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ABSTRACT 

This dissertation presents LAISYC, a modular location-aware architecture for intelligent 

real-time mobile applications that is fully-implementable by third party mobile app 

developers and supports high-precision and high-accuracy positioning systems such as 

GPS.  LAISYC significantly improves device battery life, provides location data 

authenticity, ensures security of location data, and significantly reduces the amount of 

data transferred between the phone and server.  The design, implementation, and 

evaluation of LAISYC using real mobile phones include the following modules:  the GPS 

Auto-Sleep module saves battery energy when using GPS, maintaining acceptable 

movement tracking (approximately 89% accuracy) with an approximate average doubling 

of battery life. The Location Data Signing module adds energy-efficient data authenticity 

to this architecture that is missing in other architectures, with an average approximate 

battery life decrease of only 7%.  The Session Management and Adaptive Location Data 

Buffering modules also contribute to battery life savings by providing energy-efficient

real-time data communication between a mobile phone and server, increasing the average 

battery life for application data transfer by approximately 28% and reducing the average 

energy cost for location data transfer by approximately 38%.  The Critical Point 

Algorithm module further reduces battery energy expenditures and the amount of data 

transferred between the mobile phone and server by eliminating non-essential GPS data 

(an average 77% reduction), with an average doubling of battery life as the interval of 



xii

time between location data transmissions is doubled.  The Location Data Encryption 

module ensures the security of the location data being transferred, with only a slight 

impact on battery life (i.e., a decrease of 4.9%).  The LAISYC architecture was validated 

in two innovative mobile apps that would not be possible without LAISYC due to energy 

and data transfer constraints.  The first mobile app, TRAC-IT, is a multi-modal travel 

behavior data collection tool that can provide simultaneous real-time location-based 

services.  In TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location 

Data Buffering, Critical Point algorithm, and the Session Management modules all 

contribute energy savings that enable the phone’s battery to last an entire day during real-

time high-resolution GPS tracking.  High-resolution real-time GPS tracking is critical to 

TRAC-IT for reconstructing detailed travel path information, including distance traveled, 

as well as providing predictive, personalized traffic alerts based on historical and real-

time data.  The Location Data Signing module allows transportation analysts to trust 

information that is recorded by the application, while the Location Data Encryption 

module protects the privacy of users’ location information.  The Session Management, 

Adaptive Location Data Buffering, and Critical Point algorithm modules allow TRAC-IT 

to avoid data overage costs on phones with limited data plans while still supporting real-

time location data communication.  The Adaptive Location Data Buffering module 

prevents tracking data from being lost when the user is outside network coverage or is on 

a voice call for networks that do not support simultaneous voice and data 

communications.  The second mobile app, the Travel Assistance Device (TAD), assists 

transit riders with intellectual disabilities by prompting them when to exit the bus as well 

as tracking the rider in real-time and alerting caregivers if they are lost.  In the most 
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recent group of TAD field tests in Tampa, Florida, TAD provided the alert in the ideal 

location to transit riders in 100% (n = 33) of tests.  In TAD, the GPS Auto-Sleep, Session 

Management, Adaptive Location Data Buffering, Critical Point algorithm, and the 

Session Management modules all contribute energy savings that enable the phone’s 

battery to last an entire day during real-time high-resolution GPS tracking.  High-

resolution GPS tracking is critical to TAD for providing accurate instructions to the 

transit rider when to exit the bus as well as tracking an accurate location of the traveler so 

that caregivers can be alerted if the rider becomes lost.  The Location Data Encryption 

module protects the privacy of the transit rider while they are being tracked.  The Session 

Management, Adaptive Location Data Buffering, and Critical Point algorithm modules 

allow TAD to avoid data overage costs on phones with limited data plans while still 

supporting real-time location data communication for the TAD tracking alert features.

Adaptive Location Data Buffering module prevents transit rider location data from being 

lost when the user is outside network coverage or is on a voice call for networks that do 

not support simultaneous voice and data communications.
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CHAPTER 1:  INTRODUCTION 

Mobile phones have become one of the most ubiquitous computing devices in modern 

history.  As a result of mass production, cellular carrier subsidies, and decreasing 

technology costs, more people have access to mobile phones today than any other time in 

world history.  As of late 2011, there were an estimated 5.9 billion mobile-cellular 

subscriptions worldwide yielding a global penetration rate of 87%, with a 79% 

penetration rate in developing countries [1].

In developed countries such as the United States, mobile phones are becoming so 

common that wireless penetration is reaching the point of saturation with only a small 

percentage of the population not owning mobile phones.  For example, in the United 

States as of June 2011 there are 322.9 million mobile subscriptions with a penetration 

rate of 102.4%, indicating that a large number of individuals have multiple subscriptions 

[2].  A contributing factor to this growth is that many individuals are giving up their 

landline telephones in favor of mobile phones.  In April 2011, 26.6% of U.S. households 

were wireless–only, meaning that they use only a cell phone instead of a landline 

telephone to make calls [3].  As a result of increasing penetration and reliance on cell 

phones for a variety of everyday tasks, mobile phones have become important devices to 

many individuals around the world.  A 2009 survey indicates that 82% of Americans 

never leave their house without their phone, while 42% stated “they cannot live without 

their phone” [4].  
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1.1 Mobile Applications 

Cell phones have become immensely popular not only for their ability to make phone 

calls, but also for their ability to perform general computing tasks that previously 

required expensive personal computers.  Perhaps one of the most popular features of 

modern smart phones is the ability to execute mobile applications.  Mobile applications, 

or “apps,” are software products that are typically developed by a third-party that does 

not have a direct relationship with the device manufacturer (e.g., HTC, Samsung, 

Motorola, Apple, Research in Motion), cellular carrier (e.g., Sprint-Nextel, AT&T, 

Verizon Wireless), or operating system vendor (e.g., Google, Microsoft).  Instead, the 

mobile app is created by software engineers and then directly sold and distributed to the 

customer, often through online software vending services such as the Google Android 

Market [5], Apple AppStore for the iPhone [6], Blackberry AppWorld [7], Amazon 

AppStore for Android [8], and GetJar for Java Micro Edition and Android [9].  As a 

result of these vending services and an increasing availability of smart phones, the 

number of mobile apps downloaded has proliferated over the last few years.  An 

estimated 29 billion apps were downloaded worldwide in 2011 [10], an astounding 

increase of 20 billion downloads since 2010 [10].  Revenues for app developers are 

expected to increase rapidly over the next few years, with an estimated global app 

revenue of $7.3 billion in 2011 and $36.7 billion by 2015 [11]. 

1.2 Positioning Technologies 

One key difference between mobile phones and desktop computers is that mobile phones 

constantly change geographic location, unlike desktop computers, which are tethered to a 

single physical location for months or years.  Even laptops do not have the level of 
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mobility that cell phones offer.  Laptops can be moved from one place to another, but 

typically they are in operation for only several hours at a time and then shut down before 

being moved.  In contrast, mobile phones typically remain on during the entire day and 

can be actively used when the user is in motion. 

During the emergence of cell phones in the late 1990s, the U.S. Federal Communication 

Commission (FCC) became concerned that extreme mobility of cell phones could cause 

problems for emergency responders attempting to locate a mobile 911 caller, since, 

unlike a landline phone that is associated with a street address, little is known about the 

real-time location of a mobile phone.  Even if the 911 operator knows what cellular tower 

a mobile phone is communicating with, this information is of little help to responders 

since the coverage area of a single cell tower can be several square miles.  As a result of 

the lack of positional knowledge for mobile 911 callers, the FCC issued the E911 

mandate, requiring cellular carriers to implement technologies that could accurately 

locate mobile 911 callers within 50 to 300 meters, depending on the underlying 

technology [12].  U.S. carriers tested a wide variety of positioning technologies for their 

networks.  Global System for Mobile Communication (GSM)-based U.S. carriers such as 

AT&T and T-Mobile chose network-based Uplink Time Difference of Arrival (U-

TDOA) to support E911 position requests [13].  Code Division Multiple Access 

(CDMA)-based U.S. carriers such as Sprint and Verizon chose handset-based Global 

Positioning System (GPS) solutions for devices on their networks because GPS 

technology was already integrated into the network as a time reference for CDMA-based 

wireless communications [13, 14].
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Since U.S. cellular carriers were mandated to invest a significant amount of time, effort, 

and funds into positioning technology implementations, carriers immediately began to 

investigate commercial applications of these technologies for mobile phone users so they 

could recover a portion of their investments through user fees.  Early deployments of 

these technologies for commercial purposes become known as location-based services 

(LBS), which are a general class of services that provide users with some type of 

information based on their real-time or historical location. 

Of the positioning technologies implemented for E911 purposes, GPS-based solutions are 

by far the most accurate, with an estimated 3-5 meters of positional accuracy under ideal 

conditions [15-19].  Since this level of accuracy is also sufficient to provide commercial 

services such as real-time driving directions to mobile phone users, GPS became an 

attractive technology not only for E911 purposes but also for general consumer LBS.  As 

a result, U.S. T-Mobile and AT&T have since implemented GPS-based positioning 

technologies in their handsets in order to provide commercial services based on the 

technology [14].  Global trends of GPS penetration in handsets to support commercial 

services have also surged upwards, with 79.9% of cell phones shipped in the fourth 

quarter of 2011 (318.3M) having integrated GPS [20]. 

1.3 Location-Aware Mobile Applications 

With the availability of positioning technologies such as GPS in mobile phones, and the 

advent of apps, third-party application developers became interested in utilizing location 

information within their applications. There were two major developments in mobile 

phones that made widely deployable location-aware mobile applications possible:  the 
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emergence of cross-platform application environments for mobile phones such as Java 2 

Micro Edition, now referred to as Java Micro Edition (Java ME), and the ability to run 

applications in the background (i.e., a Multitasking Virtual Machine).  Both 

developments are discussed below. 

1.3.1 Cross-Platform Application Environments 

The diversity and rapid evolution of mobile phone hardware creates a significant 

challenge for application developers.  If the developer were to design and implement 

software that directly interfaced with the hardware and operating system for each phone, 

they would be forced to redesign the application for nearly every single mobile phone 

model that is released by each manufacturer, an extremely costly task.  To ease the 

burden on developers and create a sustainable mobile application ecosystem, applications 

platforms that hide some of the lower-level detail of the hardware and operating system 

(OS) implementation have emerged.  Instead of directly accessing these hardware and OS 

components, application instead interact with interfaces that abstract the underlying 

implementation details.  This design allows the underlying hardware or OS to change and 

evolve without modifying the higher-level interfaces.  Applications can therefore 

indirectly interact with the underlying hardware without the burden of rapidly 

redesigning their applications for every new mobile phone model.   

Java ME, designed after the cross-platform Java virtual machines initially created for 

portability of desktop and server applications, was the first cross-platform application 

environment to emerge for mobile phones.  Google’s Android is a newer cross-platform 

environment for smart phones that has recently emerged, although in this dissertation the 
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majority of focus is on Java ME since at the time of this research Java ME was the 

primary cross-platform environment that was widely accepted in the telecommunications 

industry [21, 22]. 

One drawback to the standardization of high-level application programming interfaces 

across multiple hardware and operating system platforms is that there must be consensus 

in the industry for how this interface is designed, and this can take time to develop.  For 

example, the introduction of positioning technologies in mobile phones for E911 

purposes in the late 1990s and early 2000s did not mean that this technology was 

immediately available to third-party application developers.  In fact, a location 

application programming  interface (API) was not standardized for Java ME until 

September 2003 [23].  The Java Specification Request (JSR) 179 Location API for Java 

ME, and the subsequent JSR 293 Location API 2.0, defined a set of functions that a 

mobile application developer could use to access location information on a Java ME 

handset that implemented the JSR 179 or JSR 293 standards [22-24].  For the first time, 

an application developer could develop a location-aware application that accessed 

positioning technologies such as GPS and could work on devices from many different 

manufacturers and cellular carriers without significant modification, a critical 

development in the emergence of location-aware mobile apps. 

1.3.2 Multitasking Virtual Machines 

The second major development in the emergence of location-aware mobile applications 

was the ability to run applications in the background.  Many of the first Java ME mobile 

phones released in the early 2000s did not have Multitasking Virtual Machines (MVMs), 
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which prevented applications from being executed in the background while the user 

performed a different task (e.g., phone call, web browsing, phone in standby mode) in the 

foreground.  In other words, only a single application could be executed at a time, and 

that application could not be executed in the background.  This limitation prevented an 

application from monitoring the location of the phone unless the user was actively using 

the application, which severely restricted the scope of location-aware mobile applications 

that could be implemented by third party software developers. MVMs for Java ME were 

introduced in Motorola iDEN phones circa 2004 [25], which opened up opportunities for 

a new breed of location-aware applications that could monitor and act upon a user’s 

geographic location, even if the user was not actively using the phone. 

1.4 Problem Statement 

The ubiquity of mobile phones, the availability of positioning systems to application 

developers, and the popularity of cross-platform mobile apps creates an environment rich 

for innovation in the area of location-aware applications.  However, while location-aware 

applications have been implementable since the mid-2000s, there have been few popular 

real-time commercial mobile applications that are based primarily on high-precision and 

high-accuracy positioning systems (e.g., GPS).  The lack of evolution of location-aware 

apps can be attributed to several key limitations in current commercial applications: 

1) Commercial location-aware apps are a “black box” 

2) Commercial location-aware apps require active user management of location 

features due to impact on device resources (e.g., battery life) 

3) Commercial location-aware apps are often limited to “locate->send” functionality 
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4) Commercial location-aware apps are often lacking device-based intelligence 

These limitations are discussed in the context of existing mobile applications in Chapter 2 

of this dissertation. 

Typically, architectures discussed in academic literature would gradually address the 

difficulties faced by location-aware apps and provide solutions that could help advance 

the industry.  However, there has also been little evolution of the capabilities of location-

aware architectures over the last 10 years.  Due to the potential negative impact of some 

hybrid positioning technologies (e.g., assisted GPS) on the cellular network, cellular 

carriers have limited access to Location APIs on Java ME devices to industry partners 

[22].  Limited access to Location APIs, as well as the significant financial costs of mobile 

devices and data service plans, have largely reduced academic experimentation to the use 

of software emulators or laptops as proxies for cell phones.  Emulators and laptops are 

simplistic models of logical program execution for mobile applications and do not 

appropriately model real-world conditions such as energy consumption of positioning 

technologies or wireless communication.

Lack of sufficient real-world experimentation with actual mobile devices has produced 

four primary shortfalls in known location-aware architectures: 

1) Battery energy limitations are not addressed.  Many architectures are designed 

without acknowledging that mobile devices have a finite energy supply, and that 

positioning systems such as GPS, wireless communications, and use of the CPU 

to execute the architecture components all have a significant impact on battery 

energy levels.  Recent research [26-38] confirms that battery life is a significant 
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limiting factor for mobile applications running on modern mobile devices, and 

that GPS is a significant consumer of energy [28, 29, 32, 33, 35, 36, 38, 39].

Currently, only two existing location-aware architectures [32, 33] even directly 

address battery life. Comparison between these two architectures and our research 

is provided in Chapter 2. 

2) Cellular data transfer limitations are not addressed.  Many architectures are 

designed without consideration of constrained cellular network bandwidth and 

potential financial charges to the end-user for excessive data traffic. 

3) Lack of integration with existing platforms on commercially-available devices 

(e.g., Java Micro Edition, Android).  Many existing location-aware architectures 

presented in literature utilize custom operating systems or protocols which are not 

readily available on commercially-available mobile phones, and therefore cannot 

be widely deployed as mobile apps to existing phones. 

4) Lack of evaluation of efficacy of location-aware architectures.  Few location-

aware architectures have actually been evaluated on real mobile devices, and as a 

result there is little quantifiable evidence of these architectures’ efficacy with real 

devices.  Only one existing location-aware architecture performs experiments 

with actual mobile devices [33], and we compare this location-aware architecture 

to our research in Chapter 2.

As a result, there is a demand for a new location-aware architecture that meets following 

needs:
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Need #1:  Intelligently manage limited device and network resources.  The 

architecture must acknowledge that location-aware apps can deplete significant 

device and network resources, and the architecture must demonstrate features that 

conserve these resources. 

Need #2:  Support real-time applications.  A significant portion of the architecture 

must be implemented on the mobile device to allow software to immediately act 

upon new data in real-time and immediately interact with the mobile user. 

Need #3:  Support high-precision and high-accuracy positioning systems.  

Positioning technologies such as high-sensitivity assisted GPS must be usable 

within the architecture to support the most innovative types of location-aware 

apps that require highly accurate and precise location information. 

Need #4:  Is fully implementable by third party mobile app developers.  The 

architecture must take into account the availability of application programming 

interfaces (APIs) in existing cross-platform application environments such as Java 

Micro Edition or Android and ensure that the architecture can be implemented on 

such devices. 

However, there are many challenges that must be addressed when creating a new 

architecture that meets these needs.  Challenges can be categorized into the following key 

areas: 

1) Collecting and acting on real-time data consume limited device resources.  When 

an application is executed to record and process data, this requires use of CPU 
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and memory resources, which in turn use battery energy, and, if communicating 

with a server, increases network data traffic 

2) Using high-precision and high-accuracy positioning systems consume limited 

device resources.  GPS is the most accurate and precise positioning system widely 

available on mobile phones.  However, it is also one of the highest consumers of 

battery energy, and for assisted or hybrid GPS solutions, network bandwidth. 

3) Balancing tradeoffs between real-time app requirements and limited device 

resources is not trivial.  Since monitoring and reacting to information also 

consumes the same limited device resources the software is trying to preserve, 

there are no simple solutions for highly accurate and precise location-aware 

applications that are always active. 

4) Mobile hardware is proprietary and rapidly changing.  Hardware and operating 

system functionality is abstracted by high-level software layers APIs (e.g., 

Android, Java ME), which limit control of underlying hardware 

1.5 Contributions

This dissertation presents the Location-Aware Information SYstems Client (LAISYC), a 

modular mobile software architecture that meets the needs of intelligent real-time mobile 

applications and is fully implementable by third party mobile application developers.

Table 1 shows the relationship between each LAISYC module and the needs of 

intelligent real-time mobile applications that it addresses.   
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Table 1 - The Location-Aware Information SYstems Client (LAISYC) modules are 
designed to meet the various critical needs of intelligent real-time mobile 
applications in Location-Based Services 

LAISYC
Modules 

Need #1: 

Intelligently 
manages
limited 
device/network
resources 

Need #2: 

Still
supports
real-time
applications?

Need #3: 

Supports high-
precision and 
high-accuracy 
positioning
systems

Need #4:

Fully
implementable 
by 3rd party 
mobile app 
developer

Session
Management X X  X* 

GPS Auto-
Sleep X X X X* 

Critical 
Point
Algorithm

X X X X 

Adaptive
Location
Buffering 

X X  X* 

Location
Data
Encryption

X X  X 

Location
Data Signing X X  X 

*Interacts directly with the mobile device platform via Application Programming 
Interfaces (APIs) 

We reference the needs listed in Table 1 throughout this dissertation as we discuss 

specific examples of how LAISYC meets each need. 

Each module in LAISYC has been implemented and tested on mobile devices in Java 

Micro Edition as part of our research to demonstrate that each module is fully 

implementable by third party mobile application developers (Need #4).  This prototype 

testing is especially important for the Session Management, GPS Auto-Sleep, and 

Adaptive Location Buffering modules because they interact with and depend upon 

features implemented in the mobile device platform.  While we discuss the characteristics 
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of each module in detail in Chapter 3, the following paragraphs briefly state how each 

module meets the needs, as shown in Table 1. 

The general communication framework between the mobile device and server is 

implemented in the Session Management module using a strategic combination of the 

HyperText Transfer Protocol (HTTP) [40], used for occasional transfer of application 

data, and the User Datagram Protocol (UDP) [41], a lightweight connectionless protocol 

used to transport real-time location data.  Chapter 4 of this dissertation presents 

experiments showing that by using UDP as the main location data transfer protocol 

instead of the Transmission Control Protocol (TCP) [42], the impact on mobile device 

battery life is reduced (Need #1) while still supporting real-time location services (Need 

#2).  The Location Data Buffering module supports efficient real-time communication 

(Needs #2 and #4) by increasing the probability of UDP location data being successfully 

received by the server via an occasional verification of an open data connection using 

TCP. 

The GPS Auto-Sleep module intelligently adjusts the frequency of GPS recalculations 

(Need #3) based on the real-time and historical movement of the user (Need #2).  This 

allows high-resolution tracking of the user using GPS when moving with a gradual 

transition to less frequent GPS fixes when the user stops moving, thereby conserving 

battery life and network traffic to transfer this data back to the server (Need #1).  The 

Critical Point Algorithm filters a real-time stream of location data points (Need #4) and 

eliminates redundant points to produce a smaller data set that still accurately represents 

the path of the mobile device (Need #3).  By reducing the amount of data required to send 
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a device’s path from a mobile device to a server, the Critical Point Algorithm reduces the 

impact of path data transfer on the mobile device battery as well as the amount of 

information sent over the cellular network (Need #1). 

To meet the security and data authentication needs of real-time mobile applications (Need 

#2), our research also presents the implementation of Location Data Encryption and 

Location Data Signing modules (Need #4) and evaluates the impact of these technologies 

on mobile device resources (Need #1). 

1.6 Structure of Dissertation 

The remainder of this dissertation is organized as follows: Chapter 2 provides a detailed 

review of known LBS architectures discussed in literature and compares existing 

literature to our work.  Chapter 3 presents the proposed LAISYC architecture that is the 

main subject of this dissertation, and Chapter 4 presents an evaluation of the key 

LAISYC architecture components as well as two innovative real-time mobile apps, 

TRAC-IT and the Travel Assistance Device (TAD), that use LAISYC.  Chapter 5 

concludes the dissertation with an overview of the contributions and future research 

directions related to LAISYC. 
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CHAPTER 2:  KNOWN LBS ARCHITECTURES 

This chapter reviews existing commercial LBS applications and known LBS system 

architectures, and explains the current limitations of these technologies. 

2.1 Commercial LBS Applications 

There are a number of LBS applications that are commercially available as of 2011, 

which can be organized into the following categories: 

Location data recording:  These apps, such as My Tracks [43], records GPS trails and 

generates statistics/maps based on the path of the user as the user is biking or hiking.

These applications typically store GPS data locally on devices, and can execute a bulk 

upload of data to online data stores such as Google Docs after an entire track has been 

recorded. 

Navigation, mapping, and real-time traffic information:  Apps such as Google Maps 

[44], Google Navigation [45], Telenav [46], and INRIX [47] provide directions to the 

user for businesses and other locations and provide real-time turn-by-turn directions 

and/or real-time or predicted traffic information.  These apps typically use GPS for 

navigation, cell network/Wi-Fi/GPS for location. 

Social location apps:  Foursquare [48], Facebook [49], and Google Latitude [50] are 

all examples of applications that allow the user to manually “check in,” which 

indicates to their friends in their social network that they have arrived at a location.
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Some apps, such as AT&T FamilyMap [51] and Sprint Family Locator [52], are 

designed to allow parents to see where a child is, based on the location of their child’s 

phone.

Location-based search catalogs:  WHERE [53] and Poynt [54] are examples of 

location-based search engines that allow a social search of places based on the user’s 

friends’ ratings.  They can also provide electronic coupons, local gas prices, and local 

weather information.  WeatherBug [55] also provides local weather information. 

Phone finders:  Apps such as Find My iPhone [56] and Where’s My Droid [57] 

provide low-resolution or on-demand tracking capabilities that are designed to locate 

a lost phone from a website interface. 

While providing a variety of services to the user, these apps and other apps that fall into 

the same general categories are all subject to the same limitations: 

1) Commercial location-aware apps are a “black box.”  The design of the application 

and underlying functionality is not publically available and cannot be used to 

integrate with or improve other applications (an exception is MyTracks [43], 

which is open-source, but is a stand-alone mobile app without an active 

connection to a server).  Therefore, each location app developer must start from 

scratch in implementing location-aware functionality in an application. 

2) Commercial location-aware apps require active user management of location 

features due to the impact on device resources (e.g., battery life).  Users are 

responsible for turning location-aware functionality on and off, which burdens the 

user whenever location-aware features are used.  For example, if a user leaves the 
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MyTracks app on in order to record the phone’s location using GPS, the mobile 

phone battery will die within a few hours. Instead, the user must repeatedly turn 

the MyTracks app on when traveling, and turn the MyTracks app off when they 

get to the destination.  This effectively prevents a convenient 24/7 tracking 

application from being possible, given the energy demands of GPS. 

3) Commercial location-aware apps are often limited to “locate->send” functionality.

Phones are often simply used to access the positioning technology in the device 

and send this information to a server, and the primary application features are 

available via desktop or web apps, not the mobile app.  In other words, the 

software simply runs in the background and occasionally reports the rough 

location of the device to a server. 

4) Commercial location-aware apps are often lacking device-based intelligence.  

Location information is not often processed locally on the device, which limits the 

abilities of the app to intelligently manage constrained device resources while 

using positioning systems and wireless communication.  This lack of on-board 

intelligence limits the frequency of use of GPS as well as the frequency of 

location reporting to a server to a large static interval (e.g., 10 minutes) to avoid 

having a severe impact on device battery life and cellular network data traffic. 

The next section discusses known location-aware architectures and their limitations for 

supporting further innovation beyond today’s location-aware features.
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2.2 Known Location-Aware Architectures 

Since the E911 mandate in the late 1990s, many location based services architectures 

have been presented in academic literature. 

Some of the initial papers following the E911 mandate targeted the implementation of 

positioning technologies by cellular carriers.  Zhao [13], Kupper [16], Barnes [58], and 

Rao et al. [59] provide a survey of the different technologies and standards under 

consideration for implementation by carriers, while Porcino [15] and Sunay [60] provide 

evaluations of various positioning technologies.  In this dissertation we are concerned 

primarily with device-based (i.e., mobile terminal (MT)-based, mobile station (MS)-

based) assisted GPS, since it is the most accurate and precise positioning technology 

widely available on mobile phones [13, 15-19] and is also the positioning technology 

typically exposed to application developers via APIs [18].  Soliman et al. [61], Ashjaee 

[62], Langley [63], Richton et al. [19], and Liu [64] all discuss the implementation details 

of first-generation assisted GPS systems for mobile phones which utilize both assistance 

information from the cell network as well as GPS hardware in the mobile phone.  A 

weakness of first-generation GPS is that it could not acquire a positional fix indoors [65].

Subsequent evolutions of GPS technology, termed “high-sensitivity” or “indoor” GPS, 

are aided by a new hardware design that enables the GPS hardware to detect satellite 

signals and compute a position even in highly obstructed environments, such as indoors.  

Van Diggelen discusses the design, implementation, and testing of high-sensitivity GPS 

in his work [66-69].  Vittorini et al. [70], Lachapelle [71, 72], Zhang et al. [73, 74], 

Beauregard [75], and DeSalas et al. [76] all discuss further improvements to general 

high-sensitivity GPS design for additional accuracy and availability of position and 
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velocity measurements.  Ballantyne et al. discuss integrated circuit (IC) designs within 

the mobile phone that can help reduce the amount of energy an individual GPS fix 

consumes [77].  Zandbergen et al. provide empirical accuracy evaluations of GPS data 

from mobile phones [17, 18], while Blunck et al. provide an analysis of the impact of 

body of the user on GPS signal reception in phones [78].  Other publications [79-85] 

examine issues related to increasing the precision and accuracy of indoor tracking via 

other technologies such as WiFi, ultrawideband, and Radio Frequency IDentifiers 

(RFID), although these techniques are not currently available positioning options for 

mobile application developers, and therefore are beyond the scope of this research. 

While these papers on the intimate details of positioning systems served a critical role in 

the development of positioning systems for mobile phones, they are of greatest use to the 

engineers implementing these positioning systems in cellular networks and do not 

provide guidance to applications developers, other than to provide a rough order-of-

magnitude analysis of the accuracy and precision of the underlying positioning 

technologies.  These works discuss technologies which are largely hidden beneath 

application platform APIs, and therefore application developers do not directly interface 

with these technologies. 

Once positioning technologies for cellular devices had matured and were implemented in 

cellular networks, the focus of many academic works turned to the realization of location-

based services based on these positioning technologies.  Mintz-Habib et al. [86] present a 

Voice over Internet Protocol (VoIP) emergency services architecture and prototype which 

is aimed at providing location information to public safety answering points (PSAPs) 
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when a mobile user calls 911.  Jose et al. [87] present an architecture based on the 

Service Location Protocol (SLP) [88], but this work is designed for relative location 

between entities in the Internet and is not designed for high-accuracy or high-precision 

GPS-based devices. 

Since the business model and cellular carriers’ ultimate role in providing commercial 

LBS was initially uncertain, several papers presented architectures that could be 

implemented by cellular carriers or a commercial partner of the carrier.  These 

architectures are either tightly coupled to the cellular infrastructure or maintain a 

centralized location data store and interface for all location-aware mobile applications 

running on the network.  Zundt et al. present a peer-to-peer location architecture that is 

tightly-integrated with GSM networks [89], and Taheri et al. present a network location 

management scheme to enhance the efficiency of base station handoffs for GSM 

networks by using Hopfield Neural Networks [90].  Spanoudakis et al. [91], Kupper et al. 

[92, 93], and Treu et al. [94] all present architectures that enforce centralized control over 

all location-aware applications for mobile phone users, as the architecture serves as the 

location gateway for connecting applications.  These architectures all assume that the 

carrier or commercial partner of the carrier has total control over the location-based 

services that are offered to cellular users on their network. In other words, application 

developers must enter into an agreement with the carrier or commercial partner to 

provide services to mobile phone users.  This dissertation instead focuses on a location-

aware architecture that can be fully-implemented at the application level by third party 

application developers and does not require a commercial relationship or programmatic 

interaction with a centralized system which controls all LBS for a cellular network. 
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Some location architectures provide conceptual models for location exchange between 

entities in a system, but do not define the exact protocols for the exchange of the location 

information and do not evaluate the impact of the architecture on important mobile 

device characteristics such as battery life or amount of data transfer over the cell network.

Spanoudakis et al. [91] present their PoLoS Kernel server, which is designed to receive 

location information from cell phones using the Extensible Markup Language (XML)-

based Simple Object Access Protocol (SOAP) [95] and share this information with 

Internet clients via a “Services Deployer.”  Leonhardi et al. [96, 97] describe the 

conceptual exchange of XML-formatted documents between hierarchical entities in a 

location system that was implemented using a wearable computing system prior to GPS 

being available in mobile phones.  Nord et al. [98] describe an architecture that has a 

primary purpose of abstracting positioning technologies used by a mobile device to 

network servers that wish to discover the location of the device using an XML-based 

“General Positioning Protocol.”  Wu et al. [99] proposes a location architecture in which 

device positions are only sent on-demand to a server when a viewer requests to see the 

device’s position.  The PoSIM system presented by Bellavista et al. [100] multiplexes 

between positioning technologies based on a rules defined by the software developer at 

compile time and asserted at runtime by a rule engine, and exchanges XML-based 

messages within the system.  Chen et al. [101, 102] propose an XML-based “location 

operating reference model (LORE),” designed primarily for location-based messaging 

based on client subscriptions (e.g., user is subscribed to receive e-coupons to a store 

when they are in proximity of the store).  For user privacy, Chen [101] also proposes that 

instead of sending location updates from the device to the server, the server sends all geo-
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stamped XML-based subscription messages to all devices.  Each device then compares 

the message’s location area to its own location and determines if the message should be 

shown to the user.  Ananthanarayanan et al. [103] propose StarTrack, a server-focused 

framework for abstracting spatial database operations on recorded user tracks to a set of 

conceptual primitives, alleviating the application developer from needing to understand 

low-level spatial database functionality. 

In all these architectures, the impact of position updates (a function of both the frequency 

of GPS recalculations and the frequency of the data being sent to a server) on mobile 

device battery life is not directly considered.  For architectures that use XML, 

experiments in Chapter 4 of this dissertation illustrate the drawbacks of using a verbose 

formatting scheme such as XML and SOAP for the transfer of location data between 

mobile phones and a server, as such a scheme has a significant impact on mobile device 

battery life due to the large amount of overhead data exchanged. 

Several past LBS architectures have focused on the use of the Session Initiation Protocol 

(SIP), an application-layer protocol that is often used in the context of VoIP applications 

[86, 89, 104-109].  However, none of these SIP-based architectures were designed for 

GPS-enabled mobile phones in the Java ME environment.  The optional SIP API for Java 

ME has not been widely implemented in mobile devices and therefore typically is not an 

available protocol for mobile developers to use in an application [110].  In fact, in the 

roadmap for the Java ME platform defined by the Mobile Services Architecture (MSA) 

specifications, the SIP API is only required to be supported in the high-end device 

segment, such as Personal Digital Assistants, in order for the device to be MSA-
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compliant [111, 112].  Therefore, location-aware architectures targeting the majority of 

Java ME devices should not require support for SIP. 

Some location-aware architectures have focused on the routing of location data between 

servers as part of a distributed system.  In these systems, the mobile devices connect to a 

server on the periphery of the distributed system network, and then the server acts as a 

proxy for the mobile device to contact other entities in the distributed system, retrieve 

data, and relay that data back to the mobile device.  Zhang et al. [113] present their 

GeoGrid architecture which maps the location of servers in the topography network to the 

actual geographic position of the servers, and provides routing algorithms for load-

balancing and redundancy.  Perez et al. [114] present Geotella, a peer-to-peer routing 

protocol modeled after Gnutella, as part of their scalable G-Sense global architecture to 

link location information from wireless sensor networks and mobile devices.  These 

systems have the advantage of scaling to a larger number of simultaneous global users 

than traditional client-server architecture with a single centralized server.  However, 

neither of these architectures directly considers the connection between the mobile device 

and server, which still must be a client-server architecture, and neither evaluates the 

impact of this exchange of location information on the mobile device’s limited resources.  

In fact, Perez et al. [114] cites our research as the client-server architecture used in their 

system to exchange data between the mobile device and the server. 

Out of the many location-aware architectures that have been presented in literature, only 

two have been designed with awareness of the negative impact that location-based 
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services can have on limited mobile device resources.  The difference between our 

research and these existing location-aware architectures is presented below. 

Kjaergaard et al. [33, 36, 37] presents Entracked, a software system for the Nokia N95 

and N96 smart phones running the Symbian operating system that adjust the GPS 

recalculation frequency and position reporting frequency based on a software model of 

power consumption.  The power consumption model is generated and updated via data 

from a power-sampling API on the device at the rate of 4Hz, and also samples GPS at a 

rate of 1Hz and an embedded accelerometer at a rate of 30Hz.  However, the Entracked 

system is designed to deliver location information to network applications, not mobile 

applications.  In other words, network applications query the Entracked server, which in 

turn queries the Entracked mobile software for the device position, and then relays this 

position information back to the network application.  Therefore, Entracked does not 

support mobile real-time location-aware applications, which is the focus of our research.  

Also, since Entracked relies primarily on the accelerometer to decide when to turn GPS 

on and turn off, this software model cannot be used on devices that do not have 

embedded accelerometers.  Entracked assumes that even when sampling GPS positions at 

large intervals (e.g., every 200 seconds) the GPS hardware would still need to remain 

constantly powered on (i.e., the hardware could not enter a low-power state in between 

samples).  While this assumption is true for older GPS devices, for modern cell phones 

with high-sensitivity GPS even modest adjustments of sampling intervals (e.g., four 

seconds) in the app can yield significant energy savings, as we show in Chapter 4.  This 

savings is produced by the internal GPS quickly acquiring a positional fix and then 

powering down between samples.  Our research leverages these observations and 
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presents a power-saving technique, GPS Auto-Sleep, which does not require embedded 

accelerometers and therefore can function on even severely resource-constrained devices 

that have only embedded GPS.  Another difference between Entracked and our work is 

that Entracked uses the Transmission Control Protocol (TCP) [42] to transfer location 

data between the device and the server.  In Chapter 4, we demonstrate that the User 

Datagram Protocol (UDP) [41] is preferable for real-time location data transfer, and 

therefore UDP was chosen for our architecture.  Langdal et al. [115] reimplement the 

features of Entracked in their modular graph-based PerPos middleware.  However, the 

limitations discussed above also apply to the PerPos implementation of Entracked. 

Farrell et al. [32] present an Early Distance-Based Reporting (EDBR) algorithm, a 

position reporting method which considers both the energy used by positioning sensors 

such as GPS as well as the energy used in the wireless transmission of this information.  

However, this method was designed primarily for reporting positions to a server for 

network-based applications, and not in the context of real-time mobile applications.  The 

focus on network applications, and the tight coupling of the positioning sensor refresh 

interval and interval between location updates to a server, creates several limitations for 

real-time mobile applications.  For example, Farrell et al. support only a distance-based

reporting method, which will not produce any location updates to a server if the device 

does not move.  Therefore, distance-based reporting does not support the use-case of a 

mobile application that is required to report a position to a server at a minimum time 

interval, regardless of movement.  Also, since distance-based reporting sends a position 

to the server after a certain distance is exceeded, it can produce needless updates if the 

user is traveling in a straight line for an extended period of time (e.g., driving on a 
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highway). Our research presented in the next chapter de-couples the position reporting 

method (i.e., the Critical Point Algorithm) from the method used to refresh the 

positioning sensor (i.e., GPS Auto-Sleep) in order to support independent operations of 

each method, thus modularizing the system and extending the use cases for various 

positioning sensing refresh and position update reporting intervals. This allows our 

LAISYC framework to support various types of position update methods in the Critical 

Point Algorithm without changing the positioning sensor refresh rate.  Additionally, the 

positioning sensor refresh rate can then be adjusted based on logic other than detecting 

movement for server updates.  One example of alternate refresh logic is the manipulation 

of the refresh rate for a mobile navigation application that wants to only occasionally 

refresh a position when a large distance from the goal, but then needs to increase the 

refresh rate when getting closer to the goal.  By reducing the GPS refresh rate and only 

updating the location occasionally when miles from a goal, the application can produce 

significant battery life savings, as we demonstrate in Chapter 4. 

Farrell et al. also do not evaluate their algorithm on actual mobile devices; instead, they 

synthesize random positions from a simulator, with the assumption that objects move 

linearly and in a uniform manner, and use this data to evaluate their algorithm.  Synthetic 

path data generated in this manner is problematic from several perspectives.  Farrell et al. 

do not consider the uncertainty and error of a GPS position when evaluating their 

algorithm.  As we show in Chapter 4, even with high-sensitivity GPS indoor position 

tracking produces a significant amount of errors in position that do not reflect the true 

geographic position of the device due to environmental noise [17, 18].  When a GPS 

device calculates a position repeatedly in the same geographic location, the error in 
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position creates a normal distribution [116].  Therefore, Farrell et al.’s assumption that 

the change in GPS positions while a user is stationary will be uniform is invalid.  In our 

work, the LAISYC architecture is evaluated while it executes on actual mobile devices 

with real assisted GPS data, therefore removing the assumptions and limitations 

discussed above. 

Our past research has investigated location-aware architectures in the context of  

bidirectional, multimedia, location-based messaging [117].  That architecture focuses 

primarily on a messaging infrastructure which piggy-backs location data in Multimedia 

Messaging Service (MMS) messages sent through a cellular carrier’s publicly-accessible 

messaging gateway, thus avoiding the use of short-codes and messaging aggregators. 

However, the use cases for this architecture are the occasional exchange of messages, and 

therefore only occasional use of GPS.  Since GPS is not used in an ongoing manner, this 

messaging architecture does not consider the impact of GPS on mobile device battery 

life, or the amount of data being sent over the cellular network. 

This dissertation presents LAISYC, an architecture that supports real-time mobile 

applications that are “always-on” and in continuous communication with a server, as in 

traditional IP-based networks.  LAISYC focuses primarily on the intelligent device-based 

modules but also discusses the structure of communication with the server and server-

side components that support the overall framework.  Unlike the other known 

architectures discussed in this chapter, LAISYC meets the needs of intelligent real-time 

mobile applications in Location-based Services as discussed in Chapter 1.  Our research 

presents the results of field tests in Chapter 4 which evaluate key LAISYC modules in 
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order to quantitatively assess their impact on mobile device battery life in the context of 

the presented architecture.  Our work on LAISYC is also summarized in publications in 

IEEE Pervasive Computing [118], Proceedings of IEEE UBICOMM Conference [119], 

the Transportation Research Record: Journal of the Transportation Research Board [120], 

Proceedings of the Intelligent Transportation Systems World Congress [121], the Journal 

of Navigation [18], and several issued [122-126] and pending patents [127-129].

LAISYC has been used to enable several real-time location-aware applications as part of 

research projects, including the Travel Assistance Device (TAD) mobile application that 

assists transit riders with intellectual disabilities in using public transportation through 

real-time navigation instructions [130], as well as TRAC-IT, a mobile app that supports 

simultaneous travel behavior data collection and real-time location-based services [131, 

132].  TAD and TRAC-IT’s relationship with LAISYC is discussed in detail in Chapter 4 

as a demonstration of innovative location-aware applications implemented using 

LAISYC. 
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CHAPTER 3:  PROPOSED ARCHITECTURE – LOCATION-AWARE 
INFORMATION SYSTEMS CLIENT (LAISYC) 

3.1 Note to Reader 

Material presented in this chapter has been published in IEEE Pervasive Computing [118] 

(© 2011, IEEE), and we have received permission to reprint this work.  The University of 

South Florida also has patents pending and issued on various technologies discussed in 

this chapter.  The GPS Auto-Sleep technology is protected under U.S. Patent # 8,036,679 

“Optimizing performance of location-aware applications using state machines” [122] by 

the University of South Florida.  Material on GPS Auto-Sleep has also been published in 

the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted here with 

permission of IEEE.  The Session Management technology is protected under pending 

U.S. Patent Application # 13/082,094 and International Patent Application # 

PCT/US2009/059825 “Architecture and Two-Layered Protocol for Real-time Location-

Aware Applications” [128] by the University of South Florida. Adaptive Location Data 

Buffering technology is protected under a pending U.S. Patent Application # 13/082,722 

and International Patent Application #. PCT/2009/059985 “Adaptive Location Data 

Buffering for Location-Aware Applications” [129] by the University of South Florida. 

The Critical Point Algorithm is protected under pending U.S. Patent Application # 

12/196,673 “Method For Determining Critical Points In Location Data Generated By 

Location-Based Applications” [127] by the University of South Florida and has also been 

published in the Proceedings of UBICOMM ’08 [119] (© 2008, IEEE), and is reprinted 
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here with permission of IEEE.  The Spatial Analysis technology is protected under 

pending U.S. patent Application # 11/855,694 “System and Method for Real-Time Path 

Prediction and Automatic Incident Alerts” and U.S. patent Application # 11/277,403 

“System and Method for Transportation Demand Management” by the University of 

South Florida. 

3.2 Architecture Overview 

LAISYC was created to meet application needs for real-time, high-accuracy and high-

precision location-aware applications.  This architecture was designed to be fully-

implementable by third party mobile app developers, and can intelligently manage 

limited device and network resources.  LAISYC can support various types of location-

aware applications, including real-time tracking, as well as delay-tolerant applications 

that record the user’s travel path.  For maximum flexibility, an application can 

dynamically manipulate LAISYC module parameters according to real-time application 

needs, and therefore hybrid applications with both real-time and delay-tolerant features 

are also possible. 

To support the needs of modern LBS discussed in Chapter 1, LAISYC is separated into 

device-based modules, which are implemented in software on the mobile device, and 

server-based modules, which reside on a web application server, such as Glassfish [133].

Figure 1 shows the high-level view of this device-server architecture. The mobile and 

web portions of the application supported by LAISYC sit on top of the respective 

LAISYC modules.  The web application server supports a large number of client devices 

simultaneously and tracks individual sessions for each device.   
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Figure 1 - The LAISYC architecture consists of software on the mobile device and 
web application server, with a database server holding persistent server-side data 

The web application server also acts as a proxy for the mobile device to access the 

database server, as mobile devices are not capable of directly interfacing with database 

servers due to a lack of mobile database drivers. 

The following sections discuss each of the modules of LAISYC, and their respective 

position on either the device or the web server. 

3.3 Mobile Device-Side Components 

This dissertation focuses primarily on the design, implementation, and evaluation of the 

mobile device-side modules in LAISYC.   

The LAISYC modules that reside on the device can be broken down into two categories, 

as shown in Figure 2: 

1) Positioning Systems Management (Blue shaded modules in Figure 2) 

2) Communications Management (Green shaded modules in Figure 2) 
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Figure 2 - LAISYC mobile phone-based modules.  [118] © 2011 IEEE 

LAISYC modules in each of these categories process two types of data: 

1) Application data – all non-location information that is required for the successful 

operation of the application (e.g., usernames, passwords, application logic 

parameters).  This data is typically exchanged with the server on an occasional 

basis, and its loss is not tolerable. 

2) Location data – data generated by positioning systems (e.g., GPS) that represent 

the geographic position of a mobile device.  This data can be frequently 

exchanged with the server with a rate of up to one transmission per second, and 

timeliness is of greater importance than 100% reliability.  Therefore, occasional 

loss of individual device positions is tolerable for many applications. 

Location data is generated from the positioning system (e.g., GPS) on the mobile device 

and is passed to the LAISYC framework through the Location API (i.e., JSR179 or 

JSR293 in Java ME, Location API on Android) that is part of the underlying platform.  

The location data is first received by the bottom layer of Positioning Systems 
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Management (i.e., GPS Auto-Sleep), and is passed through each module until it reaches 

the application.  The application can send control signals to each module, deactivating it 

if necessary.  If the application deactivates a module, the location data pass through that 

module without any action by LAISYC. 

After location data passes through Positioning Systems Management, the application can 

send location data to the server by passing it into the first module in the Communications 

Management group (i.e., Critical Point Algorithm).  The data then propagates to the right 

until it reaches the Session Management module, which activates the wireless 

transmission of the location data.  The mobile application also sends application data to 

the server by interfacing with the Session Management module. 

Positioning Systems Management modules are discussed first in the following section, 

and Communications Management modules in a subsequent section. 

3.3.1 Positioning Systems Management Modules 

The Positioning Systems Management modules include GPS Auto-Sleep and Location 

Data Signing.

3.3.1.1 GPS Auto-Sleep 

The purpose of the GPS Auto-Sleep module is to save battery energy by dynamically 

adjusting the GPS sampling interval based on user movement. 

Mobile phone platforms such as Java ME and Android typically provide two general 

modes of interaction between a mobile application and the underlying GPS hardware via 

a Location API [22-24, 134]: 
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1) Single-shot GPS request – In this mode, the application requests a single GPS 

position update from the platform using the Location API.  The platform activates 

the GPS hardware, waits until a GPS position is calculated, and returns the 

calculated position to the application.  The platform may support an application-

defined or platform-defined timeout value, which is used to limit the length of 

time the GPS hardware remains active after a request.  If the GPS cannot achieve 

a position fix within this timeout period, a null value may be returned to the 

application indicating a failure to locate the device (e.g., due to environmental 

obstructions).

2) Periodic GPS request – In this mode, the application specifies that it would like to 

receive recurring GPS updates from the platform at a fixed interval of time by 

registering a LocationListener with the Location API.  The platform proceeds to 

calculate GPS positions using the underlying GPS hardware at the defined 

interval and executes an asynchronous callback to the application’s 

LocationListener when each new position is calculated.  Timeout values can also 

be used in this mode to establish an upper limit on the length of time the GPS 

hardware is active on each fix attempt.  A parameter maxAge (i.e., maximum age) 

can also be passed into the LocationListener to define the maximum time allowed 

between when a location fix was calculated and when it can be returned to the 

application.  MaxAge is typically used in a multitasking environment to allow the 

Location API to return the same location fix to more than one application that 

may be on a slightly different GPS update schedule.  For example, if applicationA

uses an interval value of 30 seconds started at time t0 and a maxAge value of 10 
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seconds, and applicationB triggers a GPS update from the Location API at time25,

at time30 the Location API could return the same GPS fix to applicationA because 

the GPS fix is less than 10 seconds old.

For long-term tracking of a device, developers use the periodic GPS request feature of the 

Location API. 

As discussed earlier, battery life is a key limitation for LBS on mobile devices.  Since 

GPS technology requires GPS receiver hardware in the mobile device so the device can 

locate itself using satellite radio broadcasts, the use of GPS costs a significant amount of 

energy when activating this hardware.

In the early stages of our research with high-definition tracking on GPS-enabled mobile 

phones, it quickly became apparent that even on devices using modern high-sensitivity 

GPS, a simple solution of setting the LocationListener to periodically refresh its position 

every few seconds is energy-prohibitive, as this would exhaust the battery in a matter of 

hours.  Typically, a mobile phone’s battery must be operational during the day 

(approximately 16 hours) until the user can plug the device in and recharge the battery at 

night.

With further experimentation, we found that an application could request periodic 

updates at a larger time interval, such as five to ten minutes, and this would extend 

battery life to an acceptable length that would bridge the gap from one nightly battery 

recharge to another.  However, GPS samples five to ten minutes apart do not meet our 

requirements for high-precision and high-accuracy tracking or real-time LBS. 
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This experimentation with larger time intervals between GPS fixes on high-sensitivity 

GPS-enabled mobile phones led to a valuable observation:  high-sensitivity GPS 

hardware is still able to successfully achieve a GPS position fix even with long time 

delays between consecutive fixes.   This ability to rapidly acquire a new GPS fix even if 

there has been significant delay since the most recent GPS fix is new to high-sensitivity 

GPS receivers [18, 68].

Previous generation GPS receivers exhibited a strong dependence on prior GPS 

observations when calculating a new GPS fix.  These GPS receivers typically had three 

tracking modes:  cold start, warm start, and hot start [135].

Figure 3 - High-sensitivity GPS receivers can acquire a GPS position more rapidly, 
and with less dependence on the time elapsed since the most recent GPS fix, than 
low-sensitivity receivers 
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These modes are illustrated in Figure 3, which shows the amount of time needed to 

acquire a GPS fix with different amounts of time elapsing since the most recent GPS fix. 

A device starts in cold start mode, and even in complete open view of the sky it would 

typically take a minimum of 30 seconds to a minute to acquire a first GPS fix.  This time 

period is known as the Time-To-First-Fix (TTFF).  As an initial GPS fix is acquired, the 

GPS hardware then enters a hot state, in which it has current knowledge of satellite 

positions in the sky and the appropriate signal frequency offsets and code delays needed 

to successfully calculate the next GPS fix.  However, as time begins to elapse from the 

initial hot fix, the GPS hardware’s knowledge of the state of the GPS system begins to 

quickly decay as satellites change position in the sky and environmental factors change 

the GPS signal environment.  As a result, while subsequent GPS fixes occurring within 

ten seconds following the initial hot fix will likely succeed if there is an open view of the 

sky, the likelihood of a successful GPS fix decays with the elapsed time after the most 

recent GPS fix.   

The GPS receiver is said to enter a warm state, which can be from around 10 seconds to 1 

hour after the most recent GPS fix, and then return to a cold state if more than 1 hour has 

elapsed since the most recent fix.  Once in a cold state, the GPS receiver loses significant 

knowledge of the state of the GPS system and must enter an initial startup mode, which is 

again the TTFF.  The exact decay time transitions from hot to warm to cold states can 

vary depending on the GPS manufacturer, as some receivers are only able to sustain a 

warm state for a few minutes after the most recent GPS fix. 
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High-sensitivity GPS largely eliminates the concept of hot, warm, and cold states, as 

high-sensitivity GPS hardware is quickly able to acquire a fix even from a cold start state, 

bringing the TTFF down to a few seconds or less, depending on the strength of the GPS 

signals.  For example, in the view of an open sky, high-sensitivity GPS receivers can 

calculate a fix from a cold start in less than a second.  Figure 3 illustrates that even if the 

length of time has been significant since the most recent GPS fix, high-sensitivity 

receivers still only require the GPS hardware to be on for a limited amount of time before 

successfully calculating a new fix. 

Through these experiments, we recognized that significant independence from previous 

GPS observations meant that, unlike older generation GPS, on high-sensitivity GPS-

enabled mobile phones we could dynamically vary the interval of time between GPS fix 

attempts and produce significant battery energy savings.  If a similar technique had been 

attempted on older generation GPS receivers, the length of time the GPS hardware would 

have been active during the TTFF to achieve a position fix from a cold start state would 

have largely offset any energy saved by using dynamic GPS sampling rates. 

In LAISYC, the GPS Auto-Sleep module intelligently adjusts the GPS sampling rate of 

the mobile device based on real-time location information in order to save battery energy 

when the user is stationary, but still maintains a high-resolution sampling rate when the 

user is actively moving.  For example, if a mobile device is indoors and cannot calculate 

a position due to GPS signal obstruction, a large amount of energy is wasted as the device 

continuously attempts to calculate a GPS fix every few seconds.  The interval of time 

between position recalculations can gradually be increased (i.e., towards a sleep mode) in 
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order to prevent calculating the relatively same position information repeatedly.  The 

application can be woken up and transition to a rapid position recalculation when it is 

determined the device is moving again with a high degree of confidence.  The mobile 

application interfaces with the GPS Auto-Sleep module via the LAISYC Positioning API, 

which allows the application to turn GPS Auto-Sleep on and off and receive location 

updates from GPS Auto-Sleep. 

We implement GPS Auto-Sleep using a finite state machine, as shown in Figure 4.   

Figure 4 - GPS Auto-Sleep uses a state machine with various logic evaluations that 
control the transition between states, which represent changes to the GPS sampling 
interval values.  [119] © 2008 IEEE 
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[0]

State
[1]

State
[n – 1]
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[n]

Move directly to state[0] when current_speed >
high_speed_threshold.

GPS Sampling
Interval = 4 sec.

GPS Sampling
Interval = 8 sec.

GPS Sampling
Interval = 128 sec.

GPS Sampling
Interval = 256 sec.

Initial state is state[0].
Upon startup, if a GPS fix can’t be acquired only move 
from state[0] after first_fix_timeout expires
When in state[0] and a GPS fix can be acquired, back-
off timer starts when current_speed < 
stopped_speed_threshold OR current_hor_accuracy 
> high_horizontal_accuracy_threshold.
Back-off timers is reset to 0 if current_speed > 
stopped_speed_threshold OR 
distance_between_fixes > moved_distance threshold.
When back-off timer expires, transition to state[1], 
and save the current location information for later 
moved_distance_thresholds comparisons.
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move towards state[n] when 
((current_speed < low_speed value)
AND (distance_between_fixes < 
moved_distance_threshold))
OR if a GPS fix can’t be acquired.

Gradually move towards state[0] when 
(low_speed_threshold < current_speed <
high_speed_threshold) OR 
(distance_between_fixes >
moved_distance_threshold).
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Changes between states in the state machine represent changes to the GPS sampling 

interval (i.e., time between sequential GPS samples), with a variety of rules based on 

real-time location data and previously observed location data controlling the state 

transitions.  In addition to the GPS intervals, each state can also contain values for the 

timeout and maxAge parameters to be used with the respective GPS interval value. 

The Java ME Location API provides the following values to GPS Auto-Sleep for each 

successful GPS position calculation [23, 24]: 

Latitude and longitude:  the position of the user on the surface of the earth in 

decimal degrees, using World Geodetic System (WGS) 84 datum. 

Altitude:  the altitude of the location in meters, defined as height above the 

WGS84 ellipsoid. 

Timestamp:  the time at which the GPS position was calculated, based on the GPS 

receiver clock, which is synchronized to the GPS system. 

Speed:  the device’s current ground speed in meters per second (m/s) at the time 

of measurement. 

Heading:  the heading of the device when the GPS fix was recorded, in degrees 

relative to true north, in range of 0-360 (e.g., 0, 360 = north, 90 = East, 180 = 

South, 270 = West). 

Estimated horizontal accuracy:  the estimated accuracy of the location as the 

radius of a circular area indicating the 68% confidence level. In other words, the 

true location of the user should fall within a circle having the center of the 
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calculated position and a radius of the estimated horizontal accuracy value at a 

probability of approximately 68%. 

During execution of GPS Auto-Sleep, several thresholds are used and compared against 

the location data provided by the Location API: 

first_fix_timeout:  a time in seconds for which GPS Auto-Sleep will remain in 

state[0] when the mobile application is first started, if the device cannot achieve a 

GPS fix.  After this amount of time has elapsed on startup, this threshold is not 

used for the duration of application execution.  If the GPS receiver is refreshing 

its knowledge of the GPS system on startup, we do not want to immediately start 

transitioning to lesser sampling frequencies to give the receiver the best chance at 

achieving a first fix.  This value should be set high enough to let the GPS receiver 

operate for enough time to refresh assistance data and observe GPS signals, but no 

longer than the amount of time expected for the receiver to calculate a GPS fix 

under typical conditions (e.g., outside, in light building coverage).  In experiments 

with Sanyo 7050 and Sanyo Pro 200 phones, we have used 20 seconds for this 

threshold.

stopped_speed_threshold:  a speed value in meters per second that is used to 

determine if the user is currently stopped (i.e., current_speed < 

stopped_speed_threshold).  This threshold should be set so that the device has a 

high degree of confidence that the device is truly stopped if the current_speed < 

stopped_speed_threshold.  In experiments with Sanyo 7050 and Sanyo Pro 200 

phones, we have used 1 m/s as this threshold. 
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high_speed_threshold:  a speed value in meters that is used to jump-start the GPS 

Auto-Sleep machine immediately and snap to a high GPS sampling frequency 

immediately if a very large speed value is observed.  This value should be set so 

that the software has a high degree of confidence that the device is moving if the 

current_speed > high_speed_threshold.  In experiments with Sanyo 7050 and 

Sanyo Pro 200 phones, we have used 1.5 m/s as this threshold. 

moved_distance_threshold:  a distance value in meters that is used to determine if 

the user has moved from a location when the GPS location was last sampled and 

the user was considered stationary (i.e., distance_between_fixes > 

moved_distance_threshold).  This threshold should be set so that the device has a 

high degree of confidence that the device has truly moved if 

distance_between_fixes > moved_distance_threshold. In experiments with Sanyo 

7050 and Sanyo Pro 200 phones, we have used 100 meters as this threshold.  We 

used Vincenty’s Inverse formula [136] to calculate the distance between two 

points on the WGS84 ellipsoid, which were shown by Vincenty to be accurate to 

within 0.5mm [136]. 

high_horizontal_accuracy_threshold:  a distance in meters that is used to 

determine if the user has stopped moving and is inside a building, based on the 

high level of estimated horizontal accuracy uncertainty of the GPS fix.  The 

general assumption is that if estimated horizontal accuracy is very high, then GPS 

signals are greatly obstructed and it is likely the user is inside a building.  This 

value should be set so that the software has a high degree of confidence that the 

user is inside a building if the current_horizontal_accuracy > 
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high_horizontal_accuracy_threshold. In experiments with Sanyo 7050 and Sanyo 

Pro 200 phones, we have used 80 meters as this threshold. 

backoff_time_threshold:  a time in seconds to wait after the user is believed to be 

stationary before allowing the state machine to transition from state[0] to less 

frequent GPS sampling in state[1] (i.e., “backing off” for actively sampling travel 

towards sleep mode).  In other words, once GPS Auto-Sleep is actively sampling 

in state[0], a time greater than backoff_time_threshold  must elapse before any 

state transitions take place.  The backoff timer is started when current_speed < 

stopped_speed_threshold, or current_horizontal_accuracy > 

high_horizontal_accuracy_threshold, or if the GPS receiver cannot calculate a 

GPS position. The backoff timer is reset to 0 when movement is detected (i.e., 

current_speed > stopped_speed_threshold) before the backoff timer has expired.  

We used this backoff timer because travel behavior tends to have a temporal 

locality, in that travelers are more likely to move if they have been moving 

recently.  One example of this is traffic lights – we want to continue sampling for 

a typical duration of a traffic light to maintain high resolution sampling while the 

user is actively traveling, rather than briefly observing a pause in travel behavior 

(e.g., getting stopped at the light) and immediately reducing the GPS sampling 

rate.  We assume that if the backoff_time_threshold has elapsed, then the user has 

likely stopped moving for the immediate future.  In experiments with Sanyo 7050 

and Sanyo Pro 200 phones, we have used 120 seconds for this threshold. 
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An example configuration of the state machine for GPS Auto-Sleep is: 

state[0] = 4 s between GPS samples, timeout = 2 s, maxAge = 2s 

state[1] = 8 s between GPS samples, timeout = 4 s, maxAge = 4s  

state[2] = 16 s between GPS samples, timeout = 8 s, maxAge = 8s  

state[3] = 64 s between GPS samples, timeout = 16 s, maxAge = 16s  

state[4] = 150 s between GPS samples, timeout = 32s, maxAge = 32s  

state[5] = 256 s between GPS samples, timeout = 32 s, maxAge = 32s  

On application startup, the state machine will start in state[0] and will start periodic GPS 

sampling using the Location API’s LocationListener with an interval of state[0] = 4 

seconds.

If the device cannot acquire a GPS fix on startup, it will remain in state[0] for the 

duration of the first_fix_timeout until it transitions to state[1]. 

If the device can acquire a GPS fix on startup but is not moving (i.e., when current_speed

< stopped_speed_threshold OR current_hor_accuracy > 

high_horizontal_accuracy_threshold), the back-off timer starts.  The back-off timer is 

reset to 0 if current_speed > stopped_speed_threshold OR distance_between_fixes > 

moved_distance threshold.  When the back-off timer expires, the state machine 

transitions to state[1], and saves the current location information for later 

moved_distance_threshold comparisons to determine if the device might be moving. 

After leaving state[0] and arriving in state[1], the state machine will wait in state[1] 8 

seconds for the next GPS fix attempt.  After the next GPS fix is attempted, the location 
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information is evaluated to determine if the next state transition should be towards 

state[n] (i.e., the state machine assumes the user is stationary), or back towards state[0] 

(i.e., the state machine assumes the user is still moving).  The state machine will move 

towards state[n] when ((current_speed < stopped_speed_threshold) AND 

(distance_between_fixes < moved_distance_threshold)) or if a GPS fix cannot be 

acquired.  The state machine will move towards state[0] when (stopped_speed_threshold

< current_speed < high_speed_threshold) OR (distance_between_fixes > 

moved_distance_threshold).  If the state machine transitions to state[2], it will wait 16 

seconds until the next GPS fix attempt, and it will repeat the above evaluations until 

reaching state[n] (i.e., sampling GPS every 256 seconds) or arriving back at state[0].  If 

the state machine arrives back at state[0], it assumes the user is actively traveling again 

and resets and activates the back-off timer.  

Once the state machine is in the sleep state (i.e., state[n]), it can conserve the most energy 

by calculating GPS fixes using a large interval of time.  However, since we are concerned 

with measuring accurate distance of travel via high resolution GPS sampling, we want to 

be able to immediately resume high-frequency sampling (i.e., state[0]) if we observe a 

GPS fix that indicates that the user is moving with high probability.  Therefore, we add 

the ability for the state machine to immediately transition from any state to state[0] if the 

current_speed > high_speed_threshold.  This “wake up” trigger is based on the speed of 

the device exceeding a certain threshold in the most recently calculated location data (i.e., 

the device has started moving). 
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The gradual transitions between a high-frequency sampling of state[0] and sleep mode of 

state[n] are a method to handle the uncertainty associated with GPS positions.  As 

sequential GPS observations reinforce the certainty associated with the moving or 

stationary states, the GPS sampling frequency is adjusted accordingly.  This ability 

allows GPS Auto-Sleep to capture location data for short walking trips that may look 

very similar to GPS noise.  The first portion of the trip will only be occasionally sampled 

with the frequency of state[n], but as the distance from the last stopped location increases 

and the user’s speed is observed to be slightly higher than the typical 

stopped_speed_threshold the sampling gradually increases until the GPS is being 

sampled at the high-resolution value of state[0].

Gradual state transitions also ensure that outlier values do not have an extreme impact on 

the sampling frequency and cause sampling at a high frequency repeatedly when the GPS 

should actually be asleep.  For example, the most frequent type of GPS outlier data is a 

position that may be 100 meters from the true location when the user is indoors.  The 

state machine will only react by moving from state[n] to state[n-1], and if the next GPS 

sample is near the true location the state machine will return to state[n]. 

In addition to the general tracking functionality defined above, GPS Auto-Sleep also has 

a secondary navigation mode that can be utilized for location-aware applications that are 

based on the distance to a goal.  This goal may be a fixed location (e.g., the next turn for 

real-time driving directions) or the location of a mobile device (e.g., real-time friend 

finder).  When navigation mode is switched on and a goal is identified, the state machine 

can decrease the interval between position calculations as the mobile device gets closer to 
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the goal (i.e., increase the sampling frequency), and increase the interval between 

position calculations as the mobile device moves further away from the goal (i.e., put the 

device into sleep mode).  This navigation mode is primarily designed for real-time 

navigation applications that do not require a high-resolution record of the travel history of 

the user, but do require high-resolution GPS sampling when nearing the goal to ensure 

the user is provided with timely instructions. 

Navigation mode for GPS Auto-Sleep is also implemented using a finite state machine 

with interval, timeout, and maxAge values increasing from state[0] to state[n], but the 

state transition rules are different.  Figure 5 shows the navigation mode state transition 

diagram.  State changes for navigation mode occur based on the distance between the 

mobile device and a goal location, such as the next planned turn in a navigation 

application when a verbal prompt will be announced to the user.   

Figure 5 - Navigation mode for GPS Auto-Sleep controls GPS sampling interval 
directly based on a distance-to-goal (e.g., next turn for real-time driving directions) 
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For example, if the distance between the current location and a goal location is greater 

than 5 miles, then the state machine will be at a preset state[n].  As the device approaches 

its goal location, the state would change to state[n-1] at a certain distance milestone in 

order to decrease the location recalculation interval.  This would decrease the intervals 

between device location updates from 128 seconds when the device is more than 5 miles 

away, to 64 seconds when the device is between 5 and 3 miles away, and so on, until 

reaching 1 second GPS sampling when the device is .25 miles away.  This assures that 

the device will not miss its goal since the location is updated very frequently when the 

device is physically near.  State transitions also occur in the reverse order as the distance-

to-goal decreases as the device moves away from the goal.  Since real-time applications 

are time-sensitive, a state can transition directly to another state to avoid stepping through 

states when a lower interval (i.e. more frequent updates) is required immediately (e.g., in 

case of temporary GPS signal loss). 

In conclusion, GPS Auto-Sleep is designed to address several of the needs for location-

aware mobile apps outlined in Chapter 1.  GPS Auto-Sleep is designed to increase mobile 

device battery life (Need #1) by dynamically adjusting the GPS sampling rate in real-time 

(Chapter 1 - Needs #2 and #3).  GPS Auto-Sleep uses the existing periodic GPS request 

interface of the Location API, and therefore it is fully implementable by third party 

mobile app developers (Need #4). 

In Chapter 4, we demonstrate a methodology for selecting values for each of the 

thresholds discussed in this section based on observed GPS data, so GPS Auto-Sleep can 

be configured appropriately for any GPS-enabled device.  We also present an evaluation 
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of the state accuracy of GPS Auto-Sleep, as well as its effectiveness for increasing 

battery life. 

3.3.1.2 Location Data Signing 

The purpose of the Location Data Signing module is to add energy-efficient authenticity 

to location data generated by the mobile phone. 

GPS data is increasingly being used by businesses and government entities in order to 

support key operations.  These applications rely on GPS to report or verify mileage and 

time spent by workers on remote sites, support pay-as-you-drive car insurance through 

the identification of the length and location of car use, as well as to support variable 

transportation taxes.  However, all of these uses of GPS data have a key weakness:  GPS 

data can potentially be falsified through direct tampering with the data.  Therefore, the 

integrity of raw GPS data cannot be independently verified. 

The Location Data Signing module utilizes asymmetric cryptography (i.e., public and 

private keys) with certificates issued by a trusted third party in order to digitally sign data 

related to the GPS fix.  These data can include the latitude, longitude, altitude, speed, 

heading, GPS timestamp, system timestamp, phone number of device, and identifying 

information for the phone and user including the International Mobile Equipment Identify 

(IMEI), Subscriber Identity Module (SIM) ID, mobile station ID (MSID), and Mobile 

Equipment Identifier (MEID), as well as the username and a hash of the password used to 

log into the application.  By signing these data, Location Data Signing can prove that a 

particular GPS fix occurred on a particular phone with a specific user logged into the 

application at a specific time.  Since this information is hashed and signed using a private 
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key by the application, the integrity of the GPS data can be verified by utilizing the 

public key and a hash of the message.  Therefore, it can be shown that a GPS fix, 

including the location, speed, and time, is unaltered from the data that was originally 

calculated by a specific application on-board a GPS-enabled mobile phone.  We 

designated Location Data Signing as an optional module in LAISYC, since it may only 

be required for applications that have a strict requirement for confirming the identity of 

the mobile device. 

While symmetric cryptography is more efficient than asymmetric cryptography, only 

asymmetric cryptography can be used for digital signatures.  To sign data, a private key is 

required, and to verify data a public key is required, and therefore symmetric 

cryptography cannot be used. 

We chose the Digital Signature Algorithm (DSA) for implementation in the Location 

Data Signing module.  While other options such as Rivest-Shamir-Adleman (RSA) and 

Elliptic Curve Digital Signature Algorithm (ECDSA) exist, DSA is the only algorithm 

that is not restricted by intellectual property or export constraints and can be used world-

wide royalty-free [137]. 

In 2006 Jarusombat et al. [138] hypothesized that traditional digital signature algorithms 

such as RSA and DSA are too computationally intense for mobile devices and proposed 

their own location-based digital signature algorithm.  In 2009, Xuan et al. [139] 

experimented with digital signature algorithm performance on emulators and 

demonstrated that traditional digital signature algorithms are indeed feasible for mobile 

virtual machines.  However, Xuan et al.’s experiments were in context of general secure 
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web services and not in the context of location data, and were not executed on real 

devices.  In Chapter 4, we present the results of experiments showing that actual GPS-

enabled devices are indeed capable of frequent location data signing. 

In conclusion, the Location Data Signing module is designed to address several of the 

needs for location-aware mobile apps outlined in Chapter 1.  Location Data Signing is 

designed to add energy-efficient (Need #1) authenticity to location data generated by a 

mobile device in real-time (Need #2).  The selection of DSA for Location Data Signing 

ensures that it is implementable by any third party mobile app developer (Need #4).  In 

Chapter 4, we also evaluate the impact of Location Data Signing on mobile device 

battery life (Need #1). 

3.3.2 Communications Management Modules 

The Communications Management modules include Session Management, Adaptive 

Location Data Buffering, the Critical Point Algorithm, and Location Data Encryption.

3.3.2.1 Session Management 

The purpose of the Session Management module is to save battery energy and reduce 

data transfer costs while supporting real-time location data communication between a 

mobile phone and server. 

Since location-aware applications are distributed between a mobile phone and server, the 

protocols used for communication between the mobile device and server must be 

carefully examined for efficiency and broad compatibility with many different client 



52

devices.  The selected protocols must also be appropriate for the type and frequency of 

exchanged data, to avoid an unnecessary impact on limited mobile device resources.   

As mentioned earlier, there are two types of location data exchanged between the device 

and server:  application data and location data.  Application data is exchanged with the 

server occasionally and loss of this data is not acceptable.  Location data is exchanged 

with the server frequently, and occasional loss of individual position data points is 

acceptable.  Since LAISYC must be implementable by third party application developers 

(Chapter 1 - Need #4), the availability of networking protocols at the application level on 

mobile devices that are suitable for transporting these two types of data must be 

examined. 

3.3.2.1.1 Available Communication Protocols 

Until the mid-2000s, HTTP was the only mandated networking protocol for Java ME 

devices, since many cellular networks were not capable of IP-based communication at 

that time [140].  However, as IP Multimedia Subsystems (IMS) were developed in the 

late 2000s to support packet-based communication on cellular networks, IP-based 

networking protocols, such as the Transmission Control Protocol (TCP) and the User 

Datagram Protocol (UDP), became accessible on a large number of Java ME mobile 

phones.  In fact, the MSA roadmap that defines the evolution of the Java ME platform 

has required support for TCP for all MSA v1.0 compliant devices [111], and has 

mandated support for UDP as well for all MSA v2.0 compliant devices [112].  Therefore, 

HTTP, TCP, and UDP are the widely-available protocols on the mobile device that can 

be used by LAISYC for communication between a mobile device and server.  Figure 6 
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HTTP is an application-layer protocol that uses a request-response, client-server model 

and is typically implemented on top of TCP to guarantee reliability for web applications.

Therefore, each HTTP request to a server is wrapped with a TCP header, which 

implements the features of TCP for the packets carrying the HTTP information. 

In LAISYC, we select HTTP as the primary application data transport protocol and UDP 

as the primary location data transport protocol.  We discuss the rationale behind these 

decisions, as well as comparisons to other options, in the following two sections that 

focus on application data and location data, respectively. 

3.3.2.1.2 LAISYC Application Data Transport 

Since reliability is required for LAISYC application data (e.g., session login and logout, 

server-side database accesses, application-specific distributed functions and logic), this 

data should be transported using TCP or a protocol relying on TCP.

The request-response model of HTTP fits well with the remote-procedure call-style, or 

web services, used by a client to send data to the server (e.g., username and password) 

and wait for a response back (e.g., session ID).  Integrated development environments 

(IDEs), such as Netbeans and Eclipse, provide tools that enable rapid implementation of 

distributed functions using HTTP which would otherwise be tedious and time consuming 

to implement using TCP directly.  Therefore, HTTP is a candidate for implementing web 

services from the mobile phone to the server. 

A second option for a protocol to implement web services is SOAP.  SOAP is a popular 

application-layer XML-based protocol often used to create enterprise web services that 

allow loosely-coupled servers to communicate with one another.  Figure 6 also shows the 
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SOAP protocol’s position in the networking stack, which is typically on top of HTTP.  In 

other words, HTTP is used to transfer XML-encoded messages defined by the SOAP 

specification.  SOAP defines complex functionality beyond HTTP such as token-based 

credentials, which allows an intermediary web application to receive, process, and 

forward data between the originating client and the destination server, without the 

originating client having exact knowledge regarding the destination server.

SOAP became popular in the mid-2000s as sophisticated enterprise networks evolved and 

a standardized method of exchanging XML-encoded messages between servers housed in 

different locations was needed.  At first glance, it appears that since SOAP was 

developed to meet needs beyond HTTP, SOAP should be the logical choice to implement 

web services to carry application data in the LAISYC framework between a mobile 

device and server.  As discussed in Chapter 2, many existing location-aware architectures 

use SOAP or XML to carry application and location data [91, 96-98, 100-102]. 

However, when considering the actual devices upon which LAISYC will be deployed, 

including the limited resources of mobile devices (e.g., battery energy, amount of data 

transfer), two problems quickly become apparent with SOAP and XML. 

The first problem is the availability of SOAP-based communication on mobile devices.  

For Java ME, the JSR172 Web Services API [141], which implements the XML-based 

messaging protocol SOAP on top of HTTP, was defined for the Java ME platform in 

2004 to allow mobile phones to directly access XML-based web services.  However, the 

Web Services API is optional and only required to be supported in the high-end device 

segment in the Java ME MSA roadmap.  Therefore, a limited number of device 
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manufacturers have implemented JSR172 and this API is typically not available on mid-

to-low end devices [120].  SOAP support is limited in smart phones, as well.  For 

example, the Google Android platform and iPhone iOS platform do not natively support 

SOAP.   

Table 2 - SOAP-encoded messages add a significant amount of overhead to web 
service requests, approximately 3.7 times as many characters, as shown in this 
example

SOAP-encoded web service request HTTP-encoded web service request 
POST /busstoparrival/busstopws.asmx 
HTTP/1.1
Host: 99.999.999.999 
Content-Type: text/xml; charset=utf-8 
Content-Length: length 
SOAPAction:
"http://tempuri.org/GetNextNVehicleArrivals" 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSche
ma"
xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"> <soap:Body> 
<GetNextNVehicleArrivals 
xmlns="http://tempuri.org/"> 
<n>int</n>
<RouteID>int</RouteID>
<DirectionCodeID>int</DirectionCodeID>
<BusStopID>int</BusStopID>
 <TripID_External>string</TripID_External> 
</GetNextNVehicleArrivals>
 </soap:Body></soap:Envelope>

GET/busstoparrival/busstopws.asmx/
GetNextNVehicleArrivals?
n=string&RouteID=string&Direction
CodeID=string
&BusStopID=string&
TripID_External=string HTTP/1.1 
Host: 99.999.999.999

The second problem with SOAP from a mobile device perspective is that since all 

communication is wrapped within XML on top of HTTP, and each element has both an 

opening and closing XML tag, there is a significant amount of overhead to exchange 

messages between the device and server.  Therefore, to represent the same amount of 



57

information in a message, SOAP requires significantly more characters.  Table 2 shows a 

comparison of the same web service request using SOAP on the left, and HTTP directly 

on the right.  The SOAP message has approximately 3.7 more characters to represent the 

same amount of information. SOAP’s additional overhead takes a toll on limited 

consumer data plans, as well as the overall cellular network bandwidth.  Perhaps most 

importantly, as we show in Chapter 4 via experimentation, SOAP’s additional overhead 

also has a heavy impact on mobile device battery life.

Since communication between the mobile device and server typically takes place over a 

wireless cellular network, the communication channel is prone to significant fluctuations 

in quality due to channel fading and movement of the mobile device, which can lead to a 

significant variation in transmission time and, subsequently, packet delays [142].  In third 

generation (3G) cellular networks, retransmissions at the link level are typically 

scheduled to give preference to mobile devices with higher quality connections, which 

can further delay end-to-end transmission time for packets originating from devices with 

poor signal quality [142].  Handoffs from one cell tower to another can also cause 

significant packet delays [142].  Since TCP was originally designed for wired networks, 

it was designed to interpret high packet delay as a sign of network congestion, and 

consequently TCP will reduce its transmission rate when it detects high packet delay in 

an attempt to better network conditions.  However, as discussed above, in wireless 

networks high packet delay can originate from a variety of conditions that are not 

attributed to network congestion, and therefore slowing the device’s transmission rate 

will not improve packet delay and will instead reduce the throughput of data 

communication from the device to server.   
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While there are a number of improvements proposed for TCP to help address these 

wireless network problems [143], these solutions are beyond the scope of our research 

since an application developer does not have influence over the implementation of TCP 

in a typical commercially-available mobile device.  From a mobile application 

perspective, the one element that is under a developer’s control when transmitting data 

via a web service is the amount of data being transferred.  The amount of battery energy 

consumed by wireless communication is a function of how long the device radio is 

actively transmitting and receiving information.  By reducing the amount of data being 

transferred from the mobile device to the server, not only is the impact on the user’s 

limited data plan reduced, but battery life is extended. Reducing the amount of data 

being transferred also reduces the probability that interference in the wireless channel 

will result in lost packets transported via TCP, which reduces the need for 

retransmissions that would keep the radio on even longer.  By eliminating the SOAP 

XML-based portions of messages between the device and the server, the amount of data 

wirelessly transmitted is significantly decreased.  Therefore, even for the few mobile 

devices that natively support SOAP parsers, the use of HTTP-based web services is 

preferred.

Because of the above limitations of using SOAP-based web services on mobile devices, 

and because support for HTTP is required by the CLDC specification for all Java ME 

devices, we proposed that LAISYC use simple HTTP methods (e.g., GET, POST) for 

communicating application data from the mobile device to the server.  Chapter 4 presents 

experiments illustrating the benefits of using HTTP-based web services instead of SOAP-

based web services. 
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3.3.2.1.3 LAISYC Location Data Transport 

Since location data are generated from a positioning technology on the mobile device 

such as GPS, these data must be transferred to a server to update the system on the 

mobile device’s location.  For real-time LBS (Chapter 1 - Need #2), this update rate can 

be up to once per second.  Therefore, efficiency and timeliness is a top priority for 

location data transport in LAISYC. 

We chose UDP, which is typically used for services where timeliness is favored over 

reliability (e.g., VoIP), as the protocol for efficient real-time location data transfer for 

LAISYC.  The LAISYC framework treats streaming location data similarly to 

multimedia data in order to efficiently deliver timely location data from one entity in a 

location-aware information system to another.  The choice of UDP for location data 

transport differs from previous location-aware architectures, largely because LAISYC is 

designed to meet the needs of real-time location-aware applications that are always on.

UDP is also preferable to TCP for location data because TCP’s reliability mechanisms 

take a large toll on the mobile device.  Retransmission of lost or significantly delayed 

packets over the wireless network via TCP costs precious battery energy, and since 

occasional loss of individual location data packets is acceptable in LAISYC, TCP’s 

drawbacks outweigh its benefits.  Therefore, UDP not only provides timeliness and 

scalability benefits for location-aware applications, but it also consumes less battery 

energy than TCP.  In Chapter 4, we present results from experiments showing that under 

typical conditions the amount of GPS data lost via UDP is acceptable for most location-
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aware applications.  The battery life benefits of using UDP, instead of TCP, as a location-

data transport protocol are also demonstrated in Chapter 4. 

Session Management modules are used on both the device and server to manage 

communication.  The following section discusses the Device-Side Session Management 

module in detail, and the server-side module is discussed in the Server-Side Components 

section.

3.3.2.1.4 Device-Side Implementation of Session Management 

In summary, the LAISYC Session Management module within the mobile device splits 

data transferred to the server into two categories:  application data, which is transported 

using HTTP, and location data, which is transported using UDP.  Figure 7 shows this 

two-tier communication between the mobile device and server within the Session 

Management module in isolation from the rest of the LAISYC framework.   

Two-tier protocols, using both application-layer and transport-layer protocols in the same 

application, have been utilized in the past to increase VoIP performance for mobile 

devices [144], but have not been used in previously presented location-aware 

architectures.  Splitting application logic and location data has architectural advantages in 

addition to battery life advantages, such as allowing easier integration of location data 

with existing HTTP-based web applications, and supporting dynamic load balancing of 

incoming location data packets at the network level without examining the contents of 

payload (since we know any data transported over UDP is location data).
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Figure 7 - The Session Management modules use HTTP for application data and 
UDP for location data for communication between the mobile device and server 

Since location data will be arriving at the server with much greater frequency than 

application data, and can be treated as atomic packets that do not need immediate 

responses, the server may wish to handle UDP traffic differently than HTTP traffic.  For 

secure HTTP communication, HTTPS can also be used in place of HTTP.  We discuss 

UDP security in a later section. 

The mobile application interfaces with the Session Management module via the LAISYC 

Communication API.  For application and location data, the mobile application initiates 

communication with the server via a HTTP request, or transmission of location data via 

UDP.  The module creates a session with the server for a device by calling a 

createSession() web service and passing in a variety of information including username, 
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password, phone number, and other authorizing information.  The server responds with a 

unique session identifier that is used in subsequent communication with the server to aid 

the server in pairing location data received over UDP and application-specific web 

service instructions received over HTTP with a specific session.  The server maintains a 

registry of connected devices that have open sessions at the server, which includes the 

current address (e.g., IP address) of each mobile device.  The mobile device Session 

Management module prevents the application from having to directly manage sessions by 

implicitly controlling the creation and destruction of sessions surrounding the transfer of 

application and location data to the server.  In other words, if a mobile application calls 

an application-specific web service or attempts to send location data through the Session 

Management module, the module will first check to see if there is an open session with 

the server, and if not, it will create one.  Therefore, it is guaranteed that a session always 

exists at the server before any application or location data from the device is submitted to 

the server.  To signal to the server that a session is finished, the module initiates a 

destroySession() web service. 

The implicit management of sessions by the device-side Session Management module 

relieves the application from having to actively manage the concept of a session, which 

simplifies client-side application logic and also increases the efficiency of the server.  For 

example, if the application can interact with the user using data cached from previous 

execution and can provide client-side functionality without needing to contact the server, 

then a session does not need to exist at the server.  If no location data has been generated 

from the device since the application has started, there is no point in holding an open 

session at the server until data actually exists.  In a system which will potentially have 
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thousands of simultaneous users, it is important to reduce server overhead for unneeded 

sessions whenever possible to allow the system’s server-side memory requirements to 

scale at a rate potentially less than O(n), where n is the number of devices. 

In conclusion, the Session Management module is designed to address several of the 

needs for location-aware mobile apps outlined in Chapter 1.  Session Management is 

designed to improve battery life (Need #1) while enabling real-time location data 

communication (Need #2) between the phone and server.  In Session Management, 

HTTP-POST is selected over SOAP for real-time (Need #2) application data transfer to 

reduce the impact on mobile device resources (Need #1).  UDP is selected over TCP as 

the location data transport protocol for real-time location data (Need #2) to reduce the 

impact on mobile device resources (Need #1).  Session Management is based on 

protocols accessible to third party mobile apps (i.e., HTTP, TCP, UDP), and therefore it 

is fully implementable by any third part mobile app developer (Need #4).     

3.3.2.2 Adaptive Location Data Buffering 

The purpose of the Adaptive Location Data Buffering module is to increase the reliability 

of real-time location data communication with the server in an energy-efficient manner. 

Since UDP is utilized for location data transport, no end-to-end reliability exists for 

location data such as that provided by TCP.  As discussed earlier, lack of reliability for 

each packet is a design trade-off in favor of the general efficiency of the system; while a 

large number of location fixes can be transferred to a server in a timely manner, there are 

no acknowledgments by the receiving entity that the location data has arrived, no 

retransmission of lost packets, and no guarantee of the order of delivery of packets.  In 
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real-time tracking, the occasional loss of a few location data fixes is of no concern, since 

another location update will soon follow.  However, location data is often referenced 

after-the-fact in order to provide certain metrics, such as distance traveled, as well as to 

identify the paths of users on particular days.  Therefore, while a few occasional lost 

location data packets are acceptable, the loss of large numbers of contiguous fixes can 

introduce significant problems.   

While we demonstrate in Chapter 4 that under ideal conditions UDP has an acceptable 

percentage of data loss on a cellular network, from our experiments we discovered that 

there are two primary causes of occasional large contiguous losses of location data: 

1) Voice communication interference on devices that cannot handle simultaneous 

voice and data communication (e.g., CDMA devices) 

2) Cellular network coverage gaps 

In the United States, devices on CDMA networks (e.g., Verizon and Sprint) are not 

capable of simultaneous voice and data communication.  As a result, if an application 

continues to transmit location data via UDP after a user picks up a voice call, these 

packets are lost. In our experiments we have confirmed that on several devices (e.g., 

Sanyo 7050, Sanyo Pro 200, and Sanyo Pro 700) the Java ME platform does not trigger 

any error messages when a UDP transmission is attempted during a voice call.  Since a 

voice call could last a long period of time (e.g., 30 minutes) while the user is traveling, a 

large amount of data could be lost if no action is taken by the application. 

The lack of simultaneous voice and data transmissions communication also has a 

secondary adverse effect on the cell phone user while an application is running in the 
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background: if the application is constantly transmitting data to the server, it will occupy 

the CDMA radio and any incoming voice calls will be sent to voicemail instead of 

ringing at the phone.  Obviously, interfering with incoming voice calls is not a desirable 

trait for an application, and therefore we must address this problem in LAISYC. 

Poor cellular coverage in certain locations (e.g., rural areas) can also result in lost UDP 

data packets.  Since lack of a cell signal is typically geographically-correlated due to poor 

tower coverage, large contiguous chunks of the user’s path can be lost if the device loses 

data communication with the server. 

A simple solution to both the simultaneous voice and data problem and poor cellular 

coverage problem is to store all location data locally on a device and upload the location 

data at the end of the day.  However, this solution does not support real-time location-

aware applications, which is a requirement for LAISYC (Chapter 1 - Need #2).

Additionally, Java ME devices typically have limited persistent storage capacity and may 

not be able to store an entire day’s worth of location data.  An alternate solution is to use 

TCP instead of UDP, but as we discussed earlier, the entire suite of reliability 

mechanisms used by TCP are not necessary for most location-aware applications and 

these mechanisms also have a significant negative impact on mobile device battery life. 

Our solution to these problems is the Adaptive Location Data Buffering module in 

LAISYC.  Adaptive Location Data Buffering provides a basic quality of service 

mechanism when UDP is used as the location data transport protocol, but at a much 

cheaper cost than using TCP for every location data transmission.  Adaptive Location 

Data Buffering is implemented through use of device-side APIs regarding cell signal 
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quality and cell network status, as well as occasional TCP transmissions to confirm end-

to-end connectivity with the server.   

In Adaptive Location Data Buffering, under normal conditions UDP is continuously used 

to transfer location data to a server.  Before each UDP transmission, the software checks 

device-side APIs (if available) in order to assess the current level of cellular signal in 

order to determine if a successful UDP transmission is probable given the current 

wireless environment.  Additionally, if the Java ME environment supports error reporting 

for unsuccessful UDP transmission attempts, these exceptions can also be an indication 

of an unsuccessful location data transfer.  If there is a low level of wireless signal, or if an 

exception is thrown, the location data is buffered to memory or to persistent storage such 

as the MIDP Recordstore.  Once it is detected that UDP transmissions are likely to 

succeed, the buffered data is then sent via UDP and deleted on the device.   

While the above method attempts to increase the probability that a UDP transmission will 

successfully be issued by the device, these methods do not verify an open connection 

with the server.  Therefore, a more reliable method is required to occasionally determine 

if the server is properly receiving location data.   

Adaptive Location Data Buffering also occasionally sends data via TCP to determine if 

there is a successful response from the server.  If there is no response (e.g., the phone is 

off-network, the server is down, the user is on a voice call blocking data communication), 

then the software begins buffering location data until the next successful response via 

TCP.  Upon the next successful response, the buffer is emptied and all location data is 

sent via UDP.  TCP transmissions should only be sparsely attempted, since the benefits of 
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utilizing UDP over TCP as the primary location data transport protocol will disappear if 

TCP transmissions are too frequent.  In Chapter 4, we demonstrate the energy tradeoffs 

between TCP and UDP when transmitting location data.

Figure 8 shows a simulated timeline of Location Data Buffering where location data is 

being transmitted via UDP.  An occasional lost UDP transmission is unknown to the 

device, and acceptable for the system.   

Figure 8 - A timeline of Location Data Buffering which shows a TCP failure that 
results in a series of buffered location data fixes, which are transmitted to the server 
on the next successful TCP transmission 

When a TCP failure occurs, location data is buffered until the next successful TCP 

transmission.  At this time, all buffered location data is sent to the server via UDP. 

Figure 9 is a data flow diagram showing the execution of Adaptive Location Data 

Buffering as it is currently implemented in LAISYC.   
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Sample execution of the Adaptive Location Data Buffering algorithm that traces this data 

flow diagram follows.

On the generation of each new location data point by the device’s positioning system, we 

executed an algorithm (Figure 9) to determine whether or not a TCP check with the 

server to confirm an open data connection should occur.

We used two time-based thresholds to track whether or not a TCP check should occur: 

TCP_threshold_norm – minimum amount of time between TCP checks with the 

server when TCP checks are successful.  The default value we used in LAISYC is 

180 seconds. 

TCP_threshold_failed – minimum amount of time between TCP checks with the 

server when TCP checks are failing.  This value starts at 2 seconds for the first 

failure, and doubles on each consecutive failure until it reaches a maximum 

threshold value of max_TCP_threshold_failed (default value of 300 seconds in 

LAISYC).  This enables a quick recovery and small overhead for intermittent 

failures, but also provides an exponential back-off with an upper limit to avoid 

contacting the server frequently during an extended failure of communication 

between the device and server.

If a TCP check with the server should not occur and if the last TCP check failed, then the 

location data is buffered in memory on the device.  On Java ME phones, we buffered up 

to 2048 bytes to volatile memory, and subsequent data was buffered to persistent memory 

(i.e., the MIDP Record Store in Java ME). 
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If a TCP check with the server should not occur and if the last TCP check was successful, 

then the location data is sent to the server via UDP like normal. 

Adaptive Location Data Buffering also serves to reduce interference with incoming 

phone calls for devices that do not support simultaneous voice and data sessions.  In early 

implementations of LAISYC we found that transmitting location data every four seconds 

resulted in the communication link being continuously occupied by data transmissions.  

Therefore, any incoming voice calls went directly to voicemail instead of ringing at the 

phone.  By implementing a buffer size of ten to aggregate several GPS fixes and send all 

GPS data in a burst of UDP packets, interference with voice calls was eliminated. 

In conclusion, the Adaptive Location Data Buffering module is designed to address 

several of the needs for location-aware mobile apps outlined in Chapter 1.  Adaptive 

Location Data Buffering is designed to increase the reliability of real-time location data 

communication (Need #2) with the server in an energy-efficient manner (Need #1).  

Adaptive Location Data Buffering is based on protocols (i.e., TCP, UDP) and persistent 

storage (i.e., MIDP Recordstore) accessible to third party mobile apps through platform 

APIs, and therefore it is fully implementable by any third party mobile app developer 

(Need #4). 

3.3.2.3 Critical Point Algorithm 

The purpose of the Critical Point Algorithm module is to reduce battery energy 

expenditures and the amount of data transferred between the mobile phone and server by 

eliminating non-essential GPS data. 
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Since GPS technology in a mobile device can generate a significant amount of location 

data, this data must be carefully managed to avoid wasting precious resources such as 

battery energy or cellular data transfer.  If every GPS fix that is calculated on-board a 

mobile device is transferred to a server, a large amount of battery energy is consumed.  

Additionally, in the U.S. many cellular data plans have an upper limit on the amount of 

data that can be transferred from the mobile device over the cell network per month.  If 

every GPS fix is sent over the cellular network, this data will have a large negative 

impact on the consumer’s data plan. 

In our research, we observed that a large number of GPS fixes generated on a mobile 

device may not contain useful information for many applications that are primarily 

interested in the travel path of the device.  For example, GPS generates a large number of 

very close but different positions when the user is standing still; a single GPS fix could 

adequately represent this same information.  Additionally, when the user is traveling in a 

straight line, a large number of points may lie upon the same vector, which can be 

represented using only the start and end point of the vector. Therefore, the path of the 

user could be accurately represented by using only a small portion of the GPS data 

generated by the mobile phone.   

The Critical Point (CP) algorithm was created in order to filter out non-critical location 

data points out of a real-time stream of location data.  Location data points are defined as 

a set of data containing latitude, longitude, and speed information at a minimum, and may 

include other information such as altitude, accuracy uncertainty, and heading.  We 

defined non-critical data points as redundant data that does not contribute to the 
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knowledge of the path of a device.  While the CP algorithm could be used with 3-

dimensional data, since consumer-level GPS-enabled phones are not currently able to 

provide accurate altitude information [18], we focused on 2-dimensional data in the 

description and analysis of the CP algorithm.   

The CP algorithm can be seen as reducing a stream of location data into a series of 

connected vectors.  In other words, points along the vector are discarded since they do 

not contribute additional path information.  A path will always have at least 2 critical 

points, which are the starting and ending points, since the simplest path is a straight line.

Non-critical points are points that lie directly between two critical points so that if a line 

was drawn between the two critical points, it would intersect the non-critical points 

between them.  Non-critical points are also gathered while a device is standing still (i.e., 

redundant location data).

Changes in direction along with speed information are used to identify a critical point.  In 

other words, if a device is traveling in a straight line but changes direction, a new critical 

point must be recorded at this change in direction.  The resulting path is a series of 

vectors with a critical point defining the vertex between vectors. 

A flowchart describing the execution of the CP algorithm is shown in Figure 10.  The CP 

algorithm is executed each time a new GPS position of the mobile device is calculated.

Each time the algorithm is executed, it selectively retains memory of past input and uses 

this to determine whether or not a critical point exists.  If a critical point exists, it will 

return the point that has been determined as critical.  If a point has not been determined as 

critical based on current input, then it returns null.  The CP algorithm uses a speed 
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threshold to determine the appropriate minimum speed that should be used to filter out 

data when the device is not moving.  The CP algorithm uses azimuth calculations to 

determine the change in direction when the device is moving (Figure 11).   

Azimuth is a measurement used to determine difference in angle given a reference plane 

and two points.  We used Vincenty’s Inverse algorithm to calculate the azimuth values 

[136], which has been shown by Vincenty to be accurate to within 0.000015 seconds 

[136] in angular Degrees-Minutes-Seconds (DMS) notation, where a degree of angle is 

equivalent to 60 minutes, and a minute is equivalent to 60 seconds. 

For each execution of the CP algorithm, we evaluated the azimuth for two pairs of points:   

Azimuth1 = Azimuth of the Last Critical Point and the Last Trigger Point in 

relation to true north (shown in Figure 11) 

Azimuth2 = Azimuth of the Last Critical Point and the Current Point in relation to 

true north (shown in Figure 11).

The absolute value of the difference of Azimuth1 and Azimuth2 yields the change of 

direction of the device for the Last Trigger Point.

The CP algorithm keeps references to the three points (Last Critical Point, Last Trigger 

Point, and Current Point) throughout its execution, which can be viewed as a three point 

sliding window over a stream of location data (Figure 12).  The second of the three points 

is always the point under consideration by the CP algorithm to determine if it is a critical 

point.
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Figure 10 - The Critical Point Algorithm filters out GPS fixes that are not necessary 
to recreate the user's path.  [119] © 2008 IEEE 
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Figure 11 - Azimuth calculations are used in the Critical Point Algorithm to 
determine change in direction.  [119] © 2008 IEEE 

Figure 12 - The Critical Point Algorithm maintains a reference to three points that 
are used to determine whether the second of the three points is a critical point 

Critical Point Evaluation Sliding Window

Non-critical Point (discarded)
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Last Trigger Point (Under Evaluation)
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As a result, the most recent location point passed into the CP algorithm is not the same 

point that is returned by the algorithm as the critical point.   This is because the CP 

Algorithm is stateful and remembers its past input for three location data points, and it 

uses this information to calculate changes in azimuth and speed that determine whether or 

not a point is critical of the second of the three points in the sliding window. 

The change in direction threshold can also be dynamically adjusted based on the current 

speed.  For example, one change in azimuth threshold can be used for speeds less than 10 

meters/sec, and another azimuth threshold can be used for speeds greater than 10 

meters/sec.  In other words, the variation of changes in direction while walking may be 

high and a larger threshold value may be used to determine a critical point.  Similarly, the 

variation of changes in direction while driving in a car at high speeds may be low and 

therefore a lesser threshold value can be used. 

To support the above features, the following thresholds are used in the CP algorithm: 

min_speed_threshold:  location data with speed values under this threshold are 

discarded as non-critical points, since the user is considered to be standing still 

max_walk_speed:  if the speed is less than this threshold, the angle threshold for 

walking will be used, otherwise the angle threshold for a vehicle will be used 

angle_threshold:  if the absolute value of the difference of azimuth values exceeds 

this threshold, then the point is considered a critical point.  One angle is used for 

walk trips, while another is used for vehicle trips. 
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The CP Algorithm also supports several optional evaluations (as seen in Figure 10) that 

can be used by real-time applications to transition between several different server update 

strategies:

HasTimerExpired()?:  A timer is started when a critical point is determined, and a 

new critical point is identified after a certain amount of time elapses.  This would 

ensure that a position was reported at a minimum given interval, in case the 

device is stationary for long times or traveling in a straight line for an extended 

period of time.  For example, after 5 minutes, if a critical point has not yet been 

determined, then the next point would be considered a critical point. 

HasDistanceCounterExceededThreshold()?: A distance counter is started after a 

critical point is found.  While the device is traveling in a straight line, for each 

position update the distance would be increased.  Once the device exceeds a 

threshold for distance traveled, then it declares the next point a critical point and 

sends this point to the server.  This method assures that the server will receive 

position updates for a device before it travels more than a certain distance from 

the last reported point. 

ReceivedLocationProbe()?:  If the device receives a location update request from 

a server, then the next point is automatically determined to be a critical point and 

sent to the server. 

A sample execution of the CP algorithm follows. 

A LBS application starts up and makes a request to the Location API to generate a new 

GPS position every 4 seconds.  The critical points algorithm is executed every time a new 
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position is generated, beginning with the first fix.  The first GPS fix will be determined as 

critical, and information about this fix is then saved within the algorithm.  The device 

generates a new position 4 seconds later, and the application inputs this data into the CP 

algorithm.  The algorithm outputs null, since it does not have enough information at this 

point to determine whether this second point is a critical point (i.e., it needs a third fix to 

calculate both azimuth values).  However, it saves information about this fix for future 

CP calculations, as future calculations might determine this point as critical.  The device 

then generates a third GPS fix, and the application inputs this into the Critical Point 

Algorithm.  If the difference in azimuth between the first and second fix and the first and 

third fix exceeds an angle threshold value and the speed value for the third fix exceeds a 

speed threshold (i.e., the device is not stationary), then the second fix is determined to be 

a critical point, and the second fix is returned by the algorithm.  Information about the 

second and third fix is then saved for future CP calculations.  If the difference in azimuth 

values does not exceed the threshold for change in direction, then the CP algorithm saves 

information about the second fix and returns null.  The device then generates a 4th fix, 

and the application inputs it into the CP algorithm.  Assuming a critical point was just 

identified in the previous step, if the difference in azimuth between the second and third 

fix and second and 4th fix exceeds an angle threshold value and the speed value for the 

4th fix exceeds a speed threshold (i.e., the device is not stationary), then the third fix is 

determined to be a critical point and the third fix is returned by the CP algorithm.  

Information about the 4th fix is saved for future CP calculations. This process continues 

until the final fix for series is calculated, at which point the final fix is determined to be a 

critical point. 
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In conclusion, the CP Algorithm module is designed to address several of the needs for 

location-aware mobile apps outlined in Chapter 1.  The CP Algorithm is designed to 

reduce battery energy expenditures (Need #1) and the amount of data transferred between 

the mobile phone and server (Need #1) by eliminating non-essential GPS data (Need #3) 

in real-time (Need #2).  The CP Algorithm uses attributes from location data provided by 

the Location API (e.g., latitude, longitude, speed), and therefore is fully implementable 

by any third party mobile app developer (Need #4). 

We demonstrate the battery energy and data transfer savings of the CP Algorithm in 

Chapter 4, and also define a methodology for selecting values for the thresholds used in 

the CP algorithm. 

3.3.2.4 Location Data Encryption 

The purpose of the Location Data Encryption module is to ensure the security of the 

location data being transferred between the mobile phone and the server in an energy-

efficient manner. 

The main threat to a breach of privacy by untrusted parties in a location-aware 

architecture is the interception of location data as it is being transferred from a mobile 

device to a server over the Internet. While secure TCP connections are supported by the 

Java ME platform through the use of SSL, there is no secure support for datagrams sent 

via UDP in Java ME [140, 145].  Therefore, the implementation of secure UDP 

transmissions is left to the application developer.  Since we have chosen UDP as the 

primary location data transport protocol, as discussed in the Session Management section 
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earlier in this chapter, we must examine the potential for securing UDP communications 

to protect the privacy of the user. 

The Location Data Encryption module handles the encryption of location data in the 

payload of the UDP datagram to enable end-to-end security between the mobile device 

and the server.  This module is optional, and is only needed for applications that require 

secure location data transfer.  As discussed in the earlier Session Management section, 

the only information included in a UDP packet sent from a device to a server is a unique 

session identifier (i.e., an integer) and the latitude, longitude, speed, and other location 

data.  The session identifier is not related to the user or device identifier and changes at 

least once daily (i.e., every time the application calls the createSession() server method), 

and therefore some applications may not need to encrypt the data transferred over UDP.

However, we define this optional Location Data Encryption module for applications that 

require highly secure and private communication. 

Symmetric encryption (e.g., Advanced Encryption Standard (AES)), which uses a shared 

key between two parties, is generally more efficient than asymmetric encryption [146].  

However, symmetric encryption requires a secret shared key that is known only by both 

parties before any communication can take place.  Since a device initiates communication 

with a server over a wireless network, we must use a different method to secure an initial 

information exchange between the device and server.   

HTTPS uses asymmetric encryption, which does not require the exchange of a shared 

secret key.  Instead, HTTPS uses public and private key cryptography.  The device uses 

the server’s public key to encrypt information, and then sends this information to the 
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server.  Since the server is the only entity that has possession of the private key that can 

decrypt the information, the initial exchange between the device and server is secure even 

without exchanging a shared secret key. However, one drawback to asymmetric 

encryption is that it is less efficient and more computationally intense that symmetric 

encryption [146]. 

In LAISYC, we define a hybrid cryptosystem using both asymmetric and symmetric 

encryption to provide a secure and efficient exchange of information.  Figure 13 shows 

the secure exchange between the device and server in this hybrid cryptosystem. 

Figure 13 - LAISYC uses a hybrid cryptosystem to protect the exchange of the AES 
key using HTTPS with SSL, and then uses the AES key to encrypt the location data 
sent over UDP 

We use HTTPS and SSL (i.e., asymmetric encryption) to protect the initial exchange of a 

symmetric encryption shared secret key, which occurs during the invocation of the initial 

createSession() web application method.  The server uses a different symmetric key for 

each connected device, and a new symmetric key is generated at the start of each session 
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(i.e., approximately every 24 hours).  After the device has the symmetric encryption key, 

it uses this key to encrypt all location data information, except for a session identifier, in 

the payload of UDP packets that is sent to the server.  The session identifier is left 

unencrypted so that the server can identify the proper key to decrypt the data for each 

session.  Figure 14 shows the contents of the UDP payload when encryption is used in 

LAISYC. 

Figure 14 - 128bit AES is used to encrypt the location data in the UDP payload, with 
the exception of the session ID which is used by the server to identify the correct 
symmetric key per device session 

RC4 and Advanced Encryption Standard (AES) are two popular candidates for 

symmetric encryption.  According to Prasithsangaree and Krishnamurthy [146], tests 

executed on a mobile Pentium III processor in a laptop show that AES is more energy-

efficient for packet sizes of less than approximately 100 bytes, while RC4 is more 

energy-efficient for packet sizes of more than 100 bytes.  AES is preferred from a 

security perspective, since several weaknesses have been exposed in RC4 [146].  The 

typical payload size of a location data packet which contains location data and a limited 

amount of application-specific data to be transmitted over UDP is approximately 78 

bytes.  Therefore, we chose AES as the symmetric encryption method for LAISYC. 

int – 4 bytes boolean – 1 byte long – 8 bytesdouble – 8 bytes byte – 1 byte float – 4 bytes
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In conclusion, the Location Data Encryption module is designed to address several of the 

needs for location-aware mobile apps outlined in Chapter 1.  Location Data Encryption is 

designed to ensure the security of the location data being transferred in real-time (Need 

#2) between the device and server in an energy-efficient manner (Need #1).  AES was 

chosen since it is more secure and energy efficient than other methods and can be easily 

implemented by third party mobile app developers (Need #4) using existing libraries such 

as BouncyCastle [147]. In Chapter 4, we evaluate the battery life impact of Location Data 

Encryption.

3.4 Server-Side Components 

The server-side modules in LAISYC exist to support the mobile device-side modules, 

and act as a proxy for database access.  The LAISYC server-side modules are shown in 

Figure 15. 

Figure 15 - LAISYC server-side modules.  [118] © 2011 IEEE 
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As mentioned earlier, the focus in this dissertation is primarily the design, 

implementation, and evaluation of the device-side LAISYC modules.  Therefore, the 

server-side modules are presented in this dissertation to describe how they support or 

benefit from the LAISYC device-side modules. 

Server-side modules are broken down into two categories: 

1) Communications Management (Green shaded modules in Figure 15) 

2) Data Analysis (Pink shaded modules in Figure 15) 

3.4.1 Communications Management 

Communications Management on the server-side of LAISYC consists of the Session 

Management and Adaptive Location Data Buffering modules. 

3.4.1.1 Session Management 

The server-side Session Management module coordinates communication with multiple 

connected client devices.  In order to tie multiple web service calls over HTTP and 

location data sent via UDP together, upon the creation of a new session, a unique session 

identifier is passed back to the mobile device.  This session identifier is then used in 

subsequent device-initiated communication between the device and server in order to 

identify the device.  This identifier allows streamlined communication between the 

device and server, since login information does not have to be transferred and authorized 

for each communication between the device and server. HTTPS can be used to encrypt 

web service calls from the phone so that login information, session identifier, and 
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application-specific data are all protected.  Support for HTTPS is mandated for MSA 1.0-

compliant Java ME devices [111].   

A limited amount of information for each session (e.g., session ID, device phone number 

and IP address, most recent location update) is kept in main memory inside the 

application server to enable a rapid response to the device based on incoming location 

data.  Since the application is able to immediately execute threads to take action based on 

real-time location information received over UDP, timely location-based services can be 

executed from the server.  While extremely time-sensitive actions such as real-time 

navigation must be handled by software executing on the mobile device, near real-time 

functionality with less stringent time constraints can be implemented server-side without 

experiencing the delay of first writing to a disk in the database management systems and 

then waiting for database triggers or a separate application to receive and process the 

information.  The disk-based database contains a record of all user and location data and 

serves as the persistent backup of information contained in the application server 

memory. 

The server-side Session Management module also handles the expiration of sessions for 

devices which have not communicated with the server in a certain amount of time in 

order to de-allocate memory assigned to that session. These “abandoned” sessions could 

be caused by an unexpected termination of the device’s client-side software or by a phone 

that is currently off-network and is unable to communicate with the server.  Session 

information is always saved to a database management system to enable the transparent 

restart of the server in case of server hardware or software failures, as well as to allow the 
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application server to dynamically load and unload sessions to and from main memory.  If 

the device tries to use a session that has been expired and removed from main memory, 

the Session Management module is able to reload the information from the database and 

reuse that session.  Therefore, the expiration and re-initialization of the session is also 

transparent to the device. 

3.4.1.2 Adaptive Location Data Buffering 

The server-side implementation of Adaptive Location Data Buffering responds to the 

TCP communication initiated by the Adaptive Location Data Buffering module on the 

mobile device to confirm that there is an open session between the mobile device and the 

server.  Before taking any action, the Adaptive Location Data Buffering module confirms 

that a session exists for the given session ID through communication with the Session 

Management module. 

3.4.2 Data Analysis 

Data Analysis consists of the Critical Point Algorithm and Spatial Analysis modules. 

3.4.2.1 Critical Point Algorithm 

In LAISYC, we replicate the CP algorithm on the server-side, as well.  The server-side 

CP algorithm is only used if the CP algorithm on the device is deactivated to allow all 

location updates to be transferred from the mobile phone to the server.  Transferring all 

location data points may be desirable when tracking second-by-second.  Therefore, 

before location data is input into any Location Data Analysis modules (e.g., Spatial 

Analysis), it is pre-filtered using the Critical Point Algorithm in order to reduce the 

information into a meaningful path that can be better analyzed.
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3.4.2.2 Spatial Analysis 

The purpose of the Spatial Analysis module is to provide near real-time location based 

services to mobile users that cannot be accomplished on the mobile phone due to 

processing or data storage constraints. 

In order to provide intelligent location-based services to mobile users, it is desirable to 

provide information to the user which is highly relevant based on both their real-time 

position, as well as historical or future intended travel behavior.  Location-based alerts 

should be given to travelers as soon as it is determined that the information is relevant, 

and before they reach the area to which the alerts pertain, in order to allow users to plan 

and react accordingly.  However, to avoid inundating users with meaningless 

information, the information should be highly relevant and precisely targeted.  For 

example, a traveler would ideally want to know of an incident along the typical path from 

home to the destination before even leaving their home.  This would allow the user to 

take an alternate path to the destination or even delay the trip until a time when the 

congestion has cleared.  However, a user would not want to be alerted of hometown 

incidents when traveling outside the hometown.  A user would want to be notified as 

soon as possible, if wandering off the planned path. 

One method of delivering relevant alerts to a traveler is to examine the real-time and/or 

spatial attributes of the traveler’s past travel behavior in conjunction with a spatial 

database.  LAISYC is designed to support real-time location information exchange from 

a phone to a server so that these types of services are possible.  The Spatial Analysis 

module in LAISYC can utilize massive server-side spatial databases to provide services 



88

that cannot be provided on the mobile device, due to memory and storage space 

constraints, as well as lack of spatial database support. 

To demonstrate the ability for the LAISYC to provide real-time services based on spatial 

databases, we have focused on two specific implementations of the Spatial Analysis 

module:

1) Path Prediction and Traffic Incidents – Within our TRAC-IT application, we have 

implemented a spatial path-based prediction of the user’s travel to provide real-

time traffic alerts based on the user’s real-time and historical location information.  

We discuss this application in detail in Chapter 4 along with the TRAC-IT 

system. 

2) Lost user alerts – In our TAD application, we have implemented the ability to 

detect if a user has deviated from a planned transit route.  We discuss this 

application in detail in Chapter 4 along with the TAD system. 
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CHAPTER 4:  EVALUATION 

4.1 Note to Reader 

Some experimental results presented in this chapter have previously been published in a 

variety of journals, and several patents are pending or issued on the related technology.

Experiments related to GPS Auto-Sleep in this chapter have been published in IEEE 

Pervasive Computing [118] (© 2011, IEEE), and Proceedings of UBICOMM ’08 [119] 

(© 2008, IEEE), and a 2011 issue of the Journal of Navigation [18] (Copyright © 2011 

The Royal Institute of Navigation) are reprinted here with permission of IEEE and 

Cambridge University Press.  Experiments for Session Management and Adaptive 

Location Data Buffering have been published in IEEE Pervasive Computing [118] (© 

2011, IEEE) and the Transportation Research Board (TRB) Transportation Research 

Record [120] (© 2010, TRB) and are reprinted here with permission of IEEE and TRB.  

Portions of the experiments for the Critical Point Algorithm have been published in IEEE 

Pervasive Computing [118] (© 2011, IEEE) and Proceedings of UBICOMM ’08 [119] 

(© 2008, IEEE), and are reprinted here with permission of IEEE.  The Travel Assistance 

Device (TAD) technology is protected under U.S. Patents # 8,138,907 “Device to Assist 

Transit Riders with Special Needs” [123] and # 8,169,342 “Method of Providing a 

Destination Alert to a Transit System Rider” [126] by the University of South Florida.

Descriptions and experiments related to TAD have been published in the Institution of 

Engineering and Technology (IET)’s Journal of Intelligent Transport Systems (© 2010 
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IET) [130] and Transportation Research Board (TRB)’s Transportation Research Record 

Journal [120] (© 2010) and is reprinted with permission of IET and TRB. Technology 

supporting TRAC-IT is protected under pending U.S. Patent Application # 11/855,694 

“System and Method for Real-Time Path Prediction and Automatic Incident Alerts” and 

U.S. Patent Application # 11/277,403 “System and Method for Transportation Demand 

Management” by the University of South Florida.  Portions of the material related to 

TRAC-IT have been presented at the Transportation Research Board (TRB) annual 

meeting and have been peer-reviewed by TRB [131], and have also appeared in a USF 

research project final report [148]. 

4.2 Evaluation Overview 

Our evaluation of LAISYC is divided into two categories: 

1) Evaluation of individual LAISYC framework components 

2) Demonstration of innovative location-aware mobile apps developed using 

LAISYC

The first subsection of this chapter presents experiments performed with mobile devices 

in order to isolate and evaluate each component.  The second subsection discusses two 

innovative location-aware mobile applications, TRAC-IT and the Travel Assistance 

Device (TAD), which have been developed and evaluated using the LAISYC platform. 

4.3 LAISYC Component Evaluation 

We set out to evaluate the various LAISYC components through a series of real-world 

tests on actual GPS-enabled mobile phones.  This is particularly challenging, since at the 

time of these tests the Java ME Location API was a restricted API that could only be 
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accessed with the permission of the wireless carrier.  Permission of this type is typically 

only given to commercial partners of the wireless carrier, since the use of assisted GPS 

and other network-assisted positioning technologies have a significant impact on cellular 

carrier network resources.  However, we were able to obtain permission from Sprint to 

test our mobile applications that use the Location API on the Sprint and Nextel networks. 

We developed several test mobile applications designed to isolate and test various aspects 

of the mobile software’s impact on the mobile device.  Each software test is discussed in 

the following respective sections for the LAISYC components. 

4.3.1 GPS Auto-Sleep 

As mentioned in the GPS Auto-Sleep section in Chapter 3, during our research using 

high-sensitivity GPS-enabled mobile phones, we observed that the successful acquisition 

of individual GPS samples were  significantly less dependent on previous GPS 

observations than previous mobile phone models with low-sensitivity GPS receivers.  

This observation led us to hypothesize that dynamic GPS sampling could capture high-

resolution travel paths by using a high frequency sampling rate when the user is moving 

and saving a significant amount of battery energy by using a low frequency sampling rate 

when the user is stopped.  GPS Auto-Sleep, implemented using a finite state machine, is 

the invention that controls the dynamic GPS sampling rate.   

We first set out to demonstrate the feasibility of GPS Auto-Sleep through a series of 

controlled experiments using a Sanyo Pro 200 CDMA cell phone on Sprint’s Evolution-

Data Optimized (EV-DO) Revision (Rev.) A network with assisted GPS. 



92

We implemented a test mobile application that simply registered given interval, timeout, 

and maxAge values with the JSR179 Location API LocationListener and then recorded 

timestamps to the persistent MIDP Recordstore every several GPS fixes.  The device was 

charged until the battery life indicator on the outside of the device indicated a full charge, 

and then the test software was executed on the device until the battery was depleted to the 

point that the device powered itself off.  After plugging in the device and powering it 

back on, we restarted the testing application and pressed a button to retrieve the 

timestamps from the most recently completed test.  Through this method, we were able to 

record the length of time the phone was operational while attempting to acquire GPS at 

various sampling frequencies.

Figure 16 shows the result of these tests using the Sanyo Pro 200 and a series of sampling 

intervals varying from four seconds to 300 seconds (i.e., five minutes).  The device was 

located on a table in the lower story of a two story building for these tests, and the phone 

was flipped closed during these tests, so the display was off.

From these experiments we can see that increases in the GPS sampling interval lead to a 

battery life savings in the order of hours.  Even the increase between sampling GPS every 

four seconds to every eight seconds produces an increase of 2.67 hours in battery life, and 

the increase from eight seconds to fifteen seconds increases battery life another 2.3 hours. 

These results indicate that high-sensitivity GPS is able to turn on the GPS hardware to 

full power to acquire a GPS fix, and immediately reduce energy consumption by 

dropping to a lesser power level.
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Figure 16 - Even modest increases in the interval between GPS fixes produce 
extended battery life on the order of hours.  [118] © 2011 IEEE 

An exponential increase in battery life of 23.17 hours can be seen between the GPS 

intervals of 150 seconds and 300 seconds.  This large increase in energy savings indicates 

that various components in the phone (e.g., Central Processing Unit, memory, cellular 

modem) are able to reach a low power state due to the lack of GPS activity, unlike 

smaller interval values where these components remain active.   

The trend of energy savings in relation to increasing GPS sampling intervals validates the 

general design of the GPS Auto-Sleep state machine.  If we can achieve accurate state 

transitions, we could sample frequently when the user is moving, and less frequently 

when the user has stopped moving.  Since U.S. travelers report traveling an average of 

approximately 91 minutes per day [149], occasional GPS sampling in the stopped state 

would cover the remaining 1,349 minutes of the day, which should adequately extend 
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battery life so that the user can carry the phone throughout the day without needing to 

charge the battery. 

Since the GPS Auto-Sleep needs to run in real-time on the mobile phone, we next 

evaluate the complexity of the algorithm in terms of running time and memory.  To keep 

up with real-time data, the algorithm must maintain a linear growth rate in relation to the 

number of GPS points processed, and must maintain a constant memory requirement 

throughout execution, or else the mobile device will eventually run out of memory, as the 

algorithm executes online for weeks or months at a time. 

When a new GPS point is generated by the mobile phone, GPS Auto-Sleep makes several 

comparisons against constant thresholds that do not change.  GPS Auto-Sleep only keeps 

one previous GPS data point in memory for the moved_distance_threshold.  Therefore, 

the memory requirements of GPS Auto-Sleep, , is: 

where  is the number of GPS data points processed. 

For running time analysis, we can prove that GPS Auto-Sleep maintains a linear growth 

rate in terms of execution time with real-time data input by reviewing the processing 

steps in the algorithm.  For each GPS data point, we measure the distance to the last 

saved location data point when the user is stopped to determine if the moved distance 

exceeds the moved_distance_threshold. We use the Vincenty inverse algorithm to 

compute the distance, which has been shown to execute in a constant amount of time 

[136], and therefore is .  The amount of time to execute the comparisons of speed, 
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time, and uncertainty data against the respective thresholds is also .  Since GPS 

Auto-Sleep is an online algorithm that executes these steps for each new location data 

point generated by the phone, the time complexity of GPS Auto-Sleep, , is: 

where  is the number of GPS data points processed.  Therefore, GPS Auto-Sleep scales 

linearly in execution time and maintains a constant memory requirement, as large 

numbers of location data points are processed.  Thus, it can remain online for an 

indefinite amount of time. 

The next steps for the design of GPS Auto-Sleep are the choice of thresholds used to 

control state transitions, the state values for interval, timeout, and maxAge, and the 

number of states used in the state machine.  

For data collection in our experiments using GPS Auto-Sleep, we have configured the 

state machine attributes with the values shown in Table 3. 

Table 3 - GPS Auto-Sleep state machine values chosen for experimentation 

State Interval (s) Timeout (s) MaxAge (s) 

0 4 2 2 

1 8 4 4 

2 16 8 8 

3 64 16 16 

4 150 32 32 

5 256 32 32 
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In our analysis of these attributes we simplify our calculations to focus on only the 

interval and timeout values.  Using only the interval and time values, we can establish 

both an upper bound and lower bound on the amount of time required for our application 

to achieve a GPS fix without needing the maxAge parameter.  Eliminating the maxAge 

parameter from consideration is also preferred, since we do not have any control over the 

GPS behavior of other applications that would affect this parameter. 

Since the use of GPS by another application would only decrease the time needed for our 

application to acquire a GPS fix (i.e., the maxAge parameter never increases the time 

required to acquire a GPS fix), the lower bound of the time required to achieve a GPS fix 

is an ideal scenario when another application acquires a GPS fix just before our 

application’s scheduled interval.  In this scenario, the time elapsed between when a fix is 

scheduled and the fix is acquired by our application is zero, and therefore the lower 

bound on the total amount of time required to acquire a fix is equivalent to the interval 

value.  The upper bound of the time required to achieve a GPS fix is equivalent to the 

sum of the interval and timeout values.   

We chose interval values for states that exhibit exponential growth as we move towards 

sleep state, since as we build confidence that the device is not moving while transitioning 

through states, we want to rapidly enter the state that will save the most energy.  The 

same exponential decay is desired when moving from the sleep state to the awake state, 

as we build confidence in the user’s movement. Figure 17 shows the relationship of the 

chosen interval values (solid blue line) to several growth functions.  As shown in Figure 
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minutes as the acceptable amount of the first portion of the travel behavior path to miss 

when transitioning from asleep to awake in the case of worst-case performance by GPS 

Auto-Sleep.

This loss of the first portion of the path is primarily of concern when distance of travel is 

being measured.  Figure 19 shows the worst-case scenario when the state machine is in 

the sleep state of state[n] and the user begins moving immediately following a GPS fix 

acquisition.  The longest amount of time that may elapse between successful GPS 

samples is max_gps_activitystate[n].  As a result, the user’s travel behavior is not being 

monitored during this time, resulting in the observed travel path of the straight dashed red 

line in Figure 19, instead of the actual travel path shown in the black dots.

Figure 19 - The largest potential loss of beginning travel path is worst-case scenario 
when the user travel path is sampled just before they begin moving, since the next 
GPS sample occurs max_gps_activitystate[n] seconds later 

Legend

Actual travel path

Observed travel path

Trip Origin
(Stationary GPS samples)

Upper bound of length of time
between GPS samples

max_gps_activitystate[n]= 
state[n]interval + state[n]timeout

First moving
GPS sample
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The following formulas define the time cost for transitioning between states given the 

state transition rules defined in Chapter 3, with the goal of keeping the amount of time for 

lost travel path data under five minutes. 

If a GPS fix cannot be acquired on startup, the maximum time elapsed from startup to 

fully asleep (i.e., state[n]) is: 

With the state values defined here, the max_elapsed_timestartup_to_asleep is 296 seconds, or 

almost five minutes, which is an acceptable amount of time for our tracking application.

The amount of time elapsed from the awake state to the asleep state during normal 

execution (i.e., not on startup) is a similar equation and value, with the only difference 

being the use of the back off timer instead of the first_fix_timeout value: 

Since our goal is to capture high resolution travel behavior, a significant risk when fully 

asleep in state[n] is that the state machine will sample the GPS location when the device 

is stationary, and then the device immediately begins moving and the state machine waits 

state[n] amount of time (e.g., 256 seconds) before again sampling GPS.  When 

considering the maximum possible elapsed time, we also must assume that nearly the 

entirely timeout period has elapsed before acquiring a GPS fix.  If we wait to fully 



101

transition between state[n] to state[0] using single state transitions to resume high 

resolution tracking, and assuming the entire timeout period is used, the maximum elapsed 

time is: 

With the state values defined here, the max_elapsed_timeasleep_to_awake_single_transitions is 564 

seconds, or nearly ten minutes.  This is far too long to wait for our needs of capturing 

high-resolution travel behavior. 

We could consider using the avg_elapsed_timeasleep_to_awake_single_transitions instead of the 

max_elapsed_timeasleep_to_awake_single_transitions when calculating the acceptable amount of 

data loss if the theoretical max_elapsed_timeasleep_to_awake_single_transitions is found to be much 

larger than the avg_elapsed_timeasleep_to_awake_single_transitions values observed in our tests 

with actual devices.  In our research, we found that once a high-sensitivity GPS-enabled 

cell phone is able to acquire a GPS fix in an environment, it typically returns the next 

GPS fix quickly, which significantly reduces the amount of time spent during the timeout 

stage of each GPS fix attempt.  Figure 20 shows the difference between scheduled GPS 

times (i.e., when the Location API is scheduled to return a GPS fix based on the interval 

value) and the times when the Location API actually acquired and returned a GPS fix for 

a dataset, observed using a Sanyo Pro 200 on the bottom story of a two story building.

The average time difference value here is approximately 9 seconds, which is less than a 

third of our maximum timeout value of 32 seconds.  The negative value shown in the far-
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Figure 21 - Proactive GPS scheduling (left) starts the GPS hardware slightly before 
the scheduled interval value expires, while reactive GPS scheduling (right) waits 
until the interval period has completely expired before attempting a GPS fix. 

However, even if the timeout values are completely eliminated via high-sensitivity GPS 

hardware, proactive GPS scheduling, or use of GPS by other applications, this would still 

yield a minimum amount of time required to transition from fully asleep (i.e., state[n]) to 

fully awake (i.e., state[0]) as: 

With the state values defined here, the min_avg_elapsed_timeasleep_to_awake_single_transitions is 

472 seconds, or a little under 8 minutes.  This value is too long to risk lost travel 

behavior.  Figure 22 illustrates the potential loss of travel path information, if the state 

machine needs to transition through all states before beginning high-resolution tracking.

Therefore, we needed a new method to reduce the amount of time needed to transition 

from state[n] to state[0]. 
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Figure 22 - GPS Auto-Sleep can miss a substantial part of the beginning trip path if 
it must transition through all states before starting to record high-resolution travel 
behavior

To increase our ability to capture high-resolution travel behavior data, we introduced the 

high_speed_threshold that allows direct state transitions from any state[i] to state[0] to 

“snap” back to high frequency GPS sampling.  This reduces the max_elapsed_time value 

to:

With the state values defined here, the max_elapsed_timeasleep_to_awake is 288 seconds, 

which is under our five minute threshold and therefore an acceptable delay.

The high_speed_threshold must be chosen carefully to ensure proper operation of GPS 

Auto-Sleep.  If high_speed_threshold is too small, the state machine will be constantly 



105

waking up and wasting battery energy while it samples GPS at high frequency until the 

back off timer expires and the state machine gradually transitions to the sleep state again, 

which is upper-bounded by max_elapsed_timeawake_to_sleep.  If the high_speed_threshold is 

too high and we do not recognize true movement quickly, then we lose the ability to 

transition to state[0] within the five minute requirement and as a result, we risk losing a 

significant amount of travel behavior.

Fortunately, GPS speed measurements tend to be accurate, as speed is measured by the 

receiver using the Doppler shift of the GPS signal [155].  Additionally, research has 

shown that accurate GPS speed determination is preserved even when positional accuracy 

of GPS degrades due to reduced GPS signal quality [155].  Therefore, speed can be used 

as a threshold that is largely independent of position error, and therefore the 

stopped_speed_threshold and high_speed_threshold can be used to temper and correct 

movement in the state machine when the moved_distance_threshold may be affected by 

positional outliers. 

To evaluate the high_speed_threshold and stopped_speed_threshold values for the 

execution of GPS Auto-Sleep on the Sanyo Pro 200, we recorded the GPS speed 

observation of the Sanyo Pro 200 while it was stationary indoors (i.e., true speed = 0 

meters per second) over a 5.5 hour period, with an interval between GPS samples of two 

minutes.  The device was located on a table in the lower story of a two story building.

The observed speed error measurements are shown in Figure 23.
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because we are interested in capturing non-vehicle travel behavior (e.g., walking, biking), 

which can be at fairly low speeds. 

Figure 24 shows the behavior of GPS Auto-Sleep using the high_speed_threshold.

Figure 24 - GPS Auto-Sleep can quickly react to real movement using the 
high_speed_threshold and rapidly begin sampling GPS via direct transitions to 
state[0] to reflect a more accurate travel path 

The state machine can now immediately snap to rapid GPS sampling to capture a better 

representation of the user’s travel path.  We still cannot avoid the potential loss of data 

during the period of time between the most recent stationary GPS sample and the first 

moving GPS sample, since we must maintain this GPS sampling interval when stopped to 

save battery energy.  However, it should be noted that this amount of time is an upper 

bound on elapsed time, and therefore the average amount of time elapsed between user 

movement and the first GPS sample is substantially less.  Also worthy of note is that due 

to the initial sleep period before we detect movement, the calculated distance of observed 
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travel using GPS samples will typically be a lower bound on actual distance traveled 

(unless there is a significant amount of unfiltered GPS drift during the trip, which may 

occur at brief stops).

The final two thresholds that must be chosen for GPS Auto-Sleep are distance-based. The 

moved_distance_threshold is used to determine if the traveler has moved from the last-

sampled GPS location when considered stationary, and is used to gradually step towards 

state[0] (i.e., awake) state-by-state.  The high_horizontal_accuracy_threshold is based on 

the estimated accuracy of the GPS fix, and is used to gradually step towards state[n] (i.e., 

asleep) state-by-state when the device reports that there is a large estimated error in the 

accuracy of the fix. 

To determine a moved_distance_threshold, we performed an indoor accuracy test on two 

different mobile phones: the Motorola i580 mobile phone on the Sprint-Nextel iDEN 

network and Sanyo 7050 mobile phone on the Sprint-Nextel CDMA 1 x RTT data 

network.

We chose to evaluate two different mobile phone models because in the early 

implementation of the LAISYC framework, we had anecdotal evidence that positional 

accuracy tended to differ between devices.  These tests were performed inside a building 

made mostly of wood and concrete stucco, since when GPS Auto-Sleep is used to try to 

detect movement the device will typically be indoors.  The reference ground truth 

location was determined by marking the location of the phones on a blueprint of the 

structure, and scanning the blueprint so it could be geo-referenced against a digital 6-inch 

resolution color aerial photo that was already geo-referenced in the Universal Transverse 
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The substantial difference between devices can be seen in both the statistics, with the 

Motorola i580 having almost twice the 95th percentile of error (47.9 meters) as the Sanyo 

7050 (24.44 meters), as well as the scatter plot, where the GPS from the Motorola i580 

drifts away from the ground truth location in the upper-left and lower-left corners of the 

image.  These empirical measurements confirm our anecdotal evidence that there can be 

significantly different levels of positional accuracy between two different devices.  There 

is much less difference in speed error measurements between the two devices (Table 5), 

confirming that GPS signal obstructions affect positional error substantially less than 

speed error. 

Table 5 - While the positional error between the two devices is substantially 
different, the error in speed is much less dramatic 

Based on the observed positional error from these devices, we chose a value of 100 

meters for the moved_distance_threshold.  100 meters is greater than any error we 

observed in our tests and will therefore be tolerant of moderate GPS drift from the ground 

truth location without producing a false-positive movement reading that would cause the 

state machine to move towards state[0] (i.e., awake) when the device is still stationary 

inside a building.  100 meters is also a short enough distance that, when combined with 

the high_speed_threshold to immediately detect fast movement, prevents the device from 

missing a substantial portion of the user’s slow travel path before movement is detected. 

Device GPS Type
Sample
Size

Min Max Avg 50th percent. 68th percent. 95th percent.
Motorola i580 Assisted 478 0.00 6.94 0.37 0.00 0.00 1.94
Sanyo 7050 Assisted 1513 0.00 1.25 0.13 0.25 0.25 0.25

Speed Error Statistics (meters per second)
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be in compliance with the standard.  This information is important for any app developer 

who makes real-time decisions in a mobile app based on the 68% confidence level 

specification for accuracy uncertainty required by the JSR179 Location API, because as 

evidenced by our experiments, at least two commercially-available mobile phones are not 

meeting this standard.  

Based on this information, we set the high_horizontal_accuracy_threshold threshold 

value to 80 meters, which is substantially larger than any value observed in these tests.

Our reason for choosing this value is that the threshold will effectively be ignored for 

these devices, but will still remain in place for other devices implementing JSR179 that 

may meet the standard specifications as GPS Auto-Sleep is deployed to additional 

devices in the future.  The relationship between estimated and actual error could also be 

reevaluated on future devices to determine if a correlation between observed and 

estimated error exists. 

Once all the threshold values were chosen, we evaluated the performance of GPS Auto-

Sleep for accurately tracking the movement of the user and transitioning between 

frequent GPS sampling and occasional GPS sampling based on real-time location data 

and the state transition rules with the chosen threshold values.  We collected 30 days of 

normal travel behavior from members of the research team using a Sanyo Pro 200 

CDMA cell phone on Sprint’s Evolution-Data Optimized (EV-DO) Revision (Rev.) A 

network with assisted GPS.  We manually post-processed this data after it was collected 

and marked each data point as stationary or moving based on written travel logs from the 

user.
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available (e.g., the user was deep inside a building), and therefore the time between GPS 

fixes was a large value.  Ideally, the blue line for GPS Auto-Sleep activity should roughly 

trace the red dashed line (with the exception of the spikes off the graph for lost GPS 

fixes).  Two areas on the graph are circled with black dashed ovals that indicate brief 

periods of error when the GPS Auto-Sleep transitioned from the sleep state[n] to state[0] 

for rapid GPS sampling every 4 seconds, when in fact the user was stationary.  Close 

examination of the speed values at the leading edge of these periods show that the 

incorrect wake-ups of GPS Auto-Sleep were triggered by large outlier speed values. 

To quantify the correct state percentage during tracking over the 30 sessions of collected 

data, we classified the GPS Auto-Sleep activity into two states, moving or stationary, 

based on the observed interval between GPS fixes, so that the GPS Auto-Sleep state 

could be directly compared to the ground truth values that were manually coded.  The 

GPS Auto-Sleep states are defined as: 

1) Moving – GPS Auto-Sleep is considered to be in a moving state if the interval 

between fixes is observed to be between 1 and 5 seconds. 

2) Stationary – GPS Auto-Sleep is considered to be in a stationary state if the 

interval between fixes is observed to be greater than or equal to 8 seconds. 

We consider the GPS Auto-Sleep activity to be incorrect (i.e., an erroneous state) if the 

GPS Auto-Sleep state does not match the ground truth manually coded state for each GPS 

fix.

The results of the analysis of the 30 collected sessions of GPS data are shown in Figure 

28.
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1,857 data sessions containing a total of 4,023,917 GPS fixes were recorded during this 

period, for an average of 39.83 days of survey time per user.  The average session length 

during the experiment was 15.44 hours, based on the difference between the oldest and 

newest GPS fix time in each session.  Since the battery life observed when using a static 

GPS interval of 4 seconds without GPS Auto-Sleep was only 8.04 hours, a battery life of 

15.44 hours when using GPS Auto-Sleep is substantially longer.  As discussed in the 

Session management and Location Data Buffering evaluation section, wireless data 

transmissions consume a significant amount of battery energy.  Since TRAC-IT transmits 

GPS data to our server via the mobile phone’s cellular connection, in addition to 

collecting GPS data, the battery life of the phone using GPS Auto-Sleep without 

transmitting data to the server is substantially more than the observed 15.44 hours.     

In conclusion, GPS Auto-Sleep addresses several of the needs for location-aware mobile 

apps outlined in Chapter 1.  GPS Auto-Sleep is able to provide substantial battery energy 

savings (an approximate average doubling of battery life (Need #1), while maintaining 

acceptable movement tracking (approximately 89% accuracy) (Need #3).  GPS Auto-

Sleep operates in real-time on the mobile device (Need #2).  We have also demonstrated 

a methodology for selecting the thresholds used in the algorithm (i.e., first_fix_timeout,

stopped_speed_threshold, high_speed_threshold, moved_distance_threshold,

high_horizontal_accuracy_threshold, backoff_time_threshold) based on observed GPS 

data so that the algorithm can be implemented by any third party mobile app developer 

on any device with GPS and a Location API (Need #4). 
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4.3.2 Location Data Signing 

Our primary motivation in analyzing Location Data Signing is to demonstrate that 

traditional asymmetric cryptography such as DSA and RSA are feasible for real-time 

execution on a mobile device, contrary to the claims of Jarusombat et al. [138].  We must 

examine two operations to evaluate asymmetric cryptography: 

Key generation:  Key generation happens once daily at the start of a 

communication session with a server and creates both a public and private key.

The private key is used to create the digital signature for individual GPS fixes, 

while the public key is distributed to others so that they can verify the digital 

signature for GPS fixes.  Since key generation only happens occasionally, 

execution time of key generation is not of great concern. 

Signature generation:  Signature generation happens frequently, potentially as 

often as once every GPS fix.  Since GPS data can be generated at a rate of once 

per second, signature generation must be efficient in terms of execution time to be 

feasible for implementation on mobile devices. 

To evaluate the impact of Location Data Signing, we developed a test mobile application 

that performed key generation and signature generation, and recorded the execution time 

by querying the system timestamp both before and after execution.  We executed this 

application on an HTC G1 mobile device with Android 1.6.  Figure 29 shows the results 

of execution time for key generation for both DSA and RSA using 512-bit and 1,024-bit 

keys.
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a substantial impact on CPU frequency, resulting in smaller differences in battery life.  

The larger difference in battery life at the 500 second interval is likely due to the fact that 

when the phone is generating a digital signature, the CPU stays on longer than normal, 

costing additional energy and preventing a quick return to a low-power state.  Entering 

this low-power state quickly after a GPS fix is acquired is much easier when the phone is 

not generating a digital signature. 

In conclusion, Location Data Signing addresses several of the needs for location-aware 

mobile apps outlined in Chapter 1.  The results of the above experiments demonstrate that 

the Location Data Signing module is able to add authenticity to location data on mobile 

devices in an energy-efficient manner.  The Location Data Signing module is fully 

implementable by third party application developers (Need #4), and can support real-time 

applications (Need #2) by frequently signing location data fixes as often as once per 

second.  There is a slight impact on battery life due to Location Data Signing (Need #1) 

at intervals 4 through 60, and a substantial impact at frequent (one second) or infrequent 

(500 seconds) intervals of signature generation. 

4.3.3 Session Management and Adaptive Location Data Buffering 

Since the Session Management and Adaptive Location Data Buffering modules are 

designed to work together in support of the general LAISYC communication framework, 

we describe the evaluation of both modules in this section. 

The first evaluation of these components focuses on our choice of using HTTP directly 

for application data instead of SOAP, which encodes messages in XML and uses HTTP 

as a transport protocol. Our hypothesis was that the extra characters required to encode 
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messages in XML will increase the amount of time the cellular radio is active, and will 

result in decreased battery performance. 

For this experiment, we implemented a custom Java ME application that was designed to 

query a web application at defined intervals of time and then record timestamps to the 

persistent MIDP Recordstore every several queries.  Two methods of querying the server 

were implemented:  one using HTTP POST methods to exchange information, and the 

other using the JSR172 J2ME Web Services Specification API to exchange SOAP-

encoded messages via the Java API for XML-based Remote Procedure Calls (JAX-RPC) 

[141].  A device was charged until the battery life indicator on the outside of the device 

indicated a full charge, and then the test software was executed on the device using one 

of the methods of querying the server (e.g., HTTP POST or SOAP-based JAX-RPC) until 

the battery was depleted to the point that the device powered itself off.  After plugging in 

the device and powering it back on, we restarted the testing application and pressed a 

button to retrieve the timestamps from the most recently completed test.  Through this 

method, we were able to record the length of time that the phone was operational while 

querying the server before the device powered off for both HTTP POST and JAX-RPC. 

Netbeans was utilized as the primary Java Integrated Development Environment (IDE) 

for implementing the mobile and web application.    A Motorola i580 phone on the 

Sprint-Nextel iDEN network was utilized for this test since it supports both HTTP POST 

methods as well as JSR172 for SOAP-based web clients.  Glassfish [133], the reference 

implemented for Java Enterprise Edition (EE) 5 and 6, was chosen as the primary Java 

application server to host the server-side web application.  The Java API for Web 
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Services (JAX-WS) 2.0 [158] was used to create web applications within Netbeans that 

exchanged SOAP-based messages.  To create server-side HTTP servlets with which the 

mobile phones could communicate directly via HTTP POST methods, Netbean’s Mobile 

to Web Client tool was utilized to generate code stubs from the JAX-WS 2.0 web 

services for both the mobile phone and web server.

When defining the information exchange between the mobile and web application using 

both HTTP POST and JAX-RPC, we had to determine the exact set of information that 

would be exchanged between the mobile device and server.  We chose to use the input 

and output of actual web services implemented for our TRAC-IT mobile application, 

which is discussed in detail later in this chapter.  When generating the JAX-WS 2.0 web 

application, a TripTX object was defined for both the input and the output of the web 

application.  The contents of the TripTX object in Java data types can be seen in Figure 

32.  Therefore, in these tests the exact same amount of information was exchanged via 

both HTTP POST and JAX-RPC, with the only difference being how the information was 

encoded and passed from the mobile device to the server.

Figure 33 shows the results of the HTTP POST vs. JAX-RPC tests on the Motorola i580.  

The potential energy savings when utilizing HTTP POST-based communication to 

transfer information instead of the heavyweight XML-encapsulated JAX-RPC can clearly 

be seen here.  By utilizing HTTP directly instead of JAX-RPC and transmitting at 60 

second intervals, battery life can be extended by approximately 4.6 hours.   
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The trend continues even to frequent communication with the server every four seconds, 

which has an approximately 2.4 hour difference.  On average, there is a 27.42% increase 

in battery life.  These results justify our choice of plain HTTP as the main application 

data transport protocol, instead of an XML-based protocol on top of HTTP.

Our next evaluation focused on our choice of UDP as the transport protocol for location 

data.  TCP is the primary alternative to UDP, but we chose UDP due to its lightweight 

design and general preference for systems where timeliness and scalability are of greater 

importance than reliability.  Since the timeliness and scalability benefits of UDP over 

TCP are well understood, here we focus on demonstrating the battery-life benefits of 

UDP to better understand the tradeoffs between reliability and power consumption in 

relation to Adaptive Location Data Buffering.

Adaptive Location Data Buffering occasionally opens a TCP connection with the server 

to ensure that there are not large consecutive losses of location data when using UDP 

(e.g., when the device is in a gap of cellular coverage, when the user is on a voice call 

and the device does not support simultaneous voice and data operations).  Therefore, we 

need to understand the power consumption differences between UDP and TCP to 

schedule the frequency of TCP checks with the server.  Understanding these differences 

will help application developers choose TCP check frequencies that meet the reliability 

needs of their applications, but avoid negating the benefits of using UDP for location data 

by querying via TCP too often. 

To evaluate the power consumption differences between UDP and TCP, we used an 

Agilent E3631 power supply to measure the current drawn by a Sanyo 7050 mobile 
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phone on the Sprint-Nextel CDMA 1xRTT network.  We created another test mobile 

application that transmitted location data to a Glassfish server, with the choice of 

selecting either UDP or TCP as the transport protocol.  The location data format used 

here is identical to that used by our TRAC-IT mobile application and is shown in Figure 

34.

Figure 34 - The location data format used for the payload contents of UDP and TCP 
packets in the power consumption tests 

We allowed both the UDP and TCP mobile applications to run on the mobile phone, in 

separate tests, and recorded the power consumption while the application was 

transmitting every 4 seconds for a total of 300 transmissions.  We repeated these tests 

again with transmissions every 10 seconds for both UDP and TCP over an additional 300 

transmissions.  The phones were flipped closed during these tests, and therefore the 

display was off.  The results of these tests are shown in Figure 35. On the left, Figure 35 

(a) shows that when transmitting via both UDP (blue line) and TCP (red line) the device 

radio is constantly active, and therefore the difference in power consumption between 

UDP and TCP is negligible.
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However, Figure 35 (b) shows that as soon as there is enough time in between 

transmissions for the radio to reach a power-off state, UDP (blue shaded area) is able to 

reach this state more quickly after each transmission than TCP (red shaded area).  

Examining the data more closely, the approximate energy used during UDP transmissions 

is 110 joules, while TCP uses approximately 152 joules during transmissions.  This yields 

an average energy use of approximately 3.68 joules/transmission for UDP and 

approximately 5.08 joules/transmission for TCP.  Therefore, TCP consumes 

approximately 38% more power than UDP for 10 second transmission intervals. 

These results confirm our hypothesis that the reliability features in TCP (e.g., verification 

of packet arrival, retransmissions of lost packets) force the radio to stay in a power-on 

state longer than if UDP is used, which justify our choice of UDP as a location data 

transport protocol instead of TCP.  Developers of mobile applications can use these 

results for guidance to balance their apps individual reliability requirements against the 

additional energy consumption of TCP. 

In conclusion, the Session Management and Adaptive Location Data Buffering modules 

address several of the needs for location-aware mobile apps outlined in Chapter 1.  Both 

modules contribute to battery life savings by providing energy-efficient (Need #1) real-

time (Need #2) data communication between a mobile phone and server, increasing the 

average battery life for application data transfer by approximately 28% and reducing the 

average energy cost for location data transfer by approximately 38%. 
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sequential points, even though the output of the Critical Point Algorithm consists of far 

fewer points. 

We hypothesized that the Critical Point Algorithm would save battery energy by filtering 

unneeded GPS data points before they are transmitted via UDP, effectively increasing the 

interval of time between UDP transmissions.  Therefore, to evaluate the potential battery 

energy savings of the Critical Point Algorithm, we examined the effect of UDP 

transmission interval on battery life.   

To evaluate this hypothesis, we created another custom Java ME test application that 

repeated UDP transmissions at a user-defined interval.  GPS was not active during these 

tests, so GPS data was simulated by hard-coding a set of data that was observed during 

separate tests.  Similarly to the test applications described earlier, this application 

recorded timestamps to the persistent MIDP Recordstore every several UDP 

transmissions.  The device was charged until the battery life indicator on the outside of 

the device indicated a full charge, and then the test software was executed on the device 

until the battery was depleted to the point that the device powered itself off.  After 

plugging in the device and powering it back on, we restarted the testing application and 

pressed a button to retrieve the timestamps from the most recently completed test.  

Through this method, we were able to record the length of time that the phone was 

operational while transmitting location data to the server using various transmission 

frequencies.  A Sanyo SCP-7050 mobile phone using the standard Sanyo SCP-22LBPS 

3.7V Lithium Ion 1000 milliampere-hour (mAh) battery on the Sprint-Nextel CDMA 

1xRTT cellular network was used for these tests.   
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wireless transmissions result in a significant increase in battery life. By increasing the 

interval from 15 to 30 seconds, battery life is extended from approximately 9 hours to 

almost 17 hours. If the interval is increased further to 60 seconds, battery life reaches 

approximately 30 hours. 

Now that we have shown that reducing the number of UDP transmissions can have a 

substantial effect on battery life, we must examine the feasibility of execution of the 

Critical Point Algorithm on a mobile device.  Since the Critical Point Algorithm is going 

to run in real-time on the mobile phone and process a stream of generated location data, 

the algorithm must be efficient.  For real-world implementation, the algorithm must 

maintain a constant memory requirement during execution, or the device will eventually 

run out of memory as it runs for a period of days or months.  Additionally, the execution 

time of the algorithm should scale linearly regardless of the size of the dataset processed.

If the execution time of the algorithm scales exponentially and attempts to loop through 

the entire dataset multiple times, then the software executing in real-time will inevitably 

fall behind the real-time data stream.   

To prove that the Critical Point Algorithm maintains a constant memory requirement, we 

examined the amount of information required during execution.  For each execution of 

the Critical Point Algorithm, we kept a maximum of 3 data points in memory:  Last 

Critical Point, Last Trigger Point, and Current Point.  We implemented the Critical Point 

Algorithm as a sliding window with pointers to the 3 data points, as shown in Figure 38. 
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Figure 38 - The Critical Point Algorithm maintains a constant memory requirement 
during execution by using at most three location data pointers 

If a new critical point was found, then the first and second pointers were re-assigned to 

the next respective points.  If no critical point was found, then the third pointer was again 

moved on to the next GPS data point, and the first and second pointers remain 

unchanged.  Therefore, the memory requirements of the Critical Point Algorithm, , is 

constant:

where  is the number of GPS data points processed. 

To prove that the Critical Point Algorithm could scale linearly in execution time with 

real-time data input, we examined the necessary number of steps to process one new GPS 

data point.  For each GPS data point, we computed the azimuth between two sets of 

points:  the Last Critical Point and Last Trigger Point, and the Last Critical Point and the 

Current Point.  The Vincenty Inverse Algorithm was used to compute the azimuth, which 

has been shown to execute in a constant amount of time [136], and therefore is .  We 
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also computed the difference between the two azimuth values, and compared the current 

speed of the user to a speed threshold for each data point, which could also be done in a 

constant amount of time.  Since the Critical Point Algorithm would be executed once for 

each new GPS data point, and a constant number of steps completed for each new GPS 

data point, we determined the time complexity of the Critical Point Algorithm, , to 

be:

where  is the number of GPS data points processed.  Therefore, the Critical Point 

Algorithm scales linearly with the number of GPS data points and can successfully run as 

a real-time stream processing algorithm. 

Once we confirmed that the algorithm scales linearly in execution time and is constant in 

memory requirements with the amount of data processed, we next examined the threshold 

values that could be used by the Critical Point Algorithm for min_speed_threshold,

max_walk_speed, and angle_threshold.

For max_walk_speed, previous research has indicated that mean maximum walking speed 

for fastest group of subjects studied was slightly over 2.5 meters per second [159].

Therefore, we chose 2.6 meters per second as our max_walk_speed threshold to 

distinguish whether the user is walking. 

To choose the min_speed_threshold, we referred back to the speed tests performed while 

stationary.  We wanted to eliminate points generated while the user was standing still, but 

we also wanted to capture points that represented the user’s path and did not want to 
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The general walking pattern of the trip is preserved in both sets of data, with the primary 

filtering by the Critical Point Algorithm taking place at the very beginning of the trip, 

when the speed values are 0 meters per second.  We believe this initial reading of 0 

meters per second is due to Kalman filtering of the speed data happening in the Java ME 

platform or GPS firmware or hardware.  In other words, the Kalman filter initially 

classifies the increase in speed as noise and filters this information out.  However, once 

the user moves outside in the same general direction, the GPS speed values begin to 

reflect the user’s true speed, as the Kalman filter reacts to the continuous outdoor 

movement. 

To demonstrate the potential of savings of the min_speed_threshold value of 0.1 meters 

per second versus a value of 0 meters per second, we examined a day’s worth of GPS 

data when the user stays in one location.  During this time, the GPS drift can be 

substantial, such as that shown in Figure 41. 

The Critical Point Algorithm filtered out over 97% of this data when using a 0.1 meters 

per second speed threshold, compared to only 74% of this data when using a 0.0 meters 

per second threshold (Table 6).  In other words, we took advantage of the speed accuracy 

when the user was stationary to largely eliminate this erroneous movement, while still 

keeping an accurate record of the user’s walking movements.  Table 6 shows a detailed 

comparison for both the walking data and the stationary data when using the 

min_speed_thresholds of 0.0 meters per second and 0.1 meters per second.  For these 

tests, an angle_threshold of .5 degrees was used. 
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The final property of the Critical Point Algorithm to examine was the angle_threshold for 

determining the magnitude of change in direction that should trigger a critical point to be 

generated.  If the angle_threshold is increased, fewer critical points will be generated, 

which will save battery energy and data transmission and storage costs.  However, if 

fewer critical points are generated, the line defined by the remaining critical points 

becomes a less accurate representation of the user’s path. 

To illustrate the tradeoff between fewer data points and loss in path accuracy, ideally we 

wanted to compare the accuracy of a path generated by the Critical Point Algorithm 

against the true path of the user.  However, determining the true path of the user is not 

trivial because the sampled GPS positions of the user are an approximation of the true 

position of the user, as shown in Figure 42.

Figure 42 - Sampled GPS data points create an approximated path of the user with 
some uncertainty 

Therefore, the observed path reconstructed using the sampled GPS data, shown as the 

dashed line in Figure 42, is not equivalent to the true path traveled by the user, shown as 

Possible true position when sampled

Sampled GPS position

Estimated horizontal accuracy (68th percentile by Java ME specification)

Possible true path

Observed Path
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the solid line in Figure 42.  The accuracy of the observed path is defined in part by the 

accuracy of the individual GPS data points, which is influenced by many environmental 

factors.  The GPS sampling interval also has an impact on observed path accuracy, as the 

more frequent sampling will typically yield a better representation of the path.   

We originally planned to use to our primary accuracy metric provided by the Java ME 

Location API, the estimated horizontal accuracy for each GPS fix, to estimate the true 

path of the user based on the collected GPS data.  The red uncertainty circle around each 

GPS fix, defined by the estimated horizontal accuracy, is shown in Figure 42.  However, 

as discussed earlier, in our experiments with GPS Auto-Sleep we found the estimated 

horizontal accuracy value to be unreliable and not within the specification defined by the 

Java ME Location API.  Therefore, a methodology to evaluate line accuracy based on 

estimated horizontal accuracy would not provide a useful analysis. 

When using the Critical Point Algorithm with our TRAC-IT mobile application to record 

travel behavior, we decided to approach the evaluation of the angle_threshold used in the 

Critical Point Algorithm from a practical perspective.  One of the key metrics that 

TRAC-IT was implemented to record is travel distance.  In our research, we have found 

that the observed GPS path of the user recorded outdoors using a GPS interval of four 

seconds is a reasonable representation of the path for the purpose of most Location-based 

Services, including measuring travel distance.  Therefore, we decided to analyze the 

impact of the angle_threshold values on the distance of the path generated by the Critical 

Point Algorithm. 
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Figure 43 shows the difference between a path generated by the Critical Point Algorithm 

and the path defined by the complete GPS dataset. 

Figure 43 - The distance of the path generated from Critical Point Algorithm will 
always be shorter or equal to the distance of the path using all GPS data points 

The Critical Point Algorithm does not synthesize points; the set of critical points 

remaining after execution of the algorithm is always a subset of the points that appeared 

in the original GPS data: 

Therefore, the distance of the full GPS path, Distancefull_GPS_path, will always be greater or 

equal to than the distance of the path defined by the critical points, Distancecritical_point_path:   

Sampled GPS position

Critical Point path

Full GPS Path

Critical Point

a

b c d

e

f

g

x
y

Distancefull_GPS_path = a + b + c + d + e + f + g

Distancecritical_point_path = x + y
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As the angle_threshold increases, Distancecritical_point_path will decrease until eventually 

only the first and last GPS points remain.  When only two critical points remain, the 

Distancecritical_point_path reaches its minimum value, which is the distance of a single 

straight line connecting the first and last GPS points. 

We defined the error between the path created by all the GPS data points and the path 

created by critical points as the distance error percentage: 

To assess the tradeoffs between angle threshold and number of critical points generated 

using the distance error percentage metric, we post-processed the same walking trip 

presented earlier using the Critical Point Algorithm and a range of angles from 0.5 

degrees to twenty degrees, in 0.5 degree increments.  The resulting lines, consisting only 

of critical points, are shown in Figure 44.

We repeated the same experiment on a trip via car and collected all GPS data points so 

we could post-process the results with many different parameters for the Critical Point 

Algorithm on the same dataset.  The resulting critical point count in relation to the chosen 

angle and distance error percentage for the walk and car trips are shown in Figure 45, 

with the walking data set on the left and the car on the right. 

As we expected, there was a general trend towards fewer critical points and larger 

distance error percentages with larger angle thresholds for both walk and car trips.
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This immediate sharp decrease in points starting at 0.5 degrees occurred because of the 

larger number of points in the car trip (375 points) and larger distances in-between points, 

where the car traveled in a relatively straight line on the road, with turns happening 

mainly at intersections.  Figure 46 shows all GPS points for a car trip on the left, and only 

critical points using an angle_threshold of 0.5 degrees on the right.  A large number of 

points along straight lines were eliminated quickly at lower angle thresholds, unlike walk 

trips that required larger angles to remove an equivalent percentage of points.

Table 7 shows these statistics for percentage savings for number of points when using the 

Critical Point Algorithm for the walk trip compared to the car trip, with the Critical Point 

Algorithm immediately producing a percentage savings of 41.33% at angle_threshold 0.5 

for the car trip and only 26.42% using the same angle for the walk trip.  The car trip was 

reduced by over 90% of its points starting at angle 4.5, while for the walk trip, savings 

over 90% were not realized until angle 14.5. 

Also unlike walk trips, as the reduction in points began to level off for car trips the 

distance error percentage continued to climb.  There were a few shifts in geometry, like 

the walk trip, that produced local trends in decreasing distance error percentage.

Interestingly, unlike the walk trip, the shifts in geometry with local trends in decreased 

distance error percentage did not typically produce a larger number of critical points.  In 

other words, there was only one small local trend in an increased number of critical 

points with an increasing angle_threshold.  This behavior was also a result of quickly 

eliminating the points along the straight lines in car trips using low angle_threshold

values.
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Table 7 - Resulting statistics from a walk and a car trip that were both processed 
using the Critical Point Algorithm with different angle thresholds 

After these initial straight line points were eliminated, the remaining points were all 

critical to representing the true travel distance of the vehicle.  Therefore, any further 

elimination of points results in a larger proportional distortion of the path distance when 

compared to walk trips, since walk trips have a larger number of points that can continue 

to be eliminated using larger angle_thresholds, without substantially affecting the 

distance error.  Walk trips have sequential GPS samples that are closer together, and 

Angle 
Threshold

Number 
of  

Critical 
Points

Total 
Number 
of Points

% 
Savings

Bytes 
Saved*

Distance 
CP (m)

Total 
Distance 

(m)

Distance 
Error 

Percentage

Angle 
Threshold

Number 
of  

Critical 
Points

Total 
Number 
of Points

% 
Savings

Bytes 
Saved*

Distance 
CP (m)

Total 
Distance 

(m)

Distance 
Error 

Percentage

0.5 39 53 26.42% 1,666 244.98 250.80 2.32% 0.5 220 375 41.33% 18,445 25,392.22 25,410.16 0.07%
1 39 53 26.42% 1,666 244.98 250.80 2.32% 1 129 375 65.60% 29,274 25,299.82 25,410.16 0.43%
1.5 37 53 30.19% 1,904 244.97 250.80 2.33% 1.5 92 375 75.47% 33,677 25,265.51 25,410.16 0.57%
2 31 53 41.51% 2,618 244.51 250.80 2.51% 2 63 375 83.20% 37,128 24,865.05 25,410.16 2.15%
2.5 28 53 47.17% 2,975 244.28 250.80 2.60% 2.5 55 375 85.33% 38,080 24,734.36 25,410.16 2.66%
3 22 53 58.49% 3,689 240.63 250.80 4.06% 3 54 375 85.60% 38,199 24,599.69 25,410.16 3.19%
3.5 20 53 62.26% 3,927 240.98 250.80 3.92% 3.5 40 375 89.33% 39,865 23,937.16 25,410.16 5.80%
4 21 53 60.38% 3,808 243.05 250.80 3.09% 4 38 375 89.87% 40,103 24,361.76 25,410.16 4.13%
4.5 21 53 60.38% 3,808 243.05 250.80 3.09% 4.5 26 375 93.07% 41,531 23,852.57 25,410.16 6.13%
5 10 53 81.13% 5,117 236.98 250.80 5.51% 5 23 375 93.87% 41,888 23,594.17 25,410.16 7.15%
5.5 14 53 73.58% 4,641 239.15 250.80 4.64% 5.5 26 375 93.07% 41,531 23,806.48 25,410.16 6.31%
6 13 53 75.47% 4,760 238.21 250.80 5.02% 6 23 375 93.87% 41,888 23,547.01 25,410.16 7.33%
6.5 14 53 73.58% 4,641 240.09 250.80 4.27% 6.5 17 375 95.47% 42,602 23,258.19 25,410.16 8.47%
7 12 53 77.36% 4,879 239.87 250.80 4.36% 7 17 375 95.47% 42,602 23,286.09 25,410.16 8.36%
7.5 8 53 84.91% 5,355 237.18 250.80 5.43% 7.5 20 375 94.67% 42,245 22,605.74 25,410.16 11.04%
8 7 53 86.79% 5,474 230.45 250.80 8.12% 8 14 375 96.27% 42,959 22,189.59 25,410.16 12.67%
8.5 10 53 81.13% 5,117 232.44 250.80 7.32% 8.5 8 375 97.87% 43,673 22,063.43 25,410.16 13.17%
9 7 53 86.79% 5,474 231.07 250.80 7.87% 9 8 375 97.87% 43,673 21,878.53 25,410.16 13.90%
9.5 7 53 86.79% 5,474 231.07 250.80 7.87% 9.5 8 375 97.87% 43,673 21,787.44 25,410.16 14.26%
10 10 53 81.13% 5,117 232.89 250.80 7.14% 10 8 375 97.87% 43,673 21,772.84 25,410.16 14.31%
10.5 7 53 86.79% 5,474 231.58 250.80 7.66% 10.5 8 375 97.87% 43,673 22,025.89 25,410.16 13.32%
11 7 53 86.79% 5,474 232.06 250.80 7.47% 11 8 375 97.87% 43,673 22,112.91 25,410.16 12.98%
11.5 7 53 86.79% 5,474 231.14 250.80 7.84% 11.5 8 375 97.87% 43,673 22,331.20 25,410.16 12.12%
12 7 53 86.79% 5,474 232.61 250.80 7.25% 12 8 375 97.87% 43,673 22,334.09 25,410.16 12.11%
12.5 7 53 86.79% 5,474 231.83 250.80 7.56% 12.5 7 375 98.13% 43,792 21,251.06 25,410.16 16.37%
13 7 53 86.79% 5,474 233.72 250.80 6.81% 13 7 375 98.13% 43,792 21,492.49 25,410.16 15.42%
13.5 7 53 86.79% 5,474 233.72 250.80 6.81% 13.5 7 375 98.13% 43,792 21,720.98 25,410.16 14.52%
14 7 53 86.79% 5,474 233.72 250.80 6.81% 14 7 375 98.13% 43,792 21,800.60 25,410.16 14.21%
14.5 5 53 90.57% 5,712 229.89 250.80 8.34% 14.5 7 375 98.13% 43,792 21,976.69 25,410.16 13.51%
15 5 53 90.57% 5,712 229.89 250.80 8.34% 15 6 375 98.40% 43,911 22,297.52 25,410.16 12.25%
15.5 5 53 90.57% 5,712 231.33 250.80 7.76% 15.5 6 375 98.40% 43,911 22,307.91 25,410.16 12.21%
16 5 53 90.57% 5,712 234.65 250.80 6.44% 16 6 375 98.40% 43,911 22,191.51 25,410.16 12.67%
16.5 5 53 90.57% 5,712 234.65 250.80 6.44% 16.5 6 375 98.40% 43,911 22,083.02 25,410.16 13.09%
17 5 53 90.57% 5,712 234.65 250.80 6.44% 17 6 375 98.40% 43,911 21,963.01 25,410.16 13.57%
17.5 5 53 90.57% 5,712 235.44 250.80 6.12% 17.5 6 375 98.40% 43,911 21,873.72 25,410.16 13.92%
18 3 53 94.34% 5,950 217.31 250.80 13.35% 18 6 375 98.40% 43,911 21,629.03 25,410.16 14.88%
18.5 3 53 94.34% 5,950 217.31 250.80 13.35% 18.5 6 375 98.40% 43,911 21,434.66 25,410.16 15.65%
19 3 53 94.34% 5,950 217.31 250.80 13.35% 19 6 375 98.40% 43,911 21,241.89 25,410.16 16.40%
19.5 3 53 94.34% 5,950 217.31 250.80 13.35% 19.5 6 375 98.40% 43,911 21,162.57 25,410.16 16.72%
20 3 53 94.34% 5,950 217.31 250.80 13.35% 20 6 375 98.40% 43,911 21,063.71 25,410.16 17.11%

Car Trip

* Based on 119bytes per UDP payload

Walk Trip
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therefore elimination of a nearby fix has a lesser impact on the measured travel distance 

than the removal of a fix that is further away. 

Based on our observations from the above experiments, we chose the following values 

for the Critical Point Algorithm thresholds: 

min_speed_threshold = 0.1 meters per second 

max_walk_speed = 2.6 meters per second 

angle_threshold = 4.5 degrees for walk trips, and 3 degrees for car trips.   

For a final analysis on the expected data savings of the Critical Point Algorithm using 

these thresholds, we post-processed 1,314 trips of GPS data that were collected using the 

TRAC-IT mobile application.  The results are shown in Table 8. 

Table 8 – The Critical Point Algorithm is able to reduce GPS datasets by more than 
77% on average while maintaining an average distance error percentage under 
10%. 

The average percent savings when using the Critical Point Algorithm was a reduction of 

approximately 77% of the GPS data points.  The 5th percentile of percent savings was 

approximately 48%, which means that 95% of the time the percent savings is above 48%.  

Assuming that each GPS fix was 119 bytes, this translates to a substantial data transfer 

savings if the non-critical points were not transferred from the mobile device to the 

Min Max Avg.
5th 

percentile
25th 

percentile
50th 

percentile
68th 

percentile
95th 

percentile
Total Critical Point Count 2 322 35 3 13 27 38 97
Total GPS Fix Count 20 3,710 193 31 74 130 188 511
% Savings 20.83% 99.40% 77.43% 47.97% 69.49% 80.00% 86.83% 95.84%
Bytes Saved* 595 403,172 18,883 2,380 6,426 12,138 17,493 54,788
Distance Critical Points (m) 0.00 1,043,805.50 7,437.09 328.14 1,162.37 2,675.00 4,049.37 22,815.61
Total Distance (m) 2.36 1,087,043.20 7,878.02 380.79 1,252.55 2,913.39 4,345.91 24,231.34
Distance Error Percentage 0.00% 100.00% 8.90% 1.94% 3.98% 6.20% 8.70% 24.11%

* Based on 119 bytes per UDP payload
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server.  On average, we saved almost 19 kilobytes in data transfer per trip.   Since 

surveyed U.S. travelers report an average of 4.6 trips per day with a mean duration of 

approximately 20 minutes per trip [149], the amount of data saved adds up quickly.  If 

location-aware services were to be provided to the 322.9 million U.S. cellular 

subscribers, the Critical Point Algorithm would save approximately 279.2 gigabytes of 

data transfer over the cellular network per day.  Additionally, the average distance error 

percentage is kept under 10%, which is sufficient for our purposes of distance tracking.

We could adjust the angle threshold value, if needed, to increase or decrease the distance 

error percentage and percent savings, depending on the needs of future applications. 

In conclusion, the CP Algorithm module addresses several of the needs for location-

aware mobile apps outlined in Chapter 1.  The CP Algorithm reduces battery energy 

expenditures (Need #1) and the amount of data transferred between the mobile phone and 

server (Need #1) in real-time (Need #2) by eliminating non-essential GPS data (an 

average 77% reduction), with an average doubling of battery life, as the interval of time 

between location data transmissions is doubled.  The CP Algorithm is able to maintain an 

average distance error percentage for GPS data under 10%, which ensures a high-

precision and high-accuracy travel path (Need #3).  We also presented a methodology to 

select values for the thresholds used in the CP Algorithm (min_speed_threshold,

max_walk_speed, angle_threshold) based on observed GPS data, allowing any third party 

mobile app developer to implement the algorithm on any GPS-enabled mobile device 

with a Location API (Need #4). 
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Figure 47 shows the results of the tests in battery life using encryption versus no 

encryption.  There was a small impact on battery life, approximately 16 minutes in these 

tests, which is negligible for most mobile devices. 

In conclusion, the Location Data Encryption module addresses several of the needs for 

location-aware mobile apps outlined in Chapter 1.  Location Data Encryption ensures the 

security of the location data being transferred between the mobile device and server in 

real-time (Need #2), with only a slight impact on battery life (i.e., a decrease of 4.9%) 

(Need #1).  Location Data Encryption can be implemented by any third party mobile app 

developer (Need #4) using existing software libraries such as BouncyCastle [147]. 

4.4 Innovative Location-Aware Applications Developed Using LAISYC 

Two separate research projects have implemented innovative location-aware applications 

using the LAISYC framework presented in this dissertation.  LAISYC enables the use of 

efficient real-time, high-accuracy and high-precision location data in each of these 

systems.  In this section we describe the two applications:  TRAC-IT, a multi-modal 

travel behavior data collection tool that can provide simultaneous and real-time location-

based services, and the Travel Assistance Device (TAD) mobile app to assist transit 

riders with intellectual disabilities. 

4.4.1 TRAC-IT

In order to solve transportation problems and effectively plan new roads or public 

transportation routes, transportation professionals require information about the current 

travel behavior of the general public.  While road-based infrastructure such as loop-

detectors can provide a count of cars traveling through a particular road, more descriptive 
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data for the purposes, origins and destinations of trips is desired.  Additionally, road-

based infrastructure does not provide any information about trips that are taken using 

public transportation, biking, walking, or carpooling. 

In the past, paper diaries or phone interviews have been used to ask survey participants 

about their daily travel behavior.  However, these manual survey methods typically only 

cover a day or two of travel behavior due to the burden on the participant.  Due to this 

burden, past studies have shown problems with data accuracy and completeness in 

manual surveys when reported travel behavior was compared with vehicle-based GPS 

systems that also monitored the participant’s travel behavior for the same period of time 

[160-162].

Vehicle-based GPS systems have the benefit of objective GPS data that is recorded at a 

particular time and location.  However, like road-based infrastructure vehicle monitoring, 

vehicle-based GPS misses trips occurring via public transportation, biking, walking, and 

carpooling.  Additionally, vehicle-based GPS could provide travel behavior data from 

more than one individual if the vehicle is shared within a household.  Transportation 

professionals desire data per individual, over multiple modes of transportation, so 

behavior such as interactions within the household can be evaluated. 

Our approach to enabling multimodal travel behavior data collection was to monitor the 

transportation behavior of an individual via TRAC-IT, a mobile application installed on a 

GPS-enabled mobile phone.  However, for long-term travel data collection to be 

compelling for individuals participating in the study, an incentive for the individual to 

give up their privacy and donate their data would likely be required.  One type of 
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incentive is a monetary reimbursement to the user.  However, this quickly becomes 

expensive for the surveyor and could not be sustained over long periods of time with 

large populations.  Another form of incentive could be services provided to the user.  For 

example, Google provides free services and products such as Gmail, web search, 

Android, and others in exchange for access to a user’s data.  If we could provide valuable 

services to the survey participant, such as real-time personalized traffic incident alerts, 

this may be enough of an incentive for a user to contribute data to transportation 

professionals.

Figure 48 - The TRAC-IT mobile application is based on the LAISYC framework to 
enable simultaneous travel behavior data collection and real-time location-based 
services 
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To enable simultaneous data collection of multimodal travel behavior, as well as real-

time location-based services, we implemented the mobile application TRAC-IT using 

LAISYC on Java ME.  The TRAC-IT system architecture, based on LAISYC, is shown 

in Figure 48. 

Glassfish was used as the Java Web Application Server to host the web application that 

communicated directly with the mobile phone, as well as provided a website for the 

traveler to manage account information (e.g., resetting passwords, etc.).  We used SQL 

Server 2008 and PostGIS as the relational and spatial databases, respectively.  Glassfish 

served as a proxy for database access for the mobile phone.  We also created a Java 

desktop application, the TRAC-IT Database Toolkit, which was capable of a variety of 

both automated and manual post-processing analyses.  For example, the TRAC-IT 

Database Toolkit running on the TRAC-IT server automatically generated Google Earth 

Keyhole Markup Language (KML) files for all trips taken by users and emails links to 

the user the day following the travel behavior so the user could examine the data and 

provide feedback to the analysts.  Analysts could also use the TRAC-IT Database Toolkit 

to analyze and produce statistics for collected travel behavior, and evaluate the 

performance of the Critical Point algorithm, execute automated clustering algorithms to 

identify points-of-interest, use artificial neural networks to automatically classify the 

mode of transportation for a trip [163], as well as various other processing routines that 

have been implemented for the TRAC-IT system [131].
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The TRAC-IT mobile application can execute in two modes: 

Passive data collection:  The application runs on the background on a mobile 

phone without any interaction with the user, and collects only location data 

Active data collection:  Every time when starting or stopping a trip, the user 

enters information such as trip purpose, mode of transportation, and vehicle 

occupancy via the TRAC-IT user interface (Figure 49).  Location data is also 

simultaneously recorded. 

Figure 49 - The TRAC-IT mobile application provides a user interface to record 
input from the individual for mode of transportation, purpose, and vehicle 
occupancy as well as location data.  [148] 
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To evaluate real-time travel behavior data collection using TRAC-IT, we performed a 

variety of successful test deployments with the research team in both passive and active 

modes.  These test deployments included GPS Auto-Sleep, Location Data Signing, the 

Critical Point Algorithm, Adaptive Location Buffering, Location Data Encryption, and 

Session Management, all using the parameters discussed earlier. 

TRAC-IT was deployed in 2011 as part of a USDOT-sponsored research project in 

Tampa, Florida.  We used the passive mode of TRAC-IT with 30 users on Sanyo Pro 200 

mobile phones on the Sprint CDMA EV-DO Rev. A network.  GPS Auto-Sleep was set 

in tracking mode with the parameters discussed earlier, and Location Data Buffering and 

Location Data Encryption were both used.  We decided to turn off the Critical Point 

Algorithm so that we could collect a full GPS dataset from participants over a long period 

of time and use this data for a variety of post-processing and analysis routines, including 

the evaluation of the different Critical Point Algorithm parameters presented earlier.   

From February 10, 2011 to April 29, 2011, TRAC-IT collected 1,857 sessions from 30 

users (over 60 sessions on average per user) for a total of 4,023,917 GPS data points 

(Table 9). 

Total survey time was calculated by the difference between the oldest and newest GPS 

times in each session, and a sum of differences over all sessions.  TRAC-IT server uptime 

was over 99 percent during the data collection period. 

We analyzed a subset of this data (899 sessions) to determine the reliability of UDP and 

Location Data Buffering during data collection.
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Table 9 - TRAC-IT was used as part of a USDOT-funded research project to collect 
over 4 million GPS data points from 30 users over 2 months 

Each location data packet contained an integer that was incremented on each 

transmission, so the number of lost UDP packets could be determined by reviewing the 

missing counter numbers for each session.  Table 10 shows that 95% of sessions had less 

than 3.95% of lost UDP packets, with an average UDP packet loss of 1.19%. 

Table 10 - 95% of sessions had less than 3.95% of lost UDP packets 

We also compared the overall performance of TRAC-IT without LAISYC to TRAC-IT 

with LAISYC, as shown in Table 11. Without LAISYC, TRAC-IT battery life using only 

GPS sampling (i.e., not sending the location data to a server) was 8.04 hrs.  When TRAC-

IT both sampled GPS and sent the data to a server without using LAISYC, battery life 

dropped to 4.21 hrs.    

Date Range 2/10/2011 to 4/29/2011
Total Number of Users 30
Total Number of Sessions 1,857
Avg. Session Length (hrs) 15.44
Total Survey Time (days) 1,194.80
Avg. Survey Time per User (days) 39.83
Total Number of GPS fixes Received 4,023,917
Avg. Number of GPS fixes per Session 2,166.89
Avg. Number of GPS fixes per User 134,130.57

TRAC IT Data Collection for USDOT funded project

# Lost Per Session  % Lost Per Session
Min 0 0.00%
Max 290 66.15%
Avg 15.67 1.19%
50th percentile 8 0.48%
68th percentile 13 0.88%
95th percentile 59.15 3.95%

UDP and Location Data Buffering  Packets Lost
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Table 11 - When TRAC-IT used LAISYC, device battery life nearly doubled while 
reducing overall location data packet loss by 2.16% and adding encryption 

GPS
Sampling

Real-time server
communication

Encryption Battery
Life

TRAC-IT 4 s   8.04 hrs

TRAC-IT 4 s UDP packet loss =  
2.7% (n = 46,785) 

4.21 hrs

TRAC-IT
w/ 
LAISYC

Dynamic 
(4 s moving, 
300 s stopped) 

Adap. Loc. Data 
Buff. 
UDP packet loss =
0.54%
(n = 2,642,309) 

HTTPS - SSL 
UDP - 128-bit 
AES 

15.44 hrs 
(avg, n = 
1857)

When TRAC-IT used LAISYC, battery life was extended to at least 15.44 hrs on average 

even while sending data to the server and encrypting this data.  Adaptive Location Data 

Buffering reduced the overall location data packet loss by 2.16%.  These results clearly 

show the benefit of using LAISYC with a location-aware mobile app. 

To demonstrate the ability of the TRAC-IT system to perform simultaneous data 

collection and real-time location-based services, we implemented a simple Path 

Prediction proof-of-concept using the LAISYC Spatial Analysis module.  Path Prediction 

uses spatial representations of a user’s historical trips along with their real-time GPS 

position in order to predict the paths they may take in the immediate future [164]. Since 

human travel behavior has been shown to be highly repetitive in both space and time 

[154], historical trips can be effectively mined in order to anticipate the user’s future 

travel. 

A spatial database was used to perform a series of intersection queries with the user’s 

real-time location (obtained using the LAISYC framework) and buffers surrounding 
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Buffering, Critical Point Algorithm, and the Session Management modules all contribute 

energy savings (Need #1) that enable the phone’s battery to last an entire day during 

high-resolution, real-time GPS tracking (Needs #2 and #3). High-resolution, real-time 

GPS tracking is critical to TRAC-IT for reconstructing detailed travel path information, 

including distance traveled, as well as providing predictive, personalized traffic alerts 

based on historical and real-time data.  The Location Data Signing module allows 

transportation analysts to trust information that is recorded by the application, while the 

Location Data Encryption module protects the privacy of users’ location information.  

The Session Management, Adaptive Location Data Buffering, and Critical Point 

Algorithm modules allow TRAC-IT to avoid data overage costs on phones with limited 

data plans while still supporting real-time location data communication.  The Adaptive 

Location Data Buffering module prevents tracking data from being lost when the user is 

outside network coverage or is on a voice call for networks that do not support 

simultaneous voice and data communications.  TRAC-IT was successfully implemented 

and tested using LAISYC on actual mobile phones without any modification to device 

hardware or software (Need #4). 

4.4.2 Travel Assistance Device (TAD) 

Traveling via public transportation such as a bus requires quick thinking and navigation 

skills.  Identifying an upcoming bus stop as your correct destination and reacting to pull 

the cord or push a button to request that the vehicle stop in time is a challenging task, 

especially for the 16.4 million Americans, or 6.9 percent of the population, with 

intellectual disabilities [165].  For individuals who cannot perform this quick thinking on 

their own, transit agencies must provide equivalent door-to-door paratransit service.



P

$

re

h

ro

tr

ri

tr

th

re

ca

F
o

aratransit is 

1.70 per trip

equiring 24 h

ave institute

oute transit. 

rainers actua

ider the vario

ransportation

hat one of th

eacting to th

annot ride fi

Figure 52 - T
f an upcom

a costly serv

p for regular 

hour advanc

ed travel train

 Travel train

ally plan and

ous skills an

n.  However,

e most chall

e riders upco

ixed route tra

The Travel A
ing destinat

vice to trans

fixed route t

e notice for 

ning program

ning is an int

d travel with 

nd steps requ

, in our work

lenging skill

oming destin

ansit indepen

Assistance D
tion bus stop

162

it agencies a

transit [166]

trips, as wel

ms in an atte

tense one-on

a transit ride

uired to succe

k with transi

s to master f

nation stop.  

ndently. 

Device mobi
p

at an average

], and can als

ll as long wa

empt to train

n-one instruc

er on their pe

essfully com

it agencies, t

for these ind

A traveler w

ile applicati

e cost of $17

so be restrict

ait times.  Tr

n able riders t

ction period 

ersonal trip 

mplete a trip 

travel trainer

dividuals is id

who cannot m

ion alerts th

7 per trip, ve

tive to riders

ransit agenci

to use fixed 

in which tra

and show th

via public 

rs have indic

dentifying an

master this s

he transit ri

ersus

s by 

ies

avel 

he

cated

nd

skill

ider 



163

After discussing these challenges with the travel training and special education 

communities, we designed and implemented the Travel Assistance Device (TAD) mobile 

application for GPS-enabled mobile phones using LAISYC on Java ME.

We wanted to provide four services using TAD: 

1) Website-based trip planning:  Allow the travel trainer and caregivers of the transit 

rider to plan a transit itinerary, including the exact boarding and exit bus stops, via 

a website interface. 

2) Real-time transit navigation prompts (the primary TAD feature):  Alert the rider 

via audio, visual, and tactile prompts to identify an upcoming bus stop in real-

time, much like a car-based navigation system, to help individuals with 

intellectual disabilities who had problems with this task.  TAD alerts the transit 

rider twice: once with a “Get Ready…” notification several stops ahead of their 

destination, and repeatedly with a “Pull the Cord Now!” notification when the 

rider passes the bus stop previous to the destination stop until the rider confirms 

having received the alert by pressing a button (Figure 52). 

3) Real-time location tracking:  Allow the travel trainer and caregivers of the transit 

rider to always see the real-time location of the transit rider. 

4) Automated lost alerts:  Alert the travel trainer and caregivers if the transit rider 

wanders off the path of the planned trip. 
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Figure 53 - TAD was implemented using the LAISYC framework to support real-
time location-aware services 

The TAD system architecture, based on the LAISYC framework, is shown in Figure 53. 

We implemented the prototype TAD system and LAISYC framework on Java ME, and 

used Glassfish as the Java Application Server, to support the server-side portion of 

LAISYC and the TAD web application.  SQL Server and PostGIS were used for 

relational and spatial database servers, respectively.

To support feature #1 of planning transit trips via a website, we implemented a web 

interface using the Google Web Toolkit (GWT).  Figure 54 shows the map view of the 

travel trainer or caregiver choosing the boarding and exiting bus stops for a particular 

transit rider. A caregiver or travel trainer can simply choose the route they want the 

transit rider to use, clicking on the boarding bus stop, and clicking on the destination bus 

stop.
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During the design of the real-time navigation feature of the TAD mobile app, we 

consulted Mark Sheppard, professional travel trainer for Hillsborough Area Rapid Transit 

(HART), and other members from the Association for Travel Instruction, as well as 

existing literature on real-time navigation instructions for individuals with disabilities.

One past study found that auditory alerts are both the most preferred form of real-time 

navigation prompts for individuals with intellectual disabilities as well as the most 

effective form of prompts [169].  Other studies on users without cognitive disabilities 

have produced similar results [170-172].  Based on this information, we decided to create 

two alerts for the user when approaching the destination stop.  When the rider is 

approximately 300 meters away from his or her destination stop, the TAD announces a 

recorded audio message “Get ready” twice and the phone vibrates several times.   

Figure 56 - The initial bus stop detection algorithm for the Pull the Cord Now alert 
was defined by a radius surrounding the destination stop 
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When the phone is approximately 160 meters from the destination stop, it announces a 

recorded audio message to “Pull the cord now!” and the cell phone vibrates and shows 

the “Pull the Cord Now!” text on the screen (Figure 55 D)).  A visualization of the radius 

that triggers this second alert is shown in Figure 56.  The phone will continue to 

announce this message until the user presses a button to confirm that the message was 

received. 

LAISYC was critical to implementing features #2 real-time navigation alerts, #3 real-

time location tracking, and #4 automated lost alerts, since frequent GPS sampling on the 

mobile phone is required.  TAD uses the GPS Auto-Sleep feature to dynamically control 

the GPS sampling frequency.  When the user is not actively traveling on the bus (i.e., the 

mobile app is not on screens Figure 55 C) or D)), GPS Auto-Sleep is in the normal 

tracking mode that increases the frequency  of sampling when the user is detected as 

moving, and reducing sampling when the user has stopped moving based on the intervals 

defined earlier.  However, when the user selects a transit trip and the mobile app 

transitions to Figure 55 C), GPS Auto-Sleep switches to the navigation mode that 

controls the GPS sampling frequency based on the distance to the destination stop.  For 

TAD, we chose distance thresholds of 800 meters, 1,500 meters, and 2,000 meters that 

would control GPS sampling with four respective interval values: 

State[0] = 1 second interval 

State[1] = 4 second interval 

State[2] = 16 second interval 

State[3] = 32 second interval 
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When the user was detected as being more than 2000 meters from their destination, 

state[3] interval of 32 seconds was used. When the user was between 1,500 meters and 

2,000 meters from the destination, state[2] interval of 16 seconds was used.  When the 

user was between 800 and 1,500 meters from the destination, state[1] interval of 4 

seconds was used.  When the user was closer than 800 meters to the destination, state[0] 

interval of 1 second was used.  The TAD application then executed the comparison 

against the thresholds defined above to provide the “Get Ready…” and “Pull the Cord 

Now!” alerts.  Once the user confirmed arrival at the destination, as in Figure 55 D), GPS 

Auto-Sleep switched out of navigation mode and back into tracking mode.   

Location Data Signing was determined to be unnecessary for the TAD application, so this 

module was turned off. 

Session Management handled all communication between the TAD mobile app and the 

server, using HTTPS for application data and UDP for real-time location data for the 

real-time tracking and automated lost alert features. The Critical Point Algorithm, 

Adaptive Location Data Buffering, and Location Data Encryption were all turned on for 

the TAD application.  By using GPS Auto-Sleep to control GPS sampling frequency on 

the device, we were able to monitor the location of the user up to once-per-second, as the 

user neared the destination stop.  However, real-time location updates to the server were 

controlled by the Critical Point Algorithm and Adaptive Location Data Buffering, and 

could occur less often than once per second to save battery energy and a reduction of data 

transfer over the cell network. 
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The majority of the remaining early, late, or missing prompts (8 of 12) were due to 

incorrectly geocoded bus stops (the database location of the bus stop did not match the 

actual bus stop location), or the challenge of alerting the rider at the correct time when 

bus stops were close together.  We were able to monitor the location of each of the riders 

in real-time, and lost rider alerts were only issue to us when a research team member 

intentionally wandered outside of the route buffer. 

Figure 60 shows one situation where the database location of the bus stop (the blue bus 

icon) did not match the true stop location (marker “A”). 

Transit agencies are currently working to improve the quality of their bus stop inventories 

to support advanced systems such as TAD.  Various emerging tools can assist agencies in 

this task [173-177], and the reliability of TAD and other advanced applications will be 

dependent on good data.

To address the remaining challenges of close bus stops and GPS drift, the research team 

modified the bus stop detection algorithm, so that instead of relying on a single radius 

surrounding the destination stop, the “Pull the Cord Now” alert was now based off of the 

entry into and exit of the phone from a circle surrounding the second-to-last stop (Figure 

61). This design reduced both early and late alerts, since the “Pull the Cord Now” 

notification was given just after the user departs from the second-to-last stop.  In 

subsequent tests with the new bus stop detection algorithm in Tampa, Florida, TAD 

provided the alert in the ideal location to users in 33 of 33 tests [178] (Table 14). 
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Figure 61 - An improved algorithm for notifying the user when to exit the bus is 
based on detecting the departure from the second-to-last bus stop.  [126] 

Table 14 - The improved bus stop detection algorithm delivered ideally-timed alerts 
to riders in 33 of 33 tests 

To further assess the effect of TAD on the bus riding behavior of individuals with 

intellectual disabilities, a research team from the Florida Mental Health Institute and the 

Number of Ideal Prompts 33
Number of Early Prompts 0
Number of Late Prompts 0
Number of Times No Prompt Given 0
Total Number of Trips 33

Evaluation of New Bus Stop Detection Algorithm
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Center for Urban Transportation Research conducted an additional study [178].  The 

team tested the ability of three individuals with intellectual disabilities to travel to a new 

location without TAD, and with TAD, for a total of 33 trials.  Each of the individuals 

failed to both request a bus stop and exit the bus at the appropriate time when they were 

not carrying TAD.  When they did carry TAD, each individual was able to both request 

the stop at the correct time, as well as exit the vehicle at the correct time.  Therefore, this 

study concluded that the experiments provided supporting evidence that TAD was an 

effective tool for prompting individuals to pull the cord indicating their stop and exit the 

bus at the appropriate location and time [178].  The study also recommended larger scale 

tests to further evaluate TAD with different and more varied populations. 

In 2010, USF partnered with DAJUTA, a Florida-based company, to provide TAD as a 

service to transit riders and transit agencies.  More information about TAD as a 

commercial product can be found on DAJUTA’s website at http://dajuta.com/. 

In conclusion, TAD is a mobile transit navigation app that assists bus riders with 

intellectual disabilities by prompting them when to exit the bus, as well as tracking the 

rider in real-time and alerting caregivers if the rider is lost.  In the most recent group of 

TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to transit 

riders in 100% (n = 33) of tests.  In TAD, the GPS Auto-Sleep, Session Management, 

Adaptive Location Data Buffering, Critical Point Algorithm, and the Session 

Management modules all contribute energy savings (Need #1) that enable the phone’s 

battery to last an entire day during high-resolution, real-time GPS tracking (Needs #2 and 

#3).  High-resolution GPS tracking is critical to TAD for providing accurate instructions 
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to the transit rider when to exit the bus as well as tracking an accurate location of the 

traveler so that caregivers can be alerted if the rider becomes lost.  The Location Data 

Encryption module protects the privacy of the transit rider while being tracked.  The 

Session Management, Adaptive Location Data Buffering, and Critical Point Algorithm 

modules allow TAD to avoid data overage costs on phones with limited data plans, while 

still supporting real-time location data communication for the TAD tracking alert 

features.  The Adaptive Location Data Buffering module prevents transit rider location 

data from being lost when the user is outside network coverage or is on a voice call for 

networks that do not support simultaneous voice and data communications.  TAD was 

successfully implemented and tested using LAISYC on actual mobile phones without any 

modification to device hardware or software (Need #4). 
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CHAPTER 5:  SUMMARY AND CONCLUSIONS 

5.1 Note to Reader 

Portions of the technology presented in the future work section for GPS Auto-Sleep are 

protected by U.S. Provisional Patent “System and Method for Changing Positioning 

System Settings at Wirelessly-Obstructed Locations” by USF. 

5.2 Summary of Problem Statement and Needs 

While the exponential growth in the adoption of mobile phones provides many 

opportunities for new types of mobile apps, evolution in intelligent location-aware 

services has been limited due to several factors: 

1) Battery energy limitations are not addressed. Many architectures have been 

designed without acknowledging that mobile devices have a finite energy supply, 

and that positioning systems such as GPS, wireless communications, and use of 

the CPU to execute the architecture components all have a significant impact on 

battery energy levels.

2) Cellular data transfer limitations are not addressed.  Many architectures have been 

designed without consideration of constrained cellular network bandwidth and 

potential financial charges to the end-user for excessive data traffic. 

3) Lack of integration with existing platforms on commercially-available devices 

(e.g., Java Micro Edition, Android).  Many existing location-aware architectures 
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utilize custom operating systems or protocols which are not readily available on 

commercially-available mobile phones, and therefore cannot be widely deployed 

as mobile apps to existing phones. 

4) Lack of evaluation of efficacy of location-aware architectures.  Very few location-

aware architectures have actually been evaluated on real mobile devices, and as a 

result there is little quantifiable evidence of these architectures’ efficacy with real 

devices.

As a result of these limitations, there is a demand for a new location-aware architecture 

that meets following needs: 

Need #1: Intelligently manage limited device and network resources.  The 

architecture must acknowledge that location-aware apps can deplete significant 

device and network resources, and the architecture must demonstrate features that 

conserve these resources. 

Need #2:  Support real-time applications. A significant portion of the architecture 

must be implemented on the mobile device to allow software to immediately act 

upon new data in real-time and immediately interact with the mobile user. 

Need #3:  Support high-precision and high-accuracy positioning systems.  

Positioning technologies, such as high-sensitivity assisted GPS, must be usable 

within the architecture to support the most innovative types of location-aware 

apps that require highly accurate and precise location information. 

Need #4:  Is fully implementable by third party mobile app developers.  The 

architecture must take into account the availability of application programming 
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interfaces (APIs) in existing cross-platform application environments such as Java 

ME or Android, and ensure that the architecture can be implemented on such 

devices.

5.3 Summary of Contributions 

This dissertation presented LAISYC, a modular location-aware architecture for intelligent 

real-time mobile applications that is fully-implementable by third party mobile app 

developers and supports high-precision and high-accuracy positioning systems, such as 

GPS.  LAISYC significantly improves device battery life, provides location data 

authenticity, ensures security of location data, and significantly reduces the amount of 

data transferred between the phone and server.  We have designed, implemented, and 

successfully evaluated the following modules in real-world scenarios using actual mobile 

devices:

GPS Auto-Sleep module:  The GPS Auto-Sleep module saves battery energy 

(Need #1) when using GPS (Need #3) in real-time (Need #2), maintaining 

acceptable movement tracking (approximately 89% accuracy) with an 

approximate average doubling of battery life.  We have also demonstrated a 

methodology for selecting the thresholds used in the algorithm based on observed 

GPS data, so that the algorithm can be implemented by any third party mobile app 

developer on any device with GPS and a Location API (Need #4). 

Location Data Signing module – Location Data Signing module adds real-time 

(Need #2), energy-efficient (Need #1) data authenticity to this architecture that is 

missing in other architectures, with an average approximate battery life decrease 
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of only 7%.  We selected DSA as digital signature algorithm to ensure the module 

is fully implementable by third party application developers (Need #4). 

Session Management and Adaptive Location Data Buffering modules:  The 

Session Management and Adaptive Location Data Buffering modules also 

contribute to battery life savings by providing energy-efficient (Need #1), real-

time (Need #2) data communication between a mobile phone and server, 

increasing the average battery life for application data transfer by approximately 

28% and reducing the average energy cost for location data transfer by 

approximately 38%.  To implement these modules, we chose protocols available 

to third party mobile application developers (i.e., HTTP, TCP, and UDP) on Java 

ME and Android devices (Need #4).

The Critical Point Algorithm module:  The Critical Point Algorithm module 

further reduces battery energy expenditures and the amount of data transferred 

between the mobile phone and server (Need #1) by eliminating non-essential GPS 

data (an average 77% reduction) (Need #3) in real-time (Need #2), with an 

average doubling of battery life as the interval of time between location data 

transmissions is doubled.  We have also demonstrated a methodology to select 

values for the thresholds used in the Critical Point Algorithm  based on observed 

GPS data, therefore allowing any third party mobile application developer to 

implement the algorithm on any GPS-enabled mobile device with a Location API 

(Need #4). 

Location Data Encryption module:  The Location Data Encryption module 

ensures the security of the location data being transferred between the mobile 
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device and server in real-time (Need #2), with only a slight impact on battery life 

(i.e., a decrease of 4.9%) (Need #1).  Therefore, Location Data Encryption can be 

implemented by any third party mobile app developer (Need #4) using existing 

software libraries such as BouncyCastle [147]. 

The LAISYC architecture was validated in two innovative mobile apps that would not 

have been possible without LAISYC due to energy and data transfer constraints: 

TRAC-IT is a multi-modal travel behavior data collection mobile app that can 

provide simultaneous and real-time location-based services (e.g., traffic alerts).  In 

TRAC-IT, the GPS Auto-Sleep, Session Management, Adaptive Location Data 

Buffering, Critical Point algorithm, and the Session Management modules all 

contribute energy savings (Need #1) that enable the phone’s battery to last an 

entire day during real-time high-resolution GPS tracking (Needs #2 and #3).  

Real-time, high-resolution GPS tracking is critical to TRAC-IT for reconstructing 

detailed travel path information, including distance traveled, as well as providing 

predictive, personalized traffic alerts based on historical and real-time data.  The 

Location Data Signing module allows transportation analysts to trust information 

that is recorded by the application, while the Location Data Encryption module 

protects the privacy of users’ location information.  The Session Management, 

Adaptive Location Data Buffering, and Critical Point Algorithm modules allow 

TRAC-IT to avoid data overage costs on phones with limited data plans, while 

still supporting real-time location data communication.  The Adaptive Location 

Data Buffering module prevents tracking data from being lost when the user is 
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outside network coverage or is on a voice call for networks that do not support 

simultaneous voice and data communications.  TRAC-IT was successfully 

implemented and tested using LAISYC on actual mobile phones without any 

modification to device hardware or software (Need #4). 

TAD is a mobile transit navigation app that assists bus riders with intellectual 

disabilities by prompting them when to exit the bus, as well as tracking the rider 

in real-time and alerting caregivers if the rider is lost.  In the most recent group of 

TAD field tests in Tampa, Florida, TAD provided the alert in the ideal location to 

transit riders in 100% (n = 33) of tests.  In TAD, the GPS Auto-Sleep, Session 

Management, Adaptive Location Data Buffering, Critical Point Algorithm, and 

the Session Management modules all contribute energy savings (Need #1) that 

enable the phone’s battery to last an entire day during high-resolution, real-time 

GPS tracking (Needs #2 and #3).  High-resolution GPS tracking is critical to TAD 

for providing accurate instructions to the transit rider when to exit the bus, as well 

as tracking an accurate location of the traveler so that caregivers can be alerted if 

the rider becomes lost.  The Location Data Encryption module protects the 

privacy of the transit rider while they are being tracked.  The Session 

Management, Adaptive Location Data Buffering, and Critical Point Algorithm 

modules allow TAD to avoid data overage costs on phones with limited data plans 

while still supporting real-time location data communication for the TAD tracking 

alert features.  The Adaptive Location Data Buffering module prevents transit 

rider location data from being lost when the user is outside network coverage or is 

on a voice call for networks that do not support simultaneous voice and data 
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activated, so the additional energy consumption is directly related to the GPS or CPU 

hardware required for an application to sample GPS every four seconds.  Given that the 

HTC Hero has a processor capable of roughly 2.5 times the clock-rate of the Sanyo Pro 

200 (528MHz versus 225MHz), it is no surprise that the CPU consumes additional 

battery energy. 

Many users report having battery life problems with their smart phones [179].  This is 

because smart phones are used for many activities, including checking email, browsing 

the internet, watching videos, listening to music, etc. that all have a significant impact on 

battery life.   Additionally, device hardware capabilities and power requirements are 

outpacing advancements in battery capacity at roughly twice the rate, creating a negative 

trend in battery performance [179].  Recent device features such as larger screens and 4G 

cellular network communication exacerbate the problem.   

While users can attempt to budget their battery usage according to the features they want 

most, the applications that use the most battery energy are not always obvious.  For 

example, recent research demonstrated that in the popular game Angry Birds, which does 

not provide any location-aware features, GPS was consuming around 19% of the energy 

spent while the application executed [38].  Further examination revealed that the 

advertising engine Flurry, used in Angry Birds, was responsible for turning on GPS 

during application execution.  Furthermore, Flurry was responsible for about 45% of the 

total energy expended by Angry Birds.  Therefore, in order to provide location-aware 

services for many different types of applications to smart phone users without a 



187

noticeable impact on battery life, device-based intelligence such as LAISYC will be 

required.

5.4 Future Work 

Our work with GPS-enabled mobile phones and LAISYC has provided insight into future 

research areas.  For example, while LAISYC successfully supports real-time mobile 

applications given its current design, we have identified several potential areas of future 

work that would add new capabilities to LAISYC.  We have also observed potential areas 

of improvement in the location-aware application development process.  The following 

two sections outline these areas of future work. 

5.4.1 Location-Aware Mobile App Development 

Many mobile apps that use location information have a large negative impact on mobile 

device battery life.  One reason behind this phenomenon is that many mobile apps are 

tested on emulators before they are released instead of real devices, since device are 

expensive.  Current emulators do not model energy consumption of GPS or wireless 

communications, and therefore many developers do not realize the potential impact of 

their mobile apps until they receive feedback from their customers.  There is a need for 

better software emulators that provide a model of energy consumption to mobile app 

developers so they understand the potential impacts of their application before releasing 

it.  
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5.4.2 Potential LAISYC Improvements 

Since LAISYC is a modular framework, it allows integration of new components by 

simply defining input and output of location data from a module.  Figure 63 shows the 

addition of two new modules:  Privacy Filter and Position Estimation. 

Figure 63 - Future work on LAISYC can include the addition of two new modules: 
Privacy Filter and Position Estimation. [118] 

The following sections discuss these two new modules, as well as improvements that 

could be made to the existing GPS Auto-Sleep, Critical Point Algorithm, and Location 

Data Buffering modules. 

5.4.2.1 GPS Auto-Sleep 

While GPS Auto-Sleep currently tracks the true moving state of the user with 

approximately 88% average accuracy, we observed that the accuracy could potentially be 

improved by addressing the largest contributor to state errors:  stationary GPS outliers.  

The most frequent errors in state transitions occur when the device is stationary and 

asleep in state[n] and the GPS generates an extreme outlier with a high speed value and a 
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distance far from the current location.  When this occurs (in approximately 1-2% of all 

stationary GPS fixes on the Sanyo Pro 200 in our tests), the GPS Auto-Sleep snaps to 

rapid tracking of state[0] and must wait until the backoff timer times out before it can 

transition to the sleep state again. 

To eliminate these false state transitions due to stationary outliers, we hypothesized that a 

Kalman Filter implemented at the application level could dampen the effect of these 

outliers on GPS Auto-Sleep.  In subsequent research performed after the research 

presented in this dissertation, USF Masters student Isaac Taylor demonstrated that GPS 

Auto-Sleep accuracy could be improved from 88.40% to approximately 92% on average, 

without a substantial impact on tracking data through the use of Adaptive Kalman Filters 

[180].

The remaining source of state errors primarily occur when the user is traveling and 

reaches a destination location, and GPS Auto-Sleep must wait for the backoff timer to 

expire before gradually transitioning to the sleep state[n].  In other words, GPS Auto-

Sleep still believes the user is actively traveling until this timeout expires.  One way to 

potentially eliminate this timeout period is to have the device memorize locations 

previously visited by the user by tracking the user’s location history.  Then, when GPS 

Auto-Sleep recognizes that the real-time location of the user is approaching one of these 

historical locations, GPS Auto-Sleep could automatically transition to state[n] directly 

instead of waiting for the backoff timer timeout and a gradual state transition to state[n].  

In order to contribute to this area, future work might evaluate possible methods for 

identifying, saving, and recognizing these custom user locations.  Additional work with 
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GPS Auto-Sleep could also examine the potential for saving battery energy when the user 

is in a location with highly-obstructed wireless conditions. When one of these locations 

is recognized, the GPS interval could be increased until the user leaves the location, to 

reduce the impact of GPS hardware fruitlessly searching for a signal while the user is at 

the location. 

GPS Auto-Sleep could also be used to increase the GPS sampling frequency at certain 

locations.  This technique could be useful in context of location-aware advertising when 

an ad engine would like to obtain more detailed user information near advertising 

locations.  However, the impact on device battery life would need to be carefully 

balanced against the value of the additional information. 

One challenge of using GPS Auto-Sleep on smartphones is that many applications may 

be requesting GPS location information simultaneously but at different sampling 

frequencies.  Therefore, an application that is requesting location updates every second 

could eliminate the energy benefit of another application using GPS Auto-Sleep.  GPS 

Auto-Sleep could be moved into the underlying Location API in the platform to balance 

competing application requirements and the impact of GPS on device battery life.  

However, this integration would require collaboration with device manufacturers or 

platform providers (e.g., Google for Android). 

In our early work with GPS Auto-Sleep on Android devices, we have discovered an issue 

on many different devices that affects the ability of an application to request scheduled 

GPS updates at defined intervals.  This is a problem for GPS Auto-Sleep, since it depends 

on the ability to request GPS updates at a specific interval for each state.
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On many Android devices, when an application passes in a minTime parameter (i.e., 

interval of time between location updates) to the GPS location provider, the GPS provider 

typically ignores this value and proceeds to update the application via callbacks to the 

LocationListener.onLocationChanged() method every second (i.e., 1Hz update rate).  A 

build of the Android Open-Source Project (AOSP) code 4.0.3 Ice Cream Sandwich on a 

Samsung Nexus S 4G has the same behavior of ignoring the minTime parameter, so the 

behavior is not due to an OEM modification of the platform source.   

We believe we have narrowed down the problem to faulty capability reporting from 

native code to the GpsLocationProvider in the Android platform.  In a custom AOSP 

build on the same Nexus S 4G, we hard-coded values in the GpsLocationProvider to 

indicate that the native code was not capable of handling GPS scheduling. The platform 

took over and properly followed the minTime parameter (60 seconds in this case) and 

delivered location updates to the app 60 seconds apart.  Therefore, it seems that the native 

code is telling the platform that it can handle GPS scheduling, but then it does not, 

resulting in a 1Hz update rate no matter the minTime interval requested by the 

application.

We have worked with the Google Android team to arrive at a solution to this issue that 

should appear in the next Android version 4.1 Jelly Bean.  Additional tests have been 

added to the Android Compatibility Test Suite to evaluate GPS scheduling compliance 

and the Location API documentation has been clarified to provide a strict expectation for 

GPS scheduling adherence [181], which should hopefully resolve this issue for Android 

devices version 4.1 Jelly Bean and above. 
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5.4.2.2 Critical Point Algorithm 

We currently use a single speed threshold to vary the angle threshold used at runtime 

between two values (i.e., a walk angle threshold, and car angle threshold) to filter points 

using the Critical Point Algorithm.  Future work could examine if addition angle 

threshold values could be used to further decrease the number of critical points while not 

affecting the distance error percentage. 

5.4.2.3 Location Data Buffering 

Currently, Location Data Buffering functions by occasionally checking in with the server 

after a timer expires via TCP, to ensure there is still an end-to-end connection.  Instead of 

the current time expiration threshold, more complex evaluation functions to determine 

when a TCP transmission should occur are also possible.  For example, the Critical Point 

Algorithm could be used to determine when a TCP transmission should occur, to increase 

the probability of Critical Points being successfully received by the server.   

TCP-based checks with the server can also be utilized to increase system scalability by 

communicating location data flow control instructions back to the mobile device.  For 

example, for many devices sending real-time second-by-second tracking updates to a web 

server, the server may eventually become overloaded with location data if enough 

devices are logged on simultaneously.  In the subsequent TCP response for each device, 

the server could send a command back to the device to send fewer updates to the server 

until further notice.  This would immediately reduce the load on the server, thereby 

allowing additional scalability, while providing a basic quality of service.  When the 

number of devices logged on is reduced, the server could then send a command in the 
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next TCP response to each device allowing the phone to begin transmitting fixes more 

frequently again. 

5.4.2.4 Position Estimation 

Position Estimation is one module that can be added to the LAISYC framework to 

estimate the position of the user when the raw output from a single positioning 

technology is unavailable or not sufficiently accurate.  Existing work in position 

estimation by others could also be integrated into LAISYC as modules.  For example, 

Shih-Hau et al. discuss localization techniques based on received signal strength of Wi-Fi 

access points and the use of an artificial neural network to infer position [83].  

Beauregard presents a methodology to use artificial neural networks and GPS data to 

improve pedestrian navigation via a dead reckoning system [75], while Lachapelle seeks 

a similar goal via the combination of GPS and micro-electro-mechanical systems 

(MEMS) [72].  In their work on their Statistical Terminal Assisted Mobile Positioning 

(STAMP) system, Laoudias et al. present a statistical method based on historical position 

calculations to infer current position [182, 183], while Markoulidakis et al. present 

improvements on STAMP by using different Kalman filtering options on various input 

variables [184, 185].

5.4.2.5 Privacy Filter 

A Privacy Filter is another module that can be added to the LAISYC framework to 

further protect user privacy.  Since the user must explicitly allow a mobile application to 

access their location according to the Java ME security model, the application on both the 

client and server is considered to be trusted by the end user.  However, the privacy of the 
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user should be protected to ensure the trusted location-aware application only accesses 

user location when the user considers it appropriate and does not accidentally disclose 

sensitive location data.  The current Java security model for the Location API has only 

blanket options for user approvals:

Allow This Time 

Always Allow 

Allow Until Exit 

Never Allow 

Therefore, the user must permit all location requests by the application, or the user is 

prompted each time the location-aware application wishes to access device location.  

Instead of these two extremes, there is a desire for the user to be able to define 

conditional approvals based on real-time information, including current location.   

The Privacy Filter would allow the application to define conditional permissions for 

location requests, such as time limitations (e.g., requests are permitted from 9am to 5pm 

on Monday through Friday for business employees) or sensitive location restrictions (e.g., 

no requests allowed while in “private zones” near home).  Using this method, the 

application would be protected from accidentally receiving sensitive location updates. 

The Privacy Filter would also be a valuable addition on the Android platform.  Currently, 

Android enforces only an install-time security model for application permissions.  For 

example, if an application is going to access the user’s location, the user is only asked 

once when the application is installed if they would like to permit this.  Once this initial 

permission is granted, the application can access the user’s location at any time during 
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execution without being required to ask the user during runtime.  Therefore, since 

Android currently does not enforce a user-based runtime security model, the Privacy 

Filter module would be an important feature on Android devices. 
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