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Abstract
Purpose – The purpose of this article is to improve detection of common movement. Detecting if two
or multiple devices are moved together is an interesting problem for different applications. However,
these devices may be aligned arbitrarily with regards to each other, and the three dimensions sampled
by their respective local accelerometers can therefore not be directly compared. The typical approach is
to ignore all angular components and only compare overall acceleration magnitudes – with the obvious
disadvantage of discarding potentially useful information.
Design/methodology/approach – This paper contributes a method to analytically determine
relative spatial alignment of two devices based on their acceleration time series. The method
uses quaternions to compute the optimal rotation with regards to minimizing the mean squared
error.
Findings – Based on real-world experimental data from smartphones and smartwatches shaken
together, the paper demonstrates the effectiveness of the method with a magnitude squared coherence
metric, for which an improved equal error rate (EER) of 0.16 (when using derotation) over an EER of 0.18
(when not using derotation) is shown.
Practical implications – After derotation, the reference system of one device can be (locally and
independently) aligned with the other, and thus all three dimensions can consequently be compared for
more accurate classification.

This article is an extended version of a conference paper previously published in iiWAS 2014 (16th
International Conference on Information Integration and Web-based Applications & Services) by
ACM Press.

This work has been carried out within the scope of u’smile, the Josef Ressel Center for
User-Friendly Secure Mobile Environments, funded by the Christian Doppler Gesellschaft, A1
Telekom Austria AG, Drei-Banken-EDV GmbH, LG Nexera Business Solutions AG, NXP
Semiconductors Austria GmbH, and Österreichische Staatsdruckerei GmbH.
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Originality/value – Without derotating time series, angular information cannot be used for deciding
if devices have been moved together. To the best of the authors’ knowledge, this is the first analytic
approach to find the optimal derotation of the coordinate systems, given only the two 3D time
acceleration series of devices (supposedly) moved together. It can be used as the basis for further
research on improved classification toward acceleration-based device pairing.

Keywords Mobile devices, Acceleration time series, Device authentication, Quaternion derotation

Paper type Research paper

1 Introduction
Common movement can be detected from sufficiently similar acceleration sensor
data and has interesting applications in mobile and ubiquitous computing. This
includes determining if devices are carried by the same user (Lester et al., 2004) or
transported on the same vehicle (Marin-Perianu et al., 2007) as well as an interaction
method for securely pairing handheld devices (Mayrhofer and Gellersen, 2009;
Bichler et al., 2007; Kirovski et al., 2007). However, such common movement is
inherently three-dimensional. In the general case, the relative alignment of two (or
multiple) accelerometers embedded in different devices is unknown: similar devices
may be rotated arbitrarily with regards to each other and different devices may
embed their accelerometers with arbitrary orientations. Therefore, the three
dimensions sampled independently will typically not be aligned and are therefore
not directly comparable.

A standard approach to deal with this issue is to discard all angular (i.e. directional)
information from the 3D vectors and only use their magnitude (i.e. the length of each
vector computed in an Euclidean space). This reduces three dimensions to a single one
that is invariant concerning orientation. Even when two co-located accelerometers are
oriented differently, they will experience similar overall acceleration magnitudes.
However, this simple approach discards potentially valuable information that could be
helpful in determining if accelerations are sufficiently similar to each other or not (cf.
Section 3).

In this article, we describe a method to explicitly determine the relative alignment
of two mobile devices with regards to each other based on their recorded
acceleration time series. The underlying assumption is that both devices are moved
(relatively closely) together and therefore share sensor readings that are only offset
by 3D rotation but otherwise similar. Specifically, we assume that both devices
experienced similar translation and rotation with regards to a common reference
system. Our approach uses quaternions (Section 4) to analytically compute optimal
rotation between both device reference systems (Section 5) and, based on real-world
sensor data, works even in the presence of small distances between the devices and
typical sensor noise (Section 6).

2. Related work
Known applications of common movement presented in the context of mobile and
pervasive computing (Lester et al., 2004; Marin-Perianu et al., 2007; Mayrhofer and
Gellersen, 2009; Bichler et al., 2007; Kirovski et al., 2007; Groza and Mayrhofer, 2012)
have so far taken the simple approach and discarded angular information. However,
we suggest that all of these could benefit to various degrees from taking this
information into account. Especially when used for securing device communication
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(Mayrhofer and Gellersen, 2009; Bichler et al., 2007; Groza and Mayrhofer, 2012)
would this be valuable – any information that is shared between the legitimate
devices but not directly available to a potential attacker increases the latter’s
entropy of the resultant cryptographic key and consequently improves the security
level.

Kunze and Lukowicz (2008) have suggested position-invariant heuristics for dealing
with sensor displacement to improve movement recognition with a single sensor
(accelerometer and/or gyroscope). Our approach complements this work when multiple
sensors are in use, e.g. to detect if a mobile phone and a wristwatch describe the same
movement and are therefore on the same hand.

Quaternions have been used to minimize the root-mean-squared deviation (RMSD)
between solid bodies (Coutsias et al., 2004). We build upon this work by translating it
from body rotation to determining the relative alignment of 3D acceleration time series.
Another related use of quaternions is representing orientations in hand and head
movement (Choe and Faraway, 2004).

3. Problem overview
Determining if two (or multiple) devices are moved together based on their respective
local accelerations can be seen as a classification problem. When they are moved
together, sensor noise and systematic error will still lead to (slightly) different sensor
time series. When they are moved separately (but, for example, with similar frequency
and amplitude components), they might still be “close” for some similarity measure (cf.
Mayrhofer and Gellersen, 2009, for experimental “positive” and “negative” data). The
systematic error is intrinsic: even if the devices are held perfectly together and do not
move with regards to each other and the sensors are perfect and do not exhibit any
sampling noise at all, there will still be differences in acceleration time series whenever
rotation is part of the shared movement. This is because of different centers, i.e. the
physical placement of the respective accelerometers. Think of one accelerometer on the
outer curve and the other on the inner curve of a common rotation; they move together
without relative movement, but take different paths in 3D that consequently lead to
different local accelerations.

This issue is independent of the chosen similarity measure and also occurs when only
using the magnitude. In fact, discarding angular information makes it even harder to
determine that the devices were moved together because locally measured rotational
components would in this case be similar, while the magnitudes differ. Recently
suggested heuristics explicitly discard accelerometer time series in periods of large
rotational movement (Kunze and Lukowicz, 2008). We expect classification accuracy to
improve noticeably when comparing three dimensions instead of one throughout
various different use cases.

Our approach to retain this 3D information is for devices to – locally and
independently of each other – align the two coordinate systems for the subsequent
comparison. We analytically determine the “optimal” rotation between these
coordinate systems given only the two 3D time series (which are, for example,
exchanged securely using an interlock protocol and session keys as described
previously by Mayrhofer and Gellersen, 2009) and the assumption of shared
movement. In the scope of this paper, we define optimal to minimize the mean
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squared error between all of the sample points. One method to analytically
determine the relative orientation is to use quaternions.

4. Quaternions and rotations
Quaternions can be used to represent rotations in a three-dimensional space.
Furthermore, they possess favorable properties like avoiding so-called “gimbal locks” or
enabling easy interpolation, something that other approaches like Euler angles and
matrix-based rotation do not exhibit. It is thus straightforward to use quaternions to
find the optimal rotation between two sets of vectors.

In the following, only the most important aspects of quaternions are presented, and
we follow the notation of Coutsias et al. (2004). More details about quaternions can be
found in Kuipers (2002). A quaternion is a tuple q � (q0, q), with q � (q1, q2, q3)=. Note
that like in Matlab/Octave, the operator “ = ” denotes transposition, and all vectors
without it are column vectors. Quaternions are essentially a generalization of complex
numbers, i.e. a quaternion consists of a real part (q0) and three imaginary parts (q1, q2,
q3). In the area of three-dimensional spaces, this imaginary part may take over the part
of a 3D vector. As quaternions form up an algebraic structure called division ring, they
allow the algebraic operations addition and multiplication, which for a � (a0, a) and b �
(b0, b) are defined as follows:

a � b � (a0 � b0, a � b)

ab � (a0b0 � a · b, a0b � b0a � a � b). (1)

Here “·” and “�” denote the standard dot and cross products known from Euclidean
vector spaces, respectively. Interestingly, multiplication is associative, but not
commutative, i.e. in general, ab � ba. The Matlab/Octave function shown in Listing 1
accepts two quaternions p and q, both represented by 4D vectors, and computes pq.

Listing 1 computing pq for two quaternions p and q. Note that the operation is not
commutative:

function pq � qmul( p, q )
a0 � p(1) ; a � p(2:4) ;
b0 � q(1) ; b � q(2:4) ;
acb � a0*b � b0*a � cross(a,b);
pq � [a0*b0 –dot(a,b) ; a0*b � b0*a � cross(a,b)] ;

end

Like for complex numbers, a quaternion q � (q0, q) does have a conjugate quaternion qc

which is defined by qc � (q0, – q). The conjugate now enables the computation of the
norm |q| of a quaternion, which is defined by |q|2 � qqc. Note that quaternions u with
length |u|2 � uuc � 1 are called unit quaternions.

An important subclass of quaternions is given by pure quaternions q � (0, q), which
are defined to have a zero real part. For pure quaternions, the operations (1) are
simplified accordingly.

By using the rules of (1), quaternions now can be used for computing rotations in a
three-dimensional Euclidean space. Each vector r � (r1, r2, r3)= of the space is
represented by a pure quaternion r � (0, r). Rotations in the space then can be
characterized by a unit quaternion u by computing:
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r̂ � uruc. (2)

Note that r̂ � (0, r̂) is again a pure quaternion, whose vector part r̂ equals r rotated by
some angle � and using the rotation axis u, i.e. the vector part of u. The Matlab/Octave
function shown in Listing 2 rotates a vector p � (0, p) by the quaternion u.

Listing 2 rotating vector p (p � (0, p)=) by a rotation represented by a unit quaternion u.
The result is again a pure quaternion holding the rotated vector in its vector part:

function upuc � rotquat (p , u)
uc � [u(1); – u(2 : 4)] ;
up � qmul(u, p) ;
upuc � qmul(up , uc) ;

end

Given a desired rotation axis a � (a1, a2, a3)= and a rotation angle �, the quaternion u
representing this rotation is constructed by:

u � (cos�
2

, sin�
2

a
�a�

). (3)

Thus, given this quaternion, using (2) rotates any desired vector r by angle � and axis
a. The Matlab/Octave function shown in Listing 3 constructs a rotation quaternion u
from a rotation angle � and a 3D vector describing the rotation axis.

Listing 3 computing a rotation quaternion u:
function u � quat( phi, a )

u � [cos(phi/2) ; sin(phi/2)*normc([a(1) ; a(2) ; a(3)])];
end

5. The optimal rotation
In linear algebra, rotations are represented by orthonormal square matrices U, rotating
a vector x is then achieved by multiplying it from the right: x̂ � Ux. Given two sets of
vectors { xk} and { yk}, Coutsias et al. (2004) have shown how to compute an optimal
rotation U (through the use of quaternions), such that the overall error:

E : �
1
N �

k�1

N

�Uxk � yk�2 (4)

is minimized. The respective Matlab/Octave function is shown in Listing 4.
Centering both sets by computing the mean vectors x and y of each set, and then

subtracting x from each vector of { xk} and y from each vector of { yk} will give lower
errors but is not necessary for the method to work. Specifically for acceleration time
series, subtracting the mean (in practice a moving average computed over sliding time
windows) removes the static offset caused by gravity and has previously also been
found advantageous for comparing magnitudes by Mayrhofer and Gellersen (2009).
Like in Coutsias et al. (2004), it is furthermore assumed that X and Y are 3 � N matrices,
whose columns hold the vectors xk and yk.
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Listing 4 computing the optimal rotation u given vectors xk and yk.
function [E, P] � residuum(X, Y)

%correlation matrix
R�X*(Y’);
%matrix holding all rotations
F�[R(1, 1)�R(2, 2)�R(3, 3), R(2, 3)–R(3, 2), R(3, 1)–R(1, 3), R(1, 2)–R(2, 1);

R(2, 3)–R(3, 2), R(1, 1)–R(2, 2)–R(3, 3), R(1, 2)�R(2, 1), R(1, 3)�R(3, 1);
R(3, 1)–R(1, 3), R(1, 2)�R(2, 1), –R(1, 1)�R(2, 2)–R(3, 3), R(2, 3)�R(3, 2);
R(1, 2)–R(2, 1), R(1, 3)�R(3, 1), R(2, 3)�R(3, 2), –R(1, 1)–R(2, 2)�R(3, 3)];

%compute eigenvector evvmax of largest eigenvalue ev
[V, D] � eig(F);
ev � D(1,1); evvmax � V(:,1); %first ev and evvmax
for i � 2:4

if D(i, i)�ev
ev � D(i, i); evvmax � V(:, i); % remember largest ev and evvmax

end
end
[E, P] � reser(X, Y, evvmax); %compute error and optimal P�UX

end

Listing 5 computing the optimal predictor P and the error E.
function [E, P] � reser(X, Y, u)

[n,m] � size(X);
E�0; P�[];
for k�1:m

y � rotquat ([0; X(k,:)], u); %rotate the x vectors
P�[P y(2:4)’]; %store in P�UX
E � E � norm ( (Y(:, k)~—~P(:, k) ) $ˆ\ wedge$2; %sum of norms of differences

end
E � E/m;

end

The Matlab/Octave function reser shown in Listing 5 shows how to compute the error E
given by (4) and the optimal predictor P � UX. Note that using the largest eigenvalue of
the matrix F directly, as proposed by Coutsias et al. (2004), frequently results in complex
values due to roundoff errors and negative values inside the root operation (see
definition of eq in Coutsias et al., 2004), which mathematically is impossible. Thus, we
recommend to directly compute E by using (4).

6. Evaluation
To evaluate our approach of determining the spatial alignment of 3D acceleration sensor
and derotating time series before doing comparisons, we apply it to real-world
acceleration data. We use acceleration time series recorded pairwise by shaking two 3D
accelerometers together and estimate if two devices were shaken together based on
various similarity measures on their time series. To quantify the gain of derotating time
series before comparing them, we separately compare pairwise time series without and
with derotation. Similarity between individual axes of two 3D accelerometers strongly
depends on the spatial alignment of the accelerometers – therefore, comparing the
original (arbitrarily aligned) axes directly with each other cannot be expected to yield
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useful results. Consequently, when not derotating time series, we apply the well-known
practice of computing and comparing the magnitude time series instead of utilizing
individual axes. Before calculating these magnitudes, we compensate for gravity by
normalizing time series and subtracting their mean (to discard the influence of gravity)
for each axis and device. To demonstrate that derotating time series is possible even
with short recordings, we limit all time series to a duration of 2 s, which seems a
compromise between distinguishability and usability for the user-mediated device
pairing problem (cf. Mayrhofer and Gellersen, 2009).

To compare two acceleration time series, we utilize well-known approaches –
indicating either the amount of divergence (error) or similarity. As distance metrics
indicating error in the time domain we use: root mean squared error (RMSE), mean
absolute error (MAE), median absolute error (median), standard deviation of errors (SD),
median absolute deviation of errors (MAD) and dynamic time warping (DTW). As
distance metrics indicating error in the frequency domain we use: RMSE of the FFT
power spectra of both time series (FFT RMSE), MAE of the FFT power spectra (FFT
MAE), median absolute error of the FFT power spectra (FFT median), standard
deviation of errors of the FFT power spectra (FFT SD) and median absolute deviation
errors of the FFT power spectra (FFT MAD)[1]. As metrics indicating similarity, we use
correlation coefficients by Pearson (1895) (product-moment correlation coefficient),
Spearman (1904) (rank correlation coefficient) and Kendall (1938) (tau rank correlation
coefficient), as well as magnitude squared coherence (coherence), which has been used
frequently on comparing acceleration time series in previous research (Ben-Pazi et al.,
2001; Cornelius and Kotz, 2012; Dargie, 2009; Findling et al., 2014; Lester et al., 2004;
Mayrhofer and Gellersen, 2009). For coherence, we apply parametrization as stated by
Mayrhofer and Gellersen (2009). We expect coherence – representing the most
sophisticated amongst the selected approaches – to yield better results than correlation
coefficients, which we further expect to yield better results than the selected error based
metrics.

6.1 Evaluation data
As source of acceleration time series, we use the u’smile ShakeUnlock database[2]
published by Findling et al. (2014). It contains pairwise 3D acceleration time series of two
devices shaken together: a mobile phone held in the hand and a watch strapped to the
wrist (Figure 1), shaken for about 10 s. In total, the database contains 29 participants
shaking two devices 20 times, which results in 580 records with two 3D acceleration time
series in each record. Acceleration has been recorded with 100 Hz across all devices. As
we limit time series to a duration of 2 s, we therefore only utilize 200 values per time
series for comparison.

Summarizing, we use 696,000 acceleration sensor values (580 records of two time
series with 200 samples in three dimensions) from this database for evaluating our
derotation approach.

6.2 Time series derotation example
Figure 2 shows two sample magnitude time series from the u’smile ShakeUnlock
database. The samples were originated by two devices actually shaken together.
Axes have been gravity adjusted before calculating the magnitudes, and the time
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series have been limited to a duration of 2 s. Although magnitudes are not equal,
their similarity is obvious: phasing is similar, though overall the amplitude seems to
be higher for Device 2.

Looking at time series of individual axes for the same samples, similarity is not as
obvious anymore (Figure 3). Although acceleration phasings and amplitudes are similar
for Axis 1, for Axis 2, only phasings are obviously similar – for Axis 3, there is no
obviously visible similarity. After applying derotation (by rotating the 3D acceleration
time series of Device 1 according to the spatial alignment of Device 2), similarity is
obvious again for all axes.

Table I provides previously stated metrics for these two sample time series – for
comparing magnitudes and individual axes, without and with applying derotation. As
expected, comparing not-rotated time series of individual axes causes highest errors/
least similarities. Comparing magnitudes causes smaller errors/higher similarities.
Overall, smallest errors/highest similarities were achieved by comparing derotated,
individual axes.

Figure 1.
Acceleration time

series recording
setup with the

u’smile ShakeUnlock
database (picture

taken from Findling
et al., 2014

2,0001,5001,0005000

Figure 2.
Sample acceleration

time series
magnitudes of Device

1 and 2
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6.3 Experimental setup
As the effect of increasing similarity between two 3D time series applies for correlated
time series (devices shaken together) as well as for uncorrelated time series (devices not
shaken together), an evaluation must include both correlated and uncorrelated time
series. For this reason, we determine if devices were shaken together by comparing all
possible combinations of acceleration time series from the database. Each comparison
results in a single, scalar metric value s. Applying a threshold t so that min (s) � t � max

2,0002,0001,5001,5001,0001,0005005000 2,0002,0001,5001,5001,0001,0005005000

2,0002,0001,5001,5001,0001,00050050002,0002,0001,5001,5001,0001,0005005000

2,0002,0001,5001,5001,0001,00050050002,0002,0001,5001,5001,0001,0005005000

−1
5

−1
5

−5−5
0

5
1010
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−5−5
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5
1010

1515
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0
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0

−5−5
0

5
1010

−1
5

−1
5

−5−5
0

5
1010

1515
−1
0

−1
0

−5−5
0

5
−1
0

−1
0

−5−5
0

5
1010

(a) (b)

(c) (d)

(e) (f)

Notes: (a) Axis 1 without derotation; (b) axis 1 with derotation; (c) axis 2 without derotation;
(d) axis 2 with derotation; (e) axis 3 without derotation; (f) axis 3 with derotation

Figure 3.
Sample 3D
acceleration time
series axes without
(a, c, e) and with
derotation (b, d, f)
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(s) to s, we obtain the true match rate (TMR, rate of devices correctly being identified as
shaken together) and the true non-match rate (TNMR, rate of devices correctly being
identified as not shaken together). The false match rate (FMR, rate of devices incorrectly
being identified as shaken together) is the complement to the TNMR: FMR � 1 – TNMR.
For error-based metric values (RMSE, MAE, MEDIAN), if s � t, time series are identified
as shaken together – if s 	 t, time series are identified as not shaken together.
Respectively, for similarity-based metric values (correlation coefficient, coherence), if
s � t, time series are identified as not shaken together – if s 	 t, time series are identified
as shaken together. Comparison with ground truth (if the two time series have been
recorded from devices actually shaken together) originates the TMR and TNMR
(resp. FMR) used in the receiver operating characteristic (ROC) curves. To obtain the
TMR, we perform a pairwise comparison of all 580 pairs of acceleration time series
(watch and phone) from the database. To obtain the TNMR (resp. FMR), we use all
1,160 · 1,159/2/2 � 336,110 other possible pairwise comparisons of time series from
a phone and watch each[3].

6.4 Results
Evaluation results clearly show that derotating and comparing individual axes of
acceleration time series (Figure 4b) yields better results than computing and comparing
their magnitudes (Figure 4a). This supports our hypothesis that derotating pairwise 3D
acceleration time series before doing comparisons improves comparison results.
Table II states the equal error rate EER � 1 – TMR � 1 – TNMR and the square root of
the minimum squared error rate �MSER � �min((1�TMR)2�(1�TNMR)2) for
comparing time series based on magnitudes and on derotated, individual axes for all
metrics[4].

As expected, overall coherence-based comparison yields good results, followed by
correlation coefficients and less sophisticated error-based metrics. Although results for
some error-based metrics are close to random when based on magnitudes, there is a

Table I.
Similarity metrics of
sample acceleration

time series, for
magnitudes (Mag.)

and individual axes
(A1-A3), without and
with derotating axes

before comparison

Metric Mag.
Without derotation With derotation

A1 A2 A3 A1 A2 A3

RMSE 5.65 4.25 6.71 8.39 3.24 4.16 4.49
MAE 4.44 3.23 5.69 7.34 2.28 3.52 3.67
MEDIAN 3.88 2.71 5.15 7.71 1.38 3.56 3.24
SD 6.12 5.31 6.96 8.14 3.63 5.63 5.58
MAD 5.39 2.20 5.35 6.93 1.65 4.46 3.07
Pearson 0.56 0.87 0.87 �0.57 0.77 0.91 0.74
Kendall 0.44 0.76 0.69 �0.49 0.68 0.77 0.60
Spearman 0.61 0.92 0.88 �0.68 0.86 0.92 0.80
DTW 1.25 1.03 2.62 2.38 0.61 1.06 0.71
FFT power RMSE 69.07 40.83 91.56 68.29 27.09 40.41 30.90
FFT power MAE 22.04 14.52 24.75 19.97 11.36 13.40 10.84
FFT power Median 7.09 3.34 2.93 4.03 2.73 3.40 3.18
FFT power SD 67.13 39.26 89.09 66.61 26.61 39.65 30.52
FFT power MAD 8.26 3.38 2.59 3.01 2.42 3.33 2.34
Coherence 0.80 0.61 0.56 0.60 0.63 0.65 0.64
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significant improvement when derotating and comparing individual axes instead – e.g.
FFT-based RMSE delivers results similar to coherence. Interestingly, for correlation
coefficient-based metrics, derotating and comparing single axes significantly decreases
the FMR for high TMR. The close-to-flat area in the magnitude ROC curve indicates,
that – for the data used in our evaluation – magnitude correlation coefficient-based
separation without significantly increasing FMR is possible for about 70-80 per cent of
samples. Separation of the remaining 20-30 per cent is either erroneous or causes a
significant rise in FMR. This effect disappears when derotating and comparing
individual axes.

(a)

(a)

(b)

Notes: (a) magnitude-based comparisons; (b) derotated individual axis-based comparisons

Figure 4.
Selected performance
metrics for deciding
if devices have been
shaken together
using their
acceleration time
series, based on
comparing
magnitudes and
derotated, individual
time series

Table II.
Evaluation results:
axes derotation
decreases error rates
for deciding if
devices have been
shaken together

Metric

Time series magnitudes Derotated axes time series
EER �MSER �MSER

TPR
�MSER

TNR
AUC EER �MSER �MSER

TPR
�MSER

TNR
AUC

RMSE 0.373 0.512 0.544 0.768 0.696 0.233 0.322 0.741 0.808 0.844
MAE 0.391 0.528 0.548 0.728 0.682 0.235 0.324 0.74 0.808 0.841
Median 0.429 0.587 0.485 0.72 0.65 0.246 0.34 0.738 0.784 0.824
SD 0.354 0.462 0.587 0.792 0.698 0.233 0.322 0.741 0.808 0.844
MAD 0.355 0.473 0.603 0.742 0.687 0.235 0.324 0.74 0.808 0.841
Pearson 0.318 0.394 0.637 0.845 0.711 0.18 0.252 0.817 0.827 0.905
Spearman 0.318 0.391 0.639 0.85 0.712 0.181 0.254 0.808 0.834 0.904
Kendall 0.316 0.393 0.646 0.828 0.712 0.181 0.253 0.833 0.81 0.904
DTW 0.458 0.629 0.666 0.466 0.605 0.391 0.545 0.56 0.678 0.649
FFT RMSE 0.33 0.466 0.675 0.665 0.749 0.149 0.206 0.874 0.836 0.923
FFT MAE 0.189 0.264 0.819 0.809 0.887 0.214 0.301 0.788 0.786 0.863
FFT median 0.395 0.554 0.591 0.627 0.661 0.411 0.575 0.56 0.629 0.632
FFT SD 0.327 0.462 0.671 0.675 0.752 0.149 0.205 0.88 0.834 0.925
FFT MAD 0.239 0.325 0.734 0.813 0.844 0.208 0.291 0.808 0.782 0.867
Coherence 0.178 0.241 0.815 0.845 0.899 0.156 0.217 0.856 0.837 0.921
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7. Conclusions
We have contributed a method for determining relative spatial alignment of devices
based on independently recorded acceleration time series during common movement.
Using quaternions, our approach allows to analytically compute the optimal rotation
between the respective reference systems with a run-time complexity of O(N2) for N
samples. The significant advantage over heuristic approaches is that this method is
guaranteed to provide the optimal rotation with deterministic run-time. We suggest that
this approach is beneficial for all applications comparing acceleration (or other 3D
sensors) time series that were recorded independently with potentially arbitrary and
unknown alignment, and that it can be used on systems with limited computational
resources such as mobile phones.

Using real-world experimental data and coherence as the currently best-performing
distance metric for determining if two devices were shaken together, we see an
improvement of about 11 per cent in equal error rate by derotating the coordinate system
of one of the devices before comparison. We note that this is the approach taken in
previous research, relying on magnitude only and discarding angular information of all
movement, and it still benefits from applying the method proposed in this paper.

We suspect that other methods for comparing 3D time series and using this
additional information – which was previously impossible with arbitrarily rotated
devices – can achieve significantly lower error rates. Our proposed analytical derotation
method therefore opens new research questions for future work.

All Matlab/Octave scripts and data sets are available under the terms of the GNU
Lesser General Public License (LGPL) at http://usmile.at/downloads.

Notes
1. In preliminary evaluations, errors of FFT phase information have been evaluated as well,

which seemed to not yield feasible distinguishing information and consequently have been
excluded in this evaluation.

2. Evaluation data fetched from http://usmile.at/downloads

3. Assuming that comparing time series is commutative, namely, comparing time series A with
B yields the same results as B with A – which applies to all our metrics.

4. �MSER represents the Euclidean distance between the point TMR � TNMR � 1 and the
resulting TMR/FMR closest to this point.

References
Ben-Pazi, H., Bergman, H., Goldberg, J.A., Giladi, N., Hansel, D., Reches, A. and Simon, E.S. (2001),

“Synchrony of rest tremor in multiple limbs in parkinson’s disease: evidence for multiple
oscillators”, Journal of Neural Transmission, Vol. 108 No. 3, pp. 287-296.

Bichler, D., Stromberg, G., Huemer, M. and Löw, M. (2007), “Key generation based on acceleration
data of shaking processes”, in Proceeding UbiComp 2007, of LNCS, Vol. 4717,
Springer-Verlag, Berlin, Heidelberg, pp. 304-317.

Choe, S.B. and Faraway, J.J. (2004), “Modeling head and hand orientation during motion using
quaternions”, SAE Technical Report 2004-01-2179, Pennsylvania.

Cornelius, C.T. and Kotz, D.F. (2012), “Recognizing whether sensors are on the same body”,
Pervasive and Mobile Computing, Vol. 8 No. 6, pp. 822-836.

465

Optimal time
series

derotation

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

29
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://usmile.at/downloads
http://www.emeraldinsight.com/action/showLinks?crossref=10.4271%2F2004-01-2179
http://www.emeraldinsight.com/action/showLinks?crossref=10.4271%2F2004-01-2179
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.pmcj.2012.06.005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs007020170074&isi=000167675700005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-74853-3_18


Coutsias, E.A., Seok, C. and Dill, K.A. (2004), “Using Quaternions to Calculate RMSD, Wiley
InterScience”, Hoboken, NJ.

Dargie, W. (2009), “Analysis of time and frequency domain features of accelerometer
measurements”, in Computer Communications and Networks, 2009, ICCCN 2009,
Proceeding of 18th International Conference, pp. 1-6.

Findling, R.D., Muaaz, M., Hintze, D. and Mayrhofer, R. (2014), “ShakeUnlock: securely unlock
mobile devices by shaking them together”, in Proceeding MoMM 2014: 12th International
Conference on Advances in Mobile Computing and Multimedia, Awarded MoMM 2014 Best
Paper, ACM Press, New York, NY, pp. 165-174.

Groza, B. and Mayrhofer, R. (2012), “SAPHE – simple accelerometer based wireless pairing with
heuristic trees”, in Proceeding MoMM 2012: 10th International Conference on Advances in
Mobile Computing and Multimedia, ACM Press, New York, NY, pp. 161-168.

Kendall, M. (1938), “A new measure of rank correlation”, Biometrika, Vol. 30 Nos 1/2, pp. 81-93.
Kirovski, D., Sinclair, M. and Wilson, D. (2007), “The martini synch”, Technical Report

MSR-TR-2007-123, Microsoft Research.
Kuipers, J.B. (2002), Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace and Virtual Reality, Princeton University Press, Princeton, NJ.
Kunze, K. and Lukowicz, P. (2008), “Dealing with sensor displacement in motion-based onbody

activity recognition systems”, in Proceeding Ubicomp 2008, ACM Press, New York, NY,
pp. 20-29.

Lester, J., Hannaford, B. and Borriello, G. (2004), “Are you with me? – Using accelerometers to
determine if two devices are carried by the same person”, in Proceeding Pervasive 2004,
Springer-Verlag, Berlin, Heidelberg, pp. 33-50.

Marin-Perianu, R., Marin-Perianu, M., Havinga, P. and Scholten, H. (2007), “Movement-based
group awareness with wireless sensor networks”, in Proceeding Pervasive 2007
Springer-Verlag, Berlin, Heidelberg, pp. 298-315.

Mayrhofer, R. and Gellersen, H. (2009), “Shake well before use: intuitive and secure pairing of
mobile devices”, Mobile Computing, IEEE Transactions, Vol. 8 No. 6, pp. 792-806.

Pearson, K. (1895), “Note on regression and inheritance in the case of two parents”, in Proceeding
of the Royal Society of London, Vol. 58, Royal Society, London, pp. 240-242.

Spearman, C. (1904), “The proof and measurement of association between two rings”, American
Journal of Psychology, Vol. 15, pp. 72-101.

Corresponding author
René Mayrhofer can be contacted at: rm@ins.jku.at

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJPCC
11,4

466

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

29
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:rm@ins.jku.at
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F2332226
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F1412159
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F1412159
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-72037-9_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684103.2684122
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684103.2684122
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684103.2684122
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTMC.2009.51&isi=000265137600006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1409635.1409639
http://www.emeraldinsight.com/action/showLinks?crossref=10.1098%2Frspl.1895.0041
http://www.emeraldinsight.com/action/showLinks?crossref=10.1098%2Frspl.1895.0041
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-24646-6_3

	Optimal derotation of shared acceleration time series by determining relative spatial alignment
	1 Introduction
	2. Related work
	3. Problem overview
	4. Quaternions and rotations
	5. The optimal rotation
	6. Evaluation
	7. Conclusions
	References


