Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

A password-authenticated secure channel for App to Java Card applet
communication
Michael Holzl Endalkachew Asnake Rene Mayrhofer Michael Roland

Article information:

To cite this document:

Michael Holzl Endalkachew Asnake Rene Mayrhofer Michael Roland , (2015),"A password-
authenticated secure channel for App to Java Card applet communication”, International Journal of
Pervasive Computing and Communications, Vol. 11 Iss 4 pp. 374 - 397

Permanent link to this document:

http://dx.doi.org/10.1108/IJPCC-09-2015-0032

Downloaded on: 07 November 2016, At: 22:28 (PT)
References: this document contains references to 42 other documents.

To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 167 times since 2015*

Users who downloaded this article also downloaded:

(2015),"An analysis of tools for online anonymity", International Journal of Pervasive Computing and
Communications, Vol. 11 Iss 4 pp. 436-453 http://dx.doi.org/10.1108/1IJPCC-08-2015-0030

(2015),"The accessibility and usage of smartphones by Arab-speaking visually impaired people",
International Journal of Pervasive Computing and Communications, Vol. 11 Iss 4 pp. 418-435 http://
dx.doi.org/10.1108/IJPCC-09-2015-0033

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors

If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

http://dx.doi.org/10.1108/IJPCC-09-2015-0032

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

[JPCC
114

374

Received 4 September 2015
Revised 4 September 2015
Accepted 7 September 2015

©

Emerald

International Journal of Pervasive
Computing and Communications
Vol. 11 No. 4, 2015

pp. 374-397

A password-authenticated secure
channel for App to Java Card

applet communication

Michael Holzl

JRC u’smile and Institute of Networks and Security,
Johannes Kepler University Linz, Linz, Austria

Endalkachew Asnake
JRC w’smile, University of Applied Sciences Upper Austria, Hagenberg, Austria

Rene Mayrhofer
JRC w’smile and Institute of Networks and Security,
Johannes Kepler University Linz, Linz, Austria, and

Michael Roland
JRC w’smile, University of Applied Sciences Upper Austria, Hagenberg, Austria

Abstract

Purpose — The purpose of this paper is to design, implement and evaluate the usage of the
password-authenticated secure channel protocol SRP to protect the communication of a mobile
application to a Java Card applet. The usage of security and privacy sensitive systems on mobile
devices, such as mobile banking, mobile credit cards, mobile ticketing or mobile digital identities has
continuously risen in recent years. This development makes the protection of personal and security
sensitive data on mobile devices more important than ever.

Design/methodology/approach — A common approach for the protection of sensitive data is to use
additional hardware such as smart cards or secure elements. The communication between such dedicated
hardware and back-end management systems uses strong cryptography. However, the data transfer
between applications on the mobile device and so-called applets on the dedicated hardware is often either
unencrypted (and interceptable by malicious software) or encrypted with static keys stored in applications.
Findings — To address this issue, this paper presents a solution for fine-grained secure
application-to-applet communication based on Secure Remote Password (SRP-6a and SRP-5), an
authenticated key agreement protocol, with a user-provided password at run-time.
Originality/value — By exploiting the Java Card cryptographic application programming interfaces
(APIs) and minor adaptations to the protocol, which do not affect the security, the authors were able to
implement this scheme on Java Cards with reasonable computation time.

Keywords Mobile devices, Java Card, Secure channel, Secure element, Smart card, SRP

Paper type Research paper

This work has been carried out within the scope of u’smile, the Josef Ressel Center for User-Friendly
Secure Mobile Environments, funded by the Christian Doppler Gesellschaft, A1 Telekom Austria AG,
Drei-Banken-EDV GmbH, LG Nexera Business Solutions AG, NXP Semiconductors Austria GmbH
and Osterreichische Staatsdruckerei GmbH. This article is an extended version of M. Holzl, E. Asnake,
R. Mayrhofer and M. Roland. Mobile Application to Java Card Applet Communication using a
Password-authenticated Secure Channel. In Proceedings of the 12th International Conference on

© Emerald Group Publishing Limited A dyapces in Mobile Computing & Multimedia (MoMM2014). ACM, Kaohsiung, Taiwan, December

17427371
DOI 10.1108/JPCC-09-2015-0032

2014.

http://dx.doi.org/10.1108/IJPCC-09-2015-0032

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

1. Introduction

Nowadays, mobile devices such as mobile phones, tablets or smart watches have
become an indispensable part of our daily life, but these are encountering many security
threats (cf. Khan ef al., 2012; La Polla et al., 2013; Mayrhofer, 2014). They can not only be
easily stolen or lost but also face attacks from malicious third-party applications. We
also have to be aware that the flash memory on these mobile devices cannot be trusted,
and unauthorized individuals have the possibility to gain personal, business or other
security and privacy sensitive data from that memory. To provide a secure environment
for storing data, applications often use an additional tamper-resistant hardware like
smart cards or secure elements. Special variants of them run with Java Card technology,
which allows the execution of small Java-based applications (applets). One advantage of
these tamper-resistant units is the protection of data and executed code against various
physical and software attacks. Communication between the card and an off-card
application is only possible through a standardized interface for exchanging the
so-called Application Protocol Data Units (APDU). There are many applications, such as
the systems by Ruiz-Martinez et al. (2007) and Mantoro and Milisic (2010), that take
advantage of this tamper resistance by storing master passwords on the hardware.
However, when using smart cards for applications, it is important to consider that the
communication outside the applet is not automatically secured. This is especially
relevant in an environment where malicious third-party applications could eavesdrop
on the data transfer.

The main motivating goal in this paper is to provide an infrastructure for third-party
applications on mobile devices to securely communicate through a password-
authenticated secure channel with applets running on the Java Card. In an infrastructure
where applications running on the main processor also have a corresponding applet
running on the tamper-resistant environment, they could then use this additional
hardware module to securely store security and privacy sensitive data. A mobile Web
browser could, for example, use it to store passwords. Or, company services could use it
for storing private keys for corporate virtual private network (VPN) access. The
advantage of additional hardware is that malware running on the device would not
have the possibility to directly read this password storage. Even if these passwords
were encrypted on the flash memory using a master password, an attacker would still be
able to brute-force this master password using an offline dictionary attack. Although
there are ways to make brute-force attacks on encrypted user-chosen passwords harder
(e.g.using a key-derivation function), this remains problematic as users tend to use weak
and easily guessable passwords on mobile devices as demonstrated by Landman (2010)
and Ben-Asher ef al. (2011).

There are existing protocols for current smart cards that provide secure
communication between the card and an off-card application. The respective standards
are defined by GlobalPlatform (GP)[1]. However, these standards only provide a secure
interface for managing applications (installation, removal, etc.) and card-specific data
(e.g. personalization of applications with user-specific data). A secure channel is
established between a back-end server and a security domain on the card using a shared
secret. Consequently, using this secure management channel from within a mobile
device application to communicate with the applets would require that shared secret to
be stored within the application data. An attacker who gained access to that shared key
could therefore access and manipulate that security domain with all contained applets

Java Card
applet
communication

375

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

376

and data. To protect the data of each application, a more fine-grained secure channel for
application-to-applet transmission is needed (cf. Holzl et al, 2013). In this paper, we
address this issue by proposing an implementation of a fine-grained secure channel that
is authenticated with a user-provided PIN or password, compatible to current Java
Cards and time efficient for the user.

For the implementation of this channel, we use the Secure Remote Password (SRP)
protocol in its latest revisions SRP-6a and SRP-5 by Wu (1998, 2002) and the IEEE
Computer Society (2009). SRP is a password-authenticated key agreement protocol
which is based on the Diffie and Hellman (1976) key exchange and can be either
constructed from or reduced to Diffie-Hellman (Wu, 1998). The main extension is that a
Diffie-Hellman key exchange is not authenticated, while SRP can be used for
password-based mutual authentication over insecure communication channels. Besides
SRP, there are multiple other similar password-authenticated key agreement (PAKE)
protocols such as SPEKE by Jablon and Ma (1996),]-PAKE by Hao and Ryan (2011),
EKE by Bellovin and Merritt (1992), OKE by Lucks (1997), AuthA by Bellare and
Rogaway (2000) and others. There are also PAKE variants which make use of elliptic
curve cryptography (ECC). While it has been shown that elliptic curve cryptography is
faster than other public key algorithms (Han ef al., 2002; Gayoso Martinez et al., 2005),
the usage of such protocols is restricted on Java Cards due to the limitations in terms of
ECC support in the current Java Card 3.0. However, with the usage of proprietary
classes, which were added by smart card manufacturers, it is possible to support such
functionality.

Finally, we chose SRP because it can be used without any licensing, has no known
flaws in its current implementation, provides an elliptic curve variant and is already
included in other cryptographic protocols such as the transport layer security (TLS)
protocol by Taylor et al., 2007. One disadvantage of this protocol is the high complexity
of computations due to modulo operations on big numbers. Therefore, a pure software
implementation of this protocol on a Java Card with severe restrictions such as an 8-bit
CPU and little memory is very time-consuming and not practical. In this paper, we
present a solution on how to execute SRP on low-end hardware platforms within a
reasonable authentication time and an overall protocol runtime below four seconds. In
our terms, we define reasonable authentication time as the time a user is willing to wait
for a secure channel to be authenticated after password entry. Based on the Nielsen
Norman Group, we assume that this value is below 1 second[2]. The key points and main
contributions of our approach are:

» Implementation of a password-authenticated secure channel protocol on Java
Cards, which is suitable for comparably weak passwords and does not require to
store credentials in the mobile device flash memory, by exploiting the RSA public
key encryption operation for a significant increase in computation performance.

» Minor adaptations to the SRP protocol scheme to optimize verification time after
PIN/password entry.

» We provide an elliptic curve variant which is based on the standardized SRP-5
and incorporates our proposed adaptations for optimized verification time.

¢ Memory optimizations for the implementation to reduce required transient and
persistent memory during protocol execution.

* An open-source implementation for developers.

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

2. Related work

There have been multiple previous publications in the area of providing an
authenticated channel for Java Card applets. From an industry standardization point of
view, the GP Secure Channel Protocols (SCP) are one of the most relevant ones. The GP
specification defines standards for secure channel protocols, namely, SCP01, SCP02 and
SCP03, to establish secure communication between a Java Card and an off-card
application. According to GP Card Specification 2.2 by GlobalPlatform (2009), there are
two ways in which an applet could handle a secure channel, namely, Direct Handling and
Indirect Handling. In Direct Handling, an applet is fully responsible for implementing
the protocol and defining its own security domain. The other approach is Indirect
Handling where the applet uses readymade services provided by security domains to
handle the SCP. This enables the applet to be implemented independently from the
protocol and leaves secure channel related computation to the security domain it
belongs to.

One of the main advantages in using a GP SCP for secure application-to-applet
communication is that it is an industry standard and a widely used protocol with
application programming interface (API) support on Java Cards. For our use, cases we
consider the off-card environment as potentially insecure, while we trust in the security
of the Java Card. Because GP SCP authentication relies on static shared keys between
communicating parties, the insecurity of the off-card application breaks the security of
the protocol. These limitations force us to look into other password-based authentication
schemes for a more fine-grained secure channel protocol.

Various previous papers have been published that make use of the Java Card crypto
API to execute modulo operations on the card’s cryptographic co-processor for an
efficient implementation of different protocols. Sterckx ef al. (2009) discuss simplified
methods to use Direct Anonymous Attestation (DAA) (Brickell ef al, 2004) on Java
Cards. As many other cryptographic protocols, DAA also involves computation of
modulo operations on big numbers. In their paper, they show that these modulo
operations can be computed more efficiently with the help of the cryptographic
co-processor compared to a pure software implementation. Tews and Jacobs (2009)
show different RSA variants and performance measurements of Brands’ protocols for
zero-knowledge proof (Brands, 2000). This paper also proposes an efficient
implementation of a protocol by exploiting the Java Card crypto API to perform modulo
operations on the cryptographic co-processor.

Our implementation of big numbers and modular arithmetic in the Java Card applet
is based on this previous scientific work.

3. Threat model

Our approach for implementing SRP on smart cards is based on the Android platform
due to availability of open-source projects which enable access to smart cards and secure
elements. In addition to this, the openness of the platform makes it easier to analyze
different types of attacks. Hence, we use the Android Operating System (OS) to specify
our threat model categories (Figure 1 gives an overview of these categories in a mobile
device context):

Java Card
applet
communication

377

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

378

Figure 1.
Overview of our
threat model

Mobile device Smart card External device
5 —

c + c e}

] O | ek
c2 || s | sl 5 = |
=] | B =135 |
s 8 || .o | 2| o o | IS
CE-BIR| © 22 s |
= o 2 | 2=

[} © 2
o
<3 s
T 9 Application JavaCard |
€3 I) External
S ® framework Virtual
- . reader
C® ! | Machine |

Note: The arrows depict the secure channel between
application and applet

3.1 Channel attacks

The Android OS has built-in security features which protect applications against
different types of threats. One of these features is application sandboxing. Every
Android application has a unique user ID that is assigned at install time. At run-time, an
application runs in a sandbox where communication to other applications is made
possible via Inter Process Communication (IPC) facilities. One IPC facility used in our
implementation is a service. Android services are application components that are used
to handle long-running tasks in the background. They also provide a client-server
interface which can be used by different applications to request specific functions of a
service. One of the possible channel attacks on Android applications which make use of
IPC facilities is service hijacking. This happens when an application creates a connection
with a malicious service instead of the intended one, as discussed by Chin ef al. (2011).
With such kind of possibilities, an attacker can gain full control over the message
exchange between an application and Java Card applets, which creates a suitable
condition for active channel attacks.

3.2 Attack on application level
This sort of attack can come from mobile applications as well as over NFC:

o Malicious applications: We consider two different threats from malicious
applications: the first threat can be caused by an application that has been granted
root privileges or that uses privilege escalation exploits, as demonstrated by
Hobarth and Mayrhofer (2011). Such kind of malware can access application
private storage and conduct different attacks on the content (e.g. brute-force
attack on encrypted passwords). In the second threat, the malware does not need
root privileges, but makes use of smart card services (cf. Roland ef al, 2012). If a
malicious application has sufficient privileges to access smart card services, it can
impersonate a legitimate application and try to brute-force the password to
establish a channel to the applet. With methods discussed in this paper, the applet
1s protected against the first threat, while the second should, in the worst case, end
up with denial of service.

o Attacks from an external card reader: Usually, smart cards and secure elements
can be accessed from an external card reader through either the contact or

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

contact-less interfaces. An attacker who has physical access to the card and the
mobile device or an attacker who is able to communicate with the smart card over
Near Field Communication (NFC) could launch the same attacks as a malware
mobile application. Additionally, we also have to consider attack scenarios over
the contact-less interface (e.g. relay attacks over NFC by Hancke (2005)).

o User interface (Ul) masquerading or control by malicious entity: Mobile malware
that gains control over the UI (i.e. finds methods to listen to users’ input), or is
faking the Ul can steal users’ passwords, which could result in severe
consequences. This is especially problematic when the user is not aware of the
compromised password. These threats are out of scope of this paper but could
potentially be addressed by using a trusted execution environment (TEE) for
secure password input (e.g. TrustZone[3]). Hence, the password for establishing a
secure channel cannot be stolen by a malicious application. However, the methods
discussed in this paper still help to secure the data path between application and
applet after password entry.

4. Secure remote password

The SRP protocol was introduced by Wu (1998) and is a password-authenticated key
agreement protocol that can be used over insecure channels for providing
password-based secure key agreement and authentication. Similar to the key exchange
by Diffie and Hellman (1976), an eavesdropper is not able to guess the computed session
key even with the knowledge of the complete data transfer. The big advantage of SRP in
comparison to Diffie-Hellman is that SRP provides password-based mutual
authentication. Additionally, the properties of SRP make the protocol resistant against
most prominent attacks (e.g. off-line dictionary attacks, replay attacks). The IEEE
Computer Society (2009) also standardized an elliptic curve variant of this protocol
(SRP-5) in the IEEE Standard Specifications for Password-Based Public-Key
Cryptographic Techniques (IEEE 1,363.2-2008). In the upcoming description of the SRP
protocol, we will start by explaining the discrete logarithm variant (SRP-6a) and our
proposed adaptations to it. We will elaborate on the elliptic curve variant of the protocol
(SRP-5) in Section 4.4.

4.1 SRP key exchange procedure
Scheme 1 describes the steps of the original SRP protocol. Communication between both
parties is generally separated into two phases:

Client. Server
1. L (lookup s,v)
2. z=H(s,I,P) &
3. A=g" A B=kv+ g"
4, u=H(A,B) £ wu=H(ABRB)
5. §=(B-kg¥)etwe § = (Av*)"
6. My =H(A,B,S) M, (verify M)
7 (verify Mz) &2 My = H(A, M, S)
8. K = H(S) K =H(S)

Java Card
applet

communication

379

Scheme 1.
Original SRP-6a
protocol scheme as
described by

Wu (2002)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-09-2015-0032&iName=master.img-020.jpg&w=203&h=110

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

380

Table 1.

SRP protocol
notation as described
by Wu (1998, 2002)

(1) akey agreement phase where both parties calculate the shared secret (Steps 1-5
in Scheme 1); and

(2) a mutual verification phase where they authenticate each other (Steps 6-8 in
Scheme 1).

For the key agreement phase, public keys A and B are calculated by modular
exponentiation with a private key exponent ¢ and b. On the server-side, the public
part g’ is additionally XORed with the password verifier » multiplied by constant
(Steps 1-4).

After exchanging public parameters A and B, the client computes the shared secret S
based on the user identification (identifier / and password P), while the server does the
same using the pre-computed verifier v (Step 4 in Scheme 1). Based on this shared secret,
both parties have to mutually authenticate each other in the verification phase. This is
done by exchanging the verifiers M, and M, with the corresponding opposite party
(Steps 6-7). Then both parties ensure that legitimate values of the client password x and
the server verifier v are used in the key agreement phase. After this verification, they
compute the same session key K = H(S) (Step 8) and use this as basis for securing future
data transfers against eavesdroppers or active attackers. A list of all SRP protocol
notations can be found in Table 1.

4.2 Proposed protocol adaptations for Java Card applets

To improve computation time and memory usage of the protocol on a Java Card, we
made minor changes to the SRP protocol (changes are highlighted in bold font in our
protocol in Scheme 2). First, we combine the transmission of the server’s public key B

g,n The generator g and a large prime modulo number # for all computations
s A random user’s salt for the password
I Identifier and password of the user

k Constant multiplier, computed from the hash of the modulo and concatenated with g
X Private key derived from identifier, password and salt

v The password verifier calculated from g*

u Random scrambling parameter, publicly revealed

a Ephemeral private keys, generated randomly and not publicly revealed

Scheme 2.

Java Card applet. Our
protocol
implementation of
SRP-6a with minor
changes to improve
memory
consumption and
performance

b

A B Corresponding public keys

H() One-way hash function

K Computed session key

Client, Server

1) A=g* A B=rfuv+g*
2. w= H(A,B) &°% w=H(AB)
3. x = H(s, P)
4 S=(B-kg")*"" § = (Av*)®
5. K =H(S) K = H(S)
6. My =H(u,S) My (verify M)
7. (verify Ma) M2 M, = H(u, M;.5)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-09-2015-0032&iName=master.img-021.jpg&w=203&h=98

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

with the user’s salt s. The current revision of SRP-6a by Wu (2002) uses an additional
round of transmission to agree on the identifier / and the salt s at the beginning. In our
elaborated use case of fine-granular application-to-applet communication, we only need
one secure channel instance for each applet. Therefore, we do not need an identifier, as
we only have one verifier v — which is computed during applet installation — and can
directly start the communication by sending the public key A to the Java Card (see Steps
1 and 2 in Scheme 2). This reduces the amount of required round trips from three to two
(a similar approach was also suggested as an optimized version in the original protocol
publication, cf. Wu (1998)).

As in the original version, the password verifier v is also pre-computed but uses the
elliptic curve generator G in the equation: v = d, - G. The other constants and variables
are also the same as listed in Table I with the difference that G is used instead of g.

The second adaptation influences the sequence of calculating the session key K.
Usually, this key is calculated after the mutual verification phase (see Step 8 in the
original SRP protocol Scheme 1). To reduce the time required for the verification (Step 6
and 7 in Scheme 2), we moved the calculation of K to the key agreement phase (Steps 1-5
in Scheme 2). On the server-side (the smart card), this first key agreement phase does not
require any authentication of the user and can therefore be done before or while the user
is typing password or PIN (or while running other authentication mechanisms like
fingerprint, face unlock, special touch patterns, etc.) On the client-side, Steps 3 to 5
are performed after the password has been entered. However, the computation time of
these operations is negligible on a high-performance mobile device processor. The
actual time a user has to wait for the server to establish a secure channel is therefore
reduced to the key verification phase in Steps 6 and 7. So, in the use case of a password
manager on the tamper-resistant hardware, the first data exchange starts when the
application is opened. While the user then enters the password, the more
computationally intensive operations of the key agreement phase can be executed
simultaneously on the server-side. After the user enters the password, the server only
requires the verifier M, to verify the secure channel and give access to the password
manager.

The third adjustment is related to the computation of verifiers M; and M,. In the
original protocol, these verifiers were computed as M; = H(A, B, S) and M, = H(A, M,, S).
However, the authors of the protocol suggest this approach as only one possible way to
mutually verify client and server. In our approach, we suggest another efficient way of
computing the verifiers. Instead of using the public keys A and B for computing M, and M.,
we use the scrambling parameter #. This change optimizes the time of execution for the
verification steps on the Java Card side. For example, using SHA-256 as a hash function and
a modulus N of 2048 bit, the verification of M; will require computing SHA-256 over a 768
bytes input. This is reduced to 288 bytes by replacing (4, B) with () and reduces the number
of intermediate operations required to compute M, and M,

4.3 Security analysis

From a security point of view, we argue that these changes do not affect the security of
the verification and the key agreement. The first two adaptations change the sequence
without actually changing the communication and computations from the original
SRP-6a scheme.

Java Card
applet
communication

381

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

382

Table II.
Key size comparison

For the third proposed adaptation (the change in the verification), we argue that
the security of the protocol is not affected as other proven protocols use a similar
approach of double hashing. The most famous one is Hash-based Message
Authentication Code (HMAC) by Bellare ef al. (1996), which also makes use of a hash
inside a hash function.

4.4 SRP with elliptic curve cryptography

Besides the discrete logarithm based protocol SRP-6 (as described in the previous
section) and SRP-3, the IEEE Computer Society (2009) also standardized a variant of the
SRP protocol, with version number SRP-5, using Elliptic Curve Cryptography (ECC)
(IEEE 1,368.2-2008). As stated by Anoop (2007), mathematical operations in ECC are
performed on an Elliptic Curve (EC) 4{3] + ax + b, where different values for ¢ and b
define different curves. Several organizations, such as the NIST (Barker ef al., 2012), the
European Network of Excellence in Cryptology II (2012) (ECRYPT II), Certicom
Research (2010) as part of the Standards for Efficient Cryptography Group (SECG) or the
ECC Brainpool working group RFC (written by Lochter and Merkle, 2010), specify such
values. These values are always defined together with other elliptic curve domain
parameters (cf. Anoop, 2007): (p, a, b, G, n, h) for ECs over [, and (m, fx), a, b, G, n,) for
ECs over [F,,. The main goal of each of these specified curves is to ensure that the
Elliptic-Curve Discrete-Logarithm Problem (ECDLP) is difficult, which is the problem
an attacker has to solve to retain a private key, given a user’s public key, as described by
Koblitz (1987).

The major advantage of ECC is that smaller key sizes are required for the same
security level as in non-ECC public-key cryptography. Table II gives an overview of the
security level of several key sizes in ECC compared to RSA by different organizations.
While the numbers slightly vary between these organizations, they all show that the
advantage of smaller required key sizes gets even better for higher security levels. EC
roughly requires key sizes that are double the size of the required security level. In RSA,
the required key sizes increases up to a factor of 60 (e.g. RSA requires a key size of 15,360
bits for 256 bit security in the NIST (2012) key size comparison).

Organization Security (bits) RSA (bits) EC (bits)

NIST (2012) 80 1,024 160
112 2,048 224

128 3,072 256

192 7,680 384

256 15,360 512

ECRYPT II (2012) 80 1,248 160
112 2,432 224

128 3,248 256

192 7,936 384

256 15,424 512

96 1,536 192

between RSA and EC SECG (2010) 112 2,048 224

for different security
levels by several
organizations

128 3,072 256
192 7,680 384
256 15,360 521

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

4.4.1 Differences to SRP-6a. The sequence of the SRP-6a protocol is mostly the same in
the EC variant. The difference, in terms of mathematical operation, is that
multiplications with EC points are performed instead of modular exponentiation and
point additions are performed instead of modular multiplications. For example, rather
than A = g%, we have @, = d,, - G (where G is the generator EC point, d,, the private key
and @4 the resulting public key).

The other main difference to the SRP-6a protocol is the creation of a pseudo random
EC point E. This point is derived from the x-coordinate of the password verifier V' using
the Random Element Derivation Primitive (REDP) and should prevent collisions as well
as obscures exponential relationship in the public key. The main steps of this REDP are:

« creating a hash of the input;

 add padding, hash it again and define the outcome as the x-coordinate of the new
EC point;

« computing the y-coordinate using the appropriate EC equation (e.g. 2[3] + ax + b);
and

e verify if the point is on the curve and return to the second step if it is not, after
incrementing the hashing result of the first step.

A detailed description of this primitive can be found in the standard IEEE-1363.2-2008
by the (EEE Computer Society, 2009, the ECREDP-1 function in Section 8.2.17 should be
used for SRP-5).

4.4.2 Protocol establishment. Scheme 3 shows the complete EC variant of the SRP
protocol based on the SRP-5 standard in IEEE 1,368.2-2008. As in the SRP-6a variant,
the protocol is divided in two phases: Steps 1-7 are the key agreement phase and steps
8-9 are the verification phase. In the key agreement phase, the protocol establishment is
initiated when the client generates the public key @4 = d, + G and sends it to the server.
On the server-side, the public key Q5 is computed by multiplying the private key d with
the EC base point G and adding the password derived EC point £. The password derived
EC points £ and the password verifier V do not need to be computed during this phase
because they can be pre-computed and stored on the server-side. These values only
change if the password changes or a different curve is used.

With the knowledge of both public keys, the server computes the random scrambling
parameter # by using the x-coordinates of @, and Q. Furthermore, it can also compute

Client Server

Qa=da-G Qa, Qp=dsg G+ FE

1;

2. u=H(QaQp) &BY uw=H(Q4,Qr)

3. z=H(s, I, P)

4. V=G

5. E=REDP(X(V))

6. 8= S=dp(Qatu-V)
(Qe—E)(datu-x)

7. K = H(S) K = H(S)

8. My =H(u,S) M, (verify M)

9. (verify Ma) M2 Ms = H(u, My, 5)

Java Card
applet
communication

383

Scheme 3.

Elliptic curve version
of our protocol
implementation
based on SRP-5 in
IEEE 1363.2-2008 by
the IEEE Computer
Society (2009)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-09-2015-0032&iName=master.img-022.jpg&w=203&h=128

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

384

Table III.
Notation of the
variables and
primitives that are
different in the EC
variant compared to
our adapted version
of SRP-6a

(cf. Table I)

the shared secret S = dj - (4 + u + V) and the session key K = H(S). Considering a
smart card as the server-side, this should already be performed before returning the
public key @ and the user’s salt s to the client-side (as illustrated in Step 2). As a
consequence, the session key K can be computed while the client-side still asks the user
to enter the PIN/password. After the user entered this PIN/password and the smart card
returned the public parameters (&, s), the client-side can also compute the session key
K with all the required intermediate steps (Steps 2-7 in Scheme 3). As the client-side is
assumed to be a mobile phone providing good processing speed, these steps can be
executed efficiently with reasonable performance.

After a successful key agreement phase, both parties should have the same key K. To
mutually verify that this assumption is true, server and client perform the same two
steps as in SRP-6a (compare Steps 6-7 in Scheme 2 and Steps 8-9 in the EC variant of
Scheme 3).

5. Secure session

In any symmetric key cryptographic system, the first step is an agreement on a secure
session key between communicating parties. This session key is used to establish a
confidential and authentic channel between the parties. The standard approach in
providing confidentiality and authenticity is to use two different algorithms for each
purpose with an authenticated encryption scheme known as Encrypt-then-MAC.
Recently, different algorithms have been standardized to provide both functionalities at
the same time. A well-known example for this would be Galois/Counter Mode (GCM)
from ISO/IEC 19772:2009. However, such algorithms or operation modes are not yet
included in the Java Card standard (Table III).

For a secure session between the card and the off-card application, the smart card
standard provides a protocol named Secure Messaging (SM) which is defined in ISO/IEC
7816-4. ISO/IEC 7816-4 is a standard for inter-industry message exchange between
smart cards and external interfaces that also defines the APDU message structure.
APDU messages are exchanged in command-response pairs which have a header and an
optional body part. The SM standard defines a separate BER-TLV[4] coded format for
encoding command and response APDUs for secure transmission. It also states types of
algorithms to be used for confidentiality and authentication. The choice of specific
algorithms and parameters are implementation dependent.

G The EC base point

14 The password verifier calculated from x - G (x is computed as in the SRP-6a variant
with H(s, P))

u Random scrambling parameter, publicly revealed. Only the x-coordinate of the
public key points @4 and @5 are used — « = HX(Q4), X(Qp))

E Pseudo random EC point which is generated using the derivation primitive REDP
and the x-coordinate of the password verifier V'

REDP() The Random Element Derivation Primitive used for generating the pseudo random
EC point £

X() Primitive to get the x-coordinate of an EC point

dydg Ephemeral private keys, generated randomly and not publicly revealed

Qa, Qp Elliptic curve public key points

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

As pointed out in the introduction section, the GP-secure channel is managed by a security
domain of an applet. To establish application- to applet-level secure messaging, the protocol
should be implemented on applet level. We implement the ISO/IEC 7816-4 secure messaging
based on ETSI TS 102 176-2. This specification defines a set of algorithms and protocols for
constructing secure channels between off-card applications and signature creating devices.
The secure messaging construction provided in this document is ISO/IEC 7816-4 compliant.
The changes we make for our implementation are related to using newer versions of
algorithms than used in that specification.

5.1 Confidentiality

According to ISO/IEC 7816-4, confidential command and response APDUs are
exchanged using specific BER-TLV data objects protected by a suitable encryption
algorithm. ETSI TS 102 176-2 specifies two algorithms for confidentiality: 3DES and
AES-128 bit in Cipher Block Chaining (CBC) mode.

For our implementation, we use AES-256 in CBC mode with a random initialization
vector (IV), as this is supported by the Java Card 2.2 crypto API and provides stronger
confidentiality. The random IV is generated on the card and is shared with the off-card
application during the key agreement phase together with the user’s salt in Step 2 of the
protocol (Scheme 2). Padding is performed according to ISO/IEC 7816-4 with mandatory
byte value 0x80 followed by zeros to fill the block.

5.2 Message authentication (MAC)
As in the previous case, a BER-TLV data object is defined for exchanging message
authentication codes for both command and response APDUs. The MAC data object for
a command APDU is constructed from header bytes, data objects containing encrypted
information and the expected response length. The MAC data object for the response
APDU is constructed from data objects containing an encrypted response and the status
word. In addition, both request and response APDU MAC computations include a
counter variable which is incremented for every transmission. This prevents replay
attacks on both off-card application and applet side. ETSI TS 102 176-2 specifies
CBC-MAC with 3DES and AES as algorithms for computing MACs. In both cases, it
encrypts the last block, 1.e. the output of the normal CBC-MAC operation, with a different
key to protect against attacks on variable length messages (cf. Bellare ef al., 2000).

In our implementation, we use AES-CMAC by Song et al (2006) because it fixes
security weaknesses of CBC-MAC (cf. Dworkin (2005)).

5.3 Key derivation

From the SRP key agreement, we obtain a 256-bit session key K. Because the secure
messaging standard provides confidentiality and authentication, we need a different
key for each purpose. The derivation of encryption and authentication keys from the
shared secret is done in accordance with ANSI X9.63 (American National Standards
Institute, 2001) using a cryptographic hash function and a counter. If K is the session key
from the key agreement, H the secure hash function and ¢ the counter variable;
encryption and authentication keys are derived with:

Ki. = HK||¢) where ¢ =1
Ky = HK |) where ¢ = 2

Java Card
applet
communication

385

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

386

We use SHA-256 as the hash function. The newly derived encryption and authentication
key parameters serve only for one secure messaging session.

6. Implementation
6.1 Implementation of SRP-6a for key agreement
Inrecent years, the SRP protocol has been adopted by different standards (e.g. TLS-SRP
by Taylor ef al. (2007)), and it has also been implemented in many cryptographic
libraries[5]. In contrast, there is no implementation of SRP for Java Cards (even in the
latest Java Card specifications). However, the Java Card environment supports the
execution of SRP within hardware even though the explicit operations in the API are
missing. In our implementation, we exploit the Java Card 2.2 crypto API to perform
server-side SRP computation in a reasonable amount of time. Our implementation
supports SRP prime modulus sizes of 1,024, 1,536 and 2,048 bits. For the evaluation of
the protocol, we also included 512- and 768-bit versions. According to recommendations
by the European Network of Excellence in Cryptology II (2012), the modulus in RSA or
Diffie-Hellman should be at least 1,248-bit long to get 80-bit security. Therefore, we
recommend using 1,536- and 2048-bit implementations.

The important building blocks of the Java Card protocol implementation are
discussed in more detail in the following:

o Server-side static parameters (before Step 1 of protocol Scheme 2). On the
server-side, the password verifier v, the multiplier parameter % and the product of
the two (kv) remain constant as long as the user password is not changed. This is
a performance advantage as the static values can be computed once during applet
installation and stay the same until the user changes the password.

o Server secret key genmeration (before Step 1 in protocol Scheme 2). For our
implementation, we use a 256-bit random output from the smart cards secure random
number generator. According to REC 5054 by Taylor et al (2007), the ephemeral secret
parameters ¢ and b should be at least 256-bits long. The advantage of sticking to this
minimum recommended length is a better performance in modular exponentiation
operations involving the secret parameters.

o Public parameter computation (Step 1 in Scheme 2): The public key parameter is
computed as B = kv + g”. Because kv is already computed during applet initialization,
the remaining operations are one modular addition and one modular exponentiation.

o Shared secret computation (Step 4in Scheme 2): The shared secret is computed as S =
(Av")’. The variable A is the public key of the client, « the random scrambling
parameter and b the ephemeral secret value. This computation contains one modular
multiplication and two modular exponentiations. The main difficulty in computing
this operation on Java Card is that there is currently no support for modulo operations
over big numbers. Since Java Card 2.2, a single class has been added to support big
numbers which, however, does not support modular arithmetic operations. Moreover,
it is included under optional packages and is not implemented by most Java Cards
available on the market today. These limitations forced us to look for other options to
perform operations on big numbers.

6.1.1 Big numbers and modular arithmetic. Our implementation for modulo operations
over big numbers is motivated by previous scientific work of Sterckx et al (2009);

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

Tews and Jacobs (2009) and Bichsel et al. (2009) — especially, by BigNat[6] (based on
research by Tews and Jacobs (2009)), a generic open-source library for big numbers
which supports modulo operations. Because of memory limitations, we only implement
specific big number operations tailored to our purpose:

Big numbers are handled with byte arrays: While it is also possible to use arrays of
short data types, using byte arrays is more convenient and can be used by native
APIs with no need for conversion.

 Big number modular addition and subtraction can be computed efficiently on a
Java Card Virtual Machine using basic subtraction and addition in base-256
encoded numbers. For example, with our implementation, a single modular addition
and subtraction of 1,024 bit numbers on JCOP 2.4.1 smart cards takes an average of 27
or 54 ms, depending on the result being less or greater than modulus 7.

e Big number modular exponentiation: The suitable way for big number modular
multiplication as explained by Sterckx et al. (2009) and Tews and Jacobs (2009) is to
leverage the Java Card RSA crypto API which is accelerated by a cryptographic
co-processor. Tews and Jacobs (2009) state that a pure Java Card implementation for
multiplication of 2,048-bit long numbers takes about 64 seconds. From such a
performance, we can conclude that an implementation of SRP without hardware
acceleration is impractical. The usage of hardware for big number modulo operations
is made possible by using RSA public key encryption without padding. The Java Card
crypto API for RSA supports setting the plain text parameter 7 and the public
exponent e of the RSA encryption ¢ = m° (mod 7). By simply using our exponent as
exponent of the RSA public key (¢) and a base padded with leading zeros as the plain
text (), the cipher text we get from encryption with the public key is the result of a
modular exponentiation. With the methods mentioned above the computation for a
1,024-bit public parameter B completes in less than 150 ms on JCOP 2.4.1 smart cards.

¢ Finally, modular multiplications are converted to modular exponentiations using the
binomial theorem, as discussed by Sterckx ef al (2009) and Tews and Jacobs (2009).
This reduces the equation to modular additions, subtractions and squaring, which can
be computed efficiently on the cryptographic co-processor of the smart card:

roy = ((x +p) ; x* — %)

This operation requires three modular exponentiations (which can be done with RSA
public key encryption as mentioned in the previous bullet point), 1-4 additions, 2-3
subtractions and one right shift for the division by 2. The number of additions and
subtractions varies if single results are out of the modulus range. This also influences
the overall time (e.g. on JCOP 2.4.1 a single 1,024-bit multiplication takes between 130
and 230 ms). This method is used for the computation of the shared secret S (step 4 in
Scheme 2) and kv (during installation time).

6.1.2 Implementation notes. As of the latest Java Card specification (Java Card 3.0), there
is no support for transient RSA public keys. Transient RSA keys are included in
JCOP-specific extension API. However, to support as many devices as possible, we
recommend to use standard Java Card facilities. The drawback of using static RSA keys,

Java Card
applet
communication

387

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

388

which reside in persistent memory, is that read and write operations on EEPROM are
very slow compared to operations on transient memory. One solution for this is to
initialize two RSA public key objects, one with fixed exponent 2 for squaring and
another one for 32-byte-long ephemeral exponents # and b. Using separate public key
objects for squaring reduces the amount of write operations to the EEPROM for each
authentication cycle. In total, we currently need two EEPROM rewrites per cycle.

6.2 Elliptic curve SRP implementation

As it is the case for SRP-6a, the EC variant of SRP is also not implemented on smart
cards. This means that to implement this EC variant, we also need to apply the same or
similar methods as described in the Section 6.1. Hence, in this section, we will only
discuss the different and additional methods that are need to realize the EC variant of
SRP.

6.2.1 Elliptic curve primitives. As we can see in Steps 1 and 6 of Scheme 3, the EC
version of SRP requires point multiplication and addition (e.g. @z = dp - G + E) to
compute the shared secret. Fournaris and Koufopavlou (2008) and Anoop (2007) show
that these operations have to follow the group law and have a considerable
computational cost if they are not implemented in hardware.

On Java Card, point multiplications can be done using the API for the Elliptic Curve
Diffie-Hellman (ECDH) key agreement protocol by Koblitz (1987). In the usual procedure
of ECDH, both parties multiply the public key of the counterpart with the own private
key to get the common shared secret S (e.g. S = d4 * @5, where @ is the public key of the
counterpart and d, the own private key). This step in the protocol can be exploited to
multiply any EC point on the curve with any natural number.

More difficult is performing an EC point addition, as the latest release of Java Card
(version 3.0) still does not provide an API for that. A pure software solution would
require to implement an algorithm that finds the modular multiplicative inverse of big
numbers, which is considered computationally complex, as stated by Anoop (2007).
This means that the only reasonable way for EC point addition is to use proprietary
classes by the smart card manufacturer (e.g. JCOP allows addition of 192-bit EC points
since version 2.4.1). The downside of this is that the implementation is therefore not
platform independent. Still, to the best of our knowledge, there is currently no other
feasible way to perform EC point addition on smart cards.

6.2.2 Big numbers and modular avithmetic. Operations on big numbers in the EC
variant are performed in the same manner as described in Section 6.1.1. Hence, modular
exponentiations are performed by exploiting the RSA encryption and modular
multiplications are simplified to an equation consisting of modular additions,
subtractions, squaring and division by two.

Although the protocol for the EC variant in Scheme 3 does not show any appearances
of modular exponentiations and multiplications, we still need these methods for the
REDP function. The REDP function generates a pseudo random EC point and needs to,
among other things, solve the equationy = x[3] + ax + b (for curves over the prime finite
field [F,). This equation requires modular exponentiation, addition as well as
multiplication. To make the equation easier to solve on the smart card, it can also be
written as ¥y = (x[2] + a) - x + b. This leaves us an equation consisting of modular
squaring, multiplication and addition (note that multiplications can be converted again
as described in Section 6.1.1).

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

The difficulty in modular squaring and modular multiplication for the EC variant of
the protocol results from the smaller modulo sizes in EC cryptography. The current Java
Card API only allows moduli higher than 512 bits for RSA encryption/decryption (i.e.
keys of length 512, 736, 768, etc. bits). Nevertheless, with EC cryptography, we usually
need to operate with values lower than 512 bits. Currently suggested key lengths (and
therefore also the moduli) are 192, 224, 256, 384 or 521 bits. Consequently, there are two
possible approaches:

@

The easiest solution would be to use the smallest possible key length for the RSA
cipher object (i.e. 512 bits) and initialize it with the EC modulus with leading
zeros (e.g. [[320-bits zeros][192-bits EC modulus]]). However, due to the possible
security risks, the usage of leading zeros in the modulus of the RSA cipher object
is not allowed by the Java Card framework. Hence, this simple approach is not
applicable.

An alternative method to use the hardware-supported RSA encryption for
modular squaring is the usage of trailing zeros instead of leading zeros for the
modulus. To get a correct result, we then have to apply trailing zeros to the value
that should be squared. When squaring a value with trailing zeros, the number
of zeros at the end are doubled. For example: squaring the decimal number 100 (2
trailing zeros) results into 10,000 (four tailing zeros). To use this for our purpose,
we therefore have to add the half amount of zeros to the value that should be
squared compared to the zeros added to the modulus.

An example with decimal numbers: Let us assume we have the equation (4)[2]
mod 7 = 2. If we add two trailing zeros to the modulus now, we would also have
to add two zeros to the result and one zero to the value which should be squared
— 40[2] mod 700 = 200. Instead of 2, the result of the second equation is 200.
Nevertheless, removing the same amount of trailing zeros that have been added
to the modulus (two) to get the result of the initial equation is trivial now.

In our case, this means that we have to compute the amount of required
trailing zeros first (e.g. for a 192-bit EC key inside a 512-bit RSA cipher object, we
have 512 — 192 = 320 zero bits). The modulus of the RSA object, which is used
for modular squaring, is then specified with the EC modulus and this computed
amount of trailing zeros. For example, the modulus of a 512 RSA object for a
192-bit EC keys would be specified as:

[[192 bits EC modulus][320 bits zeros]]

Dividing the amount of used zeros (320) by two gives us the amount of zeros
that needs to be added to the value that has to be squared:

[[value to be squared] [160 bits zeros]]

By using this value for our RSA encryption object, the squaring will be
performed with hardware support and we get the correct result with 320 bit
trailing zeros.

6.3 Secure messaging implementation
In our secure messaging implementation, the operations needed to wrap and unwrap
APDUs have a small memory overhead because of paddings and intermediate

Java Card
applet
communication

389

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

390

operations. However, no extra memory is needed as the transient memory allocated for
the key agreement phase is large enough to be reused for operations in secure
messaging.

The encryption operation is straightforward as AES-CBC-256 is supported in Java
Card 2.2. For the MAC operation, the algorithm AES-CMAC-128 is not included in the
Java Card standard 2.2. However, cipher-based MACs could be implemented efficiently
in the Java Card environment if their underlying cipher algorithm can be executed with
hardware support. For AES-CMAC-128, the underlying block cipher AES-CBC-128 is
supported by the Java Card standard.

Additionally, the Java Card standard 2.2 supports AES-CBC-MAC signatures. The
internal operations of AES-CMAC and AES-CBC-MAC are similar, except for the
sub-key derivation and XORing of the last input block employed by CMAC. After this
XOR operation of the last block with the corresponding sub-key, the remaining
operation of AES-CMAC is the same as for AES-CBC-MAC (Song et al., 2006).

7. Performance evaluation

7.1 Secure channel protocol establishiment

To evaluate the secure channel protocol establishment for the discrete logarithm variant
SRP-6a as well as the EC variant, we established two test scenarios. For the first test
scenario, we used a DeviceFidelity microSD SE (credenSE 2.8]), a Samsung Galaxy S3
with the SuperSmile ROM]7] and Open Mobile API for accessing the secure element on
the card. We made the measurements using System.nano Time() before sending and after
receiving the APDU. For the second case, we used a JCOP 2.4.1 external smart card with
contact-less interface to give insight on performance differences between different
tamper-resistant hardware variants. Measurements were taken using NetBeans
application profiler[8] on the client-side. We took 100 measurements for both protocol
variants (SRP-6a and the elliptic curve variant) and test cases.

7.1.1 SRP-6a with minor adaptations. In our SRP-6a-based password-authenticated
key agreement protocol implementation, we use two rounds of message exchange as stated
by Wu (2002). The first round is the key agreement phase where the two parties generate the
shared secret S and the session key K. This includes operation Steps 1-5 shown in Scheme 2.
The second message exchange round is the verification phase which is shown in Steps 6 and
7. In this section, we show the performance of the server-side computations of these two
phases using two Java Card variants and different modulus sizes. Although our main focus
is the performance evaluation of the protocol in Java Card applets, we also include the data
transfer time between the client application and the Java Cards. This should give a better
nsight on the actual use cases of the protocol implementation. The results and the evaluation
of the SRP-6a protocol establishment are split in four parts:

(1) Key agreement performance: This evaluation show the request-response time
required from sending the public parameter A in the client application until
receiving the public parameter B and the user’s salt s (Steps 1 to 5 in Scheme 2).
The length of the user salt is 16 bytes, while the public key parameter has a
length equal to the prime modulus used in the test.

From the performance results in Table IV, we observe that there is a
considerable difference between the minimum and maximum time required to
complete the operations. This time difference is introduced by extra modular
additions and subtractions needed to get the right modulus result when there is

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

Test hardware Agt. Verif. Comp.
MicroSD SE

min [ms] 2,744 341 3,170
max [ms)] 3,318 377 3,787
median [ms] 3,036 356 3,496
External smart card

min [ms] 1,204 89 1,498
max [ms)] 1,477 98 1,960
median [ms] 1,293 90 1,600

Note: Computation times for card-side key agreement phase (agt.), key verification phase (verif.) and
complete (comp.) protocol run-time (including data transfer time)

Java Card
applet
communication

391

Table IV.
SRP-6a with 2048 bit
modulo performance

)

®)

)

an overflow in other modular additions and subtractions implemented in
software. From a cryptanalysis point of view this could give an attacker some
information about the ephemeral secret key and verifier parameters used in
the SRP protocol. Such issues can be solved by introducing dummy addition
and subtraction operations which compensate the time difference. The time
difference in the two test scenarios (external smart card and microSD SE) is
caused by the differences in hardware implementation and communication
channel. Due to the usage of standard file system IO for exchanging data, the
microSD SE is much slower in transmitting data (cf. time measurements by
Holzl et al. (2013)).

Performance of verification: As it is shown in Steps 6 and 7 of Scheme 2, the
verification of the shared secret consists of one message exchange of the
verifiers M; and M,. For our implementation, we use a SHA-256 hash
function, so that both M, and M, are 32 bytes. However, because the shared
secret S is also included in the computation of M, and M,, the performance
depends on the length of S which is equal to the size of the prime modulus 7.

In many use cases, the performance of the verification stage is close to the
actual time that a user has to wait before the secure communication starts.
This is because the time intensive key agreement phase can be started in the
background while the user enters the PIN/password. As shown in the results
of the evaluation in Table IV, the verification operation takes a maximum
time of 377 ms (microSD SE) and 98 ms (external smart card).

Complete secure channel establishment: This case includes the complete protocol
running time required by the client- and server-side. For the client-side
computations, we use the Bouncy Castle crypto API[9].

Evaluation of prime modulus sizes: In Figure 2, we visualize the influence of
different prime modulus sizes to the required computation time. Our protocol
supports prime modulus sizes of 1,024, 1,536 and 2048 bit. For the purpose of
performance evaluation, we also included 512 and 768 bit though we recommend
to use 1,536- and 2,048-bit versions. Higher prime modulus sizes of above 2048
bit are currently not supported due to the limitation of RSA operations in the
current Java Card standard.

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

392

Figure 2.
Performance
evaluation of the
discrete logarithm
variant of SRP
(SRP-6a) with
different modulus
sizes and standard
deviation on both
Java Card variants

Table V.
Performance of the
elliptic curve SRP
with the Koblitz
curve secpl92k1

The results in Figure 2 show that the key agreement time of the protocol is
significantly influenced by the prime modulus size. At the same time, the verification
phase of both Java Card variants is not varying much. As already described, the big
advantage of this is the minimized time the user has to wait after entering
PIN/password.

7.1.2 Elliptic curve variant of SRP. For the measurements of the protocol establishment
of the EC variant, we used the EC parameters of the Koblitz curve secp192k1. This curve
is recommended by Certicom Research (2010), in conjunction with the Standards for
Efficient Cryptography Group (SECG), and defines domain parameters over the prime
finite field and supports 192-bit keys. As listed in Table I (cf. security level listing of the
SECG, 2010), this provides a security level of 96 bits or an equivalent strength as RSA/
DSA with 1,536-bit keys. Note that most organizations providing EC domain
parameters currently suggest key sizes of at least 224 bitg[10] (equivalent security level
as 2024 RSA keys). However, the Java Card used in these tests runs with version 2.2,
which does not support curves with key sizes higher than 192 bit.

Table V lists the results of the elliptic curve SRP measurements in both test scenarios
(microSD SE and external smart card). Compared to the discrete logarithm variant with

3,900 1,800

3,600 T | Verification 1600 ™ Verification
3,300 |#Keyagreement ! # Key agreement
3,000 =Complete 1,400 |=Complete

2,700
2,400
£ 2,100
‘2 1,800
£ 1,500
1,200
900

600 |

300 |

o0l

512 768 1,024 1,536 2,048 512 768 1,024 1,536 2,048
Prime modulus size [bits] Prime modulus size [bits]
(2) (b)

Notes: (a) Performance on JCOP 2.4.1 microSD SE; (b) secure channel performance on JCOP
2.4.1 external smart card

Test hardware Agt. Verif. Comp.
MicroSD SE

min [ms] 988 262 1,401
max [ms] 1,051 315 1,645
median [ms] 1,021 286 1,572
External smart card

min [ms] 451 60 521
max [ms] 462 68 598
median [ms] 457 60 528

Note: Card-side computation time for key agreement phase (agt.), key verification phase (verif.) and
complete (comp.) protocol run-time

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

the equivalent security level (cf. 1,536-bit prime modulus size in Figure 2), the median
complete protocol runtime is significantly lower (~1 second less for the microSD and
~550 milliseconds less for the external smart card). This difference is especially high in
the key agreement phase (~1 second for microSD and ~400 ms for the external card) but
minor in the verification phase (~35 ms for both scenarios). This is because the
verification phase did not change in the elliptic curve variant. Still, there are minor
differences due to the smaller key sizes that needs to be hashed during verification.

It is also recognizable that the difference between minimum and maximum values in
the elliptic curve variant is smaller than in the SRP-6a variant. The reason for this are the
missing modular additions and subtractions in the protocol schema of the EC variant.

7.2 Secure messaging performance

In this section, we analyse the performance of our secure messaging implementation
with both Java Card variants. To perform these tests, the client-side wraps random data
in a secure request APDU object and sends this object. On the Java Card side, a dummy
applet receives the incoming secure request APDU and unwraps it (performs MAC
verification and decryption) to get the random data from the client. Then these random
data are encoded inside a secure response APDU object and is sent back to the client.
Table VI shows the median, minimum and maximum results for different packet sizes.
The values for the external smart card vary between 90 and 107 ms, with a data rate
reaching 1.19 kB/s. The microSD only achieves a median data rate of 186 B/s.

7.3 Memory optimization
In addition to slight adaptations, discussed in Section 6.3, we optimize our
implementation by considering performance, memory and security trade-offs:

 Using the APDU buffer for performing and storing intermediate operations and
public values.

 Using static memory offsets for different sections instead of allocating several
smaller areas to save memory.

e Sharing (reuse) of transient memory between key agreement and secure
messaging implementation.

The current implementation with 2,048-bit prime uses 1,040 bytes for byte arrays in
persistent (EEPROM) and 834 bytes for byte arrays in transient (RAM) memory.

Data size in bytes

Test hardware 16 32 64 128
MicroSD SE

min [ms] 322 375 463 655
max [ms] 360 415 534 738
median [ms] 337 384 494 687
External smart card

min [ms] 88 90 95 105
max [ms] 97 103 107 143

median [ms] 90 92 97 107

Java Card
applet
communication

393

Table VI.
Card-side secure
messaging
performance
(including data
transfer time)

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

JPCC
114

394

8. Conclusion

In this paper, we propose an efficient way of implementing a secure communication between
Java Card applets and off-card applications in a mutually authenticated secure channel
based on the SRP protocol and a standard authenticated encryption scheme. Although the
Java Card environment is equipped with the necessary hardware for computation of modulo
operations in SRP, limitations in Java Card APIs on accessing the cryptographic
co-processors make it challenging to implement SRP with acceptable performance.

By exploiting the RSA encryption API as well as the elliptic curve Diffie-Hellman API
and minor adaptations to the protocol, we show that it is possible to implement the SRP-6a
and SRP-5 server-side in a Java Card applet with reasonable computation time. For our
implementation of the discrete logarithm variant (SRP-6a) with a 2,048-bit-long prime
modulus, the complete protocol runs in less than 2 seconds for the smart card and less than
4 seconds for the secure element tests. Moreover, our use case requires that the user only has
to wait for the much faster verification phase (i.e. less than 100 ms for the smart card and 400
ms for the secure element), as the time intensive key agreement phase runs simultaneously
with the password/PIN entry. With the elliptic curve variant of the protocol, we even
achieved a complete protocol run within 600 ms for the smart card variant and 1,700 ms for
the secure element (user waiting time is below 70 and 350 ms, respectively). Finally, we also
provide an applet-level implementation for the ISO/IEC 7816-4 secure messaging standard.
The source code of the whole implementation is available under an open-source license[11].

Notes
1. www.globalplatform.org/
2. www.nngroup.com/articles/response-times-3-important-limits/

3. TrustZone white paper at: www.arm.com/products/processors/technologies/trustzone/index.
php
4. Standard for Tag-Length-Value encoded data structures.

5. http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol\#Real_world_
implementations

. Www.sos.cs.ru.nl/ovchip/
. http://usmile.at/downloads
. https://profiler.netbeans.org/

© 00 N O

. www.bouncycastle.org/

10. Overview of currently suggested key sizes by different organizations at: www.keylength.com
11. https://github.com/mobilesec/secure-channel-srp6a-android-lib, https://github.com/
mobilesec/secure-channel-srpba-applet and https://github.com/mobilesec/secure-channel-ec-
srp-applet

References

American National Standards Institute (2001), American National Standard for Financial Service
X9.63-2001: Key Agreement and Key Transport Using Elliptic Curve Cryptography, American
Bankers Association, available at: http://books.google.at/books?id=vvzkPAAACAA]

Anoop, M.S. (2007), “Elliptic curve cryptography”, An Implementation Guide, available at: www.
infosecwriters.com/text_resources/pdf/Elliptic_Curve_AnnopMS.pdf

http://www.globalplatform.org/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://www.sos.cs.ru.nl/ovchip/
http://usmile.at/downloads
https://profiler.netbeans.org/
http://www.bouncycastle.org/
http://www.keylength.com
https://github.com/mobilesec/secure-channel-srp6a-android-lib
https://github.com/mobilesec/secure-channel-srp6a-applet
https://github.com/mobilesec/secure-channel-srp6a-applet
https://github.com/mobilesec/secure-channel-ec-srp-applet
https://github.com/mobilesec/secure-channel-ec-srp-applet
http://books.google.at/books?id=vvzkPAAACAAJ
http://www.infosecwriters.com/text_resources/pdf/Elliptic_Curve_AnnopMS.pdf
http://www.infosecwriters.com/text_resources/pdf/Elliptic_Curve_AnnopMS.pdf

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., Gallagher, P.D. and For, U.S. (2012), NIST
Special Publication 800-57 Recommendation for Key Management — Part 1: General, NIST.

Bellare, M., Canetti, R. and Krawczvk, H. (1996), “Keying hash functions for message
authentication”, , pp. 1-15, available at: http:/link.
springer.com/chapter/10.1007/3-540-68697-5_1

Bellare, M., Kilian, J. and Rogaway, P. (2000), “The security of the cipher block chaining message
authentication code”, , Vol. 61 No. 3, pp. 362-399,
available at: http://dx.doi.org/10.1006/jcss.1999.1694.

Bellare, M. and Rogaway, P. (2000), “The AuthA protocol for password-based authenticated key
exchange”, IEEE P1363, pp. 136-143.

Bellovin, S. and Merritt, M. (1992), “Encrypted key exchange: password-based protocols secure
against dictonary attacks", I
sidsaiidgay Oakland, CA, pp. 72-84.

Ben-Asher, N., Kirschnick, N., Sieger, H., Meyer, J., Ben-Oved, A. and Moller, S. (2011), “On the
need for different security methods on mobile phones”

, New York, NY, pp. 465-473, available at: http://doi.acm.org/10.1145/20373
73.2037442.

Bichsel, P., Camenisch,]., Grof3, T. and Shoup, V. (2009), “Anonymous credentials on a standard
Java Card”,
Imstemieid. Pp. 600-610, available at: http://doi.acm.org/10.1145/1653662.1653734.

Brands, S.A. (2000), Rethinking Public Key Infrastructures and Digital Certificates: Building in
Privacy, MIT Press.

Brickell, E., Camenisch, J. and Chen, L. (2004), “Direct anonymous attestation” i
New York, NY,

pp. 132-145, available at: http://doi.acm.org/10.1145/1030083.1030103.

Certicom Research (2010), “Sec 2: recommended elliptic curve domain parameters”, Technical
Report, available at: www.secg.org/sec2-v2.pdf

Chin, E., Felt, AP, Greenwood, K. and Wagner, D
communication in android”

, New York, NY, pp. 239-252, available at: http:/

doi.acm.org/10.1145/1999995.2000018.

Diffie, W. and Hellman, M. (1976), “New directions in cryptography”, | K NEGERENk I
. V0. 22 No. 6, pp. 644-654.

Dworkin, M.]. (2005
, Technical Report, National Institute of Standards &

Technology, Gaithersburg, MD.

European Network of Excellence in Cryptology II (2012), “ECRYPT II yearly report on algorithms
and keysizes”, pp. 29-34.

Fournaris, A. and Koufopavlou, O. (2008), “Creating an elliptic curve arithmetic unit for use in

, Hamburg, pp. 1457-1464.

Gayoso Martinez, V., Sanchez Avila, C., Espinosa Garcia, J. and Hernandez Encinas, L. (2005),
“Elliptic curve cryptography: Java implementation issues”, 39th Annual 2005
International Carnahan Conference on Security Technology, IEEE, pp. 238-241.

GlobalPlatform (2009), “Secure channel protocol — GlobalPlatform card specification v2.2 —
Amendment D”.

Java Card
applet
communication

395

http://link.springer.com/chapter/10.1007/3-540-68697-5_1
http://link.springer.com/chapter/10.1007/3-540-68697-5_1
http://dx.doi.org/10.1006/jcss.1999.1694
http://doi.acm.org/10.1145/2037373.2037442
http://doi.acm.org/10.1145/2037373.2037442
http://doi.acm.org/10.1145/1653662.1653734
http://doi.acm.org/10.1145/1030083.1030103
http://www.secg.org/sec2-v2.pdf
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://www.emeraldinsight.com/action/showLinks?crossref=10.6028%2FNIST.SP.800-38b
http://www.emeraldinsight.com/action/showLinks?crossref=10.6028%2FNIST.SP.800-38b
http://www.emeraldinsight.com/action/showLinks?crossref=10.1006%2Fjcss.1999.1694&isi=000166013700002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1653662.1653734
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1653662.1653734
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1999995.2000018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1999995.2000018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FETFA.2008.4638588
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FETFA.2008.4638588
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRISP.1992.213269
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRISP.1992.213269
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTIT.1976.1055638&isi=A1976CQ59200001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTIT.1976.1055638&isi=A1976CQ59200001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-68697-5_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1030083.1030103
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1030083.1030103
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2037373.2037442
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2037373.2037442
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2037373.2037442

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

[JPCC
114

396

Han,].-H., Kim, Y -], Jun, S.-I, Chung, K.-I. and Seo, C.-H. (2002), “Implementation of ECC/ECDSA
cryptography algorithms based on Java card”, Proceedings of 22nd International
Conference on Distributed Computing Systems Workshops, pp. 272-276.

Hancke, G. (2005), “A practical relay attack on ISO 14443 proximity cards”, Technical Report.

Hao, F.and Ryan, P.Y.A. (2011), “Password authenticated key exchange by juggling”, Proceedings
of the 16th International Conference on Security Protocols, Springer-Verlag, Berlin,
Heidelberg, pp. 159-171, available at: http://dl.acm.org/citation.cfm?id=2022815.2022838

Hobarth, S. and Mayrhofer, R. (2011), “A framework for on-device privilege escalation exploit
execution on android”, Proceedings of IWSSI/SPMU.

Holzl, M., Mayrhofer, R. and Roland, M. (2013), “Requirements analysis for an open ecosystem for
embedded tamper resistant hardware on mobile devices”
Vienna.

IEEE Computer Society (2009), “IEEE standard specifications for password-based public-key
cryptographic techniques”, IEEE Std 1363.2-2008, pp. 1-127.

Jablon, D.P. and Ma, W. (1996), “Strong password-only authenticated key exchange”, ACM
, Vol. 26 No. 5, pp. 5-26, available at: http://
doi.acm.org/10.1145/242896.242897

Khan, S., Nauman, M., Othman, A. and Musa, S. (2012), “How secure is your smartphone: an
analysis of smartphone security mechanisms”, 2012

, pp. 76-81.

Koblitz, N. (1987), “Elliptic curve cryptosystems”, , Vol. 48 No. 177,
pp. 203-209, available at: www.ams.org/mcom/1987-48-177/S0025-5718-1987-0866109-5/
), “A survey on security for mobile devices”,

La Polla, M., Martinelli, F. and Sgandurra, D. (2013
, Vol. 15 No. 1, pp. 446-471.

Landman, M. (2010), “Managing smart phone security risks”, Information Security Curriculum
Development Conference, ACM, pp. 145-155, available at: http://doi.acm.org/10.1145/19409
41.1940971

Lochter, M. and Merkle, J. (2010), “Elliptic curve cryptography (ECC) brainpool standard curves
and curve generation”, RFC 5639, available at: www.ietf.org/rfc/rfc5639.txt

Lucks, S. (1997), “Open key exchange: how to defeat dictionary attacks without encrypting public
keys”, Proceedings of the Security Protocols Workshop, LNCS 1361, Springer Berlin
Heidelberg, pp. 79-90, available at: http://link.springer.com/chapter/10.1007/BFb0028161

Mantoro, T. and Milisic, A. (2010

enabled phone”

“Smart card authentication for internet applications using NFC

, Jakarta, pp. D13-D18.

Mayrhofer, R. (2014), “An architecture for secure mobile devices”, Security and Communication
Networks, Vol. 8 No. 10, available at: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)
1939-0122

Roland, M. Langer, J. and Scharinger, J. (2012), “Practical attack scenarios on secure
element-enabled mobile devices”,
I icsinki, pp. 19-24.

Ruiz-Martinez, A., Canovas, O. and Gomez-Skarmeta, A. (2007), “Smartcard-based e-coin for

, Shanghai, pp. 361-368.

Song, J., Poovendran, R., Lee, J. and Iwata, T. (2006), “The AES-CMAC algorithm”, RFC 4493
(Informational), available at: http://tools.ietf.org/html/rfc4493

http://dl.acm.org/citation.cfm?id=2022815.2022838
http://doi.acm.org/10.1145/242896.242897
http://doi.acm.org/10.1145/242896.242897
http://www.ams.org/mcom/1987-48-177/S0025-5718-1987-0866109-5/
http://doi.acm.org/10.1145/1940941.1940971
http://doi.acm.org/10.1145/1940941.1940971
http://www.ietf.org/rfc/rfc5639.txt
http://link.springer.com/chapter/10.1007/BFb0028161
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1939-0122
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1939-0122
http://tools.ietf.org/html/rfc4493
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCyberSec.2012.6246082
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCyberSec.2012.6246082
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FNFC.2012.10
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FNFC.2012.10
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2536853.2536947
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2536853.2536947
http://www.emeraldinsight.com/action/showLinks?crossref=10.1090%2FS0025-5718-1987-0866109-5&isi=A1987F720500016
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSITIS.2007.14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSITIS.2007.14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSURV.2012.013012.00028
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICT4M.2010.5971895
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICT4M.2010.5971895
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F242896.242897
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F242896.242897

Downloaded by TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES At 22:28 07 November 2016 (PT)

Sterckx, M., Gierlichs, B., Preneel, B. and Verbauwhede, 1. (2009), “Efficient implementation of
anonymous credentials on java card smart cards”, Information Forensics and Security,
pp. 106-110, available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=>5386474

Taylor, D., Wu, T., Mavrogiannopoulos, N. and Perrin, T. (2007), “Using the secure remote
password (SRP) protocol for TLS authentication”, RFC 5054, available at: www.ietf.org/rfc/
rfc5054.txt

Tews, H. and Jacobs, B. (2009), “Performance issues of selective disclosure and blinded issuin
rotocols on java card”

, Springer, pp. 95-111, available at: http:/link.
springer.com/chapter/10.1007/978-3-642-03944-7_8

Wu, T. (1998), “The secure remote password protocol”, Proceedings of the 1998 Internet Society
Network and Distributed System Security Symposium, Detroit, MI, pp. 97-111.

Wuy, T. (2002), “SRP-6: improvements and refinements to the secure remote password protocol”,
available at: http://srp.stanford.edu/

Corresponding author
Michael Holzl can be contacted at: michael.hoelzl_1@jku.at

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Java Card
applet
communication

397

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5386474
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc5054.txt
http://link.springer.com/chapter/10.1007/978-3-642-03944-7_8
http://link.springer.com/chapter/10.1007/978-3-642-03944-7_8
http://srp.stanford.edu/
mailto:michael.hoelzl_1@jku.at
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-03944-7_8
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-03944-7_8

	A password-authenticated secure channel for App to Java Card applet communication
	1. Introduction
	2. Related work
	3. Threat model
	4. Secure remote password
	5. Secure session
	6. Implementation
	7. Performance evaluation
	8. Conclusion
	References

