the software has a high degree of confidence that the

user is inside a building if the current_horizontal_accuracy >
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high_horizontal_accuracy_threshold. In experiments with Sanyo 7050 and Sanyo
Pro 200 phones, we have used 80 meters as this threshold.

backoff _time_threshold: a time in seconds to wait after the user is believed to be
stationary before allowing the state machine to transition from state[0] to less
frequent GPS sampling in state[1] (i.e., “backing off” for actively sampling travel
towards sleep mode). In other words, once GPS Auto-Sleep is actively sampling
in state[0], a time greater than backoff_time_threshold must elapse before any
state transitions take place. The backoff timer is started when current_speed <
stopped_speed_threshold, or current_horizontal_accuracy >

high_horizontal _accuracy_threshold, or if the GPS receiver cannot calculate a
GPS position. The backoff timer is reset to 0 when movement is detected (i.e.,
current_speed > stopped_speed_threshold) before the backoff timer has expired.
We used this backoff timer because travel behavior tends to have a temporal
locality, in that travelers are more likely to move if they have been moving
recently. One example of this is traffic lights — we want to continue sampling for
a typical duration of a traffic light to maintain high resolution sampling while the
user is actively traveling, rather than briefly observing a pause in travel behavior
(e.g., getting stopped at the light) and immediately reducing the GPS sampling
rate. We assume that if the backoff _time_threshold has elapsed, then the user has
likely stopped moving for the immediate future. In experiments with Sanyo 7050

and Sanyo Pro 200 phones, we have used 120 seconds for this threshold.
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An example configuration of the state machine for GPS Auto-Sleep is:

e state[0] = 4 s between GPS samples, timeout = 2 s, maxAge = 2s

e state[1] = 8 s between GPS samples, timeout = 4 s, maxAge = 4s

e state[2] = 16 s between GPS samples, timeout = 8 s, maxAge = 8s

e state[3] = 64 s between GPS samples, timeout = 16 s, maxAge = 16s
e state[4] = 150 s between GPS samples, timeout = 32s, maxAge = 32s

e state[5] = 256 s between GPS samples, timeout = 32 s, maxAge = 32s

On application startup, the state machine will start in state[0] and will start periodic GPS
sampling using the Location API’s LocationListener with an interval of state[0] = 4

seconds.

If the device cannot acquire a GPS fix on startup, it will remain in state[0] for the

duration of the first_fix_timeout until it transitions to state[1].

If the device can acquire a GPS fix on startup but is not moving (i.e., when current_speed
< stopped_speed_threshold OR current_hor_accuracy >
high_horizontal_accuracy_threshold), the back-off timer starts. The back-off timer is
reset to O if current_speed > stopped_speed_threshold OR distance_between_fixes >
moved_distance threshold. When the back-off timer expires, the state machine
transitions to state[1], and saves the current location information for later

moved_distance_threshold comparisons to determine if the device might be moving.

After leaving state[0] and arriving in state[1], the state machine will wait in state[1] 8

seconds for the next GPS fix attempt. After the next GPS fix is attempted, the location
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information is evaluated to determine if the next state transition should be towards
state[n] (i.e., the state machine assumes the user is stationary), or back towards state[0]
(i.e., the state machine assumes the user is still moving). The state machine will move
towards state[n] when ((current_speed < stopped_speed_threshold) AND
(distance_between_fixes < moved_distance_threshold)) or if a GPS fix cannot be
acquired. The state machine will move towards state[0] when (stopped_speed_threshold
< current_speed < high_speed_threshold) OR (distance_between_fixes >
moved_distance_threshold). If the state machine transitions to state[2], it will wait 16
seconds until the next GPS fix attempt, and it will repeat the above evaluations until
reaching state[n] (i.e., sampling GPS every 256 seconds) or arriving back at state[0]. If
the state machine arrives back at state[0], it assumes the user is actively traveling again

and resets and activates the back-off timer.

Once the state machine is in the sleep state (i.e., state[n]), it can conserve the most energy
by calculating GPS fixes using a large interval of time. However, since we are concerned
with measuring accurate distance of travel via high resolution GPS sampling, we want to
be able to immediately resume high-frequency sampling (i.e., state[0]) if we observe a
GPS fix that indicates that the user is moving with high probability. Therefore, we add
the ability for the state machine to immediately transition from any state to state[0] if the
current_speed > high_speed_threshold. This “wake up” trigger is based on the speed of
the device exceeding a certain threshold in the most recently calculated location data (i.e.,

the device has started moving).
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The gradual transitions between a high-frequency sampling of state[0] and sleep mode of
state[n] are a method to handle the uncertainty associated with GPS positions. As
sequential GPS observations reinforce the certainty associated with the moving or
stationary states, the GPS sampling frequency is adjusted accordingly. This ability
allows GPS Auto-Sleep to capture location data for short walking trips that may look
very similar to GPS noise. The first portion of the trip will only be occasionally sampled
with the frequency of state[n], but as the distance from the last stopped location increases
and the user’s speed is observed to be slightly higher than the typical
stopped_speed_threshold the sampling gradually increases until the GPS is being

sampled at the high-resolution value of state[0].

Gradual state transitions also ensure that outlier values do not have an extreme impact on
the sampling frequency and cause sampling at a high frequency repeatedly when the GPS
should actually be asleep. For example, the most frequent type of GPS outlier data is a
position that may be 100 meters from the true location when the user is indoors. The
state machine will only react by moving from state[n] to state[n-1], and if the next GPS

sample is near the true location the state machine will return to state[n].

In addition to the general tracking functionality defined above, GPS Auto-Sleep also has
a secondary navigation mode that can be utilized for location-aware applications that are
based on the distance to a goal. This goal may be a fixed location (e.g., the next turn for
real-time driving directions) or the location of a mobile device (e.g., real-time friend

finder). When navigation mode is switched on and a goal is identified, the state machine

can decrease the interval between position calculations as the mobile device gets closer to
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the goal (i.e., increase the sampling frequency), and increase the interval between
position calculations as the mobile device moves further away from the goal (i.e., put the
device into sleep mode). This navigation mode is primarily designed for real-time
navigation applications that do not require a high-resolution record of the travel history of
the user, but do require high-resolution GPS sampling when nearing the goal to ensure

the user is provided with timely instructions.

Navigation mode for GPS Auto-Sleep is also implemented using a finite state machine
with interval, timeout, and maxAge values increasing from state[0] to state[n], but the
state transition rules are different. Figure 5 shows the navigation mode state transition
diagram. State changes for navigation mode occur based on the distance between the

mobile device and a goal location, such as the next planned turn in a navigation

application when a verbal prompt will be announced to the user.

Jump to state[i] when distance-to-goal is
within respective thresholds

State
[n]

Location
Recalculation
Interval = 128 sec.

State
[0]

GPS Sampling
Interval = 1 sec.

State
[n—-1]

GPS Sampling
Interval = 64 sec.

State
[1]

GPS Sampling
Interval = 2 sec.

Figure 5 - Navigation mode for GPS Auto-Sleep controls GPS sampling interval
directly based on a distance-to-goal (e.g., next turn for real-time driving directions)
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For example, if the distance between the current location and a goal location is greater
than 5 miles, then the state machine will be at a preset state[n]. As the device approaches
its goal location, the state would change to state[n-1] at a certain distance milestone in
order to decrease the location recalculation interval. This would decrease the intervals
between device location updates from 128 seconds when the device is more than 5 miles
away, to 64 seconds when the device is between 5 and 3 miles away, and so on, until
reaching 1 second GPS sampling when the device is .25 miles away. This assures that
the device will not miss its goal since the location is updated very frequently when the
device is physically near. State transitions also occur in the reverse order as the distance-
to-goal decreases as the device moves away from the goal. Since real-time applications
are time-sensitive, a state can transition directly to another state to avoid stepping through
states when a lower interval (i.e. more frequent updates) is required immediately (e.g., in

case of temporary GPS signal loss).

In conclusion, GPS Auto-Sleep is designed to address several of the needs for location-
aware mobile apps outlined in Chapter 1. GPS Auto-Sleep is designed to increase mobile
device battery life (Need #1) by dynamically adjusting the GPS sampling rate in real-time
(Chapter 1 - Needs #2 and #3). GPS Auto-Sleep uses the existing periodic GPS request
interface of the Location API, and therefore it is fully implementable by third party

mobile app developers (Need #4).

In Chapter 4, we demonstrate a methodology for selecting values for each of the
thresholds discussed in this section based on observed GPS data, so GPS Auto-Sleep can

be configured appropriately for any GPS-enabled device. We also present an evaluation
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of the state accuracy of GPS Auto-Sleep, as well as its effectiveness for increasing

battery life.

3.3.1.2 Location Data Signing

The purpose of the Location Data Signing module is to add energy-efficient authenticity

to location data generated by the mobile phone.

GPS data is increasingly being used by businesses and government entities in order to
support key operations. These applications rely on GPS to report or verify mileage and
time spent by workers on remote sites, support pay-as-you-drive car insurance through
the identification of the length and location of car use, as well as to support variable
transportation taxes. However, all of these uses of GPS data have a key weakness: GPS
data can potentially be falsified through direct tampering with the data. Therefore, the

integrity of raw GPS data cannot be independently verified.

The Location Data Signing module utilizes asymmetric cryptography (i.e., public and
private keys) with certificates issued by a trusted third party in order to digitally sign data
related to the GPS fix. These data can include the latitude, longitude, altitude, speed,
heading, GPS timestamp, system timestamp, phone number of device, and identifying
information for the phone and user including the International Mobile Equipment Identify
(IMEI), Subscriber Identity Module (SIM) ID, mobile station ID (MSID), and Mobile
Equipment Identifier (MEID), as well as the username and a hash of the password used to
log into the application. By signing these data, Location Data Signing can prove that a
particular GPS fix occurred on a particular phone with a specific user logged into the

application at a specific time. Since this information is hashed and signed using a private
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key by the application, the integrity of the GPS data can be verified by utilizing the
public key and a hash of the message. Therefore, it can be shown that a GPS fix,
including the location, speed, and time, is unaltered from the data that was originally
calculated by a specific application on-board a GPS-enabled mobile phone. We
designated Location Data Signing as an optional module in LAISYC, since it may only
be required for applications that have a strict requirement for confirming the identity of

the mobile device.

While symmetric cryptography is more efficient than asymmetric cryptography, only
asymmetric cryptography can be used for digital signatures. To sign data, a private key is
required, and to verify data a public key is required, and therefore symmetric

cryptography cannot be used.

We chose the Digital Signature Algorithm (DSA) for implementation in the Location
Data Signing module. While other options such as Rivest-Shamir-Adleman (RSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA) exist, DSA is the only algorithm
that is not restricted by intellectual property or export constraints and can be used world-

wide royalty-free [137].

In 2006 Jarusombat et al. [138] hypothesized that traditional digital signature algorithms
such as RSA and DSA are too computationally intense for mobile devices and proposed
their own location-based digital signature algorithm. In 2009, Xuan et al. [139]
experimented with digital signature algorithm performance on emulators and
demonstrated that traditional digital signature algorithms are indeed feasible for mobile

virtual machines. However, Xuan et al.’s experiments were in context of general secure
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web services and not in the context of location data, and were not executed on real
devices. In Chapter 4, we present the results of experiments showing that actual GPS-

enabled devices are indeed capable of frequent location data signing.

In conclusion, the Location Data Signing module is designed to address several of the
needs for location-aware mobile apps outlined in Chapter 1. Location Data Signing is
designed to add energy-efficient (Need #1) authenticity to location data generated by a
mobile device in real-time (Need #2). The selection of DSA for Location Data Signing
ensures that it is implementable by any third party mobile app developer (Need #4). In
Chapter 4, we also evaluate the impact of Location Data Signing on mobile device

battery life (Need #1).

3.3.2 Communications Management Modules

The Communications Management modules include Session Management, Adaptive

Location Data Buffering, the Critical Point Algorithm, and Location Data Encryption.

3.3.2.1 Session Management

The purpose of the Session Management module is to save battery energy and reduce
data transfer costs while supporting real-time location data communication between a

mobile phone and server.

Since location-aware applications are distributed between a mobile phone and server, the
protocols used for communication between the mobile device and server must be

carefully examined for efficiency and broad compatibility with many different client
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devices. The selected protocols must also be appropriate for the type and frequency of

exchanged data, to avoid an unnecessary impact on limited mobile device resources.

As mentioned earlier, there are two types of location data exchanged between the device
and server: application data and location data. Application data is exchanged with the
server occasionally and loss of this data is not acceptable. Location data is exchanged
with the server frequently, and occasional loss of individual position data points is
acceptable. Since LAISYC must be implementable by third party application developers
(Chapter 1 - Need #4), the availability of networking protocols at the application level on
mobile devices that are suitable for transporting these two types of data must be

examined.

3.3.211 Available Communication Protocols

Until the mid-2000s, HTTP was the only mandated networking protocol for Java ME
devices, since many cellular networks were not capable of IP-based communication at
that time [140]. However, as IP Multimedia Subsystems (IMS) were developed in the
late 2000s to support packet-based communication on cellular networks, IP-based
networking protocols, such as the Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP), became accessible on a large number of Java ME mobile
phones. In fact, the MSA roadmap that defines the evolution of the Java ME platform
has required support for TCP for all MSA v1.0 compliant devices [111], and has
mandated support for UDP as well for all MSA v2.0 compliant devices [112]. Therefore,
HTTP, TCP, and UDP are the widely-available protocols on the mobile device that can

be used by LAISYC for communication between a mobile device and server. Figure 6
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shows the relationship between HTTP, TCP, and UDP as networking protocols.
Protocols from lower layers in the networking protocol stack, such as the link layer and

physical layer, are not accessible to mobile applications.

| HTTP |
[

TCP UDP |

|

Figure 6 - Relationships between HTTP, TCP, UDP, and SOAP as networking
protocols

TCP and UDP are both transport-layer protocols, which focus on end-to-end
communication between two nodes in a network. TCP includes many mechanisms to
ensure reliable connectivity between entities, including in-order delivery of packets,
detection of lost packets, retransmission of lost packets, data flow control, and congestion
control. However, this increased reliability comes at a cost of increased communication
between the nodes. UDP provides a much simpler and lightweight “send-and-forget”
service which does not implement any detection of lost packets or flow control and
therefore does not guarantee delivery of data. However, as a result, UDP imposes little

overhead on the mobile device and server and is a timely and efficient protocol.

In today’s cellular networks capable of IP-based communications, application-layer

protocols are implemented on top of one of the transport-layer protocols. For example,
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HTTP is an application-layer protocol that uses a request-response, client-server model
and is typically implemented on top of TCP to guarantee reliability for web applications.
Therefore, each HTTP request to a server is wrapped with a TCP header, which

implements the features of TCP for the packets carrying the HTTP information.

In LAISYC, we select HTTP as the primary application data transport protocol and UDP
as the primary location data transport protocol. We discuss the rationale behind these
decisions, as well as comparisons to other options, in the following two sections that

focus on application data and location data, respectively.

3.3.21.2 LAISYC Application Data Transport
Since reliability is required for LAISYC application data (e.g., session login and logout,
server-side database accesses, application-specific distributed functions and logic), this

data should be transported using TCP or a protocol relying on TCP.

The request-response model of HTTP fits well with the remote-procedure call-style, or
web services, used by a client to send data to the server (e.g., username and password)
and wait for a response back (e.g., session ID). Integrated development environments
(IDEs), such as Netbeans and Eclipse, provide tools that enable rapid implementation of
distributed functions using HTTP which would otherwise be tedious and time consuming
to implement using TCP directly. Therefore, HTTP is a candidate for implementing web

services from the mobile phone to the server.

A second option for a protocol to implement web services is SOAP. SOAP is a popular
application-layer XML-based protocol often used to create enterprise web services that

allow loosely-coupled servers to communicate with one another. Figure 6 also shows the
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SOAP protocol’s position in the networking stack, which is typically on top of HTTP. In
other words, HTTP is used to transfer XML-encoded messages defined by the SOAP
specification. SOAP defines complex functionality beyond HTTP such as token-based
credentials, which allows an intermediary web application to receive, process, and
forward data between the originating client and the destination server, without the

originating client having exact knowledge regarding the destination server.

SOAP became popular in the mid-2000s as sophisticated enterprise networks evolved and
a standardized method of exchanging XML-encoded messages between servers housed in
different locations was needed. At first glance, it appears that since SOAP was
developed to meet needs beyond HTTP, SOAP should be the logical choice to implement
web services to carry application data in the LAISYC framework between a mobile
device and server. As discussed in Chapter 2, many existing location-aware architectures

use SOAP or XML to carry application and location data [91, 96-98, 100-102].

However, when considering the actual devices upon which LAISYC will be deployed,
including the limited resources of mobile devices (e.g., battery energy, amount of data

transfer), two problems quickly become apparent with SOAP and XML.

The first problem is the availability of SOAP-based communication on mobile devices.
For Java ME, the JSR172 Web Services API [141], which implements the XML-based
messaging protocol SOAP on top of HTTP, was defined for the Java ME platform in
2004 to allow mobile phones to directly access XML-based web services. However, the
Web Services API is optional and only required to be supported in the high-end device

segment in the Java ME MSA roadmap. Therefore, a limited number of device
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manufacturers have implemented JSR172 and this API is typically not available on mid-
to-low end devices [120]. SOAP support is limited in smart phones, as well. For
example, the Google Android platform and iPhone iOS platform do not natively support
SOAP.

Table 2 - SOAP-encoded messages add a significant amount of overhead to web

service requests, approximately 3.7 times as many characters, as shown in this
example

SOAP-encoded web service request HTTP-encoded web service request
POST /busstoparrival/busstopws.asmx GET/busstoparrival/busstopws.asmx/
HTTP/1.1 GetNextNVehicleArrivals?

Host: 99.999.999.999 n=string&RoutelD=string&Direction
Content-Type: text/xml; charset=utf-8 CodelD=string

Content-Length: length &BusStoplD=string&

SOAPAction: TriplD_External=string HTTP/1.1

"http://tempuri.org/GetNextNVehicleArrivals" Host: 99.999.999.999
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
xmlns:xsi="http://www.w3.0rg/2001/XMLSche
ma-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSche
ma"
xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"> <soap:Body>
<GetNextNVehicleArrivals
xmlns="http://tempuri.org/">

<n>int</n>

<RoutelD>int</RoutelD>
<DirectionCodelD>int</DirectionCodelD>
<BusStopID>int</BusStoplD>
<TripID_External>string</TripID_External>
</GetNextNVehicleArrivals>
</soap:Body></soap:Envelope>

The second problem with SOAP from a mobile device perspective is that since all
communication is wrapped within XML on top of HTTP, and each element has both an
opening and closing XML tag, there is a significant amount of overhead to exchange

messages between the device and server. Therefore, to represent the same amount of
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information in a message, SOAP requires significantly more characters. Table 2 shows a
comparison of the same web service request using SOAP on the left, and HTTP directly
on the right. The SOAP message has approximately 3.7 more characters to represent the
same amount of information. SOAP’s additional overhead takes a toll on limited
consumer data plans, as well as the overall cellular network bandwidth. Perhaps most
importantly, as we show in Chapter 4 via experimentation, SOAP’s additional overhead

also has a heavy impact on mobile device battery life.

Since communication between the mobile device and server typically takes place over a
wireless cellular network, the communication channel is prone to significant fluctuations
in quality due to channel fading and movement of the mobile device, which can lead to a
significant variation in transmission time and, subsequently, packet delays [142]. In third
generation (3G) cellular networks, retransmissions at the link level are typically
scheduled to give preference to mobile devices with higher quality connections, which
can further delay end-to-end transmission time for packets originating from devices with
poor signal quality [142]. Handoffs from one cell tower to another can also cause
significant packet delays [142]. Since TCP was originally designed for wired networks,
it was designed to interpret high packet delay as a sign of network congestion, and
consequently TCP will reduce its transmission rate when it detects high packet delay in
an attempt to better network conditions. However, as discussed above, in wireless
networks high packet delay can originate from a variety of conditions that are not
attributed to network congestion, and therefore slowing the device’s transmission rate
will not improve packet delay and will instead reduce the throughput of data

communication from the device to server.
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While there are a number of improvements proposed for TCP to help address these
wireless network problems [143], these solutions are beyond the scope of our research
since an application developer does not have influence over the implementation of TCP
in a typical commercially-available mobile device. From a mobile application
perspective, the one element that is under a developer’s control when transmitting data
via a web service is the amount of data being transferred. The amount of battery energy
consumed by wireless communication is a function of how long the device radio is
actively transmitting and receiving information. By reducing the amount of data being
transferred from the mobile device to the server, not only is the impact on the user’s
limited data plan reduced, but battery life is extended. Reducing the amount of data
being transferred also reduces the probability that interference in the wireless channel
will result in lost packets transported via TCP, which reduces the need for
retransmissions that would keep the radio on even longer. By eliminating the SOAP
XML-based portions of messages between the device and the server, the amount of data
wirelessly transmitted is significantly decreased. Therefore, even for the few mobile
devices that natively support SOAP parsers, the use of HTTP-based web services is

preferred.

Because of the above limitations of using SOAP-based web services on mobile devices,
and because support for HTTP is required by the CLDC specification for all Java ME
devices, we proposed that LAISYC use simple HTTP methods (e.g., GET, POST) for
communicating application data from the mobile device to the server. Chapter 4 presents
experiments illustrating the benefits of using HTTP-based web services instead of SOAP-

based web services.
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3.3.2.1.3 LAISYC Location Data Transport

Since location data are generated from a positioning technology on the mobile device
such as GPS, these data must be transferred to a server to update the system on the
mobile device’s location. For real-time LBS (Chapter 1 - Need #2), this update rate can
be up to once per second. Therefore, efficiency and timeliness is a top priority for

location data transport in LAISYC.

We chose UDP, which is typically used for services where timeliness is favored over
reliability (e.g., VoIP), as the protocol for efficient real-time location data transfer for
LAISYC. The LAISYC framework treats streaming location data similarly to
multimedia data in order to efficiently deliver timely location data from one entity in a
location-aware information system to another. The choice of UDP for location data
transport differs from previous location-aware architectures, largely because LAISYC is

designed to meet the needs of real-time location-aware applications that are always on.

UDRP is also preferable to TCP for location data because TCP’s reliability mechanisms
take a large toll on the mobile device. Retransmission of lost or significantly delayed
packets over the wireless network via TCP costs precious battery energy, and since
occasional loss of individual location data packets is acceptable in LAISYC, TCP’s
drawbacks outweigh its benefits. Therefore, UDP not only provides timeliness and
scalability benefits for location-aware applications, but it also consumes less battery
energy than TCP. In Chapter 4, we present results from experiments showing that under

typical conditions the amount of GPS data lost via UDP is acceptable for most location-
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aware applications. The battery life benefits of using UDP, instead of TCP, as a location-

data transport protocol are also demonstrated in Chapter 4.

Session Management modules are used on both the device and server to manage
communication. The following section discusses the Device-Side Session Management
module in detail, and the server-side module is discussed in the Server-Side Components

section.

3.3.2.14 Device-Side Implementation of Session Management

In summary, the LAISYC Session Management module within the mobile device splits
data transferred to the server into two categories: application data, which is transported
using HTTP, and location data, which is transported using UDP. Figure 7 shows this
two-tier communication between the mobile device and server within the Session

Management module in isolation from the rest of the LAISYC framework.

Two-tier protocols, using both application-layer and transport-layer protocols in the same
application, have been utilized in the past to increase VVolP performance for mobile
devices [144], but have not been used in previously presented location-aware
architectures. Splitting application logic and location data has architectural advantages in
addition to battery life advantages, such as allowing easier integration of location data
with existing HTTP-based web applications, and supporting dynamic load balancing of
incoming location data packets at the network level without examining the contents of

payload (since we know any data transported over UDP is location data).
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Figure 7 - The Session Management modules use HTTP for application data and
UDP for location data for communication between the mobile device and server

Since location data will be arriving at the server with much greater frequency than
application data, and can be treated as atomic packets that do not need immediate
responses, the server may wish to handle UDP traffic differently than HTTP traffic. For
secure HTTP communication, HTTPS can also be used in place of HTTP. We discuss

UDP security in a later section.

The mobile application interfaces with the Session Management module via the LAISYC
Communication API. For application and location data, the mobile application initiates
communication with the server via a HTTP request, or transmission of location data via
UDP. The module creates a session with the server for a device by calling a

createSession() web service and passing in a variety of information including username,
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password, phone number, and other authorizing information. The server responds with a
unique session identifier that is used in subsequent communication with the server to aid
the server in pairing location data received over UDP and application-specific web
service instructions received over HTTP with a specific session. The server maintains a
registry of connected devices that have open sessions at the server, which includes the
current address (e.g., IP address) of each mobile device. The mobile device Session
Management module prevents the application from having to directly manage sessions by
implicitly controlling the creation and destruction of sessions surrounding the transfer of
application and location data to the server. In other words, if a mobile application calls
an application-specific web service or attempts to send location data through the Session
Management module, the module will first check to see if there is an open session with
the server, and if not, it will create one. Therefore, it is guaranteed that a session always
exists at the server before any application or location data from the device is submitted to
the server. To signal to the server that a session is finished, the module initiates a

destroySession() web service.

The implicit management of sessions by the device-side Session Management module
relieves the application from having to actively manage the concept of a session, which
simplifies client-side application logic and also increases the efficiency of the server. For
example, if the application can interact with the user using data cached from previous
execution and can provide client-side functionality without needing to contact the server,
then a session does not need to exist at the server. If no location data has been generated
from the device since the application has started, there is no point in holding an open

session at the server until data actually exists. In a system which will potentially have

62



thousands of simultaneous users, it is important to reduce server overhead for unneeded
sessions whenever possible to allow the system’s server-side memory requirements to

scale at a rate potentially less than O(n), where n is the number of devices.

In conclusion, the Session Management module is designed to address several of the
needs for location-aware mobile apps outlined in Chapter 1. Session Management is
designed to improve battery life (Need #1) while enabling real-time location data
communication (Need #2) between the phone and server. In Session Management,
HTTP-POST is selected over SOAP for real-time (Need #2) application data transfer to
reduce the impact on mobile device resources (Need #1). UDP is selected over TCP as
the location data transport protocol for real-time location data (Need #2) to reduce the
impact on mobile device resources (Need #1). Session Management is based on
protocols accessible to third party mobile apps (i.e., HTTP, TCP, UDP), and therefore it

is fully implementable by any third part mobile app developer (Need #4).

3.3.2.2 Adaptive Location Data Buffering
The purpose of the Adaptive Location Data Buffering module is to increase the reliability

of real-time location data communication with the server in an energy-efficient manner.

Since UDP is utilized for location data transport, no end-to-end reliability exists for
location data such as that provided by TCP. As discussed earlier, lack of reliability for
each packet is a design trade-off in favor of the general efficiency of the system; while a
large number of location fixes can be transferred to a server in a timely manner, there are
no acknowledgments by the receiving entity that the location data has arrived, no

retransmission of lost packets, and no guarantee of the order of delivery of packets. In
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real-time tracking, the occasional loss of a few location data fixes is of no concern, since
another location update will soon follow. However, location data is often referenced
after-the-fact in order to provide certain metrics, such as distance traveled, as well as to
identify the paths of users on particular days. Therefore, while a few occasional lost
location data packets are acceptable, the loss of large numbers of contiguous fixes can

introduce significant problems.

While we demonstrate in Chapter 4 that under ideal conditions UDP has an acceptable
percentage of data loss on a cellular network, from our experiments we discovered that

there are two primary causes of occasional large contiguous losses of location data:

1) Voice communication interference on devices that cannot handle simultaneous
voice and data communication (e.g., CDMA devices)

2) Cellular network coverage gaps

In the United States, devices on CDMA networks (e.g., Verizon and Sprint) are not
capable of simultaneous voice and data communication. As a result, if an application
continues to transmit location data via UDP after a user picks up a voice call, these
packets are lost. In our experiments we have confirmed that on several devices (e.g.,
Sanyo 7050, Sanyo Pro 200, and Sanyo Pro 700) the Java ME platform does not trigger
any error messages when a UDP transmission is attempted during a voice call. Since a
voice call could last a long period of time (e.g., 30 minutes) while the user is traveling, a

large amount of data could be lost if no action is taken by the application.

The lack of simultaneous voice and data transmissions communication also has a
secondary adverse effect on the cell phone user while an application is running in the
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background: if the application is constantly transmitting data to the server, it will occupy
the CDMA radio and any incoming voice calls will be sent to voicemail instead of
ringing at the phone. Obviously, interfering with incoming voice calls is not a desirable

trait for an application, and therefore we must address this problem in LAISYC.

Poor cellular coverage in certain locations (e.g., rural areas) can also result in lost UDP
data packets. Since lack of a cell signal is typically geographically-correlated due to poor
tower coverage, large contiguous chunks of the user’s path can be lost if the device loses

data communication with the server.

A simple solution to both the simultaneous voice and data problem and poor cellular
coverage problem is to store all location data locally on a device and upload the location
data at the end of the day. However, this solution does not support real-time location-
aware applications, which is a requirement for LAISYC (Chapter 1 - Need #2).
Additionally, Java ME devices typically have limited persistent storage capacity and may
not be able to store an entire day’s worth of location data. An alternate solution is to use
TCP instead of UDP, but as we discussed earlier, the entire suite of reliability
mechanisms used by TCP are not necessary for most location-aware applications and

these mechanisms also have a significant negative impact on mobile device battery life.

Our solution to these problems is the Adaptive Location Data Buffering module in
LAISYC. Adaptive Location Data Buffering provides a basic quality of service
mechanism when UDP is used as the location data transport protocol, but at a much
cheaper cost than using TCP for every location data transmission. Adaptive Location

Data Buffering is implemented through use of device-side APIs regarding cell signal

65



quality and cell network status, as well as occasional TCP transmissions to confirm end-

to-end connectivity with the server.

In Adaptive Location Data Buffering, under normal conditions UDP is continuously used
to transfer location data to a server. Before each UDP transmission, the software checks
device-side APIs (if available) in order to assess the current level of cellular signal in
order to determine if a successful UDP transmission is probable given the current
wireless environment. Additionally, if the Java ME environment supports error reporting
for unsuccessful UDP transmission attempts, these exceptions can also be an indication
of an unsuccessful location data transfer. If there is a low level of wireless signal, or if an
exception is thrown, the location data is buffered to memory or to persistent storage such
as the MIDP Recordstore. Once it is detected that UDP transmissions are likely to

succeed, the buffered data is then sent via UDP and deleted on the device.

While the above method attempts to increase the probability that a UDP transmission will
successfully be issued by the device, these methods do not verify an open connection
with the server. Therefore, a more reliable method is required to occasionally determine

if the server is properly receiving location data.

Adaptive Location Data Buffering also occasionally sends data via TCP to determine if
there is a successful response from the server. If there is no response (e.g., the phone is
off-network, the server is down, the user is on a voice call blocking data communication),
then the software begins buffering location data until the next successful response via
TCP. Upon the next successful response, the buffer is emptied and all location data is

sent via UDP. TCP transmissions should only be sparsely attempted, since the benefits of
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utilizing UDP over TCP as the primary location data transport protocol will disappear if
TCP transmissions are too frequent. In Chapter 4, we demonstrate the energy tradeoffs

between TCP and UDP when transmitting location data.

Figure 8 shows a simulated timeline of Location Data Buffering where location data is
being transmitted via UDP. An occasional lost UDP transmission is unknown to the

device, and acceptable for the system.

Key
UDP Transmission UDP Transmission TCP Transmission TCP Transmission
(successful) (Failed) (successful) (Failed)
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Figure 8 - A timeline of Location Data Buffering which shows a TCP failure that
results in a series of buffered location data fixes, which are transmitted to the server

on the next successful TCP transmission

When a TCP failure occurs, location data is buffered until the next successful TCP

transmission. At this time, all buffered location data is sent to the server via UDP.

Figure 9 is a data flow diagram showing the execution of Adaptive Location Data

Buffering as it is currently implemented in LAISYC.
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Sample execution of the Adaptive Location Data Buffering algorithm that traces this data

flow diagram follows.

On the generation of each new location data point by the device’s positioning system, we
executed an algorithm (Figure 9) to determine whether or not a TCP check with the

server to confirm an open data connection should occur.

We used two time-based thresholds to track whether or not a TCP check should occur:

e TCP_threshold_norm — minimum amount of time between TCP checks with the
server when TCP checks are successful. The default value we used in LAISYC is
180 seconds.

e TCP_threshold failed — minimum amount of time between TCP checks with the
server when TCP checks are failing. This value starts at 2 seconds for the first
failure, and doubles on each consecutive failure until it reaches a maximum
threshold value of max_TCP_threshold_failed (default value of 300 seconds in
LAISYC). This enables a quick recovery and small overhead for intermittent
failures, but also provides an exponential back-off with an upper limit to avoid
contacting the server frequently during an extended failure of communication

between the device and server.

If a TCP check with the server should not occur and if the last TCP check failed, then the
location data is buffered in memory on the device. On Java ME phones, we buffered up
to 2048 bytes to volatile memory, and subsequent data was buffered to persistent memory

(i.e., the MIDP Record Store in Java ME).
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If a TCP check with the server should not occur and if the last TCP check was successful,

then the location data is sent to the server via UDP like normal.

Adaptive Location Data Buffering also serves to reduce interference with incoming
phone calls for devices that do not support simultaneous voice and data sessions. In early
implementations of LAISYC we found that transmitting location data every four seconds
resulted in the communication link being continuously occupied by data transmissions.
Therefore, any incoming voice calls went directly to voicemail instead of ringing at the
phone. By implementing a buffer size of ten to aggregate several GPS fixes and send all

GPS data in a burst of UDP packets, interference with voice calls was eliminated.

In conclusion, the Adaptive Location Data Buffering module is designed to address
several of the needs for location-aware mobile apps outlined in Chapter 1. Adaptive
Location Data Buffering is designed to increase the reliability of real-time location data
communication (Need #2) with the server in an energy-efficient manner (Need #1).
Adaptive Location Data Buffering is based on protocols (i.e., TCP, UDP) and persistent
storage (i.e., MIDP Recordstore) accessible to third party mobile apps through platform
APIs, and therefore it is fully implementable by any third party mobile app developer

(Need #4).

3.3.2.3 Critical Point Algorithm

The purpose of the Critical Point Algorithm module is to reduce battery energy
expenditures and the amount of data transferred between the mobile phone and server by

eliminating non-essential GPS data.
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Since GPS technology in a mobile device can generate a significant amount of location
data, this data must be carefully managed to avoid wasting precious resources such as
battery energy or cellular data transfer. If every GPS fix that is calculated on-board a
mobile device is transferred to a server, a large amount of battery energy is consumed.
Additionally, in the U.S. many cellular data plans have an upper limit on the amount of
data that can be transferred from the mobile device over the cell network per month. If
every GPS fix is sent over the cellular network, this data will have a large negative

impact on the consumer’s data plan.

In our research, we observed that a large number of GPS fixes generated on a mobile
device may not contain useful information for many applications that are primarily
interested in the travel path of the device. For example, GPS generates a large number of
very close but different positions when the user is standing still; a single GPS fix could
adequately represent this same information. Additionally, when the user is traveling in a
straight line, a large number of points may lie upon the same vector, which can be
represented using only the start and end point of the vector. Therefore, the path of the
user could be accurately represented by using only a small portion of the GPS data

generated by the mobile phone.

The Critical Point (CP) algorithm was created in order to filter out non-critical location
data points out of a real-time stream of location data. Location data points are defined as
a set of data containing latitude, longitude, and speed information at a minimum, and may
include other information such as altitude, accuracy uncertainty, and heading. We

defined non-critical data points as redundant data that does not contribute to the
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knowledge of the path of a device. While the CP algorithm could be used with 3-
dimensional data, since consumer-level GPS-enabled phones are not currently able to
provide accurate altitude information [18], we focused on 2-dimensional data in the

description and analysis of the CP algorithm.

The CP algorithm can be seen as reducing a stream of location data into a series of
connected vectors. In other words, points along the vector are discarded since they do
not contribute additional path information. A path will always have at least 2 critical
points, which are the starting and ending points, since the simplest path is a straight line.
Non-critical points are points that lie directly between two critical points so that if a line
was drawn between the two critical points, it would intersect the non-critical points
between them. Non-critical points are also gathered while a device is standing still (i.e.,

redundant location data).

Changes in direction along with speed information are used to identify a critical point. In
other words, if a device is traveling in a straight line but changes direction, a new critical
point must be recorded at this change in direction. The resulting path is a series of

vectors with a critical point defining the vertex between vectors.

A flowchart describing the execution of the CP algorithm is shown in Figure 10. The CP
algorithm is executed each time a new GPS position of the mobile device is calculated.
Each time the algorithm is executed, it selectively retains memory of past input and uses
this to determine whether or not a critical point exists. If a critical point exists, it will
return the point that has been determined as critical. 1f a point has not been determined as

critical based on current input, then it returns null. The CP algorithm uses a speed
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threshold to determine the appropriate minimum speed that should be used to filter out
data when the device is not moving. The CP algorithm uses azimuth calculations to

determine the change in direction when the device is moving (Figure 11).

Azimuth is a measurement used to determine difference in angle given a reference plane
and two points. We used Vincenty’s Inverse algorithm to calculate the azimuth values
[136], which has been shown by Vincenty to be accurate to within 0.000015 seconds
[136] in angular Degrees-Minutes-Seconds (DMS) notation, where a degree of angle is

equivalent to 60 minutes, and a minute is equivalent to 60 seconds.

For each execution of the CP algorithm, we evaluated the azimuth for two pairs of points:

e Azimuth; = Azimuth of the Last Critical Point and the Last Trigger Point in
relation to true north (shown in Figure 11)
e Azimuth, = Azimuth of the Last Critical Point and the Current Point in relation to

true north (shown in Figure 11).

The absolute value of the difference of Azimuth; and Azimuth; yields the change of

direction of the device for the Last Trigger Point.

The CP algorithm keeps references to the three points (Last Critical Point, Last Trigger
Point, and Current Point) throughout its execution, which can be viewed as a three point
sliding window over a stream of location data (Figure 12). The second of the three points
is always the point under consideration by the CP algorithm to determine if it is a critical

point.
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Figure 10 - The Critical Point Algorithm filters out GPS fixes that are not necessary
to recreate the user's path. [119] © 2008 IEEE
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Figure 12 - The Critical Point Algorithm maintains a reference to three points that
are used to determine whether the second of the three points is a critical point
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As a result, the most recent location point passed into the CP algorithm is not the same
point that is returned by the algorithm as the critical point. This is because the CP
Algorithm is stateful and remembers its past input for three location data points, and it
uses this information to calculate changes in azimuth and speed that determine whether or

not a point is critical of the second of the three points in the sliding window.

The change in direction threshold can also be dynamically adjusted based on the current
speed. For example, one change in azimuth threshold can be used for speeds less than 10
meters/sec, and another azimuth threshold can be used for speeds greater than 10
meters/sec. In other words, the variation of changes in direction while walking may be
high and a larger threshold value may be used to determine a critical point. Similarly, the
variation of changes in direction while driving in a car at high speeds may be low and

therefore a lesser threshold value can be used.

To support the above features, the following thresholds are used in the CP algorithm:

e min_speed_threshold: location data with speed values under this threshold are
discarded as non-critical points, since the user is considered to be standing still

e max_walk speed: if the speed is less than this threshold, the angle threshold for
walking will be used, otherwise the angle threshold for a vehicle will be used

e angle_threshold: if the absolute value of the difference of azimuth values exceeds
this threshold, then the point is considered a critical point. One angle is used for

walk trips, while another is used for vehicle trips.
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The CP Algorithm also supports several optional evaluations (as seen in Figure 10) that
can be used by real-time applications to transition between several different server update

strategies:

e HasTimerExpired()?: A timer is started when a critical point is determined, and a
new critical point is identified after a certain amount of time elapses. This would
ensure that a position was reported at a minimum given interval, in case the
device is stationary for long times or traveling in a straight line for an extended
period of time. For example, after 5 minutes, if a critical point has not yet been
determined, then the next point would be considered a critical point.

e HasDistanceCounterExceededThreshold()?: A distance counter is started after a
critical point is found. While the device is traveling in a straight line, for each
position update the distance would be increased. Once the device exceeds a
threshold for distance traveled, then it declares the next point a critical point and
sends this point to the server. This method assures that the server will receive
position updates for a device before it travels more than a certain distance from
the last reported point.

e ReceivedLocationProbe()?: If the device receives a location update request from
a server, then the next point is automatically determined to be a critical point and

sent to the server.

A sample execution of the CP algorithm follows.

A LBS application starts up and makes a request to the Location API to generate a new

GPS position every 4 seconds. The critical points algorithm is executed every time a new
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position is generated, beginning with the first fix. The first GPS fix will be determined as
critical, and information about this fix is then saved within the algorithm. The device
generates a new position 4 seconds later, and the application inputs this data into the CP
algorithm. The algorithm outputs null, since it does not have enough information at this
point to determine whether this second point is a critical point (i.e., it needs a third fix to
calculate both azimuth values). However, it saves information about this fix for future
CP calculations, as future calculations might determine this point as critical. The device
then generates a third GPS fix, and the application inputs this into the Critical Point
Algorithm. If the difference in azimuth between the first and second fix and the first and
third fix exceeds an angle threshold value and the speed value for the third fix exceeds a
speed threshold (i.e., the device is not stationary), then the second fix is determined to be
a critical point, and the second fix is returned by the algorithm. Information about the
second and third fix is then saved for future CP calculations. If the difference in azimuth
values does not exceed the threshold for change in direction, then the CP algorithm saves
information about the second fix and returns null. The device then generates a 4th fix,
and the application inputs it into the CP algorithm. Assuming a critical point was just
identified in the previous step, if the difference in azimuth between the second and third
fix and second and 4th fix exceeds an angle threshold value and the speed value for the
4th fix exceeds a speed threshold (i.e., the device is not stationary), then the third fix is
determined to be a critical point and the third fix is returned by the CP algorithm.
Information about the 4th fix is saved for future CP calculations. This process continues
until the final fix for series is calculated, at which point the final fix is determined to be a

critical point.

78



In conclusion, the CP Algorithm module is designed to address several of the needs for
location-aware mobile apps outlined in Chapter 1. The CP Algorithm is designed to
reduce battery energy expenditures (Need #1) and the amount of data transferred between
the mobile phone and server (Need #1) by eliminating non-essential GPS data (Need #3)
in real-time (Need #2). The CP Algorithm uses attributes from location data provided by
the Location API (e.g., latitude, longitude, speed), and therefore is fully implementable

by any third party mobile app developer (Need #4).

We demonstrate the battery energy and data transfer savings of the CP Algorithm in
Chapter 4, and also define a methodology for selecting values for the thresholds used in

the CP algorithm.

3.3.2.4 Location Data Encryption

The purpose of the Location Data Encryption module is to ensure the security of the
location data being transferred between the mobile phone and the server in an energy-

efficient manner.

The main threat to a breach of privacy by untrusted parties in a location-aware
architecture is the interception of location data as it is being transferred from a mobile
device to a server over the Internet. While secure TCP connections are supported by the
Java ME platform through the use of SSL, there is no secure support for datagrams sent
via UDP in Java ME [140, 145]. Therefore, the implementation of secure UDP
transmissions is left to the application developer. Since we have chosen UDP as the

primary location data transport protocol, as discussed in the Session Management section
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earlier in this chapter, we must examine the potential for securing UDP communications

to protect the privacy of the user.

The Location Data Encryption module handles the encryption of location data in the
payload of the UDP datagram to enable end-to-end security between the mobile device
and the server. This module is optional, and is only needed for applications that require
secure location data transfer. As discussed in the earlier Session Management section,
the only information included in a UDP packet sent from a device to a server is a unique
session identifier (i.e., an integer) and the latitude, longitude, speed, and other location
data. The session identifier is not related to the user or device identifier and changes at
least once daily (i.e., every time the application calls the createSession() server method),
and therefore some applications may not need to encrypt the data transferred over UDP.
However, we define this optional Location Data Encryption module for applications that

require highly secure and private communication.

Symmetric encryption (e.g., Advanced Encryption Standard (AES)), which uses a shared
key between two parties, is generally more efficient than asymmetric encryption [146].
However, symmetric encryption requires a secret shared key that is known only by both
parties before any communication can take place. Since a device initiates communication
with a server over a wireless network, we must use a different method to secure an initial

information exchange between the device and server.

HTTPS uses asymmetric encryption, which does not require the exchange of a shared
secret key. Instead, HTTPS uses public and private key cryptography. The device uses

the server’s public key to encrypt information, and then sends this information to the
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server. Since the server is the only entity that has possession of the private key that can
decrypt the information, the initial exchange between the device and server is secure even
without exchanging a shared secret key. However, one drawback to asymmetric
encryption is that it is less efficient and more computationally intense that symmetric

encryption [146].

In LAISYC, we define a hybrid cryptosystem using both asymmetric and symmetric
encryption to provide a secure and efficient exchange of information. Figure 13 shows

the secure exchange between the device and server in this hybrid cryptosystem.

/ N createSession() / N
é Session ID and AES key ‘

Mobile Device 4

Web Application

Server
Location Data

-— - e e s

Location Data

| | m———— | ;

Key

— HTTPS with SSL (Asymmetric Encryption)

- o= AES (Symmetric Encryption)

Figure 13 - LAISYC uses a hybrid cryptosystem to protect the exchange of the AES
key using HTTPS with SSL, and then uses the AES key to encrypt the location data
sent over UDP

We use HTTPS and SSL (i.e., asymmetric encryption) to protect the initial exchange of a
symmetric encryption shared secret key, which occurs during the invocation of the initial
createSession() web application method. The server uses a different symmetric key for

each connected device, and a new symmetric key is generated at the start of each session
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(i.e., approximately every 24 hours). After the device has the symmetric encryption key,
it uses this key to encrypt all location data information, except for a session identifier, in
the payload of UDP packets that is sent to the server. The session identifier is left
unencrypted so that the server can identify the proper key to decrypt the data for each
session. Figure 14 shows the contents of the UDP payload when encryption is used in

LAISYC.

Location Data Payload Contents using Encryption
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Figure 14 - 128bit AES is used to encrypt the location data in the UDP payload, with
the exception of the session ID which is used by the server to identify the correct
symmetric key per device session

RC4 and Advanced Encryption Standard (AES) are two popular candidates for
symmetric encryption. According to Prasithsangaree and Krishnamurthy [146], tests
executed on a mobile Pentium 111 processor in a laptop show that AES is more energy-
efficient for packet sizes of less than approximately 100 bytes, while RC4 is more
energy-efficient for packet sizes of more than 100 bytes. AES is preferred from a
security perspective, since several weaknesses have been exposed in RC4 [146]. The
typical payload size of a location data packet which contains location data and a limited
amount of application-specific data to be transmitted over UDP is approximately 78

bytes. Therefore, we chose AES as the symmetric encryption method for LAISYC.
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In conclusion, the Location Data Encryption module is designed to address several of the
needs for location-aware mobile apps outlined in Chapter 1. Location Data Encryption is
designed to ensure the security of the location data being transferred in real-time (Need
#2) between the device and server in an energy-efficient manner (Need #1). AES was
chosen since it is more secure and energy efficient than other methods and can be easily
implemented by third party mobile app developers (Need #4) using existing libraries such
as BouncyCastle [147]. In Chapter 4, we evaluate the battery life impact of Location Data

Encryption.

3.4  Server-Side Components
The server-side modules in LAISYC exist to support the mobile device-side modules,

and act as a proxy for database access. The LAISYC server-side modules are shown in

Figure 15.
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Figure 15 - LAISYC server-side modules. [118] © 2011 IEEE
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As mentioned earlier, the focus in this dissertation is primarily the design,
implementation, and evaluation of the device-side LAISYC modules. Therefore, the
server-side modules are presented in this dissertation to describe how they support or

benefit from the LAISYC device-side modules.

Server-side modules are broken down into two categories:

1) Communications Management (Green shaded modules in Figure 15)

2) Data Analysis (Pink shaded modules in Figure 15)

3.4.1 Communications Management

Communications Management on the server-side of LAISYC consists of the Session

Management and Adaptive Location Data Buffering modules.

3.4.1.1 Session Management

The server-side Session Management module coordinates communication with multiple
connected client devices. In order to tie multiple web service calls over HTTP and
location data sent via UDP together, upon the creation of a new session, a unique session
identifier is passed back to the mobile device. This session identifier is then used in
subsequent device-initiated communication between the device and server in order to
identify the device. This identifier allows streamlined communication between the
device and server, since login information does not have to be transferred and authorized
for each communication between the device and server. HTTPS can be used to encrypt

web service calls from the phone so that login information, session identifier, and
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application-specific data are all protected. Support for HTTPS is mandated for MSA 1.0-

compliant Java ME devices [111].

A limited amount of information for each session (e.g., session ID, device phone number
and IP address, most recent location update) is kept in main memory inside the
application server to enable a rapid response to the device based on incoming location
data. Since the application is able to immediately execute threads to take action based on
real-time location information received over UDP, timely location-based services can be
executed from the server. While extremely time-sensitive actions such as real-time
navigation must be handled by software executing on the mobile device, near real-time
functionality with less stringent time constraints can be implemented server-side without
experiencing the delay of first writing to a disk in the database management systems and
then waiting for database triggers or a separate application to receive and process the
information. The disk-based database contains a record of all user and location data and
serves as the persistent backup of information contained in the application server

memory.

The server-side Session Management module also handles the expiration of sessions for
devices which have not communicated with the server in a certain amount of time in
order to de-allocate memory assigned to that session. These “abandoned” sessions could
be caused by an unexpected termination of the device’s client-side software or by a phone
that is currently off-network and is unable to communicate with the server. Session
information is always saved to a database management system to enable the transparent

restart of the server in case of server hardware or software failures, as well as to allow the
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application server to dynamically load and unload sessions to and from main memory. If
the device tries to use a session that has been expired and removed from main memory,
the Session Management module is able to reload the information from the database and
reuse that session. Therefore, the expiration and re-initialization of the session is also

transparent to the device.

3.4.1.2 Adaptive Location Data Buffering

The server-side implementation of Adaptive Location Data Buffering responds to the
TCP communication initiated by the Adaptive Location Data Buffering module on the
mobile device to confirm that there is an open session between the mobile device and the
server. Before taking any action, the Adaptive Location Data Buffering module confirms
that a session exists for the given session ID through communication with the Session

Management module.

3.4.2 Data Analysis

Data Analysis consists of the Critical Point Algorithm and Spatial Analysis modules.

3.4.2.1 Critical Point Algorithm

In LAISYC, we replicate the CP algorithm on the server-side, as well. The server-side
CP algorithm is only used if the CP algorithm on the device is deactivated to allow all
location updates to be transferred from the mobile phone to the server. Transferring all
location data points may be desirable when tracking second-by-second. Therefore,
before location data is input into any Location Data Analysis modules (e.g., Spatial
Analysis), it is pre-filtered using the Critical Point Algorithm in order to reduce the
information into a meaningful path that can be better analyzed.
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3.4.2.2 Spatial Analysis

The purpose of the Spatial Analysis module is to provide near real-time location based
services to mobile users that cannot be accomplished on the mobile phone due to

processing or data storage constraints.

In order to provide intelligent location-based services to mobile users, it is desirable to
provide information to the user which is highly relevant based on both their real-time
position, as well as historical or future intended travel behavior. Location-based alerts
should be given to travelers as soon as it is determined that the information is relevant,
and before they reach the area to which the alerts pertain, in order to allow users to plan
and react accordingly. However, to avoid inundating users with meaningless
information, the information should be highly relevant and precisely targeted. For
example, a traveler would ideally want to know of an incident along the typical path from
home to the destination before even leaving their home. This would allow the user to
take an alternate path to the destination or even delay the trip until a time when the
congestion has cleared. However, a user would not want to be alerted of hometown
incidents when traveling outside the hometown. A user would want to be notified as

soon as possible, if wandering off the planned path.

One method of delivering relevant alerts to a traveler is to examine the real-time and/or
spatial attributes of the traveler’s past travel behavior in conjunction with a spatial
database. LAISYC is designed to support real-time location information exchange from
a phone to a server so that these types of services are possible. The Spatial Analysis

module in LAISYC can utilize massive server-side spatial databases to provide services
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that cannot be provided on the mobile device, due to memory and storage space

constraints, as well as lack of spatial database support.

To demonstrate the ability for the LAISYC to provide real-time services based on spatial
databases, we have focused on two specific implementations of the Spatial Analysis

module:

1) Path Prediction and Traffic Incidents — Within our TRAC-IT application, we have
implemented a spatial path-based prediction of the user’s travel to provide real-
time traffic alerts based on the user’s real-time and historical location information.
We discuss this application in detail in Chapter 4 along with the TRAC-IT
system.

2) Lost user alerts — In our TAD application, we have implemented the ability to
detect if a user has deviated from a planned transit route. We discuss this

application in detail in Chapter 4 along with the TAD system.
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CHAPTER 4: EVALUATION
4.1 Note to Reader

Some experimental results presented in this chapter have previously been published in a
variety of journals, and several patents are pending or issued on the related technology.
Experiments related to GPS Auto-Sleep in this chapter have been published in IEEE
Pervasive Computing [118] (© 2011, IEEE), and Proceedings of UBICOMM 08 [119]
(© 2008, IEEE), and a 2011 issue of the Journal of Navigation [18] (Copyright © 2011
The Royal Institute of Navigation) are reprinted here with permission of IEEE and
Cambridge University Press. Experiments for Session Management and Adaptive
Location Data Buffering have been published in IEEE Pervasive Computing [118] (©
2011, IEEE) and the Transportation Research Board (TRB) Transportation Research
Record [120] (© 2010, TRB) and are reprinted here with permission of IEEE and TRB.
Portions of the experiments for the Critical Point Algorithm have been published in IEEE
Pervasive Computing [118] (© 2011, IEEE) and Proceedings of UBICOMM °08 [119]
(© 2008, IEEE), and are reprinted here with permission of IEEE. The Travel Assistance
Device (TAD) technology is protected under U.S. Patents # 8,138,907 “Device to Assist
Transit Riders with Special Needs” [123] and # 8,169,342 “Method of Providing a
Destination Alert to a Transit System Rider” [126] by the University of South Florida.
Descriptions and experiments related to TAD have been published in the Institution of

Engineering and Technology (IET)’s Journal of Intelligent Transport Systems (© 2010
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IET) [130] and Transportation Research Board (TRB)’s Transportation Research Record
Journal [120] (© 2010) and is reprinted with permission of IET and TRB. Technology
supporting TRAC-IT is protected under pending U.S. Patent Application # 11/855,694
“System and Method for Real-Time Path Prediction and Automatic Incident Alerts” and
U.S. Patent Application # 11/277,403 “System and Method for Transportation Demand
Management” by the University of South Florida. Portions of the material related to
TRAC-IT have been presented at the Transportation Research Board (TRB) annual
meeting and have been peer-reviewed by TRB [131], and have also appeared in a USF

research project final report [148].

4.2 Evaluation Overview

Our evaluation of LAISYC is divided into two categories:

1) Evaluation of individual LAISYC framework components
2) Demonstration of innovative location-aware mobile apps developed using

LAISYC

The first subsection of this chapter presents experiments performed with mobile devices
in order to isolate and evaluate each component. The second subsection discusses two
innovative location-aware mobile applications, TRAC-IT and the Travel Assistance

Device (TAD), which have been developed and evaluated using the LAISYC platform.

4.3  LAISYC Component Evaluation

We set out to evaluate the various LAISYC components through a series of real-world
tests on actual GPS-enabled mobile phones. This is particularly challenging, since at the

time of these tests the Java ME Location APl was a restricted API that could only be
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accessed with the permission of the wireless carrier. Permission of this type is typically
only given to commercial partners of the wireless carrier, since the use of assisted GPS
and other network-assisted positioning technologies have a significant impact on cellular
carrier network resources. However, we were able to obtain permission from Sprint to

test our mobile applications that use the Location API on the Sprint and Nextel networks.

We developed several test mobile applications designed to isolate and test various aspects
of the mobile software’s impact on the mobile device. Each software test is discussed in

the following respective sections for the LAISYC components.

4.3.1 GPS Auto-Sleep

As mentioned in the GPS Auto-Sleep section in Chapter 3, during our research using
high-sensitivity GPS-enabled mobile phones, we observed that the successful acquisition
of individual GPS samples were significantly less dependent on previous GPS
observations than previous mobile phone models with low-sensitivity GPS receivers.
This observation led us to hypothesize that dynamic GPS sampling could capture high-
resolution travel paths by using a high frequency sampling rate when the user is moving
and saving a significant amount of battery energy by using a low frequency sampling rate
when the user is stopped. GPS Auto-Sleep, implemented using a finite state machine, is

the invention that controls the dynamic GPS sampling rate.

We first set out to demonstrate the feasibility of GPS Auto-Sleep through a series of
controlled experiments using a Sanyo Pro 200 CDMA cell phone on Sprint’s Evolution-

Data Optimized (EV-DO) Revision (Rev.) A network with assisted GPS.
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We implemented a test mobile application that simply registered given interval, timeout,
and maxAge values with the JSR179 Location API LocationListener and then recorded
timestamps to the persistent MIDP Recordstore every several GPS fixes. The device was
charged until the battery life indicator on the outside of the device indicated a full charge,
and then the test software was executed on the device until the battery was depleted to the
point that the device powered itself off. After plugging in the device and powering it
back on, we restarted the testing application and pressed a button to retrieve the
timestamps from the most recently completed test. Through this method, we were able to
record the length of time the phone was operational while attempting to acquire GPS at

various sampling frequencies.

Figure 16 shows the result of these tests using the Sanyo Pro 200 and a series of sampling
intervals varying from four seconds to 300 seconds (i.e., five minutes). The device was
located on a table in the lower story of a two story building for these tests, and the phone

was flipped closed during these tests, so the display was off.

From these experiments we can see that increases in the GPS sampling interval lead to a
battery life savings in the order of hours. Even the increase between sampling GPS every
four seconds to every eight seconds produces an increase of 2.67 hours in battery life, and
the increase from eight seconds to fifteen seconds increases battery life another 2.3 hours.
These results indicate that high-sensitivity GPS is able to turn on the GPS hardware to
full power to acquire a GPS fix, and immediately reduce energy consumption by

dropping to a lesser power level.
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Impact of Interval Between GPS Fixes on
Battery Life
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Figure 16 - Even modest increases in the interval between GPS fixes produce
extended battery life on the order of hours. [118] © 2011 IEEE

An exponential increase in battery life of 23.17 hours can be seen between the GPS
intervals of 150 seconds and 300 seconds. This large increase in energy savings indicates
that various components in the phone (e.g., Central Processing Unit, memory, cellular
modem) are able to reach a low power state due to the lack of GPS activity, unlike

smaller interval values where these components remain active.

The trend of energy savings in relation to increasing GPS sampling intervals validates the
general design of the GPS Auto-Sleep state machine. If we can achieve accurate state
transitions, we could sample frequently when the user is moving, and less frequently
when the user has stopped moving. Since U.S. travelers report traveling an average of
approximately 91 minutes per day [149], occasional GPS sampling in the stopped state

would cover the remaining 1,349 minutes of the day, which should adequately extend
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battery life so that the user can carry the phone throughout the day without needing to

charge the battery.

Since the GPS Auto-Sleep needs to run in real-time on the mobile phone, we next
evaluate the complexity of the algorithm in terms of running time and memory. To keep
up with real-time data, the algorithm must maintain a linear growth rate in relation to the
number of GPS points processed, and must maintain a constant memory requirement
throughout execution, or else the mobile device will eventually run out of memory, as the

algorithm executes online for weeks or months at a time.

When a new GPS point is generated by the mobile phone, GPS Auto-Sleep makes several
comparisons against constant thresholds that do not change. GPS Auto-Sleep only keeps
one previous GPS data point in memory for the moved_distance_threshold. Therefore,

the memory requirements of GPS Auto-Sleep,f (n), is:

fm) =0(1)

where n is the number of GPS data points processed.

For running time analysis, we can prove that GPS Auto-Sleep maintains a linear growth
rate in terms of execution time with real-time data input by reviewing the processing
steps in the algorithm. For each GPS data point, we measure the distance to the last
saved location data point when the user is stopped to determine if the moved distance
exceeds the moved_distance_threshold. We use the Vincenty inverse algorithm to
compute the distance, which has been shown to execute in a constant amount of time

[136], and therefore is 0(1). The amount of time to execute the comparisons of speed,
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time, and uncertainty data against the respective thresholds is also 0(1). Since GPS
Auto-Sleep is an online algorithm that executes these steps for each new location data

point generated by the phone, the time complexity of GPS Auto-Sleep,f (n), is:

f(n) = 0(n)

where n is the number of GPS data points processed. Therefore, GPS Auto-Sleep scales
linearly in execution time and maintains a constant memory requirement, as large
numbers of location data points are processed. Thus, it can remain online for an

indefinite amount of time.

The next steps for the design of GPS Auto-Sleep are the choice of thresholds used to
control state transitions, the state values for interval, timeout, and maxAge, and the

number of states used in the state machine.

For data collection in our experiments using GPS Auto-Sleep, we have configured the

state machine attributes with the values shown in Table 3.

Table 3 - GPS Auto-Sleep state machine values chosen for experimentation

State Interval (s) Timeout (s) MaxAge (s)
0 4 2 2
1 8 4 4
2 16 8 8
3 64 16 16
4 150 32 32
5 256 32 32

95




In our analysis of these attributes we simplify our calculations to focus on only the
interval and timeout values. Using only the interval and time values, we can establish
both an upper bound and lower bound on the amount of time required for our application
to achieve a GPS fix without needing the maxAge parameter. Eliminating the maxAge
parameter from consideration is also preferred, since we do not have any control over the

GPS behavior of other applications that would affect this parameter.

Since the use of GPS by another application would only decrease the time needed for our
application to acquire a GPS fix (i.e., the maxAge parameter never increases the time
required to acquire a GPS fix), the lower bound of the time required to achieve a GPS fix
is an ideal scenario when another application acquires a GPS fix just before our
application’s scheduled interval. In this scenario, the time elapsed between when a fix is
scheduled and the fix is acquired by our application is zero, and therefore the lower
bound on the total amount of time required to acquire a fix is equivalent to the interval
value. The upper bound of the time required to achieve a GPS fix is equivalent to the

sum of the interval and timeout values.

We chose interval values for states that exhibit exponential growth as we move towards
sleep state, since as we build confidence that the device is not moving while transitioning
through states, we want to rapidly enter the state that will save the most energy. The
same exponential decay is desired when moving from the sleep state to the awake state,
as we build confidence in the user’s movement. Figure 17 shows the relationship of the

chosen interval values (solid blue line) to several growth functions. As shown in Figure
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17, the chosen interval values approximate a third order polynomial, which is determined

using polynomial regression (R? = 0.9979):

state[ilinrervar = 0.6852(i + 1)3 + 7.4841(i + 1)2 — 31.487(i + 1) + 29.33

Comparison of Growth Functions for GPS Auto-Sleep
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Figure 17 - A growth function for the state[i]intervar Values was chosen to grow like an
x? or 2* function until it reaches the middle state, at which point it quickly
accelerates in growth beyond an x® function

The interval values’ relationships with the timeout values from Table 3 are shown in
Figure 18. The timeout values (beige dotted line) are defined as half of the interval value
at each state, until an upper limit is reached at 32 seconds. In our research with the Sanyo
Pro 200, allowing the GPS to continue to search for a signal after 32 seconds had elapsed
did not yield a fix, and therefore to prevent wasting battery energy we do not want the

GPS to be active longer than this threshold. In the case that a GPS fix cannot be acquired
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at a particular state, the GPS may be active for a maximum period of time defined by the

interval value and timeout value at a particular state:
max—gps—aCtiVitystate[i] = State[i]interval + State[i]timeout

These values are shown in Figure 18 as the red line composed of dots and dashes.

GPS Auto-Sleep State Machine Values

300

150 |

100 |

Time between GPS fixes (s)

50 |

stateli]
wme ctatei] interval

------ state[i] timeout
- max_gps_actvity[i] = state[i] interval + state[i] timeout

Figure 18 - Sample GPS Auto-Sleep values are chosen for an exponential growth in
the interval between GPS fixes, while the timeout values have an upper-bound of 32
seconds; if a GPS fix cannot be acquired, the interval + timeout line illustrates an
upper bound for the total time elapsed at each state.

One concern with the design of the state machine is the time it takes to transition from
state[n] to state[0] due to the high-resolution travel path data that could be potentially lost
for the time it takes to transition from asleep to awake. Through discussion with travel

behavior data collection experts and a review of literature [149-154], we established five
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minutes as the acceptable amount of the first portion of the travel behavior path to miss
when transitioning from asleep to awake in the case of worst-case performance by GPS

Auto-Sleep.

This loss of the first portion of the path is primarily of concern when distance of travel is
being measured. Figure 19 shows the worst-case scenario when the state machine is in
the sleep state of state[n] and the user begins moving immediately following a GPS fix
acquisition. The longest amount of time that may elapse between successful GPS
samples is max_gps_activitysae). As a result, the user’s travel behavior is not being
monitored during this time, resulting in the observed travel path of the straight dashed red

line in Figure 19, instead of the actual travel path shown in the black dots.

First moving

° ° ° ° ° ° ° ° ° L4 d L — GPS sample
®

~N

Upper bound of length of time °
° between GPS samples / °
max_gps_activitysiatern= \ /
[ ] State[n]interval + State[n]timeout // °
/
¢ / o

Trip Origin
(Stationary GPS samples)

Legend
° ® Actual travel path

— — — Observed travel path

Figure 19 - The largest potential loss of beginning travel path is worst-case scenario
when the user travel path is sampled just before they begin moving, since the next
GPS sample occurs max_gps_activitystate[n Seconds later
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The following formulas define the time cost for transitioning between states given the
state transition rules defined in Chapter 3, with the goal of keeping the amount of time for

lost travel path data under five minutes.

If a GPS fix cannot be acquired on startup, the maximum time elapsed from startup to
fully asleep (i.e., state[n]) is:

max_elapsed—tlmestartup_to_asleep

n-1

= first_fix_timeout + Z(state[i]interval + stateliltimeout)
i=1

With the state values defined here, the max_elapsed_timestartup_to_asteep 1S 296 seconds, or
almost five minutes, which is an acceptable amount of time for our tracking application.
The amount of time elapsed from the awake state to the asleep state during normal
execution (i.e., not on startup) is a similar equation and value, with the only difference

being the use of the back off timer instead of the first_fix_timeout value:

max_elapsed_timegyake to asteep

n-1
= backoff_time_threshold + Z(state[i]interval + statelilimeout)
i=1

Since our goal is to capture high resolution travel behavior, a significant risk when fully
asleep in state[n] is that the state machine will sample the GPS location when the device
is stationary, and then the device immediately begins moving and the state machine waits
state[n] amount of time (e.g., 256 seconds) before again sampling GPS. When
considering the maximum possible elapsed time, we also must assume that nearly the
entirely timeout period has elapsed before acquiring a GPS fix. If we wait to fully

100



transition between state[n] to state[0] using single state transitions to resume high
resolution tracking, and assuming the entire timeout period is used, the maximum elapsed

time is:
max—elapsed—tlmeasleep_to_awake_single_transitions

n
= z(State [i]interval + state [i]timeout)
i=1

With the state values defined here, the max_elapsed_timeasieep_to_awake_single_transitions 1S 564
seconds, or nearly ten minutes. This is far too long to wait for our needs of capturing

high-resolution travel behavior.

We could consider using the avg_elapsed_timeasieep to_awake single_transitions iNStead of the
max_elapsed_timeasieep_to_awake single_transitions When calculating the acceptable amount of
data loss if the theoretical max_elapsed_timeasicep_to_awake single_transitions 1S found to be much
larger than the avg_elapsed_timeasieep_to_awake single_transitions Values observed in our tests
with actual devices. In our research, we found that once a high-sensitivity GPS-enabled
cell phone is able to acquire a GPS fix in an environment, it typically returns the next
GPS fix quickly, which significantly reduces the amount of time spent during the timeout
stage of each GPS fix attempt. Figure 20 shows the difference between scheduled GPS
times (i.e., when the Location API is scheduled to return a GPS fix based on the interval
value) and the times when the Location API actually acquired and returned a GPS fix for
a dataset, observed using a Sanyo Pro 200 on the bottom story of a two story building.
The average time difference value here is approximately 9 seconds, which is less than a

third of our maximum timeout value of 32 seconds. The negative value shown in the far-
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left minimum column indicates that the Location API returned a GPS fix slightly before

the GPS update to the application was scheduled.

Difference between

GPS scheduled time and GPS acquisition time
n=96, interval = 120s, timeout =32s

20
15
.

Min Max Avg Absavg 50th percent. 68th percent. 95th percent.

Time Difference (s)
=
(=]

Figure 20 — When high-sensitivity GPS is able to acquire a fix, it tends to deliver this
information close to the expected interval value with an average delay of only 9
seconds.

This observation indicates that the Location API is actually starting up the GPS hardware
slightly prior to the time when the next GPS update is scheduled. We refer to this as
proactive GPS scheduling, as opposed to reactive GPS scheduling, which waits until the
scheduled interval expires before starting up the GPS hardware. The difference between
proactive and reactive GPS scheduling is illustrated in Figure 21. Proactive GPS
scheduling reduces the time the application has to wait for a fix to be acquired, since
some of the wait time is moved prior to the scheduled update time. It should be noted
that proactive GPS scheduling uses an estimate for the amount of time that is needed to
acquire a GPS fix when scheduling the GPS hardware, since this value is not known a
priori.

102



Proactive GPS Scheduling Reactive GPS Scheduling

Interval = 30 seconds, Time to acquire GPS fix = 5 seconds Interval = 30 seconds, Time to acquire GPS fix = 5 seconds

GPS GPS GPS GPS
Fix Fix Fix Fix
| | GPS | | GPs
Hardware Hardware
on on
GPS GPS
Time Hardware Time Hardware
(sec) to tas tao off (sec) to tao tas off
_ - N -
Total elapsed time = 30 sec Total elapsed time = 35 sec

Figure 21 - Proactive GPS scheduling (left) starts the GPS hardware slightly before
the scheduled interval value expires, while reactive GPS scheduling (right) waits
until the interval period has completely expired before attempting a GPS fix.

However, even if the timeout values are completely eliminated via high-sensitivity GPS
hardware, proactive GPS scheduling, or use of GPS by other applications, this would still
yield a minimum amount of time required to transition from fully asleep (i.e., state[n]) to

fully awake (i.e., state[0]) as:

n

mln_elapsed_tlmeasleep_to_awake_single_transitions = Z (State [l] interval)
i=1

With the state values defined here, the min_avg_elapsed_timeasieep to_awake_single_transitions IS
472 seconds, or a little under 8 minutes. This value is too long to risk lost travel
behavior. Figure 22 illustrates the potential loss of travel path information, if the state

machine needs to transition through all states before beginning high-resolution tracking.

Therefore, we needed a new method to reduce the amount of time needed to transition

from state[n] to state[0].
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Figure 22 - GPS Auto-Sleep can miss a substantial part of the beginning trip path if
it must transition through all states before starting to record high-resolution travel
behavior

To increase our ability to capture high-resolution travel behavior data, we introduced the
high_speed_threshold that allows direct state transitions from any state[i] to state[0] to
“snap” back to high frequency GPS sampling. This reduces the max_elapsed_time value

to:
max_elapsed_timeasleep_to_awake = state [n] interval T State [n] timeout

With the state values defined here, the max_elapsed_timeasieep to_awake 1S 288 seconds,

which is under our five minute threshold and therefore an acceptable delay.

The high_speed_threshold must be chosen carefully to ensure proper operation of GPS

Auto-Sleep. If high_speed_threshold is too small, the state machine will be constantly
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waking up and wasting battery energy while it samples GPS at high frequency until the
back off timer expires and the state machine gradually transitions to the sleep state again,
which is upper-bounded by max_elapsed_timeawake to_sieep- I the high_speed_threshold is
too high and we do not recognize true movement quickly, then we lose the ability to
transition to state[0] within the five minute requirement and as a result, we risk losing a

significant amount of travel behavior.

Fortunately, GPS speed measurements tend to be accurate, as speed is measured by the
receiver using the Doppler shift of the GPS signal [155]. Additionally, research has
shown that accurate GPS speed determination is preserved even when positional accuracy
of GPS degrades due to reduced GPS signal quality [155]. Therefore, speed can be used
as a threshold that is largely independent of position error, and therefore the
stopped_speed_threshold and high_speed_threshold can be used to temper and correct
movement in the state machine when the moved_distance_threshold may be affected by

positional outliers.

To evaluate the high_speed_threshold and stopped_speed_threshold values for the
execution of GPS Auto-Sleep on the Sanyo Pro 200, we recorded the GPS speed
observation of the Sanyo Pro 200 while it was stationary indoors (i.e., true speed = 0
meters per second) over a 5.5 hour period, with an interval between GPS samples of two
minutes. The device was located on a table in the lower story of a two story building.

The observed speed error measurements are shown in Figure 23.
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GPS Speed Observations When Stationary Indoors

(n =165, recorded over 5.5 hours)
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Figure 23 - Speed thresholds for the GPS Auto-Sleep state machine are selected
using observations of speed when stationary and indoors

The 95" percentile of error is 1 meter per second, indicating that GPS speed tends to be
close to actual speed when stationary indoors, even in a difficult GPS environment. In
additional tests, the Sanyo Pro 200 tended to register a walking speed at a value slightly
over 1 meter per second, approximately 1.1 meter per second. Since we want to respond
to walking trips and slowly increase the sampling interval by stepping through the states
from state[n] to state[0], we chose 1 meter per second as the stopped_speed_threshold.
Since any direct transitions from any state[i] to state[0] need to be accurate to avoid
unnecessary wake ups, we chose 1.5 meters per second as the high_speed_threshold, as
this should have less than a 2% error rate based on our data and GPS Auto-Sleep will still
be able to quickly respond to true movement by directly snapping to state[0]. We want
this value to be as low as possible without triggering too many false wake-up periods
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because we are interested in capturing non-vehicle travel behavior (e.g., walking, biking),

which can be at fairly low speeds.

Figure 24 shows the behavior of GPS Auto-Sleep using the high_speed_threshold.

Fourth moving Third moving Second moving
GPSsample  GPS sample GPS sample

| / First moving
ST TE T e — 0~~~ o0 T g— GPSsample

¢ /
| / [
/
+ . 4 °
Upper bound of length of time /
l between GPS samples // .
| max_gps_activitystem= \ /
+ state[n]intervar + State[N]timeout // o
| /
. / °
| /
/

¢— o —9 o

|

[ , °

|

/‘ e o o o o

+ Trip Origin

| (Stationary GPS samples)

¢ Legend

° ® Actual travel path

— — — Observed travel path

Figure 24 - GPS Auto-Sleep can quickly react to real movement using the
high_speed_threshold and rapidly begin sampling GPS via direct transitions to
state[0] to reflect a more accurate travel path

The state machine can now immediately snap to rapid GPS sampling to capture a better
representation of the user’s travel path. We still cannot avoid the potential loss of data
during the period of time between the most recent stationary GPS sample and the first
moving GPS sample, since we must maintain this GPS sampling interval when stopped to
save battery energy. However, it should be noted that this amount of time is an upper
bound on elapsed time, and therefore the average amount of time elapsed between user
movement and the first GPS sample is substantially less. Also worthy of note is that due

to the initial sleep period before we detect movement, the calculated distance of observed

107



travel using GPS samples will typically be a lower bound on actual distance traveled
(unless there is a significant amount of unfiltered GPS drift during the trip, which may

occur at brief stops).

The final two thresholds that must be chosen for GPS Auto-Sleep are distance-based. The
moved_distance_threshold is used to determine if the traveler has moved from the last-
sampled GPS location when considered stationary, and is used to gradually step towards
state[0] (i.e., awake) state-by-state. The high_horizontal accuracy_threshold is based on
the estimated accuracy of the GPS fix, and is used to gradually step towards state[n] (i.e.,
asleep) state-by-state when the device reports that there is a large estimated error in the

accuracy of the fix.

To determine a moved_distance_threshold, we performed an indoor accuracy test on two
different mobile phones: the Motorola i580 mobile phone on the Sprint-Nextel iDEN
network and Sanyo 7050 mobile phone on the Sprint-Nextel CDMA 1 x RTT data

network.

We chose to evaluate two different mobile phone models because in the early
implementation of the LAISYC framework, we had anecdotal evidence that positional
accuracy tended to differ between devices. These tests were performed inside a building
made mostly of wood and concrete stucco, since when GPS Auto-Sleep is used to try to
detect movement the device will typically be indoors. The reference ground truth
location was determined by marking the location of the phones on a blueprint of the
structure, and scanning the blueprint so it could be geo-referenced against a digital 6-inch

resolution color aerial photo that was already geo-referenced in the Universal Transverse
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Mercator (UTM) Zone 17N NAD 1983 coordinate system. Horizontal accuracy was
determined by projecting the WGS 84 latitude and longitude coordinates from the GPS
fixes into the UTM coordinate system and then measuring the Euclidean distance
between the ground truth location and the observed GPS location. The horizontal error

statistics from these tests are shown in Table 4.

Table 4 - Horizontal error statistics for indoor GPS accuracy tests. Reprinted with
the permission of Cambridge University Press. [18]

Device GPS Type Sgriggle Horizontal Error Statistics (meters)
Min Max Awg 50th 68th 95th RMSE
Motorola i580  Assisted 478 0.74 90.69 15.16 9.78 15.15 47.9 21.64
Sanyo 7050 Assisted 1513 0.16 32.04 8.78 6.23 9.33 24.44 11.33

A scatter plot of these tests is shown in Figure 25.

Legend

A TrueLocation
® Motorola i580
* Sanyo 7050

Figure 25 - Scatter plots of indoor horizontal positional accuracy tests. Reprinted
with the permission of Cambridge University Press. [18]
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The substantial difference between devices can be seen in both the statistics, with the
Motorola i580 having almost twice the 95" percentile of error (47.9 meters) as the Sanyo
7050 (24.44 meters), as well as the scatter plot, where the GPS from the Motorola 1580
drifts away from the ground truth location in the upper-left and lower-left corners of the
image. These empirical measurements confirm our anecdotal evidence that there can be
significantly different levels of positional accuracy between two different devices. There
is much less difference in speed error measurements between the two devices (Table 5),
confirming that GPS signal obstructions affect positional error substantially less than

speed error.

Table 5 - While the positional error between the two devices is substantially
different, the error in speed is much less dramatic

Device GPS Type Sasmple Speed Error Statistics (meters per second)
ize
Min Max Avg 50th percent. 68th percent. 95th percent.
Motorola i580 Assisted 478 0.00 6.94 0.37 0.00 0.00 1.94
Sanyo 7050 Assisted 1513 0.00 1.25 0.13 0.25 0.25 0.25

Based on the observed positional error from these devices, we chose a value of 100
meters for the moved_distance_threshold. 100 meters is greater than any error we
observed in our tests and will therefore be tolerant of moderate GPS drift from the ground
truth location without producing a false-positive movement reading that would cause the
state machine to move towards state[0] (i.e., awake) when the device is still stationary
inside a building. 100 meters is also a short enough distance that, when combined with
the high_speed_threshold to immediately detect fast movement, prevents the device from

missing a substantial portion of the user’s slow travel path before movement is detected.
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We examine the estimated horizontal accuracy uncertainty values observed in this same
test to determine the value for high_horizontal_accuracy_threshold. Figure 26 shows the
observed error and the estimated error for each GPS data point, demonstrating the

connection between the two values.
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Figure 26 - Reliability of accuracy estimates for individual assisted GPS data points
was shown to be poor on the evaluated devices, the Motorola i580 (left) and Sanyo
7050 (right). Reprinted with the permission of Cambridge University Press. [18]

Unfortunately, when the observed error is compared to the estimated accuracy value
produced by the Location API there is little correlation between actual and observed
error. According to the JSR179 Location API, the “true position should be within a circle
defined by the given estimated error uncertainty radius at the 68% confidence level” [23].
This means that in Figure 26, the data points in the scatter plot should fall above the 1:1
diagonal at least 68% of the time. For the Motorola i580 (left), observations only fall
above the 1:1 diagonal 18.6% of the time, and for the Sanyo 7050 (right) observations
only fall above the 1:1 diagonal 55.1% of the time. Surprisingly, this means that neither

phone meets the requirements defined by the JSR179 Location API despite claiming to
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be in compliance with the standard. This information is important for any app developer
who makes real-time decisions in a mobile app based on the 68% confidence level
specification for accuracy uncertainty required by the JSR179 Location API, because as
evidenced by our experiments, at least two commercially-available mobile phones are not

meeting this standard.

Based on this information, we set the high_horizontal _accuracy_threshold threshold
value to 80 meters, which is substantially larger than any value observed in these tests.
Our reason for choosing this value is that the threshold will effectively be ignored for
these devices, but will still remain in place for other devices implementing JSSR179 that
may meet the standard specifications as GPS Auto-Sleep is deployed to additional
devices in the future. The relationship between estimated and actual error could also be
reevaluated on future devices to determine if a correlation between observed and

estimated error exists.

Once all the threshold values were chosen, we evaluated the performance of GPS Auto-
Sleep for accurately tracking the movement of the user and transitioning between
frequent GPS sampling and occasional GPS sampling based on real-time location data
and the state transition rules with the chosen threshold values. We collected 30 days of
normal travel behavior from members of the research team using a Sanyo Pro 200
CDMA cell phone on Sprint’s Evolution-Data Optimized (EV-DO) Revision (Rev.) A
network with assisted GPS. We manually post-processed this data after it was collected
and marked each data point as stationary or moving based on written travel logs from the

user.
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A visualization of this manual coding of data is shown in Figure 27, with the solid blue
line representing the behavior of GPS Auto-Sleep and the red dashed line representing

the ground truth value of the traveling state as stationary (high) or moving (low).
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Figure 27 - To evaluate the accuracy of GPS Auto-Sleep, the ground truth state of
traveling was manually coded against the behavior of the state machine

The X axis 1s the GPS Fix ID for each GPS fix recorded during the test, and the primary
Y axis on the left is the amount of time between sequential GPS fixes, with the sleep state
of state[n] having the value of 120 seconds. The speed values for each GPS fix are also
shown as a yellow dotted line and on the secondary Y axis on the right, so the
relationship between speed and traveling state can been seen. The spikes off the top of the

graph for GPS Auto-Sleep activity indicate long periods of time when a GPS fix was not
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available (e.g., the user was deep inside a building), and therefore the time between GPS
fixes was a large value. ldeally, the blue line for GPS Auto-Sleep activity should roughly
trace the red dashed line (with the exception of the spikes off the graph for lost GPS
fixes). Two areas on the graph are circled with black dashed ovals that indicate brief
periods of error when the GPS Auto-Sleep transitioned from the sleep state[n] to state[0]
for rapid GPS sampling every 4 seconds, when in fact the user was stationary. Close
examination of the speed values at the leading edge of these periods show that the

incorrect wake-ups of GPS Auto-Sleep were triggered by large outlier speed values.

To quantify the correct state percentage during tracking over the 30 sessions of collected
data, we classified the GPS Auto-Sleep activity into two states, moving or stationary,
based on the observed interval between GPS fixes, so that the GPS Auto-Sleep state
could be directly compared to the ground truth values that were manually coded. The

GPS Auto-Sleep states are defined as:

1) Moving — GPS Auto-Sleep is considered to be in a moving state if the interval
between fixes is observed to be between 1 and 5 seconds.
2) Stationary — GPS Auto-Sleep is considered to be in a stationary state if the

interval between fixes is observed to be greater than or equal to 8 seconds.

We consider the GPS Auto-Sleep activity to be incorrect (i.e., an erroneous state) if the
GPS Auto-Sleep state does not match the ground truth manually coded state for each GPS

fix.

The results of the analysis of the 30 collected sessions of GPS data are shown in Figure
28.
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Figure 28 - GPS Auto-Sleep is able to successfully track the moving or stationary
state of the user with a high degree of accuracy.

These results demonstrate that GPS Auto-Sleep is able to track the moving and stationary
states of the user with a high degree of accuracy, with a mean error of 11.60% (i.e., a
mean accuracy of 88.40%). The worst accuracy observed was 70.90% (an error of
29.1%), and on one session GPS Auto-Sleep was able to achieve 99.49% accuracy (an

error of 0.51%). The 95" percentile of state error was 23.97%.

To confirm our hypothesis that the use of GPS Auto-Sleep during tracking saves battery
energy, we examined a large scale deployment of GPS Auto-Sleep in support of the
TRAC-IT mobile app used to collect high-resolution travel behavior as part of a U.S.
Department of Transportation (USDOT)-funded research project. We discuss TRAC-IT

in further detail later in this chapter.

As part of the USDOT study, we deployed TRAC-IT with GPS Auto-Sleep on Sanyo Pro

200’s to 30 users and recorded their travel behavior for almost three months. A total of
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1,857 data sessions containing a total of 4,023,917 GPS fixes were recorded during this
period, for an average of 39.83 days of survey time per user. The average session length
during the experiment was 15.44 hours, based on the difference between the oldest and
newest GPS fix time in each session. Since the battery life observed when using a static
GPS interval of 4 seconds without GPS Auto-Sleep was only 8.04 hours, a battery life of
15.44 hours when using GPS Auto-Sleep is substantially longer. As discussed in the
Session management and Location Data Buffering evaluation section, wireless data
transmissions consume a significant amount of battery energy. Since TRAC-IT transmits
GPS data to our server via the mobile phone’s cellular connection, in addition to
collecting GPS data, the battery life of the phone using GPS Auto-Sleep without

transmitting data to the server is substantially more than the observed 15.44 hours.

In conclusion, GPS Auto-Sleep addresses several of the needs for location-aware mobile
apps outlined in Chapter 1. GPS Auto-Sleep is able to provide substantial battery energy
savings (an approximate average doubling of battery life (Need #1), while maintaining
acceptable movement tracking (approximately 89% accuracy) (Need #3). GPS Auto-
Sleep operates in real-time on the mobile device (Need #2). We have also demonstrated
a methodology for selecting the thresholds used in the algorithm (i.e., first_fix_timeout,
stopped_speed_threshold, high_speed_threshold, moved_distance_threshold,
high_horizontal _accuracy_threshold, backoff time_threshold) based on observed GPS
data so that the algorithm can be implemented by any third party mobile app developer

on any device with GPS and a Location APl (Need #4).
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4.3.2 Location Data Signing

Our primary motivation in analyzing Location Data Signing is to demonstrate that
traditional asymmetric cryptography such as DSA and RSA are feasible for real-time
execution on a mobile device, contrary to the claims of Jarusombat et al. [138]. We must

examine two operations to evaluate asymmetric cryptography:

e Key generation: Key generation happens once daily at the start of a
communication session with a server and creates both a public and private key.
The private key is used to create the digital signature for individual GPS fixes,
while the public key is distributed to others so that they can verify the digital
signature for GPS fixes. Since key generation only happens occasionally,
execution time of key generation is not of great concern.

e Signature generation: Signature generation happens frequently, potentially as
often as once every GPS fix. Since GPS data can be generated at a rate of once
per second, signature generation must be efficient in terms of execution time to be

feasible for implementation on mobile devices.

To evaluate the impact of Location Data Signing, we developed a test mobile application
that performed key generation and signature generation, and recorded the execution time
by querying the system timestamp both before and after execution. We executed this

application on an HTC G1 mobile device with Android 1.6. Figure 29 shows the results
of execution time for key generation for both DSA and RSA using 512-bit and 1,024-bit

keys.
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Figure 29 - Execution time for key generation using DSA and RSA asymmetric
cryptography

Key generation for DSA is slower than for RSA, especially for the larger 1,024 key size.
However, given that key generation would occur only approximately once daily, since it
takes less than five seconds to generate a DSA 512-bit key, and RSA 512-bit and 1,024-
bit keys, any of these key generation algorithms are feasible for execution on mobile
devices. Even the DSA key generation for the 1,024-bit key that takes approximately 28
seconds could be considered feasible for real-world implementation, since key generation

happens so infrequently.

Of greater concern for execution times is signature generation, since this operation will
be taking place frequently, as often as every GPS fix. Since Location Data Signing must
use asymmetric cryptography for every execution, and asymmetric cryptography is more
computationally intense than symmetric cryptography used in Location Data Encryption
[146], we must evaluate the time it takes to generate a digital signature for a GPS fix.

The results of the signature generation execution time tests are shown in Figure 30.
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Figure 30 - Signature generation test results show that Location Data Signing using
DSA and RSA is feasible for implementation on real mobile devices

DSA appears to take slightly less time than RSA for generating digital signatures using
both 512-bit and 1024-bit keys. Both DSA and RSA can be executed in less than 30
milliseconds, which is much less than the minimum GPS sampling interval of one
second. Therefore, we successfully demonstrated that Location Data Signing can be
executed in real-time to generate digital signatures for location data. As mentioned
earlier, we chose to implement Location Data Signing in LAISYC using DSA because it
is the only algorithm that is not restricted by intellectual property or export constraints

and can be used world-wide royalty-free [137].

To evaluate the energy usage of Location Data Signing signature generation, we executed
the test application using DSA 512-bit with varying intervals on a Motorola Droid X
while it was hooked up to the Agilent E3631 power supply. Based on the measured
current and battery capacity, we use Peukert’s Law to estimate the battery life for these

tests [156, 157]:



where Cp is battery capacity, I is the discharge current, k is the Peukert constant, and t is
the discharge time in hours. Figure 31 shows the estimated battery life for a variety of

location data signing intervals.
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Figure 31 - Estimated battery life with and without Location Data Signing

As expected, there is a general trend towards longer battery life with less frequent GPS
sampling and signature generation. Battery life is longer without location data signing
for all intervals, with the largest differences (23.34% and 17.18%) happening at the one
second and 500 second intervals, respectively. Average percent difference in battery life
for the four to 60 second intervals is 1.95%, with an overall average percent difference of
7.18% for all intervals. The larger difference in battery life at the one second interval
may be due to a heavy load on the CPU with frequent signature generation, which forces
the CPU to throttle to a higher frequency to handle the additional processing load, which
in turn costs additional energy. With occasional signature generation (i.e., intervals 4

through 60), the CPU can absorb the additional overhead of signature generation without
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a substantial impact on CPU frequency, resulting in smaller differences in battery life.
The larger difference in battery life at the 500 second interval is likely due to the fact that
when the phone is generating a digital signature, the CPU stays on longer than normal,
costing additional energy and preventing a quick return to a low-power state. Entering
this low-power state quickly after a GPS fix is acquired is much easier when the phone is

not generating a digital signature.

In conclusion, Location Data Signing addresses several of the needs for location-aware
mobile apps outlined in Chapter 1. The results of the above experiments demonstrate that
the Location Data Signing module is able to add authenticity to location data on mobile
devices in an energy-efficient manner. The Location Data Signing module is fully
implementable by third party application developers (Need #4), and can support real-time
applications (Need #2) by frequently signing location data fixes as often as once per
second. There is a slight impact on battery life due to Location Data Signing (Need #1)
at intervals 4 through 60, and a substantial impact at frequent (one second) or infrequent

(500 seconds) intervals of signature generation.

4.3.3 Session Management and Adaptive Location Data Buffering

Since the Session Management and Adaptive Location Data Buffering modules are
designed to work together in support of the general LAISYC communication framework,

we describe the evaluation of both modules in this section.

The first evaluation of these components focuses on our choice of using HTTP directly
for application data instead of SOAP, which encodes messages in XML and uses HTTP

as a transport protocol. Our hypothesis was that the extra characters required to encode
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messages in XML will increase the amount of time the cellular radio is active, and will

result in decreased battery performance.

For this experiment, we implemented a custom Java ME application that was designed to
query a web application at defined intervals of time and then record timestamps to the
persistent MIDP Recordstore every several queries. Two methods of querying the server
were implemented: one using HTTP POST methods to exchange information, and the
other using the JSR172 J2ME Web Services Specification API to exchange SOAP-
encoded messages via the Java API for XML-based Remote Procedure Calls (JAX-RPC)
[141]. A device was charged until the battery life indicator on the outside of the device
indicated a full charge, and then the test software was executed on the device using one
of the methods of querying the server (e.g., HTTP POST or SOAP-based JAX-RPC) until
the battery was depleted to the point that the device powered itself off. After plugging in
the device and powering it back on, we restarted the testing application and pressed a
button to retrieve the timestamps from the most recently completed test. Through this
method, we were able to record the length of time that the phone was operational while

querying the server before the device powered off for both HTTP POST and JAX-RPC.

Netbeans was utilized as the primary Java Integrated Development Environment (IDE)
for implementing the mobile and web application. A Motorola i580 phone on the
Sprint-Nextel iDEN network was utilized for this test since it supports both HTTP POST
methods as well as JSR172 for SOAP-based web clients. Glassfish [133], the reference
implemented for Java Enterprise Edition (EE) 5 and 6, was chosen as the primary Java

application server to host the server-side web application. The Java API for Web
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Services (JAX-WS) 2.0 [158] was used to create web applications within Netbeans that
exchanged SOAP-based messages. To create server-side HTTP servlets with which the
mobile phones could communicate directly via HTTP POST methods, Netbean’s Mobile
to Web Client tool was utilized to generate code stubs from the JAX-WS 2.0 web

services for both the mobile phone and web server.

When defining the information exchange between the mobile and web application using
both HTTP POST and JAX-RPC, we had to determine the exact set of information that
would be exchanged between the mobile device and server. We chose to use the input
and output of actual web services implemented for our TRAC-IT mobile application,
which is discussed in detail later in this chapter. When generating the JAX-WS 2.0 web
application, a TripTX object was defined for both the input and the output of the web
application. The contents of the TripTX object in Java data types can be seen in Figure
32. Therefore, in these tests the exact same amount of information was exchanged via
both HTTP POST and JAX-RPC, with the only difference being how the information was

encoded and passed from the mobile device to the server.

Figure 33 shows the results of the HTTP POST vs. JAX-RPC tests on the Motorola i580.
The potential energy savings when utilizing HTTP POST-based communication to
transfer information instead of the heavyweight XML-encapsulated JAX-RPC can clearly
be seen here. By utilizing HTTP directly instead of JAX-RPC and transmitting at 60

second intervals, battery life can be extended by approximately 4.6 hours.
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Figure 32 - The information exchanged between the mobile device and server for the
HTTP POST vs. XML-based JAX-RPC battery life tests
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Figure 33 - XML-based JAX-RPC mobile device to server communication clearly
has a substantial negative impact on mobile device battery life when compared to
HTTP-POST. [118, 120] © 2011 IEEE
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The trend continues even to frequent communication with the server every four seconds,
which has an approximately 2.4 hour difference. On average, there is a 27.42% increase
in battery life. These results justify our choice of plain HTTP as the main application

data transport protocol, instead of an XML-based protocol on top of HTTP.

Our next evaluation focused on our choice of UDP as the transport protocol for location
data. TCP is the primary alternative to UDP, but we chose UDP due to its lightweight
design and general preference for systems where timeliness and scalability are of greater
importance than reliability. Since the timeliness and scalability benefits of UDP over
TCP are well understood, here we focus on demonstrating the battery-life benefits of
UDP to better understand the tradeoffs between reliability and power consumption in

relation to Adaptive Location Data Buffering.

Adaptive Location Data Buffering occasionally opens a TCP connection with the server
to ensure that there are not large consecutive losses of location data when using UDP
(e.g., when the device is in a gap of cellular coverage, when the user is on a voice call
and the device does not support simultaneous voice and data operations). Therefore, we
need to understand the power consumption differences between UDP and TCP to
schedule the frequency of TCP checks with the server. Understanding these differences
will help application developers choose TCP check frequencies that meet the reliability
needs of their applications, but avoid negating the benefits of using UDP for location data

by querying via TCP too often.

To evaluate the power consumption differences between UDP and TCP, we used an

Agilent E3631 power supply to measure the current drawn by a Sanyo 7050 mobile
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phone on the Sprint-Nextel CDMA 1xRTT network. We created another test mobile
application that transmitted location data to a Glassfish server, with the choice of
selecting either UDP or TCP as the transport protocol. The location data format used
here is identical to that used by our TRAC-IT mobile application and is shown in Figure

34.

Location Data Payload Contents for UDP or TCP Packet
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Figure 34 - The location data format used for the payload contents of UDP and TCP
packets in the power consumption tests

We allowed both the UDP and TCP mobile applications to run on the mobile phone, in
separate tests, and recorded the power consumption while the application was
transmitting every 4 seconds for a total of 300 transmissions. We repeated these tests
again with transmissions every 10 seconds for both UDP and TCP over an additional 300
transmissions. The phones were flipped closed during these tests, and therefore the
display was off. The results of these tests are shown in Figure 35. On the left, Figure 35
(@) shows that when transmitting via both UDP (blue line) and TCP (red line) the device
radio is constantly active, and therefore the difference in power consumption between

UDP and TCP is negligible.
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Power Consumption of TCP vs. UDP
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Figure 35 - (a) While at 4 second transmission intervals TCP and UDP have similar power consumption, (b) at 10 second
transmission intervals it is evident that TCP consumes approximately 38% more power than UDP. [118] © 2011 IEEE
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However, Figure 35 (b) shows that as soon as there is enough time in between
transmissions for the radio to reach a power-off state, UDP (blue shaded area) is able to
reach this state more quickly after each transmission than TCP (red shaded area).
Examining the data more closely, the approximate energy used during UDP transmissions
is 110 joules, while TCP uses approximately 152 joules during transmissions. This yields
an average energy use of approximately 3.68 joules/transmission for UDP and
approximately 5.08 joules/transmission for TCP. Therefore, TCP consumes

approximately 38% more power than UDP for 10 second transmission intervals.

These results confirm our hypothesis that the reliability features in TCP (e.g., verification
of packet arrival, retransmissions of lost packets) force the radio to stay in a power-on
state longer than if UDP is used, which justify our choice of UDP as a location data
transport protocol instead of TCP. Developers of mobile applications can use these
results for guidance to balance their apps individual reliability requirements against the

additional energy consumption of TCP.

In conclusion, the Session Management and Adaptive Location Data Buffering modules
address several of the needs for location-aware mobile apps outlined in Chapter 1. Both
modules contribute to battery life savings by providing energy-efficient (Need #1) real-
time (Need #2) data communication between a mobile phone and server, increasing the
average battery life for application data transfer by approximately 28% and reducing the

average energy cost for location data transfer by approximately 38%.
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4.3.4 Critical Point Algorithm

Since the primary motivations for using the Critical Point Algorithm are the battery life
and wireless data transfer savings, we first focus on quantifying these two characteristics.
Sample output of the Critical Point Algorithm from a user entering and exiting a highway

is shown in Figure 36.
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Figure 36 - a) All GPS data points generated from a phone are shown on the left,
while b) only the critical points generated by the Critical Point Algorithm are shown
in the right

On the left, all GPS points generated from the mobile phone are shown, while on the right
only the output from the Critical Point Algorithm is shown. The purples lines shown on

the left and right represent the same approximate path of the user by connecting
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sequential points, even though the output of the Critical Point Algorithm consists of far

fewer points.

We hypothesized that the Critical Point Algorithm would save battery energy by filtering
unneeded GPS data points before they are transmitted via UDP, effectively increasing the
interval of time between UDP transmissions. Therefore, to evaluate the potential battery
energy savings of the Critical Point Algorithm, we examined the effect of UDP

transmission interval on battery life.

To evaluate this hypothesis, we created another custom Java ME test application that
repeated UDP transmissions at a user-defined interval. GPS was not active during these
tests, so GPS data was simulated by hard-coding a set of data that was observed during
separate tests. Similarly to the test applications described earlier, this application
recorded timestamps to the persistent MIDP Recordstore every several UDP
transmissions. The device was charged until the battery life indicator on the outside of
the device indicated a full charge, and then the test software was executed on the device
until the battery was depleted to the point that the device powered itself off. After
plugging in the device and powering it back on, we restarted the testing application and
pressed a button to retrieve the timestamps from the most recently completed test.
Through this method, we were able to record the length of time that the phone was
operational while transmitting location data to the server using various transmission
frequencies. A Sanyo SCP-7050 mobile phone using the standard Sanyo SCP-22LBPS
3.7V Lithium lon 1000 milliampere-hour (mAh) battery on the Sprint-Nextel CDMA

1IXRTT cellular network was used for these tests.
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Figure 37 illustrates the difference in device battery life for an application utilizing UDP
to transmit simulated GPS fixes to the server at fixed transmission intervals of 15, 30, and

60 seconds until the device’s battery was completely depleted.

Effect of Wireless UDP Transmission Interval on Battery Life
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Figure 37 - The Critical Point Algorithm can more than triple battery life by
filtering GPS data and transmitting at an interval of 60 seconds instead of 15
seconds. [118, 119] © 2008, 2011 IEEE

The Y axis of Figure 37 shows battery energy levels defined by an interval value
provided by the Sprint Extensions API that were also recorded during the test, with
values of 4 = FULL, 3 = HALF, 2 = LOW, 1 = WARNING, and 0 = POWER OFF. The
X axis represents the duration of the test application in hours. For each interval, the
decay of battery energy is evident as the battery energy levels dropped until the line met
the X axis, at which point the mobile device powered off. It is clear that battery life is

directly proportional to the length of transmission interval, meaning that less frequent
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wireless transmissions result in a significant increase in battery life. By increasing the
interval from 15 to 30 seconds, battery life is extended from approximately 9 hours to
almost 17 hours. If the interval is increased further to 60 seconds, battery life reaches

approximately 30 hours.

Now that we have shown that reducing the number of UDP transmissions can have a
substantial effect on battery life, we must examine the feasibility of execution of the
Critical Point Algorithm on a mobile device. Since the Critical Point Algorithm is going
to run in real-time on the mobile phone and process a stream of generated location data,
the algorithm must be efficient. For real-world implementation, the algorithm must
maintain a constant memory requirement during execution, or the device will eventually
run out of memory as it runs for a period of days or months. Additionally, the execution
time of the algorithm should scale linearly regardless of the size of the dataset processed.
If the execution time of the algorithm scales exponentially and attempts to loop through
the entire dataset multiple times, then the software executing in real-time will inevitably

fall behind the real-time data stream.

To prove that the Critical Point Algorithm maintains a constant memory requirement, we
examined the amount of information required during execution. For each execution of
the Critical Point Algorithm, we kept a maximum of 3 data points in memory: Last
Critical Point, Last Trigger Point, and Current Point. We implemented the Critical Point

Algorithm as a sliding window with pointers to the 3 data points, as shown in Figure 38.
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Figure 38 - The Critical Point Algorithm maintains a constant memory requirement
during execution by using at most three location data pointers

If a new critical point was found, then the first and second pointers were re-assigned to
the next respective points. If no critical point was found, then the third pointer was again
moved on to the next GPS data point, and the first and second pointers remain
unchanged. Therefore, the memory requirements of the Critical Point Algorithm,f (n), is

constant:

f) =0(1)

where n is the number of GPS data points processed.

To prove that the Critical Point Algorithm could scale linearly in execution time with
real-time data input, we examined the necessary number of steps to process one new GPS
data point. For each GPS data point, we computed the azimuth between two sets of
points: the Last Critical Point and Last Trigger Point, and the Last Critical Point and the
Current Point. The Vincenty Inverse Algorithm was used to compute the azimuth, which

has been shown to execute in a constant amount of time [136], and therefore is 0(1). We
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also computed the difference between the two azimuth values, and compared the current
speed of the user to a speed threshold for each data point, which could also be done in a
constant amount of time. Since the Critical Point Algorithm would be executed once for
each new GPS data point, and a constant number of steps completed for each new GPS
data point, we determined the time complexity of the Critical Point Algorithm,f (n), to

be:

f) =0

where n is the number of GPS data points processed. Therefore, the Critical Point
Algorithm scales linearly with the number of GPS data points and can successfully run as

a real-time stream processing algorithm.

Once we confirmed that the algorithm scales linearly in execution time and is constant in
memory requirements with the amount of data processed, we next examined the threshold
values that could be used by the Critical Point Algorithm for min_speed_threshold,

max_walk_speed, and angle_threshold.

For max_walk_speed, previous research has indicated that mean maximum walking speed
for fastest group of subjects studied was slightly over 2.5 meters per second [159].
Therefore, we chose 2.6 meters per second as our max_walk_speed threshold to

distinguish whether the user is walking.

To choose the min_speed_threshold, we referred back to the speed tests performed while
stationary. We wanted to eliminate points generated while the user was standing still, but

we also wanted to capture points that represented the user’s path and did not want to
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accidentally eliminate low speed points collected while the user was walking. We
observed a user carrying a Sanyo Pro 200 at casual walking speed outdoors, and the

resulting speed measurements are shown in Figure 39.
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Figure 39 - We observed the GPS speed recorded while a user was casually walking,
which includes some speed values of 0 meters per second

The minimum speed column in Figure 39 is of interest, since it shows that while the user
is walking, the GPS generates points on a path while still recording the device’s speed as
0 meters per second. If we chose 0 as our min_speed_threshold, then we would be
allowing all points through the CP algorithm whenever there was a change in direction,
and we would lose significant benefits of the CP algorithm when the user is standing still
due to GPS drift. Therefore, to allow filtering of location data points while the user was
stationary, we used a min_speed_threshold value of 0.1 meters per second. Based on the

observed data, this would still allow over 75% of the true walking points through the CP
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algorithm based on the speed threshold, and would yield a false negative rate based on
speed when identifying critical points when walking of less than 25%. Since a user
cannot travel far at approximately 1 meter per second, this false negative rate is
considered acceptable. Figure 40 a) shows all GPS points recorded in this walking trip,
while Figure 40 b) shows only critical points when using the 0.1 meters per second
min_speed_threshold. For this test, we collected all GPS data points from the cell phone
and then post-processed the data using the Critical Point Algorithm on the server, so we

could compare all GPS data to just Critical Points using the exact same GPS data set.
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Nzid vgi’lﬁh-&:-g'.fj,___ BT

Figure 40 - When comparing a) all points to b) critical points using a
min_speed_threshold of 0.1 meters per second, the general walking path of the user
is preserved, with some filtering at the beginning of the trip (bottom left of each
image).
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The general walking pattern of the trip is preserved in both sets of data, with the primary
filtering by the Critical Point Algorithm taking place at the very beginning of the trip,
when the speed values are 0 meters per second. We believe this initial reading of 0
meters per second is due to Kalman filtering of the speed data happening in the Java ME
platform or GPS firmware or hardware. In other words, the Kalman filter initially
classifies the increase in speed as noise and filters this information out. However, once
the user moves outside in the same general direction, the GPS speed values begin to
reflect the user’s true speed, as the Kalman filter reacts to the continuous outdoor

movement.

To demonstrate the potential of savings of the min_speed_threshold value of 0.1 meters
per second versus a value of 0 meters per second, we examined a day’s worth of GPS
data when the user stays in one location. During this time, the GPS drift can be

substantial, such as that shown in Figure 41.

The Critical Point Algorithm filtered out over 97% of this data when using a 0.1 meters
per second speed threshold, compared to only 74% of this data when using a 0.0 meters
per second threshold (Table 6). In other words, we took advantage of the speed accuracy
when the user was stationary to largely eliminate this erroneous movement, while still
keeping an accurate record of the user’s walking movements. Table 6 shows a detailed
comparison for both the walking data and the stationary data when using the
min_speed_thresholds of 0.0 meters per second and 0.1 meters per second. For these

tests, an angle_threshold of .5 degrees was used.
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Figure 41 - Over 97% of the GPS drift shown here at an indoor stationary location

can be filtered out by the Critical Point Algorithm when using a 0.1 meters per
second min_speed_threshold

Table 6 - When using the 0.1 meters per second min_speed_threshold, the Critical

Point Algorithm is able to produce significant data filtering savings with only a
slight impact on accurate walking paths

Min Number of Total Number Bytes
Speed Critical Points of Points % Savings |Saved*
Walking 0 50 53 5.66% 357
0.1 39 53 26.42% 1,666
Min Number of Total Number Bytes
Speed Critical Points of Points % Savings |Saved*
Stationary 0 904 3519 74.31% 311,185
0.1 91 3519 97.41%| 407,932

*Based on 119 bytes per UDP payload
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The final property of the Critical Point Algorithm to examine was the angle_threshold for
determining the magnitude of change in direction that should trigger a critical point to be
generated. If the angle_threshold is increased, fewer critical points will be generated,
which will save battery energy and data transmission and storage costs. However, if
fewer critical points are generated, the line defined by the remaining critical points

becomes a less accurate representation of the user’s path.

To illustrate the tradeoff between fewer data points and loss in path accuracy, ideally we
wanted to compare the accuracy of a path generated by the Critical Point Algorithm
against the true path of the user. However, determining the true path of the user is not
trivial because the sampled GPS positions of the user are an approximation of the true

position of the user, as shown in Figure 42.

@ Possible true position when sampled —— Possible true path

O Sampled GPS position — - Observed Path

& , Estimated horizontal accuracy (68" percentile by Java ME specification)

Figure 42 - Sampled GPS data points create an approximated path of the user with
some uncertainty

Therefore, the observed path reconstructed using the sampled GPS data, shown as the
dashed line in Figure 42, is not equivalent to the true path traveled by the user, shown as

139



the solid line in Figure 42. The accuracy of the observed path is defined in part by the
accuracy of the individual GPS data points, which is influenced by many environmental
factors. The GPS sampling interval also has an impact on observed path accuracy, as the

more frequent sampling will typically yield a better representation of the path.

We originally planned to use to our primary accuracy metric provided by the Java ME
Location API, the estimated horizontal accuracy for each GPS fix, to estimate the true
path of the user based on the collected GPS data. The red uncertainty circle around each
GPS fix, defined by the estimated horizontal accuracy, is shown in Figure 42. However,
as discussed earlier, in our experiments with GPS Auto-Sleep we found the estimated
horizontal accuracy value to be unreliable and not within the specification defined by the
Java ME Location API. Therefore, a methodology to evaluate line accuracy based on

estimated horizontal accuracy would not provide a useful analysis.

When using the Critical Point Algorithm with our TRAC-IT mobile application to record
travel behavior, we decided to approach the evaluation of the angle_threshold used in the
Critical Point Algorithm from a practical perspective. One of the key metrics that
TRAC-IT was implemented to record is travel distance. In our research, we have found
that the observed GPS path of the user recorded outdoors using a GPS interval of four
seconds is a reasonable representation of the path for the purpose of most Location-based
Services, including measuring travel distance. Therefore, we decided to analyze the
impact of the angle_threshold values on the distance of the path generated by the Critical

Point Algorithm.
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Figure 43 shows the difference between a path generated by the Critical Point Algorithm

and the path defined by the complete GPS dataset.

Distance cps pan=a+b+c+d+e+f+g

DiStanCecritical_point_path =Xty

Q Sampled GPS position — - Full GPS Path
>D< Critical Point —— Critical Point path

Figure 43 - The distance of the path generated from Critical Point Algorithm will
always be shorter or equal to the distance of the path using all GPS data points

The Critical Point Algorithm does not synthesize points; the set of critical points
remaining after execution of the algorithm is always a subset of the points that appeared

in the original GPS data:

Critical Points < Full GPS Dataset

Therefore, the distance of the full GPS path, Distancesu_cps_path, Will always be greater or

equal to than the distance of the path defined by the critical points, Distancecritical_point path:

D’-Stancefull_GPS_path = DlStanCecritical_point_path
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As the angle_threshold increases, Distancecritical_point_path Will decrease until eventually
only the first and last GPS points remain. When only two critical points remain, the
Distancecritical_point_path reaches its minimum value, which is the distance of a single

straight line connecting the first and last GPS points.

We defined the error between the path created by all the GPS data points and the path

created by critical points as the distance error percentage:

(D lStancefull_GPS_path - Dl5tancecritical_point_path)
DiStancefull_GPS_path

Distance error percentage =

To assess the tradeoffs between angle threshold and number of critical points generated
using the distance error percentage metric, we post-processed the same walking trip
presented earlier using the Critical Point Algorithm and a range of angles from 0.5
degrees to twenty degrees, in 0.5 degree increments. The resulting lines, consisting only

of critical points, are shown in Figure 44.

We repeated the same experiment on a trip via car and collected all GPS data points so
we could post-process the results with many different parameters for the Critical Point
Algorithm on the same dataset. The resulting critical point count in relation to the chosen
angle and distance error percentage for the walk and car trips are shown in Figure 45,

with the walking data set on the left and the car on the right.

As we expected, there was a general trend towards fewer critical points and larger

distance error percentages with larger angle thresholds for both walk and car trips.
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For the walk trip, the line originally consisting of 53 points was reduced to 3 critical
points when using an angle threshold of 18 to 20 degrees. The most dramatic change
happened between thresholds of two to eight degrees, with the rate of change for the
reduced number of points decreasing after approximately eight degrees. If we continued
to increase the angle, the line is eventually reduced to just the beginning and ending

points at the angle value of 65.5 degrees (not shown on graph).

| ,; ‘I . |

Figure 44 - Running the Critical Point Algorithm with increasing angle thresholds
gradually reduces the number of points that represent the line, which increases the
distance error percentage
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Figure 45 - As the angle threshold for the Critical Point Algorithm increases, there is a general trend towards fewer critical
points being generated and an increase in the distance error percentage for both walking and car
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Inversely, the distance error percentage had a general trend of increasing as the angle

threshold increased, since the original representation of the line became increasingly

distorted. At eight degrees, as the rate of change of reduction of points began to level off,
so did the distance error percentage. The brief local trends in increased number of critical
points that occurred at angle thresholds 6 and 10 were due to shifts in the geometry of the
line due to different vertices being used to connect vectors forming the critical point path.
Several brief local trends in decreased distance error percentage at angles 4, 7, 10, and 16

were also due to shifting line geometries.

For the car trip, there was a substantial change in the number of points eliminated for
angles 0.5 to approximately five degrees. After approximately five degrees, the rate of

change for percentage of points eliminated began to level off.

Figure 46 - For car trips, the Critical Point Algorithm is able to dramatically reduce
the full GPS dataset, a), to far fewer critical points , b), with lower angle_threshold
values because of longer straight paths
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This immediate sharp decrease in points starting at 0.5 degrees occurred because of the
larger number of points in the car trip (375 points) and larger distances in-between points,
where the car traveled in a relatively straight line on the road, with turns happening
mainly at intersections. Figure 46 shows all GPS points for a car trip on the left, and only
critical points using an angle_threshold of 0.5 degrees on the right. A large number of
points along straight lines were eliminated quickly at lower angle thresholds, unlike walk

trips that required larger angles to remove an equivalent percentage of points.

Table 7 shows these statistics for percentage savings for number of points when using the
Critical Point Algorithm for the walk trip compared to the car trip, with the Critical Point
Algorithm immediately producing a percentage savings of 41.33% at angle_threshold 0.5
for the car trip and only 26.42% using the same angle for the walk trip. The car trip was
reduced by over 90% of its points starting at angle 4.5, while for the walk trip, savings

over 90% were not realized until angle 14.5.

Also unlike walk trips, as the reduction in points began to level off for car trips the
distance error percentage continued to climb. There were a few shifts in geometry, like
the walk trip, that produced local trends in decreasing distance error percentage.
Interestingly, unlike the walk trip, the shifts in geometry with local trends in decreased
distance error percentage did not typically produce a larger number of critical points. In
other words, there was only one small local trend in an increased number of critical
points with an increasing angle_threshold. This behavior was also a result of quickly
eliminating the points along the straight lines in car trips using low angle_threshold

values.
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Table 7 - Resulting statistics from a walk and a car trip that were both processed
using the Critical Point Algorithm with different angle thresholds

Walk Trip Car Trip
Number Total R Total Distance Number Total R Total Distance
Angle of Number % Bytes | Distance Distance Error Angle of Number % Bytes | Distance Distance Error
Threshold| Critical . Savings |Saved*| CP(m) Threshold| Critical ) Savings |Saved*| CP(m)
) of Points (m) Percentage . of Points (m) Percentage
Points Points
0.5 39 53 26.42% | 1,666 244.98 250.80 2.32% 0.5 220 375 41.33% | 18,445 | 25,392.22] 25,410.16]  0.07%
1 39 53 26.42% | 1,666 244.98 250.80 2.32% 1 129 375 65.60% | 29,274 | 25,299.82] 25,410.16]  0.43%
1.5 37 53 30.19% | 1,904 244.97 250.80 2.33% 1.5 92 375 75.47% | 33,677 25,265.51] 25,410.16]  0.57%
2 31 53 41.51% | 2,618 244.51 250.80 2.51% 2 63 375 83.20% | 37,128 24,865.05| 25,410.16]  2.15%
2.5 28 53 47.17% | 2,975 244.28 250.80 2.60% 2.5 55 375 85.33% | 38,080 24,734.36] 25,410.16]  2.66%
3 22 53 58.49% | 3,689 240.63 250.80 4.06% 3 54 375 85.60% | 38,199 24,599.69] 25,410.16]  3.19%
3.5 20 53 62.26% | 3,927 240.98 250.80 3.92% 3.5 40 375 89.33% | 39,865 | 23,937.16| 25,410.16]  5.80%
4 21 53 60.38% | 3,808 243.05 250.80 3.09% 4 38 375 89.87% | 40,103 | 24,361.76] 25,410.16]  4.13%
4.5 21 53 60.38% | 3,808 243.05 250.80 3.09% 4.5 26 375 93.07% | 41,531 23,852.57| 25,410.16]  6.13%
5 10 53 81.13% | 5,117 236.98 250.80 5.51% 5 23 375 93.87% | 41,888 23,594.17| 25,410.16]  7.15%
5.5 14 53 73.58% | 4,641 239.15 250.80 4.64% 5.5 26 375 93.07% | 41,531 23,806.48| 25,410.16]  6.31%
6 13 53 75.47% | 4,760 238.21 250.80 5.02% 6 23 375 93.87% | 41,888 23,547.01] 25,410.16]  7.33%
6.5 14 53 73.58% | 4,641 240.09 250.80 4.27% 6.5 17 375 95.47% | 42,602 | 23,258.19] 25,410.16 8.47%
7 12 53 77.36% | 4,879 239.87 250.80 4.36% 7 17 375 95.47% | 42,602 | 23,286.09| 25,410.16]  8.36%
7.5 8 53 84.91% | 5,355 237.18 250.80 5.43% 7.5 20 375 94.67% | 42,245 22,605.74 25,410.16|  11.04%
8 7 53 86.79% | 5,474 230.45 250.80 8.12% 8 14 375 96.27% | 42,959 22,189.59] 25,410.16  12.67%
8.5 10 53 81.13% | 5,117 232.44 250.80 7.32% 8.5 8 375 97.87% | 43,673 22,063.43] 25,410.16]  13.17%
9 7 53 86.79% | 5,474 231.07 250.80 7.87% 9 8 375 97.87% | 43,673 | 21,878.53| 25,410.16]  13.90%
9.5 7 53 86.79% | 5,474 231.07 250.80 7.87% 9.5 8 375 97.87% | 43,673 | 21,787.44] 25,410.16|  14.26%
10 10 53 81.13% | 5,117 232.89 250.80 7.14% 10 8 375 97.87% | 43,673 21,772.84] 25,410.16] 14.31%
10.5 7 53 86.79% | 5,474 231.58 250.80 7.66% 10.5 8 375 97.87% | 43,673 22,025.89] 25,410.16  13.32%
11 7 53 86.79% | 5,474 232.06 250.80 7.47% 11 8 375 97.87% | 43,673 22,112.91] 25,410.16] 12.98%
11.5 7 53 86.79% | 5,474 231.14 250.80 7.84% 11.5 8 375 97.87% | 43,673 22,331.20] 25,410.16]  12.12%
12 7 53 86.79% | 5,474 232.61 250.80 7.25% 12 8 375 97.87% | 43,673 22,334.09] 25,410.16] 12.11%
12.5 7 53 86.79% | 5,474 231.83 250.80 7.56% 12.5 7 375 98.13% | 43,792 21,251.06] 25,410.16] 16.37%
13 7 53 86.79% | 5,474 233.72 250.80 6.81% 13 7 375 98.13% | 43,792 21,492.49] 25,410.16]  15.42%
13.5 7 53 86.79% | 5,474 233.72 250.80 6.81% 13.5 7 375 98.13% | 43,792 21,720.98] 25,410.16]  14.52%
14 7 53 86.79% | 5,474 233.72 250.80 6.81% 14 7 375 98.13% | 43,792 21,800.60] 25,410.16 14.21%
14.5 5 53 90.57% | 5,712 229.89 250.80 8.34% 14.5 7 375 98.13% | 43,792 21,976.69] 25,410.16] 13.51%
15 5 53 90.57% | 5,712 229.89 250.80 8.34% 15 6 375 98.40% | 43,911 22,297.52] 25,410.16  12.25%
15.5 5 53 90.57% | 5,712 231.33 250.80 7.76% 15.5 6 375 98.40% | 43,911 22,307.91] 25,410.16] 12.21%
16 5 53 90.57% | 5,712 234.65 250.80 6.44% 16 6 375 98.40% | 43,911 22,191.51] 25,410.16] 12.67%
16.5 5 53 90.57% | 5,712 234.65 250.80 6.44% 16.5 6 375 98.40% | 43,911 22,083.02] 25,410.16] 13.09%
17 5 53 90.57% | 5,712 234.65 250.80 6.44% 17 6 375 98.40% | 43,911 21,963.01] 25,410.16] 13.57%
17.5 5 53 90.57% | 5,712 235.44 250.80 6.12% 17.5 6 375 98.40% | 43,911 21,873.72] 25,410.16] 13.92%
18 3 53 94.34% | 5,950 217.31 250.80 13.35% 18 6 375 98.40% | 43,911 21,629.03] 25,410.16] 14.88%
18.5 3 53 94.34% | 5,950 217.31 250.80 13.35% 18.5 6 375 98.40% | 43,911 21,434.66| 25,410.16  15.65%
19 3 53 94.34% | 5,950 217.31 250.80 13.35% 19 6 375 98.40% | 43,911 21,241.89] 25,410.16  16.40%
19.5 3 53 94.34% | 5,950 217.31 250.80 13.35% 19.5 6 375 98.40% | 43,911 21,162.57| 25,410.16  16.72%
20 3 53 94.34% | 5,950 217.31 250.80 13.35% 20 6 375 98.40% | 43,911 21,063.71] 25,410.16] 17.11%

After these initial straight line points were eliminated, the remaining points were all

critical to representing the true travel distance of the vehicle. Therefore, any further

*Based on 119 bytes per UDP payload

elimination of points results in a larger proportional distortion of the path distance when

compared to walk trips, since walk trips have a larger number of points that can continue

to be eliminated using larger angle_thresholds, without substantially affecting the

distance error. Walk trips have sequential GPS samples that are closer together, and
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therefore elimination of a nearby fix has a lesser impact on the measured travel distance

than the removal of a fix that is further away.

Based on our observations from the above experiments, we chose the following values

for the Critical Point Algorithm thresholds:

e min_speed_threshold = 0.1 meters per second

e max_walk speed = 2.6 meters per second

e angle_threshold = 4.5 degrees for walk trips, and 3 degrees for car trips.

For a final analysis on the expected data savings of the Critical Point Algorithm using

these thresholds, we post-processed 1,314 trips of GPS data that were collected using the

TRAC-IT mobile application. The results are shown in Table 8.

Table 8 — The Critical Point Algorithm is able to reduce GPS datasets by more than
77% on average while maintaining an average distance error percentage under

10%o.

. S5th 25th 50th 68th 95th

Min Max Avg. . ) ) . .
percentile | percentile | percentile [ percentile [ percentile
Total Critical Point Count 2 322 35 3 13 27 38 97,
Total GPS Fix Count 20 3,710 193 31 74 130 188 511
% Savings 20.83% 99.40%| 77.43% 47.97% 69.49% 80.00% 86.83% 95.84%
Bytes Saved* 595 403,172 18,883 2,380 6,426 12,138 17,493 54,788]
Distance Critical Points (m) 0.00] 1,043,805.50( 7,437.09 328.14| 1,162.37| 2,675.00] 4,049.37| 22,815.61
Total Distance (m) 2.36|1,087,043.20( 7,878.02 380.79| 1,252.55| 2,913.39] 4,345.91| 24,231.34]
Distance Error Percentage 0.00% 100.00% 8.90% 1.94% 3.98% 6.20% 8.70% 24.11%

* Based on 119 bytes per UDP payload

The average percent savings when using the Critical Point Algorithm was a reduction of

approximately 77% of the GPS data points. The 5" percentile of percent savings was

approximately 48%, which means that 95% of the time the percent savings is above 48%.

Assuming that each GPS fix was 119 bytes, this translates to a substantial data transfer

savings if the non-critical points were not transferred from the mobile device to the
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server. On average, we saved almost 19 kilobytes in data transfer per trip. Since
surveyed U.S. travelers report an average of 4.6 trips per day with a mean duration of
approximately 20 minutes per trip [149], the amount of data saved adds up quickly. If
location-aware services were to be provided to the 322.9 million U.S. cellular
subscribers, the Critical Point Algorithm would save approximately 279.2 gigabytes of
data transfer over the cellular network per day. Additionally, the average distance error
percentage is kept under 10%, which is sufficient for our purposes of distance tracking.
We could adjust the angle threshold value, if needed, to increase or decrease the distance

error percentage and percent savings, depending on the needs of future applications.

In conclusion, the CP Algorithm module addresses several of the needs for location-
aware mobile apps outlined in Chapter 1. The CP Algorithm reduces battery energy
expenditures (Need #1) and the amount of data transferred between the mobile phone and
server (Need #1) in real-time (Need #2) by eliminating non-essential GPS data (an
average 77% reduction), with an average doubling of battery life, as the interval of time
between location data transmissions is doubled. The CP Algorithm is able to maintain an
average distance error percentage for GPS data under 10%, which ensures a high-
precision and high-accuracy travel path (Need #3). We also presented a methodology to
select values for the thresholds used in the CP Algorithm (min_speed_threshold,
max_walk_speed, angle_threshold) based on observed GPS data, allowing any third party
mobile app developer to implement the algorithm on any GPS-enabled mobile device

with a Location APl (Need #4).
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4.3.5 Location Data Encryption

To demonstrate that the Location Data Encryption of the UDP payload contents is
feasible for use on Java ME phones, we implemented a test application that repeatedly
encrypted GPS data every four seconds using 128-bit AES and occasionally saved
timestamp information to the Java ME Recordstore until the battery of the device was
depleted. AES was implemented using BouncyCastle Java libraries [147]. A second app
was implemented that performed the same operations, but without encrypting the data.
By comparing the output of these two applications, we determined the exact impact in
terms of battery life on the mobile device. We executed these test applications on a
Sanyo SCP-7050 mobile phone with a stock 3.7V Lithium lon 1000 mAh battery on the

Sprint CDMA 1xRTT network.

Impact of UDP Payload Encryption on
Battery Life

(4 sec. GPS interval)
6.00 554

5.27

5.00

4.00

3.00

Battery Life (hrs)

2.00

1.00

0.00

No Encryption 128-bit AES Encryption

Figure 47 - Location Data Encryption using 128-bit AES encryption for UDP
payloads is feasible on mobile devices, although it does have a slight impact on
battery life
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Figure 47 shows the results of the tests in battery life using encryption versus no
encryption. There was a small impact on battery life, approximately 16 minutes in these

tests, which is negligible for most mobile devices.

In conclusion, the Location Data Encryption module addresses several of the needs for
location-aware mobile apps outlined in Chapter 1. Location Data Encryption ensures the
security of the location data being transferred between the mobile device and server in
real-time (Need #2), with only a slight impact on battery life (i.e., a decrease of 4.9%)
(Need #1). Location Data Encryption can be implemented by any third party mobile app

developer (Need #4) using existing software libraries such as BouncyCastle [147].

4.4  Innovative Location-Aware Applications Developed Using LAISYC

Two separate research projects have implemented innovative location-aware applications
using the LAISYC framework presented in this dissertation. LAISYC enables the use of
efficient real-time, high-accuracy and high-precision location data in each of these
systems. In this section we describe the two applications: TRAC-IT, a multi-modal
travel behavior data collection tool that can provide simultaneous and real-time location-
based services, and the Travel Assistance Device (TAD) mobile app to assist transit

riders with intellectual disabilities.

441 TRAC-IT

In order to solve transportation problems and effectively plan new roads or public
transportation routes, transportation professionals require information about the current
travel behavior of the general public. While road-based infrastructure such as loop-

detectors can provide a count of cars traveling through a particular road, more descriptive
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data for the purposes, origins and destinations of trips is desired. Additionally, road-
based infrastructure does not provide any information about trips that are taken using

public transportation, biking, walking, or carpooling.

In the past, paper diaries or phone interviews have been used to ask survey participants
about their daily travel behavior. However, these manual survey methods typically only
cover a day or two of travel behavior due to the burden on the participant. Due to this
burden, past studies have shown problems with data accuracy and completeness in
manual surveys when reported travel behavior was compared with vehicle-based GPS
systems that also monitored the participant’s travel behavior for the same period of time

[160-162].

Vehicle-based GPS systems have the benefit of objective GPS data that is recorded at a
particular time and location. However, like road-based infrastructure vehicle monitoring,
vehicle-based GPS misses trips occurring via public transportation, biking, walking, and
carpooling. Additionally, vehicle-based GPS could provide travel behavior data from
more than one individual if the vehicle is shared within a household. Transportation
professionals desire data per individual, over multiple modes of transportation, so

behavior such as interactions within the household can be evaluated.

Our approach to enabling multimodal travel behavior data collection was to monitor the
transportation behavior of an individual via TRAC-IT, a mobile application installed on a
GPS-enabled mobile phone. However, for long-term travel data collection to be
compelling for individuals participating in the study, an incentive for the individual to

give up their privacy and donate their data would likely be required. One type of
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incentive is a monetary reimbursement to the user. However, this quickly becomes
expensive for the surveyor and could not be sustained over long periods of time with
large populations. Another form of incentive could be services provided to the user. For
example, Google provides free services and products such as Gmail, web search,
Android, and others in exchange for access to a user’s data. If we could provide valuable
services to the survey participant, such as real-time personalized traffic incident alerts,
this may be enough of an incentive for a user to contribute data to transportation

professionals.
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Figure 48 - The TRAC-IT mobile application is based on the LAISYC framework to
enable simultaneous travel behavior data collection and real-time location-based
services
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To enable simultaneous data collection of multimodal travel behavior, as well as real-
time location-based services, we implemented the mobile application TRAC-IT using
LAISYC on Java ME. The TRAC-IT system architecture, based on LAISYC, is shown

in Figure 48.

Glassfish was used as the Java Web Application Server to host the web application that
communicated directly with the mobile phone, as well as provided a website for the
traveler to manage account information (e.g., resetting passwords, etc.). We used SQL
Server 2008 and PostGIS as the relational and spatial databases, respectively. Glassfish
served as a proxy for database access for the mobile phone. We also created a Java
desktop application, the TRAC-IT Database Toolkit, which was capable of a variety of
both automated and manual post-processing analyses. For example, the TRAC-IT
Database Toolkit running on the TRAC-IT server automatically generated Google Earth
Keyhole Markup Language (KML) files for all trips taken by users and emails links to
the user the day following the travel behavior so the user could examine the data and
provide feedback to the analysts. Analysts could also use the TRAC-IT Database Toolkit
to analyze and produce statistics for collected travel behavior, and evaluate the
performance of the Critical Point algorithm, execute automated clustering algorithms to
identify points-of-interest, use artificial neural networks to automatically classify the
mode of transportation for a trip [163], as well as various other processing routines that

have been implemented for the TRAC-IT system [131].
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The TRAC-IT mobile application can execute in two modes:

e Passive data collection: The application runs on the background on a mobile
phone without any interaction with the user, and collects only location data

e Active data collection: Every time when starting or stopping a trip, the user
enters information such as trip purpose, mode of transportation, and vehicle
occupancy via the TRAC-IT user interface (Figure 49). Location data is also

simultaneously recorded.
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Figure 49 - The TRAC-IT mobile application provides a user interface to record
input from the individual for mode of transportation, purpose, and vehicle
occupancy as well as location data. [148]
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To evaluate real-time travel behavior data collection using TRAC-IT, we performed a
variety of successful test deployments with the research team in both passive and active
modes. These test deployments included GPS Auto-Sleep, Location Data Signing, the
Critical Point Algorithm, Adaptive Location Buffering, Location Data Encryption, and

Session Management, all using the parameters discussed earlier.

TRAC-IT was deployed in 2011 as part of a USDOT-sponsored research project in
Tampa, Florida. We used the passive mode of TRAC-IT with 30 users on Sanyo Pro 200
mobile phones on the Sprint CDMA EV-DO Rev. A network. GPS Auto-Sleep was set
in tracking mode with the parameters discussed earlier, and Location Data Buffering and
Location Data Encryption were both used. We decided to turn off the Critical Point
Algorithm so that we could collect a full GPS dataset from participants over a long period
of time and use this data for a variety of post-processing and analysis routines, including

the evaluation of the different Critical Point Algorithm parameters presented earlier.

From February 10, 2011 to April 29, 2011, TRAC-IT collected 1,857 sessions from 30
users (over 60 sessions on average per user) for a total of 4,023,917 GPS data points

(Table 9).

Total survey time was calculated by the difference between the oldest and newest GPS
times in each session, and a sum of differences over all sessions. TRAC-IT server uptime

was over 99 percent during the data collection period.

We analyzed a subset of this data (899 sessions) to determine the reliability of UDP and

Location Data Buffering during data collection.
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Table 9 - TRAC-IT was used as part of a USDOT-funded research project to collect
over 4 million GPS data points from 30 users over 2 months

TRAC-IT Data Collection for USDOT-funded project
Date Range 2/10/2011 to 4/29/2011
Total Number of Users 30
Total Number of Sessions 1,857
Avg. Session Length (hrs) 15.44
Total Survey Time (days) 1,194.80
Avg. Survey Time per User (days) 39.83
Total Number of GPS fixes Received 4,023,917
Avg. Number of GPS fixes per Session 2,166.89
Avg. Number of GPS fixes per User 134,130.57

Each location data packet contained an integer that was incremented on each
transmission, so the number of lost UDP packets could be determined by reviewing the
missing counter numbers for each session. Table 10 shows that 95% of sessions had less

than 3.95% of lost UDP packets, with an average UDP packet loss of 1.19%.

Table 10 - 95% of sessions had less than 3.95% of lost UDP packets

UDP and Location Data Buffering - Packets Lost

# Lost Per Session| % Lost Per Session
Min 0 0.00%
Max 290 66.15%
Avg 15.67 1.19%
50th percentile 8 0.48%
68th percentile 13 0.88%
95th percentile 59.15 3.95%

We also compared the overall performance of TRAC-IT without LAISYC to TRAC-IT
with LAISYC, as shown in Table 11. Without LAISYC, TRAC-IT battery life using only
GPS sampling (i.e., not sending the location data to a server) was 8.04 hrs. When TRAC-
IT both sampled GPS and sent the data to a server without using LAISYC, battery life

dropped to 4.21 hrs.
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Table 11 - When TRAC-IT used LAISYC, device battery life nearly doubled while
reducing overall location data packet loss by 2.16% and adding encryption

GPS Real-time server Encryption Battery
Sampling communication Life

TRAC-IT 4s 8.04 hrs
TRAC-IT 4s UDP packet loss = 4.21 hrs

2.7% (n = 46,785)
TRAC-IT Dynamic Adap. Loc. Data HTTPS - SSL 15.44 hrs
w/ (4 s moving, Buff. UDP - 128-bit (avg, n =
LAISYC 300 s stopped) | UDP packet loss = AES 1857)

0.54%

(n =2,642,309)

When TRAC-IT used LAISYC, battery life was extended to at least 15.44 hrs on average
even while sending data to the server and encrypting this data. Adaptive Location Data
Buffering reduced the overall location data packet loss by 2.16%. These results clearly

show the benefit of using LAISY C with a location-aware mobile app.

To demonstrate the ability of the TRAC-IT system to perform simultaneous data
collection and real-time location-based services, we implemented a simple Path
Prediction proof-of-concept using the LAISYC Spatial Analysis module. Path Prediction
uses spatial representations of a user’s historical trips along with their real-time GPS
position in order to predict the paths they may take in the immediate future [164]. Since
human travel behavior has been shown to be highly repetitive in both space and time
[154], historical trips can be effectively mined in order to anticipate the user’s future

travel.

A spatial database was used to perform a series of intersection queries with the user’s

real-time location (obtained using the LAISYC framework) and buffers surrounding
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previously recorded trips. Each buffer that intersected the real-time location represented
a potential path that the user may follow. Figure 50 shows a visualization of this process

in Google Earth.

Figure 50 - Path Prediction compares the traveler's real-time location, shown as
yellow push-pin markers, against paths from the traveler’s travel history, shown as
yellow shaded buffers, to predict the immediate travel path

The yellow push-pin represents the user’s real-time location, and the yellow shaded

buffers indicate the past historical paths that intersect with the user’s real-time location.

Once these paths are identified, another series of intersection queries were performed to
determine if any location-based alerts (e.g., traffic incidents) relevant to the user lay
along the predicted paths. Intersecting location-based alerts could then be sent to the user

via text message or within a mobile application. Based on the estimated impact to the
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user for a false-negative or false-positive message hit, the messages could be pre-filtered

accordingly.

We implemented and tested Path Prediction using the LAISYC framework, Glassfish as
the Java Web Application Server, and PostGIS as the spatial database server. We created
sample traffic incidents with descriptions in our database server with locations that
overlapped the past travel behavior paths of a member of the research team to determine
if incidents alerts would be triggered based on the user’s real-time paths. Figure 51
shows a text message that was successfully sent by the server to the phone, based on the

real-time location of the mobile phone, as well as the past travel paths.

sapNyo

’ ¥ 00 1
Text Messa_ﬁé
go@cutr.usf.edu
Message:
Subject:Traffic
Accident Warnings
Traffic congestion in

Alachua on I-75

north from Exit 399
US-441 to at Exit
Reply < » Qptions

Figure 51 - Path Prediction successfully demonstrated that real-time location-based
messages could be sent to the phone using LAISYC and a history of the traveler’s

behavior

In conclusion, TRAC-IT is a multi-modal travel behavior data collection mobile app that
can provide simultaneous and real-time location-based services (e.g., traffic alerts). In

TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location Data
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Buffering, Critical Point Algorithm, and the Session Management modules all contribute
energy savings (Need #1) that enable the phone’s battery to last an entire day during
high-resolution, real-time GPS tracking (Needs #2 and #3). High-resolution, real-time
GPS tracking is critical to TRAC-IT for reconstructing detailed travel path information,
including distance traveled, as well as providing predictive, personalized traffic alerts
based on historical and real-time data. The Location Data Signing module allows
transportation analysts to trust information that is recorded by the application, while the
Location Data Encryption module protects the privacy of users’ location information.
The Session Management, Adaptive Location Data Buffering, and Critical Point
Algorithm modules allow TRAC-IT to avoid data overage costs on phones with limited
data plans while still supporting real-time location data communication. The Adaptive
Location Data Buffering module prevents tracking data from being lost when the user is
outside network coverage or is on a voice call for networks that do not support
simultaneous voice and data communications. TRAC-IT was successfully implemented
and tested using LAISYC on actual mobile phones without any modification to device

hardware or software (Need #4).

4.4.2 Travel Assistance Device (TAD)

Traveling via public transportation such as a bus requires quick thinking and navigation
skills. Identifying an upcoming bus stop as your correct destination and reacting to pull
the cord or push a button to request that the vehicle stop in time is a challenging task,
especially for the 16.4 million Americans, or 6.9 percent of the population, with
intellectual disabilities [165]. For individuals who cannot perform this quick thinking on
their own, transit agencies must provide equivalent door-to-door paratransit service.

161



Paratransit is a costly service to transit agencies at an average cost of $17 per trip, versus
$1.70 per trip for regular fixed route transit [166], and can also be restrictive to riders by
requiring 24 hour advance notice for trips, as well as long wait times. Transit agencies
have instituted travel training programs in an attempt to train able riders to use fixed
route transit. Travel training is an intense one-on-one instruction period in which travel
trainers actually plan and travel with a transit rider on their personal trip and show the
rider the various skills and steps required to successfully complete a trip via public
transportation. However, in our work with transit agencies, travel trainers have indicated
that one of the most challenging skills to master for these individuals is identifying and
reacting to the riders upcoming destination stop. A traveler who cannot master this skill

cannot ride fixed route transit independently.
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Figure 52 - The Travel Assistance Device mobile application alerts the transit rider
of an upcoming destination bus stop
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After discussing these challenges with the travel training and special education

communities, we designed and implemented the Travel Assistance Device (TAD) mobile

application for GPS-enabled mobile phones using LAISYC on Java ME.

We wanted to provide four services using TAD:

1)

2)

3)

4)

Website-based trip planning: Allow the travel trainer and caregivers of the transit
rider to plan a transit itinerary, including the exact boarding and exit bus stops, via
a website interface.

Real-time transit navigation prompts (the primary TAD feature): Alert the rider
via audio, visual, and tactile prompts to identify an upcoming bus stop in real-
time, much like a car-based navigation system, to help individuals with
intellectual disabilities who had problems with this task. TAD alerts the transit
rider twice: once with a “Get Ready...” notification several stops ahead of their
destination, and repeatedly with a “Pull the Cord Now!” notification when the
rider passes the bus stop previous to the destination stop until the rider confirms
having received the alert by pressing a button (Figure 52).

Real-time location tracking: Allow the travel trainer and caregivers of the transit
rider to always see the real-time location of the transit rider.

Automated lost alerts: Alert the travel trainer and caregivers if the transit rider

wanders off the path of the planned trip.
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Figure 53 - TAD was implemented using the LAISYC framework to support real-
time location-aware services

The TAD system architecture, based on the LAISYC framework, is shown in Figure 53.

We implemented the prototype TAD system and LAISYC framework on Java ME, and
used Glassfish as the Java Application Server, to support the server-side portion of
LAISYC and the TAD web application. SQL Server and PostGIS were used for

relational and spatial database servers, respectively.

To support feature #1 of planning transit trips via a website, we implemented a web
interface using the Google Web Toolkit (GWT). Figure 54 shows the map view of the
travel trainer or caregiver choosing the boarding and exiting bus stops for a particular
transit rider. A caregiver or travel trainer can simply choose the route they want the
transit rider to use, clicking on the boarding bus stop, and clicking on the destination bus

stop.
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Figure 54 - New transit
via the TAD website

trip itineraries can be created for the TAD mobile app user

If the user must transfer from one route to another, multiple segments of the trip, each

with separate boarding and destination stops, can be defined. Once the trip is completely

planned, the caregiver or travel trainer enters a text description of the trip (e.g., Home to

Work) and saves the trip

to the TAD database.

To keep the TAD database updated with the most recent transit data, we created a

desktop utility application that can import transit data in the General Transit Feed

Specification (GTFS) format [167]. Since over 200 transit agencies in the United States

share their bus routes, bus stops, and schedule data in GTFS format, TAD would be

widely deployable to many different cities [168].
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To provide feature #2 of real-time alerts to the transit rider on the GPS-enabled mobile
phone, we implemented a user interface capable of visual, audio, and tactile interaction

with the transit rider. The user interface shown to the rider is shown in Figure 55.

TAD

Application Diagram for Cell Phone

Select Trip
(1) Hoe to Work & Pull the Cord Now!

(2] Wort to Home
_{'Sodnu.mrl Vibration)

{3} Home to Mavie
oK

oK
(On Last Stop)

Figure 55 - Travel Assistance Device mobile app interface that alerts the rider when
to exit the bus

Figure 55 A) shows the initial login screen given to the user on the first application
startup. Once logged in, the user is shown a list of personal trips planned via the TAD
website (Figure 55 B)) on subsequent mobile app startups. Planned trips for the currently
logged-in user are pulled from the TAD database on each application startup. After
choosing a trip to travel, the user is shown a simple screen that has a distance count-down
when approaching the destination bus stop (Figure 55 C)). If the phone loses a GPS
signal, a red circle with a line through it appears over the globe image to alert the user
that TAD cannot provide them with real-time navigation instructions. If the phone has an
active GPS signal lock, then the globe appears as shown in Figure 55 C) throughout the

trip.
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During the design of the real-time navigation feature of the TAD mobile app, we
consulted Mark Sheppard, professional travel trainer for Hillsborough Area Rapid Transit
(HART), and other members from the Association for Travel Instruction, as well as
existing literature on real-time navigation instructions for individuals with disabilities.
One past study found that auditory alerts are both the most preferred form of real-time
navigation prompts for individuals with intellectual disabilities as well as the most
effective form of prompts [169]. Other studies on users without cognitive disabilities
have produced similar results [170-172]. Based on this information, we decided to create
two alerts for the user when approaching the destination stop. When the rider is
approximately 300 meters away from his or her destination stop, the TAD announces a

recorded audio message “Get ready” twice and the phone vibrates several times.

Transit Vehicle Destination Stop

Direction

Second-to-Last - —
Stop

}

e
\

\‘
)
/

Legend

([I:D) “Pull the Cord Now” Alert Location

Figure 56 - The initial bus stop detection algorithm for the Pull the Cord Now alert
was defined by a radius surrounding the destination stop
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When the phone is approximately 160 meters from the destination stop, it announces a
recorded audio message to “Pull the cord now!” and the cell phone vibrates and shows
the “Pull the Cord Now!” text on the screen (Figure 55 D)). A visualization of the radius
that triggers this second alert is shown in Figure 56. The phone will continue to
announce this message until the user presses a button to confirm that the message was

received.

LAISYC was critical to implementing features #2 real-time navigation alerts, #3 real-
time location tracking, and #4 automated lost alerts, since frequent GPS sampling on the
mobile phone is required. TAD uses the GPS Auto-Sleep feature to dynamically control
the GPS sampling frequency. When the user is not actively traveling on the bus (i.e., the
mobile app is not on screens Figure 55 C) or D)), GPS Auto-Sleep is in the normal
tracking mode that increases the frequency of sampling when the user is detected as
moving, and reducing sampling when the user has stopped moving based on the intervals
defined earlier. However, when the user selects a transit trip and the mobile app
transitions to Figure 55 C), GPS Auto-Sleep switches to the navigation mode that
controls the GPS sampling frequency based on the distance to the destination stop. For
TAD, we chose distance thresholds of 800 meters, 1,500 meters, and 2,000 meters that

would control GPS sampling with four respective interval values:

State[0] = 1 second interval

State[1] = 4 second interval

State[2] = 16 second interval

State[3] = 32 second interval
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When the user was detected as being more than 2000 meters from their destination,
state[3] interval of 32 seconds was used. When the user was between 1,500 meters and
2,000 meters from the destination, state[2] interval of 16 seconds was used. When the
user was between 800 and 1,500 meters from the destination, state[1] interval of 4
seconds was used. When the user was closer than 800 meters to the destination, state[0]
interval of 1 second was used. The TAD application then executed the comparison
against the thresholds defined above to provide the “Get Ready...” and “Pull the Cord
Now!” alerts. Once the user confirmed arrival at the destination, as in Figure 55 D), GPS

Auto-Sleep switched out of navigation mode and back into tracking mode.

Location Data Signing was determined to be unnecessary for the TAD application, so this

module was turned off.

Session Management handled all communication between the TAD mobile app and the
server, using HTTPS for application data and UDP for real-time location data for the
real-time tracking and automated lost alert features. The Critical Point Algorithm,
Adaptive Location Data Buffering, and Location Data Encryption were all turned on for
the TAD application. By using GPS Auto-Sleep to control GPS sampling frequency on
the device, we were able to monitor the location of the user up to once-per-second, as the
user neared the destination stop. However, real-time location updates to the server were
controlled by the Critical Point Algorithm and Adaptive Location Data Buffering, and
could occur less often than once per second to save battery energy and a reduction of data

transfer over the cell network.
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To show the real-time tracking location of the transit rider to the caregiver or travel
trainer, we implemented a map-based website that showed the real-time location of the

rider based on location updates from LAISYC on the phone (Figure 57).
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Figure 57 - The TAD website shows real-time location updates from the LAISYC
framework supporting the TAD mobile and web app

The website was set to refresh the user’s location from the real-time database every 15
seconds by default, but the website user could manually trigger an update by clicking on

the Update Position button at any time.

To implement the feature #4 automated lost alerts, we used the real-time location data
from LAISYC, as well as the server-side Spatial Analysis LAISYC module. Using the
spatial data representation of each route from the shapes.txt file in the GTFS data, we
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created a series of spatial area buffers surrounding the route in the PostGIS database.
Based on the known route that the rider was traveling, the real-time location data from

the rider’s phone was compared to the spatial buffer surrounding the planned route

(Figure 58).
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Figure 58 - LAISYC Spatial Analysis module on the server compares the real-time
location of the user against spatial buffers surrounding the rider’s planned route, to
determine if the user has become lost

If the location was inside the buffer, the user was considered on-route. If the location
was outside the buffer, the user was considered lost and an email and text messages was
automatically sent to the caregiver and travel trainer. These comparisons between real-
time location data and the route only occurred when the user had actively selected to

travel via a route on the phone and the phone had entered navigation mode.

Having knowledge of the planned travel path of the bus was important, since creating a

buffers based on “connecting-the-dots” between bus stops could produce false-positives
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lost rider alerts. Figure 59 shows the buffers that are created when using only bus stops,

versus the planned path of the bus.
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Figure 59 - The planned travel path of the bus is used to detect if the rider is lost,
versus an estimated path created by connecting bus stop locations, since an
estimated path can produce false-positive lost alerts

In the top portion of Figure 59, the planned travel path of the bus is outside the buffer
created by connecting the bus stop locations, which will produce a false-positive for a
lost rider when the bus passes outside of the incorrect route buffer. Buffers based on the

planned travel path will only generate an alert if the location of the user is far from the

planned route.

Since the primary feature of TAD is the real-time notification to the user when to exit the

bus, we focused on the evaluation of this feature. We conducted 50 planned transit trips
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using a Sanyo 7050 mobile phone on the Sprint CDMA 1XRTT network on HART in
Tampa, Florida. 38 trips were performed randomly on various stops in Tampa, Florida,
while the remaining 12 trips were performed by six individuals with intellectual
disabilities from the University of South Florida Successful Transition After Graduation
for Exceptional Students (STAGES) program. Each trip was defined as a single boarding
and exit of the transit vehicle, so TAD would provide one “Pull the cord now!”
notification per trip. We defined Ideal prompts as prompts given between the stop prior
to the destination stop and the destination stop. Late prompts were prompts given to the
rider after the stop prior to the destination stop but would require fast reaction time by the
rider to avoid missing the stop. Early prompts were prompts given to the user before
they reached the stop prior to the destination stop. We categorized the results of the 50
test trips based on these groupings, and if the prompt was not ideal, we also analyzed why
an ideal prompt did not occur. The results of these tests and subsequent analysis are
shown in Table 12 for the random research team testing and Table 13 for the STAGES

student testing.

Table 12 - Field tests of the TAD app in Tampa, Florida produced ideal prompts
87% of the time at random stops

TAD Testing Conducted on Random Stops

[Number of Ideal Prompts 34
INumber of Late Prompts
Incorrectly Geocoded Bus Stop 1

Close Proximity of Bus Stops] 1
[Number of Times No Prompt Given
HART Service Changel 1
Incorrectly Geocoded Bus Stop 1
Total Number of Trips 38
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Table 13 - Field tests of TAD with STAGES students were more challenging,
primarily due to close proximity of stops near the USF campus

Evaluation of TAD with STAGES Students

[Number of Ideal Prompts 5
[Number of Early Prompts
Received prompt while bus was stopped at 2nd-to-la
bus st;)tl 1
[Number of Late Prompts

Close Proximity of Bus Stops] 2

GPS drif] 1

User did not hear alert when it was first issued] 1
[Number of Times No Promipt Given

Due to Lack of Connection to Wireless Carrier Location

Server, 1
Due to Incorrectly Geocoded Bus Sto 1
Total Number of Trips 12

Overall, in 38 of 50 trips TAD provided the “Pull the Cord Now!” prompt at the ideal

place and time.
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Figure 60 - Some TAD alerts were given early or late due to incorrectly geocoded
bus stops, where the actual bus stop position (marker ""A™) differed from the
database location of the bus stop (blue bus icon)
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The majority of the remaining early, late, or missing prompts (8 of 12) were due to
incorrectly geocoded bus stops (the database location of the bus stop did not match the
actual bus stop location), or the challenge of alerting the rider at the correct time when
bus stops were close together. We were able to monitor the location of each of the riders
in real-time, and lost rider alerts were only issue to us when a research team member

intentionally wandered outside of the route buffer.

Figure 60 shows one situation where the database location of the bus stop (the blue bus

icon) did not match the true stop location (marker “A”).

Transit agencies are currently working to improve the quality of their bus stop inventories
to support advanced systems such as TAD. Various emerging tools can assist agencies in
this task [173-177], and the reliability of TAD and other advanced applications will be

dependent on good data.

To address the remaining challenges of close bus stops and GPS drift, the research team
modified the bus stop detection algorithm, so that instead of relying on a single radius
surrounding the destination stop, the “Pull the Cord Now” alert was now based off of the
entry into and exit of the phone from a circle surrounding the second-to-last stop (Figure
61). This design reduced both early and late alerts, since the “Pull the Cord Now”
notification was given just after the user departs from the second-to-last stop. In
subsequent tests with the new bus stop detection algorithm in Tampa, Florida, TAD

provided the alert in the ideal location to users in 33 of 33 tests [178] (Table 14).
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Get Ready Check:

If (Device within W meters of 2"
to Last Stop) Then

Trigger “Get Ready”

Second-to-Last
Stop

Transit Vehicle

Direction

Zone2 Departure Check:

If ((Zone1Arrival = true ||
Zone1Departure = true) &&
(Device in Zone 2) )Then
Trigger “Pull Cord Now

/

Zone 1 Arrival Check1:

If ( (Current_Speed >
SPEED_THRESHOLD) &&
(Device in Zone1) ) Then
Trigger “Pull Cord Now”
Set Zone1Arrival = true
Set Zone1Departure = true

Zone 1 Arrival Check2:

If (Device in Zone1) Then
Set Zone1Arrival = true

Set Zone1Departure = true
If(1%" alert not triggered) Then
Trigger “Get Ready”

Destination Stop

Legend

Zone1 (]:D)

Zone 2

P

Threshold W — example value of 160 meters
Threshold X — example value of 20 meters
Threshold Y — example value of 50 meters

(

~1

SPEED_THRESHOLD - used to indicate that the bus is not
stopping at the 2" -to-last stop - example value of 15 meters/sec

Figure 61 - An improved algorithm for notifying the user when to exit the bus is
based on detecting the departure from the second-to-last bus stop. [126]

Table 14 - The improved bus stop detection algorithm delivered ideally-timed alerts

to riders in 33 of 33 tests

Bvaluation of NewBus Stop Detection Algorittm

Nurteer of Idea Pronpts

Nunteer of Early Pronts

Nunter of Late Pronpts

Nunteer of Tines No Pronpt Gven

Total Nuntoer of Trips

3
0
0
0

3

To further assess the effect of TAD on the bus riding behavior of individuals with

intellectual disabilities, a research team from the Florida Mental Health Institute and the
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Center for Urban Transportation Research conducted an additional study [178]. The
team tested the ability of three individuals with intellectual disabilities to travel to a new
location without TAD, and with TAD, for a total of 33 trials. Each of the individuals
failed to both request a bus stop and exit the bus at the appropriate time when they were
not carrying TAD. When they did carry TAD, each individual was able to both request
the stop at the correct time, as well as exit the vehicle at the correct time. Therefore, this
study concluded that the experiments provided supporting evidence that TAD was an
effective tool for prompting individuals to pull the cord indicating their stop and exit the
bus at the appropriate location and time [178]. The study also recommended larger scale

tests to further evaluate TAD with different and more varied populations.

In 2010, USF partnered with DAJUTA, a Florida-based company, to provide TAD as a
service to transit riders and transit agencies. More information about TAD as a

commercial product can be found on DAJUTA’s website at http://dajuta.com/.

In conclusion, TAD is a mobile transit navigation app that assists bus riders with
intellectual disabilities by prompting them when to exit the bus, as well as tracking the
rider in real-time and alerting caregivers if the rider is lost. In the most recent group of
TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to transit
riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session Management,
Adaptive Location Data Buffering, Critical Point Algorithm, and the Session
Management modules all contribute energy savings (Need #1) that enable the phone’s
battery to last an entire day during high-resolution, real-time GPS tracking (Needs #2 and

#3). High-resolution GPS tracking is critical to TAD for providing accurate instructions
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to the transit rider when to exit the bus as well as tracking an accurate location of the
traveler so that caregivers can be alerted if the rider becomes lost. The Location Data
Encryption module protects the privacy of the transit rider while being tracked. The
Session Management, Adaptive Location Data Buffering, and Critical Point Algorithm
modules allow TAD to avoid data overage costs on phones with limited data plans, while
still supporting real-time location data communication for the TAD tracking alert
features. The Adaptive Location Data Buffering module prevents transit rider location
data from being lost when the user is outside network coverage or is on a voice call for
networks that do not support simultaneous voice and data communications. TAD was
successfully implemented and tested using LAISYC on actual mobile phones without any

modification to device hardware or software (Need #4).
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CHAPTER 5: SUMMARY AND CONCLUSIONS
51 Note to Reader

Portions of the technology presented in the future work section for GPS Auto-Sleep are
protected by U.S. Provisional Patent “System and Method for Changing Positioning

System Settings at Wirelessly-Obstructed Locations” by USF.

5.2  Summary of Problem Statement and Needs

While the exponential growth in the adoption of mobile phones provides many
opportunities for new types of mobile apps, evolution in intelligent location-aware

services has been limited due to several factors:

1) Battery energy limitations are not addressed. Many architectures have been
designed without acknowledging that mobile devices have a finite energy supply,
and that positioning systems such as GPS, wireless communications, and use of
the CPU to execute the architecture components all have a significant impact on
battery energy levels.

2) Cellular data transfer limitations are not addressed. Many architectures have been
designed without consideration of constrained cellular network bandwidth and
potential financial charges to the end-user for excessive data traffic.

3) Lack of integration with existing platforms on commercially-available devices

(e.g., Java Micro Edition, Android). Many existing location-aware architectures
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4)

utilize custom operating systems or protocols which are not readily available on
commercially-available mobile phones, and therefore cannot be widely deployed
as mobile apps to existing phones.

Lack of evaluation of efficacy of location-aware architectures. Very few location-
aware architectures have actually been evaluated on real mobile devices, and as a
result there is little quantifiable evidence of these architectures’ efficacy with real

devices.

As a result of these limitations, there is a demand for a new location-aware architecture

that meets following needs:

Need #1: Intelligently manage limited device and network resources. The
architecture must acknowledge that location-aware apps can deplete significant
device and network resources, and the architecture must demonstrate features that
conserve these resources.

Need #2: Support real-time applications. A significant portion of the architecture
must be implemented on the mobile device to allow software to immediately act
upon new data in real-time and immediately interact with the mobile user.

Need #3: Support high-precision and high-accuracy positioning systems.
Positioning technologies, such as high-sensitivity assisted GPS, must be usable
within the architecture to support the most innovative types of location-aware
apps that require highly accurate and precise location information.

Need #4: Is fully implementable by third party mobile app developers. The

architecture must take into account the availability of application programming
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5.3

interfaces (APIs) in existing cross-platform application environments such as Java
ME or Android, and ensure that the architecture can be implemented on such

devices.

Summary of Contributions

This dissertation presented LAISYC, a modular location-aware architecture for intelligent

real-time mobile applications that is fully-implementable by third party mobile app

developers and supports high-precision and high-accuracy positioning systems, such as

GPS. LAISYC significantly improves device battery life, provides location data

authenticity, ensures security of location data, and significantly reduces the amount of

data transferred between the phone and server. We have designed, implemented, and

successfully evaluated the following modules in real-world scenarios using actual mobile

devices:

GPS Auto-Sleep module: The GPS Auto-Sleep module saves battery energy
(Need #1) when using GPS (Need #3) in real-time (Need #2), maintaining
acceptable movement tracking (approximately 89% accuracy) with an
approximate average doubling of battery life. We have also demonstrated a
methodology for selecting the thresholds used in the algorithm based on observed
GPS data, so that the algorithm can be implemented by any third party mobile app
developer on any device with GPS and a Location API (Need #4).

Location Data Signing module — Location Data Signing module adds real-time
(Need #2), energy-efficient (Need #1) data authenticity to this architecture that is

missing in other architectures, with an average approximate battery life decrease
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of only 7%. We selected DSA as digital signature algorithm to ensure the module
is fully implementable by third party application developers (Need #4).

Session Management and Adaptive Location Data Buffering modules: The
Session Management and Adaptive Location Data Buffering modules also
contribute to battery life savings by providing energy-efficient (Need #1), real-
time (Need #2) data communication between a mobile phone and server,
increasing the average battery life for application data transfer by approximately
28% and reducing the average energy cost for location data transfer by
approximately 38%. To implement these modules, we chose protocols available
to third party mobile application developers (i.e., HTTP, TCP, and UDP) on Java
ME and Android devices (Need #4).

The Critical Point Algorithm module: The Critical Point Algorithm module
further reduces battery energy expenditures and the amount of data transferred
between the mobile phone and server (Need #1) by eliminating non-essential GPS
data (an average 77% reduction) (Need #3) in real-time (Need #2), with an
average doubling of battery life as the interval of time between location data
transmissions is doubled. We have also demonstrated a methodology to select
values for the thresholds used in the Critical Point Algorithm based on observed
GPS data, therefore allowing any third party mobile application developer to
implement the algorithm on any GPS-enabled mobile device with a Location API
(Need #4).

Location Data Encryption module: The Location Data Encryption module

ensures the security of the location data being transferred between the mobile
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device and server in real-time (Need #2), with only a slight impact on battery life
(i.e., a decrease of 4.9%) (Need #1). Therefore, Location Data Encryption can be
implemented by any third party mobile app developer (Need #4) using existing

software libraries such as BouncyCastle [147].

The LAISYC architecture was validated in two innovative mobile apps that would not

have been possible without LAISYC due to energy and data transfer constraints:

e TRAC-IT is a multi-modal travel behavior data collection mobile app that can
provide simultaneous and real-time location-based services (e.g., traffic alerts). In
TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location Data
Buffering, Critical Point algorithm, and the Session Management modules all
contribute energy savings (Need #1) that enable the phone’s battery to last an
entire day during real-time high-resolution GPS tracking (Needs #2 and #3).
Real-time, high-resolution GPS tracking is critical to TRAC-IT for reconstructing
detailed travel path information, including distance traveled, as well as providing
predictive, personalized traffic alerts based on historical and real-time data. The
Location Data Signing module allows transportation analysts to trust information
that is recorded by the application, while the Location Data Encryption module
protects the privacy of users’ location information. The Session Management,
Adaptive Location Data Buffering, and Critical Point Algorithm modules allow
TRAC-IT to avoid data overage costs on phones with limited data plans, while
still supporting real-time location data communication. The Adaptive Location

Data Buffering module prevents tracking data from being lost when the user is
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outside network coverage or is on a voice call for networks that do not support
simultaneous voice and data communications. TRAC-IT was successfully
implemented and tested using LAISYC on actual mobile phones without any
modification to device hardware or software (Need #4).

TAD is a mobile transit navigation app that assists bus riders with intellectual
disabilities by prompting them when to exit the bus, as well as tracking the rider
in real-time and alerting caregivers if the rider is lost. In the most recent group of
TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to
transit riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session
Management, Adaptive Location Data Buffering, Critical Point Algorithm, and
the Session Management modules all contribute energy savings (Need #1) that
enable the phone’s battery to last an entire day during high-resolution, real-time
GPS tracking (Needs #2 and #3). High-resolution GPS tracking is critical to TAD
for providing accurate instructions to the transit rider when to exit the bus, as well
as tracking an accurate location of the traveler so that caregivers can be alerted if
the rider becomes lost. The Location Data Encryption module protects the
privacy of the transit rider while they are being tracked. The Session
Management, Adaptive Location Data Buffering, and Critical Point Algorithm
modules allow TAD to avoid data overage costs on phones with limited data plans
while still supporting real-time location data communication for the TAD tracking
alert features. The Adaptive Location Data Buffering module prevents transit
rider location data from being lost when the user is outside network coverage or is

on a voice call for networks that do not support simultaneous voice and data
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communications. TAD was successfully implemented and tested using LAISYC

on actual mobile phones without any modification to device hardware or software

(Need #4).

The contributions discussed above are likely to become even more important as mobile
phone hardware continues to evolve. Early experiments indicate that the energy
challenges related to location-aware applications discussed in this dissertation in context
of Java ME are an even bigger problem on smart phones. Figure 62 shows the results of
simultaneous battery life benchmarking tests using a GPS refresh interval of four seconds

on a Sanyo Pro 200 with Java ME and an HTC Hero smart phone with Android 2.1.

Impact of GPS on Battery Life

B Sanyo Pro 200

Sprinl COMA
EV-DO Riev. A
network

B HTC Hero
(Android 2.1)

Sprint GOMA
EV-DO Rov. A
nowork

Battery Life (hours)
o = L] w F -9 (9] (23] ~J oo w

4 sec. sampling interval

Figure 62 - Battery life issues related to GPS appear to be an even bigger challenge
with smart phones, including Android devices

Despite having a larger capacity battery, the HTC Hero managed a battery life of only
approximately five hours, compared to the eight hours of battery life from the Sanyo Pro

200. These tests were performed without any other hardware such as the display being
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activated, so the additional energy consumption is directly related to the GPS or CPU
hardware required for an application to sample GPS every four seconds. Given that the
HTC Hero has a processor capable of roughly 2.5 times the clock-rate of the Sanyo Pro
200 (528MHz versus 225MHz), it is no surprise that the CPU consumes additional

battery energy.

Many users report having battery life problems with their smart phones [179]. This is
because smart phones are used for many activities, including checking email, browsing
the internet, watching videos, listening to music, etc. that all have a significant impact on
battery life. Additionally, device hardware capabilities and power requirements are
outpacing advancements in battery capacity at roughly twice the rate, creating a negative
trend in battery performance [179]. Recent device features such as larger screens and 4G

cellular network communication exacerbate the problem.

While users can attempt to budget their battery usage according to the features they want
most, the applications that use the most battery energy are not always obvious. For
example, recent research demonstrated that in the popular game Angry Birds, which does
not provide any location-aware features, GPS was consuming around 19% of the energy
spent while the application executed [38]. Further examination revealed that the
advertising engine Flurry, used in Angry Birds, was responsible for turning on GPS
during application execution. Furthermore, Flurry was responsible for about 45% of the
total energy expended by Angry Birds. Therefore, in order to provide location-aware

services for many different types of applications to smart phone users without a
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noticeable impact on battery life, device-based intelligence such as LAISYC will be

required.

54 Future Work

Our work with GPS-enabled mobile phones and LAISYC has provided insight into future
research areas. For example, while LAISYC successfully supports real-time mobile
applications given its current design, we have identified several potential areas of future
work that would add new capabilities to LAISYC. We have also observed potential areas
of improvement in the location-aware application development process. The following

two sections outline these areas of future work.

5.4.1 Location-Aware Mobile App Development

Many mobile apps that use location information have a large negative impact on mobile
device battery life. One reason behind this phenomenon is that many mobile apps are
tested on emulators before they are released instead of real devices, since device are
expensive. Current emulators do not model energy consumption of GPS or wireless
communications, and therefore many developers do not realize the potential impact of
their mobile apps until they receive feedback from their customers. There is a need for
better software emulators that provide a model of energy consumption to mobile app
developers so they understand the potential impacts of their application before releasing

it.
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5.4.2 Potential LAISYC Improvements

Since LAISYC is a modular framework, it allows integration of new components by
simply defining input and output of location data from a module. Figure 63 shows the

addition of two new modules: Privacy Filter and Position Estimation.
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Location-Aware Application
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Figure 63 - Future work on LAISYC can include the addition of two new modules:
Privacy Filter and Position Estimation. [118]

The following sections discuss these two new modules, as well as improvements that
could be made to the existing GPS Auto-Sleep, Critical Point Algorithm, and Location

Data Buffering modules.

5.4.2.1 GPS Auto-Sleep

While GPS Auto-Sleep currently tracks the true moving state of the user with
approximately 88% average accuracy, we observed that the accuracy could potentially be
improved by addressing the largest contributor to state errors: stationary GPS outliers.
The most frequent errors in state transitions occur when the device is stationary and

asleep in state[n] and the GPS generates an extreme outlier with a high speed value and a
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distance far from the current location. When this occurs (in approximately 1-2% of all
stationary GPS fixes on the Sanyo Pro 200 in our tests), the GPS Auto-Sleep snaps to
rapid tracking of state[0] and must wait until the backoff timer times out before it can

transition to the sleep state again.

To eliminate these false state transitions due to stationary outliers, we hypothesized that a
Kalman Filter implemented at the application level could dampen the effect of these
outliers on GPS Auto-Sleep. In subsequent research performed after the research
presented in this dissertation, USF Masters student Isaac Taylor demonstrated that GPS
Auto-Sleep accuracy could be improved from 88.40% to approximately 92% on average,
without a substantial impact on tracking data through the use of Adaptive Kalman Filters

[180].

The remaining source of state errors primarily occur when the user is traveling and
reaches a destination location, and GPS Auto-Sleep must wait for the backoff timer to
expire before gradually transitioning to the sleep state[n]. In other words, GPS Auto-
Sleep still believes the user is actively traveling until this timeout expires. One way to
potentially eliminate this timeout period is to have the device memorize locations
previously visited by the user by tracking the user’s location history. Then, when GPS
Auto-Sleep recognizes that the real-time location of the user is approaching one of these
historical locations, GPS Auto-Sleep could automatically transition to state[n] directly
instead of waiting for the backoff timer timeout and a gradual state transition to state[n].
In order to contribute to this area, future work might evaluate possible methods for

identifying, saving, and recognizing these custom user locations. Additional work with
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GPS Auto-Sleep could also examine the potential for saving battery energy when the user
is in a location with highly-obstructed wireless conditions. When one of these locations
IS recognized, the GPS interval could be increased until the user leaves the location, to
reduce the impact of GPS hardware fruitlessly searching for a signal while the user is at

the location.

GPS Auto-Sleep could also be used to increase the GPS sampling frequency at certain
locations. This technique could be useful in context of location-aware advertising when
an ad engine would like to obtain more detailed user information near advertising
locations. However, the impact on device battery life would need to be carefully

balanced against the value of the additional information.

One challenge of using GPS Auto-Sleep on smartphones is that many applications may
be requesting GPS location information simultaneously but at different sampling
frequencies. Therefore, an application that is requesting location updates every second
could eliminate the energy benefit of another application using GPS Auto-Sleep. GPS
Auto-Sleep could be moved into the underlying Location API in the platform to balance
competing application requirements and the impact of GPS on device battery life.
However, this integration would require collaboration with device manufacturers or

platform providers (e.g., Google for Android).

In our early work with GPS Auto-Sleep on Android devices, we have discovered an issue
on many different devices that affects the ability of an application to request scheduled
GPS updates at defined intervals. This is a problem for GPS Auto-Sleep, since it depends

on the ability to request GPS updates at a specific interval for each state.
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On many Android devices, when an application passes in a minTime parameter (i.e.,
interval of time between location updates) to the GPS location provider, the GPS provider
typically ignores this value and proceeds to update the application via callbacks to the
LocationListener.onLocationChanged() method every second (i.e., 1Hz update rate). A
build of the Android Open-Source Project (AOSP) code 4.0.3 Ice Cream Sandwich on a
Samsung Nexus S 4G has the same behavior of ignoring the minTime parameter, so the

behavior is not due to an OEM modification of the platform source.

We believe we have narrowed down the problem to faulty capability reporting from
native code to the GpsLocationProvider in the Android platform. In a custom AOSP
build on the same Nexus S 4G, we hard-coded values in the GpsLocationProvider to
indicate that the native code was not capable of handling GPS scheduling. The platform
took over and properly followed the minTime parameter (60 seconds in this case) and
delivered location updates to the app 60 seconds apart. Therefore, it seems that the native
code is telling the platform that it can handle GPS scheduling, but then it does not,
resulting in a 1Hz update rate no matter the minTime interval requested by the

application.

We have worked with the Google Android team to arrive at a solution to this issue that
should appear in the next Android version 4.1 Jelly Bean. Additional tests have been
added to the Android Compatibility Test Suite to evaluate GPS scheduling compliance
and the Location API documentation has been clarified to provide a strict expectation for
GPS scheduling adherence [181], which should hopefully resolve this issue for Android

devices version 4.1 Jelly Bean and above.
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5.4.2.2 Critical Point Algorithm

We currently use a single speed threshold to vary the angle threshold used at runtime
between two values (i.e., a walk angle threshold, and car angle threshold) to filter points
using the Critical Point Algorithm. Future work could examine if addition angle
threshold values could be used to further decrease the number of critical points while not

affecting the distance error percentage.

5.4.2.3 Location Data Buffering

Currently, Location Data Buffering functions by occasionally checking in with the server
after a timer expires via TCP, to ensure there is still an end-to-end connection. Instead of
the current time expiration threshold, more complex evaluation functions to determine

when a TCP transmission should occur are also possible. For example, the Critical Point
Algorithm could be used to determine when a TCP transmission should occur, to increase

the probability of Critical Points being successfully received by the server.

TCP-based checks with the server can also be utilized to increase system scalability by
communicating location data flow control instructions back to the mobile device. For
example, for many devices sending real-time second-by-second tracking updates to a web
server, the server may eventually become overloaded with location data if enough
devices are logged on simultaneously. In the subsequent TCP response for each device,
the server could send a command back to the device to send fewer updates to the server
until further notice. This would immediately reduce the load on the server, thereby
allowing additional scalability, while providing a basic quality of service. When the

number of devices logged on is reduced, the server could then send a command in the
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next TCP response to each device allowing the phone to begin transmitting fixes more

frequently again.

5.4.2.4 Position Estimation

Position Estimation is one module that can be added to the LAISYC framework to
estimate the position of the user when the raw output from a single positioning
technology is unavailable or not sufficiently accurate. Existing work in position
estimation by others could also be integrated into LAISYC as modules. For example,
Shih-Hau et al. discuss localization techniques based on received signal strength of Wi-Fi
access points and the use of an artificial neural network to infer position [83].
Beauregard presents a methodology to use artificial neural networks and GPS data to
improve pedestrian navigation via a dead reckoning system [75], while Lachapelle seeks
a similar goal via the combination of GPS and micro-electro-mechanical systems
(MEMS) [72]. In their work on their Statistical Terminal Assisted Mobile Positioning
(STAMP) system, Laoudias et al. present a statistical method based on historical position
calculations to infer current position [182, 183], while Markoulidakis et al. present
improvements on STAMP by using different Kalman filtering options on various input

variables [184, 185].

5.4.2.5 Privacy Filter

A Privacy Filter is another module that can be added to the LAISYC framework to
further protect user privacy. Since the user must explicitly allow a mobile application to
access their location according to the Java ME security model, the application on both the

client and server is considered to be trusted by the end user. However, the privacy of the
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user should be protected to ensure the trusted location-aware application only accesses
user location when the user considers it appropriate and does not accidentally disclose
sensitive location data. The current Java security model for the Location API has only

blanket options for user approvals:

e Allow This Time
e Always Allow
e Allow Until Exit

e Never Allow

Therefore, the user must permit all location requests by the application, or the user is
prompted each time the location-aware application wishes to access device location.
Instead of these two extremes, there is a desire for the user to be able to define

conditional approvals based on real-time information, including current location.

The Privacy Filter would allow the application to define conditional permissions for
location requests, such as time limitations (e.g., requests are permitted from 9am to 5pm
on Monday through Friday for business employees) or sensitive location restrictions (e.g.,
no requests allowed while in “private zones” near home). Using this method, the

application would be protected from accidentally receiving sensitive location updates.

The Privacy Filter would also be a valuable addition on the Android platform. Currently,
Android enforces only an install-time security model for application permissions. For
example, if an application is going to access the user’s location, the user is only asked
once when the application is installed if they would like to permit this. Once this initial

permission is granted, the application can access the user’s location at any time during
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execution without being required to ask the user during runtime. Therefore, since
Android currently does not enforce a user-based runtime security model, the Privacy

Filter module would be an important feature on Android devices.
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Barbeaui Sean

From: Barber, Phyllis <PBARBER@nas.edu>

Sent Wednesday, Aprtil 25, 2012228 PM

Toe Barbeau, Sean

Subject RE: Permission to reprint portion of TRR paper I authored in my dissertation

Dear Mr. Barbeau:

The pape s mentiored in your email below were not published by the Transportation Research Board; there fore,
permission o reprint these papers in your disse rtation is not needed from TRB. Copyright belosgs to the authors.

However, because each paper may have incorporated comments from the TRB peer review; we ask that the
authors as a professional courtesy acknowledge that the papers were peerreviewed by TRB and presented at the
TRB annual meeting .

Please let me know if you have any additional questions.

From: Barbeau, Sean

Sent: Wednesday, Apnl 25, 2012 11:32 AM

To: Barber, Phyllis

Ce: Barbeau, Sean

Subject: RE: Permission to reprint portion of TRRpaper | authored in my dissartation

Phy llis,

I have authored several other papers that have been included inthe TRB conference proceedings overlap the contents
of my dissertation. My initialim pression was that TRE did not own the copyright onthese papers, andtherefore | did
not need torequest permission.

However, after talking to some folks here, I'd like to erron the side of caution and request reprint permission for
material for these papers as well, induding:
® Sean ). Barbeau, Nevine L. Georggi, Philip L. Winters, Marcy E. Gordon. “From Idealism to Realism:Lessons
Learned from Development of Standards-B ased Software for Advanced Public Transportation Systems,”
Proceedings of the National Academy of Sciences’ Transpertation Research Board 90th Annual
Mesting, January 24, 2011 Paper #11-2254.
® Arical).Bolechala, Raymond G. Mitenberger,Sean J. Barbeau, Marcy E. Gordon. “Evaluating Effectiveness of
Travel Assistance Device on Bus Riding Behavior of Individuals with Disabilities,” Proceedings of the National
Academy of Sciences' Transportation Research Board 90th Annual Meeting, January 24, 2011 Paper#11-1418.
® Nevine L. Georggi, Sean ). Barbeau, Marcy E. Gordon, Philip L. Winters. “Evaluating the Deployment of a Mobile
Navigation Device at Four Transit Agendesin Florida,” Proceedings of the National Academy of Sciences’
Transportation Research Board 90th Annual M eeting. January 24, 2011. Paper #11-2213.
® Sean ). Barbeau, Miguel A. Labrador, Nevine L. Georggi, Philip L. Winters, Rafael A. Perez. “TRAC-IT: AS oftware
Architecture Supporting Simultaneous Travel B ehavior Data Collection and Real-Time Location-B ased Services
forGPS-Enabled Mobile Phones,” Proceadings of the National Academy of Sciences’ Transportation Research
Board 88th Annual Meeting Paper #09-3175, January, 2009.

Thanks,
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Sean

From: Barber, Phyllis [ maillo: PBARBER@nas edu]

Sent: Tuesday, February 28, 2012 10:12 AM

To: Barbeau, Sean

Subject: RE: Permission to reprint portion of TRRpaper | authored in my dissertation

Dear Mr. Barbeau:

The Transportation Research Board grants permission o you to re produce graphs and descriptions of
experiments regarding energy consumption on mobile devices from your paper, “Global Positioning System
Integrated with Pesomalised Real-Time Transit Information from Automatic Vehicle Location,” coauthored with
N. Georggiand P. Wintess, in your Ph D. dissertation, as identified in your recjuest of February 25, 2012, subject
© the following conditions:

1. The citation should inchade the following information:

From Barbeau, S, N. Georggi, and P. Winters . Global Positioning System Integrated with
Personalised RealTime Transit Information from Automatic Vehicle Location. In Tmnportation
Resectrch Record: Jotond of the Transpontaion Resetrch Board, No. 2 143, graphs and selected portions
of et Reproduced with permission of the Transportation Research Board.

2. Nomne of this material may be presented o imply endorsement by TRB of a product,
me thod, practice, or policy.

Every success with your Ph D. disse rtation. Please let me knowif you have any questions.
Sincerely,

Javy Awan
Director of Publications
Transportation Research Board

From: Barbeau, Sean [mailobabeau@eulr.ust.edu]

Sent: Satuiday, February 25,2012 3:37 PM

To: Barber, Phylis

Subject: Parmission lo reprint portion of TRR paper | authored in my dissertation

DearSir or Madam,

I would liketo obtain written permission to reprint portions of a TRR paper| authored in my Ph.D.

dissertation. Specifically, I'd like to use the graphs and descriptions of experiments regarding energy consumption on
mobile devices. The publication is:

Sean). Barbeau, Nevine L. Georggi, Philip L. Winters. “Global Positioning System Integrated with Perscnalized RealTime
Transit Information from Autematic Vehicle Location,” Transportation Research Record: Journal of the Transportation
Research Board, Transit 2010Vol 1, No. 2143, pp. 168-176, October 2010. DO110.3141/2143-21.

http://trb. metapress.com/content/r27623155x844065/7p=384b0:1814da40b2ad 3214457274 68&pi=0
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Please let me know how | cango about obtaining written permission.

Thanks,
Sean

Sean J. Barbeau, M.S. Comp.Sci.

Research Associate

Center for Urban Transportation Research

University of South Florida

4202 E. Fowler Avenue, CUTIOO0 | Tampa, FL 33620-5375
813.974.7208 2D barcode | 813.974.5168 (fax) | barbean @ cutr.usf.edu

ISI Location- Aware Information Systems Lab - Wttp J//www loc ationa ware usf.edu/

Subscribe to LSF's Location- Aware Information Systems listserve to be notified by email of pew reseanch repocls, indutey news, el and o
discuss location-aware techndogy ssues and experiences
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Barbeaui Sean

From: Charlie Tennyson <CTennyson@its org>

Sent Monday, Apri 30, 2012 9:34 AM

Toc Barbeau, Sean

Subject: RE: Permission 1 reprint matera | from authoed papers from ITS World Congress
proceeding s

Good morning Sean,

As the ariginal author, we have absolutely no problem with you reprinting or reusing any of the workyou've submitted
to past conferences.

Thanks for contacting us about this, and good luck with your dissertation!

Charlie

Charlie Tennson

Me mbe rSe vices Manager

Intellge nt TRrsportationSocie ty of America
1100 17 th St NW Ste 1200

Wwashington, DC 20036

Office: 202-721-4207

ms america 22" annwal Meeting & Exposition

Smort Tronsportotion: A Future we Con Afford

Moy 21-23,2012 «Gaybrd Natoral Resort and ConvemtionCenter
Natioral Harbor, Marylnd (outside Washington, DC)

Maork your colendor ond moke plons to ottend!

TS America & the lkeading advocate for technologies that improve the safety, security and efficie ncy of the mation's trans portation
system. Follow us on Twitterand join our Facebookand Linked In g roups'

-', Piate cosside s the o mronment 3nd ondy print 1hse- ma l A ey

From: Barbeau, Sean [mailto babeau@cutr ustedu]

Sent: Wednesday, April 25, 2012 11:23 AM

To: Information

Subject: Permission 1o reprint material from authored papersfrom | TS World Congress proceedings

Iwould liketo request written permission to reprint material from several papers | have authored that have appeared in
the TS World Congress conference proceedingsin my Ph.D. dissertation in Computer Science & Engineering.

| need to receive permission in the next two weeks.

The papers|would like to reprint material from are:
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®  Marcy Gordon, Sean J, Barbeau, Miguel Labrador. “Location Data Signing — Protecting the Integrity
and Authenticity of Positioning System Data,” Proceedings of the 2011 ITS World Congress. Orlando,
FL. October 20, 2011,
*  Secan ). Barbeau, Miguel A. Labrador, Philip L. Winters, Rafacl Perez. Nevine Labib Georggi. “The
Needs," 15th World Congress on Intelligent Transporiation Systems, New York, New York, November
16-20, 2008.
® Narin Persad-Maharaj. Sean J. Barbeau, Miguel A Labrador, Philip L. Winters, Rafacl Perez, Nevine
Labib Georggi.“Real-ti ay it ing GPS-cn; I ”_15th World
Congress on Intelligent Transportation Systems, New York, New York, November 16-20, 2008.
®  Sean ). Barbeau, Miguel A. Labrador, Philip L. Winters, Rafael Perez, Nevine Labib Georggi. “Trac-lt —
A Smart’ User Interface For A Real-Time, Location-Aware, Multimodil Transportation Survey.” 15th
World Congress on Intelligent Transportation Systems, New York, New York, November 16-20, 2008,
Thanks,
Sean
Sean J. Barbeau, M.S. Comyp.Sci.
Rescarch Asociate
Center for Urban Trnsportation Research
University of South Florida
4202 E. Fowler Avenue, CUTIO00 | Tampa, FL 33620-5375
813.974.7208 2D barcode | 813.974.5168 (fax) | batheau @ cutr.usf.edu
LSF Location- Aware Informution Systems Lab - http//www loc ationa ware ust.edu/
Sulwcribe to ISF's Location- Aware Information Systens listserve to be notified by email of new research reporls, indistry news, ete. and to
i location-aware lechnaogy issues and experience
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