
International Journal of Pervasive Computing and Communications
A model for contextual data sharing in smartphone applications
Harshvardhan Jitendra Pandit Adrian O’Riordan

Article information:
To cite this document:
Harshvardhan Jitendra Pandit Adrian O’Riordan , (2016),"A model for contextual data sharing in
smartphone applications", International Journal of Pervasive Computing and Communications, Vol. 12
Iss 3 pp. 310 - 331
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-06-2016-0030

Downloaded on: 07 November 2016, At: 22:18 (PT)
References: this document contains references to 32 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 60 times since 2016*

Users who downloaded this article also downloaded:
(2016),"Contextual location prediction using spatio-temporal clustering", International Journal of
Pervasive Computing and Communications, Vol. 12 Iss 3 pp. 290-309 http://dx.doi.org/10.1108/
IJPCC-05-2016-0027
(2016),"Model-driven framework to support evolution of mobile applications in multi-cloud
environments", International Journal of Pervasive Computing and Communications, Vol. 12 Iss 3 pp.
332-351 http://dx.doi.org/10.1108/IJPCC-01-2016-0003

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-06-2016-0030


A model for
contextual data sharing

in smartphone applications
Harshvardhan Jitendra Pandit

ADAPT, Trinity College Dublin, Dublin, Ireland, and

Adrian O’Riordan
Department of Computer Science, University College Cork, Cork, Ireland

Abstract
Purpose – The purpose of this paper is to introduce a model for identifying, storing and sharing
contextual information across smartphone apps that uses the native device services. The authors
present the idea of using user input and interaction within an app as contextual information, and how
each app can identify and store contextual information.
Design/methodology/approach – Contexts are modeled as hierarchical objects that can be stored
and shared by applications using native mechanisms. A proof-of-concept implementation of the model
for the Android platform demonstrates contexts modelled as hierarchical objects stored and shared by
applications using native mechanisms.
Findings – The model was found to be practically viable by implemented sample apps that share
context and through a performance analysis of the system.
Practical implications – The contextual data-sharing model enables the creation of smart apps and
services without being tied to any vendor’s cloud services.
Originality/value – This paper introduces a new approach for sharing context in smartphone
applications that does not require cloud services.

Keywords Context, Android, Database, Context management, Context-aware, Mobile middleware

Paper type Research paper

1. Introduction
Smartphone apps offer a large variety and choice of options to perform dedicated tasks
such as movie booking or messaging. Their convenience in terms of functionality form
the core of the user’s smartphone experience. Such apps often compete on features and
functionality based on how well they can help the user perform a particular task. Apps
that offer more functionality have a higher chance of user adoption. With market
saturation of apps with similar functionality, app developers are increasingly looking to
create smart apps (Elgan, 2013) that can adapt to the user’s requirements and provide
better services. Such apps use contextual information to model services and present
information to the user. Personal assistants such as Google Now (2014) and Siri (2014)
use the available contextual information to present targeted services to the user. For
example, Google Now can show weather and traffic information for upcoming events
identified within the user’s emails. This gives an incentive to use such apps and services
and requires other app developers to develop comparable services for their apps to
remain viable.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

IJPCC
12,3

310

Received 21 June 2016
Revised 21 June 2016
Accepted 7 July 2016

International Journal of Pervasive
Computing and Communications
Vol. 12 No. 3, 2016
pp. 310-331
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-06-2016-0030

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-06-2016-0030


The basis of creating a smart app or a smart service is the availability of contextual
information, which is then used to model or predict information that is most useful to the
user. Without access to contextual information, apps and services can only offer a rigid
functionality that does not adapt to the user’s tasks. As a consequence of this, the user
experience becomes disjoint when using several apps. An example of this is presented in
Figure 1 where tasks commonly associated with watching a movie are presented along
with the user experience when using different apps within the given context.

A key problem identified through this example is the inability of applications to
share data with each other due to the sandboxing (Au et al., 2011) security model. The
user is forced to duplicate information represented in the form of information or even a
set of choices as in the case of adding the movie event to the calendar, or sharing the
ticket details with friends. Certain apps that provide such services, for example Google
Now, require the user to be a member of their ecosystem of services. This limits the
choice for the user to choose different services, and is detrimental to other developers
who lack access to the aggregated contextual information.

Some apps leverage this drawback by coupling other popular services to increase
their functionality. Sunrise (Sunrise Calendar, 2014), which is a calendar app, offers
integrations to a large number of services such as Facebook and Wunderlist, which are
popular among users. It also provides navigation features for locations stored within
events, though this requires the user to go through the app to access this feature.
Reminders from only supported services are synced and shown within the calendar.
This reduces the user’s choice and increases the pressure on app developers to integrate
more services. The lack of a framework supporting implicit sharing of information
forces each app developer to depend on explicitly knowing another app’s services to use
them. This has led to efforts such as X-Callback-Url (x-Callback-Url-iOS interapp

Figure 1.
Movie use case

311

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-000.jpg&w=143&h=222


communication, 2014) that provides documentation for an app’s services that can be
integrated in other apps, but does not provide a way to share contextual information.

In this paper, we discuss how information present within apps can be modelled as
contextual information and can be used to develop a framework that supports apps to
declare and use contexts within the smartphone environment. The contextual model
described is motivated by three key challenges in the area of context-awareness:
identifying and accessing contexts along with defining a practical and usable contextual
data store for use by apps. An implementation for the model is demonstrated using
Android and native technologies and is shown to be practically viable and effective.

2. Background and related information
The background and related work is divided into sub-sections based on the three key
challenges mentioned at the end of Section 1. Section 2.1 shows the previous work done
in defining context and context-aware computing. Section 2.2 discusses the various
ways to share data in mobile operating systems and its impact on contextual sharing.
Section 2.3 discusses utilizing cloud to offer contextual services. Section 2.4 contains a
comparison of different ways for representing contexts.

2.1 Context-aware computing
The term context-aware computing was first introduced by Schilit et al. (1994) was
defined as “software that adapts according to its location of use, the collection of nearby
people and objects, as well as changes to those objects over time”. The word context,
derived from Latin con meaning with or together, and textere meaning to weave, denotes
context not just as a profile, but as an active process dealing with the way humans
weave their experiences within their whole environment to give it meaning.

Many approaches defining the notion of context have been proposed and several
adaptive and personalized applications have been designed and implemented by
introducing the notion of user profile and context (Bolchini et al., 2007). Dey (2001) gives
an operational definition of context and discusses the different ways context can be used
by context-aware applications. Three categories of features that a context-aware
application can support are given as: presentation of information and services to the
user, automatic execution of a service for a user, and tagging of context to information to
support later retrieval. Zimmermann et al. (2007) introduce two extensions to available
context definitions that define how the task itself is also part of the context as it
characterizes the situation of the user. This central role of task is shared by Crowley et al.
(2002) and Kofod-Petersen and Cassens, 2006), who assume that the user’s actions are
generally goal driven. Henricksen and Indulska (2006) makes task central in her
definition of context. Abowd et al. (1999) discuss how context has been considered not
simply as a state, but as part of a process in which users are involved.

Surveys and comparisons of context-aware systems and models are presented in
(Bolchini et al., 2007). Chihani et al. (2011) give a new approach for classifying
context-aware communication systems, where adaptation is performed based on how
context is used. They identify services as Instant or Deferred and On Device or On Cloud
based on their implementation instead of their functionalities. They discuss how high
level knowledge can be derived from raw contextual information to give a better
understanding of the user. Yau et al. (2002) describe reconfigurable context-sensitive
middleware (RCSM), a system that creates ad hoc communication between devices to

IJPCC
12,3

312

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



facilitate information exchange. They present two categories of middleware in
pervasive computing based on interaction between devices or entities.

The fact that information such as user input and choice, which is interpreted and
stored by apps can also represent actionable contexts has not been given much
attention. The various approaches that enable interpreting raw contextual information
such as time and location to form higher or complex contexts do not actively share it
with other apps. This places a limit on the amount of contextual information an app can
utilize, and has a direct effect on the nature of contextual services it provides.

2.2 Data sharing in mobile operating systems
The two most popular smartphone operating systems in use today are Android and iOS.
Apps form an integral part of the user experience on both platforms, which allow the
user the choice of using various apps to perform tasks based on preference or the
features provided. Apps can access location and other sensor data available through
system APIs. While Android supports sharing data explicitly between apps, iOS
(version 8.1) has no such feature (Data Management in iOS, 2014). Data sharing on both
platforms is limited to the app’s process due to sandboxing; however, both platforms
allow the explicit use of another app’s services through custom URIs (x-callback-url -
iOS interapp communication, 2014; Chin et al., 2011) which provide features specifically
developed for other apps to use. This increases the effort as services need to be
integrated within an app and exposes potential instability as used third-party APIs and
services can change in the future.

2.3 Context and cloud
Much of the research done previously on contextual models has been cloud-based, where
the cloud is used to offer services not possible on a mobile device and to share
information between multiple devices. Offloading work to the cloud enables services not
previously possible on mobile devices (Chun et al., 2011; Cuervo et al., 2010; Fahim et al.,
2013; Fernando et al., 2013; Kumar and Lu, 2010). One such approach related to this
research is COSMOS (Sankaranarayanan et al., 2011), which describes a cloud-based
PaaS system that provides infrastructure for mobile apps to share data. The authors
emphasize the incentive for mobile apps’ to share information with one another on a
large scale through a service based in the cloud and hosting the mobile apps’ data sets.
They provide an implementation model that hosts app data in the cloud and provides
seamless experience by sharing that data with multiple apps. An example provided is
that of a user going to a conference, where his conference date and location is used to
book airline tickets and the hotel room. The COSMOS data sets provide all the
information required without the user specifying these requirements. For all services to
work, the app must be hosted in COSMOS and must use its architecture.

Intelligent personal assistants such as Google Now (2014), Siri (2014) and Cortana
(2014) perform tasks and services based on user input and information gathered from
the user’s device and a variety of online sources. Google Now and Cortana are based on
leveraging the user information gathered from the maker’s ecosystem of services to
anticipate information the user most likely requires. Siri can act to delegate tasks for
activities such as restaurant booking by having partnerships with service providers.
Microsoft’s Cortana stores personal information such as interests and location data in a
contextual datastore called Notebook which is used to learn the user’s behavior. It is not

313

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



possible for other apps to create and access such services owing to the lack of access to
contextual data.

3. Contextual sharing model
The contextual data sharing model as depicted in Figure 2 consists of three parts – the
Context Database that stores the contexts, the Context Manager that acts as middleware
between the app and the Context database and the Context Definitions that provide a
uniform representation of contexts.

3.1 Context definition
We extend Dey’s (2001) definition of context to include all information related to a user’s
task across applications, using the following as a working definition of context for the
purpose of our research: context comprises of any information related to or affecting the
users’ activities and tasks. This information includes time, location, weather, sensor
information and all information the user is presented with or enters.

For all apps to store contexts and query information in a uniform way, each app must
represent context in the same way irrespective of how it has been generated or acquired.
Different types of context have different schema based on the information they
represent. Each schema has a unique name and a fixed set of fields, which becomes its
definition. Apps use this definition to instantiate context objects for that particular type
of context. This allows identification and usage of different types of context across apps.

In Listing 1, the Movie context schema or definition is divided into two parts with
some fields designated under Event context. Contextually, Movie is an Event, which
means that some information related to Movie also belongs to Event. Therefore, we can
say that Movie is an extension of Event or that the Movie context has been extended from
the Event context. This means that all the fields within Event schema are implicitly
included in the Movie schema.

Figure 2.
System model

IJPCC
12,3

314

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-001.jpg&w=138&h=200


Listing 1. Movie context information
Movie-context

“extends” Event-context
Title
Date/time

“embeds” Location-context
Place name
Co-ordinates

“embeds” Contacts-context
{ […] }

URI
TicketID
Seats
Offers

If we structure the contexts according to how they are extended, we get a tree
representative of the hierarchy of contexts. The root of this tree is an abstract Context
that acts as a common ancestor and allows for generalization of contexts. As each
context can extend only one other context, this keeps the definition and usage simple
and prevents the problems associated with multiple parents (Venners, 1998). As we
move from the top to the bottom of the tree, each context is an extension of the context
directly above it. This allows for use cases like the one depicted in Figure 3 that allow
reusing of services handled by a parent context to all its children.

A context can embed other contexts in its schema. These are called sub-contexts. The
schema for Movie contains a reference to the Location schema, which makes Location a
part of Movie definition, and therefore its sub-context. It is important to note the
difference between extend and embed, where extend is used to add additional
information or generalize another context, and an embed is used to add a context as a
field in another context’s definition. This can be more clearly demonstrated by how
information is related when we say the contextual information related to a Movie is an
Event, and a Movie contains a Location. Figure 4 depicts how different apps use the
Contact and Location sub-contexts within the Event context to provide services related
to the user’s task.

We can create a hierarchy of contexts based on how other contexts embed them. The
contexts that do not embed any other contexts are called Simple contexts, and those that
are further down the tree are called Complex contexts. Using a complex context requires

Figure 3.
Extending contexts

315

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-002.jpg&w=195&h=124


knowledge about all the sub-contexts it embeds. Conversely, an app handling a simple
context does not need to be aware of how other contexts embed it. Therefore, apps that
provide services for a particular context can provide services to all contexts below it in
the hierarchy without being aware of those contexts.

Apps can access a context without knowledge of how other contexts embed it. For
example, Map applications (Apple Maps, 2014; Google Maps, 2014) that handle the
Location context do not need to know about Event and Movie contexts that embed it to
provide them with location services. This allows re-use of functionality without
requiring the app or context schema to be modified. In general, an app that targets its
services for contexts higher in the hierarchy can provide its services to all contexts
situated below it. This allows for some apps to handle common contexts and specialized
apps to target specific contexts. Apps that target contexts further down in the hierarchy
can re-use the services related to contexts situated above it in the hierarchy. Such apps
only have to provide services for the fields added or changed from the context it was
extended from.

In the Movie ticket booking use case, the Booking app would instantiate a context
object of type Movie and fill in the Movie title, date, time, theater location, ticket and seat
information. Apps such as Calendar (Calendar Apps on Google Play, 2014), which can
provide notifications and management features for Event contexts, will also provide
these same services to Movie contexts due to Movie being extended from the Event
context. As the app sees the Movie context object as an Event context, it has access to the
fields (title, date, time and location) declared in the Event schema but not to the other
fields (ticket and seats) from Movie schema.

While we do not provide any recommendation for who should maintain the context
definitions, it is important to note that the definitions need to be present on the device
along with the contextual data sharing model. Putting the definitions and other context
related features in an API and implementing the context database may require support
from the mobile operating system.

3.2 Context database
We use a context database that stores contexts centrally for sharing between
smartphone applications. Having a central repository makes it easier for apps to query
and use contexts. The context database is a system-managed data store located outside

Figure 4.
Embedding contexts

IJPCC
12,3

316

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-003.jpg&w=191&h=134


the locality of an app, which maintains independence from any particular app, and
allows the persistence of contexts even after the app has been uninstalled. Being a
system-managed database also safeguards against any malicious process that may
corrupt data.

As apps will constantly access the context database, operations and complex queries
can affect the user experience with respect to the time they take. This restricts the
database type and operations permissible on a device, and requires the implementation
of simple designs that will not impact the system performance.

Apps can insert or query contexts from the database, but are prohibited from deleting
them explicitly. The system manages deletion of contexts from the database when
required. This is done to prevent malicious apps from deleting contexts and also to
prevent an app from deleting a context when it might be useful for another app.

All access from apps to the context database is through the Context Manager, which
acts as a mediator between the apps and the database. The Context Manager’s
responsibility is to perform the query on the context database and to interpret the
response in a format requested by the app. It is also responsible for performing any
checks and verifications on the correctness of a context. Instead of implementing the
Context Manager as a middleware service, it is embedded in the app itself as a module or
a library. This makes each app hold its own instance of the Context Manager and creates
greater abstraction between apps and the contextual processes. The Context Manager is
executed as part of the app, which leads to all faults and errors being generated in the
app’s process. This increases the stability and security of the context sharing.

Going back to the movie example used in Section 1, the context database will hold all
information related to the Movie context. The Booking app that generates the movie
context object stores it in the context database. This will then be queried by other apps
to access contextual information such as seat information and the theater location.

The size of the context database will have an impact on performance, as queries take
more time when a large number of contexts have accumulated. It becomes necessary in
such cases to trim the database to an acceptable size to keep the query time in an
acceptable range. The time taken by a query to successfully execute depends on number
of records, device configuration and app usage. A high specification device can execute
complex queries faster than a comparably lower specification device. Multiple apps
accessing the context database simultaneously will also have an impact on its
performance. Taking such effects into considerations a policy to delete contexts must be
implemented whenever the size of the database or the number of contexts reaches some
threshold value t that determines the maximum size of the database for which query
times are acceptable. The value t will vary between devices depending on the
specification, use of apps and available space.

The contextual sharing model discussed in this paper does not recommend the use of
any particular database software as long as it provides the features and services
required by the model.

3.3 Contextual sharing model
Apps that wish to use the contextual data sharing model will need to use the Context
Manager to store and retrieve contexts from the context database. All means of sharing
will be indirect, so the apps do not have to interact directly with one another, but through
the context database whose purpose is to share the contextual information across

317

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



applications. The contextual sharing model enables the collection of information related
to a context in a single structure and enables apps to provide services using context.
This allows users to seamlessly carry over tasks across different apps by sharing
contextual information related to their actions.

In the Movie booking example discussed in Section 1, the task required the use of
several apps, with each app requiring duplication of information and effort. With the
contextual sharing model, each app can design its services to let the user choose a
particular context or provide services related to the context most likely to be used. Once
the booking app has created the Movie context, other apps can access it and provide
services based on the information saved within it.

The possible actions the user might perform related to the movie context are to
forward the movie details to other attendees, to find a route on a map to the theater and
accessing seat information once at the theater. When each app that provides these
services uses the Context database to gain information about the Movie context,
the services provided are directly related to the user’s task, and hence more useful. The
messaging app can provide a way to insert the Movie context details such as title, date
and theater location in the message similar to how contact details can be inserted. To
make it easier for the user to access required information, the messaging app can
provide access to recently used contexts. By providing information in an easily usable
format, the user is more likely to complete the task in fewer steps. When the user opens
the Maps application, it can provide a list of upcoming Events and use the Location
embedded within them to provide routes to the destination selected by the user. This
would save searching and typing the address as all information is stored within the
relevant context.

Some calendar applications (Fantastical, 2014; Sunrise Calendar, 2014) that provide a
map in their interface do so only in interactions with the application. A map application
that provides routes for upcoming events requires fewer steps to accomplish the same
goal, while giving a user the freedom to change the route or perform other map-related
actions, which are not possible when other apps embed maps in their interface. At the
theater location, an app that provides location-based reminders can show a notification
containing the Ticket and Seat information with a link to open it in the Booking app. For
the user, the default screen of the app changes to reflect the task they are most likely to
perform, and if the user chooses, they can perform other actions in the app not related to
the context.

The Context Manager queries the database to retrieve context objects requested by
the app. By providing a limiting parameter, the queries can be used for specific needs in
apps which leads to more services and allows apps to specify the nature of contexts they
require from the context database. For example, an app that generates a daily planner
can query for Event contexts occurring on the current date or a restaurant app can query
the context database to check for events and their location to provide recommendations
in a nearby area. By filtering contexts, apps can tailor specific services based on the
results. Another example, mentioned previously with reference to the messaging app,
was to show recently added contexts to the user, which would limit the contexts based
on the time of when they were added to the database.

An app has no ownership or control over the context after it is stored in the context
database. Apps can update or modify contexts in the database irrespective of whether
the context was added by them. As each context is stored independently in the database,

IJPCC
12,3

318

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



and no duplicates are allowed, the modified context is reflected in all contexts that
contains it. This allows apps to modify contexts and update information without
changing the entire context that embeds it. For example, a Map app can update the
Location context and modify its co-ordinates to a more accurate value, and all contexts
that use that particular location will contain the updated values. This allows any app to
update its part of the context information, while still providing all apps with the updated
information.

The contextual nature of information stored in the context database can lead to
security concerns such as maintaining privacy and preventing corruption of data.
Permissions can be used to restrict use of contexts and accessing the context database.
We propose that apps be required to provide explicit read-write permissions for each
kind of context they intend to use so that the system and the user are aware of
applications’ access to information before installation. By separating read and write
permissions, apps that want to use context, but are not generating them will be
prevented from writing to the Context database. A malicious app can still take
advantage of the security system and corrupt the app, but by enforcing permissions, an
app can be scrutinized more carefully.

4. Implementation
We built a proof-of-concept model as depicted in Figure 5 for demonstrating the
contextual data sharing using Android as the implementation platform. The choice of
mobile operating system was made, given the openness and ease of modification which
Android provides. It uses Java classes to model the context definitions, SQLite for the
context database and a static Java class for the Context Manager. The model is platform
independent and can be ported with minor adjustments to other platforms. A link to the
code repository of this project can be found here[1].

Figure 5.
Android

implementation

319

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-004.jpg&w=143&h=207


4.1 Context definition
Contexts can be represented and implemented in a number of ways on a smartphone
device as long as the entire context is provided as a single object that can be serialized
and used natively in the code. We represent the context definitions through Java Classes
which are then instantiated into Java Objects. This simplifies the code as there is no
parsing or extraction, and all related functions such as error-checks and marshaling can
be encapsulated into the class itself. As Android has a native Java runtime environment,
using Java objects for contexts provides better management of code and memory during
execution and makes it easier for developers to use data structures and manage code.

Apps such as Calendar that handle Event contexts also provide services for contexts
such as Movie, Lunch, Meeting, etc., that extend it. Specific apps like Movie Booking will
offer services for the particular type of context that they use. When the user books a
movie ticket through the app, the contextual information is shared to Calendar, which
provides notifications, reminders and planning features for the movie designated as an
event. This allows one app to focus its services on the contextual information it has
access to, while other apps can provide different services related to the same context.

Generalizing an object of the derived class to its parent class increases re-usability of
code in applications and allows the creation of apps that target contexts higher in the
hierarchy, but work for all contexts that are below it. This allows functions written to
accept Event objects to work with Movie objects as the system casts Movie to Event
during runtime.

A field that stores URI links is defined in some context definitions and is used for
storing links to related information. A URI in Android can refer to websites as well as
apps. For Events, the link can point to the event website or an app that holds this
information. Apps that want to handle a particular URI scheme need to register it in the
manifest. The system reads the manifest during installation and associates the app with
that particular scheme. For example, an app registering the URI scheme http:// will be
opened every time the user visits a Web page. Similarly, apps can store a URI linking the
context to some information or service they provide. For example, a restaurant booking
app can link the URI in a dinner context to the booking information. Clicking the link will
take the user to the app’s user interface elements related to that particular booking.
These URI’s can be opened or triggered inside any app as the system opens the correct
app to handle the context. This allows apps to provide links to information stored within
other apps and allows the use of related services without explicitly switching apps.

4.2 Context database
Android’s Content Providers (Android-Content Provider, 2014) provide access and
encapsulation of structured data and provide mechanisms for defining data security.
The Context database in our implementation of the model uses SQLite version 3.7.11,
which is pre-installed in Android version 4.4.4 (KitKat).

The SQLite database is instantiated with a distinct table for every context type. In
cases where a context extends another context, only fields that were added or changed
are stored in the extended context’s table, with the rest of the fields stored in the parent
context’s table. This allows a query to receive all kinds of events without implementing
joins or multiple queries. This increases the usability of contexts and services an app can
provide by being compatible with newer contexts that may be introduced. Where a

IJPCC
12,3

320

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



context includes a sub-context in its definition, each relation is stored in a separate table
to keep information distinct belonging to different contexts.

An app requesting entries for a particular context receives a subset of contexts to
avoid the cost of retrieving all objects in every query and encourages apps to only query
contexts that are relevant. For example, a query can request Events occurring in the
current week in or around a particular location by providing the date and location range
values.

4.3 Context manager
The Context Manager is a static Java class instantiated in the user app’s process and is
responsible for querying the context database through the Content Provider and to
interpret the results returned. Every app has its own instance of the Context Manager,
which acts independent of the context database. All apps use the API for methods in
Context Manager to insert or retrieve contexts. Except for the actual database queries,
all other operations such as field-checking, marshaling and error-checks are performed
by the Context Manager in the user app’s process. This reduces the burden on the
database system and allows faster, simultaneous access by multiple apps. Also, any
errors resulting from an operation are handled in the user app’s process, which prevents
affecting other ongoing operations. This also provides a level of security by shifting
potential crashes in Context Manager from the system to the user app.

When inserting or updating a context object, the Context Manager will check for
errors and completeness of fields and information before instantiating the query. When
an app requests contexts from the database, the Context Manager retrieves the results
from the database and creates context objects locally before returning them to the app.
As the objects are created locally in the app’s data, all garbage collection and lifetimes
are restricted to the app’s process. This follows the sandboxing model in Android and
allows the app to safely use objects without them being shared. As the contexts are
instantiated in the app’s data space, their lifetime is restricted to the lifetime of the app.
When an app’s data are cleared after it is closed, or removed from the stack, the context
objects are removed from the memory as well. Along with the Context Manager class,
the required APIs and class definitions are bundled together into a library which the
developers must include in their projects to interact with the context database. Using a
library makes it easy to integrate the functionality and definitions in projects.

4.4 Demonstration of concept
In our demonstration, we show the movie booking use case using apps that interact with
the context database. The movie booking app (Figure 8) accepts user input and creates
a new Movie context containing the movie title, the date/time of the show, the theater’s
location, the ticket and seat information and a link to information websites such as
IMDb. It then adds the Movie to the context database through the Context Manager.
This information is now available to other apps that can retrieve it by querying the
context database. The calendar app queries the context database to retrieve upcoming
events. The results include the movie event added by the booking app, which the user
can edit to change the date/time and add contacts. This saves the user the effort of
entering the information as the app retrieves it from the database and also allows
contacts to be added to the contextual information of the movie event. The messaging
app (Figure 9) allows inserting contextual information in messages by querying

321

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



contexts in the context database. The user can choose the fields to be inserted from a list
of contexts displayed in a menu. If a context contains contacts, these contacts are added
to the recipient field and the information from other fields is added to the message body.
By selecting the movie context from the list, the user can send the movie details to all
contacts attending the movie without having to type the information in the message.

The maps app (Figure 6) displays upcoming events with a location by querying the
context database. When the user selects a particular entry, the location from that context
is used as destination to provide navigational features. This allows the user to navigate
to the theater by selecting the movie context from the list and saves the effort of entering
the address and selecting a location. The reminder app (Figure 7) is used for displaying
notifications based on time or location. When the user reaches the theater, the reminder
app identifies the location and displays a notification containing the ticket and seat
information. The user does not have to enter the contextual information as it is queried
from the context database. The ticket and seat information is used as the notification
contents and the location is used as a trigger. Each app used in the demonstration
belongs to a separate package and uses different developer signatures to isolate their
identities from one another. This is used to prevent any implicit sharing of data between
the apps, and to demonstrate how contextual information is shared through the context
database. The apps used the Context Manager to insert and query the context database
and receive context objects as results which they use to provide services. The user has to
enter significantly less information, as the apps retrieve the related contextual
information from the Context database.

Figure 6.
Booking app saves
movie context

IJPCC
12,3

322

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-005.jpg&w=167&h=264


As the information is generated and consumed by apps installed on a smartphone,
having the Context database situated on the device is beneficial as all related
information is generated, stored and consumed in the same ecosystem. It is possible to
use cloud offloading to offer more functionalities and resources based on contexts not
stored in the device database, but such functionality will form an extension to the model.

4.5 Privacy and security
Android’s permissions model provides some degree of privacy and security by
requiring apps to declare the required resources such as camera, location and telephony
through its manifest. When the app requests access to that particular resource, the
system checks the permissions at runtime and grants access to the specified resource.
The user is made aware of these permissions during the installation of the app (Figures 8
and 9).

The permissions model can be extended for the Contextual Data Sharing Model by
implementing changes to the system code that handles the permissions mechanisms.
Each context type would be considered as a separate resource and would require the app
to declare its use before it can access the information in the Context database. This
would require the application to declare all context types it would be accessing during
installation, which can then be displayed to the user to provide awareness about the
app’s access to sensitive information. By separating the permissions for accessing and

Figure 7.
Messaging app can

send movie info

323

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-006.jpg&w=181&h=286


updating/writing to the context database, further control over the privacy and security
can be achieved. As the Context Manager is a separate system component that connects
to the Context Database, it would be easy to achieve a fine granularity of control over the
information made available to apps.

5. Metrics and performance
The proof-of-concept experiments were carried out on a Nexus 7 running Android
version 4.4.4 (KitKat). Test results were gathered using timestamps from logging at
important points in the code. The number of entries (records) in the Context Database
has an impact on the time required to complete each operation.

The following tables show the time taken for various operations to complete for
different number of Event entries in the database. The operations were run multiple
times (n � 100) in standard operating conditions. In the tables, tmin depicts the minimum
value, tmax the maximum value, tavg the average and tstdev the standard deviation.

Table I shows the time taken to insert one Event object using Context Manager. The
total time is inclusive of the time spent performing error and validation checks,
inter-process communication (IPC) between user app and Content Provider, checking for
duplicates and inserting the entry in the database. Table II shows the time taken for
Context Manager to retrieve Event entries from the database. This includes the time

Figure 8.
Maps app can show
upcoming event
locations

IJPCC
12,3

324

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-007.jpg&w=181&h=286


required to execute the database query, perform IPC between Content Provider and user
app, and instantiate the Event objects.

Table III shows the time required to execute the query for inserting one Event entry
in the database. The total time is inclusive of the time required for unmarshalling values,
inserting Contact, Location and Event entries in their respective tables, creating
relational entries in various tables and checking for duplicates. Table IV shows the time
taken to execute the query for retrieving all Event entries from the database. The query

Figure 9.
Calendar can show

contextual
notifications

Table I.
Time taken by

context manager to
insert one Event

object into the
database

Entries tmin (ms) tmax (ms) tavg (ms) tstdev (ms)

100 1 25 1.7 3.1
500 2 47 2.9 5.01
1,000 5 58 6.77 7.41
5,000 25 243 35.8 34.02
10,000 51 491 62.34 48.86
50,000 74 783 89.02 89.18
100,000 100 1,176 130.2 137.6

325

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-008.jpg&w=191&h=302


performs joins over the Event, Contact, Location and relation tables to put all associated
information together in the result.

A comparison of insert and retrieval times for Event objects using Context Manager
is given in Figure 10. The graph shows a range of values containing the minimum (tmin),
maximum (tmax) and average time (tavg) required for an operation based on the number
of entries in the database. Analyzing the graph shows how the cost of inserting objects
increases almost linearly with the number of entries in the database. While tmin and tavg
at large the database sizes are within an acceptable range for responsiveness in UI
[0-100 ms (Jovic and Hauswirth, 2010)], the variations can be seen through tmax. The time
required to retrieve Event objects from the database increases much more rapidly with the
size of the database. The value of tavg reaches 5,000 ms with 35,000 entries in the database,
which is outside the range of acceptable values. If the number of entries is restricted to 100,
tavg equals 120 ms, which is just outside the acceptable range. Further analysis of these
values can be used to limit the number of entries returned in response to a query to keep the
performance of the operation under permissible values.

Table II.
Time taken by
context manager to
retrieve Event entries
from the database

Entries tmin (ms) tmax (ms) tavg (ms) tstdev (ms)

100 10 39 16.72 4.6
500 100 198 120.61 10.05
1,000 200 388 240.95 16.28
5,000 500 1,781 663.56 115.86
10,000 2,000 4,896 2,265.74 364.46
50,000 5,000 10,192 6,681.94 712.68
100,000 10,024 18,094 11,459.12 1,429.04

Table III.
Time required to
execute query for
inserting one Event
context into the
database

Entries tmin (ms) tmax (ms) tavg (ms) tstdev (ms)

100 1 5 1.65 0.81
500 1 5 1.72 1.02
1,000 1 5 2.03 1.14
5,000 2 9 4.21 1.6
10,000 4 19 6 2.28
50,000 9 49 12.19 6.51
100,000 20 119 42.55 12.08

Table IV.
Time required to
execute query for
retrieving Event
entries from the
database

Entries tmin (ms) tmax (ms) tavg (ms) tstdev (ms)

100 1 5 1.87 0.87
500 1 5 2.11 0.94
1,000 1 5 2.34 1.13
5,000 3 10 5.42 1.95
10,000 9 39 12.05 4.29
50,000 10 49 15.83 6.98
100,000 20 137 31.51 15.73

IJPCC
12,3

326

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



The CPU load resulting from Context Manager requesting 10,000 Event objects from the
database is shown in Figure 11. The horizontal axis depicts the running time given in
seconds, and the vertical axis depicts the CPU usage in per cent. The app that is
responsible for the request draws Event objects on screen using a list view. At about t �
3.1 s, the app requests the Context Manager to retrieve all Event objects. The Context
Manager sends this request to the Content Provider in the database’s process. The
database executes the appropriate queries from t � 3.2 s to t � 3.5 s and retrieves all
Event entries along with the related information. It then sends these data back to the
Context Manager in the app’s process. The context-manager constructs the Event

Figure 10.
Comparison of time

required to
insert/retrieve Event
objects with number

of entries in the
database

Figure 11.
CPU load caused by

context manager
creating 10,000 Event

objects retrieved
from the database

327

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-009.jpg&w=297&h=174
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2016-0030&iName=master.img-010.jpg&w=343&h=201


objects from this data from t � 3.8 s to t � 5.5 s. The app then draws the graphical user
interface (GUI) with the Event objects from t � 6.0 s to t � 10.3 s. The total duration from
sending the request till drawing the list view is about t � 7.5 s, which is well outside the
acceptable range for UI interactions. If the number of entries retrieved from the database
is restricted to 100 using the analysis of Figure 10, it would further reduce the CPU time
and memory used and would allow more fluid user interactions. The average CPU load
at all times is well below 50 per cent, which can be considered as not being under stress.
This allows the CPU to run other apps and operations in the background.

6. Conclusion and future works
In this paper, we introduce a Contextual Data Sharing Model for smartphone
applications that structures contexts using definitions and shares contexts through a
Context Database. Apps query the Context Database to retrieve contextual information
which saves the effort of entering related information in multiple apps used within the
same context. This leads to better features and an improved user experience due to the
availability of contextual information across apps.

An implementation on Android is used to demonstrate the contextual data sharing
model. It uses Java classes for Context Definitions, which provide uniform context
representations across apps and devices and are instantiated as Java objects on device.
The Context Database uses Android’s Content Provider interface with SQLite as the
storage backend for context entries. The Context Manager acts as a middleware
between apps and the Context Database is implemented as a static Java class in the app’s
process. The Context Definitions and the Context Manager class are bundled together
into a library which the developers can include in their project to use contexts and
interact with the Context Database.

The time required to complete various database operations relative to the size of the
database in the implementation is analyzed to identify its impacts on performance and
usability. Conclusions regarding optimization of performance regarding queries are also
discussed. The impact of running operations on device was analyzed and presented no
hindrance to other apps on the device.

Concerns and considerations such as security and performance are discussed in
relation to the implementation on Android. The main concern of adapting Android’s
security and permission model for the contextual data sharing model is also discussed.

The main goal of this research is to enable apps to query contextual information
stored on the device to access contextual information. This allows the apps to present
users with services they most likely require and saves the effort of entering related
information multiple times. By offloading operations and Context Database to the cloud,
additional features such as analyzing and mediating contexts between different devices
can be achieved. More powerful and useful services can be developed in the cloud using
contextual information accessible from various sources. This can be used to provide
users access to services or information that is relevant to their contexts, but not present
on the device. The local datastore on the device can act as a cache for the datastore based
in the cloud, allowing operations that execute faster by querying the local datastore, and
will also allow the app to work without network dependence.

The Context Database used can be optimized based on the nature of queries being
performed. A NoSQL graph database for mobile devices can be used to store relations
between contexts, which can lead to new and interesting features. Using database

IJPCC
12,3

328

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



features like narrowing search results and ordering based on parameters gives apps
more ways to use contexts.

By introducing or re-using more use cases in the Context Definitions, new services
based on the user’s context can be created that were not previously possible. For
example, by including weather and traffic information within an Event context, apps
can present this information without querying for weather or traffic data themselves.
This allows apps to share services present on the device to provide related information
in more useful ways.

Note
1. https://github.com/coolharsh55/Smartphone_App_Contextual_Model

References
Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M. and Steggles, P. (1999), “Towards a

better understanding of context and context-awareness”, Proceedings of the 1st
International Symposium on Handheld and Ubiquitous Computing, HUC ’99,
Springer-Verlag, Karlsruhe, pp. 304-307, available at: http://dl.acm.org/citation.cfm?id�
647985.743843

Android – Content Provider (2014), available at: https://developer.android.com/guide/topics/
providers/content-providers.html

Apple Maps (2014). available at: www.apple.com/ie/ios/maps/
Au, K.W.Y., Zhou, Y.F., Huang, Z., Gill, P. and Lie, D. (2011). “Short paper: a look at smartphone

permission models”, Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices SPSM ’11, ACM, Chicago, IL, pp. 63-68, doi: 10.1145/
2046614.2046626, available at: http://DOI.acm.org/10.1145/20466142046626.

Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A. and Tanca, L. (2007), “A data-oriented
survey of context models”, ACM SIGMOD Record, Vol. 36 No. 4, pp. 19-26, doi: 10.1145/
1361348.1361353, available at: http://doi.acm.org/10.1145/1361348.1361353

Calendar Apps on Google Play (2014), “Calendar apps on google play”, available at: https://play.
google.com/store/search?q�calendar&c�apps

Chihani, B., Bertin, E. and Crespi, N. (2011), “A comprehensive framework for context-aware
communication services”, 15th International Conference on Intelligence in Next Generation
Networks (ICIN), pp. 52-57, doi: 10.1109/ICIN.2011.6081102.

Chin, E., Felt, P.A., Greenwood, K. and Wagner, D. (2011). “Analyzing inter-application
communication in android”, Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’11, ACM, Bethesda, MD, pp. 239-252, doi:
10.1145/1999995.2000018, available at: http://DOI.acm.org/10.1145/1999995.2000018

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011). “CloneCloud: elastic execution
between mobile device and cloud”, Proceedings of the Sixth Conference on Computer
Systems. EuroSys ’11, ACM, Salzburg, pp. 301-314, doi: 10.1145/1966445.1966473, available
at: http://doi.acm.org/10.1145/1966445.1966473

Cortana (2014), available at: www.windowsphone.com/en-US/how-to/wp8/cortana/meet-cortana
Crowley, J.L., Coutaz, J., Rey, G. and Reignier, P. (2002), “Perceptual components for context aware

computing”, Proceedings of the 4th International Conference on Ubiquitous Computing,
UbiComp ’02, Springer-Verlag, Goteborg, pp. 117-134, available at: http://dl.acm.org/
citation.cfm?id�647988.741482

329

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

https://github.com/coolharsh55/Smartphone_App_Contextual_Model
http://dl.acm.org/citation.cfm?id=%20647985.743843
http://dl.acm.org/citation.cfm?id=%20647985.743843
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
http://www.apple.com/ie/ios/maps/
http://dx.doi.org/10.1145/2046614.2046626
http://dx.doi.org/10.1145/2046614.2046626
http://DOI.acm.org/10.1145/20466142046626
http://dx.doi.org/10.1145/1361348.1361353
http://dx.doi.org/10.1145/1361348.1361353
http://doi.acm.org/10.1145/1361348.1361353
https://play.google.com/store/search?q=calendar&c=apps
https://play.google.com/store/search?q=calendar&c=apps
http://dx.doi.org/10.1109/ICIN.2011.6081102.
http://dx.doi.org/10.1145/1999995.2000018
http://DOI.acm.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1966445.1966473
http://www.windowsphone.com/en-US/how-to/wp8/cortana/meet-cortana
http://dl.acm.org/citation.cfm?id=647988.741482
http://dl.acm.org/citation.cfm?id=647988.741482
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICIN.2011.6081102
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICIN.2011.6081102
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45809-3_9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45809-3_9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1966445.1966473
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1966445.1966473
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2046614.2046626
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2046614.2046626
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-48157-5_29
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-48157-5_29
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1999995.2000018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1999995.2000018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1361348.1361353&isi=000254994100003


Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Ch, R. and Bahl, P. (2010),
“MAUI: making smartphones last longer with code offload”, Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services, MobiSys ’10,
ACM, San Francisco, CA, pp. 49-62, doi: 10.1145/1814433.1814441, available at: http://doi.
acm.org/10.1145/1814433.1814441

Data Management in iOS (2014), available at: https://developer.apple.com/technologies/ios/data-
management.html

Dey, A.K. (2001), “Understanding and using context”, Personal Ubiquitous Computing, Vol. 5
No. 1, pp. 4-7, doi: 10.1007/s007790170019, available at: http://dx.doi.org/10.1007/s0077901
70019

Elgan, M. (2013), “Smart apps think (so you don’t have to)”, available at: www.computerworld.
com/article/2496110/mobile-apps/smartapps-think–so-you-don-t-have-to-.html

Fahim, A., Abderrahmen, M. and Khaled, A.H. (2013), “Making the case for computational
offlading in mobile device clouds”, Proceedings of the 19th Annual International
Conference on Mobile Computing & Networking, MobiCom ’13, ACM, Miami, FL,
pp. 203-205, doi: 10.1145/2500423.2504576, available at: http://doi.acm.org/10.1145/250042
3.2504576

Fantastical (2014), available at: https://flexibits.com/fantastical-iphone
Fernando, N., Seng, W.L. and Wenny, R. (2013), “Mobile cloud computing: a survey”, Future

generation computer systems 29.1. Including special section: AIRCC-NetCoM 2009 and
special section: Clouds and Service-Oriented Architectures, pp. 84-106, available at: http://
dx.DOI.org/10.1016/j.future.2012.05.023; www.sciencedirect.com/science/article/pii/S0167
739X12001318

Google Maps (2014), available at: https://play.google.com/store/apps/details?id�com.google.
android.apps.maps&hl�en

Google Now (2014), available at: www.google.com/landing/now/
Henricksen, K. and Indulska, J. (2006), “Developing context-aware pervasive computing

applications: models and approach”, Pervasive and Mobile Computing, Vol. 2 No. 1,
pp. 37-64, doi: 10.1016/j.pmcj.2005.07.003, available at: http://dx.doi.org/10.1016/j.pmcj.200
5.07.003

Jovic, M. and M. Hauswirth (2010), “Performance testing of GUI applications”, 2010 Third
International Conference on Software Testing, Verification, and Validation Workshops
(ICSTW), pp. 247-251, doi: 10.1109/ICSTW.2010.27.

Kofod-Petersen, A. and Cassens, J. (2006), “Using activity theory to model context awareness”,
Modeling and Retrieval of Context: Second International Workshop, MRC 2005, Springer
Verlag, Berlin, pp. 1-17.

Kumar, K. and Lu, Y.H (2010), “Cloud computing for mobile users: can offloading computation
save energy?”, Computer, Vol. 43 No. 4, pp. 51-56, doi: 10.1109/MC.2010.98, available at:
http://dx.DOI.org/10.1109/MC.2010.98.

Sankaranarayanan, J., H. Hacigumus, and J. Tatemura. (2011), “COSMOS: a platform for seamless
mobile services in the cloud”, 12th IEEE International Conference on Mobile Data
Management (MDM), Vol. 1, pp. 303-312, doi: 10.1109/MDM.2011.68.

Schilit, B., Adams, N. and Want, R. (1994), “Context-aware computing applications”, Proceedings
of the 1994 First Workshop on Mobile Computing Systems and Applications, WMCSA ’94,
IEEE Computer Society, Washington, DC, pp. 85-90, doi: 10.1109/WMCSA.1994.16,
available at: http://dx.DOI.org/10.1109/WMCSA. 1994.16

Siri (2014), available at: www.apple.com/ios/siri/

IJPCC
12,3

330

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
https://developer.apple.com/technologies/ios/data-management.html
https://developer.apple.com/technologies/ios/data-management.html
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://www.computerworld.com/article/2496110/mobile-apps/smartapps-thinkNso-you-don-t-have-to-.html
http://www.computerworld.com/article/2496110/mobile-apps/smartapps-thinkNso-you-don-t-have-to-.html
http://dx.doi.org/10.1145/2500423.2504576
http://doi.acm.org/10.1145/2500423.2504576
http://doi.acm.org/10.1145/2500423.2504576
https://flexibits.com/fantastical-iphone
http://dx.DOI.org/10.1016/j.future.2012.05.023
http://dx.DOI.org/10.1016/j.future.2012.05.023
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en
http://www.google.com/landing/now/
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1109/ICSTW.2010.27
http://dx.doi.org/10.1109/MC.2010.98
http://dx.DOI.org/10.1109/MC.2010.98.
http://dx.doi.org/10.1109/MDM.2011.68
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.DOI.org/10.1109/WMCSA.%201994.16
http://www.apple.com/ios/siri/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.pmcj.2005.07.003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.future.2012.05.023
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.future.2012.05.023
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.future.2012.05.023
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11740674_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMDM.2011.68
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMDM.2011.68
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1814433.1814441
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1814433.1814441
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMC.2010.98&isi=000276473600010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs007790170019&isi=000208541700002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWMCSA.1994.16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWMCSA.1994.16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2500423.2504576
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWMCSA.1994.16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2500423.2504576


Sunrise Calendar (2014), available at: https://calendar.sunrise.am/
Venners, B. (1998), “Designing with interfaces: one programmer’s struggle to understand the

interface”, available at: www.javaworld.com/article/2076841/core-java/designing-with-
interfaces.html

x-callback-URL - iOS Interapp Communication (2014), available at: http://x-callbackURL.com/
Yau, S.S., Karim, F., Wang, Y., Wang, B. and Gupta, S.K.S. (2002), “Recongurable context-sensitive

middleware for pervasive computing”, Pervasive Computing, Vol. 1 No. 3, pp. 33-40, doi:
10.1109/MPRV.2002.1037720.

Zimmermann, A., Andreas, L. and Reinhard, O. (2007), “An operational definition of context”,
Proceedings of the 6th International and Interdisciplinary Conference on Modeling and
Using Context, CONTEXT’07, Springer-Verlag, Roskilde, pp. 558-571, available at: http://
dl.acm.org/citation.cfm?id�,1770806.1770848

Corresponding author
Harshvardhan Jitendra Pandit can be contacted at: pandith@tcd.ie

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

331

Contextual
data sharing

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

https://calendar.sunrise.am/
http://www.javaworld.com/article/2076841/core-java/designing-with-interfaces.html
http://www.javaworld.com/article/2076841/core-java/designing-with-interfaces.html
http://x-callbackURL.com/
http://dx.doi.org/10.1109/MPRV.2002.1037720
http://dl.acm.org/citation.cfm?id=,1770806.1770848
http://dl.acm.org/citation.cfm?id=,1770806.1770848
mailto:pandith@tcd.ie
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-74255-5_42
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-74255-5_42
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMPRV.2002.1037720

	A model for contextual data sharing in smartphone applications
	1. Introduction
	2. Background and related information
	3. Contextual sharing model
	4. Implementation
	5. Metrics and performance
	6. Conclusion and future works
	References


