
A Location-Aware Architecture Supporting Intelligent Real-Time Mobile Applications

by

Sean J. Barbeau

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Co-Major Professor: Rafael Perez, Ph.D.
Co-Major Professor: Miguel Labrador, Ph.D.

Hyun Kim, Ph.D.
Thomas Weller, Ph.D.
Dewey Rundus, Ph.D.

Date of Approval:
June 15, 2012

Keywords: global positioning systems, location-based services,
 mobile phone, Java Micro Edition, Android

Copyright © 2012, Sean J. Barbeau

UMI Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

DEDICATION

This work is dedicated to my family and friends, especially my wonderful, beautiful,

loving, and supportive wife Carlene. I love you more than you will ever know. This is

also dedicated to Zach, my new son – I hope that this work will inspire you and show that

with hard work, dedication, and the support of loved ones anything is possible

.

ACKNOWLEDGMENTS

I would like to thank my major professors, Dr. Rafael Perez and Dr. Miguel Labrador, for

their mentoring, patience, and guidance throughout my untraditional doctoral journey. I

would also like to acknowledge the feedback from my committee, including Dr. Rafael

Perez, Dr. Miguel Labrador, Dr. Hyun Kim, Dr. Thomas Weller, and Dr. Dewey Rundus,

who helped shape and revise this research.

I would like to thank Phil Winters, my supervisor at the Center for Urban Transportation

Research (CUTR), for his trust and supervision as I built my research career. Thank you

to Nevine Georggi and Ed Hillsman for their partnership on many research projects and

the rest of the CUTR Transportation Demand Management Team for their support and

collaborations. Thank you as well to CUTR Management for their support of the many

research projects that I have been a part of at CUTR. I would also like to thank the many

Research Experience for Undergraduates (REU) and graduate students who have

contributed in many different ways to the research projects I have been a part of

surrounding the work in this dissertation: Alfredo Perez, Isaac Taylor, Marcy Gordon,

Khoa Tran, Leon Augustine, David Aguilar, Josh Kuhn, Ismael Roman, Oscar Lara,

Narin Persad, Dmitry Belov, Jeremy Weinstein, Paola Gonzalez, Tiffany Burrell, Francis

Gelderloos, Joksan Flores, Jorge Castro, Richard Meana, Theo Larkins, Hector Tosado,

and Marcel Munoz.

I would like to thank the organizations that contributed funding to the many research

projects I have worked on, especially the Travel Assistance Device and TRAC-IT

projects that built on my dissertation research, including the National Center for Transit

Research, Florida Department of Transportation, U.S. Department of Transportation

Research and Innovative Technology Administration, Federal Transit Administration,

Transportation Research Board, and National Science Foundation.

I am grateful for the support of Sprint-Nextel’s Application Developer program, and in

particular the assistance of Ryan Wick, Sprint’s Lead Developer Advocate, in providing

access to the Location API on Sprint devices as well as facilitating the donation of

cellular service and devices to USF that supported our research projects.

Last but certainly not least, I would like to thank my family and friends for their love and

moral support throughout my years as a full and part-time student. Thank you to my

wonderful wife Carlene, without whom this dissertation and the rest of my graduate work

never would have been completed – she has put in more hours supporting me than I have

working on my research. Thanks to Zach, my son, for being my inspiration. Thank you

to my loving and supportive Mom and Dad, who provided crucial support and instilled a

love of learning early in my life, and Momma Brown and Matt who have provided love

and support in my college and post-college years. Thank you to my brother Ryan, for his

many years of friendship and humor, and sister-in-law Daphna for her constant moral

support despite juggling med school (Congrats Dr. Daphna!). Thanks to Sugar (I miss

you!) for her companionship during the many hours studying, even if she spent most of it

barking at squirrels.

i

TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES .. v

ABSTRACT ... xi

CHAPTER 1: INTRODUCTION ... 1
1.1 Mobile Applications.. 2
1.2 Positioning Technologies .. 2
1.3 Location-Aware Mobile Applications .. 4

1.3.1 Cross-Platform Application Environments 5
1.3.2 Multitasking Virtual Machines ... 6

1.4 Problem Statement .. 7
1.5 Contributions... 11
1.6 Structure of Dissertation ... 14

CHAPTER 2: KNOWN LBS ARCHITECTURES .. 15
2.1 Commercial LBS Applications ... 15
2.2 Known Location-Aware Architectures ... 18

CHAPTER 3: PROPOSED ARCHITECTURE – LOCATION-AWARE
INFORMATION SYSTEMS CLIENT (LAISYC) .. 29

3.1 Note to Reader .. 29
3.2 Architecture Overview .. 30
3.3 Mobile Device-Side Components ... 31

3.3.1 Positioning Systems Management Modules 33
3.3.1.1 GPS Auto-Sleep ... 33
3.3.1.2 Location Data Signing .. 49

3.3.2 Communications Management Modules 51
3.3.2.1 Session Management .. 51

3.3.2.1.1 Available Communication Protocols 52
3.3.2.1.2 LAISYC Application Data Transport 54
3.3.2.1.3 LAISYC Location Data Transport 59
3.3.2.1.4 Device-Side Implementation of Session
Management .. 60

3.3.2.2 Adaptive Location Data Buffering 63
3.3.2.3 Critical Point Algorithm ... 70
3.3.2.4 Location Data Encryption .. 79

ii

3.4 Server-Side Components .. 83
3.4.1 Communications Management ... 84

3.4.1.1 Session Management .. 84
3.4.1.2 Adaptive Location Data Buffering 86

3.4.2 Data Analysis .. 86
3.4.2.1 Critical Point Algorithm ... 86
3.4.2.2 Spatial Analysis .. 87

CHAPTER 4: EVALUATION ... 89
4.1 Note to Reader .. 89
4.2 Evaluation Overview .. 90
4.3 LAISYC Component Evaluation .. 90

4.3.1 GPS Auto-Sleep .. 91
4.3.2 Location Data Signing .. 117
4.3.3 Session Management and Adaptive Location Data Buffering 121
4.3.4 Critical Point Algorithm ... 129
4.3.5 Location Data Encryption ... 150

4.4 Innovative Location-Aware Applications Developed Using LAISYC .. 151
4.4.1 TRAC-IT ... 151
4.4.2 Travel Assistance Device (TAD) .. 161

CHAPTER 5: SUMMARY AND CONCLUSIONS .. 179
5.1 Note to Reader .. 179
5.2 Summary of Problem Statement and Needs ... 179
5.3 Summary of Contributions .. 181
5.4 Future Work .. 187

5.4.1 Location-Aware Mobile App Development 187
5.4.2 Potential LAISYC Improvements ... 188

5.4.2.1 GPS Auto-Sleep ... 188
5.4.2.2 Critical Point Algorithm ... 192
5.4.2.3 Location Data Buffering ... 192
5.4.2.4 Position Estimation .. 193
5.4.2.5 Privacy Filter .. 193

LIST OF REFERENCES .. 196

APPENDIX A. REPRINT PERMISSIONS .. 212

ABOUT THE AUTHOR ... END PAGE

iii

LIST OF TABLES

Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules
are designed to meet the various critical needs of intelligent real-time
mobile applications in Location-Based Services ...12

Table 2 - SOAP-encoded messages add a significant amount of overhead to web
service requests, approximately 3.7 times as many characters, as shown
in this example ...56

Table 3 - GPS Auto-Sleep state machine values chosen for experimentation95

Table 4 - Horizontal error statistics for indoor GPS accuracy tests109

Table 5 - While the positional error between the two devices is substantially
different, the error in speed is much less dramatic ..110

Table 6 - When using the 0.1 meters per second min_speed_threshold, the Critical
Point Algorithm is able to produce significant data filtering savings
with only a slight impact on accurate walking paths138

Table 7 - Resulting statistics from a walk and a car trip that were both processed
using the Critical Point Algorithm with different angle thresholds147

Table 8 – The Critical Point Algorithm is able to reduce GPS datasets by more
than 77% on average while maintaining an average distance error
percentage under 10%. ..148

Table 9 - TRAC-IT was used as part of a USDOT-funded research project to
collect over 4 million GPS data points from 30 users over 2 months157

Table 10 - 95% of sessions had less than 3.95% of lost UDP packets157

Table 11 - When TRAC-IT used LAISYC, device battery life nearly doubled
while reducing overall location data packet loss by 2.16% and adding
encryption ..158

Table 12 - Field tests of the TAD app in Tampa, Florida produced ideal prompts
87% of the time at random stops..173

iv

Table 13 - Field tests of TAD with STAGES students were more challenging,
primarily due to close proximity of stops near the USF campus174

Table 14 - The improved bus stop detection algorithm delivered ideally-timed
alerts to riders in 33 of 33 tests ..176

v

LIST OF FIGURES

Figure 1 - The LAISYC architecture consists of software on the mobile device
and web application server, with a database server holding persistent
server-side data ..31

Figure 2 - LAISYC mobile phone-based modules ..32

Figure 3 - High-sensitivity GPS receivers can acquire a GPS position more
rapidly, and with less dependence on the time elapsed since the most
recent GPS fix, than low-sensitivity receivers ...36

Figure 4 - GPS Auto-Sleep uses a state machine with various logic evaluations
that control the transition between states, which represent changes to
the GPS sampling interval values ..39

Figure 5 - Navigation mode for GPS Auto-Sleep controls GPS sampling interval
directly based on a distance-to-goal (e.g., next turn for real-time
driving directions) ..47

Figure 6 - Relationships between HTTP, TCP, UDP, and SOAP as networking
protocols ...53

Figure 7 - The Session Management modules use HTTP for application data and
UDP for location data for communication between the mobile device
and server ...61

Figure 8 - A timeline of Location Data Buffering which shows a TCP failure that
results in a series of buffered location data fixes, which are transmitted
to the server on the next successful TCP transmission67

Figure 9 - Adaptive Location Data Buffering occasionally checks for an open
connection with the server via TCP to increase the probability of
successful UDP transmissions ...69

Figure 10 - The Critical Point Algorithm filters out GPS fixes that are not
necessary to recreate the user's path ..74

vi

Figure 11 - Azimuth calculations are used in the Critical Point Algorithm to
determine change in direction ..75

Figure 12 - The Critical Point Algorithm maintains a reference to three points that
are used to determine whether the second of the three points is a
critical point ...75

Figure 13 - LAISYC uses a hybrid cryptosystem to protect the exchange of the
AES key using HTTPS with SSL, and then uses the AES key to
encrypt the location data sent over UDP..81

Figure 14 - 128bit AES is used to encrypt the location data in the UDP payload,
with the exception of the session ID which is used by the server to
identify the correct symmetric key per device session82

Figure 15 - LAISYC server-side modules ...83

Figure 16 - Even modest increases in the interval between GPS fixes produce
extended battery life on the order of hours ..93

Figure 17 - A growth function for the state[i]interval values was chosen to grow like
an x2 or 2x function until it reaches the middle state, at which point it
quickly accelerates in growth beyond an x3 function97

Figure 18 - Sample GPS Auto-Sleep values are chosen for an exponential growth
in the interval between GPS fixes, while the timeout values have an
upper-bound of 32 seconds; if a GPS fix cannot be acquired, the
interval + timeout line illustrates an upper bound for the total time
elapsed at each state. ..98

Figure 19 - The largest potential loss of beginning travel path is worst-case
scenario when the user travel path is sampled just before they begin
moving, since the next GPS sample occurs max_gps_activitystate[n]

seconds later ...99

Figure 20 – When high-sensitivity GPS is able to acquire a fix, it tends to deliver
this information close to the expected interval value with an average
delay of only 9 seconds. ...102

Figure 21 - Proactive GPS scheduling (left) starts the GPS hardware slightly
before the scheduled interval value expires, while reactive GPS
scheduling (right) waits until the interval period has completely
expired before attempting a GPS fix. ...103

vii

Figure 22 - GPS Auto-Sleep can miss a substantial part of the beginning trip path
if it must transition through all states before starting to record high-
resolution travel behavior ..104

Figure 23 - Speed thresholds for the GPS Auto-Sleep state machine are selected
using observations of speed when stationary and indoors106

Figure 24 - GPS Auto-Sleep can quickly react to real movement using the
high_speed_threshold and rapidly begin sampling GPS via direct
transitions to state[0] to reflect a more accurate travel path107

Figure 25 - Scatter plots of indoor horizontal positional accuracy tests109

Figure 26 - Reliability of accuracy estimates for individual assisted GPS data
points was shown to be poor on the evaluated devices, the Motorola
i580 (left) and Sanyo 7050 (right) ...111

Figure 27 - To evaluate the accuracy of GPS Auto-Sleep, the ground truth state of
traveling was manually coded against the behavior of the state
machine ..113

Figure 28 - GPS Auto-Sleep is able to successfully track the moving or stationary
state of the user with a high degree of accuracy. ...115

Figure 29 - Execution time for key generation using DSA and RSA asymmetric
cryptography ..118

Figure 30 - Signature generation test results show that Location Data Signing
using DSA and RSA is feasible for implementation on real mobile
devices..119

Figure 31 - Estimated battery life with and without Location Data Signing120

Figure 32 - The information exchanged between the mobile device and server for
the HTTP POST vs. XML-based JAX-RPC battery life tests124

Figure 33 - XML-based JAX-RPC mobile device to server communication clearly
has a substantial negative impact on mobile device battery life when
compared to HTTP-POST ..124

Figure 34 - The location data format used for the payload contents of UDP and
TCP packets in the power consumption tests ..126

viii

Figure 35 - (a) While at 4 second transmission intervals TCP and UDP have
similar power consumption, (b) at 10 second transmission intervals it
is evident that TCP consumes approximately 38% more power than
UDP..127

Figure 36 - a) All GPS data points generated from a phone are shown on the left,
while b) only the critical points generated by the Critical Point
Algorithm are shown in the right ...129

Figure 37 - The Critical Point Algorithm can more than triple battery life by
filtering GPS data and transmitting at an interval of 60 seconds instead
of 15 seconds..131

Figure 38 - The Critical Point Algorithm maintains a constant memory
requirement during execution by using at most three location data
pointers ...133

Figure 39 - We observed the GPS speed recorded while a user was casually
walking, which includes some speed values of 0 meters per second.............135

Figure 40 - When comparing a) all points to b) critical points using a
min_speed_threshold of 0.1 meters per second, the general walking
path of the user is preserved, with some filtering at the beginning of
the trip (bottom left of each image). ..136

Figure 41 - Over 97% of the GPS drift shown here at an indoor stationary location
can be filtered out by the Critical Point Algorithm when using a 0.1
meters per second min_speed_threshold ...138

Figure 42 - Sampled GPS data points create an approximated path of the user with
some uncertainty ..139

Figure 43 - The distance of the path generated from Critical Point Algorithm will
always be shorter or equal to the distance of the path using all GPS
data points ..141

Figure 44 - Running the Critical Point Algorithm with increasing angle thresholds
gradually reduces the number of points that represent the line, which
increases the distance error percentage ..143

Figure 45 - As the angle threshold for the Critical Point Algorithm increases, there
is a general trend towards fewer critical points being generated and an
increase in the distance error percentage for both walking and car144

ix

Figure 46 - For car trips, the Critical Point Algorithm is able to dramatically
reduce the full GPS dataset, a), to far fewer critical points , b), with
lower angle_threshold values because of longer straight paths145

Figure 47 - Location Data Encryption using 128-bit AES encryption for UDP
payloads is feasible on mobile devices, although it does have a slight
impact on battery life ...150

Figure 48 - The TRAC-IT mobile application is based on the LAISYC framework
to enable simultaneous travel behavior data collection and real-time
location-based services ..153

Figure 49 - The TRAC-IT mobile application provides a user interface to record
input from the individual for mode of transportation, purpose, and
vehicle occupancy as well as location data ..155

Figure 50 - Path Prediction compares the traveler's real-time location, shown as
yellow push-pin markers, against paths from the traveler’s travel
history, shown as yellow shaded buffers, to predict the immediate
travel path...159

Figure 51 - Path Prediction successfully demonstrated that real-time location-
based messages could be sent to the phone using LAISYC and a
history of the traveler’s behavior ...160

Figure 52 - The Travel Assistance Device mobile application alerts the transit
rider of an upcoming destination bus stop ...162

Figure 53 - TAD was implemented using the LAISYC framework to support real-
time location-aware services ..164

Figure 54 - New transit trip itineraries can be created for the TAD mobile app
user via the TAD website ...165

Figure 55 - Travel Assistance Device mobile app interface that alerts the rider
when to exit the bus ...166

Figure 56 - The initial bus stop detection algorithm for the Pull the Cord Now
alert was defined by a radius surrounding the destination stop167

Figure 57 - The TAD website shows real-time location updates from the LAISYC
framework supporting the TAD mobile and web app170

x

Figure 58 - LAISYC Spatial Analysis module on the server compares the real-
time location of the user against spatial buffers surrounding the rider’s
planned route, to determine if the user has become lost171

Figure 59 - The planned travel path of the bus is used to detect if the rider is lost,
versus an estimated path created by connecting bus stop locations,
since an estimated path can produce false-positive lost alerts172

Figure 60 - Some TAD alerts were given early or late due to incorrectly geocoded
bus stops, where the actual bus stop position (marker "A") differed
from the database location of the bus stop (blue bus icon)174

Figure 61 - An improved algorithm for notifying the user when to exit the bus is
based on detecting the departure from the second-to-last bus stop [126]176

Figure 62 - Battery life issues related to GPS appear to be an even bigger
challenge with smart phones, including Android devices185

Figure 63 - Future work on LAISYC can include the addition of two new
modules: Privacy Filter and Position Estimation ...188

xi

ABSTRACT

This dissertation presents LAISYC, a modular location-aware architecture for intelligent

real-time mobile applications that is fully-implementable by third party mobile app

developers and supports high-precision and high-accuracy positioning systems such as

GPS. LAISYC significantly improves device battery life, provides location data

authenticity, ensures security of location data, and significantly reduces the amount of

data transferred between the phone and server. The design, implementation, and

evaluation of LAISYC using real mobile phones include the following modules: the GPS

Auto-Sleep module saves battery energy when using GPS, maintaining acceptable

movement tracking (approximately 89% accuracy) with an approximate average doubling

of battery life. The Location Data Signing module adds energy-efficient data authenticity

to this architecture that is missing in other architectures, with an average approximate

battery life decrease of only 7%. The Session Management and Adaptive Location Data

Buffering modules also contribute to battery life savings by providing energy-efficient

real-time data communication between a mobile phone and server, increasing the average

battery life for application data transfer by approximately 28% and reducing the average

energy cost for location data transfer by approximately 38%. The Critical Point

Algorithm module further reduces battery energy expenditures and the amount of data

transferred between the mobile phone and server by eliminating non-essential GPS data

(an average 77% reduction), with an average doubling of battery life as the interval of

xii

time between location data transmissions is doubled. The Location Data Encryption

module ensures the security of the location data being transferred, with only a slight

impact on battery life (i.e., a decrease of 4.9%). The LAISYC architecture was validated

in two innovative mobile apps that would not be possible without LAISYC due to energy

and data transfer constraints. The first mobile app, TRAC-IT, is a multi-modal travel

behavior data collection tool that can provide simultaneous real-time location-based

services. In TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location

Data Buffering, Critical Point algorithm, and the Session Management modules all

contribute energy savings that enable the phone’s battery to last an entire day during real-

time high-resolution GPS tracking. High-resolution real-time GPS tracking is critical to

TRAC-IT for reconstructing detailed travel path information, including distance traveled,

as well as providing predictive, personalized traffic alerts based on historical and real-

time data. The Location Data Signing module allows transportation analysts to trust

information that is recorded by the application, while the Location Data Encryption

module protects the privacy of users’ location information. The Session Management,

Adaptive Location Data Buffering, and Critical Point algorithm modules allow TRAC-IT

to avoid data overage costs on phones with limited data plans while still supporting real-

time location data communication. The Adaptive Location Data Buffering module

prevents tracking data from being lost when the user is outside network coverage or is on

a voice call for networks that do not support simultaneous voice and data

communications. The second mobile app, the Travel Assistance Device (TAD), assists

transit riders with intellectual disabilities by prompting them when to exit the bus as well

as tracking the rider in real-time and alerting caregivers if they are lost. In the most

xiii

recent group of TAD field tests in Tampa, Florida, TAD provided the alert in the ideal

location to transit riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session

Management, Adaptive Location Data Buffering, Critical Point algorithm, and the

Session Management modules all contribute energy savings that enable the phone’s

battery to last an entire day during real-time high-resolution GPS tracking. High-

resolution GPS tracking is critical to TAD for providing accurate instructions to the

transit rider when to exit the bus as well as tracking an accurate location of the traveler so

that caregivers can be alerted if the rider becomes lost. The Location Data Encryption

module protects the privacy of the transit rider while they are being tracked. The Session

Management, Adaptive Location Data Buffering, and Critical Point algorithm modules

allow TAD to avoid data overage costs on phones with limited data plans while still

supporting real-time location data communication for the TAD tracking alert features.

Adaptive Location Data Buffering module prevents transit rider location data from being

lost when the user is outside network coverage or is on a voice call for networks that do

not support simultaneous voice and data communications.

1

CHAPTER 1: INTRODUCTION

Mobile phones have become one of the most ubiquitous computing devices in modern

history. As a result of mass production, cellular carrier subsidies, and decreasing

technology costs, more people have access to mobile phones today than any other time in

world history. As of late 2011, there were an estimated 5.9 billion mobile-cellular

subscriptions worldwide yielding a global penetration rate of 87%, with a 79%

penetration rate in developing countries [1].

In developed countries such as the United States, mobile phones are becoming so

common that wireless penetration is reaching the point of saturation with only a small

percentage of the population not owning mobile phones. For example, in the United

States as of June 2011 there are 322.9 million mobile subscriptions with a penetration

rate of 102.4%, indicating that a large number of individuals have multiple subscriptions

[2]. A contributing factor to this growth is that many individuals are giving up their

landline telephones in favor of mobile phones. In April 2011, 26.6% of U.S. households

were wireless–only, meaning that they use only a cell phone instead of a landline

telephone to make calls [3]. As a result of increasing penetration and reliance on cell

phones for a variety of everyday tasks, mobile phones have become important devices to

many individuals around the world. A 2009 survey indicates that 82% of Americans

never leave their house without their phone, while 42% stated “they cannot live without

their phone” [4].

2

1.1 Mobile Applications

Cell phones have become immensely popular not only for their ability to make phone

calls, but also for their ability to perform general computing tasks that previously

required expensive personal computers. Perhaps one of the most popular features of

modern smart phones is the ability to execute mobile applications. Mobile applications,

or “apps,” are software products that are typically developed by a third-party that does

not have a direct relationship with the device manufacturer (e.g., HTC, Samsung,

Motorola, Apple, Research in Motion), cellular carrier (e.g., Sprint-Nextel, AT&T,

Verizon Wireless), or operating system vendor (e.g., Google, Microsoft). Instead, the

mobile app is created by software engineers and then directly sold and distributed to the

customer, often through online software vending services such as the Google Android

Market [5], Apple AppStore for the iPhone [6], Blackberry AppWorld [7], Amazon

AppStore for Android [8], and GetJar for Java Micro Edition and Android [9]. As a

result of these vending services and an increasing availability of smart phones, the

number of mobile apps downloaded has proliferated over the last few years. An

estimated 29 billion apps were downloaded worldwide in 2011 [10], an astounding

increase of 20 billion downloads since 2010 [10]. Revenues for app developers are

expected to increase rapidly over the next few years, with an estimated global app

revenue of $7.3 billion in 2011 and $36.7 billion by 2015 [11].

1.2 Positioning Technologies

One key difference between mobile phones and desktop computers is that mobile phones

constantly change geographic location, unlike desktop computers, which are tethered to a

single physical location for months or years. Even laptops do not have the level of

3

mobility that cell phones offer. Laptops can be moved from one place to another, but

typically they are in operation for only several hours at a time and then shut down before

being moved. In contrast, mobile phones typically remain on during the entire day and

can be actively used when the user is in motion.

During the emergence of cell phones in the late 1990s, the U.S. Federal Communication

Commission (FCC) became concerned that extreme mobility of cell phones could cause

problems for emergency responders attempting to locate a mobile 911 caller, since,

unlike a landline phone that is associated with a street address, little is known about the

real-time location of a mobile phone. Even if the 911 operator knows what cellular tower

a mobile phone is communicating with, this information is of little help to responders

since the coverage area of a single cell tower can be several square miles. As a result of

the lack of positional knowledge for mobile 911 callers, the FCC issued the E911

mandate, requiring cellular carriers to implement technologies that could accurately

locate mobile 911 callers within 50 to 300 meters, depending on the underlying

technology [12]. U.S. carriers tested a wide variety of positioning technologies for their

networks. Global System for Mobile Communication (GSM)-based U.S. carriers such as

AT&T and T-Mobile chose network-based Uplink Time Difference of Arrival (U-

TDOA) to support E911 position requests [13]. Code Division Multiple Access

(CDMA)-based U.S. carriers such as Sprint and Verizon chose handset-based Global

Positioning System (GPS) solutions for devices on their networks because GPS

technology was already integrated into the network as a time reference for CDMA-based

wireless communications [13, 14].

4

Since U.S. cellular carriers were mandated to invest a significant amount of time, effort,

and funds into positioning technology implementations, carriers immediately began to

investigate commercial applications of these technologies for mobile phone users so they

could recover a portion of their investments through user fees. Early deployments of

these technologies for commercial purposes become known as location-based services

(LBS), which are a general class of services that provide users with some type of

information based on their real-time or historical location.

Of the positioning technologies implemented for E911 purposes, GPS-based solutions are

by far the most accurate, with an estimated 3-5 meters of positional accuracy under ideal

conditions [15-19]. Since this level of accuracy is also sufficient to provide commercial

services such as real-time driving directions to mobile phone users, GPS became an

attractive technology not only for E911 purposes but also for general consumer LBS. As

a result, U.S. T-Mobile and AT&T have since implemented GPS-based positioning

technologies in their handsets in order to provide commercial services based on the

technology [14]. Global trends of GPS penetration in handsets to support commercial

services have also surged upwards, with 79.9% of cell phones shipped in the fourth

quarter of 2011 (318.3M) having integrated GPS [20].

1.3 Location-Aware Mobile Applications

With the availability of positioning technologies such as GPS in mobile phones, and the

advent of apps, third-party application developers became interested in utilizing location

information within their applications. There were two major developments in mobile

phones that made widely deployable location-aware mobile applications possible: the

5

emergence of cross-platform application environments for mobile phones such as Java 2

Micro Edition, now referred to as Java Micro Edition (Java ME), and the ability to run

applications in the background (i.e., a Multitasking Virtual Machine). Both

developments are discussed below.

1.3.1 Cross-Platform Application Environments

The diversity and rapid evolution of mobile phone hardware creates a significant

challenge for application developers. If the developer were to design and implement

software that directly interfaced with the hardware and operating system for each phone,

they would be forced to redesign the application for nearly every single mobile phone

model that is released by each manufacturer, an extremely costly task. To ease the

burden on developers and create a sustainable mobile application ecosystem, applications

platforms that hide some of the lower-level detail of the hardware and operating system

(OS) implementation have emerged. Instead of directly accessing these hardware and OS

components, application instead interact with interfaces that abstract the underlying

implementation details. This design allows the underlying hardware or OS to change and

evolve without modifying the higher-level interfaces. Applications can therefore

indirectly interact with the underlying hardware without the burden of rapidly

redesigning their applications for every new mobile phone model.

Java ME, designed after the cross-platform Java virtual machines initially created for

portability of desktop and server applications, was the first cross-platform application

environment to emerge for mobile phones. Google’s Android is a newer cross-platform

environment for smart phones that has recently emerged, although in this dissertation the

6

majority of focus is on Java ME since at the time of this research Java ME was the

primary cross-platform environment that was widely accepted in the telecommunications

industry [21, 22].

One drawback to the standardization of high-level application programming interfaces

across multiple hardware and operating system platforms is that there must be consensus

in the industry for how this interface is designed, and this can take time to develop. For

example, the introduction of positioning technologies in mobile phones for E911

purposes in the late 1990s and early 2000s did not mean that this technology was

immediately available to third-party application developers. In fact, a location

application programming interface (API) was not standardized for Java ME until

September 2003 [23]. The Java Specification Request (JSR) 179 Location API for Java

ME, and the subsequent JSR 293 Location API 2.0, defined a set of functions that a

mobile application developer could use to access location information on a Java ME

handset that implemented the JSR 179 or JSR 293 standards [22-24]. For the first time,

an application developer could develop a location-aware application that accessed

positioning technologies such as GPS and could work on devices from many different

manufacturers and cellular carriers without significant modification, a critical

development in the emergence of location-aware mobile apps.

1.3.2 Multitasking Virtual Machines

The second major development in the emergence of location-aware mobile applications

was the ability to run applications in the background. Many of the first Java ME mobile

phones released in the early 2000s did not have Multitasking Virtual Machines (MVMs),

7

which prevented applications from being executed in the background while the user

performed a different task (e.g., phone call, web browsing, phone in standby mode) in the

foreground. In other words, only a single application could be executed at a time, and

that application could not be executed in the background. This limitation prevented an

application from monitoring the location of the phone unless the user was actively using

the application, which severely restricted the scope of location-aware mobile applications

that could be implemented by third party software developers. MVMs for Java ME were

introduced in Motorola iDEN phones circa 2004 [25], which opened up opportunities for

a new breed of location-aware applications that could monitor and act upon a user’s

geographic location, even if the user was not actively using the phone.

1.4 Problem Statement

The ubiquity of mobile phones, the availability of positioning systems to application

developers, and the popularity of cross-platform mobile apps creates an environment rich

for innovation in the area of location-aware applications. However, while location-aware

applications have been implementable since the mid-2000s, there have been few popular

real-time commercial mobile applications that are based primarily on high-precision and

high-accuracy positioning systems (e.g., GPS). The lack of evolution of location-aware

apps can be attributed to several key limitations in current commercial applications:

1) Commercial location-aware apps are a “black box”

2) Commercial location-aware apps require active user management of location

features due to impact on device resources (e.g., battery life)

3) Commercial location-aware apps are often limited to “locate->send” functionality

8

4) Commercial location-aware apps are often lacking device-based intelligence

These limitations are discussed in the context of existing mobile applications in Chapter 2

of this dissertation.

Typically, architectures discussed in academic literature would gradually address the

difficulties faced by location-aware apps and provide solutions that could help advance

the industry. However, there has also been little evolution of the capabilities of location-

aware architectures over the last 10 years. Due to the potential negative impact of some

hybrid positioning technologies (e.g., assisted GPS) on the cellular network, cellular

carriers have limited access to Location APIs on Java ME devices to industry partners

[22]. Limited access to Location APIs, as well as the significant financial costs of mobile

devices and data service plans, have largely reduced academic experimentation to the use

of software emulators or laptops as proxies for cell phones. Emulators and laptops are

simplistic models of logical program execution for mobile applications and do not

appropriately model real-world conditions such as energy consumption of positioning

technologies or wireless communication.

Lack of sufficient real-world experimentation with actual mobile devices has produced

four primary shortfalls in known location-aware architectures:

1) Battery energy limitations are not addressed. Many architectures are designed

without acknowledging that mobile devices have a finite energy supply, and that

positioning systems such as GPS, wireless communications, and use of the CPU

to execute the architecture components all have a significant impact on battery

energy levels. Recent research [26-38] confirms that battery life is a significant

9

limiting factor for mobile applications running on modern mobile devices, and

that GPS is a significant consumer of energy [28, 29, 32, 33, 35, 36, 38, 39].

Currently, only two existing location-aware architectures [32, 33] even directly

address battery life. Comparison between these two architectures and our research

is provided in Chapter 2.

2) Cellular data transfer limitations are not addressed. Many architectures are

designed without consideration of constrained cellular network bandwidth and

potential financial charges to the end-user for excessive data traffic.

3) Lack of integration with existing platforms on commercially-available devices

(e.g., Java Micro Edition, Android). Many existing location-aware architectures

presented in literature utilize custom operating systems or protocols which are not

readily available on commercially-available mobile phones, and therefore cannot

be widely deployed as mobile apps to existing phones.

4) Lack of evaluation of efficacy of location-aware architectures. Few location-

aware architectures have actually been evaluated on real mobile devices, and as a

result there is little quantifiable evidence of these architectures’ efficacy with real

devices. Only one existing location-aware architecture performs experiments

with actual mobile devices [33], and we compare this location-aware architecture

to our research in Chapter 2.

As a result, there is a demand for a new location-aware architecture that meets following

needs:

10

Need #1: Intelligently manage limited device and network resources. The

architecture must acknowledge that location-aware apps can deplete significant

device and network resources, and the architecture must demonstrate features that

conserve these resources.

Need #2: Support real-time applications. A significant portion of the architecture

must be implemented on the mobile device to allow software to immediately act

upon new data in real-time and immediately interact with the mobile user.

Need #3: Support high-precision and high-accuracy positioning systems.

Positioning technologies such as high-sensitivity assisted GPS must be usable

within the architecture to support the most innovative types of location-aware

apps that require highly accurate and precise location information.

Need #4: Is fully implementable by third party mobile app developers. The

architecture must take into account the availability of application programming

interfaces (APIs) in existing cross-platform application environments such as Java

Micro Edition or Android and ensure that the architecture can be implemented on

such devices.

However, there are many challenges that must be addressed when creating a new

architecture that meets these needs. Challenges can be categorized into the following key

areas:

1) Collecting and acting on real-time data consume limited device resources. When

an application is executed to record and process data, this requires use of CPU

11

and memory resources, which in turn use battery energy, and, if communicating

with a server, increases network data traffic

2) Using high-precision and high-accuracy positioning systems consume limited

device resources. GPS is the most accurate and precise positioning system widely

available on mobile phones. However, it is also one of the highest consumers of

battery energy, and for assisted or hybrid GPS solutions, network bandwidth.

3) Balancing tradeoffs between real-time app requirements and limited device

resources is not trivial. Since monitoring and reacting to information also

consumes the same limited device resources the software is trying to preserve,

there are no simple solutions for highly accurate and precise location-aware

applications that are always active.

4) Mobile hardware is proprietary and rapidly changing. Hardware and operating

system functionality is abstracted by high-level software layers APIs (e.g.,

Android, Java ME), which limit control of underlying hardware

1.5 Contributions

This dissertation presents the Location-Aware Information SYstems Client (LAISYC), a

modular mobile software architecture that meets the needs of intelligent real-time mobile

applications and is fully implementable by third party mobile application developers.

Table 1 shows the relationship between each LAISYC module and the needs of

intelligent real-time mobile applications that it addresses.

12

Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules are
designed to meet the various critical needs of intelligent real-time mobile
applications in Location-Based Services

LAISYC
Modules

Need #1:

Intelligently
manages
limited
device/network
resources

Need #2:

Still
supports
real-time
applications?

Need #3:

Supports high-
precision and
high-accuracy
positioning
systems

Need #4:

Fully
implementable
by 3rd party
mobile app
developer

Session
Management X X X*

GPS Auto-
Sleep X X X X*

Critical
Point
Algorithm

X X X X

Adaptive
Location
Buffering

X X X*

Location
Data
Encryption

X X X

Location
Data Signing X X X

*Interacts directly with the mobile device platform via Application Programming
Interfaces (APIs)

We reference the needs listed in Table 1 throughout this dissertation as we discuss

specific examples of how LAISYC meets each need.

Each module in LAISYC has been implemented and tested on mobile devices in Java

Micro Edition as part of our research to demonstrate that each module is fully

implementable by third party mobile application developers (Need #4). This prototype

testing is especially important for the Session Management, GPS Auto-Sleep, and

Adaptive Location Buffering modules because they interact with and depend upon

features implemented in the mobile device platform. While we discuss the characteristics

13

of each module in detail in Chapter 3, the following paragraphs briefly state how each

module meets the needs, as shown in Table 1.

The general communication framework between the mobile device and server is

implemented in the Session Management module using a strategic combination of the

HyperText Transfer Protocol (HTTP) [40], used for occasional transfer of application

data, and the User Datagram Protocol (UDP) [41], a lightweight connectionless protocol

used to transport real-time location data. Chapter 4 of this dissertation presents

experiments showing that by using UDP as the main location data transfer protocol

instead of the Transmission Control Protocol (TCP) [42], the impact on mobile device

battery life is reduced (Need #1) while still supporting real-time location services (Need

#2). The Location Data Buffering module supports efficient real-time communication

(Needs #2 and #4) by increasing the probability of UDP location data being successfully

received by the server via an occasional verification of an open data connection using

TCP.

The GPS Auto-Sleep module intelligently adjusts the frequency of GPS recalculations

(Need #3) based on the real-time and historical movement of the user (Need #2). This

allows high-resolution tracking of the user using GPS when moving with a gradual

transition to less frequent GPS fixes when the user stops moving, thereby conserving

battery life and network traffic to transfer this data back to the server (Need #1). The

Critical Point Algorithm filters a real-time stream of location data points (Need #4) and

eliminates redundant points to produce a smaller data set that still accurately represents

the path of the mobile device (Need #3). By reducing the amount of data required to send

14

a device’s path from a mobile device to a server, the Critical Point Algorithm reduces the

impact of path data transfer on the mobile device battery as well as the amount of

information sent over the cellular network (Need #1).

To meet the security and data authentication needs of real-time mobile applications (Need

#2), our research also presents the implementation of Location Data Encryption and

Location Data Signing modules (Need #4) and evaluates the impact of these technologies

on mobile device resources (Need #1).

1.6 Structure of Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 provides a detailed

review of known LBS architectures discussed in literature and compares existing

literature to our work. Chapter 3 presents the proposed LAISYC architecture that is the

main subject of this dissertation, and Chapter 4 presents an evaluation of the key

LAISYC architecture components as well as two innovative real-time mobile apps,

TRAC-IT and the Travel Assistance Device (TAD), that use LAISYC. Chapter 5

concludes the dissertation with an overview of the contributions and future research

directions related to LAISYC.

15

CHAPTER 2: KNOWN LBS ARCHITECTURES

This chapter reviews existing commercial LBS applications and known LBS system

architectures, and explains the current limitations of these technologies.

2.1 Commercial LBS Applications

There are a number of LBS applications that are commercially available as of 2011,

which can be organized into the following categories:

Location data recording: These apps, such as My Tracks [43], records GPS trails and

generates statistics/maps based on the path of the user as the user is biking or hiking.

These applications typically store GPS data locally on devices, and can execute a bulk

upload of data to online data stores such as Google Docs after an entire track has been

recorded.

Navigation, mapping, and real-time traffic information: Apps such as Google Maps

[44], Google Navigation [45], Telenav [46], and INRIX [47] provide directions to the

user for businesses and other locations and provide real-time turn-by-turn directions

and/or real-time or predicted traffic information. These apps typically use GPS for

navigation, cell network/Wi-Fi/GPS for location.

Social location apps: Foursquare [48], Facebook [49], and Google Latitude [50] are

all examples of applications that allow the user to manually “check in,” which

indicates to their friends in their social network that they have arrived at a location.

16

Some apps, such as AT&T FamilyMap [51] and Sprint Family Locator [52], are

designed to allow parents to see where a child is, based on the location of their child’s

phone.

Location-based search catalogs: WHERE [53] and Poynt [54] are examples of

location-based search engines that allow a social search of places based on the user’s

friends’ ratings. They can also provide electronic coupons, local gas prices, and local

weather information. WeatherBug [55] also provides local weather information.

Phone finders: Apps such as Find My iPhone [56] and Where’s My Droid [57]

provide low-resolution or on-demand tracking capabilities that are designed to locate

a lost phone from a website interface.

While providing a variety of services to the user, these apps and other apps that fall into

the same general categories are all subject to the same limitations:

1) Commercial location-aware apps are a “black box.” The design of the application

and underlying functionality is not publically available and cannot be used to

integrate with or improve other applications (an exception is MyTracks [43],

which is open-source, but is a stand-alone mobile app without an active

connection to a server). Therefore, each location app developer must start from

scratch in implementing location-aware functionality in an application.

2) Commercial location-aware apps require active user management of location

features due to the impact on device resources (e.g., battery life). Users are

responsible for turning location-aware functionality on and off, which burdens the

user whenever location-aware features are used. For example, if a user leaves the

17

MyTracks app on in order to record the phone’s location using GPS, the mobile

phone battery will die within a few hours. Instead, the user must repeatedly turn

the MyTracks app on when traveling, and turn the MyTracks app off when they

get to the destination. This effectively prevents a convenient 24/7 tracking

application from being possible, given the energy demands of GPS.

3) Commercial location-aware apps are often limited to “locate->send” functionality.

Phones are often simply used to access the positioning technology in the device

and send this information to a server, and the primary application features are

available via desktop or web apps, not the mobile app. In other words, the

software simply runs in the background and occasionally reports the rough

location of the device to a server.

4) Commercial location-aware apps are often lacking device-based intelligence.

Location information is not often processed locally on the device, which limits the

abilities of the app to intelligently manage constrained device resources while

using positioning systems and wireless communication. This lack of on-board

intelligence limits the frequency of use of GPS as well as the frequency of

location reporting to a server to a large static interval (e.g., 10 minutes) to avoid

having a severe impact on device battery life and cellular network data traffic.

The next section discusses known location-aware architectures and their limitations for

supporting further innovation beyond today’s location-aware features.

18

2.2 Known Location-Aware Architectures

Since the E911 mandate in the late 1990s, many location based services architectures

have been presented in academic literature.

Some of the initial papers following the E911 mandate targeted the implementation of

positioning technologies by cellular carriers. Zhao [13], Kupper [16], Barnes [58], and

Rao et al. [59] provide a survey of the different technologies and standards under

consideration for implementation by carriers, while Porcino [15] and Sunay [60] provide

evaluations of various positioning technologies. In this dissertation we are concerned

primarily with device-based (i.e., mobile terminal (MT)-based, mobile station (MS)-

based) assisted GPS, since it is the most accurate and precise positioning technology

widely available on mobile phones [13, 15-19] and is also the positioning technology

typically exposed to application developers via APIs [18]. Soliman et al. [61], Ashjaee

[62], Langley [63], Richton et al. [19], and Liu [64] all discuss the implementation details

of first-generation assisted GPS systems for mobile phones which utilize both assistance

information from the cell network as well as GPS hardware in the mobile phone. A

weakness of first-generation GPS is that it could not acquire a positional fix indoors [65].

Subsequent evolutions of GPS technology, termed “high-sensitivity” or “indoor” GPS,

are aided by a new hardware design that enables the GPS hardware to detect satellite

signals and compute a position even in highly obstructed environments, such as indoors.

Van Diggelen discusses the design, implementation, and testing of high-sensitivity GPS

in his work [66-69]. Vittorini et al. [70], Lachapelle [71, 72], Zhang et al. [73, 74],

Beauregard [75], and DeSalas et al. [76] all discuss further improvements to general

high-sensitivity GPS design for additional accuracy and availability of position and

19

velocity measurements. Ballantyne et al. discuss integrated circuit (IC) designs within

the mobile phone that can help reduce the amount of energy an individual GPS fix

consumes [77]. Zandbergen et al. provide empirical accuracy evaluations of GPS data

from mobile phones [17, 18], while Blunck et al. provide an analysis of the impact of

body of the user on GPS signal reception in phones [78]. Other publications [79-85]

examine issues related to increasing the precision and accuracy of indoor tracking via

other technologies such as WiFi, ultrawideband, and Radio Frequency IDentifiers

(RFID), although these techniques are not currently available positioning options for

mobile application developers, and therefore are beyond the scope of this research.

While these papers on the intimate details of positioning systems served a critical role in

the development of positioning systems for mobile phones, they are of greatest use to the

engineers implementing these positioning systems in cellular networks and do not

provide guidance to applications developers, other than to provide a rough order-of-

magnitude analysis of the accuracy and precision of the underlying positioning

technologies. These works discuss technologies which are largely hidden beneath

application platform APIs, and therefore application developers do not directly interface

with these technologies.

Once positioning technologies for cellular devices had matured and were implemented in

cellular networks, the focus of many academic works turned to the realization of location-

based services based on these positioning technologies. Mintz-Habib et al. [86] present a

Voice over Internet Protocol (VoIP) emergency services architecture and prototype which

is aimed at providing location information to public safety answering points (PSAPs)

20

when a mobile user calls 911. Jose et al. [87] present an architecture based on the

Service Location Protocol (SLP) [88], but this work is designed for relative location

between entities in the Internet and is not designed for high-accuracy or high-precision

GPS-based devices.

Since the business model and cellular carriers’ ultimate role in providing commercial

LBS was initially uncertain, several papers presented architectures that could be

implemented by cellular carriers or a commercial partner of the carrier. These

architectures are either tightly coupled to the cellular infrastructure or maintain a

centralized location data store and interface for all location-aware mobile applications

running on the network. Zundt et al. present a peer-to-peer location architecture that is

tightly-integrated with GSM networks [89], and Taheri et al. present a network location

management scheme to enhance the efficiency of base station handoffs for GSM

networks by using Hopfield Neural Networks [90]. Spanoudakis et al. [91], Kupper et al.

[92, 93], and Treu et al. [94] all present architectures that enforce centralized control over

all location-aware applications for mobile phone users, as the architecture serves as the

location gateway for connecting applications. These architectures all assume that the

carrier or commercial partner of the carrier has total control over the location-based

services that are offered to cellular users on their network. In other words, application

developers must enter into an agreement with the carrier or commercial partner to

provide services to mobile phone users. This dissertation instead focuses on a location-

aware architecture that can be fully-implemented at the application level by third party

application developers and does not require a commercial relationship or programmatic

interaction with a centralized system which controls all LBS for a cellular network.

21

Some location architectures provide conceptual models for location exchange between

entities in a system, but do not define the exact protocols for the exchange of the location

information and do not evaluate the impact of the architecture on important mobile

device characteristics such as battery life or amount of data transfer over the cell network.

Spanoudakis et al. [91] present their PoLoS Kernel server, which is designed to receive

location information from cell phones using the Extensible Markup Language (XML)-

based Simple Object Access Protocol (SOAP) [95] and share this information with

Internet clients via a “Services Deployer.” Leonhardi et al. [96, 97] describe the

conceptual exchange of XML-formatted documents between hierarchical entities in a

location system that was implemented using a wearable computing system prior to GPS

being available in mobile phones. Nord et al. [98] describe an architecture that has a

primary purpose of abstracting positioning technologies used by a mobile device to

network servers that wish to discover the location of the device using an XML-based

“General Positioning Protocol.” Wu et al. [99] proposes a location architecture in which

device positions are only sent on-demand to a server when a viewer requests to see the

device’s position. The PoSIM system presented by Bellavista et al. [100] multiplexes

between positioning technologies based on a rules defined by the software developer at

compile time and asserted at runtime by a rule engine, and exchanges XML-based

messages within the system. Chen et al. [101, 102] propose an XML-based “location

operating reference model (LORE),” designed primarily for location-based messaging

based on client subscriptions (e.g., user is subscribed to receive e-coupons to a store

when they are in proximity of the store). For user privacy, Chen [101] also proposes that

instead of sending location updates from the device to the server, the server sends all geo-

22

stamped XML-based subscription messages to all devices. Each device then compares

the message’s location area to its own location and determines if the message should be

shown to the user. Ananthanarayanan et al. [103] propose StarTrack, a server-focused

framework for abstracting spatial database operations on recorded user tracks to a set of

conceptual primitives, alleviating the application developer from needing to understand

low-level spatial database functionality.

In all these architectures, the impact of position updates (a function of both the frequency

of GPS recalculations and the frequency of the data being sent to a server) on mobile

device battery life is not directly considered. For architectures that use XML,

experiments in Chapter 4 of this dissertation illustrate the drawbacks of using a verbose

formatting scheme such as XML and SOAP for the transfer of location data between

mobile phones and a server, as such a scheme has a significant impact on mobile device

battery life due to the large amount of overhead data exchanged.

Several past LBS architectures have focused on the use of the Session Initiation Protocol

(SIP), an application-layer protocol that is often used in the context of VoIP applications

[86, 89, 104-109]. However, none of these SIP-based architectures were designed for

GPS-enabled mobile phones in the Java ME environment. The optional SIP API for Java

ME has not been widely implemented in mobile devices and therefore typically is not an

available protocol for mobile developers to use in an application [110]. In fact, in the

roadmap for the Java ME platform defined by the Mobile Services Architecture (MSA)

specifications, the SIP API is only required to be supported in the high-end device

segment, such as Personal Digital Assistants, in order for the device to be MSA-

23

compliant [111, 112]. Therefore, location-aware architectures targeting the majority of

Java ME devices should not require support for SIP.

Some location-aware architectures have focused on the routing of location data between

servers as part of a distributed system. In these systems, the mobile devices connect to a

server on the periphery of the distributed system network, and then the server acts as a

proxy for the mobile device to contact other entities in the distributed system, retrieve

data, and relay that data back to the mobile device. Zhang et al. [113] present their

GeoGrid architecture which maps the location of servers in the topography network to the

actual geographic position of the servers, and provides routing algorithms for load-

balancing and redundancy. Perez et al. [114] present Geotella, a peer-to-peer routing

protocol modeled after Gnutella, as part of their scalable G-Sense global architecture to

link location information from wireless sensor networks and mobile devices. These

systems have the advantage of scaling to a larger number of simultaneous global users

than traditional client-server architecture with a single centralized server. However,

neither of these architectures directly considers the connection between the mobile device

and server, which still must be a client-server architecture, and neither evaluates the

impact of this exchange of location information on the mobile device’s limited resources.

In fact, Perez et al. [114] cites our research as the client-server architecture used in their

system to exchange data between the mobile device and the server.

Out of the many location-aware architectures that have been presented in literature, only

two have been designed with awareness of the negative impact that location-based

24

services can have on limited mobile device resources. The difference between our

research and these existing location-aware architectures is presented below.

Kjaergaard et al. [33, 36, 37] presents Entracked, a software system for the Nokia N95

and N96 smart phones running the Symbian operating system that adjust the GPS

recalculation frequency and position reporting frequency based on a software model of

power consumption. The power consumption model is generated and updated via data

from a power-sampling API on the device at the rate of 4Hz, and also samples GPS at a

rate of 1Hz and an embedded accelerometer at a rate of 30Hz. However, the Entracked

system is designed to deliver location information to network applications, not mobile

applications. In other words, network applications query the Entracked server, which in

turn queries the Entracked mobile software for the device position, and then relays this

position information back to the network application. Therefore, Entracked does not

support mobile real-time location-aware applications, which is the focus of our research.

Also, since Entracked relies primarily on the accelerometer to decide when to turn GPS

on and turn off, this software model cannot be used on devices that do not have

embedded accelerometers. Entracked assumes that even when sampling GPS positions at

large intervals (e.g., every 200 seconds) the GPS hardware would still need to remain

constantly powered on (i.e., the hardware could not enter a low-power state in between

samples). While this assumption is true for older GPS devices, for modern cell phones

with high-sensitivity GPS even modest adjustments of sampling intervals (e.g., four

seconds) in the app can yield significant energy savings, as we show in Chapter 4. This

savings is produced by the internal GPS quickly acquiring a positional fix and then

powering down between samples. Our research leverages these observations and

25

presents a power-saving technique, GPS Auto-Sleep, which does not require embedded

accelerometers and therefore can function on even severely resource-constrained devices

that have only embedded GPS. Another difference between Entracked and our work is

that Entracked uses the Transmission Control Protocol (TCP) [42] to transfer location

data between the device and the server. In Chapter 4, we demonstrate that the User

Datagram Protocol (UDP) [41] is preferable for real-time location data transfer, and

therefore UDP was chosen for our architecture. Langdal et al. [115] reimplement the

features of Entracked in their modular graph-based PerPos middleware. However, the

limitations discussed above also apply to the PerPos implementation of Entracked.

Farrell et al. [32] present an Early Distance-Based Reporting (EDBR) algorithm, a

position reporting method which considers both the energy used by positioning sensors

such as GPS as well as the energy used in the wireless transmission of this information.

However, this method was designed primarily for reporting positions to a server for

network-based applications, and not in the context of real-time mobile applications. The

focus on network applications, and the tight coupling of the positioning sensor refresh

interval and interval between location updates to a server, creates several limitations for

real-time mobile applications. For example, Farrell et al. support only a distance-based

reporting method, which will not produce any location updates to a server if the device

does not move. Therefore, distance-based reporting does not support the use-case of a

mobile application that is required to report a position to a server at a minimum time

interval, regardless of movement. Also, since distance-based reporting sends a position

to the server after a certain distance is exceeded, it can produce needless updates if the

user is traveling in a straight line for an extended period of time (e.g., driving on a

26

highway). Our research presented in the next chapter de-couples the position reporting

method (i.e., the Critical Point Algorithm) from the method used to refresh the

positioning sensor (i.e., GPS Auto-Sleep) in order to support independent operations of

each method, thus modularizing the system and extending the use cases for various

positioning sensing refresh and position update reporting intervals. This allows our

LAISYC framework to support various types of position update methods in the Critical

Point Algorithm without changing the positioning sensor refresh rate. Additionally, the

positioning sensor refresh rate can then be adjusted based on logic other than detecting

movement for server updates. One example of alternate refresh logic is the manipulation

of the refresh rate for a mobile navigation application that wants to only occasionally

refresh a position when a large distance from the goal, but then needs to increase the

refresh rate when getting closer to the goal. By reducing the GPS refresh rate and only

updating the location occasionally when miles from a goal, the application can produce

significant battery life savings, as we demonstrate in Chapter 4.

Farrell et al. also do not evaluate their algorithm on actual mobile devices; instead, they

synthesize random positions from a simulator, with the assumption that objects move

linearly and in a uniform manner, and use this data to evaluate their algorithm. Synthetic

path data generated in this manner is problematic from several perspectives. Farrell et al.

do not consider the uncertainty and error of a GPS position when evaluating their

algorithm. As we show in Chapter 4, even with high-sensitivity GPS indoor position

tracking produces a significant amount of errors in position that do not reflect the true

geographic position of the device due to environmental noise [17, 18]. When a GPS

device calculates a position repeatedly in the same geographic location, the error in

27

position creates a normal distribution [116]. Therefore, Farrell et al.’s assumption that

the change in GPS positions while a user is stationary will be uniform is invalid. In our

work, the LAISYC architecture is evaluated while it executes on actual mobile devices

with real assisted GPS data, therefore removing the assumptions and limitations

discussed above.

Our past research has investigated location-aware architectures in the context of

bidirectional, multimedia, location-based messaging [117]. That architecture focuses

primarily on a messaging infrastructure which piggy-backs location data in Multimedia

Messaging Service (MMS) messages sent through a cellular carrier’s publicly-accessible

messaging gateway, thus avoiding the use of short-codes and messaging aggregators.

However, the use cases for this architecture are the occasional exchange of messages, and

therefore only occasional use of GPS. Since GPS is not used in an ongoing manner, this

messaging architecture does not consider the impact of GPS on mobile device battery

life, or the amount of data being sent over the cellular network.

This dissertation presents LAISYC, an architecture that supports real-time mobile

applications that are “always-on” and in continuous communication with a server, as in

traditional IP-based networks. LAISYC focuses primarily on the intelligent device-based

modules but also discusses the structure of communication with the server and server-

side components that support the overall framework. Unlike the other known

architectures discussed in this chapter, LAISYC meets the needs of intelligent real-time

mobile applications in Location-based Services as discussed in Chapter 1. Our research

presents the results of field tests in Chapter 4 which evaluate key LAISYC modules in

28

order to quantitatively assess their impact on mobile device battery life in the context of

the presented architecture. Our work on LAISYC is also summarized in publications in

IEEE Pervasive Computing [118], Proceedings of IEEE UBICOMM Conference [119],

the Transportation Research Record: Journal of the Transportation Research Board [120],

Proceedings of the Intelligent Transportation Systems World Congress [121], the Journal

of Navigation [18], and several issued [122-126] and pending patents [127-129].

LAISYC has been used to enable several real-time location-aware applications as part of

research projects, including the Travel Assistance Device (TAD) mobile application that

assists transit riders with intellectual disabilities in using public transportation through

real-time navigation instructions [130], as well as TRAC-IT, a mobile app that supports

simultaneous travel behavior data collection and real-time location-based services [131,

132]. TAD and TRAC-IT’s relationship with LAISYC is discussed in detail in Chapter 4

as a demonstration of innovative location-aware applications implemented using

LAISYC.

29

CHAPTER 3: PROPOSED ARCHITECTURE – LOCATION-AWARE
INFORMATION SYSTEMS CLIENT (LAISYC)

3.1 Note to Reader

Material presented in this chapter has been published in IEEE Pervasive Computing [118]

(© 2011, IEEE), and we have received permission to reprint this work. The University of

South Florida also has patents pending and issued on various technologies discussed in

this chapter. The GPS Auto-Sleep technology is protected under U.S. Patent # 8,036,679

“Optimizing performance of location-aware applications using state machines” [122] by

the University of South Florida. Material on GPS Auto-Sleep has also been published in

the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted here with

permission of IEEE. The Session Management technology is protected under pending

U.S. Patent Application # 13/082,094 and International Patent Application #

PCT/US2009/059825 “Architecture and Two-Layered Protocol for Real-time Location-

Aware Applications” [128] by the University of South Florida. Adaptive Location Data

Buffering technology is protected under a pending U.S. Patent Application # 13/082,722

and International Patent Application #. PCT/2009/059985 “Adaptive Location Data

Buffering for Location-Aware Applications” [129] by the University of South Florida.

The Critical Point Algorithm is protected under pending U.S. Patent Application #

12/196,673 “Method For Determining Critical Points In Location Data Generated By

Location-Based Applications” [127] by the University of South Florida and has also been

published in the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted

30

here with permission of IEEE. The Spatial Analysis technology is protected under

pending U.S. patent Application # 11/855,694 “System and Method for Real-Time Path

Prediction and Automatic Incident Alerts” and U.S. patent Application # 11/277,403

“System and Method for Transportation Demand Management” by the University of

South Florida.

3.2 Architecture Overview

LAISYC was created to meet application needs for real-time, high-accuracy and high-

precision location-aware applications. This architecture was designed to be fully-

implementable by third party mobile app developers, and can intelligently manage

limited device and network resources. LAISYC can support various types of location-

aware applications, including real-time tracking, as well as delay-tolerant applications

that record the user’s travel path. For maximum flexibility, an application can

dynamically manipulate LAISYC module parameters according to real-time application

needs, and therefore hybrid applications with both real-time and delay-tolerant features

are also possible.

To support the needs of modern LBS discussed in Chapter 1, LAISYC is separated into

device-based modules, which are implemented in software on the mobile device, and

server-based modules, which reside on a web application server, such as Glassfish [133].

Figure 1 shows the high-level view of this device-server architecture. The mobile and

web portions of the application supported by LAISYC sit on top of the respective

LAISYC modules. The web application server supports a large number of client devices

simultaneously and tracks individual sessions for each device.

31

Figure 1 - The LAISYC architecture consists of software on the mobile device and
web application server, with a database server holding persistent server-side data

The web application server also acts as a proxy for the mobile device to access the

database server, as mobile devices are not capable of directly interfacing with database

servers due to a lack of mobile database drivers.

The following sections discuss each of the modules of LAISYC, and their respective

position on either the device or the web server.

3.3 Mobile Device-Side Components

This dissertation focuses primarily on the design, implementation, and evaluation of the

mobile device-side modules in LAISYC.

The LAISYC modules that reside on the device can be broken down into two categories,

as shown in Figure 2:

1) Positioning Systems Management (Blue shaded modules in Figure 2)

2) Communications Management (Green shaded modules in Figure 2)

32

Figure 2 - LAISYC mobile phone-based modules. [118] © 2011 IEEE

LAISYC modules in each of these categories process two types of data:

1) Application data – all non-location information that is required for the successful

operation of the application (e.g., usernames, passwords, application logic

parameters). This data is typically exchanged with the server on an occasional

basis, and its loss is not tolerable.

2) Location data – data generated by positioning systems (e.g., GPS) that represent

the geographic position of a mobile device. This data can be frequently

exchanged with the server with a rate of up to one transmission per second, and

timeliness is of greater importance than 100% reliability. Therefore, occasional

loss of individual device positions is tolerable for many applications.

Location data is generated from the positioning system (e.g., GPS) on the mobile device

and is passed to the LAISYC framework through the Location API (i.e., JSR179 or

JSR293 in Java ME, Location API on Android) that is part of the underlying platform.

The location data is first received by the bottom layer of Positioning Systems

Critical
Point

Algorithm

Location Data Signing

GPS Auto-Sleep

Adaptive
Location
Buffering

Location
Data

Encryption S
es

si
on

 M
an

ag
em

en
t

Legend

Real-time Phone-Generated
Location Data Flow

Control Signals

Application Data Flow

UDP

HTTP(S)

TCP

Location Data
Flow Control

Device Platform Software

LAISYC – Communications
Management

LAISYC – Positioning
Systems Management

Server

Location API Persistent Storage API I/O API

Virtual Machine

Java ME / Android

LAISYC Comm. APILAISYC Positioning API

Location-Aware Application
(Device-side)

33

Management (i.e., GPS Auto-Sleep), and is passed through each module until it reaches

the application. The application can send control signals to each module, deactivating it

if necessary. If the application deactivates a module, the location data pass through that

module without any action by LAISYC.

After location data passes through Positioning Systems Management, the application can

send location data to the server by passing it into the first module in the Communications

Management group (i.e., Critical Point Algorithm). The data then propagates to the right

until it reaches the Session Management module, which activates the wireless

transmission of the location data. The mobile application also sends application data to

the server by interfacing with the Session Management module.

Positioning Systems Management modules are discussed first in the following section,

and Communications Management modules in a subsequent section.

3.3.1 Positioning Systems Management Modules

The Positioning Systems Management modules include GPS Auto-Sleep and Location

Data Signing.

3.3.1.1 GPS Auto-Sleep

The purpose of the GPS Auto-Sleep module is to save battery energy by dynamically

adjusting the GPS sampling interval based on user movement.

Mobile phone platforms such as Java ME and Android typically provide two general

modes of interaction between a mobile application and the underlying GPS hardware via

a Location API [22-24, 134]:

34

1) Single-shot GPS request – In this mode, the application requests a single GPS

position update from the platform using the Location API. The platform activates

the GPS hardware, waits until a GPS position is calculated, and returns the

calculated position to the application. The platform may support an application-

defined or platform-defined timeout value, which is used to limit the length of

time the GPS hardware remains active after a request. If the GPS cannot achieve

a position fix within this timeout period, a null value may be returned to the

application indicating a failure to locate the device (e.g., due to environmental

obstructions).

2) Periodic GPS request – In this mode, the application specifies that it would like to

receive recurring GPS updates from the platform at a fixed interval of time by

registering a LocationListener with the Location API. The platform proceeds to

calculate GPS positions using the underlying GPS hardware at the defined

interval and executes an asynchronous callback to the application’s

LocationListener when each new position is calculated. Timeout values can also

be used in this mode to establish an upper limit on the length of time the GPS

hardware is active on each fix attempt. A parameter maxAge (i.e., maximum age)

can also be passed into the LocationListener to define the maximum time allowed

between when a location fix was calculated and when it can be returned to the

application. MaxAge is typically used in a multitasking environment to allow the

Location API to return the same location fix to more than one application that

may be on a slightly different GPS update schedule. For example, if applicationA

uses an interval value of 30 seconds started at time t0 and a maxAge value of 10

35

seconds, and applicationB triggers a GPS update from the Location API at time25,

at time30 the Location API could return the same GPS fix to applicationA because

the GPS fix is less than 10 seconds old.

For long-term tracking of a device, developers use the periodic GPS request feature of the

Location API.

As discussed earlier, battery life is a key limitation for LBS on mobile devices. Since

GPS technology requires GPS receiver hardware in the mobile device so the device can

locate itself using satellite radio broadcasts, the use of GPS costs a significant amount of

energy when activating this hardware.

In the early stages of our research with high-definition tracking on GPS-enabled mobile

phones, it quickly became apparent that even on devices using modern high-sensitivity

GPS, a simple solution of setting the LocationListener to periodically refresh its position

every few seconds is energy-prohibitive, as this would exhaust the battery in a matter of

hours. Typically, a mobile phone’s battery must be operational during the day

(approximately 16 hours) until the user can plug the device in and recharge the battery at

night.

With further experimentation, we found that an application could request periodic

updates at a larger time interval, such as five to ten minutes, and this would extend

battery life to an acceptable length that would bridge the gap from one nightly battery

recharge to another. However, GPS samples five to ten minutes apart do not meet our

requirements for high-precision and high-accuracy tracking or real-time LBS.

36

This experimentation with larger time intervals between GPS fixes on high-sensitivity

GPS-enabled mobile phones led to a valuable observation: high-sensitivity GPS

hardware is still able to successfully achieve a GPS position fix even with long time

delays between consecutive fixes. This ability to rapidly acquire a new GPS fix even if

there has been significant delay since the most recent GPS fix is new to high-sensitivity

GPS receivers [18, 68].

Previous generation GPS receivers exhibited a strong dependence on prior GPS

observations when calculating a new GPS fix. These GPS receivers typically had three

tracking modes: cold start, warm start, and hot start [135].

Figure 3 - High-sensitivity GPS receivers can acquire a GPS position more rapidly,
and with less dependence on the time elapsed since the most recent GPS fix, than
low-sensitivity receivers

37

These modes are illustrated in Figure 3, which shows the amount of time needed to

acquire a GPS fix with different amounts of time elapsing since the most recent GPS fix.

A device starts in cold start mode, and even in complete open view of the sky it would

typically take a minimum of 30 seconds to a minute to acquire a first GPS fix. This time

period is known as the Time-To-First-Fix (TTFF). As an initial GPS fix is acquired, the

GPS hardware then enters a hot state, in which it has current knowledge of satellite

positions in the sky and the appropriate signal frequency offsets and code delays needed

to successfully calculate the next GPS fix. However, as time begins to elapse from the

initial hot fix, the GPS hardware’s knowledge of the state of the GPS system begins to

quickly decay as satellites change position in the sky and environmental factors change

the GPS signal environment. As a result, while subsequent GPS fixes occurring within

ten seconds following the initial hot fix will likely succeed if there is an open view of the

sky, the likelihood of a successful GPS fix decays with the elapsed time after the most

recent GPS fix.

The GPS receiver is said to enter a warm state, which can be from around 10 seconds to 1

hour after the most recent GPS fix, and then return to a cold state if more than 1 hour has

elapsed since the most recent fix. Once in a cold state, the GPS receiver loses significant

knowledge of the state of the GPS system and must enter an initial startup mode, which is

again the TTFF. The exact decay time transitions from hot to warm to cold states can

vary depending on the GPS manufacturer, as some receivers are only able to sustain a

warm state for a few minutes after the most recent GPS fix.

38

High-sensitivity GPS largely eliminates the concept of hot, warm, and cold states, as

high-sensitivity GPS hardware is quickly able to acquire a fix even from a cold start state,

bringing the TTFF down to a few seconds or less, depending on the strength of the GPS

signals. For example, in the view of an open sky, high-sensitivity GPS receivers can

calculate a fix from a cold start in less than a second. Figure 3 illustrates that even if the

length of time has been significant since the most recent GPS fix, high-sensitivity

receivers still only require the GPS hardware to be on for a limited amount of time before

successfully calculating a new fix.

Through these experiments, we recognized that significant independence from previous

GPS observations meant that, unlike older generation GPS, on high-sensitivity GPS-

enabled mobile phones we could dynamically vary the interval of time between GPS fix

attempts and produce significant battery energy savings. If a similar technique had been

attempted on older generation GPS receivers, the length of time the GPS hardware would

have been active during the TTFF to achieve a position fix from a cold start state would

have largely offset any energy saved by using dynamic GPS sampling rates.

In LAISYC, the GPS Auto-Sleep module intelligently adjusts the GPS sampling rate of

the mobile device based on real-time location information in order to save battery energy

when the user is stationary, but still maintains a high-resolution sampling rate when the

user is actively moving. For example, if a mobile device is indoors and cannot calculate

a position due to GPS signal obstruction, a large amount of energy is wasted as the device

continuously attempts to calculate a GPS fix every few seconds. The interval of time

between position recalculations can gradually be increased (i.e., towards a sleep mode) in

39

order to prevent calculating the relatively same position information repeatedly. The

application can be woken up and transition to a rapid position recalculation when it is

determined the device is moving again with a high degree of confidence. The mobile

application interfaces with the GPS Auto-Sleep module via the LAISYC Positioning API,

which allows the application to turn GPS Auto-Sleep on and off and receive location

updates from GPS Auto-Sleep.

We implement GPS Auto-Sleep using a finite state machine, as shown in Figure 4.

Figure 4 - GPS Auto-Sleep uses a state machine with various logic evaluations that
control the transition between states, which represent changes to the GPS sampling
interval values. [119] © 2008 IEEE

State
[0]

State
[1]

State
[n – 1]

State
[n]

Move directly to state[0] when current_speed >
high_speed_threshold.

GPS Sampling
Interval = 4 sec.

GPS Sampling
Interval = 8 sec.

GPS Sampling
Interval = 128 sec.

GPS Sampling
Interval = 256 sec.

Initial state is state[0].
Upon startup, if a GPS fix can’t be acquired only move
from state[0] after first_fix_timeout expires
When in state[0] and a GPS fix can be acquired, back-
off timer starts when current_speed <
stopped_speed_threshold OR current_hor_accuracy
> high_horizontal_accuracy_threshold.
Back-off timers is reset to 0 if current_speed >
stopped_speed_threshold OR
distance_between_fixes > moved_distance threshold.
When back-off timer expires, transition to state[1],
and save the current location information for later
moved_distance_thresholds comparisons.

After leaving state[0], gradually
move towards state[n] when
((current_speed < low_speed value)
AND (distance_between_fixes <
moved_distance_threshold))
OR if a GPS fix can’t be acquired.

Gradually move towards state[0] when
(low_speed_threshold < current_speed <
high_speed_threshold) OR
(distance_between_fixes >
moved_distance_threshold).

40

Changes between states in the state machine represent changes to the GPS sampling

interval (i.e., time between sequential GPS samples), with a variety of rules based on

real-time location data and previously observed location data controlling the state

transitions. In addition to the GPS intervals, each state can also contain values for the

timeout and maxAge parameters to be used with the respective GPS interval value.

The Java ME Location API provides the following values to GPS Auto-Sleep for each

successful GPS position calculation [23, 24]:

Latitude and longitude: the position of the user on the surface of the earth in

decimal degrees, using World Geodetic System (WGS) 84 datum.

Altitude: the altitude of the location in meters, defined as height above the

WGS84 ellipsoid.

Timestamp: the time at which the GPS position was calculated, based on the GPS

receiver clock, which is synchronized to the GPS system.

Speed: the device’s current ground speed in meters per second (m/s) at the time

of measurement.

Heading: the heading of the device when the GPS fix was recorded, in degrees

relative to true north, in range of 0-360 (e.g., 0, 360 = north, 90 = East, 180 =

South, 270 = West).

Estimated horizontal accuracy: the estimated accuracy of the location as the

radius of a circular area indicating the 68% confidence level. In other words, the

true location of the user should fall within a circle having the center of the

41

calculated position and a radius of the estimated horizontal accuracy value at a

probability of approximately 68%.

During execution of GPS Auto-Sleep, several thresholds are used and compared against

the location data provided by the Location API:

first_fix_timeout: a time in seconds for which GPS Auto-Sleep will remain in

state[0] when the mobile application is first started, if the device cannot achieve a

GPS fix. After this amount of time has elapsed on startup, this threshold is not

used for the duration of application execution. If the GPS receiver is refreshing

its knowledge of the GPS system on startup, we do not want to immediately start

transitioning to lesser sampling frequencies to give the receiver the best chance at

achieving a first fix. This value should be set high enough to let the GPS receiver

operate for enough time to refresh assistance data and observe GPS signals, but no

longer than the amount of time expected for the receiver to calculate a GPS fix

under typical conditions (e.g., outside, in light building coverage). In experiments

with Sanyo 7050 and Sanyo Pro 200 phones, we have used 20 seconds for this

threshold.

stopped_speed_threshold: a speed value in meters per second that is used to

determine if the user is currently stopped (i.e., current_speed <

stopped_speed_threshold). This threshold should be set so that the device has a

high degree of confidence that the device is truly stopped if the current_speed <

stopped_speed_threshold. In experiments with Sanyo 7050 and Sanyo Pro 200

phones, we have used 1 m/s as this threshold.

42

high_speed_threshold: a speed value in meters that is used to jump-start the GPS

Auto-Sleep machine immediately and snap to a high GPS sampling frequency

immediately if a very large speed value is observed. This value should be set so

that the software has a high degree of confidence that the device is moving if the

current_speed > high_speed_threshold. In experiments with Sanyo 7050 and

Sanyo Pro 200 phones, we have used 1.5 m/s as this threshold.

moved_distance_threshold: a distance value in meters that is used to determine if

the user has moved from a location when the GPS location was last sampled and

the user was considered stationary (i.e., distance_between_fixes >

moved_distance_threshold). This threshold should be set so that the device has a

high degree of confidence that the device has truly moved if

distance_between_fixes > moved_distance_threshold. In experiments with Sanyo

7050 and Sanyo Pro 200 phones, we have used 100 meters as this threshold. We

used Vincenty’s Inverse formula [136] to calculate the distance between two

points on the WGS84 ellipsoid, which were shown by Vincenty to be accurate to

within 0.5mm [136].

high_horizontal_accuracy_threshold: a distance in meters that is used to

determine if the user has stopped moving and is inside a building, based on the

high level of estimated horizontal accuracy uncertainty of the GPS fix. The

general assumption is that if estimated horizontal accuracy is very high, then GPS

signals are greatly obstructed and it is likely the user is inside a building. This

value should be set so that the software has a high degree of confidence that the

user is inside a building if the current_horizontal_accuracy >

43

high_horizontal_accuracy_threshold. In experiments with Sanyo 7050 and Sanyo

Pro 200 phones, we have used 80 meters as this threshold.

backoff_time_threshold: a time in seconds to wait after the user is believed to be

stationary before allowing the state machine to transition from state[0] to less

frequent GPS sampling in state[1] (i.e., “backing off” for actively sampling travel

towards sleep mode). In other words, once GPS Auto-Sleep is actively sampling

in state[0], a time greater than backoff_time_threshold must elapse before any

state transitions take place. The backoff timer is started when current_speed <

stopped_speed_threshold, or current_horizontal_accuracy >

high_horizontal_accuracy_threshold, or if the GPS receiver cannot calculate a

GPS position. The backoff timer is reset to 0 when movement is detected (i.e.,

current_speed > stopped_speed_threshold) before the backoff timer has expired.

We used this backoff timer because travel behavior tends to have a temporal

locality, in that travelers are more likely to move if they have been moving

recently. One example of this is traffic lights – we want to continue sampling for

a typical duration of a traffic light to maintain high resolution sampling while the

user is actively traveling, rather than briefly observing a pause in travel behavior

(e.g., getting stopped at the light) and immediately reducing the GPS sampling

rate. We assume that if the backoff_time_threshold has elapsed, then the user has

likely stopped moving for the immediate future. In experiments with Sanyo 7050

and Sanyo Pro 200 phones, we have used 120 seconds for this threshold.

44

An example configuration of the state machine for GPS Auto-Sleep is:

state[0] = 4 s between GPS samples, timeout = 2 s, maxAge = 2s

state[1] = 8 s between GPS samples, timeout = 4 s, maxAge = 4s

state[2] = 16 s between GPS samples, timeout = 8 s, maxAge = 8s

state[3] = 64 s between GPS samples, timeout = 16 s, maxAge = 16s

state[4] = 150 s between GPS samples, timeout = 32s, maxAge = 32s

state[5] = 256 s between GPS samples, timeout = 32 s, maxAge = 32s

On application startup, the state machine will start in state[0] and will start periodic GPS

sampling using the Location API’s LocationListener with an interval of state[0] = 4

seconds.

If the device cannot acquire a GPS fix on startup, it will remain in state[0] for the

duration of the first_fix_timeout until it transitions to state[1].

If the device can acquire a GPS fix on startup but is not moving (i.e., when current_speed

< stopped_speed_threshold OR current_hor_accuracy >

high_horizontal_accuracy_threshold), the back-off timer starts. The back-off timer is

reset to 0 if current_speed > stopped_speed_threshold OR distance_between_fixes >

moved_distance threshold. When the back-off timer expires, the state machine

transitions to state[1], and saves the current location information for later

moved_distance_threshold comparisons to determine if the device might be moving.

After leaving state[0] and arriving in state[1], the state machine will wait in state[1] 8

seconds for the next GPS fix attempt. After the next GPS fix is attempted, the location

45

information is evaluated to determine if the next state transition should be towards

state[n] (i.e., the state machine assumes the user is stationary), or back towards state[0]

(i.e., the state machine assumes the user is still moving). The state machine will move

towards state[n] when ((current_speed < stopped_speed_threshold) AND

(distance_between_fixes < moved_distance_threshold)) or if a GPS fix cannot be

acquired. The state machine will move towards state[0] when (stopped_speed_threshold

< current_speed < high_speed_threshold) OR (distance_between_fixes >

moved_distance_threshold). If the state machine transitions to state[2], it will wait 16

seconds until the next GPS fix attempt, and it will repeat the above evaluations until

reaching state[n] (i.e., sampling GPS every 256 seconds) or arriving back at state[0]. If

the state machine arrives back at state[0], it assumes the user is actively traveling again

and resets and activates the back-off timer.

Once the state machine is in the sleep state (i.e., state[n]), it can conserve the most energy

by calculating GPS fixes using a large interval of time. However, since we are concerned

with measuring accurate distance of travel via high resolution GPS sampling, we want to

be able to immediately resume high-frequency sampling (i.e., state[0]) if we observe a

GPS fix that indicates that the user is moving with high probability. Therefore, we add

the ability for the state machine to immediately transition from any state to state[0] if the

current_speed > high_speed_threshold. This “wake up” trigger is based on the speed of

the device exceeding a certain threshold in the most recently calculated location data (i.e.,

the device has started moving).

46

The gradual transitions between a high-frequency sampling of state[0] and sleep mode of

state[n] are a method to handle the uncertainty associated with GPS positions. As

sequential GPS observations reinforce the certainty associated with the moving or

stationary states, the GPS sampling frequency is adjusted accordingly. This ability

allows GPS Auto-Sleep to capture location data for short walking trips that may look

very similar to GPS noise. The first portion of the trip will only be occasionally sampled

with the frequency of state[n], but as the distance from the last stopped location increases

and the user’s speed is observed to be slightly higher than the typical

stopped_speed_threshold the sampling gradually increases until the GPS is being

sampled at the high-resolution value of state[0].

Gradual state transitions also ensure that outlier values do not have an extreme impact on

the sampling frequency and cause sampling at a high frequency repeatedly when the GPS

should actually be asleep. For example, the most frequent type of GPS outlier data is a

position that may be 100 meters from the true location when the user is indoors. The

state machine will only react by moving from state[n] to state[n-1], and if the next GPS

sample is near the true location the state machine will return to state[n].

In addition to the general tracking functionality defined above, GPS Auto-Sleep also has

a secondary navigation mode that can be utilized for location-aware applications that are

based on the distance to a goal. This goal may be a fixed location (e.g., the next turn for

real-time driving directions) or the location of a mobile device (e.g., real-time friend

finder). When navigation mode is switched on and a goal is identified, the state machine

can decrease the interval between position calculations as the mobile device gets closer to

47

the goal (i.e., increase the sampling frequency), and increase the interval between

position calculations as the mobile device moves further away from the goal (i.e., put the

device into sleep mode). This navigation mode is primarily designed for real-time

navigation applications that do not require a high-resolution record of the travel history of

the user, but do require high-resolution GPS sampling when nearing the goal to ensure

the user is provided with timely instructions.

Navigation mode for GPS Auto-Sleep is also implemented using a finite state machine

with interval, timeout, and maxAge values increasing from state[0] to state[n], but the

state transition rules are different. Figure 5 shows the navigation mode state transition

diagram. State changes for navigation mode occur based on the distance between the

mobile device and a goal location, such as the next planned turn in a navigation

application when a verbal prompt will be announced to the user.

Figure 5 - Navigation mode for GPS Auto-Sleep controls GPS sampling interval
directly based on a distance-to-goal (e.g., next turn for real-time driving directions)

State
[0]

State
[1]

State
[n – 1]

State
[n]

Jump to state[i] when distance-to-goal is
within respective thresholds

GPS Sampling
Interval = 1 sec.

GPS Sampling
Interval = 2 sec.

GPS Sampling
Interval = 64 sec.

Location
Recalculation

Interval = 128 sec.

48

For example, if the distance between the current location and a goal location is greater

than 5 miles, then the state machine will be at a preset state[n]. As the device approaches

its goal location, the state would change to state[n-1] at a certain distance milestone in

order to decrease the location recalculation interval. This would decrease the intervals

between device location updates from 128 seconds when the device is more than 5 miles

away, to 64 seconds when the device is between 5 and 3 miles away, and so on, until

reaching 1 second GPS sampling when the device is .25 miles away. This assures that

the device will not miss its goal since the location is updated very frequently when the

device is physically near. State transitions also occur in the reverse order as the distance-

to-goal decreases as the device moves away from the goal. Since real-time applications

are time-sensitive, a state can transition directly to another state to avoid stepping through

states when a lower interval (i.e. more frequent updates) is required immediately (e.g., in

case of temporary GPS signal loss).

In conclusion, GPS Auto-Sleep is designed to address several of the needs for location-

aware mobile apps outlined in Chapter 1. GPS Auto-Sleep is designed to increase mobile

device battery life (Need #1) by dynamically adjusting the GPS sampling rate in real-time

(Chapter 1 - Needs #2 and #3). GPS Auto-Sleep uses the existing periodic GPS request

interface of the Location API, and therefore it is fully implementable by third party

mobile app developers (Need #4).

In Chapter 4, we demonstrate a methodology for selecting values for each of the

thresholds discussed in this section based on observed GPS data, so GPS Auto-Sleep can

be configured appropriately for any GPS-enabled device. We also present an evaluation

49

of the state accuracy of GPS Auto-Sleep, as well as its effectiveness for increasing

battery life.

3.3.1.2 Location Data Signing

The purpose of the Location Data Signing module is to add energy-efficient authenticity

to location data generated by the mobile phone.

GPS data is increasingly being used by businesses and government entities in order to

support key operations. These applications rely on GPS to report or verify mileage and

time spent by workers on remote sites, support pay-as-you-drive car insurance through

the identification of the length and location of car use, as well as to support variable

transportation taxes. However, all of these uses of GPS data have a key weakness: GPS

data can potentially be falsified through direct tampering with the data. Therefore, the

integrity of raw GPS data cannot be independently verified.

The Location Data Signing module utilizes asymmetric cryptography (i.e., public and

private keys) with certificates issued by a trusted third party in order to digitally sign data

related to the GPS fix. These data can include the latitude, longitude, altitude, speed,

heading, GPS timestamp, system timestamp, phone number of device, and identifying

information for the phone and user including the International Mobile Equipment Identify

(IMEI), Subscriber Identity Module (SIM) ID, mobile station ID (MSID), and Mobile

Equipment Identifier (MEID), as well as the username and a hash of the password used to

log into the application. By signing these data, Location Data Signing can prove that a

particular GPS fix occurred on a particular phone with a specific user logged into the

application at a specific time. Since this information is hashed and signed using a private

50

key by the application, the integrity of the GPS data can be verified by utilizing the

public key and a hash of the message. Therefore, it can be shown that a GPS fix,

including the location, speed, and time, is unaltered from the data that was originally

calculated by a specific application on-board a GPS-enabled mobile phone. We

designated Location Data Signing as an optional module in LAISYC, since it may only

be required for applications that have a strict requirement for confirming the identity of

the mobile device.

While symmetric cryptography is more efficient than asymmetric cryptography, only

asymmetric cryptography can be used for digital signatures. To sign data, a private key is

required, and to verify data a public key is required, and therefore symmetric

cryptography cannot be used.

We chose the Digital Signature Algorithm (DSA) for implementation in the Location

Data Signing module. While other options such as Rivest-Shamir-Adleman (RSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA) exist, DSA is the only algorithm

that is not restricted by intellectual property or export constraints and can be used world-

wide royalty-free [137].

In 2006 Jarusombat et al. [138] hypothesized that traditional digital signature algorithms

such as RSA and DSA are too computationally intense for mobile devices and proposed

their own location-based digital signature algorithm. In 2009, Xuan et al. [139]

experimented with digital signature algorithm performance on emulators and

demonstrated that traditional digital signature algorithms are indeed feasible for mobile

virtual machines. However, Xuan et al.’s experiments were in context of general secure

51

web services and not in the context of location data, and were not executed on real

devices. In Chapter 4, we present the results of experiments showing that actual GPS-

enabled devices are indeed capable of frequent location data signing.

In conclusion, the Location Data Signing module is designed to address several of the

needs for location-aware mobile apps outlined in Chapter 1. Location Data Signing is

designed to add energy-efficient (Need #1) authenticity to location data generated by a

mobile device in real-time (Need #2). The selection of DSA for Location Data Signing

ensures that it is implementable by any third party mobile app developer (Need #4). In

Chapter 4, we also evaluate the impact of Location Data Signing on mobile device

battery life (Need #1).

3.3.2 Communications Management Modules

The Communications Management modules include Session Management, Adaptive

Location Data Buffering, the Critical Point Algorithm, and Location Data Encryption.

3.3.2.1 Session Management

The purpose of the Session Management module is to save battery energy and reduce

data transfer costs while supporting real-time location data communication between a

mobile phone and server.

Since location-aware applications are distributed between a mobile phone and server, the

protocols used for communication between the mobile device and server must be

carefully examined for efficiency and broad compatibility with many different client

52

devices. The selected protocols must also be appropriate for the type and frequency of

exchanged data, to avoid an unnecessary impact on limited mobile device resources.

As mentioned earlier, there are two types of location data exchanged between the device

and server: application data and location data. Application data is exchanged with the

server occasionally and loss of this data is not acceptable. Location data is exchanged

with the server frequently, and occasional loss of individual position data points is

acceptable. Since LAISYC must be implementable by third party application developers

(Chapter 1 - Need #4), the availability of networking protocols at the application level on

mobile devices that are suitable for transporting these two types of data must be

examined.

3.3.2.1.1 Available Communication Protocols

Until the mid-2000s, HTTP was the only mandated networking protocol for Java ME

devices, since many cellular networks were not capable of IP-based communication at

that time [140]. However, as IP Multimedia Subsystems (IMS) were developed in the

late 2000s to support packet-based communication on cellular networks, IP-based

networking protocols, such as the Transmission Control Protocol (TCP) and the User

Datagram Protocol (UDP), became accessible on a large number of Java ME mobile

phones. In fact, the MSA roadmap that defines the evolution of the Java ME platform

has required support for TCP for all MSA v1.0 compliant devices [111], and has

mandated support for UDP as well for all MSA v2.0 compliant devices [112]. Therefore,

HTTP, TCP, and UDP are the widely-available protocols on the mobile device that can

be used by LAISYC for communication between a mobile device and server. Figure 6

sh

P

ph

F
p

T

co

en

d

co

b

se

th

ov

In

pr

hows the rel

rotocols from

hysical layer

Figure 6 - Re
rotocols

TCP and UDP

ommunicatio

nsure reliabl

etection of l

ontrol. How

etween the n

ervice which

herefore doe

verhead on t

n today’s cel

rotocols are

ationship be

m lower laye

r, are not acc

elationships

P are both tr

on between t

le connectivi

ost packets,

wever, this in

nodes. UDP

h does not im

s not guaran

the mobile d

llular networ

implemente

etween HTTP

ers in the net

cessible to m

s between H

ransport-laye

two nodes in

ity between

retransmissi

ncreased relia

P provides a m

mplement an

ntee delivery

device and se

rks capable o

ed on top of o

53

P, TCP, and

tworking pro

mobile applic

HTTP, TCP,

er protocols,

n a network.

entities, incl

ion of lost pa

ability come

much simple

ny detection o

y of data. Ho

erver and is a

of IP-based c

one of the tr

UDP as net

otocol stack

cations.

, UDP, and

, which focu

 TCP includ

luding in-ord

ackets, data

es at a cost o

er and lightw

of lost packe

owever, as a

a timely and

communicat

ransport-laye

tworking pro

k, such as the

SOAP as ne

us on end-to-

des many me

der delivery

flow contro

of increased c

weight “send

ets or flow c

result, UDP

d efficient pr

tions, applic

er protocols.

otocols.

e link layer a

etworking

-end

echanisms to

of packets,

l, and conge

communicat

d-and-forget”

control and

P imposes lit

rotocol.

cation-layer

 For examp

and

o

estion

tion

”

ttle

ple,

54

HTTP is an application-layer protocol that uses a request-response, client-server model

and is typically implemented on top of TCP to guarantee reliability for web applications.

Therefore, each HTTP request to a server is wrapped with a TCP header, which

implements the features of TCP for the packets carrying the HTTP information.

In LAISYC, we select HTTP as the primary application data transport protocol and UDP

as the primary location data transport protocol. We discuss the rationale behind these

decisions, as well as comparisons to other options, in the following two sections that

focus on application data and location data, respectively.

3.3.2.1.2 LAISYC Application Data Transport

Since reliability is required for LAISYC application data (e.g., session login and logout,

server-side database accesses, application-specific distributed functions and logic), this

data should be transported using TCP or a protocol relying on TCP.

The request-response model of HTTP fits well with the remote-procedure call-style, or

web services, used by a client to send data to the server (e.g., username and password)

and wait for a response back (e.g., session ID). Integrated development environments

(IDEs), such as Netbeans and Eclipse, provide tools that enable rapid implementation of

distributed functions using HTTP which would otherwise be tedious and time consuming

to implement using TCP directly. Therefore, HTTP is a candidate for implementing web

services from the mobile phone to the server.

A second option for a protocol to implement web services is SOAP. SOAP is a popular

application-layer XML-based protocol often used to create enterprise web services that

allow loosely-coupled servers to communicate with one another. Figure 6 also shows the

55

SOAP protocol’s position in the networking stack, which is typically on top of HTTP. In

other words, HTTP is used to transfer XML-encoded messages defined by the SOAP

specification. SOAP defines complex functionality beyond HTTP such as token-based

credentials, which allows an intermediary web application to receive, process, and

forward data between the originating client and the destination server, without the

originating client having exact knowledge regarding the destination server.

SOAP became popular in the mid-2000s as sophisticated enterprise networks evolved and

a standardized method of exchanging XML-encoded messages between servers housed in

different locations was needed. At first glance, it appears that since SOAP was

developed to meet needs beyond HTTP, SOAP should be the logical choice to implement

web services to carry application data in the LAISYC framework between a mobile

device and server. As discussed in Chapter 2, many existing location-aware architectures

use SOAP or XML to carry application and location data [91, 96-98, 100-102].

However, when considering the actual devices upon which LAISYC will be deployed,

including the limited resources of mobile devices (e.g., battery energy, amount of data

transfer), two problems quickly become apparent with SOAP and XML.

The first problem is the availability of SOAP-based communication on mobile devices.

For Java ME, the JSR172 Web Services API [141], which implements the XML-based

messaging protocol SOAP on top of HTTP, was defined for the Java ME platform in

2004 to allow mobile phones to directly access XML-based web services. However, the

Web Services API is optional and only required to be supported in the high-end device

segment in the Java ME MSA roadmap. Therefore, a limited number of device

56

manufacturers have implemented JSR172 and this API is typically not available on mid-

to-low end devices [120]. SOAP support is limited in smart phones, as well. For

example, the Google Android platform and iPhone iOS platform do not natively support

SOAP.

Table 2 - SOAP-encoded messages add a significant amount of overhead to web
service requests, approximately 3.7 times as many characters, as shown in this
example

SOAP-encoded web service request HTTP-encoded web service request
POST /busstoparrival/busstopws.asmx
HTTP/1.1
Host: 99.999.999.999
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction:
"http://tempuri.org/GetNextNVehicleArrivals"
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSche
ma"
xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"> <soap:Body>
<GetNextNVehicleArrivals
xmlns="http://tempuri.org/">
<n>int</n>
<RouteID>int</RouteID>
<DirectionCodeID>int</DirectionCodeID>
<BusStopID>int</BusStopID>
 <TripID_External>string</TripID_External>
</GetNextNVehicleArrivals>
 </soap:Body></soap:Envelope>

GET/busstoparrival/busstopws.asmx/
GetNextNVehicleArrivals?
n=string&RouteID=string&Direction
CodeID=string
&BusStopID=string&
TripID_External=string HTTP/1.1
Host: 99.999.999.999

The second problem with SOAP from a mobile device perspective is that since all

communication is wrapped within XML on top of HTTP, and each element has both an

opening and closing XML tag, there is a significant amount of overhead to exchange

messages between the device and server. Therefore, to represent the same amount of

57

information in a message, SOAP requires significantly more characters. Table 2 shows a

comparison of the same web service request using SOAP on the left, and HTTP directly

on the right. The SOAP message has approximately 3.7 more characters to represent the

same amount of information. SOAP’s additional overhead takes a toll on limited

consumer data plans, as well as the overall cellular network bandwidth. Perhaps most

importantly, as we show in Chapter 4 via experimentation, SOAP’s additional overhead

also has a heavy impact on mobile device battery life.

Since communication between the mobile device and server typically takes place over a

wireless cellular network, the communication channel is prone to significant fluctuations

in quality due to channel fading and movement of the mobile device, which can lead to a

significant variation in transmission time and, subsequently, packet delays [142]. In third

generation (3G) cellular networks, retransmissions at the link level are typically

scheduled to give preference to mobile devices with higher quality connections, which

can further delay end-to-end transmission time for packets originating from devices with

poor signal quality [142]. Handoffs from one cell tower to another can also cause

significant packet delays [142]. Since TCP was originally designed for wired networks,

it was designed to interpret high packet delay as a sign of network congestion, and

consequently TCP will reduce its transmission rate when it detects high packet delay in

an attempt to better network conditions. However, as discussed above, in wireless

networks high packet delay can originate from a variety of conditions that are not

attributed to network congestion, and therefore slowing the device’s transmission rate

will not improve packet delay and will instead reduce the throughput of data

communication from the device to server.

58

While there are a number of improvements proposed for TCP to help address these

wireless network problems [143], these solutions are beyond the scope of our research

since an application developer does not have influence over the implementation of TCP

in a typical commercially-available mobile device. From a mobile application

perspective, the one element that is under a developer’s control when transmitting data

via a web service is the amount of data being transferred. The amount of battery energy

consumed by wireless communication is a function of how long the device radio is

actively transmitting and receiving information. By reducing the amount of data being

transferred from the mobile device to the server, not only is the impact on the user’s

limited data plan reduced, but battery life is extended. Reducing the amount of data

being transferred also reduces the probability that interference in the wireless channel

will result in lost packets transported via TCP, which reduces the need for

retransmissions that would keep the radio on even longer. By eliminating the SOAP

XML-based portions of messages between the device and the server, the amount of data

wirelessly transmitted is significantly decreased. Therefore, even for the few mobile

devices that natively support SOAP parsers, the use of HTTP-based web services is

preferred.

Because of the above limitations of using SOAP-based web services on mobile devices,

and because support for HTTP is required by the CLDC specification for all Java ME

devices, we proposed that LAISYC use simple HTTP methods (e.g., GET, POST) for

communicating application data from the mobile device to the server. Chapter 4 presents

experiments illustrating the benefits of using HTTP-based web services instead of SOAP-

based web services.

59

3.3.2.1.3 LAISYC Location Data Transport

Since location data are generated from a positioning technology on the mobile device

such as GPS, these data must be transferred to a server to update the system on the

mobile device’s location. For real-time LBS (Chapter 1 - Need #2), this update rate can

be up to once per second. Therefore, efficiency and timeliness is a top priority for

location data transport in LAISYC.

We chose UDP, which is typically used for services where timeliness is favored over

reliability (e.g., VoIP), as the protocol for efficient real-time location data transfer for

LAISYC. The LAISYC framework treats streaming location data similarly to

multimedia data in order to efficiently deliver timely location data from one entity in a

location-aware information system to another. The choice of UDP for location data

transport differs from previous location-aware architectures, largely because LAISYC is

designed to meet the needs of real-time location-aware applications that are always on.

UDP is also preferable to TCP for location data because TCP’s reliability mechanisms

take a large toll on the mobile device. Retransmission of lost or significantly delayed

packets over the wireless network via TCP costs precious battery energy, and since

occasional loss of individual location data packets is acceptable in LAISYC, TCP’s

drawbacks outweigh its benefits. Therefore, UDP not only provides timeliness and

scalability benefits for location-aware applications, but it also consumes less battery

energy than TCP. In Chapter 4, we present results from experiments showing that under

typical conditions the amount of GPS data lost via UDP is acceptable for most location-

60

aware applications. The battery life benefits of using UDP, instead of TCP, as a location-

data transport protocol are also demonstrated in Chapter 4.

Session Management modules are used on both the device and server to manage

communication. The following section discusses the Device-Side Session Management

module in detail, and the server-side module is discussed in the Server-Side Components

section.

3.3.2.1.4 Device-Side Implementation of Session Management

In summary, the LAISYC Session Management module within the mobile device splits

data transferred to the server into two categories: application data, which is transported

using HTTP, and location data, which is transported using UDP. Figure 7 shows this

two-tier communication between the mobile device and server within the Session

Management module in isolation from the rest of the LAISYC framework.

Two-tier protocols, using both application-layer and transport-layer protocols in the same

application, have been utilized in the past to increase VoIP performance for mobile

devices [144], but have not been used in previously presented location-aware

architectures. Splitting application logic and location data has architectural advantages in

addition to battery life advantages, such as allowing easier integration of location data

with existing HTTP-based web applications, and supporting dynamic load balancing of

incoming location data packets at the network level without examining the contents of

payload (since we know any data transported over UDP is location data).

61

Figure 7 - The Session Management modules use HTTP for application data and
UDP for location data for communication between the mobile device and server

Since location data will be arriving at the server with much greater frequency than

application data, and can be treated as atomic packets that do not need immediate

responses, the server may wish to handle UDP traffic differently than HTTP traffic. For

secure HTTP communication, HTTPS can also be used in place of HTTP. We discuss

UDP security in a later section.

The mobile application interfaces with the Session Management module via the LAISYC

Communication API. For application and location data, the mobile application initiates

communication with the server via a HTTP request, or transmission of location data via

UDP. The module creates a session with the server for a device by calling a

createSession() web service and passing in a variety of information including username,

S
es

si
on

 M
an

ag
em

en
t

S
es

si
on

 M
an

ag
em

en
t

62

password, phone number, and other authorizing information. The server responds with a

unique session identifier that is used in subsequent communication with the server to aid

the server in pairing location data received over UDP and application-specific web

service instructions received over HTTP with a specific session. The server maintains a

registry of connected devices that have open sessions at the server, which includes the

current address (e.g., IP address) of each mobile device. The mobile device Session

Management module prevents the application from having to directly manage sessions by

implicitly controlling the creation and destruction of sessions surrounding the transfer of

application and location data to the server. In other words, if a mobile application calls

an application-specific web service or attempts to send location data through the Session

Management module, the module will first check to see if there is an open session with

the server, and if not, it will create one. Therefore, it is guaranteed that a session always

exists at the server before any application or location data from the device is submitted to

the server. To signal to the server that a session is finished, the module initiates a

destroySession() web service.

The implicit management of sessions by the device-side Session Management module

relieves the application from having to actively manage the concept of a session, which

simplifies client-side application logic and also increases the efficiency of the server. For

example, if the application can interact with the user using data cached from previous

execution and can provide client-side functionality without needing to contact the server,

then a session does not need to exist at the server. If no location data has been generated

from the device since the application has started, there is no point in holding an open

session at the server until data actually exists. In a system which will potentially have

63

thousands of simultaneous users, it is important to reduce server overhead for unneeded

sessions whenever possible to allow the system’s server-side memory requirements to

scale at a rate potentially less than O(n), where n is the number of devices.

In conclusion, the Session Management module is designed to address several of the

needs for location-aware mobile apps outlined in Chapter 1. Session Management is

designed to improve battery life (Need #1) while enabling real-time location data

communication (Need #2) between the phone and server. In Session Management,

HTTP-POST is selected over SOAP for real-time (Need #2) application data transfer to

reduce the impact on mobile device resources (Need #1). UDP is selected over TCP as

the location data transport protocol for real-time location data (Need #2) to reduce the

impact on mobile device resources (Need #1). Session Management is based on

protocols accessible to third party mobile apps (i.e., HTTP, TCP, UDP), and therefore it

is fully implementable by any third part mobile app developer (Need #4).

3.3.2.2 Adaptive Location Data Buffering

The purpose of the Adaptive Location Data Buffering module is to increase the reliability

of real-time location data communication with the server in an energy-efficient manner.

Since UDP is utilized for location data transport, no end-to-end reliability exists for

location data such as that provided by TCP. As discussed earlier, lack of reliability for

each packet is a design trade-off in favor of the general efficiency of the system; while a

large number of location fixes can be transferred to a server in a timely manner, there are

no acknowledgments by the receiving entity that the location data has arrived, no

retransmission of lost packets, and no guarantee of the order of delivery of packets. In

64

real-time tracking, the occasional loss of a few location data fixes is of no concern, since

another location update will soon follow. However, location data is often referenced

after-the-fact in order to provide certain metrics, such as distance traveled, as well as to

identify the paths of users on particular days. Therefore, while a few occasional lost

location data packets are acceptable, the loss of large numbers of contiguous fixes can

introduce significant problems.

While we demonstrate in Chapter 4 that under ideal conditions UDP has an acceptable

percentage of data loss on a cellular network, from our experiments we discovered that

there are two primary causes of occasional large contiguous losses of location data:

1) Voice communication interference on devices that cannot handle simultaneous

voice and data communication (e.g., CDMA devices)

2) Cellular network coverage gaps

In the United States, devices on CDMA networks (e.g., Verizon and Sprint) are not

capable of simultaneous voice and data communication. As a result, if an application

continues to transmit location data via UDP after a user picks up a voice call, these

packets are lost. In our experiments we have confirmed that on several devices (e.g.,

Sanyo 7050, Sanyo Pro 200, and Sanyo Pro 700) the Java ME platform does not trigger

any error messages when a UDP transmission is attempted during a voice call. Since a

voice call could last a long period of time (e.g., 30 minutes) while the user is traveling, a

large amount of data could be lost if no action is taken by the application.

The lack of simultaneous voice and data transmissions communication also has a

secondary adverse effect on the cell phone user while an application is running in the

65

background: if the application is constantly transmitting data to the server, it will occupy

the CDMA radio and any incoming voice calls will be sent to voicemail instead of

ringing at the phone. Obviously, interfering with incoming voice calls is not a desirable

trait for an application, and therefore we must address this problem in LAISYC.

Poor cellular coverage in certain locations (e.g., rural areas) can also result in lost UDP

data packets. Since lack of a cell signal is typically geographically-correlated due to poor

tower coverage, large contiguous chunks of the user’s path can be lost if the device loses

data communication with the server.

A simple solution to both the simultaneous voice and data problem and poor cellular

coverage problem is to store all location data locally on a device and upload the location

data at the end of the day. However, this solution does not support real-time location-

aware applications, which is a requirement for LAISYC (Chapter 1 - Need #2).

Additionally, Java ME devices typically have limited persistent storage capacity and may

not be able to store an entire day’s worth of location data. An alternate solution is to use

TCP instead of UDP, but as we discussed earlier, the entire suite of reliability

mechanisms used by TCP are not necessary for most location-aware applications and

these mechanisms also have a significant negative impact on mobile device battery life.

Our solution to these problems is the Adaptive Location Data Buffering module in

LAISYC. Adaptive Location Data Buffering provides a basic quality of service

mechanism when UDP is used as the location data transport protocol, but at a much

cheaper cost than using TCP for every location data transmission. Adaptive Location

Data Buffering is implemented through use of device-side APIs regarding cell signal

66

quality and cell network status, as well as occasional TCP transmissions to confirm end-

to-end connectivity with the server.

In Adaptive Location Data Buffering, under normal conditions UDP is continuously used

to transfer location data to a server. Before each UDP transmission, the software checks

device-side APIs (if available) in order to assess the current level of cellular signal in

order to determine if a successful UDP transmission is probable given the current

wireless environment. Additionally, if the Java ME environment supports error reporting

for unsuccessful UDP transmission attempts, these exceptions can also be an indication

of an unsuccessful location data transfer. If there is a low level of wireless signal, or if an

exception is thrown, the location data is buffered to memory or to persistent storage such

as the MIDP Recordstore. Once it is detected that UDP transmissions are likely to

succeed, the buffered data is then sent via UDP and deleted on the device.

While the above method attempts to increase the probability that a UDP transmission will

successfully be issued by the device, these methods do not verify an open connection

with the server. Therefore, a more reliable method is required to occasionally determine

if the server is properly receiving location data.

Adaptive Location Data Buffering also occasionally sends data via TCP to determine if

there is a successful response from the server. If there is no response (e.g., the phone is

off-network, the server is down, the user is on a voice call blocking data communication),

then the software begins buffering location data until the next successful response via

TCP. Upon the next successful response, the buffer is emptied and all location data is

sent via UDP. TCP transmissions should only be sparsely attempted, since the benefits of

67

utilizing UDP over TCP as the primary location data transport protocol will disappear if

TCP transmissions are too frequent. In Chapter 4, we demonstrate the energy tradeoffs

between TCP and UDP when transmitting location data.

Figure 8 shows a simulated timeline of Location Data Buffering where location data is

being transmitted via UDP. An occasional lost UDP transmission is unknown to the

device, and acceptable for the system.

Figure 8 - A timeline of Location Data Buffering which shows a TCP failure that
results in a series of buffered location data fixes, which are transmitted to the server
on the next successful TCP transmission

When a TCP failure occurs, location data is buffered until the next successful TCP

transmission. At this time, all buffered location data is sent to the server via UDP.

Figure 9 is a data flow diagram showing the execution of Adaptive Location Data

Buffering as it is currently implemented in LAISYC.

68

Sample execution of the Adaptive Location Data Buffering algorithm that traces this data

flow diagram follows.

On the generation of each new location data point by the device’s positioning system, we

executed an algorithm (Figure 9) to determine whether or not a TCP check with the

server to confirm an open data connection should occur.

We used two time-based thresholds to track whether or not a TCP check should occur:

TCP_threshold_norm – minimum amount of time between TCP checks with the

server when TCP checks are successful. The default value we used in LAISYC is

180 seconds.

TCP_threshold_failed – minimum amount of time between TCP checks with the

server when TCP checks are failing. This value starts at 2 seconds for the first

failure, and doubles on each consecutive failure until it reaches a maximum

threshold value of max_TCP_threshold_failed (default value of 300 seconds in

LAISYC). This enables a quick recovery and small overhead for intermittent

failures, but also provides an exponential back-off with an upper limit to avoid

contacting the server frequently during an extended failure of communication

between the device and server.

If a TCP check with the server should not occur and if the last TCP check failed, then the

location data is buffered in memory on the device. On Java ME phones, we buffered up

to 2048 bytes to volatile memory, and subsequent data was buffered to persistent memory

(i.e., the MIDP Record Store in Java ME).

F
co
tr

Figure 9 - Ad
onnection w
ransmission

daptive Loc
with the serv
ns

cation Data
ver via TCP

69

Buffering o
P to increase

occasionally
e the probab

y checks for
bility of suc

an open
ccessful UDPP

70

If a TCP check with the server should not occur and if the last TCP check was successful,

then the location data is sent to the server via UDP like normal.

Adaptive Location Data Buffering also serves to reduce interference with incoming

phone calls for devices that do not support simultaneous voice and data sessions. In early

implementations of LAISYC we found that transmitting location data every four seconds

resulted in the communication link being continuously occupied by data transmissions.

Therefore, any incoming voice calls went directly to voicemail instead of ringing at the

phone. By implementing a buffer size of ten to aggregate several GPS fixes and send all

GPS data in a burst of UDP packets, interference with voice calls was eliminated.

In conclusion, the Adaptive Location Data Buffering module is designed to address

several of the needs for location-aware mobile apps outlined in Chapter 1. Adaptive

Location Data Buffering is designed to increase the reliability of real-time location data

communication (Need #2) with the server in an energy-efficient manner (Need #1).

Adaptive Location Data Buffering is based on protocols (i.e., TCP, UDP) and persistent

storage (i.e., MIDP Recordstore) accessible to third party mobile apps through platform

APIs, and therefore it is fully implementable by any third party mobile app developer

(Need #4).

3.3.2.3 Critical Point Algorithm

The purpose of the Critical Point Algorithm module is to reduce battery energy

expenditures and the amount of data transferred between the mobile phone and server by

eliminating non-essential GPS data.

71

Since GPS technology in a mobile device can generate a significant amount of location

data, this data must be carefully managed to avoid wasting precious resources such as

battery energy or cellular data transfer. If every GPS fix that is calculated on-board a

mobile device is transferred to a server, a large amount of battery energy is consumed.

Additionally, in the U.S. many cellular data plans have an upper limit on the amount of

data that can be transferred from the mobile device over the cell network per month. If

every GPS fix is sent over the cellular network, this data will have a large negative

impact on the consumer’s data plan.

In our research, we observed that a large number of GPS fixes generated on a mobile

device may not contain useful information for many applications that are primarily

interested in the travel path of the device. For example, GPS generates a large number of

very close but different positions when the user is standing still; a single GPS fix could

adequately represent this same information. Additionally, when the user is traveling in a

straight line, a large number of points may lie upon the same vector, which can be

represented using only the start and end point of the vector. Therefore, the path of the

user could be accurately represented by using only a small portion of the GPS data

generated by the mobile phone.

The Critical Point (CP) algorithm was created in order to filter out non-critical location

data points out of a real-time stream of location data. Location data points are defined as

a set of data containing latitude, longitude, and speed information at a minimum, and may

include other information such as altitude, accuracy uncertainty, and heading. We

defined non-critical data points as redundant data that does not contribute to the

72

knowledge of the path of a device. While the CP algorithm could be used with 3-

dimensional data, since consumer-level GPS-enabled phones are not currently able to

provide accurate altitude information [18], we focused on 2-dimensional data in the

description and analysis of the CP algorithm.

The CP algorithm can be seen as reducing a stream of location data into a series of

connected vectors. In other words, points along the vector are discarded since they do

not contribute additional path information. A path will always have at least 2 critical

points, which are the starting and ending points, since the simplest path is a straight line.

Non-critical points are points that lie directly between two critical points so that if a line

was drawn between the two critical points, it would intersect the non-critical points

between them. Non-critical points are also gathered while a device is standing still (i.e.,

redundant location data).

Changes in direction along with speed information are used to identify a critical point. In

other words, if a device is traveling in a straight line but changes direction, a new critical

point must be recorded at this change in direction. The resulting path is a series of

vectors with a critical point defining the vertex between vectors.

A flowchart describing the execution of the CP algorithm is shown in Figure 10. The CP

algorithm is executed each time a new GPS position of the mobile device is calculated.

Each time the algorithm is executed, it selectively retains memory of past input and uses

this to determine whether or not a critical point exists. If a critical point exists, it will

return the point that has been determined as critical. If a point has not been determined as

critical based on current input, then it returns null. The CP algorithm uses a speed

73

threshold to determine the appropriate minimum speed that should be used to filter out

data when the device is not moving. The CP algorithm uses azimuth calculations to

determine the change in direction when the device is moving (Figure 11).

Azimuth is a measurement used to determine difference in angle given a reference plane

and two points. We used Vincenty’s Inverse algorithm to calculate the azimuth values

[136], which has been shown by Vincenty to be accurate to within 0.000015 seconds

[136] in angular Degrees-Minutes-Seconds (DMS) notation, where a degree of angle is

equivalent to 60 minutes, and a minute is equivalent to 60 seconds.

For each execution of the CP algorithm, we evaluated the azimuth for two pairs of points:

Azimuth1 = Azimuth of the Last Critical Point and the Last Trigger Point in

relation to true north (shown in Figure 11)

Azimuth2 = Azimuth of the Last Critical Point and the Current Point in relation to

true north (shown in Figure 11).

The absolute value of the difference of Azimuth1 and Azimuth2 yields the change of

direction of the device for the Last Trigger Point.

The CP algorithm keeps references to the three points (Last Critical Point, Last Trigger

Point, and Current Point) throughout its execution, which can be viewed as a three point

sliding window over a stream of location data (Figure 12). The second of the three points

is always the point under consideration by the CP algorithm to determine if it is a critical

point.

74

Figure 10 - The Critical Point Algorithm filters out GPS fixes that are not necessary
to recreate the user's path. [119] © 2008 IEEE

75

Figure 11 - Azimuth calculations are used in the Critical Point Algorithm to
determine change in direction. [119] © 2008 IEEE

Figure 12 - The Critical Point Algorithm maintains a reference to three points that
are used to determine whether the second of the three points is a critical point

Critical Point Evaluation Sliding Window

Non-critical Point (discarded)

Last Critical Point

Current Point

[] [] []

Last Trigger Point (Under Evaluation)

76

As a result, the most recent location point passed into the CP algorithm is not the same

point that is returned by the algorithm as the critical point. This is because the CP

Algorithm is stateful and remembers its past input for three location data points, and it

uses this information to calculate changes in azimuth and speed that determine whether or

not a point is critical of the second of the three points in the sliding window.

The change in direction threshold can also be dynamically adjusted based on the current

speed. For example, one change in azimuth threshold can be used for speeds less than 10

meters/sec, and another azimuth threshold can be used for speeds greater than 10

meters/sec. In other words, the variation of changes in direction while walking may be

high and a larger threshold value may be used to determine a critical point. Similarly, the

variation of changes in direction while driving in a car at high speeds may be low and

therefore a lesser threshold value can be used.

To support the above features, the following thresholds are used in the CP algorithm:

min_speed_threshold: location data with speed values under this threshold are

discarded as non-critical points, since the user is considered to be standing still

max_walk_speed: if the speed is less than this threshold, the angle threshold for

walking will be used, otherwise the angle threshold for a vehicle will be used

angle_threshold: if the absolute value of the difference of azimuth values exceeds

this threshold, then the point is considered a critical point. One angle is used for

walk trips, while another is used for vehicle trips.

77

The CP Algorithm also supports several optional evaluations (as seen in Figure 10) that

can be used by real-time applications to transition between several different server update

strategies:

HasTimerExpired()?: A timer is started when a critical point is determined, and a

new critical point is identified after a certain amount of time elapses. This would

ensure that a position was reported at a minimum given interval, in case the

device is stationary for long times or traveling in a straight line for an extended

period of time. For example, after 5 minutes, if a critical point has not yet been

determined, then the next point would be considered a critical point.

HasDistanceCounterExceededThreshold()?: A distance counter is started after a

critical point is found. While the device is traveling in a straight line, for each

position update the distance would be increased. Once the device exceeds a

threshold for distance traveled, then it declares the next point a critical point and

sends this point to the server. This method assures that the server will receive

position updates for a device before it travels more than a certain distance from

the last reported point.

ReceivedLocationProbe()?: If the device receives a location update request from

a server, then the next point is automatically determined to be a critical point and

sent to the server.

A sample execution of the CP algorithm follows.

A LBS application starts up and makes a request to the Location API to generate a new

GPS position every 4 seconds. The critical points algorithm is executed every time a new

78

position is generated, beginning with the first fix. The first GPS fix will be determined as

critical, and information about this fix is then saved within the algorithm. The device

generates a new position 4 seconds later, and the application inputs this data into the CP

algorithm. The algorithm outputs null, since it does not have enough information at this

point to determine whether this second point is a critical point (i.e., it needs a third fix to

calculate both azimuth values). However, it saves information about this fix for future

CP calculations, as future calculations might determine this point as critical. The device

then generates a third GPS fix, and the application inputs this into the Critical Point

Algorithm. If the difference in azimuth between the first and second fix and the first and

third fix exceeds an angle threshold value and the speed value for the third fix exceeds a

speed threshold (i.e., the device is not stationary), then the second fix is determined to be

a critical point, and the second fix is returned by the algorithm. Information about the

second and third fix is then saved for future CP calculations. If the difference in azimuth

values does not exceed the threshold for change in direction, then the CP algorithm saves

information about the second fix and returns null. The device then generates a 4th fix,

and the application inputs it into the CP algorithm. Assuming a critical point was just

identified in the previous step, if the difference in azimuth between the second and third

fix and second and 4th fix exceeds an angle threshold value and the speed value for the

4th fix exceeds a speed threshold (i.e., the device is not stationary), then the third fix is

determined to be a critical point and the third fix is returned by the CP algorithm.

Information about the 4th fix is saved for future CP calculations. This process continues

until the final fix for series is calculated, at which point the final fix is determined to be a

critical point.

79

In conclusion, the CP Algorithm module is designed to address several of the needs for

location-aware mobile apps outlined in Chapter 1. The CP Algorithm is designed to

reduce battery energy expenditures (Need #1) and the amount of data transferred between

the mobile phone and server (Need #1) by eliminating non-essential GPS data (Need #3)

in real-time (Need #2). The CP Algorithm uses attributes from location data provided by

the Location API (e.g., latitude, longitude, speed), and therefore is fully implementable

by any third party mobile app developer (Need #4).

We demonstrate the battery energy and data transfer savings of the CP Algorithm in

Chapter 4, and also define a methodology for selecting values for the thresholds used in

the CP algorithm.

3.3.2.4 Location Data Encryption

The purpose of the Location Data Encryption module is to ensure the security of the

location data being transferred between the mobile phone and the server in an energy-

efficient manner.

The main threat to a breach of privacy by untrusted parties in a location-aware

architecture is the interception of location data as it is being transferred from a mobile

device to a server over the Internet. While secure TCP connections are supported by the

Java ME platform through the use of SSL, there is no secure support for datagrams sent

via UDP in Java ME [140, 145]. Therefore, the implementation of secure UDP

transmissions is left to the application developer. Since we have chosen UDP as the

primary location data transport protocol, as discussed in the Session Management section

80

earlier in this chapter, we must examine the potential for securing UDP communications

to protect the privacy of the user.

The Location Data Encryption module handles the encryption of location data in the

payload of the UDP datagram to enable end-to-end security between the mobile device

and the server. This module is optional, and is only needed for applications that require

secure location data transfer. As discussed in the earlier Session Management section,

the only information included in a UDP packet sent from a device to a server is a unique

session identifier (i.e., an integer) and the latitude, longitude, speed, and other location

data. The session identifier is not related to the user or device identifier and changes at

least once daily (i.e., every time the application calls the createSession() server method),

and therefore some applications may not need to encrypt the data transferred over UDP.

However, we define this optional Location Data Encryption module for applications that

require highly secure and private communication.

Symmetric encryption (e.g., Advanced Encryption Standard (AES)), which uses a shared

key between two parties, is generally more efficient than asymmetric encryption [146].

However, symmetric encryption requires a secret shared key that is known only by both

parties before any communication can take place. Since a device initiates communication

with a server over a wireless network, we must use a different method to secure an initial

information exchange between the device and server.

HTTPS uses asymmetric encryption, which does not require the exchange of a shared

secret key. Instead, HTTPS uses public and private key cryptography. The device uses

the server’s public key to encrypt information, and then sends this information to the

81

server. Since the server is the only entity that has possession of the private key that can

decrypt the information, the initial exchange between the device and server is secure even

without exchanging a shared secret key. However, one drawback to asymmetric

encryption is that it is less efficient and more computationally intense that symmetric

encryption [146].

In LAISYC, we define a hybrid cryptosystem using both asymmetric and symmetric

encryption to provide a secure and efficient exchange of information. Figure 13 shows

the secure exchange between the device and server in this hybrid cryptosystem.

Figure 13 - LAISYC uses a hybrid cryptosystem to protect the exchange of the AES
key using HTTPS with SSL, and then uses the AES key to encrypt the location data
sent over UDP

We use HTTPS and SSL (i.e., asymmetric encryption) to protect the initial exchange of a

symmetric encryption shared secret key, which occurs during the invocation of the initial

createSession() web application method. The server uses a different symmetric key for

each connected device, and a new symmetric key is generated at the start of each session

82

(i.e., approximately every 24 hours). After the device has the symmetric encryption key,

it uses this key to encrypt all location data information, except for a session identifier, in

the payload of UDP packets that is sent to the server. The session identifier is left

unencrypted so that the server can identify the proper key to decrypt the data for each

session. Figure 14 shows the contents of the UDP payload when encryption is used in

LAISYC.

Figure 14 - 128bit AES is used to encrypt the location data in the UDP payload, with
the exception of the session ID which is used by the server to identify the correct
symmetric key per device session

RC4 and Advanced Encryption Standard (AES) are two popular candidates for

symmetric encryption. According to Prasithsangaree and Krishnamurthy [146], tests

executed on a mobile Pentium III processor in a laptop show that AES is more energy-

efficient for packet sizes of less than approximately 100 bytes, while RC4 is more

energy-efficient for packet sizes of more than 100 bytes. AES is preferred from a

security perspective, since several weaknesses have been exposed in RC4 [146]. The

typical payload size of a location data packet which contains location data and a limited

amount of application-specific data to be transmitted over UDP is approximately 78

bytes. Therefore, we chose AES as the symmetric encryption method for LAISYC.

int – 4 bytes boolean – 1 byte long – 8 bytesdouble – 8 bytes byte – 1 byte float – 4 bytes

Location Data Payload Contents using Encryption

sessionID

locationMethod

versionNumber

fixTime

Key

latitude

longitude

altitude

sentTime

speed

course

hor_accuracy

vert_accuracy

cellStrength

batteryLevel

valid?

criticalPoint?

Encrypted with 128 bit AESUnencrypted

83

In conclusion, the Location Data Encryption module is designed to address several of the

needs for location-aware mobile apps outlined in Chapter 1. Location Data Encryption is

designed to ensure the security of the location data being transferred in real-time (Need

#2) between the device and server in an energy-efficient manner (Need #1). AES was

chosen since it is more secure and energy efficient than other methods and can be easily

implemented by third party mobile app developers (Need #4) using existing libraries such

as BouncyCastle [147]. In Chapter 4, we evaluate the battery life impact of Location Data

Encryption.

3.4 Server-Side Components

The server-side modules in LAISYC exist to support the mobile device-side modules,

and act as a proxy for database access. The LAISYC server-side modules are shown in

Figure 15.

Figure 15 - LAISYC server-side modules. [118] © 2011 IEEE

S
es

si
on

 M
an

ag
em

en
t

84

As mentioned earlier, the focus in this dissertation is primarily the design,

implementation, and evaluation of the device-side LAISYC modules. Therefore, the

server-side modules are presented in this dissertation to describe how they support or

benefit from the LAISYC device-side modules.

Server-side modules are broken down into two categories:

1) Communications Management (Green shaded modules in Figure 15)

2) Data Analysis (Pink shaded modules in Figure 15)

3.4.1 Communications Management

Communications Management on the server-side of LAISYC consists of the Session

Management and Adaptive Location Data Buffering modules.

3.4.1.1 Session Management

The server-side Session Management module coordinates communication with multiple

connected client devices. In order to tie multiple web service calls over HTTP and

location data sent via UDP together, upon the creation of a new session, a unique session

identifier is passed back to the mobile device. This session identifier is then used in

subsequent device-initiated communication between the device and server in order to

identify the device. This identifier allows streamlined communication between the

device and server, since login information does not have to be transferred and authorized

for each communication between the device and server. HTTPS can be used to encrypt

web service calls from the phone so that login information, session identifier, and

85

application-specific data are all protected. Support for HTTPS is mandated for MSA 1.0-

compliant Java ME devices [111].

A limited amount of information for each session (e.g., session ID, device phone number

and IP address, most recent location update) is kept in main memory inside the

application server to enable a rapid response to the device based on incoming location

data. Since the application is able to immediately execute threads to take action based on

real-time location information received over UDP, timely location-based services can be

executed from the server. While extremely time-sensitive actions such as real-time

navigation must be handled by software executing on the mobile device, near real-time

functionality with less stringent time constraints can be implemented server-side without

experiencing the delay of first writing to a disk in the database management systems and

then waiting for database triggers or a separate application to receive and process the

information. The disk-based database contains a record of all user and location data and

serves as the persistent backup of information contained in the application server

memory.

The server-side Session Management module also handles the expiration of sessions for

devices which have not communicated with the server in a certain amount of time in

order to de-allocate memory assigned to that session. These “abandoned” sessions could

be caused by an unexpected termination of the device’s client-side software or by a phone

that is currently off-network and is unable to communicate with the server. Session

information is always saved to a database management system to enable the transparent

restart of the server in case of server hardware or software failures, as well as to allow the

86

application server to dynamically load and unload sessions to and from main memory. If

the device tries to use a session that has been expired and removed from main memory,

the Session Management module is able to reload the information from the database and

reuse that session. Therefore, the expiration and re-initialization of the session is also

transparent to the device.

3.4.1.2 Adaptive Location Data Buffering

The server-side implementation of Adaptive Location Data Buffering responds to the

TCP communication initiated by the Adaptive Location Data Buffering module on the

mobile device to confirm that there is an open session between the mobile device and the

server. Before taking any action, the Adaptive Location Data Buffering module confirms

that a session exists for the given session ID through communication with the Session

Management module.

3.4.2 Data Analysis

Data Analysis consists of the Critical Point Algorithm and Spatial Analysis modules.

3.4.2.1 Critical Point Algorithm

In LAISYC, we replicate the CP algorithm on the server-side, as well. The server-side

CP algorithm is only used if the CP algorithm on the device is deactivated to allow all

location updates to be transferred from the mobile phone to the server. Transferring all

location data points may be desirable when tracking second-by-second. Therefore,

before location data is input into any Location Data Analysis modules (e.g., Spatial

Analysis), it is pre-filtered using the Critical Point Algorithm in order to reduce the

information into a meaningful path that can be better analyzed.

87

3.4.2.2 Spatial Analysis

The purpose of the Spatial Analysis module is to provide near real-time location based

services to mobile users that cannot be accomplished on the mobile phone due to

processing or data storage constraints.

In order to provide intelligent location-based services to mobile users, it is desirable to

provide information to the user which is highly relevant based on both their real-time

position, as well as historical or future intended travel behavior. Location-based alerts

should be given to travelers as soon as it is determined that the information is relevant,

and before they reach the area to which the alerts pertain, in order to allow users to plan

and react accordingly. However, to avoid inundating users with meaningless

information, the information should be highly relevant and precisely targeted. For

example, a traveler would ideally want to know of an incident along the typical path from

home to the destination before even leaving their home. This would allow the user to

take an alternate path to the destination or even delay the trip until a time when the

congestion has cleared. However, a user would not want to be alerted of hometown

incidents when traveling outside the hometown. A user would want to be notified as

soon as possible, if wandering off the planned path.

One method of delivering relevant alerts to a traveler is to examine the real-time and/or

spatial attributes of the traveler’s past travel behavior in conjunction with a spatial

database. LAISYC is designed to support real-time location information exchange from

a phone to a server so that these types of services are possible. The Spatial Analysis

module in LAISYC can utilize massive server-side spatial databases to provide services

88

that cannot be provided on the mobile device, due to memory and storage space

constraints, as well as lack of spatial database support.

To demonstrate the ability for the LAISYC to provide real-time services based on spatial

databases, we have focused on two specific implementations of the Spatial Analysis

module:

1) Path Prediction and Traffic Incidents – Within our TRAC-IT application, we have

implemented a spatial path-based prediction of the user’s travel to provide real-

time traffic alerts based on the user’s real-time and historical location information.

We discuss this application in detail in Chapter 4 along with the TRAC-IT

system.

2) Lost user alerts – In our TAD application, we have implemented the ability to

detect if a user has deviated from a planned transit route. We discuss this

application in detail in Chapter 4 along with the TAD system.

89

CHAPTER 4: EVALUATION

4.1 Note to Reader

Some experimental results presented in this chapter have previously been published in a

variety of journals, and several patents are pending or issued on the related technology.

Experiments related to GPS Auto-Sleep in this chapter have been published in IEEE

Pervasive Computing [118] (© 2011, IEEE), and Proceedings of UBICOMM ’08 [119]

(© 2008, IEEE), and a 2011 issue of the Journal of Navigation [18] (Copyright © 2011

The Royal Institute of Navigation) are reprinted here with permission of IEEE and

Cambridge University Press. Experiments for Session Management and Adaptive

Location Data Buffering have been published in IEEE Pervasive Computing [118] (©

2011, IEEE) and the Transportation Research Board (TRB) Transportation Research

Record [120] (© 2010, TRB) and are reprinted here with permission of IEEE and TRB.

Portions of the experiments for the Critical Point Algorithm have been published in IEEE

Pervasive Computing [118] (© 2011, IEEE) and Proceedings of UBICOMM ’08 [119]

(© 2008, IEEE), and are reprinted here with permission of IEEE. The Travel Assistance

Device (TAD) technology is protected under U.S. Patents # 8,138,907 “Device to Assist

Transit Riders with Special Needs” [123] and # 8,169,342 “Method of Providing a

Destination Alert to a Transit System Rider” [126] by the University of South Florida.

Descriptions and experiments related to TAD have been published in the Institution of

Engineering and Technology (IET)’s Journal of Intelligent Transport Systems (© 2010

90

IET) [130] and Transportation Research Board (TRB)’s Transportation Research Record

Journal [120] (© 2010) and is reprinted with permission of IET and TRB. Technology

supporting TRAC-IT is protected under pending U.S. Patent Application # 11/855,694

“System and Method for Real-Time Path Prediction and Automatic Incident Alerts” and

U.S. Patent Application # 11/277,403 “System and Method for Transportation Demand

Management” by the University of South Florida. Portions of the material related to

TRAC-IT have been presented at the Transportation Research Board (TRB) annual

meeting and have been peer-reviewed by TRB [131], and have also appeared in a USF

research project final report [148].

4.2 Evaluation Overview

Our evaluation of LAISYC is divided into two categories:

1) Evaluation of individual LAISYC framework components

2) Demonstration of innovative location-aware mobile apps developed using

LAISYC

The first subsection of this chapter presents experiments performed with mobile devices

in order to isolate and evaluate each component. The second subsection discusses two

innovative location-aware mobile applications, TRAC-IT and the Travel Assistance

Device (TAD), which have been developed and evaluated using the LAISYC platform.

4.3 LAISYC Component Evaluation

We set out to evaluate the various LAISYC components through a series of real-world

tests on actual GPS-enabled mobile phones. This is particularly challenging, since at the

time of these tests the Java ME Location API was a restricted API that could only be

91

accessed with the permission of the wireless carrier. Permission of this type is typically

only given to commercial partners of the wireless carrier, since the use of assisted GPS

and other network-assisted positioning technologies have a significant impact on cellular

carrier network resources. However, we were able to obtain permission from Sprint to

test our mobile applications that use the Location API on the Sprint and Nextel networks.

We developed several test mobile applications designed to isolate and test various aspects

of the mobile software’s impact on the mobile device. Each software test is discussed in

the following respective sections for the LAISYC components.

4.3.1 GPS Auto-Sleep

As mentioned in the GPS Auto-Sleep section in Chapter 3, during our research using

high-sensitivity GPS-enabled mobile phones, we observed that the successful acquisition

of individual GPS samples were significantly less dependent on previous GPS

observations than previous mobile phone models with low-sensitivity GPS receivers.

This observation led us to hypothesize that dynamic GPS sampling could capture high-

resolution travel paths by using a high frequency sampling rate when the user is moving

and saving a significant amount of battery energy by using a low frequency sampling rate

when the user is stopped. GPS Auto-Sleep, implemented using a finite state machine, is

the invention that controls the dynamic GPS sampling rate.

We first set out to demonstrate the feasibility of GPS Auto-Sleep through a series of

controlled experiments using a Sanyo Pro 200 CDMA cell phone on Sprint’s Evolution-

Data Optimized (EV-DO) Revision (Rev.) A network with assisted GPS.

92

We implemented a test mobile application that simply registered given interval, timeout,

and maxAge values with the JSR179 Location API LocationListener and then recorded

timestamps to the persistent MIDP Recordstore every several GPS fixes. The device was

charged until the battery life indicator on the outside of the device indicated a full charge,

and then the test software was executed on the device until the battery was depleted to the

point that the device powered itself off. After plugging in the device and powering it

back on, we restarted the testing application and pressed a button to retrieve the

timestamps from the most recently completed test. Through this method, we were able to

record the length of time the phone was operational while attempting to acquire GPS at

various sampling frequencies.

Figure 16 shows the result of these tests using the Sanyo Pro 200 and a series of sampling

intervals varying from four seconds to 300 seconds (i.e., five minutes). The device was

located on a table in the lower story of a two story building for these tests, and the phone

was flipped closed during these tests, so the display was off.

From these experiments we can see that increases in the GPS sampling interval lead to a

battery life savings in the order of hours. Even the increase between sampling GPS every

four seconds to every eight seconds produces an increase of 2.67 hours in battery life, and

the increase from eight seconds to fifteen seconds increases battery life another 2.3 hours.

These results indicate that high-sensitivity GPS is able to turn on the GPS hardware to

full power to acquire a GPS fix, and immediately reduce energy consumption by

dropping to a lesser power level.

93

Figure 16 - Even modest increases in the interval between GPS fixes produce
extended battery life on the order of hours. [118] © 2011 IEEE

An exponential increase in battery life of 23.17 hours can be seen between the GPS

intervals of 150 seconds and 300 seconds. This large increase in energy savings indicates

that various components in the phone (e.g., Central Processing Unit, memory, cellular

modem) are able to reach a low power state due to the lack of GPS activity, unlike

smaller interval values where these components remain active.

The trend of energy savings in relation to increasing GPS sampling intervals validates the

general design of the GPS Auto-Sleep state machine. If we can achieve accurate state

transitions, we could sample frequently when the user is moving, and less frequently

when the user has stopped moving. Since U.S. travelers report traveling an average of

approximately 91 minutes per day [149], occasional GPS sampling in the stopped state

would cover the remaining 1,349 minutes of the day, which should adequately extend

8.04

10.71

13.01
14.20

15.68

18.77

41.94

0

5

10

15

20

25

30

35

40

45

4 8 15 30 60 150 300

Ba
tt

er
y

Li
fe

 (h
ou

rs
)

Interval Between GPS Fixes (s)

Impact of Interval Between GPS Fixes on
Battery Life

94

battery life so that the user can carry the phone throughout the day without needing to

charge the battery.

Since the GPS Auto-Sleep needs to run in real-time on the mobile phone, we next

evaluate the complexity of the algorithm in terms of running time and memory. To keep

up with real-time data, the algorithm must maintain a linear growth rate in relation to the

number of GPS points processed, and must maintain a constant memory requirement

throughout execution, or else the mobile device will eventually run out of memory, as the

algorithm executes online for weeks or months at a time.

When a new GPS point is generated by the mobile phone, GPS Auto-Sleep makes several

comparisons against constant thresholds that do not change. GPS Auto-Sleep only keeps

one previous GPS data point in memory for the moved_distance_threshold. Therefore,

the memory requirements of GPS Auto-Sleep, , is:

where is the number of GPS data points processed.

For running time analysis, we can prove that GPS Auto-Sleep maintains a linear growth

rate in terms of execution time with real-time data input by reviewing the processing

steps in the algorithm. For each GPS data point, we measure the distance to the last

saved location data point when the user is stopped to determine if the moved distance

exceeds the moved_distance_threshold. We use the Vincenty inverse algorithm to

compute the distance, which has been shown to execute in a constant amount of time

[136], and therefore is . The amount of time to execute the comparisons of speed,

95

time, and uncertainty data against the respective thresholds is also . Since GPS

Auto-Sleep is an online algorithm that executes these steps for each new location data

point generated by the phone, the time complexity of GPS Auto-Sleep, , is:

where is the number of GPS data points processed. Therefore, GPS Auto-Sleep scales

linearly in execution time and maintains a constant memory requirement, as large

numbers of location data points are processed. Thus, it can remain online for an

indefinite amount of time.

The next steps for the design of GPS Auto-Sleep are the choice of thresholds used to

control state transitions, the state values for interval, timeout, and maxAge, and the

number of states used in the state machine.

For data collection in our experiments using GPS Auto-Sleep, we have configured the

state machine attributes with the values shown in Table 3.

Table 3 - GPS Auto-Sleep state machine values chosen for experimentation

State Interval (s) Timeout (s) MaxAge (s)

0 4 2 2

1 8 4 4

2 16 8 8

3 64 16 16

4 150 32 32

5 256 32 32

96

In our analysis of these attributes we simplify our calculations to focus on only the

interval and timeout values. Using only the interval and time values, we can establish

both an upper bound and lower bound on the amount of time required for our application

to achieve a GPS fix without needing the maxAge parameter. Eliminating the maxAge

parameter from consideration is also preferred, since we do not have any control over the

GPS behavior of other applications that would affect this parameter.

Since the use of GPS by another application would only decrease the time needed for our

application to acquire a GPS fix (i.e., the maxAge parameter never increases the time

required to acquire a GPS fix), the lower bound of the time required to achieve a GPS fix

is an ideal scenario when another application acquires a GPS fix just before our

application’s scheduled interval. In this scenario, the time elapsed between when a fix is

scheduled and the fix is acquired by our application is zero, and therefore the lower

bound on the total amount of time required to acquire a fix is equivalent to the interval

value. The upper bound of the time required to achieve a GPS fix is equivalent to the

sum of the interval and timeout values.

We chose interval values for states that exhibit exponential growth as we move towards

sleep state, since as we build confidence that the device is not moving while transitioning

through states, we want to rapidly enter the state that will save the most energy. The

same exponential decay is desired when moving from the sleep state to the awake state,

as we build confidence in the user’s movement. Figure 17 shows the relationship of the

chosen interval values (solid blue line) to several growth functions. As shown in Figure

1

u

F
x2

a

T

F

at

P

d

G

7, the chosen

sing polynom

Figure 17 - A
2 or 2x funct
ccelerates in

The interval v

igure 18. Th

t each state,

ro 200, allow

id not yield

GPS to be act

n interval va

mial regress

A growth fu
tion until it
n growth be

values’ relati

he timeout va

until an upp

wing the GP

a fix, and th

tive longer th

alues approx

ion (R2 = 0.9

nction for t
reaches the

eyond an x3

ionships wit

alues (beige

per limit is re

PS to continu

herefore to pr

han this thre

97

ximate a third

9979):

the state[i]in

e middle sta
function

th the timeou

dotted line)

eached at 32

ue to search f

revent wastin

eshold. In the

d order polyn

nterval values
ate, at which

ut values fro

 are defined

seconds. In

for a signal a

ng battery en

e case that a

ynomial, whi

was chosen
h point it qu

om Table 3 a

d as half of th

n our researc

after 32 seco

nergy we do

a GPS fix can

ch is determ

n to grow lik
uickly

are shown in

he interval v

ch with the S

onds had ela

o not want th

nnot be acqu

mined

ke an

alue

Sanyo

apsed

he

uired

at

in

T

F
th
se
u

O

st

fo

b

t a particular

nterval value

These values

Figure 18 - S
he interval b
econds; if a
pper bound

One concern

tate[n] to sta

or the time it

ehavior data

r state, the G

e and timeou

are shown in

Sample GPS
between GP
a GPS fix ca
d for the tot

with the des

ate[0] due to

t takes to tra

a collection e

GPS may be a

ut value at a p

n Figure 18

S Auto-Sleep
PS fixes, wh
annot be acq
al time elap

sign of the st

the high-res

ansition from

experts and a

98

active for a m

particular sta

as the red lin

p values are
ile the timeo
quired, the i
psed at each

tate machine

solution trav

m asleep to aw

a review of l

maximum p

ate:

ne composed

e chosen for
out values h
interval + ti

h state.

e is the time

vel path data

wake. Throu

literature [14

eriod of tim

d of dots and

r an exponen
have an upp
imeout line

it takes to tr

that could b

ugh discussi

49-154], we

e defined by

d dashes.

ntial growth
per-bound o
illustrates a

ransition from

be potentially

ion with trav

established

y the

h in
of 32
an

m

y lost

vel

five

99

minutes as the acceptable amount of the first portion of the travel behavior path to miss

when transitioning from asleep to awake in the case of worst-case performance by GPS

Auto-Sleep.

This loss of the first portion of the path is primarily of concern when distance of travel is

being measured. Figure 19 shows the worst-case scenario when the state machine is in

the sleep state of state[n] and the user begins moving immediately following a GPS fix

acquisition. The longest amount of time that may elapse between successful GPS

samples is max_gps_activitystate[n]. As a result, the user’s travel behavior is not being

monitored during this time, resulting in the observed travel path of the straight dashed red

line in Figure 19, instead of the actual travel path shown in the black dots.

Figure 19 - The largest potential loss of beginning travel path is worst-case scenario
when the user travel path is sampled just before they begin moving, since the next
GPS sample occurs max_gps_activitystate[n] seconds later

Legend

Actual travel path

Observed travel path

Trip Origin
(Stationary GPS samples)

Upper bound of length of time
between GPS samples

max_gps_activitystate[n]=
state[n]interval + state[n]timeout

First moving
GPS sample

100

The following formulas define the time cost for transitioning between states given the

state transition rules defined in Chapter 3, with the goal of keeping the amount of time for

lost travel path data under five minutes.

If a GPS fix cannot be acquired on startup, the maximum time elapsed from startup to

fully asleep (i.e., state[n]) is:

With the state values defined here, the max_elapsed_timestartup_to_asleep is 296 seconds, or

almost five minutes, which is an acceptable amount of time for our tracking application.

The amount of time elapsed from the awake state to the asleep state during normal

execution (i.e., not on startup) is a similar equation and value, with the only difference

being the use of the back off timer instead of the first_fix_timeout value:

Since our goal is to capture high resolution travel behavior, a significant risk when fully

asleep in state[n] is that the state machine will sample the GPS location when the device

is stationary, and then the device immediately begins moving and the state machine waits

state[n] amount of time (e.g., 256 seconds) before again sampling GPS. When

considering the maximum possible elapsed time, we also must assume that nearly the

entirely timeout period has elapsed before acquiring a GPS fix. If we wait to fully

101

transition between state[n] to state[0] using single state transitions to resume high

resolution tracking, and assuming the entire timeout period is used, the maximum elapsed

time is:

With the state values defined here, the max_elapsed_timeasleep_to_awake_single_transitions is 564

seconds, or nearly ten minutes. This is far too long to wait for our needs of capturing

high-resolution travel behavior.

We could consider using the avg_elapsed_timeasleep_to_awake_single_transitions instead of the

max_elapsed_timeasleep_to_awake_single_transitions when calculating the acceptable amount of

data loss if the theoretical max_elapsed_timeasleep_to_awake_single_transitions is found to be much

larger than the avg_elapsed_timeasleep_to_awake_single_transitions values observed in our tests

with actual devices. In our research, we found that once a high-sensitivity GPS-enabled

cell phone is able to acquire a GPS fix in an environment, it typically returns the next

GPS fix quickly, which significantly reduces the amount of time spent during the timeout

stage of each GPS fix attempt. Figure 20 shows the difference between scheduled GPS

times (i.e., when the Location API is scheduled to return a GPS fix based on the interval

value) and the times when the Location API actually acquired and returned a GPS fix for

a dataset, observed using a Sanyo Pro 200 on the bottom story of a two story building.

The average time difference value here is approximately 9 seconds, which is less than a

third of our maximum timeout value of 32 seconds. The negative value shown in the far-

le

th

F
in
se

T

sl

pr

sc

pr

sc

so

th

ac

pr

eft minimum

he GPS upda

Figure 20 – W
nformation
econds.

This observat

lightly prior

roactive GP

cheduled int

roactive and

cheduling re

ome of the w

hat proactive

cquire a GPS

riori.

m column ind

ate to the app

When high-
close to the

tion indicate

to the time w

S scheduling

erval expire

d reactive GP

educes the tim

wait time is m

e GPS sched

S fix when s

dicates that th

plication wa

-sensitivity G
 expected in

es that the Lo

when the nex

g, as opposed

s before star

PS schedulin

me the appli

moved prior

duling uses an

scheduling th

102

he Location

s scheduled.

GPS is able
nterval valu

ocation API

xt GPS upda

d to reactive

rting up the G

ng is illustrat

cation has to

to the sched

n estimate fo

he GPS hard

API returne

.

to acquire
ue with an a

is actually s

ate is schedu

e GPS sched

GPS hardwa

ted in Figure

o wait for a f

duled update

or the amoun

dware, since

ed a GPS fix

a fix, it tend
average dela

tarting up th

uled. We ref

duling, which

are. The diff

e 21. Proact

fix to be acq

e time. It sho

nt of time th

this value is

x slightly bef

ds to deliver
ay of only 9

he GPS hardw

fer to this as

h waits until

ference betw

tive GPS

quired, since

ould be note

hat is needed

s not known

fore

r this

ware

the

ween

ed

d to

a

103

Figure 21 - Proactive GPS scheduling (left) starts the GPS hardware slightly before
the scheduled interval value expires, while reactive GPS scheduling (right) waits
until the interval period has completely expired before attempting a GPS fix.

However, even if the timeout values are completely eliminated via high-sensitivity GPS

hardware, proactive GPS scheduling, or use of GPS by other applications, this would still

yield a minimum amount of time required to transition from fully asleep (i.e., state[n]) to

fully awake (i.e., state[0]) as:

With the state values defined here, the min_avg_elapsed_timeasleep_to_awake_single_transitions is

472 seconds, or a little under 8 minutes. This value is too long to risk lost travel

behavior. Figure 22 illustrates the potential loss of travel path information, if the state

machine needs to transition through all states before beginning high-resolution tracking.

Therefore, we needed a new method to reduce the amount of time needed to transition

from state[n] to state[0].

104

Figure 22 - GPS Auto-Sleep can miss a substantial part of the beginning trip path if
it must transition through all states before starting to record high-resolution travel
behavior

To increase our ability to capture high-resolution travel behavior data, we introduced the

high_speed_threshold that allows direct state transitions from any state[i] to state[0] to

“snap” back to high frequency GPS sampling. This reduces the max_elapsed_time value

to:

With the state values defined here, the max_elapsed_timeasleep_to_awake is 288 seconds,

which is under our five minute threshold and therefore an acceptable delay.

The high_speed_threshold must be chosen carefully to ensure proper operation of GPS

Auto-Sleep. If high_speed_threshold is too small, the state machine will be constantly

105

waking up and wasting battery energy while it samples GPS at high frequency until the

back off timer expires and the state machine gradually transitions to the sleep state again,

which is upper-bounded by max_elapsed_timeawake_to_sleep. If the high_speed_threshold is

too high and we do not recognize true movement quickly, then we lose the ability to

transition to state[0] within the five minute requirement and as a result, we risk losing a

significant amount of travel behavior.

Fortunately, GPS speed measurements tend to be accurate, as speed is measured by the

receiver using the Doppler shift of the GPS signal [155]. Additionally, research has

shown that accurate GPS speed determination is preserved even when positional accuracy

of GPS degrades due to reduced GPS signal quality [155]. Therefore, speed can be used

as a threshold that is largely independent of position error, and therefore the

stopped_speed_threshold and high_speed_threshold can be used to temper and correct

movement in the state machine when the moved_distance_threshold may be affected by

positional outliers.

To evaluate the high_speed_threshold and stopped_speed_threshold values for the

execution of GPS Auto-Sleep on the Sanyo Pro 200, we recorded the GPS speed

observation of the Sanyo Pro 200 while it was stationary indoors (i.e., true speed = 0

meters per second) over a 5.5 hour period, with an interval between GPS samples of two

minutes. The device was located on a table in the lower story of a two story building.

The observed speed error measurements are shown in Figure 23.

F
u

T

cl

ad

ov

to

fr

S

un

th

b

th

Figure 23 - S
sing observ

The 95th perc

lose to actua

dditional tes

ver 1 meter

o walking tri

rom state[n]

ince any dir

nnecessary w

his should ha

e able to qui

his value to b

Speed thresh
vations of sp

entile of erro

al speed whe

sts, the Sanyo

per second,

ips and slow

to state[0], w

ect transition

wake ups, w

ave less than

ickly respon

be as low as

holds for th
peed when st

or is 1 meter

en stationary

o Pro 200 te

approximate

wly increase t

we chose 1 m

ns from any

we chose 1.5

n a 2% error

d to true mo

possible wit

106

e GPS Auto
tationary an

r per second,

y indoors, eve

nded to regi

ely 1.1 meter

the sampling

meter per sec

state[i] to st

meters per s

rate based o

ovement by d

thout trigger

o-Sleep state
nd indoors

, indicating t

en in a diffic

ister a walkin

r per second

g interval by

cond as the

tate[0] need

second as the

on our data a

directly snap

ring too man

e machine a

that GPS spe

cult GPS env

ng speed at a

d. Since we

y stepping thr

stopped_spe

to be accura

e high_speed

and GPS Aut

pping to state

ny false wak

are selected

eed tends to

vironment. I

a value sligh

want to resp

rough the sta

eed_thresho

ate to avoid

d_threshold,

to-Sleep wil

e[0]. We wa

e-up periods

be

In

htly

pond

ates

old.

, as

l still

ant

s

107

because we are interested in capturing non-vehicle travel behavior (e.g., walking, biking),

which can be at fairly low speeds.

Figure 24 shows the behavior of GPS Auto-Sleep using the high_speed_threshold.

Figure 24 - GPS Auto-Sleep can quickly react to real movement using the
high_speed_threshold and rapidly begin sampling GPS via direct transitions to
state[0] to reflect a more accurate travel path

The state machine can now immediately snap to rapid GPS sampling to capture a better

representation of the user’s travel path. We still cannot avoid the potential loss of data

during the period of time between the most recent stationary GPS sample and the first

moving GPS sample, since we must maintain this GPS sampling interval when stopped to

save battery energy. However, it should be noted that this amount of time is an upper

bound on elapsed time, and therefore the average amount of time elapsed between user

movement and the first GPS sample is substantially less. Also worthy of note is that due

to the initial sleep period before we detect movement, the calculated distance of observed

Legend

Actual travel path

Observed travel path

Trip Origin
(Stationary GPS samples)

Second moving
GPS sample

Upper bound of length of time
between GPS samples

max_gps_activitystate[n]=
state[n]interval + state[n]timeout

Third moving
GPS sample

First moving
GPS sample

Fourth moving
GPS sample

...

108

travel using GPS samples will typically be a lower bound on actual distance traveled

(unless there is a significant amount of unfiltered GPS drift during the trip, which may

occur at brief stops).

The final two thresholds that must be chosen for GPS Auto-Sleep are distance-based. The

moved_distance_threshold is used to determine if the traveler has moved from the last-

sampled GPS location when considered stationary, and is used to gradually step towards

state[0] (i.e., awake) state-by-state. The high_horizontal_accuracy_threshold is based on

the estimated accuracy of the GPS fix, and is used to gradually step towards state[n] (i.e.,

asleep) state-by-state when the device reports that there is a large estimated error in the

accuracy of the fix.

To determine a moved_distance_threshold, we performed an indoor accuracy test on two

different mobile phones: the Motorola i580 mobile phone on the Sprint-Nextel iDEN

network and Sanyo 7050 mobile phone on the Sprint-Nextel CDMA 1 x RTT data

network.

We chose to evaluate two different mobile phone models because in the early

implementation of the LAISYC framework, we had anecdotal evidence that positional

accuracy tended to differ between devices. These tests were performed inside a building

made mostly of wood and concrete stucco, since when GPS Auto-Sleep is used to try to

detect movement the device will typically be indoors. The reference ground truth

location was determined by marking the location of the phones on a blueprint of the

structure, and scanning the blueprint so it could be geo-referenced against a digital 6-inch

resolution color aerial photo that was already geo-referenced in the Universal Transverse

M

d

fi

b

st

T
th

A

F
w

M
S

Mercator (UT

etermined by

ixes into the

etween the g

tatistics from

Table 4 - Ho
he permissio

A scatter plot

Figure 25 - S
with the perm

Device

Motorola i580 A
Sanyo 7050 A

TM) Zone 17

y projecting

UTM coord

ground truth

m these tests

rizontal err
on of Camb

t of these tes

Scatter plots
mission of C

GPS Type
S

Assisted
Assisted

7N NAD 198

the WGS 84

dinate system

location and

are shown in

ror statistics
bridge Unive

sts is shown

s of indoor h
Cambridge U

Sample
Size

Min
478 0

1513 0

109

83 coordinat

4 latitude an

m and then m

d the observ

n Table 4.

s for indoor
ersity Press

in Figure 25

horizontal p
University P

Max A
0.74 90.69
0.16 32.04

H

te system. H

nd longitude

measuring the

ed GPS loca

r GPS accur
s. [18]

5.

positional ac
Press. [18]

Avg 50
15.16
8.78

orizontal Error S

Horizontal ac

coordinates

e Euclidean

ation. The h

racy tests. R

ccuracy test

0th 68th
9.78 15.15
6.23 9.33

Statistics (meters

ccuracy was

 from the GP

distance

horizontal err

Reprinted w

ts. Reprinte

95th R
5 47.9
3 24.44

s)

s

PS

ror

with

ed

RMSE
21.64
11.33

110

The substantial difference between devices can be seen in both the statistics, with the

Motorola i580 having almost twice the 95th percentile of error (47.9 meters) as the Sanyo

7050 (24.44 meters), as well as the scatter plot, where the GPS from the Motorola i580

drifts away from the ground truth location in the upper-left and lower-left corners of the

image. These empirical measurements confirm our anecdotal evidence that there can be

significantly different levels of positional accuracy between two different devices. There

is much less difference in speed error measurements between the two devices (Table 5),

confirming that GPS signal obstructions affect positional error substantially less than

speed error.

Table 5 - While the positional error between the two devices is substantially
different, the error in speed is much less dramatic

Based on the observed positional error from these devices, we chose a value of 100

meters for the moved_distance_threshold. 100 meters is greater than any error we

observed in our tests and will therefore be tolerant of moderate GPS drift from the ground

truth location without producing a false-positive movement reading that would cause the

state machine to move towards state[0] (i.e., awake) when the device is still stationary

inside a building. 100 meters is also a short enough distance that, when combined with

the high_speed_threshold to immediately detect fast movement, prevents the device from

missing a substantial portion of the user’s slow travel path before movement is detected.

Device GPS Type
Sample
Size

Min Max Avg 50th percent. 68th percent. 95th percent.
Motorola i580 Assisted 478 0.00 6.94 0.37 0.00 0.00 1.94
Sanyo 7050 Assisted 1513 0.00 1.25 0.13 0.25 0.25 0.25

Speed Error Statistics (meters per second)

W

te

ob

co

F
w
7

U

pr

er

d

T

d

ab

on

ph

We examine t

est to determ

bserved erro

onnection be

Figure 26 - R
was shown to

050 (right).

Unfortunately

roduced by t

rror. Accord

efined by th

This means th

iagonal at le

bove the 1:1

nly fall abov

hone meets t

the estimate

mine the valu

or and the est

etween the tw

Reliability o
o be poor on
Reprinted

y, when the o

the Location

ding to the J

e given estim

hat in Figure

east 68% of t

 diagonal 18

ve the 1:1 dia

the requirem

d horizontal

ue for high_h

timated erro

wo values.

f accuracy e
n the evalua
with the pe

observed err

n API there i

SR179 Loca

mated error u

e 26, the data

the time. Fo

8.6% of the t

agonal 55.1%

ments defined

111

l accuracy un

horizontal_a

or for each G

estimates fo
ated devices
rmission of

ror is compa

is little corre

ation API, th

uncertainty r

a points in th

or the Motoro

time, and for

% of the tim

d by the JSR

ncertainty va

accuracy_thr

GPS data poin

or individua
s, the Motor
f Cambridge

ared to the es

elation betwe

he “true posit

radius at the

he scatter plo

ola i580 (lef

r the Sanyo

me. Surprisin

R179 Locatio

alues observ

reshold. Fig

nt, demonstr

al assisted G
rola i580 (le
e University

stimated accu

een actual an

tion should b

 68% confid

ot should fal

ft), observati

7050 (right)

ngly, this me

on API despi

ved in this sa

gure 26 show

rating the

GPS data po
eft) and San
y Press. [18

uracy value

nd observed

be within a c

dence level”

ll above the

ions only fal

) observation

eans that neit

ite claiming

ame

ws the

oints
yo

8]

circle

[23].

1:1

ll

ns

ther

to

112

be in compliance with the standard. This information is important for any app developer

who makes real-time decisions in a mobile app based on the 68% confidence level

specification for accuracy uncertainty required by the JSR179 Location API, because as

evidenced by our experiments, at least two commercially-available mobile phones are not

meeting this standard.

Based on this information, we set the high_horizontal_accuracy_threshold threshold

value to 80 meters, which is substantially larger than any value observed in these tests.

Our reason for choosing this value is that the threshold will effectively be ignored for

these devices, but will still remain in place for other devices implementing JSR179 that

may meet the standard specifications as GPS Auto-Sleep is deployed to additional

devices in the future. The relationship between estimated and actual error could also be

reevaluated on future devices to determine if a correlation between observed and

estimated error exists.

Once all the threshold values were chosen, we evaluated the performance of GPS Auto-

Sleep for accurately tracking the movement of the user and transitioning between

frequent GPS sampling and occasional GPS sampling based on real-time location data

and the state transition rules with the chosen threshold values. We collected 30 days of

normal travel behavior from members of the research team using a Sanyo Pro 200

CDMA cell phone on Sprint’s Evolution-Data Optimized (EV-DO) Revision (Rev.) A

network with assisted GPS. We manually post-processed this data after it was collected

and marked each data point as stationary or moving based on written travel logs from the

user.

114

available (e.g., the user was deep inside a building), and therefore the time between GPS

fixes was a large value. Ideally, the blue line for GPS Auto-Sleep activity should roughly

trace the red dashed line (with the exception of the spikes off the graph for lost GPS

fixes). Two areas on the graph are circled with black dashed ovals that indicate brief

periods of error when the GPS Auto-Sleep transitioned from the sleep state[n] to state[0]

for rapid GPS sampling every 4 seconds, when in fact the user was stationary. Close

examination of the speed values at the leading edge of these periods show that the

incorrect wake-ups of GPS Auto-Sleep were triggered by large outlier speed values.

To quantify the correct state percentage during tracking over the 30 sessions of collected

data, we classified the GPS Auto-Sleep activity into two states, moving or stationary,

based on the observed interval between GPS fixes, so that the GPS Auto-Sleep state

could be directly compared to the ground truth values that were manually coded. The

GPS Auto-Sleep states are defined as:

1) Moving – GPS Auto-Sleep is considered to be in a moving state if the interval

between fixes is observed to be between 1 and 5 seconds.

2) Stationary – GPS Auto-Sleep is considered to be in a stationary state if the

interval between fixes is observed to be greater than or equal to 8 seconds.

We consider the GPS Auto-Sleep activity to be incorrect (i.e., an erroneous state) if the

GPS Auto-Sleep state does not match the ground truth manually coded state for each GPS

fix.

The results of the analysis of the 30 collected sessions of GPS data are shown in Figure

28.

F
st

T

st

m

2

er

T

en

T

D

in

A

2

Figure 28 - G
tate of the u

These results

tates of the u

mean accurac

9.1%), and o

rror of 0.51%

To confirm ou

nergy, we ex

TRAC-IT mo

Department o

n further deta

As part of the

00’s to 30 u

GPS Auto-S
user with a h

demonstrate

user with a h

cy of 88.40%

on one sessio

%). The 95th

ur hypothesi

xamined a la

obile app use

of Transporta

ail later in th

e USDOT stu

sers and reco

leep is able
high degree

e that GPS A

high degree o

%). The wor

on GPS Auto

h percentile o

is that the us

arge scale de

ed to collect

ation (USDO

his chapter.

udy, we dep

orded their t

115

to successfu
 of accuracy

Auto-Sleep is

of accuracy,

st accuracy o

o-Sleep was

of state error

se of GPS Au

eployment of

high-resolut

OT)-funded r

loyed TRAC

travel behavi

ully track th
y.

s able to trac

with a mean

observed wa

s able to achi

r was 23.97%

uto-Sleep du

f GPS Auto-

tion travel b

research pro

C-IT with GP

ior for almos

he moving o

ck the movin

n error of 11

as 70.90% (a

ieve 99.49%

%.

uring trackin

-Sleep in sup

ehavior as p

oject. We di

PS Auto-Sle

st three mon

or stationar

ng and statio

.60% (i.e., a

an error of

% accuracy (a

ng saves batt

pport of the

part of a U.S.

scuss TRAC

eep on Sanyo

nths. A total

ry

onary

a

an

tery

.

C-IT

o Pro

l of

116

1,857 data sessions containing a total of 4,023,917 GPS fixes were recorded during this

period, for an average of 39.83 days of survey time per user. The average session length

during the experiment was 15.44 hours, based on the difference between the oldest and

newest GPS fix time in each session. Since the battery life observed when using a static

GPS interval of 4 seconds without GPS Auto-Sleep was only 8.04 hours, a battery life of

15.44 hours when using GPS Auto-Sleep is substantially longer. As discussed in the

Session management and Location Data Buffering evaluation section, wireless data

transmissions consume a significant amount of battery energy. Since TRAC-IT transmits

GPS data to our server via the mobile phone’s cellular connection, in addition to

collecting GPS data, the battery life of the phone using GPS Auto-Sleep without

transmitting data to the server is substantially more than the observed 15.44 hours.

In conclusion, GPS Auto-Sleep addresses several of the needs for location-aware mobile

apps outlined in Chapter 1. GPS Auto-Sleep is able to provide substantial battery energy

savings (an approximate average doubling of battery life (Need #1), while maintaining

acceptable movement tracking (approximately 89% accuracy) (Need #3). GPS Auto-

Sleep operates in real-time on the mobile device (Need #2). We have also demonstrated

a methodology for selecting the thresholds used in the algorithm (i.e., first_fix_timeout,

stopped_speed_threshold, high_speed_threshold, moved_distance_threshold,

high_horizontal_accuracy_threshold, backoff_time_threshold) based on observed GPS

data so that the algorithm can be implemented by any third party mobile app developer

on any device with GPS and a Location API (Need #4).

117

4.3.2 Location Data Signing

Our primary motivation in analyzing Location Data Signing is to demonstrate that

traditional asymmetric cryptography such as DSA and RSA are feasible for real-time

execution on a mobile device, contrary to the claims of Jarusombat et al. [138]. We must

examine two operations to evaluate asymmetric cryptography:

Key generation: Key generation happens once daily at the start of a

communication session with a server and creates both a public and private key.

The private key is used to create the digital signature for individual GPS fixes,

while the public key is distributed to others so that they can verify the digital

signature for GPS fixes. Since key generation only happens occasionally,

execution time of key generation is not of great concern.

Signature generation: Signature generation happens frequently, potentially as

often as once every GPS fix. Since GPS data can be generated at a rate of once

per second, signature generation must be efficient in terms of execution time to be

feasible for implementation on mobile devices.

To evaluate the impact of Location Data Signing, we developed a test mobile application

that performed key generation and signature generation, and recorded the execution time

by querying the system timestamp both before and after execution. We executed this

application on an HTC G1 mobile device with Android 1.6. Figure 29 shows the results

of execution time for key generation for both DSA and RSA using 512-bit and 1,024-bit

keys.

F
cr

K

H

ta

b

d

se

h

O

b

u

co

[1

T

Figure 29 - E
ryptograph

Key generatio

However, giv

akes less than

it keys, any

evices. Eve

econds could

appens so in

Of greater con

e taking plac

se asymmetr

omputationa

146], we mu

The results of

Execution ti
y

on for DSA

ven that key

n five secon

of these key

n the DSA k

d be conside

nfrequently.

ncern for ex

ce frequently

ric cryptogra

ally intense t

ust evaluate t

f the signatu

me for key

is slower tha

generation w

nds to genera

y generation

key generatio

ered feasible

xecution time

y, as often as

aphy for eve

than symmet

the time it ta

ure generatio

118

generation

an for RSA,

would occur

ate a DSA 51

algorithms a

on for the 1,

for real-wor

es is signatur

s every GPS

ery execution

tric cryptogr

akes to gener

n execution

using DSA

especially fo

only approx

12-bit key, a

are feasible f

024-bit key

rld impleme

re generation

S fix. Since L

n, and asymm

raphy used in

rate a digital

time tests ar

and RSA as

for the larger

ximately onc

and RSA 512

for execution

that takes ap

ntation, sinc

n, since this

Location Da

metric crypto

n Location D

l signature fo

re shown in

symmetric

r 1,024 key s

ce daily, sinc

2-bit and 1,0

n on mobile

pproximately

ce key gener

operation w

ata Signing m

ography is m

Data Encrypt

or a GPS fix

Figure 30.

size.

ce it

024-

y 28

ration

will

must

more

tion

.

F
D

D

b

m

se

ex

ea

is

an

T

th

w

cu

te

Figure 30 - S
DSA and RS

DSA appears

oth 512-bit a

milliseconds,

econd. Ther

xecuted in re

arlier, we ch

s the only alg

nd can be us

To evaluate th

he test applic

while it was h

urrent and b

ests [156, 15

Signature ge
SA is feasibl

 to take sligh

and 1024-bit

 which is mu

refore, we su

eal-time to g

hose to imple

gorithm that

sed world-wi

he energy us

cation using

hooked up to

attery capac

7]:

eneration te
e for implem

htly less tim

t keys. Both

uch less than

uccessfully d

generate digi

ement Locat

is not restric

ide royalty-f

sage of Loca

DSA 512-bi

o the Agilent

ity, we use P

119

est results sh
mentation o

e than RSA

h DSA and R

n the minimu

demonstrated

ital signature

ion Data Sig

cted by intel

free [137].

ation Data Si

it with varyi

t E3631 pow

Peukert’s La

how that Lo
on real mob

for generatin

RSA can be e

um GPS sam

d that Locati

es for locatio

gning in LAI

llectual prop

igning signa

ing intervals

wer supply. B

aw to estimat

ocation Data
ile devices

ng digital sig

executed in

mpling interv

ion Data Sig

on data. As

ISYC using

perty or expo

ature generat

s on a Motor

Based on the

te the battery

a Signing us

gnatures usi

less than 30

val of one

gning can be

mentioned

DSA becaus

ort constrain

tion, we exec

rola Droid X

e measured

y life for the

sing

ng

se it

nts

cuted

ese

w

th

lo

F

A

sa

fo

se

fo

7

m

th

in

th

where is b

he discharge

ocation data

Figure 31 - E

As expected,

ampling and

or all interva

econd and 50

or the four to

.18% for all

may be due to

he CPU to th

n turn costs a

hrough 60), t

battery capac

 time in hou

signing inte

Estimated b

there is a ge

d signature ge

als, with the

00 second in

o 60 second

intervals. T

o a heavy loa

hrottle to a h

additional en

the CPU can

city, is the

urs. Figure 31

rvals.

attery life w

eneral trend t

eneration. B

largest diffe

ntervals, resp

intervals is 1

The larger di

ad on the CP

igher freque

nergy. With

n absorb the

120

discharge cu

1 shows the

with and wit

towards long

Battery life is

erences (23.3

pectively. A

1.95%, with

fference in b

PU with freq

ency to handl

h occasional

additional o

urrent, is t

estimated ba

thout Locat

ger battery li

s longer with

34% and 17.

Average perc

 an overall a

battery life a

quent signatu

dle the additio

signature ge

overhead of s

the Peukert c

attery life fo

tion Data Si

ife with less

hout location

18%) happe

cent differenc

average perc

at the one sec

ure generatio

onal process

eneration (i.e

signature gen

constant, and

or a variety o

igning

s frequent GP

n data signin

ening at the o

ce in battery

cent differenc

cond interva

on, which fo

sing load, wh

e., intervals 4

neration with

d is

of

PS

ng

one

y life

ce of

al

rces

hich

4

hout

121

a substantial impact on CPU frequency, resulting in smaller differences in battery life.

The larger difference in battery life at the 500 second interval is likely due to the fact that

when the phone is generating a digital signature, the CPU stays on longer than normal,

costing additional energy and preventing a quick return to a low-power state. Entering

this low-power state quickly after a GPS fix is acquired is much easier when the phone is

not generating a digital signature.

In conclusion, Location Data Signing addresses several of the needs for location-aware

mobile apps outlined in Chapter 1. The results of the above experiments demonstrate that

the Location Data Signing module is able to add authenticity to location data on mobile

devices in an energy-efficient manner. The Location Data Signing module is fully

implementable by third party application developers (Need #4), and can support real-time

applications (Need #2) by frequently signing location data fixes as often as once per

second. There is a slight impact on battery life due to Location Data Signing (Need #1)

at intervals 4 through 60, and a substantial impact at frequent (one second) or infrequent

(500 seconds) intervals of signature generation.

4.3.3 Session Management and Adaptive Location Data Buffering

Since the Session Management and Adaptive Location Data Buffering modules are

designed to work together in support of the general LAISYC communication framework,

we describe the evaluation of both modules in this section.

The first evaluation of these components focuses on our choice of using HTTP directly

for application data instead of SOAP, which encodes messages in XML and uses HTTP

as a transport protocol. Our hypothesis was that the extra characters required to encode

122

messages in XML will increase the amount of time the cellular radio is active, and will

result in decreased battery performance.

For this experiment, we implemented a custom Java ME application that was designed to

query a web application at defined intervals of time and then record timestamps to the

persistent MIDP Recordstore every several queries. Two methods of querying the server

were implemented: one using HTTP POST methods to exchange information, and the

other using the JSR172 J2ME Web Services Specification API to exchange SOAP-

encoded messages via the Java API for XML-based Remote Procedure Calls (JAX-RPC)

[141]. A device was charged until the battery life indicator on the outside of the device

indicated a full charge, and then the test software was executed on the device using one

of the methods of querying the server (e.g., HTTP POST or SOAP-based JAX-RPC) until

the battery was depleted to the point that the device powered itself off. After plugging in

the device and powering it back on, we restarted the testing application and pressed a

button to retrieve the timestamps from the most recently completed test. Through this

method, we were able to record the length of time that the phone was operational while

querying the server before the device powered off for both HTTP POST and JAX-RPC.

Netbeans was utilized as the primary Java Integrated Development Environment (IDE)

for implementing the mobile and web application. A Motorola i580 phone on the

Sprint-Nextel iDEN network was utilized for this test since it supports both HTTP POST

methods as well as JSR172 for SOAP-based web clients. Glassfish [133], the reference

implemented for Java Enterprise Edition (EE) 5 and 6, was chosen as the primary Java

application server to host the server-side web application. The Java API for Web

123

Services (JAX-WS) 2.0 [158] was used to create web applications within Netbeans that

exchanged SOAP-based messages. To create server-side HTTP servlets with which the

mobile phones could communicate directly via HTTP POST methods, Netbean’s Mobile

to Web Client tool was utilized to generate code stubs from the JAX-WS 2.0 web

services for both the mobile phone and web server.

When defining the information exchange between the mobile and web application using

both HTTP POST and JAX-RPC, we had to determine the exact set of information that

would be exchanged between the mobile device and server. We chose to use the input

and output of actual web services implemented for our TRAC-IT mobile application,

which is discussed in detail later in this chapter. When generating the JAX-WS 2.0 web

application, a TripTX object was defined for both the input and the output of the web

application. The contents of the TripTX object in Java data types can be seen in Figure

32. Therefore, in these tests the exact same amount of information was exchanged via

both HTTP POST and JAX-RPC, with the only difference being how the information was

encoded and passed from the mobile device to the server.

Figure 33 shows the results of the HTTP POST vs. JAX-RPC tests on the Motorola i580.

The potential energy savings when utilizing HTTP POST-based communication to

transfer information instead of the heavyweight XML-encapsulated JAX-RPC can clearly

be seen here. By utilizing HTTP directly instead of JAX-RPC and transmitting at 60

second intervals, battery life can be extended by approximately 4.6 hours.

F
H

F
h
H

Figure 32 - T
HTTP POST

Figure 33 - X
as a substan

HTTP-POST

TripTX Ob

autoDe

autoDet

autoDet

autoD

purpos

Landmark

landma

name

latitud

longitud

hor_ac

The informa
T vs. XML-b

XML-based
ntial negativ
T. [118, 120

bject

etectedModeID

tectedModeType

tectedPurposeID

etectedSpecificPurp

eID specificPur

kTX Object

arkID

de

de

ccuracy

ban

busSt

foodR

gasS

hom

ation exchan
based JAX-

JAX-RPC
ve impact o
0] © 2011 IE

poseID

startDa

startLoc

startLoc

startLo

poseID tripID

nk

top

Related

Station

me

railStop

schoolRe

shoppin

shopping

socialRe

124

nged betwee
RPC batter

mobile devi
n mobile de

EEE

teTime

cationID

cationLatUpdate

ocationLongUpdate

modeID

elated

gGoods

gServices

lated

workRe

en the mobi
ry life tests

ice to server
evice battery

int

do

La

endDateTime

endLocationID

endLocationLatU

endLocationLon

occupancyHouse

Strilated

ile device an

r communic
y life when

– 4 bytes

bo

l

uble – 8 bytes

andmarkTx Object

f

driverUpdate

gUpdate newLo

totalDi

totalTi

e occupa

ng – 18 bytes

Key

nd server fo

cation clear
compared t

oolean – 1 byte

ong – 8 bytes

float – 4 bytes

r

ocation

istance

ime

ancyNonHouse

or the

rly
to

125

The trend continues even to frequent communication with the server every four seconds,

which has an approximately 2.4 hour difference. On average, there is a 27.42% increase

in battery life. These results justify our choice of plain HTTP as the main application

data transport protocol, instead of an XML-based protocol on top of HTTP.

Our next evaluation focused on our choice of UDP as the transport protocol for location

data. TCP is the primary alternative to UDP, but we chose UDP due to its lightweight

design and general preference for systems where timeliness and scalability are of greater

importance than reliability. Since the timeliness and scalability benefits of UDP over

TCP are well understood, here we focus on demonstrating the battery-life benefits of

UDP to better understand the tradeoffs between reliability and power consumption in

relation to Adaptive Location Data Buffering.

Adaptive Location Data Buffering occasionally opens a TCP connection with the server

to ensure that there are not large consecutive losses of location data when using UDP

(e.g., when the device is in a gap of cellular coverage, when the user is on a voice call

and the device does not support simultaneous voice and data operations). Therefore, we

need to understand the power consumption differences between UDP and TCP to

schedule the frequency of TCP checks with the server. Understanding these differences

will help application developers choose TCP check frequencies that meet the reliability

needs of their applications, but avoid negating the benefits of using UDP for location data

by querying via TCP too often.

To evaluate the power consumption differences between UDP and TCP, we used an

Agilent E3631 power supply to measure the current drawn by a Sanyo 7050 mobile

126

phone on the Sprint-Nextel CDMA 1xRTT network. We created another test mobile

application that transmitted location data to a Glassfish server, with the choice of

selecting either UDP or TCP as the transport protocol. The location data format used

here is identical to that used by our TRAC-IT mobile application and is shown in Figure

34.

Figure 34 - The location data format used for the payload contents of UDP and TCP
packets in the power consumption tests

We allowed both the UDP and TCP mobile applications to run on the mobile phone, in

separate tests, and recorded the power consumption while the application was

transmitting every 4 seconds for a total of 300 transmissions. We repeated these tests

again with transmissions every 10 seconds for both UDP and TCP over an additional 300

transmissions. The phones were flipped closed during these tests, and therefore the

display was off. The results of these tests are shown in Figure 35. On the left, Figure 35

(a) shows that when transmitting via both UDP (blue line) and TCP (red line) the device

radio is constantly active, and therefore the difference in power consumption between

UDP and TCP is negligible.

F
t
Figure 35 - (a)
transmission in

While at 4 seco
ntervals it is evi

ond transmissio
ident that TCP

on intervals TC
P consumes app

127

CP and UDP ha
proximately 38%

ave similar pow
% more power

wer consumptio
r than UDP. [1

on, (b) at 10 sec
18] © 2011 IEE

cond
EE

128

However, Figure 35 (b) shows that as soon as there is enough time in between

transmissions for the radio to reach a power-off state, UDP (blue shaded area) is able to

reach this state more quickly after each transmission than TCP (red shaded area).

Examining the data more closely, the approximate energy used during UDP transmissions

is 110 joules, while TCP uses approximately 152 joules during transmissions. This yields

an average energy use of approximately 3.68 joules/transmission for UDP and

approximately 5.08 joules/transmission for TCP. Therefore, TCP consumes

approximately 38% more power than UDP for 10 second transmission intervals.

These results confirm our hypothesis that the reliability features in TCP (e.g., verification

of packet arrival, retransmissions of lost packets) force the radio to stay in a power-on

state longer than if UDP is used, which justify our choice of UDP as a location data

transport protocol instead of TCP. Developers of mobile applications can use these

results for guidance to balance their apps individual reliability requirements against the

additional energy consumption of TCP.

In conclusion, the Session Management and Adaptive Location Data Buffering modules

address several of the needs for location-aware mobile apps outlined in Chapter 1. Both

modules contribute to battery life savings by providing energy-efficient (Need #1) real-

time (Need #2) data communication between a mobile phone and server, increasing the

average battery life for application data transfer by approximately 28% and reducing the

average energy cost for location data transfer by approximately 38%.

4

S

an

S

is

F
w
in

O

on

th

.3.4 Critic

ince the prim

nd wireless d

ample outpu

s shown in F

Figure 36 - a
while b) only
n the right

On the left, al

nly the outpu

he left and ri

al Point Alg

mary motiva

data transfer

ut of the Crit

Figure 36.

a) All GPS d
y the critica

ll GPS point

ut from the C

ight represen

gorithm

ations for usi

r savings, we

tical Point A

data points g
l points gen

ts generated

Critical Poin

nt the same a

129

ing the Critic

e first focus

Algorithm fro

generated fr
nerated by th

from the mo

nt Algorithm

approximate

cal Point Alg

on quantifyi

om a user en

from a phon
he Critical

obile phone

m is shown. T

path of the

gorithm are

ing these two

ntering and e

ne are shown
Point Algor

are shown, w

The purples

user by conn

the battery l

o characteris

xiting a high

n on the left
rithm are sh

while on the

lines shown

necting

life

stics.

hway

t,
hown

 right

n on

130

sequential points, even though the output of the Critical Point Algorithm consists of far

fewer points.

We hypothesized that the Critical Point Algorithm would save battery energy by filtering

unneeded GPS data points before they are transmitted via UDP, effectively increasing the

interval of time between UDP transmissions. Therefore, to evaluate the potential battery

energy savings of the Critical Point Algorithm, we examined the effect of UDP

transmission interval on battery life.

To evaluate this hypothesis, we created another custom Java ME test application that

repeated UDP transmissions at a user-defined interval. GPS was not active during these

tests, so GPS data was simulated by hard-coding a set of data that was observed during

separate tests. Similarly to the test applications described earlier, this application

recorded timestamps to the persistent MIDP Recordstore every several UDP

transmissions. The device was charged until the battery life indicator on the outside of

the device indicated a full charge, and then the test software was executed on the device

until the battery was depleted to the point that the device powered itself off. After

plugging in the device and powering it back on, we restarted the testing application and

pressed a button to retrieve the timestamps from the most recently completed test.

Through this method, we were able to record the length of time that the phone was

operational while transmitting location data to the server using various transmission

frequencies. A Sanyo SCP-7050 mobile phone using the standard Sanyo SCP-22LBPS

3.7V Lithium Ion 1000 milliampere-hour (mAh) battery on the Sprint-Nextel CDMA

1xRTT cellular network was used for these tests.

F

to

6

F
fi
se

T

pr

v

X

d

th

d

igure 37 illu

o transmit sim

0 seconds un

Figure 37 - T
iltering GPS
econds. [11

The Y axis of

rovided by t

alues of 4 =

X axis repres

ecay of batte

he X axis, at

irectly propo

ustrates the d

mulated GPS

ntil the devic

The Critical
S data and t
8, 119] © 20

f Figure 37 s

the Sprint Ex

 FULL, 3 =

ents the dura

ery energy is

which point

ortional to th

difference in

S fixes to the

ce’s battery w

l Point Algo
transmitting
008, 2011 IE

shows batter

xtensions AP

HALF, 2 = L

ation of the t

s evident as

t the mobile

he length of t

131

device batte

e server at fi

was complet

orithm can m
g at an inter
EEE

ry energy lev

PI that were

LOW, 1 = W

test applicati

the battery e

device pow

transmission

ery life for a

ixed transmi

tely depleted

more than t
rval of 60 se

vels defined

also recorde

WARNING, a

ion in hours

energy levels

wered off. It

n interval, m

an application

ission interv

d.

riple batter
econds inste

by an interv

ed during the

and 0 = POW

. For each in

s dropped un

is clear that

meaning that

n utilizing U

als of 15, 30

ry life by
ead of 15

val value

e test, with

WER OFF. T

nterval, the

ntil the line m

battery life i

less frequen

UDP

0, and

The

met

is

nt

132

wireless transmissions result in a significant increase in battery life. By increasing the

interval from 15 to 30 seconds, battery life is extended from approximately 9 hours to

almost 17 hours. If the interval is increased further to 60 seconds, battery life reaches

approximately 30 hours.

Now that we have shown that reducing the number of UDP transmissions can have a

substantial effect on battery life, we must examine the feasibility of execution of the

Critical Point Algorithm on a mobile device. Since the Critical Point Algorithm is going

to run in real-time on the mobile phone and process a stream of generated location data,

the algorithm must be efficient. For real-world implementation, the algorithm must

maintain a constant memory requirement during execution, or the device will eventually

run out of memory as it runs for a period of days or months. Additionally, the execution

time of the algorithm should scale linearly regardless of the size of the dataset processed.

If the execution time of the algorithm scales exponentially and attempts to loop through

the entire dataset multiple times, then the software executing in real-time will inevitably

fall behind the real-time data stream.

To prove that the Critical Point Algorithm maintains a constant memory requirement, we

examined the amount of information required during execution. For each execution of

the Critical Point Algorithm, we kept a maximum of 3 data points in memory: Last

Critical Point, Last Trigger Point, and Current Point. We implemented the Critical Point

Algorithm as a sliding window with pointers to the 3 data points, as shown in Figure 38.

133

Figure 38 - The Critical Point Algorithm maintains a constant memory requirement
during execution by using at most three location data pointers

If a new critical point was found, then the first and second pointers were re-assigned to

the next respective points. If no critical point was found, then the third pointer was again

moved on to the next GPS data point, and the first and second pointers remain

unchanged. Therefore, the memory requirements of the Critical Point Algorithm, , is

constant:

where is the number of GPS data points processed.

To prove that the Critical Point Algorithm could scale linearly in execution time with

real-time data input, we examined the necessary number of steps to process one new GPS

data point. For each GPS data point, we computed the azimuth between two sets of

points: the Last Critical Point and Last Trigger Point, and the Last Critical Point and the

Current Point. The Vincenty Inverse Algorithm was used to compute the azimuth, which

has been shown to execute in a constant amount of time [136], and therefore is . We

134

also computed the difference between the two azimuth values, and compared the current

speed of the user to a speed threshold for each data point, which could also be done in a

constant amount of time. Since the Critical Point Algorithm would be executed once for

each new GPS data point, and a constant number of steps completed for each new GPS

data point, we determined the time complexity of the Critical Point Algorithm, , to

be:

where is the number of GPS data points processed. Therefore, the Critical Point

Algorithm scales linearly with the number of GPS data points and can successfully run as

a real-time stream processing algorithm.

Once we confirmed that the algorithm scales linearly in execution time and is constant in

memory requirements with the amount of data processed, we next examined the threshold

values that could be used by the Critical Point Algorithm for min_speed_threshold,

max_walk_speed, and angle_threshold.

For max_walk_speed, previous research has indicated that mean maximum walking speed

for fastest group of subjects studied was slightly over 2.5 meters per second [159].

Therefore, we chose 2.6 meters per second as our max_walk_speed threshold to

distinguish whether the user is walking.

To choose the min_speed_threshold, we referred back to the speed tests performed while

stationary. We wanted to eliminate points generated while the user was standing still, but

we also wanted to capture points that represented the user’s path and did not want to

ac

ob

re

F
w

T

is

0

al

an

du

st

ob

ccidentally e

bserved a us

esulting spee

Figure 39 - W
which includ

The minimum

s walking, th

meters per s

llowing all p

nd we would

ue to GPS d

tationary, we

bserved data

eliminate low

ser carrying

ed measurem

We observed
des some spe

m speed colu

he GPS gene

second. If w

points throug

d lose signifi

drift. Therefo

e used a min

a, this would

w speed poin

a Sanyo Pro

ments are sho

d the GPS s
eed values o

umn in Figur

rates points

we chose 0 as

gh the CP alg

ficant benefit

ore, to allow

n_speed_thre

d still allow o

135

nts collected

o 200 at casu

own in Figur

peed record
of 0 meters p

re 39 is of in

on a path wh

s our min_sp

gorithm whe

ts of the CP

w filtering of

eshold value

over 75% of

d while the u

ual walking s

re 39.

ded while a
per second

nterest, since

hile still reco

peed_thresho

enever there

algorithm w

f location dat

 of 0.1 mete

f the true wa

user was walk

speed outdoo

user was ca

e it shows tha

ording the d

old, then we

was a chang

when the user

ta points wh

ers per secon

alking points

king. We

ors, and the

asually walk

at while the

device’s spee

e would be

ge in directio

r is standing

ile the user w

nd. Based on

through the

king,

user

ed as

on,

g still

was

n the

e CP

al

sp

ca

co

w

m

an

co

F
m
is
im

lgorithm bas

peed when id

annot travel

onsidered ac

while Figure

min_speed_th

nd then post

ould compar

Figure 40 - W
min_speed_t
s preserved,
mage).

sed on the sp

dentifying cr

far at approx

cceptable. F

40 b) shows

hreshold. Fo

t-processed t

re all GPS da

When comp
threshold of
, with some

peed thresho

ritical points

ximately 1 m

igure 40 a) s

s only critica

or this test, w

the data usin

ata to just Cr

aring a) all
f 0.1 meters
filtering at

136

ld, and woul

s when walk

meter per sec

shows all GP

al points whe

we collected

ng the Critica

ritical Points

points to b)
per second
the beginni

ld yield a fal

king of less th

cond, this fa

PS points rec

en using the

all GPS dat

al Point Algo

s using the e

) critical po
d, the genera
ing of the tr

lse negative

han 25%. S

alse negative

corded in thi

0.1 meters p

ta points from

orithm on th

exact same G

oints using a
al walking p
rip (bottom

rate based o

ince a user

 rate is

is walking tr

per second

m the cell ph

he server, so

GPS data set

a
path of the u
left of each

on

rip,

hone

we

.

user

137

The general walking pattern of the trip is preserved in both sets of data, with the primary

filtering by the Critical Point Algorithm taking place at the very beginning of the trip,

when the speed values are 0 meters per second. We believe this initial reading of 0

meters per second is due to Kalman filtering of the speed data happening in the Java ME

platform or GPS firmware or hardware. In other words, the Kalman filter initially

classifies the increase in speed as noise and filters this information out. However, once

the user moves outside in the same general direction, the GPS speed values begin to

reflect the user’s true speed, as the Kalman filter reacts to the continuous outdoor

movement.

To demonstrate the potential of savings of the min_speed_threshold value of 0.1 meters

per second versus a value of 0 meters per second, we examined a day’s worth of GPS

data when the user stays in one location. During this time, the GPS drift can be

substantial, such as that shown in Figure 41.

The Critical Point Algorithm filtered out over 97% of this data when using a 0.1 meters

per second speed threshold, compared to only 74% of this data when using a 0.0 meters

per second threshold (Table 6). In other words, we took advantage of the speed accuracy

when the user was stationary to largely eliminate this erroneous movement, while still

keeping an accurate record of the user’s walking movements. Table 6 shows a detailed

comparison for both the walking data and the stationary data when using the

min_speed_thresholds of 0.0 meters per second and 0.1 meters per second. For these

tests, an angle_threshold of .5 degrees was used.

F
ca
se

T
P
sl

Figure 41 - O
an be filtere
econd min_

Table 6 - Wh
Point Algorit
light impact

Walkin

Station

Over 97% o
ed out by th

_speed_thres

hen using th
thm is able
t on accurat

Min
Speed

g
0

Min
Speed

ary
0

f the GPS d
he Critical P
shold

he 0.1 meter
to produce
te walking p

d
Numb

Critical
0

0.1

d
Numb

Critical
0

0.1
*Based

138

drift shown
Point Algori

rs per secon
significant

paths

er of
Points

Tot
o

50
39

er of
Points

Tot
o

904
91

on 119 bytes per

here at an i
ithm when u

nd min_spee
data filterin

tal Number
of Points

53
53

tal Number
of Points

3519
3519

r UDP payload

indoor statio
using a 0.1 m

ed_threshold
ng savings w

% Savings
5.66%
26.42%

% Savings
74.31%
97.41%

onary locat
meters per

d, the Critic
with only a

Bytes
Saved*

357
1,666

Bytes
Saved*

311,185
407,932

tion

cal

139

The final property of the Critical Point Algorithm to examine was the angle_threshold for

determining the magnitude of change in direction that should trigger a critical point to be

generated. If the angle_threshold is increased, fewer critical points will be generated,

which will save battery energy and data transmission and storage costs. However, if

fewer critical points are generated, the line defined by the remaining critical points

becomes a less accurate representation of the user’s path.

To illustrate the tradeoff between fewer data points and loss in path accuracy, ideally we

wanted to compare the accuracy of a path generated by the Critical Point Algorithm

against the true path of the user. However, determining the true path of the user is not

trivial because the sampled GPS positions of the user are an approximation of the true

position of the user, as shown in Figure 42.

Figure 42 - Sampled GPS data points create an approximated path of the user with
some uncertainty

Therefore, the observed path reconstructed using the sampled GPS data, shown as the

dashed line in Figure 42, is not equivalent to the true path traveled by the user, shown as

Possible true position when sampled

Sampled GPS position

Estimated horizontal accuracy (68th percentile by Java ME specification)

Possible true path

Observed Path

140

the solid line in Figure 42. The accuracy of the observed path is defined in part by the

accuracy of the individual GPS data points, which is influenced by many environmental

factors. The GPS sampling interval also has an impact on observed path accuracy, as the

more frequent sampling will typically yield a better representation of the path.

We originally planned to use to our primary accuracy metric provided by the Java ME

Location API, the estimated horizontal accuracy for each GPS fix, to estimate the true

path of the user based on the collected GPS data. The red uncertainty circle around each

GPS fix, defined by the estimated horizontal accuracy, is shown in Figure 42. However,

as discussed earlier, in our experiments with GPS Auto-Sleep we found the estimated

horizontal accuracy value to be unreliable and not within the specification defined by the

Java ME Location API. Therefore, a methodology to evaluate line accuracy based on

estimated horizontal accuracy would not provide a useful analysis.

When using the Critical Point Algorithm with our TRAC-IT mobile application to record

travel behavior, we decided to approach the evaluation of the angle_threshold used in the

Critical Point Algorithm from a practical perspective. One of the key metrics that

TRAC-IT was implemented to record is travel distance. In our research, we have found

that the observed GPS path of the user recorded outdoors using a GPS interval of four

seconds is a reasonable representation of the path for the purpose of most Location-based

Services, including measuring travel distance. Therefore, we decided to analyze the

impact of the angle_threshold values on the distance of the path generated by the Critical

Point Algorithm.

141

Figure 43 shows the difference between a path generated by the Critical Point Algorithm

and the path defined by the complete GPS dataset.

Figure 43 - The distance of the path generated from Critical Point Algorithm will
always be shorter or equal to the distance of the path using all GPS data points

The Critical Point Algorithm does not synthesize points; the set of critical points

remaining after execution of the algorithm is always a subset of the points that appeared

in the original GPS data:

Therefore, the distance of the full GPS path, Distancefull_GPS_path, will always be greater or

equal to than the distance of the path defined by the critical points, Distancecritical_point_path:

Sampled GPS position

Critical Point path

Full GPS Path

Critical Point

a

b c d

e

f

g

x
y

Distancefull_GPS_path = a + b + c + d + e + f + g

Distancecritical_point_path = x + y

142

As the angle_threshold increases, Distancecritical_point_path will decrease until eventually

only the first and last GPS points remain. When only two critical points remain, the

Distancecritical_point_path reaches its minimum value, which is the distance of a single

straight line connecting the first and last GPS points.

We defined the error between the path created by all the GPS data points and the path

created by critical points as the distance error percentage:

To assess the tradeoffs between angle threshold and number of critical points generated

using the distance error percentage metric, we post-processed the same walking trip

presented earlier using the Critical Point Algorithm and a range of angles from 0.5

degrees to twenty degrees, in 0.5 degree increments. The resulting lines, consisting only

of critical points, are shown in Figure 44.

We repeated the same experiment on a trip via car and collected all GPS data points so

we could post-process the results with many different parameters for the Critical Point

Algorithm on the same dataset. The resulting critical point count in relation to the chosen

angle and distance error percentage for the walk and car trips are shown in Figure 45,

with the walking data set on the left and the car on the right.

As we expected, there was a general trend towards fewer critical points and larger

distance error percentages with larger angle thresholds for both walk and car trips.

F

p

h

re

to

p

F
g
d

or the walk

oints when u

appened bet

educed numb

o increase th

oints at the a

Figure 44 - R
radually red

distance erro

trip, the line

using an ang

ween thresh

ber of points

he angle, the

angle value o

Running the
duces the nu
or percentag

e originally c

gle threshold

holds of two

s decreasing

line is event

of 65.5 degr

e Critical Po
umber of po
ge

143

consisting of

d of 18 to 20

to eight degr

after approx

tually reduce

ees (not sho

oint Algorit
oints that re

f 53 points w

degrees. Th

rees, with th

ximately eig

ed to just the

wn on graph

hm with inc
epresent the

was reduced

he most dram

he rate of cha

ght degrees.

e beginning

h).

creasing an
e line, which

to 3 critical

matic change

ange for the

If we contin

and ending

gle threshol
h increases

e

nued

lds
the

F
p
Figure 45 - As t
points being ge

the angle thres
enerated and an

shold for the Cr
n increase in th

ritical Point Al
he distance erro

144

lgorithm increa
or percentage f

ases, there is a g
for both walkin

general trend t
ng and car

towards fewer ccritical

In

th

d

so

p

li

S

w

F

an

ch

F
th
v

nversely, the

hreshold incr

istorted. At

o did the dis

oints that oc

ine due to dif

everal brief

were also due

or the car tri

ngles 0.5 to

hange for pe

Figure 46 - F
he full GPS
alues becau

e distance err

reased, since

eight degree

tance error p

ccurred at an

fferent vertic

local trends

e to shifting

ip, there was

approximate

ercentage of

For car trips
dataset, a),

use of longer

ror percentag

e the origina

es, as the rat

percentage.

ngle threshold

ces being us

in decreased

line geometr

s a substantia

ely five degr

points elimi

s, the Critic
, to far fewe
r straight pa

145

ge had a gen

al representat

te of change

The brief lo

ds 6 and 10

sed to connec

d distance er

ries.

al change in

rees. After a

inated began

cal Point Alg
er critical po
aths

neral trend o

tion of the li

of reduction

ocal trends in

were due to

ct vectors fo

rror percenta

n the number

approximate

n to level off

gorithm is a
oints , b), wi

of increasing

ine became i

n of points b

n increased n

shifts in the

orming the cr

age at angles

r of points el

ly five degre

f.

able to dram
ith lower an

as the angle

increasingly

began to leve

number of cr

e geometry o

ritical point

s 4, 7, 10, an

liminated for

ees, the rate

matically red
ngle_thresh

e

el off,

ritical

of the

path.

nd 16

r

of

duce
hold

146

This immediate sharp decrease in points starting at 0.5 degrees occurred because of the

larger number of points in the car trip (375 points) and larger distances in-between points,

where the car traveled in a relatively straight line on the road, with turns happening

mainly at intersections. Figure 46 shows all GPS points for a car trip on the left, and only

critical points using an angle_threshold of 0.5 degrees on the right. A large number of

points along straight lines were eliminated quickly at lower angle thresholds, unlike walk

trips that required larger angles to remove an equivalent percentage of points.

Table 7 shows these statistics for percentage savings for number of points when using the

Critical Point Algorithm for the walk trip compared to the car trip, with the Critical Point

Algorithm immediately producing a percentage savings of 41.33% at angle_threshold 0.5

for the car trip and only 26.42% using the same angle for the walk trip. The car trip was

reduced by over 90% of its points starting at angle 4.5, while for the walk trip, savings

over 90% were not realized until angle 14.5.

Also unlike walk trips, as the reduction in points began to level off for car trips the

distance error percentage continued to climb. There were a few shifts in geometry, like

the walk trip, that produced local trends in decreasing distance error percentage.

Interestingly, unlike the walk trip, the shifts in geometry with local trends in decreased

distance error percentage did not typically produce a larger number of critical points. In

other words, there was only one small local trend in an increased number of critical

points with an increasing angle_threshold. This behavior was also a result of quickly

eliminating the points along the straight lines in car trips using low angle_threshold

values.

147

Table 7 - Resulting statistics from a walk and a car trip that were both processed
using the Critical Point Algorithm with different angle thresholds

After these initial straight line points were eliminated, the remaining points were all

critical to representing the true travel distance of the vehicle. Therefore, any further

elimination of points results in a larger proportional distortion of the path distance when

compared to walk trips, since walk trips have a larger number of points that can continue

to be eliminated using larger angle_thresholds, without substantially affecting the

distance error. Walk trips have sequential GPS samples that are closer together, and

Angle
Threshold

Number
of

Critical
Points

Total
Number
of Points

%
Savings

Bytes
Saved*

Distance
CP (m)

Total
Distance

(m)

Distance
Error

Percentage

Angle
Threshold

Number
of

Critical
Points

Total
Number
of Points

%
Savings

Bytes
Saved*

Distance
CP (m)

Total
Distance

(m)

Distance
Error

Percentage

0.5 39 53 26.42% 1,666 244.98 250.80 2.32% 0.5 220 375 41.33% 18,445 25,392.22 25,410.16 0.07%
1 39 53 26.42% 1,666 244.98 250.80 2.32% 1 129 375 65.60% 29,274 25,299.82 25,410.16 0.43%
1.5 37 53 30.19% 1,904 244.97 250.80 2.33% 1.5 92 375 75.47% 33,677 25,265.51 25,410.16 0.57%
2 31 53 41.51% 2,618 244.51 250.80 2.51% 2 63 375 83.20% 37,128 24,865.05 25,410.16 2.15%
2.5 28 53 47.17% 2,975 244.28 250.80 2.60% 2.5 55 375 85.33% 38,080 24,734.36 25,410.16 2.66%
3 22 53 58.49% 3,689 240.63 250.80 4.06% 3 54 375 85.60% 38,199 24,599.69 25,410.16 3.19%
3.5 20 53 62.26% 3,927 240.98 250.80 3.92% 3.5 40 375 89.33% 39,865 23,937.16 25,410.16 5.80%
4 21 53 60.38% 3,808 243.05 250.80 3.09% 4 38 375 89.87% 40,103 24,361.76 25,410.16 4.13%
4.5 21 53 60.38% 3,808 243.05 250.80 3.09% 4.5 26 375 93.07% 41,531 23,852.57 25,410.16 6.13%
5 10 53 81.13% 5,117 236.98 250.80 5.51% 5 23 375 93.87% 41,888 23,594.17 25,410.16 7.15%
5.5 14 53 73.58% 4,641 239.15 250.80 4.64% 5.5 26 375 93.07% 41,531 23,806.48 25,410.16 6.31%
6 13 53 75.47% 4,760 238.21 250.80 5.02% 6 23 375 93.87% 41,888 23,547.01 25,410.16 7.33%
6.5 14 53 73.58% 4,641 240.09 250.80 4.27% 6.5 17 375 95.47% 42,602 23,258.19 25,410.16 8.47%
7 12 53 77.36% 4,879 239.87 250.80 4.36% 7 17 375 95.47% 42,602 23,286.09 25,410.16 8.36%
7.5 8 53 84.91% 5,355 237.18 250.80 5.43% 7.5 20 375 94.67% 42,245 22,605.74 25,410.16 11.04%
8 7 53 86.79% 5,474 230.45 250.80 8.12% 8 14 375 96.27% 42,959 22,189.59 25,410.16 12.67%
8.5 10 53 81.13% 5,117 232.44 250.80 7.32% 8.5 8 375 97.87% 43,673 22,063.43 25,410.16 13.17%
9 7 53 86.79% 5,474 231.07 250.80 7.87% 9 8 375 97.87% 43,673 21,878.53 25,410.16 13.90%
9.5 7 53 86.79% 5,474 231.07 250.80 7.87% 9.5 8 375 97.87% 43,673 21,787.44 25,410.16 14.26%
10 10 53 81.13% 5,117 232.89 250.80 7.14% 10 8 375 97.87% 43,673 21,772.84 25,410.16 14.31%
10.5 7 53 86.79% 5,474 231.58 250.80 7.66% 10.5 8 375 97.87% 43,673 22,025.89 25,410.16 13.32%
11 7 53 86.79% 5,474 232.06 250.80 7.47% 11 8 375 97.87% 43,673 22,112.91 25,410.16 12.98%
11.5 7 53 86.79% 5,474 231.14 250.80 7.84% 11.5 8 375 97.87% 43,673 22,331.20 25,410.16 12.12%
12 7 53 86.79% 5,474 232.61 250.80 7.25% 12 8 375 97.87% 43,673 22,334.09 25,410.16 12.11%
12.5 7 53 86.79% 5,474 231.83 250.80 7.56% 12.5 7 375 98.13% 43,792 21,251.06 25,410.16 16.37%
13 7 53 86.79% 5,474 233.72 250.80 6.81% 13 7 375 98.13% 43,792 21,492.49 25,410.16 15.42%
13.5 7 53 86.79% 5,474 233.72 250.80 6.81% 13.5 7 375 98.13% 43,792 21,720.98 25,410.16 14.52%
14 7 53 86.79% 5,474 233.72 250.80 6.81% 14 7 375 98.13% 43,792 21,800.60 25,410.16 14.21%
14.5 5 53 90.57% 5,712 229.89 250.80 8.34% 14.5 7 375 98.13% 43,792 21,976.69 25,410.16 13.51%
15 5 53 90.57% 5,712 229.89 250.80 8.34% 15 6 375 98.40% 43,911 22,297.52 25,410.16 12.25%
15.5 5 53 90.57% 5,712 231.33 250.80 7.76% 15.5 6 375 98.40% 43,911 22,307.91 25,410.16 12.21%
16 5 53 90.57% 5,712 234.65 250.80 6.44% 16 6 375 98.40% 43,911 22,191.51 25,410.16 12.67%
16.5 5 53 90.57% 5,712 234.65 250.80 6.44% 16.5 6 375 98.40% 43,911 22,083.02 25,410.16 13.09%
17 5 53 90.57% 5,712 234.65 250.80 6.44% 17 6 375 98.40% 43,911 21,963.01 25,410.16 13.57%
17.5 5 53 90.57% 5,712 235.44 250.80 6.12% 17.5 6 375 98.40% 43,911 21,873.72 25,410.16 13.92%
18 3 53 94.34% 5,950 217.31 250.80 13.35% 18 6 375 98.40% 43,911 21,629.03 25,410.16 14.88%
18.5 3 53 94.34% 5,950 217.31 250.80 13.35% 18.5 6 375 98.40% 43,911 21,434.66 25,410.16 15.65%
19 3 53 94.34% 5,950 217.31 250.80 13.35% 19 6 375 98.40% 43,911 21,241.89 25,410.16 16.40%
19.5 3 53 94.34% 5,950 217.31 250.80 13.35% 19.5 6 375 98.40% 43,911 21,162.57 25,410.16 16.72%
20 3 53 94.34% 5,950 217.31 250.80 13.35% 20 6 375 98.40% 43,911 21,063.71 25,410.16 17.11%

Car Trip

* Based on 119bytes per UDP payload

Walk Trip

148

therefore elimination of a nearby fix has a lesser impact on the measured travel distance

than the removal of a fix that is further away.

Based on our observations from the above experiments, we chose the following values

for the Critical Point Algorithm thresholds:

min_speed_threshold = 0.1 meters per second

max_walk_speed = 2.6 meters per second

angle_threshold = 4.5 degrees for walk trips, and 3 degrees for car trips.

For a final analysis on the expected data savings of the Critical Point Algorithm using

these thresholds, we post-processed 1,314 trips of GPS data that were collected using the

TRAC-IT mobile application. The results are shown in Table 8.

Table 8 – The Critical Point Algorithm is able to reduce GPS datasets by more than
77% on average while maintaining an average distance error percentage under
10%.

The average percent savings when using the Critical Point Algorithm was a reduction of

approximately 77% of the GPS data points. The 5th percentile of percent savings was

approximately 48%, which means that 95% of the time the percent savings is above 48%.

Assuming that each GPS fix was 119 bytes, this translates to a substantial data transfer

savings if the non-critical points were not transferred from the mobile device to the

Min Max Avg.
5th

percentile
25th

percentile
50th

percentile
68th

percentile
95th

percentile
Total Critical Point Count 2 322 35 3 13 27 38 97
Total GPS Fix Count 20 3,710 193 31 74 130 188 511
% Savings 20.83% 99.40% 77.43% 47.97% 69.49% 80.00% 86.83% 95.84%
Bytes Saved* 595 403,172 18,883 2,380 6,426 12,138 17,493 54,788
Distance Critical Points (m) 0.00 1,043,805.50 7,437.09 328.14 1,162.37 2,675.00 4,049.37 22,815.61
Total Distance (m) 2.36 1,087,043.20 7,878.02 380.79 1,252.55 2,913.39 4,345.91 24,231.34
Distance Error Percentage 0.00% 100.00% 8.90% 1.94% 3.98% 6.20% 8.70% 24.11%

* Based on 119 bytes per UDP payload

149

server. On average, we saved almost 19 kilobytes in data transfer per trip. Since

surveyed U.S. travelers report an average of 4.6 trips per day with a mean duration of

approximately 20 minutes per trip [149], the amount of data saved adds up quickly. If

location-aware services were to be provided to the 322.9 million U.S. cellular

subscribers, the Critical Point Algorithm would save approximately 279.2 gigabytes of

data transfer over the cellular network per day. Additionally, the average distance error

percentage is kept under 10%, which is sufficient for our purposes of distance tracking.

We could adjust the angle threshold value, if needed, to increase or decrease the distance

error percentage and percent savings, depending on the needs of future applications.

In conclusion, the CP Algorithm module addresses several of the needs for location-

aware mobile apps outlined in Chapter 1. The CP Algorithm reduces battery energy

expenditures (Need #1) and the amount of data transferred between the mobile phone and

server (Need #1) in real-time (Need #2) by eliminating non-essential GPS data (an

average 77% reduction), with an average doubling of battery life, as the interval of time

between location data transmissions is doubled. The CP Algorithm is able to maintain an

average distance error percentage for GPS data under 10%, which ensures a high-

precision and high-accuracy travel path (Need #3). We also presented a methodology to

select values for the thresholds used in the CP Algorithm (min_speed_threshold,

max_walk_speed, angle_threshold) based on observed GPS data, allowing any third party

mobile app developer to implement the algorithm on any GPS-enabled mobile device

with a Location API (Need #4).

4

T

fe

en

ti

d

w

B

te

S

S

F
p
b

.3.5 Locat

To demonstra

easible for u

ncrypted GP

imestamp inf

epleted. AE

was impleme

By comparing

erms of batte

anyo SCP-7

print CDMA

Figure 47 - L
ayloads is f
attery life

ion Data En

ate that the L

se on Java M

PS data every

formation to

ES was imple

nted that per

g the output

ery life on th

7050 mobile

A 1xRTT net

Location Da
feasible on m

cryption

Location Dat

ME phones, w

y four secon

o the Java ME

emented usin

rformed the

of these two

he mobile de

phone with

twork.

ata Encrypti
mobile devic

150

ta Encryption

we impleme

nds using 128

E Recordsto

ng BouncyC

same operat

o application

vice. We ex

a stock 3.7V

ion using 12
ces, althoug

n of the UD

ented a test a

8-bit AES an

ore until the b

Castle Java li

tions, but wi

ns, we determ

xecuted thes

V Lithium Io

28-bit AES
gh it does ha

P payload co

application th

nd occasiona

battery of th

ibraries [147

ithout encryp

mined the ex

e test applic

on 1000 mAh

encryption
ave a slight i

ontents is

hat repeatedl

ally saved

he device wa

7]. A second

pting the dat

xact impact i

ations on a

h battery on

for UDP
impact on

ly

as

d app

ta.

in

the

151

Figure 47 shows the results of the tests in battery life using encryption versus no

encryption. There was a small impact on battery life, approximately 16 minutes in these

tests, which is negligible for most mobile devices.

In conclusion, the Location Data Encryption module addresses several of the needs for

location-aware mobile apps outlined in Chapter 1. Location Data Encryption ensures the

security of the location data being transferred between the mobile device and server in

real-time (Need #2), with only a slight impact on battery life (i.e., a decrease of 4.9%)

(Need #1). Location Data Encryption can be implemented by any third party mobile app

developer (Need #4) using existing software libraries such as BouncyCastle [147].

4.4 Innovative Location-Aware Applications Developed Using LAISYC

Two separate research projects have implemented innovative location-aware applications

using the LAISYC framework presented in this dissertation. LAISYC enables the use of

efficient real-time, high-accuracy and high-precision location data in each of these

systems. In this section we describe the two applications: TRAC-IT, a multi-modal

travel behavior data collection tool that can provide simultaneous and real-time location-

based services, and the Travel Assistance Device (TAD) mobile app to assist transit

riders with intellectual disabilities.

4.4.1 TRAC-IT

In order to solve transportation problems and effectively plan new roads or public

transportation routes, transportation professionals require information about the current

travel behavior of the general public. While road-based infrastructure such as loop-

detectors can provide a count of cars traveling through a particular road, more descriptive

152

data for the purposes, origins and destinations of trips is desired. Additionally, road-

based infrastructure does not provide any information about trips that are taken using

public transportation, biking, walking, or carpooling.

In the past, paper diaries or phone interviews have been used to ask survey participants

about their daily travel behavior. However, these manual survey methods typically only

cover a day or two of travel behavior due to the burden on the participant. Due to this

burden, past studies have shown problems with data accuracy and completeness in

manual surveys when reported travel behavior was compared with vehicle-based GPS

systems that also monitored the participant’s travel behavior for the same period of time

[160-162].

Vehicle-based GPS systems have the benefit of objective GPS data that is recorded at a

particular time and location. However, like road-based infrastructure vehicle monitoring,

vehicle-based GPS misses trips occurring via public transportation, biking, walking, and

carpooling. Additionally, vehicle-based GPS could provide travel behavior data from

more than one individual if the vehicle is shared within a household. Transportation

professionals desire data per individual, over multiple modes of transportation, so

behavior such as interactions within the household can be evaluated.

Our approach to enabling multimodal travel behavior data collection was to monitor the

transportation behavior of an individual via TRAC-IT, a mobile application installed on a

GPS-enabled mobile phone. However, for long-term travel data collection to be

compelling for individuals participating in the study, an incentive for the individual to

give up their privacy and donate their data would likely be required. One type of

153

incentive is a monetary reimbursement to the user. However, this quickly becomes

expensive for the surveyor and could not be sustained over long periods of time with

large populations. Another form of incentive could be services provided to the user. For

example, Google provides free services and products such as Gmail, web search,

Android, and others in exchange for access to a user’s data. If we could provide valuable

services to the survey participant, such as real-time personalized traffic incident alerts,

this may be enough of an incentive for a user to contribute data to transportation

professionals.

Figure 48 - The TRAC-IT mobile application is based on the LAISYC framework to
enable simultaneous travel behavior data collection and real-time location-based
services

154

To enable simultaneous data collection of multimodal travel behavior, as well as real-

time location-based services, we implemented the mobile application TRAC-IT using

LAISYC on Java ME. The TRAC-IT system architecture, based on LAISYC, is shown

in Figure 48.

Glassfish was used as the Java Web Application Server to host the web application that

communicated directly with the mobile phone, as well as provided a website for the

traveler to manage account information (e.g., resetting passwords, etc.). We used SQL

Server 2008 and PostGIS as the relational and spatial databases, respectively. Glassfish

served as a proxy for database access for the mobile phone. We also created a Java

desktop application, the TRAC-IT Database Toolkit, which was capable of a variety of

both automated and manual post-processing analyses. For example, the TRAC-IT

Database Toolkit running on the TRAC-IT server automatically generated Google Earth

Keyhole Markup Language (KML) files for all trips taken by users and emails links to

the user the day following the travel behavior so the user could examine the data and

provide feedback to the analysts. Analysts could also use the TRAC-IT Database Toolkit

to analyze and produce statistics for collected travel behavior, and evaluate the

performance of the Critical Point algorithm, execute automated clustering algorithms to

identify points-of-interest, use artificial neural networks to automatically classify the

mode of transportation for a trip [163], as well as various other processing routines that

have been implemented for the TRAC-IT system [131].

155

The TRAC-IT mobile application can execute in two modes:

Passive data collection: The application runs on the background on a mobile

phone without any interaction with the user, and collects only location data

Active data collection: Every time when starting or stopping a trip, the user

enters information such as trip purpose, mode of transportation, and vehicle

occupancy via the TRAC-IT user interface (Figure 49). Location data is also

simultaneously recorded.

Figure 49 - The TRAC-IT mobile application provides a user interface to record
input from the individual for mode of transportation, purpose, and vehicle
occupancy as well as location data. [148]

(1)

Select

TRAC-ITTRAC-IT

Cancel Select

Cell Phone Screen

“Soft Keys” with programmable functions

(1) Start Activity
(2) Switch Users

Key:

Menu Items

A.1)

B)

(On Location
Selection)

TRAC-ITTRAC-IT

QuickStop End Trip

C)

Distance Traveled: 2.6 miles

Recording...

Elapsed Time: 00 : 11 : 56

Heading: W E

N

S

(On “End Trip”)

A)
TRAC-ITTRAC-IT

Ok Menu

(1) Record Trip
(2) Change User

User: Smith

TRAC-ITTRAC-IT

Cancel Select

Login:

TRAC-ITTRAC-IT

Cancel Select

(1) Home
(2) Work
(3) Bank
Add New Location

Current Location:

Loop begins to collect GPS
data and send it to server

Main Menu Get description of current
location from user (will be

“Start Location” for this trip)

Allows different users to log in with
their unique account

Get description of current
location from user (will be
“End Location” for this trip)

(On Location Selection)

TRAC-ITTRAC-IT

<- Back Select

(1) Work Related
(2) Shopping
(3) Pickup
Someone
(4) Go Home
etc. ...

Purpose of Trip:

E)

Get Purpose of trip from user

(On Purpose
Selection)

TRAC-ITTRAC-IT

<- Back Select

(1) Car
(2) Bus
(3) Walking
etc. ...

I got here by:

F)

Get Mode of Transportation
from user

(On “Car” Selection)

A)

TRAC-ITTRAC-IT

<- Back Finish

of people in car:

1
Household:

0
Non-Household:

(On “Bus”, “Walk”, or non-motorized
Mode selection)

G)

Get Occupancy & D/P from
user

(On “Finish”)
(On Successful Login)A)

On “QuickStop”

To C.1) (Page2)

D)
TRAC-ITTRAC-IT

<- Back Select

(1) Home
(2) Work
(3) Bank
Add New Location

Current Location:

I was a:
Driver Passenger

Exit
Settings

Start

XXXX@gmail.com
Email address:

Password:

End

If no User
Logged In

User
Logged In

156

To evaluate real-time travel behavior data collection using TRAC-IT, we performed a

variety of successful test deployments with the research team in both passive and active

modes. These test deployments included GPS Auto-Sleep, Location Data Signing, the

Critical Point Algorithm, Adaptive Location Buffering, Location Data Encryption, and

Session Management, all using the parameters discussed earlier.

TRAC-IT was deployed in 2011 as part of a USDOT-sponsored research project in

Tampa, Florida. We used the passive mode of TRAC-IT with 30 users on Sanyo Pro 200

mobile phones on the Sprint CDMA EV-DO Rev. A network. GPS Auto-Sleep was set

in tracking mode with the parameters discussed earlier, and Location Data Buffering and

Location Data Encryption were both used. We decided to turn off the Critical Point

Algorithm so that we could collect a full GPS dataset from participants over a long period

of time and use this data for a variety of post-processing and analysis routines, including

the evaluation of the different Critical Point Algorithm parameters presented earlier.

From February 10, 2011 to April 29, 2011, TRAC-IT collected 1,857 sessions from 30

users (over 60 sessions on average per user) for a total of 4,023,917 GPS data points

(Table 9).

Total survey time was calculated by the difference between the oldest and newest GPS

times in each session, and a sum of differences over all sessions. TRAC-IT server uptime

was over 99 percent during the data collection period.

We analyzed a subset of this data (899 sessions) to determine the reliability of UDP and

Location Data Buffering during data collection.

157

Table 9 - TRAC-IT was used as part of a USDOT-funded research project to collect
over 4 million GPS data points from 30 users over 2 months

Each location data packet contained an integer that was incremented on each

transmission, so the number of lost UDP packets could be determined by reviewing the

missing counter numbers for each session. Table 10 shows that 95% of sessions had less

than 3.95% of lost UDP packets, with an average UDP packet loss of 1.19%.

Table 10 - 95% of sessions had less than 3.95% of lost UDP packets

We also compared the overall performance of TRAC-IT without LAISYC to TRAC-IT

with LAISYC, as shown in Table 11. Without LAISYC, TRAC-IT battery life using only

GPS sampling (i.e., not sending the location data to a server) was 8.04 hrs. When TRAC-

IT both sampled GPS and sent the data to a server without using LAISYC, battery life

dropped to 4.21 hrs.

Date Range 2/10/2011 to 4/29/2011
Total Number of Users 30
Total Number of Sessions 1,857
Avg. Session Length (hrs) 15.44
Total Survey Time (days) 1,194.80
Avg. Survey Time per User (days) 39.83
Total Number of GPS fixes Received 4,023,917
Avg. Number of GPS fixes per Session 2,166.89
Avg. Number of GPS fixes per User 134,130.57

TRAC IT Data Collection for USDOT funded project

Lost Per Session % Lost Per Session
Min 0 0.00%
Max 290 66.15%
Avg 15.67 1.19%
50th percentile 8 0.48%
68th percentile 13 0.88%
95th percentile 59.15 3.95%

UDP and Location Data Buffering Packets Lost

158

Table 11 - When TRAC-IT used LAISYC, device battery life nearly doubled while
reducing overall location data packet loss by 2.16% and adding encryption

GPS
Sampling

Real-time server
communication

Encryption Battery
Life

TRAC-IT 4 s 8.04 hrs

TRAC-IT 4 s UDP packet loss =
2.7% (n = 46,785)

4.21 hrs

TRAC-IT
w/
LAISYC

Dynamic
(4 s moving,
300 s stopped)

Adap. Loc. Data
Buff.
UDP packet loss =
0.54%
(n = 2,642,309)

HTTPS - SSL
UDP - 128-bit
AES

15.44 hrs
(avg, n =
1857)

When TRAC-IT used LAISYC, battery life was extended to at least 15.44 hrs on average

even while sending data to the server and encrypting this data. Adaptive Location Data

Buffering reduced the overall location data packet loss by 2.16%. These results clearly

show the benefit of using LAISYC with a location-aware mobile app.

To demonstrate the ability of the TRAC-IT system to perform simultaneous data

collection and real-time location-based services, we implemented a simple Path

Prediction proof-of-concept using the LAISYC Spatial Analysis module. Path Prediction

uses spatial representations of a user’s historical trips along with their real-time GPS

position in order to predict the paths they may take in the immediate future [164]. Since

human travel behavior has been shown to be highly repetitive in both space and time

[154], historical trips can be effectively mined in order to anticipate the user’s future

travel.

A spatial database was used to perform a series of intersection queries with the user’s

real-time location (obtained using the LAISYC framework) and buffers surrounding

pr

a

in

F
y
y

T

bu

O

d

al

v

reviously rec

potential pa

n Google Ear

Figure 50 - P
ellow push-
ellow shade

The yellow pu

uffers indica

Once these pa

etermine if a

long the pred

ia text messa

corded trips

ath that the u

rth.

Path Predict
-pin marker
ed buffers, t

ush-pin repr

ate the past h

aths are iden

any location-

dicted paths

age or within

. Each buffe

user may foll

tion compar
rs, against p
to predict th

resents the u

historical pat

ntified, anoth

-based alerts

. Intersectin

n a mobile a

159

er that inters

low. Figure

res the trav
paths from t
he immediat

ser’s real-tim

ths that inter

her series of

s (e.g., traffic

ng location-b

application.

sected the rea

50 shows a

eler's real-t
the traveler
te travel pat

me location,

rsect with th

intersection

c incidents)

based alerts c

Based on th

al-time locat

visualization

time locatio
’s travel his
th

and the yell

he user’s real

n queries wer

relevant to t

could then b

he estimated

tion represen

n of this pro

n, shown as
story, shown

low shaded

l-time locatio

re performed

the user lay

be sent to the

impact to th

nted

ocess

s
n as

on.

d to

e user

he

u

ac

W

th

sa

ov

if

sh

re

F
m
b

In

ca

T

ser for a fals

ccordingly.

We implemen

he Java Web

ample traffic

verlapped th

f incidents al

hows a text m

eal-time loca

Figure 51 - P
messages cou

ehavior

n conclusion

an provide s

TRAC-IT, the

se-negative o

nted and test

b Application

c incidents w

he past travel

lerts would b

message that

ation of the m

Path Predict
uld be sent t

n, TRAC-IT

imultaneous

e GPS Auto-

or false-posi

ted Path Pred

n Server, and

with descript

l behavior pa

be triggered

t was succes

mobile phon

tion success
to the phone

is a multi-m

s and real-tim

-Sleep, Sess

160

tive message

diction using

d PostGIS as

ions in our d

aths of a me

based on the

ssfully sent b

ne, as well as

sfully demon
e using LAI

modal travel b

me location-b

ion Managem

e hit, the me

g the LAISY

s the spatial

database serv

ember of the

e user’s real

by the server

s the past tra

nstrated tha
ISYC and a

behavior dat

based servic

ment, Adapt

essages could

YC framewo

database ser

ver with loca

research tea

-time paths.

r to the phon

avel paths.

at real-time
a history of t

ta collection

ces (e.g., traf

tive Location

d be pre-filte

rk, Glassfish

rver. We cre

ations that

am to determ

 Figure 51

ne, based on

 location-ba
the traveler

mobile app

ffic alerts). I

n Data

ered

h as

eated

mine

the

ased
r’s

that

In

161

Buffering, Critical Point Algorithm, and the Session Management modules all contribute

energy savings (Need #1) that enable the phone’s battery to last an entire day during

high-resolution, real-time GPS tracking (Needs #2 and #3). High-resolution, real-time

GPS tracking is critical to TRAC-IT for reconstructing detailed travel path information,

including distance traveled, as well as providing predictive, personalized traffic alerts

based on historical and real-time data. The Location Data Signing module allows

transportation analysts to trust information that is recorded by the application, while the

Location Data Encryption module protects the privacy of users’ location information.

The Session Management, Adaptive Location Data Buffering, and Critical Point

Algorithm modules allow TRAC-IT to avoid data overage costs on phones with limited

data plans while still supporting real-time location data communication. The Adaptive

Location Data Buffering module prevents tracking data from being lost when the user is

outside network coverage or is on a voice call for networks that do not support

simultaneous voice and data communications. TRAC-IT was successfully implemented

and tested using LAISYC on actual mobile phones without any modification to device

hardware or software (Need #4).

4.4.2 Travel Assistance Device (TAD)

Traveling via public transportation such as a bus requires quick thinking and navigation

skills. Identifying an upcoming bus stop as your correct destination and reacting to pull

the cord or push a button to request that the vehicle stop in time is a challenging task,

especially for the 16.4 million Americans, or 6.9 percent of the population, with

intellectual disabilities [165]. For individuals who cannot perform this quick thinking on

their own, transit agencies must provide equivalent door-to-door paratransit service.

P

$

re

h

ro

tr

ri

tr

th

re

ca

F
o

aratransit is

1.70 per trip

equiring 24 h

ave institute

oute transit.

rainers actua

ider the vario

ransportation

hat one of th

eacting to th

annot ride fi

Figure 52 - T
f an upcom

a costly serv

p for regular

hour advanc

ed travel train

 Travel train

ally plan and

ous skills an

n. However,

e most chall

e riders upco

ixed route tra

The Travel A
ing destinat

vice to trans

fixed route t

e notice for

ning program

ning is an int

d travel with

nd steps requ

, in our work

lenging skill

oming destin

ansit indepen

Assistance D
tion bus stop

162

it agencies a

transit [166]

trips, as wel

ms in an atte

tense one-on

a transit ride

uired to succe

k with transi

s to master f

nation stop.

ndently.

Device mobi
p

at an average

], and can als

ll as long wa

empt to train

n-one instruc

er on their pe

essfully com

it agencies, t

for these ind

A traveler w

ile applicati

e cost of $17

so be restrict

ait times. Tr

n able riders t

ction period

ersonal trip

mplete a trip

travel trainer

dividuals is id

who cannot m

ion alerts th

7 per trip, ve

tive to riders

ransit agenci

to use fixed

in which tra

and show th

via public

rs have indic

dentifying an

master this s

he transit ri

ersus

s by

ies

avel

he

cated

nd

skill

ider

163

After discussing these challenges with the travel training and special education

communities, we designed and implemented the Travel Assistance Device (TAD) mobile

application for GPS-enabled mobile phones using LAISYC on Java ME.

We wanted to provide four services using TAD:

1) Website-based trip planning: Allow the travel trainer and caregivers of the transit

rider to plan a transit itinerary, including the exact boarding and exit bus stops, via

a website interface.

2) Real-time transit navigation prompts (the primary TAD feature): Alert the rider

via audio, visual, and tactile prompts to identify an upcoming bus stop in real-

time, much like a car-based navigation system, to help individuals with

intellectual disabilities who had problems with this task. TAD alerts the transit

rider twice: once with a “Get Ready…” notification several stops ahead of their

destination, and repeatedly with a “Pull the Cord Now!” notification when the

rider passes the bus stop previous to the destination stop until the rider confirms

having received the alert by pressing a button (Figure 52).

3) Real-time location tracking: Allow the travel trainer and caregivers of the transit

rider to always see the real-time location of the transit rider.

4) Automated lost alerts: Alert the travel trainer and caregivers if the transit rider

wanders off the path of the planned trip.

164

Figure 53 - TAD was implemented using the LAISYC framework to support real-
time location-aware services

The TAD system architecture, based on the LAISYC framework, is shown in Figure 53.

We implemented the prototype TAD system and LAISYC framework on Java ME, and

used Glassfish as the Java Application Server, to support the server-side portion of

LAISYC and the TAD web application. SQL Server and PostGIS were used for

relational and spatial database servers, respectively.

To support feature #1 of planning transit trips via a website, we implemented a web

interface using the Google Web Toolkit (GWT). Figure 54 shows the map view of the

travel trainer or caregiver choosing the boarding and exiting bus stops for a particular

transit rider. A caregiver or travel trainer can simply choose the route they want the

transit rider to use, clicking on the boarding bus stop, and clicking on the destination bus

stop.

LAISYC
Server side

Web Application Server

LAISYC
Device side

TAD
Mobile App

Transit Rider

TAD Web Application

TAD Server based softwareTAD Device based software

Database Server

Persistent Datastore

App/Location DataApp/Location Data

TAD
Website

Parent /
Travel Trainer

App/Location Data

F
v

If

w

p

W

T

d

S

sh

w

Figure 54 - N
ia the TAD

f the user mu

with separate

lanned, the c

Work) and sa

To keep the T

esktop utility

pecification

hare their bu

widely deploy

New transit
website

ust transfer f

 boarding an

caregiver or

aves the trip

TAD databas

y application

(GTFS) form

us routes, bu

yable to man

trip itinera

from one rou

nd destinatio

travel traine

to the TAD

se updated w

n that can im

mat [167]. S

s stops, and

ny different c

165

ries can be

ute to anothe

on stops, can

er enters a te

database.

with the most

mport transit

Since over 2

schedule da

cities [168].

created for

er, multiple s

n be defined.

ext descriptio

t recent tran

data in the G

200 transit ag

ata in GTFS f

 the TAD m

segments of

 Once the tr

on of the trip

sit data, we

General Tran

gencies in th

format, TAD

mobile app u

the trip, eac

rip is comple

p (e.g., Home

created a

nsit Feed

he United Sta

D would be

user

h

etely

e to

ates

T

ph

w

F
to

F

st

w

lo

ch

w

si

th

ac

tr

To provide fe

hone, we im

with the trans

Figure 55 - T
o exit the bu

igure 55 A)

tartup. Once

website (Figu

ogged-in use

hoosing a tri

when approac

ignal, a red c

hat TAD can

ctive GPS si

rip.

eature #2 of r

mplemented a

sit rider. The

Travel Assis
us

shows the in

e logged in,

ure 55 B)) on

er are pulled

ip to travel, t

ching the de

circle with a

nnot provide

ignal lock, th

real-time ale

a user interfa

e user interfa

stance Devic

nitial login s

the user is sh

n subsequent

from the TA

the user is sh

stination bus

line through

them with r

hen the glob

166

erts to the tra

ace capable o

face shown to

ce mobile ap

screen given

hown a list o

t mobile app

AD database

hown a simp

s stop (Figur

h it appears o

real-time nav

e appears as

ansit rider on

of visual, au

o the rider is

pp interface

to the user o

of personal t

p startups. P

e on each app

ple screen th

re 55 C)). If

over the glob

vigation instr

s shown in F

n the GPS-en

udio, and tact

s shown in F

e that alerts

on the first a

trips planned

Planned trips

plication star

hat has a dista

f the phone l

be image to

ructions. If

igure 55 C)

nabled mobi

tile interacti

Figure 55.

s the rider w

application

d via the TA

 for the curr

rtup. After

ance count-d

loses a GPS

alert the use

the phone h

throughout t

ile

on

when

AD

rently

down

er

has an

the

167

During the design of the real-time navigation feature of the TAD mobile app, we

consulted Mark Sheppard, professional travel trainer for Hillsborough Area Rapid Transit

(HART), and other members from the Association for Travel Instruction, as well as

existing literature on real-time navigation instructions for individuals with disabilities.

One past study found that auditory alerts are both the most preferred form of real-time

navigation prompts for individuals with intellectual disabilities as well as the most

effective form of prompts [169]. Other studies on users without cognitive disabilities

have produced similar results [170-172]. Based on this information, we decided to create

two alerts for the user when approaching the destination stop. When the rider is

approximately 300 meters away from his or her destination stop, the TAD announces a

recorded audio message “Get ready” twice and the phone vibrates several times.

Figure 56 - The initial bus stop detection algorithm for the Pull the Cord Now alert
was defined by a radius surrounding the destination stop

168

When the phone is approximately 160 meters from the destination stop, it announces a

recorded audio message to “Pull the cord now!” and the cell phone vibrates and shows

the “Pull the Cord Now!” text on the screen (Figure 55 D)). A visualization of the radius

that triggers this second alert is shown in Figure 56. The phone will continue to

announce this message until the user presses a button to confirm that the message was

received.

LAISYC was critical to implementing features #2 real-time navigation alerts, #3 real-

time location tracking, and #4 automated lost alerts, since frequent GPS sampling on the

mobile phone is required. TAD uses the GPS Auto-Sleep feature to dynamically control

the GPS sampling frequency. When the user is not actively traveling on the bus (i.e., the

mobile app is not on screens Figure 55 C) or D)), GPS Auto-Sleep is in the normal

tracking mode that increases the frequency of sampling when the user is detected as

moving, and reducing sampling when the user has stopped moving based on the intervals

defined earlier. However, when the user selects a transit trip and the mobile app

transitions to Figure 55 C), GPS Auto-Sleep switches to the navigation mode that

controls the GPS sampling frequency based on the distance to the destination stop. For

TAD, we chose distance thresholds of 800 meters, 1,500 meters, and 2,000 meters that

would control GPS sampling with four respective interval values:

State[0] = 1 second interval

State[1] = 4 second interval

State[2] = 16 second interval

State[3] = 32 second interval

169

When the user was detected as being more than 2000 meters from their destination,

state[3] interval of 32 seconds was used. When the user was between 1,500 meters and

2,000 meters from the destination, state[2] interval of 16 seconds was used. When the

user was between 800 and 1,500 meters from the destination, state[1] interval of 4

seconds was used. When the user was closer than 800 meters to the destination, state[0]

interval of 1 second was used. The TAD application then executed the comparison

against the thresholds defined above to provide the “Get Ready…” and “Pull the Cord

Now!” alerts. Once the user confirmed arrival at the destination, as in Figure 55 D), GPS

Auto-Sleep switched out of navigation mode and back into tracking mode.

Location Data Signing was determined to be unnecessary for the TAD application, so this

module was turned off.

Session Management handled all communication between the TAD mobile app and the

server, using HTTPS for application data and UDP for real-time location data for the

real-time tracking and automated lost alert features. The Critical Point Algorithm,

Adaptive Location Data Buffering, and Location Data Encryption were all turned on for

the TAD application. By using GPS Auto-Sleep to control GPS sampling frequency on

the device, we were able to monitor the location of the user up to once-per-second, as the

user neared the destination stop. However, real-time location updates to the server were

controlled by the Critical Point Algorithm and Adaptive Location Data Buffering, and

could occur less often than once per second to save battery energy and a reduction of data

transfer over the cell network.

T

tr

ri

F
fr

T

se

th

T

fr

sp

To show the r

rainer, we im

ider based on

Figure 57 - T
ramework s

The website w

econds by de

he Update Po

To implemen

rom LAISYC

patial data re

real-time tra

mplemented a

n location up

The TAD we
supporting t

was set to re

efault, but th

osition butto

nt the feature

C, as well as

epresentation

acking locatio

a map-based

pdates from

ebsite shows
the TAD mo

fresh the use

he website us

on at any tim

e #4 automat

s the server-s

n of each rou

170

on of the tra

d website tha

LAISYC on

s real-time l
obile and w

er’s location

ser could ma

me.

ted lost alerts

side Spatial A

ute from the

ansit rider to

at showed th

n the phone (

location upd
web app

n from the re

anually trigg

s, we used th

Analysis LA

shapes.txt f

the caregive

he real-time l

(Figure 57).

dates from

al-time data

ger an update

he real-time

AISYC modu

file in the GT

er or travel

location of th

the LAISYC

abase every 1

e by clicking

location dat

ule. Using t

TFS data, we

he

C

15

g on

ta

the

e

cr

B

th

(F

F
lo
d

If

w

au

ti

tr

H

bu

reated a seri

Based on the

he rider’s ph

Figure 58).

Figure 58 - L
ocation of th

determine if

f the location

was outside th

utomatically

ime location

ravel via a ro

Having know

uffers based

es of spatial

known route

hone was com

LAISYC Sp
he user agai
the user ha

n was inside

he buffer, th

y sent to the

data and the

oute on the p

wledge of the

d on “connec

area buffers

e that the rid

mpared to th

atial Analys
inst spatial b
as become lo

the buffer, t

he user was c

caregiver an

e route only

phone and th

e planned tra

cting-the-dot

171

s surroundin

der was trave

e spatial buf

sis module o
buffers surr
ost

the user was

considered lo

nd travel train

occurred wh

he phone had

avel path of t

ts” between b

ng the route i

eling, the rea

ffer surround

on the serve
rounding th

s considered

ost and an em

ner. These c

hen the user

d entered nav

the bus was i

bus stops co

in the PostG

al-time locat

ding the plan

er compares
he rider’s pl

on-route. If

mail and tex

comparisons

had actively

vigation mod

important, s

ould produce

GIS database.

tion data from

nned route

s the real-ti
lanned rout

f the location

xt messages w

s between re

y selected to

de.

ince creating

e false-positi

.

m

me
te, to

n

was

eal-

g a

ves

lo

v

F
v
es

In

cr

lo

p

p

S

bu

ost rider aler

ersus the pla

Figure 59 - T
ersus an est
stimated pa

n the top por

reated by co

ost rider whe

lanned trave

lanned route

ince the prim

us, we focus

rts. Figure 5

anned path o

The planned
timated path
ath can prod

rtion of Figu

nnecting the

en the bus pa

el path will o

e.

mary feature

sed on the ev

9 shows the

of the bus.

d travel path
h created by
duce false-p

ure 59, the pl

e bus stop lo

asses outside

only generate

e of TAD is t

valuation of

172

buffers that

h of the bus
y connectin

positive lost

lanned travel

cations, whi

e of the incor

e an alert if t

the real-time

this feature.

t are created

s is used to d
ng bus stop l

alerts

l path of the

ich will prod

rrect route b

the location

e notification

 We conduc

when using

detect if the
locations, si

 bus is outsi

duce a false-p

buffer. Buffe

of the user i

n to the user

cted 50 plann

 only bus sto

 rider is lost
ince an

de the buffe

positive for

fers based on

is far from th

when to exi

ned transit tr

ops,

t,

r

a

n the

he

it the

rips

u

T

w

d

fo

an

n

to

ri

ri

th

te

an

sh

st

T
8

sing a Sanyo

Tampa, Florid

while the rem

isabilities fro

or Exception

nd exit of th

otification p

o the destina

ider after the

ider to avoid

hey reached

est trips base

n ideal prom

hown in Tab

tudent testin

Table 12 - Fi
7% of the ti

o 7050 mobi

da. 38 trips

maining 12 tr

om the Univ

nal Students

e transit veh

per trip. We

ation stop and

e stop prior t

d missing the

the stop prio

ed on these g

mpt did not o

ble 12 for the

g.

ield tests of
ime at rand

ile phone on

were perform

rips were per

versity of So

(STAGES) p

hicle, so TAD

defined Idea

d the destina

to the destina

e stop. Early

or to the dest

groupings, an

ccur. The re

e random res

the TAD ap
dom stops

173

the Sprint C

med random

rformed by s

uth Florida S

program. E

D would pro

al prompts a

ation stop. L

ation stop bu

y prompts w

tination stop

nd if the pro

esults of thes

search team

pp in Tamp

CDMA 1xRT

mly on variou

six individua

Successful T

ach trip was

ovide one “Pu

as prompts g

Late prompts

ut would req

were prompts

p. We catego

mpt was not

se tests and

testing and T

a, Florida p

TT network

us stops in T

als with intel

Transition A

s defined as a

ull the cord

given betwee

s were prom

quire fast rea

 given to the

orized the re

t ideal, we al

subsequent a

Table 13 for

produced id

on HART in

Tampa, Flori

llectual

After Graduat

a single boar

now!”

en the stop pr

mpts given to

action time b

e user before

esults of the

lso analyzed

analysis are

r the STAGE

deal prompt

n

ida,

tion

rding

rior

the

by the

e

50

d why

ES

ts

T
p

O

p

F
b
d

Table 13 - Fi
rimarily du

Overall, in 38

lace and tim

Figure 60 - S
us stops, wh

database loca

ield tests of
ue to close p

8 of 50 trips

me.

Some TAD a
here the act
ation of the

TAD with S
roximity of

TAD provid

alerts were g
tual bus stop
 bus stop (b

174

STAGES st
f stops near

ded the “Pull

given early
p position (m

blue bus icon

udents were
the USF ca

l the Cord N

or late due
marker "A"
n)

e more chal
ampus

Now!” promp

to incorrec
") differed f

llenging,

pt at the idea

ctly geocode
from the

al

ed

175

The majority of the remaining early, late, or missing prompts (8 of 12) were due to

incorrectly geocoded bus stops (the database location of the bus stop did not match the

actual bus stop location), or the challenge of alerting the rider at the correct time when

bus stops were close together. We were able to monitor the location of each of the riders

in real-time, and lost rider alerts were only issue to us when a research team member

intentionally wandered outside of the route buffer.

Figure 60 shows one situation where the database location of the bus stop (the blue bus

icon) did not match the true stop location (marker “A”).

Transit agencies are currently working to improve the quality of their bus stop inventories

to support advanced systems such as TAD. Various emerging tools can assist agencies in

this task [173-177], and the reliability of TAD and other advanced applications will be

dependent on good data.

To address the remaining challenges of close bus stops and GPS drift, the research team

modified the bus stop detection algorithm, so that instead of relying on a single radius

surrounding the destination stop, the “Pull the Cord Now” alert was now based off of the

entry into and exit of the phone from a circle surrounding the second-to-last stop (Figure

61). This design reduced both early and late alerts, since the “Pull the Cord Now”

notification was given just after the user departs from the second-to-last stop. In

subsequent tests with the new bus stop detection algorithm in Tampa, Florida, TAD

provided the alert in the ideal location to users in 33 of 33 tests [178] (Table 14).

176

Figure 61 - An improved algorithm for notifying the user when to exit the bus is
based on detecting the departure from the second-to-last bus stop. [126]

Table 14 - The improved bus stop detection algorithm delivered ideally-timed alerts
to riders in 33 of 33 tests

To further assess the effect of TAD on the bus riding behavior of individuals with

intellectual disabilities, a research team from the Florida Mental Health Institute and the

Number of Ideal Prompts 33
Number of Early Prompts 0
Number of Late Prompts 0
Number of Times No Prompt Given 0
Total Number of Trips 33

Evaluation of New Bus Stop Detection Algorithm

177

Center for Urban Transportation Research conducted an additional study [178]. The

team tested the ability of three individuals with intellectual disabilities to travel to a new

location without TAD, and with TAD, for a total of 33 trials. Each of the individuals

failed to both request a bus stop and exit the bus at the appropriate time when they were

not carrying TAD. When they did carry TAD, each individual was able to both request

the stop at the correct time, as well as exit the vehicle at the correct time. Therefore, this

study concluded that the experiments provided supporting evidence that TAD was an

effective tool for prompting individuals to pull the cord indicating their stop and exit the

bus at the appropriate location and time [178]. The study also recommended larger scale

tests to further evaluate TAD with different and more varied populations.

In 2010, USF partnered with DAJUTA, a Florida-based company, to provide TAD as a

service to transit riders and transit agencies. More information about TAD as a

commercial product can be found on DAJUTA’s website at http://dajuta.com/.

In conclusion, TAD is a mobile transit navigation app that assists bus riders with

intellectual disabilities by prompting them when to exit the bus, as well as tracking the

rider in real-time and alerting caregivers if the rider is lost. In the most recent group of

TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to transit

riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session Management,

Adaptive Location Data Buffering, Critical Point Algorithm, and the Session

Management modules all contribute energy savings (Need #1) that enable the phone’s

battery to last an entire day during high-resolution, real-time GPS tracking (Needs #2 and

#3). High-resolution GPS tracking is critical to TAD for providing accurate instructions

178

to the transit rider when to exit the bus as well as tracking an accurate location of the

traveler so that caregivers can be alerted if the rider becomes lost. The Location Data

Encryption module protects the privacy of the transit rider while being tracked. The

Session Management, Adaptive Location Data Buffering, and Critical Point Algorithm

modules allow TAD to avoid data overage costs on phones with limited data plans, while

still supporting real-time location data communication for the TAD tracking alert

features. The Adaptive Location Data Buffering module prevents transit rider location

data from being lost when the user is outside network coverage or is on a voice call for

networks that do not support simultaneous voice and data communications. TAD was

successfully implemented and tested using LAISYC on actual mobile phones without any

modification to device hardware or software (Need #4).

179

CHAPTER 5: SUMMARY AND CONCLUSIONS

5.1 Note to Reader

Portions of the technology presented in the future work section for GPS Auto-Sleep are

protected by U.S. Provisional Patent “System and Method for Changing Positioning

System Settings at Wirelessly-Obstructed Locations” by USF.

5.2 Summary of Problem Statement and Needs

While the exponential growth in the adoption of mobile phones provides many

opportunities for new types of mobile apps, evolution in intelligent location-aware

services has been limited due to several factors:

1) Battery energy limitations are not addressed. Many architectures have been

designed without acknowledging that mobile devices have a finite energy supply,

and that positioning systems such as GPS, wireless communications, and use of

the CPU to execute the architecture components all have a significant impact on

battery energy levels.

2) Cellular data transfer limitations are not addressed. Many architectures have been

designed without consideration of constrained cellular network bandwidth and

potential financial charges to the end-user for excessive data traffic.

3) Lack of integration with existing platforms on commercially-available devices

(e.g., Java Micro Edition, Android). Many existing location-aware architectures

180

utilize custom operating systems or protocols which are not readily available on

commercially-available mobile phones, and therefore cannot be widely deployed

as mobile apps to existing phones.

4) Lack of evaluation of efficacy of location-aware architectures. Very few location-

aware architectures have actually been evaluated on real mobile devices, and as a

result there is little quantifiable evidence of these architectures’ efficacy with real

devices.

As a result of these limitations, there is a demand for a new location-aware architecture

that meets following needs:

Need #1: Intelligently manage limited device and network resources. The

architecture must acknowledge that location-aware apps can deplete significant

device and network resources, and the architecture must demonstrate features that

conserve these resources.

Need #2: Support real-time applications. A significant portion of the architecture

must be implemented on the mobile device to allow software to immediately act

upon new data in real-time and immediately interact with the mobile user.

Need #3: Support high-precision and high-accuracy positioning systems.

Positioning technologies, such as high-sensitivity assisted GPS, must be usable

within the architecture to support the most innovative types of location-aware

apps that require highly accurate and precise location information.

Need #4: Is fully implementable by third party mobile app developers. The

architecture must take into account the availability of application programming

181

interfaces (APIs) in existing cross-platform application environments such as Java

ME or Android, and ensure that the architecture can be implemented on such

devices.

5.3 Summary of Contributions

This dissertation presented LAISYC, a modular location-aware architecture for intelligent

real-time mobile applications that is fully-implementable by third party mobile app

developers and supports high-precision and high-accuracy positioning systems, such as

GPS. LAISYC significantly improves device battery life, provides location data

authenticity, ensures security of location data, and significantly reduces the amount of

data transferred between the phone and server. We have designed, implemented, and

successfully evaluated the following modules in real-world scenarios using actual mobile

devices:

GPS Auto-Sleep module: The GPS Auto-Sleep module saves battery energy

(Need #1) when using GPS (Need #3) in real-time (Need #2), maintaining

acceptable movement tracking (approximately 89% accuracy) with an

approximate average doubling of battery life. We have also demonstrated a

methodology for selecting the thresholds used in the algorithm based on observed

GPS data, so that the algorithm can be implemented by any third party mobile app

developer on any device with GPS and a Location API (Need #4).

Location Data Signing module – Location Data Signing module adds real-time

(Need #2), energy-efficient (Need #1) data authenticity to this architecture that is

missing in other architectures, with an average approximate battery life decrease

182

of only 7%. We selected DSA as digital signature algorithm to ensure the module

is fully implementable by third party application developers (Need #4).

Session Management and Adaptive Location Data Buffering modules: The

Session Management and Adaptive Location Data Buffering modules also

contribute to battery life savings by providing energy-efficient (Need #1), real-

time (Need #2) data communication between a mobile phone and server,

increasing the average battery life for application data transfer by approximately

28% and reducing the average energy cost for location data transfer by

approximately 38%. To implement these modules, we chose protocols available

to third party mobile application developers (i.e., HTTP, TCP, and UDP) on Java

ME and Android devices (Need #4).

The Critical Point Algorithm module: The Critical Point Algorithm module

further reduces battery energy expenditures and the amount of data transferred

between the mobile phone and server (Need #1) by eliminating non-essential GPS

data (an average 77% reduction) (Need #3) in real-time (Need #2), with an

average doubling of battery life as the interval of time between location data

transmissions is doubled. We have also demonstrated a methodology to select

values for the thresholds used in the Critical Point Algorithm based on observed

GPS data, therefore allowing any third party mobile application developer to

implement the algorithm on any GPS-enabled mobile device with a Location API

(Need #4).

Location Data Encryption module: The Location Data Encryption module

ensures the security of the location data being transferred between the mobile

183

device and server in real-time (Need #2), with only a slight impact on battery life

(i.e., a decrease of 4.9%) (Need #1). Therefore, Location Data Encryption can be

implemented by any third party mobile app developer (Need #4) using existing

software libraries such as BouncyCastle [147].

The LAISYC architecture was validated in two innovative mobile apps that would not

have been possible without LAISYC due to energy and data transfer constraints:

TRAC-IT is a multi-modal travel behavior data collection mobile app that can

provide simultaneous and real-time location-based services (e.g., traffic alerts). In

TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location Data

Buffering, Critical Point algorithm, and the Session Management modules all

contribute energy savings (Need #1) that enable the phone’s battery to last an

entire day during real-time high-resolution GPS tracking (Needs #2 and #3).

Real-time, high-resolution GPS tracking is critical to TRAC-IT for reconstructing

detailed travel path information, including distance traveled, as well as providing

predictive, personalized traffic alerts based on historical and real-time data. The

Location Data Signing module allows transportation analysts to trust information

that is recorded by the application, while the Location Data Encryption module

protects the privacy of users’ location information. The Session Management,

Adaptive Location Data Buffering, and Critical Point Algorithm modules allow

TRAC-IT to avoid data overage costs on phones with limited data plans, while

still supporting real-time location data communication. The Adaptive Location

Data Buffering module prevents tracking data from being lost when the user is

184

outside network coverage or is on a voice call for networks that do not support

simultaneous voice and data communications. TRAC-IT was successfully

implemented and tested using LAISYC on actual mobile phones without any

modification to device hardware or software (Need #4).

TAD is a mobile transit navigation app that assists bus riders with intellectual

disabilities by prompting them when to exit the bus, as well as tracking the rider

in real-time and alerting caregivers if the rider is lost. In the most recent group of

TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to

transit riders in 100% (n = 33) of tests. In TAD, the GPS Auto-Sleep, Session

Management, Adaptive Location Data Buffering, Critical Point Algorithm, and

the Session Management modules all contribute energy savings (Need #1) that

enable the phone’s battery to last an entire day during high-resolution, real-time

GPS tracking (Needs #2 and #3). High-resolution GPS tracking is critical to TAD

for providing accurate instructions to the transit rider when to exit the bus, as well

as tracking an accurate location of the traveler so that caregivers can be alerted if

the rider becomes lost. The Location Data Encryption module protects the

privacy of the transit rider while they are being tracked. The Session

Management, Adaptive Location Data Buffering, and Critical Point Algorithm

modules allow TAD to avoid data overage costs on phones with limited data plans

while still supporting real-time location data communication for the TAD tracking

alert features. The Adaptive Location Data Buffering module prevents transit

rider location data from being lost when the user is outside network coverage or is

on a voice call for networks that do not support simultaneous voice and data

T

ph

ch

o

si

on

F
w

D

ap

2

comm

on act

(Need

The contribut

hone hardwa

hallenges rel

f Java ME a

imultaneous

n a Sanyo Pr

Figure 62 - B
with smart p

Despite havin

pproximately

00. These te

munications.

tual mobile p

d #4).

tions discuss

are continue

lated to loca

re an even b

battery life

ro 200 with

Battery life i
phones, inclu

ng a larger ca

y five hours

ests were per

 TAD was s

phones witho

sed above ar

s to evolve.

ation-aware a

bigger proble

benchmarki

Java ME an

issues relate
uding Andr

apacity batte

, compared t

rformed with

185

uccessfully

out any mod

e likely to b

 Early exper

applications

em on smart

ng tests usin

d an HTC H

ed to GPS a
roid devices

ery, the HTC

to the eight h

hout any oth

implemente

dification to

ecome even

riments indic

discussed in

phones. Fig

ng a GPS ref

Hero smart ph

appear to be

C Hero mana

hours of batt

her hardware

d and tested

device hardw

more impor

cate that the

n this dissert

gure 62 show

fresh interva

hone with A

e an even bi

aged a batter

tery life from

e such as the

d using LAIS

ware or softw

rtant as mob

e energy

tation in con

ws the result

al of four sec

Android 2.1.

igger challen

ry life of onl

m the Sanyo

e display bein

SYC

ware

ile

ntext

ts of

conds

nge

ly

Pro

ng

186

activated, so the additional energy consumption is directly related to the GPS or CPU

hardware required for an application to sample GPS every four seconds. Given that the

HTC Hero has a processor capable of roughly 2.5 times the clock-rate of the Sanyo Pro

200 (528MHz versus 225MHz), it is no surprise that the CPU consumes additional

battery energy.

Many users report having battery life problems with their smart phones [179]. This is

because smart phones are used for many activities, including checking email, browsing

the internet, watching videos, listening to music, etc. that all have a significant impact on

battery life. Additionally, device hardware capabilities and power requirements are

outpacing advancements in battery capacity at roughly twice the rate, creating a negative

trend in battery performance [179]. Recent device features such as larger screens and 4G

cellular network communication exacerbate the problem.

While users can attempt to budget their battery usage according to the features they want

most, the applications that use the most battery energy are not always obvious. For

example, recent research demonstrated that in the popular game Angry Birds, which does

not provide any location-aware features, GPS was consuming around 19% of the energy

spent while the application executed [38]. Further examination revealed that the

advertising engine Flurry, used in Angry Birds, was responsible for turning on GPS

during application execution. Furthermore, Flurry was responsible for about 45% of the

total energy expended by Angry Birds. Therefore, in order to provide location-aware

services for many different types of applications to smart phone users without a

187

noticeable impact on battery life, device-based intelligence such as LAISYC will be

required.

5.4 Future Work

Our work with GPS-enabled mobile phones and LAISYC has provided insight into future

research areas. For example, while LAISYC successfully supports real-time mobile

applications given its current design, we have identified several potential areas of future

work that would add new capabilities to LAISYC. We have also observed potential areas

of improvement in the location-aware application development process. The following

two sections outline these areas of future work.

5.4.1 Location-Aware Mobile App Development

Many mobile apps that use location information have a large negative impact on mobile

device battery life. One reason behind this phenomenon is that many mobile apps are

tested on emulators before they are released instead of real devices, since device are

expensive. Current emulators do not model energy consumption of GPS or wireless

communications, and therefore many developers do not realize the potential impact of

their mobile apps until they receive feedback from their customers. There is a need for

better software emulators that provide a model of energy consumption to mobile app

developers so they understand the potential impacts of their application before releasing

it.

188

5.4.2 Potential LAISYC Improvements

Since LAISYC is a modular framework, it allows integration of new components by

simply defining input and output of location data from a module. Figure 63 shows the

addition of two new modules: Privacy Filter and Position Estimation.

Figure 63 - Future work on LAISYC can include the addition of two new modules:
Privacy Filter and Position Estimation. [118]

The following sections discuss these two new modules, as well as improvements that

could be made to the existing GPS Auto-Sleep, Critical Point Algorithm, and Location

Data Buffering modules.

5.4.2.1 GPS Auto-Sleep

While GPS Auto-Sleep currently tracks the true moving state of the user with

approximately 88% average accuracy, we observed that the accuracy could potentially be

improved by addressing the largest contributor to state errors: stationary GPS outliers.

The most frequent errors in state transitions occur when the device is stationary and

asleep in state[n] and the GPS generates an extreme outlier with a high speed value and a

Position Estimation

Privacy Filter

Legend

Real-time Phone-Generated
Location Data Flow

Control Signals

Application Data Flow

UDP

HTTP(S)

TCP

Location Data
Flow Control

Device Platform Software

LAISYC – Communications
Management

LAISYC – Positioning
Systems Management

Server

Location API Persistent Storage API I/O API

Virtual Machine

Java ME / Android

Location-Aware Application
(Device-side)

189

distance far from the current location. When this occurs (in approximately 1-2% of all

stationary GPS fixes on the Sanyo Pro 200 in our tests), the GPS Auto-Sleep snaps to

rapid tracking of state[0] and must wait until the backoff timer times out before it can

transition to the sleep state again.

To eliminate these false state transitions due to stationary outliers, we hypothesized that a

Kalman Filter implemented at the application level could dampen the effect of these

outliers on GPS Auto-Sleep. In subsequent research performed after the research

presented in this dissertation, USF Masters student Isaac Taylor demonstrated that GPS

Auto-Sleep accuracy could be improved from 88.40% to approximately 92% on average,

without a substantial impact on tracking data through the use of Adaptive Kalman Filters

[180].

The remaining source of state errors primarily occur when the user is traveling and

reaches a destination location, and GPS Auto-Sleep must wait for the backoff timer to

expire before gradually transitioning to the sleep state[n]. In other words, GPS Auto-

Sleep still believes the user is actively traveling until this timeout expires. One way to

potentially eliminate this timeout period is to have the device memorize locations

previously visited by the user by tracking the user’s location history. Then, when GPS

Auto-Sleep recognizes that the real-time location of the user is approaching one of these

historical locations, GPS Auto-Sleep could automatically transition to state[n] directly

instead of waiting for the backoff timer timeout and a gradual state transition to state[n].

In order to contribute to this area, future work might evaluate possible methods for

identifying, saving, and recognizing these custom user locations. Additional work with

190

GPS Auto-Sleep could also examine the potential for saving battery energy when the user

is in a location with highly-obstructed wireless conditions. When one of these locations

is recognized, the GPS interval could be increased until the user leaves the location, to

reduce the impact of GPS hardware fruitlessly searching for a signal while the user is at

the location.

GPS Auto-Sleep could also be used to increase the GPS sampling frequency at certain

locations. This technique could be useful in context of location-aware advertising when

an ad engine would like to obtain more detailed user information near advertising

locations. However, the impact on device battery life would need to be carefully

balanced against the value of the additional information.

One challenge of using GPS Auto-Sleep on smartphones is that many applications may

be requesting GPS location information simultaneously but at different sampling

frequencies. Therefore, an application that is requesting location updates every second

could eliminate the energy benefit of another application using GPS Auto-Sleep. GPS

Auto-Sleep could be moved into the underlying Location API in the platform to balance

competing application requirements and the impact of GPS on device battery life.

However, this integration would require collaboration with device manufacturers or

platform providers (e.g., Google for Android).

In our early work with GPS Auto-Sleep on Android devices, we have discovered an issue

on many different devices that affects the ability of an application to request scheduled

GPS updates at defined intervals. This is a problem for GPS Auto-Sleep, since it depends

on the ability to request GPS updates at a specific interval for each state.

191

On many Android devices, when an application passes in a minTime parameter (i.e.,

interval of time between location updates) to the GPS location provider, the GPS provider

typically ignores this value and proceeds to update the application via callbacks to the

LocationListener.onLocationChanged() method every second (i.e., 1Hz update rate). A

build of the Android Open-Source Project (AOSP) code 4.0.3 Ice Cream Sandwich on a

Samsung Nexus S 4G has the same behavior of ignoring the minTime parameter, so the

behavior is not due to an OEM modification of the platform source.

We believe we have narrowed down the problem to faulty capability reporting from

native code to the GpsLocationProvider in the Android platform. In a custom AOSP

build on the same Nexus S 4G, we hard-coded values in the GpsLocationProvider to

indicate that the native code was not capable of handling GPS scheduling. The platform

took over and properly followed the minTime parameter (60 seconds in this case) and

delivered location updates to the app 60 seconds apart. Therefore, it seems that the native

code is telling the platform that it can handle GPS scheduling, but then it does not,

resulting in a 1Hz update rate no matter the minTime interval requested by the

application.

We have worked with the Google Android team to arrive at a solution to this issue that

should appear in the next Android version 4.1 Jelly Bean. Additional tests have been

added to the Android Compatibility Test Suite to evaluate GPS scheduling compliance

and the Location API documentation has been clarified to provide a strict expectation for

GPS scheduling adherence [181], which should hopefully resolve this issue for Android

devices version 4.1 Jelly Bean and above.

192

5.4.2.2 Critical Point Algorithm

We currently use a single speed threshold to vary the angle threshold used at runtime

between two values (i.e., a walk angle threshold, and car angle threshold) to filter points

using the Critical Point Algorithm. Future work could examine if addition angle

threshold values could be used to further decrease the number of critical points while not

affecting the distance error percentage.

5.4.2.3 Location Data Buffering

Currently, Location Data Buffering functions by occasionally checking in with the server

after a timer expires via TCP, to ensure there is still an end-to-end connection. Instead of

the current time expiration threshold, more complex evaluation functions to determine

when a TCP transmission should occur are also possible. For example, the Critical Point

Algorithm could be used to determine when a TCP transmission should occur, to increase

the probability of Critical Points being successfully received by the server.

TCP-based checks with the server can also be utilized to increase system scalability by

communicating location data flow control instructions back to the mobile device. For

example, for many devices sending real-time second-by-second tracking updates to a web

server, the server may eventually become overloaded with location data if enough

devices are logged on simultaneously. In the subsequent TCP response for each device,

the server could send a command back to the device to send fewer updates to the server

until further notice. This would immediately reduce the load on the server, thereby

allowing additional scalability, while providing a basic quality of service. When the

number of devices logged on is reduced, the server could then send a command in the

193

next TCP response to each device allowing the phone to begin transmitting fixes more

frequently again.

5.4.2.4 Position Estimation

Position Estimation is one module that can be added to the LAISYC framework to

estimate the position of the user when the raw output from a single positioning

technology is unavailable or not sufficiently accurate. Existing work in position

estimation by others could also be integrated into LAISYC as modules. For example,

Shih-Hau et al. discuss localization techniques based on received signal strength of Wi-Fi

access points and the use of an artificial neural network to infer position [83].

Beauregard presents a methodology to use artificial neural networks and GPS data to

improve pedestrian navigation via a dead reckoning system [75], while Lachapelle seeks

a similar goal via the combination of GPS and micro-electro-mechanical systems

(MEMS) [72]. In their work on their Statistical Terminal Assisted Mobile Positioning

(STAMP) system, Laoudias et al. present a statistical method based on historical position

calculations to infer current position [182, 183], while Markoulidakis et al. present

improvements on STAMP by using different Kalman filtering options on various input

variables [184, 185].

5.4.2.5 Privacy Filter

A Privacy Filter is another module that can be added to the LAISYC framework to

further protect user privacy. Since the user must explicitly allow a mobile application to

access their location according to the Java ME security model, the application on both the

client and server is considered to be trusted by the end user. However, the privacy of the

194

user should be protected to ensure the trusted location-aware application only accesses

user location when the user considers it appropriate and does not accidentally disclose

sensitive location data. The current Java security model for the Location API has only

blanket options for user approvals:

Allow This Time

Always Allow

Allow Until Exit

Never Allow

Therefore, the user must permit all location requests by the application, or the user is

prompted each time the location-aware application wishes to access device location.

Instead of these two extremes, there is a desire for the user to be able to define

conditional approvals based on real-time information, including current location.

The Privacy Filter would allow the application to define conditional permissions for

location requests, such as time limitations (e.g., requests are permitted from 9am to 5pm

on Monday through Friday for business employees) or sensitive location restrictions (e.g.,

no requests allowed while in “private zones” near home). Using this method, the

application would be protected from accidentally receiving sensitive location updates.

The Privacy Filter would also be a valuable addition on the Android platform. Currently,

Android enforces only an install-time security model for application permissions. For

example, if an application is going to access the user’s location, the user is only asked

once when the application is installed if they would like to permit this. Once this initial

permission is granted, the application can access the user’s location at any time during

195

execution without being required to ask the user during runtime. Therefore, since

Android currently does not enforce a user-based runtime security model, the Privacy

Filter module would be an important feature on Android devices.

196

LIST OF REFERENCES

[1] International Telecommunications Union (2011). "ICT Facts and Figures - The
World in 2011."

[2] CTIA - The Wireless Association. "Wireless Quick Facts - Mid-Year Figures."
Accessed December 13, 2011 from
http://www.ctia.org/advocacy/research/index.cfm/aid/10323

[3] Stephen Blumberg, Julian Luke, Nadarajasundaram Ganesh, Michael Davern,
Michel Boudreaux, and Karen Soderberg (2011). "Wireless Substitution: State-
level Estimates From the National Health Interview Survey, January 2007–June
2010," U.S. Department of Health and Human Services, April 20, 2011.

[4] Synovate. "Synovate mobile phones survey." Accessed January 31, 2010 from
http://www.synovate.com/insights/infact/issues/200909/

[5] Google, Inc. "Android Market." Accessed December 21, 2011 from
http://market.android.com/

[6] Apple, Inc. "iPhone - From the App Store." Accessed December 21, 2011 from
http://www.apple.com/iphone/from-the-app-store/

[7] Research In Motion Limited. "Blackberry App World." Accessed December 21,
2011 from http://us.blackberry.com/apps-software/appworld/

[8] Amazon.com, Inc. "Amazon Appstore for Android." Accessed December 21,
2011 from http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011

[9] GetJar, Inc. "GetJar." Accessed December 21, 2011 from http://www.getjar.com/

[10] ABIresearch. (2011). "Android Overtakes Apple with 44% Worldwide Share of
Mobile App Downloads." Accessed: December 13, 2011 from
http://www.abiresearch.com/press/3799-
Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+
Downloads

[11] Canalys. (2011). "App stores' direct revenue to exceed $14 billion next year and
reach close to $37 billion by 2015." Accessed: December 13, 2011 from
http://www.canalys.com/newsroom/app-stores-direct-revenue-exceed-14-billion-
next-year-and-reach-close-37-billion-2015

197

[12] Federal Communication Commission. "911 services web site." Accessed August
24 from http://www.fcc.gov/911/enhanced

[13] Zhao Yilin (2002), "Standardization of mobile phone positioning for 3G systems,"
Communications Magazine, IEEE, Vol. 40 pp. 108-116.

[14] GPS World. (2008). "GPS handset market poised for huge expansion." GPS
World. Accessed: May 9, 2008 from
http://www.gpsworld.com/wireless/news/abi-gps-handset-market-poised-huge-
expansion-3864

[15] D. Porcino (2001), "Location of third generation mobile devices: a comparison
between terrestrial and satellite positioning systems," in Vehicular Technology
Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd, pp. 2970-2974 Vol. 4,
2001.

[16] A. Kupper, Location-Based Services: Fundamentals and Operation. New York:
Wiley, 2005.

[17] Paul A. Zandbergen (2009), "Accuracy of iPhone Locations: A Comparison of
Assisted GPS, WiFi and Cellular Positioning," Transactions in GIS, Vol. 13 pp.
5-25.

[18] Paul A. Zandbergen and Sean J. Barbeau (2011), "Positional Accuracy of
Assisted GPS Data from High-Sensitivity GPS-enabled Mobile Phones," The
Journal of Navigation, Vol. 64 pp. 381-399.

[19] Bob Richton, Giovanni Vannucci, and Stephen Wilkus, "Assisted GPS for
Wireless Phone Location — Technology and Standards - Next Generation
Wireless Networks." Vol. 598, S. Tekinay, Ed., ed: Springer Netherlands, 2002,
pp. 129-155.

[20] Jagdish Rebello. "Four Out of Five Cell Phones to Integrate GPS by End of
2011." Accessed December 13, 2011 from http://www.isuppli.com/Mobile-and-
Wireless-Communications/News/Pages/Four-out-of-Five-Cell-Phones-to-
Integrate-GPS-by-End-of-2011.aspx

[21] Google, Inc. "Android." Accessed January 9, 2012 from http://www.android.com/

[22] Sean J. Barbeau, Miguel A. Labrador, Philip L. Winters, Rafael Pérez, and
Nevine Labib Georggi (2008), "Location API 2.0 for J2ME - A new standard in
location for Java-enabled mobile phones," Computer Communications, Vol. 31
pp. 1091-1103.

[23] Sun Microsystems, Inc., "Java Specification Request (JSR) 179: Location API for
J2ME," ed, 2007.

[24] Sun Microsystems, Inc., "Java Specification Request (JSR) 293: Location API
2.0," ed, 2007.

198

[25] Motorola, Inc. "i860." Accessed June 1, 2012 from
http://developer.motorola.com/products/handsets-other/i860/

[26] Jeff Sharkley (2009), "Coding for Life--Battery Life, That Is," in Google I/O
2009, San Francisco, CA, May 27, 2009.

[27] Robert Mayo and Parthasarathy Ranganathan, "Energy Consumption in Mobile
Devices: Why Future Systems Need Requirements–Aware Energy Scale-Down -
Power-Aware Computer Systems." Vol. 3164, B. Falsafi and T. VijayKumar,
Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 301-463.

[28] Gerard Bosch Creus and Mika Kuulusa, Optimizing Mobile Software with Built-in
Power Profiling: Springer, 2007.

[29] Aaron Carroll and Gernot Heiser, "An analysis of power consumption in a
smartphone," presented at the Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, Boston, MA, 2010.

[30] Aqeel Mahesri and Vibhore Vardhan, "Power Consumption Breakdown on a
Modern Laptop - Power-Aware Computer Systems." Vol. 3471, B. Falsafi and T.
VijayKumar, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 165-180.

[31] Rajesh Palit, Ajit Singh, and Kshirasagar Naik, "Modeling the energy cost of
applications on portable wireless devices," presented at the Proceedings of the
11th international symposium on Modeling, analysis and simulation of wireless
and mobile systems, Vancouver, British Columbia, Canada, 2008.

[32] T. Farrell, R. Lange, and K. Rothermel (2007), "Energy-efficient Tracking of
Mobile Objects with Early Distance-based Reporting," in Mobile and Ubiquitous
Systems: Networking & Services, 2007. MobiQuitous 2007. Fourth Annual
International Conference on, pp. 1-8, 6-10 Aug. 2007.

[33] Mikkel Baun Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjaer,
"EnTracked: energy-efficient robust position tracking for mobile devices,"
presented at the Proceedings of the 7th international conference on Mobile
systems, applications, and services, Krakow, Poland, 2009.

[34] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang, "Accurate online power estimation and
automatic battery behavior based power model generation for smartphones,"
presented at the Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, Scottsdale,
Arizona, USA, 2010.

[35] J. Eberle and G. P. Perrucci (2011), "Energy measurements campaign for
positioning methods on State-of-the-Art smartphones," in Consumer
Communications and Networking Conference (CCNC), 2011 IEEE, pp. 937-941,
9-12 Jan. 2011.

199

[36] M. Kjaergaard (2012), "Minimizing the Power Consumption of Location-Based
Services on Mobile Phones," Pervasive Computing, IEEE, Vol. 11 pp. 67-73.

[37] Mikkel Baun Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjaer,
"Demonstrating EnTracked a system for energy-efficient position tracking for
mobile devices," presented at the Proceedings of the 12th ACM international
conference adjunct papers on Ubiquitous computing, Copenhagen, Denmark,
2010.

[38] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang (2012), "Fine Grained Energy
Accounting on Smartphones with Eprof," in EuroSys'12, Bern, Switzerland, April
10-13, 2012.

[39] Michael Matthews, Kenn Gold, and Peter Macdoran (March 1, 2006). "Testing
the Limits of Power - A Methodology for Measuring the Power Consumption of
Indoor-Outdoor Tracking GPS Receivers." InsideGNSS, Vol. 1, pp. 34-39.

[40] Internet Engineering Task Force, "Request for Comments (RFC) 2616 - Hypertext
Transfer Protocol -- HTTP/1.1," ed, 1999.

[41] Internet Engineering Task Force, "Request for Comments (RFC) 768 - User
Datagram Protocol," ed, 1980.

[42] Internet Engineering Task Force, "Request for Comments (RFC) 793 –
Transmission Control Protocol - DARPA Internet Program Protocol
Specification," ed, 1981.

[43] Google, Inc. "My Tracks." Accessed December 16, 2011 from
http://mytracks.appspot.com/

[44] Google, Inc. "Google Maps." Accessed December 16, 2011 from
http://maps.google.com/

[45] Google, Inc. "Google Maps Navigation (Beta)." Accessed December 16, 2011
from http://www.google.com/mobile/navigation/

[46] Telenav. "Telenav GPS Navigator." Accessed December 16, 2011 from
http://www.telenav.com/products/tn/

[47] INRIX. "INRIX - Go Anywhere." Accessed December 16, 2011 from
http://www.inrix.com/

[48] Foursquare Labs, Inc. "foursquare." Accessed December 21, 2011 from
http://foursquare.com/

[49] Facebook, Inc. "Facebook." Accessed December 21, 2011 from
http://www.facebook.com/

[50] Google, Inc. "Latitude." Accessed December 21, 2011 from
www.google.com/latitude

200

[51] Location Labs. "AT&T FamilyMap." Accessed January 2012 from
http://familymap.wireless.att.com/finder-att-family/welcome.htm

[52] Sprint. "Sprint Family Locator." Accessed January 9, 2012 from
http://sfl.sprintpcs.com/finder-sprint-
family/signIn.htm?EndTrialNotification=true&adcode=Main&ECID=vanity:famil
ylocator

[53] Inc. WHERE. "WHERE." Accessed December 16, 2011 from
http://where.com/locations/dhvrgcb8hy18/places

[54] Poynt Corporation. "Poynt." Accessed January 9, 2012 from
http://www.poynt.com/

[55] Earth Networks. "WeatherBug." Accessed January 9, 2012 from
http://weather.weatherbug.com/

[56] Apple, Inc. "Find My iPhone." Accessed January 9, 2012 from
http://itunes.apple.com/us/app/find-my-iphone/id376101648?mt=8

[57] AlienmanFC6. "Where's My Droid." Accessed January 9, 2012 from
http://wheresmydroid.com/

[58] Stuart Barnes (2003), "Location-Based Services: The State of the Art," e-Service
Journal, Vol. 2 pp. 59-70.

[59] Bharat Rao and Louis Minakakis (2003), "Evolution of mobile location-based
services," Commun. ACM, Vol. 46 pp. 61-65.

[60] M. Sunay, "Evaluation of Location Determination Technologies Towards
Satisfying the FCC E-911 Ruling - Next Generation Wireless Networks." Vol.
598, S. Tekinay, Ed., ed: Springer Netherlands, 2002, pp. 157-192.

[61] S. Soliman, P. Agashe, I. Fernandez, A. Vayanos, P. Gaal, and M. Oljaca (2000),
"gpsOne: a hybrid position location system," in Spread Spectrum Techniques and
Applications, 2000 IEEE Sixth International Symposium on, pp. 330-335 Vol. 1,
Sep 2000.

[62] J. Ashjaee "GPS: The Challenge of a Single Chip." GPS World, Vol. 12, p. 24.
Accessed at: http://www.gpsworld.com/gnss-system/receiver-design/gps-the-
challenge-a-single-chip-4218

[63] Richard B. Langley (2001), "Satellite Navigation: GPS Modernization and R&D
in the Academic Sector," in National Sector Team for Space Annual Meeting, St-
Hubert, QC, July 3, 2001.

[64] George Chia Liu (2004), "GPS RTK positioning via Internet-based 3G
CDMA2000/1X wireless technology," GPS Solutions, Vol. 7 pp. 222-229.

201

[65] Frost & Sullivan. (2008). E911 and LBS - Addressing the New Location Accuracy
Gap.

[66] F. van Diggelen "Indoor GPS: The no-chip challenge." GPS World, Vol. 12, p.
50. Accessed at: http://sfx.fcla.edu/usf?sid=google

[67] F. van Diggelen and Charles Abraham, "Indoor GPS Technology," presented at
the CTIA Wireless Conference, Dallas, TX, 2001.

[68] F. van Diggelen (2002), "Indoor GPS theory & implementation," in Position
Location and Navigation Symposium, 2002 IEEE, pp. 240-247, 2002.

[69] F. van Diggelen. (2009). "The Smartphone Revolution." GPS World. Accessed:
December 1, 2009 from http://www.gpsworld.com/wireless/smartphone-
revolution-9183

[70] Larry D. Vittorini and Brent Robinson (November 1, 2003). "Optimizing Indoor
GPS Performance - Receiver Frequency Standards." GPS World, Vol. 14, pp. 40-
48.

[71] Gérard Lachapelle (2004), "GNSS Indoor Location Technologies," in The 2004
International Symposium on GNSS/GPS, Sydney, Australia, December 6, 2004.

[72] Gérard Lachapelle (2007), "Pedestrian navigation with high sensitivity GPS
receivers and MEMS," Personal and Ubiquitous Computing, Vol. 11 pp. 481-488.

[73] Jason Zhang, Kefei Zhang, and Ron Grenfell (2004), "On the relativistic Doppler
Effects and high accuracy velocity determination using GPS," in The 2004
International Symposium on GNSS/GPS, Sydney, Australia, December 6, 2004.

[74] Jason Zhang, Kefei Zhang, Ron Grenfell, and Rod Deakin (2006), "Short Note:
On the Relativistic Doppler Effect for Precise Velocity Determination using
GPS," Journal of Geodesy, Vol. 80 pp. 104-110.

[75] Stephane Beauregard (2006), "A Helmet-Mounted Pedestrian Dead Reckoning
System," Applied Wearable Computing (IFAWC), 2006 3rd International Forum
on, pp. 1-11.

[76] Javier DeSalas and F. van Diggelen (February 16, 2011). "Single-Shot Position -
Cell Phone Location without Ephemeris." GPS World, Vol. 22, p. 28.

[77] W. Ballantyne, Gregory Turetzky, Gary Slimak, and John Shewfelt "PowerDown-
Achieving Low Energy-Per-Fix in Cell Phones." GPS World, Vol. 17, p. 24.
Accessed at: http://www.gpsworld.com/gps/powerdown-achieving-low-energy-
per-fix-cell-phones-1091

202

[78] Henrik Blunck, Mikkel Kjærgaard, and Thomas Toftegaard, "Sensing and
Classifying Impairments of GPS Reception on Mobile Devices - Pervasive
Computing." Vol. 6696, K. Lyons, J. Hightower, and E. Huang, Eds., ed: Springer
Berlin / Heidelberg, 2011, pp. 350-367.

[79] Hassan A. Karimi, "Indoor Navigation - Universal Navigation on Smartphones,"
ed: Springer US, 2011, pp. 59-73.

[80] William Kearns, James Fozard, Vilis Nams, and Jeffrey Craighead (2011),
"Wireless telesurveillance system for detecting dementia," Gerontechnology, Vol.
10,p. 90.

[81] Casas Roberto, David Cuartielles, Alvaro Marco, Hector J. Gracia, and Jorge
Falco (2007), "Hidden Issues in Deploying an Indoor Location System," IEEE
Pervasive Computing, Vol. 6 pp. 62-69.

[82] Mikkel Baun Kjaergaard, Georg Treu, Peter Ruppel, and Axel Küpper, "Efficient
indoor proximity and separation detection for location fingerprinting," presented
at the Proceedings of the 1st international conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications, Innsbruck, Austria, 2007.

[83] Fang Shih-Hau and Lin Tsung-Nan (2008), "Indoor Location System Based on
Discriminant-Adaptive Neural Network in IEEE 802.11 Environments," Neural
Networks, IEEE Transactions on, Vol. 19 pp. 1973-1978.

[84] J. Hightower and G. Borriello (2001), "Location systems for ubiquitous
computing," Computer, Vol. 34 pp. 57-66.

[85] J. Hightower and G. Borriello (2001). "A Survey and Taxonomy of Location
Systems for Ubiquitous Computing," Technical Report UW-CSE 01-08-03,
August 24, 2001.

[86] M. Mintz-Habib, A. Rawat, H. Schulzrinne, and X. Wu (2005), "A VoIP
emergency services architecture and prototype," in Computer Communications
and Networks, 2005. ICCCN 2005. Proceedings. 14th International Conference
on, pp. 523-528, 17-19 Oct. 2005.

[87] R. José and N. Davies, "Scalable and Flexible Location-Based Services for
Ubiquitous Information Access - Handheld and Ubiquitous Computing." Vol.
1707, H.-W. Gellersen, Ed., ed: Springer Berlin / Heidelberg, 1999, pp. 52-66.

[88] Internet Engineering Task Force, "Request for Comments (RFC) 2608 - Service
Location Protocol, Version 2," ed, 1999.

[89] Maximilian Zundt, Girija Deo, Mirko Naumann, and Markus Ludwig (2005),
"Realizing Peer-to-Peer Location-Based Services in Mobile Networks," in 2nd
Workshop on Positioning, Navigation, and Communication, pp. 175-182, March
17, 2005.

203

[90] J. Taheri and A. Y. Zomaya (2004), "The Use of a Hopfield Neural Network in
Solving the Mobility Management Problem," in Pervasive Services, 2004. ICPS
2004. IEEE/ACS International Conference on, pp. 141-150, 19-23 July 2004.

[91] M. Spanoudakis, A. Batistakis, I. Priggouris, A. Ioannidis, S. Hadjiefthymiades,
and L. Merakos (2003), "Extensible platform for location based services
provisioning," in Web Information Systems Engineering Workshops, 2003.
Proceedings. Fourth International Conference on, pp. 72-79, 13 Dec. 2003.

[92] A. Kupper, G. Treu, and C. Linnhoff-Popien (2006), "TraX: a device-centric
middleware framework for location-based services," Communications Magazine,
IEEE, Vol. 44 pp. 114-120.

[93] Axel Küpper and Georg Treu (2006), "Efficient proximity and separation
detection among mobile targets for supporting location-based community
services," SIGMOBILE Mob. Comput. Commun. Rev., Vol. 10 pp. 1-12.

[94] Georg Treu, Axel Küpper, and Thomas Wilder (2008), "Extending the LBS-
framework TraX: Efficient proximity detection with dead reckoning," Computer
Communications, Vol. 31 pp. 1040-1051.

[95] World Wide Web Consortium (W3C), "SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition)," ed, 2007.

[96] A. Leonhardi, U. Kubach, K. Rothermel, and A. Fritz (1999), "Virtual
information towers-a metaphor for intuitive, location-aware information access in
a mobile environment," in Wearable Computers, 1999. Digest of Papers. The
Third International Symposium on, pp. 15-20, 1999.

[97] A. Leonhardi and K. Rothermel (2002), "Architecture of a large-scale location
service," in Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on, pp. 465-466, 2002.

[98] J. Nord (2002), "An Architecture for Location Aware Applications," in 35th
Hawaii International Conference on System Sciences, pp. 293-293, January 7,
2002.

[99] Bing-Fei Wu, Ying-Han Chen, Chao-Jung Chen, Chih-Chung Kao, and Po-Chia
Huang, "An Efficient Web-Based Tracking System through Reduction of
Redundant Connections - Advances in Neural Network Research and
Applications." Vol. 67, Z. Zeng and J. Wang, Eds., ed: Springer Berlin
Heidelberg, 2010, pp. 671-677.

[100] Paolo Bellavista, Antonio Corradi, and Carlo Giannelli (2008), "The PoSIM
middleware for translucent and context-aware integrated management of
heterogeneous positioning systems," Computer Communications, Vol. 31 pp.
1078-1090.

204

[101] Xiaoyan Chen, Ying Chen, and Fangyan Rao, "An efficient spatial
publish/subscribe system for intelligent location-based services," presented at the
Proceedings of the 2nd international workshop on Distributed event-based
systems, San Diego, California, 2003.

[102] Y. Chen, X. Y. Chen, F. Y. Rao, X. L. Yu, Y. Li, and D. Liu (2004), "LORE: An
infrastructure to support location-aware services," IBM Journal of Research and
Development, Vol. 48 pp. 601-615.

[103] Ganesh Ananthanarayanan, Maya Haridasan, Iqbal Mohomed, Doug Terry, and
Chandramohan A. Thekkath, "StarTrack: a framework for enabling track-based
applications," presented at the 7th international conference on Mobile systems,
applications, and services, Krakow, Poland, 2009.

[104] Internet Engineering Task Force, "Request for Comments (RFC) 3261 - SIP:
Session Initiation Protocol," ed, 1999.

[105] Gunther Pospischil, Johannes Stadler, and Igor Miladinovic (2001). "A Location-
based Push Architecture using SIP," Forschungszentrum Telekommunikation
Wien (FTW), Institut für Nachrichtentechnik und Hochfrequenztechnik,
and Institut für Kommunikationsnetze.

[106] Stefan Berger, Henning Schulzrinne, Stylianos Sidiroglou, and Xiaotao Wu,
"Ubiquitous computing using SIP," presented at the Proceedings of the 13th
international workshop on Network and operating systems support for digital
audio and video, Monterey, CA, USA, 2003.

[107] Z. Shah, R. A. Malaney, and N. T. Dao (2007), "An Architecture for Location
Tracking Using SIP," in Global Telecommunications Conference, 2007.
GLOBECOM '07. IEEE, pp. 124-128, 26-30 Nov. 2007.

[108] Shah Zawar (2007), "Reliability Issues in a SIP based Location Tracking
Architecture," in International Conference on Wireless Broadband and Ultra
Wideband Communications, Sydney, Australia, p. 77, August 27, 2007.

[109] YanHao Wu (2005), "SIP-based Location Service Provision," Magister Science
Thesis, Department of Computer Science, University of the Western Cape.

[110] Sun Microsystems, Inc., "Java Specification Request (JSR) 180: SIP API for
J2ME," ed, 2011.

[111] Sun Microsystems, Inc., "Java Specification Request (JSR) 248: Mobile Service
Architecture," ed, 2008.

[112] Sun Microsystems, Inc., "Java Specification Request (JSR) 249: Mobile Service
Architecture 2," ed, 2009.

205

[113] Zhang Jianjun, Zhang Gong, and Liu Ling (2007), "GeoGrid: A Scalable Location
Service Network," in Distributed Computing Systems, 2007. ICDCS '07. 27th
International Conference on, pp. 60-60, 25-27 June 2007.

[114] A. J. Perez, M. A. Labrador, and S. J. Barbeau (2010), "G-Sense: a scalable
architecture for global sensing and monitoring," Network, IEEE, Vol. 24 pp. 57-
64.

[115] Jakob Langdal, Kari Schougaard, Mikkel Kjærgaard, and Thomas Toftkjær,
"PerPos: A Translucent Positioning Middleware Supporting Adaptation of
Internal Positioning Processes - Middleware 2010." Vol. 6452, I. Gupta and C.
Mascolo, Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 232-251.

[116] David Rutledge (May 1, 2010). "Innovation: Accuracy versus Precision." GPS
World, Vol. 21, p. 90. Accessed at: http://www.gpsworld.com/gnss-
system/algorithms-methods/innovation-accuracy-versus-precision-9889

[117] S. J. Barbeau, M. A. Labrador, P. L. Winters, R. Perez, and N. L. Georggi (2006),
"A general architecture in support of interactive, multimedia, location-based
mobile applications," Communications Magazine, IEEE, Vol. 44 pp. 156-163.

[118] Sean Barbeau, Rafael Perez, Miguel Labrador, Alfredo Perez, Philip Winters, and
Nevine Georggi (2011), "A Location-Aware Framework for Intelligent Real-Time
Mobile Applications," Pervasive Computing, IEEE, Vol. 10 pp. 58-67.

[119] S. Barbeau, M. A. Labrador, A. Perez, P. Winters, N. Georggi, D. Aguilar, and R.
Perez (2008), "Dynamic Management of Real-Time Location Data on GPS-
Enabled Mobile Phones," in Mobile Ubiquitous Computing, Systems, Services and
Technologies, 2008. UBICOMM '08. The Second International Conference on,
pp. 343-348, Sept. 29 2008-Oct. 4 2008.

[120] Sean J. Barbeau, Nevine L. Georggi, and Philip L. Winters (2010), "Global
Positioning System Integrated with Personalized Real-Time Transit Information
from Automatic Vehicle Location," Transportation Research Record: Journal of
the Transportation Research Board, pp. 168-176.

[121] Marcy E. Gordon, S. Barbeau, and M. A. Labrador (2011), "Location Data
Signing - Protecting the Integrity and Authenticity of Positioning System Data,"
in ITS World Congress, Orlando, Florida, USA, October 16, 2011.

[122] Sean J. Barbeau, Philip Winters, Rafael Perez, Miguel Labrador, and Nevine
Georggi, "Optimizing Performance of Location-Aware Applications Using State
Machines," Patent #8036679, Patent Application #60/977140, U.S. Patent and
Trademark Office, 2011.

[123] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, and Nevine
Georggi, "Travel Assistant Device," Patent #8138907, Patent Application
#11/464079, U.S. Patent and Trademark Office, 2012.

206

[124] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, and Nevine
Georggi, "Wireless emergency-reporting system," Patent #8045954, Patent
Application #11/465931, U.S. Patent and Trademark Office, 2011.

[125] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, Nevine
Georggi, and Sasha Dos-Santos, "On-Demand Emergency Notification System
Using GPS-equipped Devices," Patent #8145183, Patent Application #11/534763,
U.S. Patent and Trademark Office, 2012.

[126] S. Barbeau, P. Winters, R. Perez, M. A. Labrador, N. Georggi, and Dmytro Bilov,
"Method of providing a destination alert to a transit system rider," Patent
#8169342, Patent Application #12/234778, U.S. Patent and Trademark Office,
2012.

[127] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, and Nevine
Georggi, "System and Method for Determining Critical Points in Location Data
Generated by Location-Based Applications," Patent Application #12/196673, U.S.
Patent and Trademark Office, 2008.

[128] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, Nevine
Georggi, and Alfredo Perez, "Architecture and Two-Layered Protocol for Real-
Time Location-Aware Applications," Patent Application #13/082094, U.S. Patent
and Trademark Office, 2011.

[129] Sean J. Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, and Nevine
Georggi, "Adaptive Location Data Buffering for Location-Aware Applications,"
Patent Application #13/082722, U.S. Patent and Trademark Office, 2011.

[130] S. J. Barbeau, P. L. Winters, N. L. Georggi, M. A. Labrador, and R. Perez (2010),
"Travel assistance device: utilising global positioning system-enabled mobile
phones to aid transit riders with special needs," Intelligent Transport Systems,
IET, Vol. 4 pp. 12-23.

[131] Sean J. Barbeau, Miguel A. Labrador, Nevine Labib Georggi, Philip L. Winters,
and Rafael A. Perez (2009), "TRAC-IT: Software Architecture Supporting
Simultaneous Travel Behavior Data Collection and Real-Time Location-Based
Services for GPS-Enabled Mobile Phones," in Transportation Research Board
88th Annual Meeting, Washington, D.C., USA, p. 21, January 9, 2009.

[132] Sean J. Barbeau, Nevine Labib Georggi, Philip L. Winters, Miguel A. Labrador,
and Rafael A. Perez (2008), "TRAC-IT: A Smart User Interface for a Real-Time
Location-Aware Multimodal Survey Tool," in 15th World Congress on Intelligent
Transport Systems, New York, New York, p. 12, November 16, 2008.

[133] Oracle. "Glassfish >> Community." Accessed February 25, 2012 from
http://glassfish.java.net/

207

[134] Google, Inc. "Android Location API." Accessed March 17, 2012 from
http://developer.android.com/reference/android/location/package-summary.html

[135] Motorola, Inc. (2007). "iDEN Java ME Developer Guide."

[136] T. Vincenty (1975), "Direct and Inverse Solutions of Geodesics on the Ellipsoid
with Application of Nested Equations," Survey Review, Ministry of Overseas
Development, Vol. XXII pp. 88-93.

[137] R. Potlapally Nachiketh (2006), "A Study of the Energy Consumption
Characteristics of Cryptographic Algorithms and Security Protocols," IEEE
Transactions on Mobile Computing, Vol. 5 pp. 128-143.

[138] Santi Jarusombat and Surin Kittitornkun (2006), "Digital Signature on Mobile
Devices based on Location," in Communications and Information Technologies,
2006. ISCIT '06. International Symposium on, pp. 866-870, Oct. 18 2006-Sept. 20
2006.

[139] Xuan Zuguang, Du Zhenjun, and Chen Rong (2009), "Comparison Research on
Digital Signature Algorithms in Mobile Web Services," in Management and
Service Science, 2009. MASS '09. International Conference on, pp. 1-4, 20-22
Sept. 2009.

[140] Sun Microsystems, Inc., "Java Specification Request (JSR) 118: Mobile
Information Device Profile 2.0," ed, 2010.

[141] Sun Microsystems, Inc., "Java Specification Request (JSR) 172: J2ME Web
Services Specification," ed, 2008.

[142] K. K. Leung, T. E. Klein, C. F. Mooney, and M. Haner (2004), "Methods to
improve TCP throughput in wireless networks with high delay variability [3G
network example]," in Vehicular Technology Conference, 2004. VTC2004-Fall.
2004 IEEE 60th, pp. 3015-3019 Vol. 4, 26-29 Sept. 2004.

[143] Hala Elaarag (2002), "Improving TCP performance over mobile networks," ACM
Comput. Surv., Vol. 34 pp. 357-374.

[144] J. W. Jung, R. Mudumbai, D. Montgomery, and Kahng Hyun-Kook (2003),
"Performance evaluation of two layered mobility management using mobile IP
and session initiation protocol," in Global Telecommunications Conference, 2003.
GLOBECOM '03. IEEE, pp. 1190-1194 Vol. 3, 1-5 Dec. 2003.

[145] Sun Microsystems, Inc., "Java Specification Request (JSR) 271: Mobile
Information Device Profile 3," ed, 2009.

[146] P. Prasithsangaree and P. Krishnamurthy (2003), "Analysis of energy
consumption of RC4 and AES algorithms in wireless LANs," in Global
Telecommunications Conference, 2003. GLOBECOM '03. IEEE, pp. 1445-1449
Vol. 3, 1-5 Dec. 2003.

208

[147] The Legion of BouncyCastle. "Java Cryptography APIs." Accessed May 16, 2012
from http://www.bouncycastle.org/java.html

[148] Philip L. Winters, Sean J. Barbeau, and Nevine L. Georggi (2008). "Smart Phone
Application to Influence Travel Behavior (TRAC-IT Phase 3)," National Center
for Transit Research.

[149] S. Schönfelder and K.W. Axhausen, Urban rhythms and travel behaviour: spatial
and temporal phenomena of daily travel. Surrey, England: Ashgate Publishing,
Ltd., 2010.

[150] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási (2010),
"Limits of Predictability in Human Mobility," Science, Vol. 327 pp. 1018-1021.

[151] Kay W. Axhausen, Andrea Zimmermann, Stefan Schönfelder, Guido Rindsfüser,
and Thomas Haupt (2002), "Observing the rhythms of daily life: A six-week
travel diary," Transportation, Vol. 29 pp. 95-124.

[152] Robert Schlich and Kay Axhausen (2003), "Habitual travel behaviour: Evidence
from a six-week travel diary," Transportation, Vol. 30 pp. 13-36.

[153] Gary Langer, "Poll: Traffic in the United States," ed. ABC News: ABC News,
2005.

[154] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi (2008),
"Understanding individual human mobility patterns," Nature, Vol. 453 pp. 779-
782.

[155] T. H. Witte and A. M. Wilson (2004), "Accuracy of non-differential GPS for the
determination of speed over ground," Journal of Biomechanics, Vol. 37 pp. 1891-
1898.

[156] W. Peukert (1897), "Über die Abhängigkeit der Kapazität von der
Entladestromstärke bei Bleiakkumulatoren," Elektrotechnische Zeitschrift, Vol.
20 pp. 20-21.

[157] Dennis Doerffel and Suleiman Abu Sharkh (2006), "A critical review of using the
Peukert equation for determining the remaining capacity of lead-acid and lithium-
ion batteries," Journal of Power Sources, Vol. 155 pp. 395-400.

[158] Sun Microsystems, Inc., "Java Specification Request (JSR) 224: Java API for
XML-Based Web Services (JAX-WS) 2.0," ed, 2011.

[159] Richard W. Bohannon (1997), "Comfortable and maximum walking speed of
adults aged 20—79 years: reference values and determinants," Age and Ageing,
Vol. 26 pp. 15-19.

209

[160] E. Murakami, D. P. Wagner, and D. M. Neumeister (1997), "Using Global
Positioning Systems and Personal Digital Assistants for Personal Travel Surveys
in the United States," in International Conference on Transport Survey Quality
and Innovation, Grainau, Germany, May 24, 1997.

[161] E. Murakami and D. P. Wagner (1999), "Can using global positioning system
(GPS) improve trip reporting?," Transportation Research Part C: Emerging
Technologies, Vol. 7 pp. 149-165.

[162] Timothy Forrest and David Pearson (2005), "Comparison of Trip Determination
Methods in Household Travel Surveys Enhanced by a Global Positioning
System," Transportation Research Record: Journal of the Transportation
Research Board, Vol. 1917 pp. 63-71.

[163] P. A. Gonzalez, J. S. Weinstein, S. J. Barbeau, M. A. Labrador, P. L. Winters, N.
L. Georggi, and R. Perez (2010), "Automating mode detection for travel
behaviour analysis by using global positioning systems enabled mobile phones
and neural networks," Intelligent Transport Systems, IET, Vol. 4 pp. 37-49.

[164] Narin Persad-Maharaj, Sean J. Barbeau, Miguel A. Labrador, Philip L. Winters,
Rafael A. Perez, and Nevine Labib Georggi (2008), "Real-Time Travel Path
Prediction Using GPS-Enabled Mobile Phones," in 15th World Congress on
Intelligent Transport Systems, New York, New York, p. 12, November 16, 2008.

[165] National Institute on Disability and Rehabilitation Research (1997). "Survey of
Income and Program Participation (SIPP)."

[166] American Public Transportation Association (APTA) (2004). "2004 Public
Transportation Factbook."

[167] Google, Inc. "General Transit Feed Specification Reference." Accessed February
24, 2012 from http://developers.google.com/transit/gtfs/reference

[168] Front Seat Management, LLC. "City-Go-Round." Accessed March 1, 2012 from
http://www.citygoround.org/agencies/

[169] McKay Moore Sohlberg, Stephen Fickas, Pei-Fang Hung, and Andrew Fortier
(2007), "A comparison of four prompt modes for route finding for community
travellers with severe cognitive impairments," Brain Injury, Vol. 21 pp. 531-538.

[170] John Lee Brent, John D. Lee, Brent Caven, Steven Haake, and Timothy L. Brown
(2001), "Speech-based Interaction with In-vehicle Computers: The Effect of
Speech-based E-mail on Drivers' Attention to the Roadway," Human Factors,
Vol. 43 pp. 631-640.

[171] Marvin C. McCallum, John L. Campbell, Joel B. Richman, James L. Brown, and
Emily Wiese (2004), "Speech Recognition and In-Vehicle Telematics Devices:
Potential Reductions in Driver Distraction," International Journal of Speech
Technology, Vol. 7 pp. 25-33.

210

[172] Avi Parush (2005), "Speech-Based Interaction in Multitask Conditions: Impact of
Prompt Modality," Human Factors: The Journal of the Human Factors and
Ergonomics Society, Vol. 47 pp. 591-597.

[173] Aaron Antrim. "Transit Data Feeder." Accessed February 24, 2012 from
http://code.google.com/p/transitdatafeeder/

[174] Joachim Pfeiffer. "Google Transit Data Feed Open Source Project." Accessed
February 24, 2012 from http://code.google.com/p/googletransitdatafeed/

[175] National Rural Transit Assistance Program. "GTFS Builder." Accessed February
24, 2012 from http://www.nationalrtap.org/public/WebApps/GTFSBuilder.aspx

[176] Trillium Solutions. "Trillium Transit Internet Solutions." Accessed February 24,
2012 from http://www.trilliumtransit.com/

[177] Khoa Tran, Edward L. Hillsman, S. Barbeau, and M. A. Labrador (2011), "GO-
Sync- A Framework to Synchronize Crowd-Sourced Mapping Contributions from
Online Communities and Transit Agency Bus Stop Inventories," in ITS World
Congress, Orlando, Florida, USA, October 16, 2011.

[178] Arica J. Bolechala, Raymond G. Miltenberger, Sean J. Barbeau, and Marcy E.
Gordon (2011), "Evaluating the Effectiveness of the Travel Assistance Device on
the Bus Riding Behavior of Individuals with Disabilities," in Transportation
Research Board 90th Annual Meeting, Washington, D.C., USA, p. 16p, January
23, 2011.

[179] Megan Geuss. (2011). "Why Your Smartphone Battery Sucks." PCWorld.
Accessed: May 18, 2011 from
http://www.pcworld.com/article/228189/why_your_smartphone_battery_sucks.ht
ml

[180] I. M. Taylor and M. A. Labrador (2011), "Improving the energy consumption in
mobile phones by filtering noisy GPS fixes with modified Kalman filters," in
Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pp.
2006-2011, 28-31 March 2011.

[181] S. Barbeau. "Change I25460da7: Adds command "force_platform_scheduling" to
GPS provider." Accessed April 25, 2012 from http://android-
review.googlesource.com/#/c/34230/

[182] C. Laoudias, C. Desiniotis, J. Pajunen, S. Nousiainen, C. Panayiotou, and J. G.
Markoulidakis (2008), "Ubiquitous Terminal Assisted Positioning Prototype," in
Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE,
pp. 3261-3266, March 31 2008-April 3 2008.

211

[183] C. Laoudias, C. G. Panayiotou, C. Desiniotis, J. G. Markoulidakis, J. Pajunen, and
S. Nousiainen (2008), "Part one: The Statistical Terminal Assisted Mobile
Positioning methodology and architecture," Computer Communications, Vol. 31
pp. 1126-1137.

[184] J. G. Markoulidakis, C. Dessiniotis, and D. Nikolaidis (2008), "Part two: Kalman
filtering options for error minimization in statistical terminal assisted mobile
positioning," Computer Communications, Vol. 31 pp. 1138-1147.

[185] J.G. Markoulidakis (2010), "Received signal strength based mobile terminal
positioning error analysis and optimization," Computer Communications, Vol. 33
pp. 1227-1234.

AAPPENDIX A. REPRINNT PERMI

212

ISSIONS

AAPPENDIX A (CONTINNUED)

213

AAPPENDIX A (CONTINNUED)

214

AAPPENDIX A (CONTINNUED)

215

AAPPENDIX A (CONTINNUED)

216

AAPPENDIX A (CONTINNUED)

217

AAPPENDIX A (CONTINNUED)

218

AAPPENDIX A (CONTINNUED)

219

AAPPENDIX A (CONTINNUED)

220

AAPPENDIX A (CONTINNUED)

221

AAPPENDIX A (CONTINNUED)

222

AAPPENDIX A (CONTINNUED)

223

AAPPENDIX A (CONTINNUED)

224

AAPPENDIX A (CONTINNUED)

225

AAPPENDIX A (CONTINNUED)

226

AAPPENDIX A (CONTINNUED)

227

ABOUT THE AUTHOR

Sean J. Barbeau received his B.S. and M.S. in Computer Science from the University of

South Florida (USF) and joined the research faculty of the Center for Urban

Transportation Research at USF in 2004. He has served as the Principal Investigator for

many research projects investigating intelligent software systems and mobile applications

for GPS-enabled mobile phones. Mr. Barbeau’s research interests include intelligent

location-based services, lightweight data communication frameworks for mobile devices,

and mobile application optimization to conserve battery life. He served as a member of

the international Expert Group that developed the Java Micro Edition Location API 2.0.

While a Ph.D. candidate, he produced over 40 peer-reviewed papers and conference

presentations on the topics of intelligent location-based services and mobile applications.

Mr. Barbeau has 6 issued U.S. patents and another 11 patents pending on location-aware

technology. He is a founding faculty member of the USF Location-Aware Information

Systems Laboratory.

