
International Journal of Pervasive Computing and Communications
Security and privacy of smartphone messaging applications
Robin Mueller Sebastian Schrittwieser Peter Fruehwirt Peter Kieseberg Edgar Weippl

Article information:
To cite this document:
Robin Mueller Sebastian Schrittwieser Peter Fruehwirt Peter Kieseberg Edgar Weippl ,
(2015),"Security and privacy of smartphone messaging applications", International Journal of
Pervasive Computing and Communications, Vol. 11 Iss 2 pp. 132 - 150
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-04-2015-0020

Downloaded on: 07 November 2016, At: 22:33 (PT)
References: this document contains references to 22 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 933 times since 2015*

Users who downloaded this article also downloaded:
(2011),"Dependency on smartphone and the impact on purchase behaviour", Young Consumers, Vol.
12 Iss 3 pp. 193-203 http://dx.doi.org/10.1108/17473611111163250
(2015),"Privacy-preserving biometrics authentication systems using fully homomorphic encryption",
International Journal of Pervasive Computing and Communications, Vol. 11 Iss 2 pp. 151-168 http://
dx.doi.org/10.1108/IJPCC-02-2015-0012

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-04-2015-0020


Security and privacy of
smartphone messaging

applications
Robin Mueller

Vienna University of Technology, Vienna, Austria

Sebastian Schrittwieser
St. Poelten University of Applied Sciences, St. Poelten, Austria, and

Peter Fruehwirt, Peter Kieseberg and Edgar Weippl
SBA Research, Vienna, Austria

Abstract
Purpose – This paper aims to give an overview on a number of selected applications in comparison to
a previous evaluation conducted two years ago, as well as performing an analysis on several new
applications. Mobile messaging and VoIP applications for smartphones have seen a massive surge in
popularity, which has also sparked the interest in research related to their security and privacy
protection, leading to in-depth analyses of specific applications or vulnerabilities.
Design/methodology/approach – The evaluation methods mostly focus on known vulnerabilities
in connection with authentication and validation mechanisms but also describe some newly identified
attack vectors.
Findings – The results show a positive trend for new applications, which are mostly being developed
with security and privacy features, whereas some of the older applications have shown little progress or
have even introduced new vulnerabilities. In addition, this paper shows privacy implications of
smartphone messaging that are not even solved by today’s most sophisticated “secure” smartphone
messaging applications, as well as discusses methods for protecting user privacy during the creation of
the user network.
Research limitations/implications – Currently, there is no perfect solution available; thus, further
research on this topic needs to be conducted.
Originality/value – In addition to conducting a security evaluation of existing applications together
with newly designed messengers that were designed with a security background in mind, several
methods for protecting user privacy were discussed. Furthermore, some new attack vectors were
discussed.

Keywords Access control, Mobile security, Security and protection, Smartphone messengers,
Transport layer encryption

Paper type Research paper

1. Introduction and related work
With the ever-increasing popularity of OTT (over-the-top) messaging in recent years
and massively successful applications such as WhatsApp, Line and WeChat claiming to
have active monthly user bases of up to 400 million users or more (Koum, 2013;

Parts of this research were funded by COMET K1, FFG – Austrian Research Promotion Agency.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

IJPCC
11,2

132

Received 2 April 2015
Revised 2 April 2015
Accepted 5 April 2015

International Journal of Pervasive
Computing and Communications
Vol. 11 No. 2, 2015
pp. 132-150
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-04-2015-0020

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-04-2015-0020


Millward, 2013a, 2013b), large numbers of similar applications have emerged on the
mobile app market trying to imitate those huge successes. In 2012, the number of
messages sent over OTT networks had eclipsed the number of SMS messages, with
researchers projecting OTT messages to exceed SMS by a factor of 4 by the year 2017
(Whitfield, 2013). The fast growth and large number of available applications in a
relatively young field naturally causes many of them being developed without sufficient
security in mind. Schrittwieser et al. (2012) and Cheng et al. (2013) describe various
attack scenarios and possible implications of security vulnerabilities related to these
kinds of applications. Other research focused further on the consequences of
vulnerabilities in those applications, e.g. privacy (Stirparo and Kounelis, 2012) or the
system architecture (Braga, 2013). The security functionality of smartphone operating
systems are widely studied (Davi et al., 2011; Egele et al., 2011; Enck et al., 2011, 2009;
Felt et al., 2011); app-specific vulnerabilities further exist.

The goal of this paper is to follow-up previous research by re-evaluating existing
applications to show advances in the security field as well as examining newly emerged
ones for known or potentially new vulnerability patterns. User authentication is a
popular field of ongoing research (Bishop, 2002; Stallings, 2010), especially in Web
services (Fu et al., 2001) and distributed systems (Lampson et al., 1992). We re-evaluate
the security of the authentication system of mobile messaging apps two years after the
publication of critical vulnerabilities.

As the number of OTT messaging applications is very large, we focus only on a
subset of the available applications, based on the sample of previous evaluations as well
as their install base.

2. Messaging applications
Similar to the previous work of Schrittwieser et al. (Schrittwieser et al., 2012), we are
focusing at applications that solely rely on the users’ phone number in the verification
process (in Section 5, we extend our research by selecting other messengers that also
support user accounts). Generally, this means that a new user has to enter his phone
number when registering an account. The application will use this number as a means
of identifying the user. To prevent malicious attackers from simply entering arbitrary
phone numbers to impersonate their target, most applications include a verification
process to make sure that the entered phone number actually belongs to the user. The
way this verification is done varies between applications, but it usually involves some
kind of authentication token (in most cases, this is simply a four- to six-digit number)
being communicated between the server and the phone in a way that enables the server
to establish the authenticity of the entered phone number. This is almost universally
done through SMS, although the actual protocol can be vastly different in terms of
implementation and security. Most applications will simply send a short verification
code per SMS to the number that the user is trying to register, which they then have to
copy into the application to prove that they are actually the owner of the given phone
number. The individual protocols and their identified flaws will be outlined in Section 4.

3. Evaluation
3.1 Methods
The actual evaluation consisted of two groups of applications: first, we re-evaluated all
of the applications that had previously been analyzed by (Schrittwieser et al., 2012) to

133

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



check for any improvements, and then, we looked for new applications that have
emerged in the past two years and checked those for any vulnerabilities.

Tables I and II list all applications, their basic features and the estimated size of their
user base. Whenever possible, we used publicly available information from the
application vendor; otherwise, the user base was estimated from the numbers
accumulated from the Google Play Store (which provides a rather wide range on the
approximate number of Android installs) and Xyo[1] (a service that provides estimated
download numbers for iPhone applications). The following section lists and shortly
describes different vulnerabilities that the evaluated applications were tested against.
The categories are based on Schrittwieser et al. (2012).

Table I.
Overview of
messaging
applications, eight
re-evaluated
applications,
followed by nine new
ones

Version Android/iOS VoIP Text messages No. verification

eBuddy XMS (2.21.1/2.3.1) No Yes SMS, active SMS
EasyTalk (2.2.6/2.1.1) Yes Yes SMS
Forfone (1.5.7/3.4.2) Yes Yes SMS, active SMS
HeyTell (3.1.0.384/3.1.2.458) Yes No None
Tango (3.3.69998/3.3.71425) Yes Yes SMS
Viber (4.1.1.10/4.1) Yes Yes SMS
WhatsApp (2.11.152/2.11.7) No Yes SMS, passive phone call
fring (4.5.1.1/6.5.0) Yes Yes SMS
GupShup (2.6/2.6) No Yes SMS
Hike (2.6.16/2.4.1) No Yes SMS
JaxtrSMS (03.02.00/3.0.9) No Yes Active SMS, validation link, passive phone call
KakaoTalk (4.2.3/3.9.5) Yes Yes SMS, passive phone call
Line (3.10.1/3.10.1) Yes Yes SMS
textPlus (5.9.1.4671/5.4.0) Yes Yes SMS
WeChat (5.0.3.1/5.1.0.6) Yes Yes SMS

Table II.
Additional features
of the messengers

Version Android/iOS Phone book upload Status messages Estimated user base

eBuddy XMS (2.21.1/2.3.1) Yes No 7.3-12.3M
EasyTalk (2.2.6/2.1.1) Yes No 0.48-0.88M
Forfone (1.5.7/3.4.2) Yes No 2.8-6.8M
HeyTell (3.1.0.384/3.1.2.458) No No 17.6-57.6M
Tango (3.3.69998/3.3.71425) Yes No 110-510M
Viber (4.1.1.10/4.1) Yes No 133-533M
WhatsApp (2.11.152/2.11.7) Yes Yes 350M
fring (4.5.1.1/6.5.0) Yes No 29-69M
GupShup (2.6/2.6) Yes Yes 0.1-0.5M
Hike (2.6.16/2.4.1) Yes Yes 5.3-10.3M
JaxtrSMS (03.02.00/3.0.9) Yes No 0.9M-1.4M
KakaoTalk (4.2.3/3.9.5) Yes No 58M-108M
Line (3.10.1/3.10.1) Yes Yes 300M
textPlus (5.9.1.4671/5.4.0) Yes No 44-84M
WeChat (5.0.3.1/5.1.0.6) Yes No 270M

IJPCC
11,2

134

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



3.2 Common vulnerabilities
3.2.1 Authentication and account hijacking. Arguably the most dangerous class of
vulnerabilities allows an attacker to take over a victim’s account or impersonate it by
circumventing the authentication mechanism of an application. Most applications
prompt the user to enter their phone number first (some Android applications will
extract the phone number automatically and ask the user to confirm its correctness) and
then send an SMS to that number containing an (usually four to six digits)
authentication code which the user has to enter. Some applications use different
methods, which will be described in detail in the appropriate sections. We tested and
analyzed the protocols used for identifying and linking the user’s phone number to their
account and attempted to circumvent them. Another related vulnerability deals with the
unauthorized de-registration or deactivation of existing accounts – one instance of
which has been identified during research.

3.2.2 Sender ID spoofing/message manipulation. This vulnerability class deals with
an attacker manipulating or forging messages and sender information without
hijacking the entire account. This usually involves creating and sending messages with
a fake (spoofed) sender ID by bypassing user-identification mechanisms inside the
application. This class of vulnerabilities is rather uncommon, and we were not able to
identify any affected applications. The applications that showed this sort of
vulnerability in the past (according to Schrittwieser et al. (2012)) have since been fixed or
discontinued.

3.2.3 Unrequested SMS/phone calls. As most applications use passive SMS-based
verification (and some even use passive phone calls) during sign-up, it is possible to
generate unwanted messages or even phone calls to arbitrary phone numbers. Although
most applications include mechanisms to prevent the sending of too many of such
requests, combining multiple applications with an automated system could still
generate considerable amounts of spam. It should be noted though that the content of
those messages can generally not be modified, which makes the concept less attractive
for spammers.

3.2.4 Enumeration. Pretty much all applications allow the user to upload their phone
book to identify other registered users. The server usually replies with a list of contacts
that are also registered for the service. By uploading specific phone numbers, an
attacker can gain knowledge about whether the targeted person uses the service. This
information can potentially be used for further attacks such as impersonation or
spoofing attacks. In another scenario, an attacker could systematically upload large
amounts of different phone numbers to enumerate parts of the application’s user base;
for example, uploading all possible numbers with a specific country code would give
them an overview of all users in that country. This can potentially be a large privacy
concern. For further reading, see Cheng et al. (2013), where Cheng et al. have conducted
rather extensive research on this particular issue.

3.3 Experimental setup
For the actual research, we used an iPhone 3GS running iOS 6.1.3 and a Samsung
Galaxy S3 Mini running rooted Android 4.1.2. All tested applications were available for
both iOS as well as Android and have been tested on both platforms. To read and modify
the encrypted hyper text transfer protocol secure (HTTPS) traffic between the
application and the server, we used mitmproxy[2] – an secure sockets layer (SSL) proxy

135

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



and man-in-the-middle tool for intercepting and modifying HTTP traffic on the fly.
Furthermore, we used SSLsplit[3] in a similar fashion to be able to read some of the
SSL-encrypted non-HTTP traffic.

4. Results
This section presents the results of the evaluation process based on the vulnerability
categories described in Section 3. In general, we will limit ourselves to mentioning
applications with specific vulnerabilities or noteworthy findings. Table III provides a
per-app overview of the vulnerabilities identified in the individual applications now and
in 2012 (from Schrittwieser et al., 2012).

4.1 Authentication and account hijacking
This section will describe practical and theoretical attacks against the analyzed
applications that could be used to circumvent the authentication and validation process
to allow an attacker to register a different person’s phone number. Generally, this can be
done by either using a new, not-yet-registered number or by hijacking an existing
account.

4.1.1 eBuddy XMS. The XMS’ authentication mechanism is very different between
the Android and iOS versions and includes distinct weaknesses which will be described
separately.

iOS: The iOS version uses a simple SMS-based authentication approach where the
device sends an authentication request to the server, which, in turn, sends an SMS
message containing a random, three-digit code to the registered phone number. The user
then has to enter this code on the device which sends it to the server where the code is
checked and the device is authenticated. Although the protocol itself seems safe and
does not allow circumventing the mechanism, the usage of a code of only three digits
length is very alarming. Coupled with the fact that there appears to be no lockout when
entering too many invalid codes and no time limit when entering them either, an attacker

Table III.
Overview of
vulnerabilities (in
case of differences to
[15], the old value is
shown in
parentheses)

Application Account hijacking Unrequested SMS Enumeration Other vulnerabilities

eBuddy XMS Yes (no) Yes Yes No
EasyTalk Yesa (yes) Yes Yes No
Forfone Yes (no) Yes Yes No (yes)
HeyTell Yes No Limited No
Tango Yes Yes Yes No (yes)
Viber No Yes Yes No
WhatsApp No (yes) Yes Yes No (yes)
fring No Yes Yes No
GupShup No Yes Yes No
Hike No Yes Yes No
JaxtrSMS Noa Yes No No
KakaoTalk No Yes Yes No
Line No Yes Limited No
textPlus No Yes Yes No
WeChat Noa Yes Limited No

Note: a potential vulnerability, see details in the respective sections

IJPCC
11,2

136

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



can reliably guess the code after an average of 500 tries. Increasing the code length and
implementing a limit on the allowed number of attempts are basic measures for
preventing brute forcing of access codes that should be present in every application that
uses an authentication scheme such as this one.

Android: for some reason, the verification process in Android is very different from
the iOS approach. First, when registering a number for the first time, the application will
not attempt to validate it at all. Only when trying to register an already-registered
number, the application will attempt to do some form of SMS-based authentication. This
is obviously a poor scheme, as it allows an attacker to impersonate arbitrary people,
given that they have not registered for the XMS service yet. Combined with an
enumeration attack (as described in later sections) to find out whether someone is using
the service, this could be used to register someone without them ever knowing, as there
will be no SMS traffic generated on a first-time registration. Second, the verification
process when registering an already-known number is somewhat broken as well. The
application locally generates a ten-digit authentication code and sends it via active SMS
(text message charges apply) to the entered phone number. When used legitimately, this
will result in the phone sending a text message to itself, which is then intercepted by the
application and the code is verified locally. When entering a foreign number, that person
will receive a text message containing the verification code. Sending a reply message
from that number including the received verification code should authenticate the
device. Although this scheme appears alright at first sight, we will describe a theoretical
approach that could be used to exploit it.

The basic idea of the attack is to somehow gain access to the code inside the SMS (by
reading the outgoing message) and then using some form of SMS sender spoofing
mechanism to create a fake response message. This response message has to include the
activation code and has to appear to be originating from the number the attacker is
trying to register. The process is visualized in Figure 1. This requires two things: first,
intercepting the outgoing message with the code. The problem here is that in Android,
text messages sent through the messaging application programming interface (API)
from within applications will not show up in the normal SMS outbox. There might be a
way to programmatically intercept or log the outgoing messages to retrieve the
verification code; or else, the attacker could attempt to intercept the message at the
hardware or carrier level. After obtaining the code, the attacker would have to use an

Figure 1.
Theoretical exploit

approach against
XMS and JaxtrSMS

137

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-04-2015-0020&iName=master.img-000.jpg&w=203&h=137


SMS spoofer (there are various such services available on the Internet, such as spoofsms
[4]) to send a fake message which includes the code and has its sender set to the number
the attacker is trying to register. This should make the application believe that the
message actually originated from the entered number, and it should complete the
authentication process. Although these approaches would potentially require rather
sophisticated methods, they should be feasible, as the entire authentication process
happens locally.

One positive aspect that stood out was the fact that if someone registered a second
account using a specific number, the owner of the original account would get a
notification that someone else has registered another device with that number. That
way, the real owner would at least have an indication that something was wrong. In the
end, it seems surprising that the Android version would use such a vastly different and
rather unusual authentication approach, when the iOS version uses a pretty simple and
robust protocol (aside from the brute-force issue). One thing that all applications have in
common is the fact that authentication is only as strong as its weakest version, so having
a proper authentication mechanism on one platform is useless when one of the other
platforms is susceptible to simple attacks, as an attacker can simply choose to use a
device based on the easier-to-circumvent platform to carry out the attacks.

4.1.2 EasyTalk. Basically, EasyTalk uses a passive four-digit SMS-based
authentication scheme like many of the other applications. However, in our tests, its
authentication mechanism seemed not very reliable, and on iOS, the application simply
crashed when started with an active proxy (even when in transparent proxy mode). On
Android, the verification process would simply get stuck most of the time when trying
with an active proxy – without a proxy, the process seemed to work, but the SMS with
the code only really arrived in around 1 out of the 20 attempts. During later testing, the
registration process stopped functioning entirely, which made any further analysis
virtually impossible. Schrittwieser et al. (2012) describe an exploit that can be used to
circumvent the authentication mechanism completely, but because the application did
not function correctly in our analysis scenario, it was not possible to verify the continued
presence of this vulnerability.

4.1.3 Forfone. Forfone uses the same authentication mechanism on both platforms.
However, it seems to have undergone significant changes compared to the way the
mechanism was described in Schrittwieser et al. (2012). Although the option to do a
secure and well-implemented passive SMS authentication is still there, it will only be
used if the default authentication process fails. This default process is outlined in
Figure 2 and works as follows:

The device generates a seemingly random “reference token” (a 32-digit hexadecimal
number) which is sent to the server via HTTPS request. The server replies with a

Figure 2.
Forfone
authentication
during a legitimate
attempt

IJPCC
11,2

138

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-04-2015-0020&iName=master.img-001.jpg&w=185&h=85


HTTPS response including an “authentication token” (another 32-digit hexadecimal
number). The application then attempts to send this token using an active SMS from the
phone to a Forfone service number. If the sending of the message is successful and the
authentication token is correct, the account will be successfully registered using
the received message’s sender number. This means that the user does not enter the
phone number at all during the process, but rather it is extracted from the message sent
to the server. Only when the sending of the active SMS fails, the application will revert
to a passive SMS authentication scheme, where a common four-digit code is sent to a
user-provided number and then has to be entered manually. The entered code is then
transmitted and verified server-side which is not susceptible to a simple impersonation
attack.

On the other hand, the default authentication scheme can be exploited quite easily, as
shown in Figure 3 (especially on iOS) – an attacker can simply copy the authentication
token from the SMS before it is sent (as iOS requires the user to manually send the
message themselves, all the application can and will do is open the SMS messaging app
and pre-populate the recipient and message fields with the authentication code) or
intercept the HTTPS response from the server and extract the token from there. After
the attacker has obtained the token, they need to create a spoofed SMS message which
appears to be coming from the number they are trying to register and include the
authentication token in that message. We used spoofsms.net for spoofing the sender ID,
which worked flawlessly in our mobile network.

It seems curious that Forfone would opt to use such an insecure validation
mechanism as its default scheme (or at all) when it also features a secure, passive SMS
mechanism. We would imagine that this is done for price reasons, as active messages
sent from the user’s phone incur no costs to Forfone’s operators, although this seems to
be the wrong place to save costs, seeing how it causes such a massive security flaw –
especially when considering the low SMS messaging rates in most countries today.

4.1.4 HeyTell. HeyTell still does not have any sort of number verification whatsoever.
A registrant can simply enter an arbitrary number along with a name when registering
for the service. The system allows for multiple users to be registered using the same
number. When another user attempts to add a phone number to their contacts, they will
be presented with a choice of all users’ names that are registered using that specific
number. This system has two major ramifications: impersonating someone who is not
using the service yet is extremely easy because of the lack of any number verification.

Figure 3.
Spoofing attack
against Forfone

139

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-04-2015-0020&iName=master.img-002.jpg&w=172&h=133


On the other hand, hijacking an existing account is not possible – users that already
have someone’s legitimate account in their contacts will continue to do so, all the
attacker can do is to simply create a second account using the same number, so that
anyone who attempts to add that number to their contacts from this point onward would
be presented with two choices – the legitimate and the fake one.

4.1.5 Tango. Tango’s authentication mechanism appeared to be fundamentally
broken – during early stages of research when doing some rudimentary testing, we did
get a validation SMS (four-digit PIN) when registering a device. However, when
attempting to do further research at a later point, the application did not attempt to do
any sort of number verification whatsoever. We were able to freely change the phone
number associated with an account without having to verify it at all.

4.1.6 Viber. Viber uses a four-digit passive SMS authentication scheme which was
not susceptible to traffic interception or other impersonation attacks. An example of
such a scheme is outlined in Figure 4.

4.1.7 WhatsApp. WhatsApp completely re-hauled their authentication and
messaging protocols since Schrittwieser et al. conducted their research (Schrittwieser
et al., 2012). The verification code (six digits) is no longer sent to the device, allowing for
easy impersonation and hijacking, but rather the entered code is sent to the server and
checked for validity there.

4.1.8 Fring. Fring uses a four-digit passive SMS authentication scheme which was
not susceptible to traffic interception or other impersonation attacks.

4.1.9 GupShup. Similar to many of the other applications, GupShup also uses a
well-implemented passive SMS authentication scheme (using a six-digit code).

4.1.10 Hike. Hike uses a four-digit passive SMS authentication scheme which was not
susceptible to traffic interception or other impersonation attacks.

4.1.11 JaxtrSMS. JaxtrSMS is another application that uses two entirely different
and rather uncommon authentication schemes on both platforms. In addition to that,
JaxtrSMS also supports a passive call-based verification for both platforms, which
becomes available after the default mechanism fails for some reason.

iOS: The iOS authentication mechanism is essentially a passive SMS system as used
by many other applications, with the difference that it does not send a verification code
to the user but rather a verification link (as is often used in e-mail address verification).
The user then has to open that link to activate their account. Although this is a system
not seen in any other app during research, it is essentially a tried-and-tested scheme that
is usually used for verifying the e-mail addresses of newly registered accounts in
virtually all online services, except that in this case, the communication medium is SMS
instead of e-mail. As such, it was not susceptible to any traffic interception or other
impersonation attacks.

Android: The Android version implements a different authentication scheme, and
although we did not manage to exploit it in our tests, we cannot rule out the possibility

Figure 4.
Secure authentication
scheme as used by
numerous
applications
(Viber, WhatsApp,
fring, GupShup,
Hike, KakaoTalk,
Line, textPlus and
WeChat)

IJPCC
11,2

140

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-04-2015-0020&iName=master.img-003.jpg&w=224&h=64


of it being exploitable. It works as follows: after the user has entered the phone number,
the device will attempt to send an SMS message containing a verification code to the
entered number. During legitimate use, this would result in the application sending a
message to itself, which is then intercepted and used to authenticate the user (similar to
XMS; Figure 1).

Now theoretically, an attacker should be able to exploit this scheme by intercepting/
reading the outgoing message and its code (for doing this, see the above-mentioned
eBuddy XMS section, the same problems apply) and then creating a spoofed reply
message which includes this code and appears to be coming from the target number
(Figure 2). In practice, this did not work for some reason though – we tried to register a
second phone by simply sending the received authentication code back to the Android
device, but the application ignored that SMS. We had no knowledge about the internal
algorithm the application uses to do the authentication, but one possible reason for the
attempt failing could be that it not only checks the sender number on the received
message but also the destination number. During a legitimate registration, those two
would be identical, as the message is sent from the phone to itself, but when trying to
impersonate another number with a spoofed message, the target number will always be
the number of the attacker’s phone. This is obviously just speculation though; further
research would need to be conducted to establish whether or not the authentication
scheme can actually be exploited.

4.1.12 KakaoTalk. KakaoTalk uses a four-digit passive SMS authentication scheme
which was not susceptible to traffic interception or other impersonation attacks. In case
the SMS-based system fails, the application also offers the option to do a passive
call-based authentication.

4.1.13 Line. Line also uses a four-digit passive SMS authentication scheme which
was not susceptible to traffic interception or other impersonation attacks.

4.1.14 textPlus. textPlus also uses a four-digit passive SMS authentication scheme
which was not susceptible to traffic interception or other impersonation attacks.

4.1.15 WeChat. WeChat uses a classic four-digit passive SMS authentication scheme,
with the difference that after establishing the authenticity of the user’s phone number, it
is possible to set a password to be able to log into the account from other devices.
However, it is also possible to register the same number multiple times, effectively
overwriting existing accounts under that number.

According to the research done by Roberto Paleari, WeChat uses a custom
communication protocol which is not based on typical HTTP/S but uses a combination
of RSA for key exchange and subsequent advanced encryption standard (AES) for
encrypting individual messages. A weakness in the application’s debugging
infrastructure allowed any application installed on the same Android device to extract a
hash of the user’s password. Detailed information on this exploit can be found on
Paleari’s blog (Paleari, 2013).

4.2 Sender ID spoofing/message manipulation
In this section, we will discuss the evaluation of the applications’ messaging protocols.
We attempted to exploit the protocols to send unauthorized messages or messages with
a spoofed sender ID. Most of the applications rely on the Extensible Messaging and
Presence Protocol (XMPP) [5] for messaging and as such are not susceptible to sender ID
spoofing. Although a few of them use custom and mostly HTTPS-based protocols such

141

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



as JaxtrSMS and Forfone, even those applications included security features to prevent
the sending of spoofed messages. Overall, we were not able to find any sender ID
spoofing vulnerabilities in the analyzed applications.

4.2.1 Forfone. Although according to Schrittwieser et al. (2012), Forfone had
contained a sender spoofing vulnerability, it appears to have been fixed since then. The
application no longer uses the international mobile subscriber identity (IMSI) or unique
device identifier (UDID) for authenticating the sender but rather the randomly generated
“reference token”, as described in authentication hijacking section. Although this makes
message spoofing unfeasible, the other vulnerabilities described in the last section allow
hijacking the entire Forfone account, arguably removing the necessity to create spoofed
messages.

4.2.2 JaxtrSMS. The reason we wanted to mention JaxtrSMS at this point is because
it follows a slightly different approach than most applications by being completely
HTTP/S-based – message sending is done through HTTPS requests, and message
receiving is done by periodically querying the server for any new messages. This simple
protocol is secured by using a random user ID which is generated when a user signs up
for the service. Every message sending request includes the recipient’s phone number as
well as the sender’s user ID. This user ID appears to be secret and is known only to the
server and the client itself and is used to authenticate the sender of the message.

4.3 Unrequested SMS/phone calls
Because of the nature of the authentication mechanisms of most applications, it is
possible to generate authentication requests for arbitrary phone numbers, which results
in the system sending verification messages to the targeted number(s). An attacker
could set up an automated system to generate lots of such requests to flood the target
with spam messages. Although most applications include a limit of some sort on how
often such requests can be sent, combining the authentication systems of multiple
applications could still generate considerable amounts of spam. It should be noted
though that it is not possible to change the contents of such an authentication message,
as it gets delivered directly from the service provider’s infrastructure without
possibilities for interception or modification. Therefore, such a system is pretty much
unsuitable for commercial spammers and only useful as a disruption or annoyance. The
exception being applications that rely on active authentication SMS sent from the
registrants’ phone to the targeted phone number. These messages are sent at the cost of
the user and also have the user’s phone number as the sender, which makes them
unsuitable to be used as spam. Some applications such as WhatsApp, JaxtrSMS or
KakaoTalk even allow for phone-call-based authentication, where the user receives a
short phone call during which a computer-generated voice reads the verification code to
the user. In case the phone call is missed, the system will speak the code onto the
receiver’s message box. In all applications where call-based authentication is possible, it
only becomes available after the SMS-based authentication has failed. As opposed to
most of the authentication messages which usually originated from the requesting
country (or showed a spoofed sender) the origin of the phone calls usually was in the
USA. We could imagine that generating numerous international calls in an automated
fashion could cause considerable costs on the operators’ part.

IJPCC
11,2

142

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



4.4 Enumeration
Most applications allow the user to upload their phone book to the server to
automatically identify other users of the service. This can have various security
implications, as described in Section 3. The feasibility of such an attack was previously
demonstrated in Schrittwieser et al. (2012) by abusing WhatsApp’s phone book
uploading feature. By programmatically crafting custom HTTP requests that included
ranges of phone numbers, they were able to obtain information about whether the
uploaded phone numbers were registered for WhatsApp. Almost all of the analyzed
applications appear to be vulnerable to such an attack, although for some of them it
might be harder to automate, as they do not use HTTP requests for synchronizing the
address book but custom (often transmission control protocol (TCP)-based) protocols.
Although it should be possible to reverse-engineer these protocols and implement a
rogue client to automatically upload phone numbers, it would potentially involve a lot of
work. Furthermore, some of the applications are either more cumbersome to enumerate
(due to the way they work) or include privacy features that prevent individual users (if
they had chosen the appropriate settings) from being identified by a mass-enumeration
attack. Those special cases will be highlighted in the following section.
Countermeasures for preventing enumeration attacks from being feasible have been
proposed in Cheng et al. (2013), but it is additionally advisable to impose a limit on the
number of contacts that can be uploaded within a certain time period. Some of the
analyzed applications might actually impose such limits, but attempting automated
enumeration attacks against every single application to find out which ones do was out
of the scope of this project.

4.4.1 Forfone. We used Forfone as an example to demonstrate the feasibility of an
enumeration attack due to its rather simple, HTTPS-based contact synchronization. The
user simply has to upload a list of contacts using a POST request (this request is
validated with the user’s reference token; see Section 4.1 for details). The server
responds with the same list, but for every contact entry, it includes a flag that indicates
whether that phone number is a registered Forfone user. As Forfone does not limit the
amount of requests that can be sent, we were able to enumerate arbitrary phone number
ranges using a simple Java script that automatically generates HTTPS requests and
sends them to the Forfone server.

4.4.2 HeyTell. HeyTell allows users to change their privacy settings – using any
setting other than “low” prevents random people from adding them to their friend list. In
other words, people are unable to find out whether or not they are using the service (e.g.
on “medium”, only friends of friends are able to add them). This can prevent the
enumeration of individual accounts, but most users will probably go with the default
setting of being visible to everyone.

However, this feature includes a weakness – if someone knows another person’s user
ID, they can add them to their friend list regardless of their privacy setting by simply
sending a crafted HTTPS request with the target’s ID as a POST parameter. Although
it does not seem possible to find out someone’s user ID without them being on one’s
friend list, effectively preventing the “blind” adding or enumeration of random accounts,
this flaw could be abused in other scenarios. For example, after blocking/ignoring an
unwanted user and changing the privacy settings to prevent said user from finding or
contacting again, that user could still be in possession of the blocking user’s ID, create a
new account and use the described vulnerability to add the blocking user again.

143

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



4.4.3 JaxtrSMS. JaxtrSMS does not identify users of the service beforehand – it only
does so after someone attempts to send them a message. In case the recipient also uses
the service, the message will be delivered through the applications network; otherwise,
an error message will be thrown. Although this does not entirely prevents enumeration
or identification of active users, it does prevent it from happening without the target user
knowing. An attacker could still attempt to systematically send automatically
generated messages to different numbers to enumerate users that way, although that
would generate a lot of potentially unwanted traffic. Although the application does not
seem to utilize the user’s contact list, for some reason, it will still require the permission
to upload it to the server – considering it is not used in any apparent fashion after being
uploaded, this seems like a totally unnecessary privacy intrusion.

4.4.4 Line. Line allows users to change their visibility settings – that means, users
can prevent other users from finding them using their phone number. Although the
default setting is to allow finding by phone number, the inclusion of such a feature is still
a good step into the right direction. It is probably not going to prevent an attacker from
enumerating large parts of the user base, as most users would not bother to change their
default privacy setting, but it gives privacy-conscious users the chance of staying
hidden and avoiding being identified as Line users.

4.4.5 WeChat. Similar to Line, WeChat allows users to change their visibility setting
to prevent others from being able to find them using only their phone number.

5. Privacy considerations of smartphone messaging
In this section, we further analyzed privacy considerations of today’s generation of
smartphone messengers to compare these with the applications outlined in the previous
chapters and give a comparison on the respective security- and privacy-related issues.

5.1 Facebook Messenger
The Facebook Messenger[6] differs greatly from the previously discussed applications,
in that it does not use the phone number to identify the user, but requires registration
and login. Furthermore, the list of contacts is populated with Facebook friends rather
than numbers from the address book, still also this application allows importing
contacts from a smartphone and storing them on Facebook’s servers.

The messenger’s communications are sent encrypted via HTTPS but can
nevertheless be examined with the Charles Proxy. Our analysis revealed that a number
of pieces of information are being transmitted in addition to the actual communication,
including the following:

• date and time of communication;
• app version and build number;
• network operator;
• device information, such as the type of smartphone and the version of its OS; and
• network information: which type of network is being used (e.g. WIFI), the SSID[7]

of the WIFI and its signal strength.

The majority of these metadata is not necessary for the actual communication, so it is
unclear why they are sent to Facebook’s servers, especially network information, such
as the SSID of the WIFI.

IJPCC
11,2

144

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



As this example shows, the SSID (in this case, “mynetwork”), the network type (in
this case, WIFI) and the RSSI[8] are transmitted in addition to standard information
such as time of communication and version number of the application (Figure 5).

5.2 XMPP through anonymization networks
One of the protocols that are used quite frequently with smartphone messengers is
XMPP (Mehnert, 2008). With XMPP, every user has a unique ID, which is constructed
similarly to an e-mail address. Generally, we can distinguish between two types of
communication with XMPP: client–server and server–server communication. When it
comes to storing metadata, it is not sufficient to encrypt only the message or to use
end-to-end encryption, as the XMPP servers would still have access to the information
on who communicated with whom and when. If the system avoids using the phone
number or e-mail address as identification, as in this case, it is, of course, harder to match
a self-selected ID to a person. Nevertheless, it is theoretically possible via the service
provider using IP addresses. The only way to prevent this is the use of anonymization
networks such as Tor[9]. This makes it impossible to determine the source or destination
of a packet. Within the Tor network, there are hidden services that can only be reached
via the Tor network itself, so that it is not possible to determine where the server
providing the service is located. Should an XMPP service be operated as a hidden service
inside Tor, only the server’s operator could see who communicates with whom. Neither
the Internet provider nor any other user could access this information. This means that
a user would either have to trust the operator of the hidden service or operate their own
XMPP server. However, the fundamental structure becomes slightly more difficult if
this type of XMPP server has to communicate with non-anonymous XMPP servers, but
even that would be possible. One of the disadvantages of anonymization networks such
as Tor is that it takes longer to establish the connection. Heupel (2010) tested the
usability of Tor for Android smartphones and found that it affected the speed
considerably. It usually took approximately 1.5 seconds longer to establish a connection,
and in some cases, it would take up to 20 seconds for a simple query to the server. One
of the ways in which Tor can be used on the Android OS is the Orbot[10] application,
which makes it possible to transport either the entire network traffic of the smartphone
or only the traffic of specified applications via the Tor network. However, the unlimited
use of this app requires root access on the smartphone. Without these rights, the
application can only be used for other specific apps that support the use of a proxy. It

Figure 5.
Facebook

Messenger –
transmission of

information

145

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-04-2015-0020&iName=master.img-004.jpg&w=343&h=127


should also be added that most smartphone messengers use the Google Cloud
Messaging service. It delivers the message via a Google service, which hinders
anonymization.

5.3 Google Cloud Messaging
Google Cloud Messaging for Android (Android Developers, 2014) is a free service by
Google. It allows developers to send messages from their server to the smartphone app
and to receive messages from the app. The message transmitted can either be the actual
content of the communication or an empty packet. This so-called send-to-sync message
can be useful when the server simply wants to inform the app about an event, e.g. that a
new message is available for download. In this scenario, only an empty packet would
have to be sent instead of the complete message. The service also makes it possible to
deliver messages even when the app is not currently running on the smartphone. In this
case, the send-to-sync message could “wake up” the app and tell it that a new message
has arrived. Google only transmits the raw data, while any processing and displaying of
the message must be done by the app itself. This service is used by many smartphone
messengers on Android, as it is very comfortable for developers to use existing
technology. Otherwise, the app would also have to query the server regularly to see
whether new messages have arrived, which would, of course, influence the battery life of
the smartphone considerably. By using Google Cloud Messaging, the server can inform
the smartphone immediately that new data have arrived. The authors of the
privacy-preserving messenger application Threema[11] say that it sends an empty
message via Google Cloud Messaging to inform the application of the existence of a new
message. According to the developers, TextSecure[12] currently transmits the entire
message via the service, but encrypts it. The app relies completely on Google to deliver
it. Telegram[13] is the only app to use its own protocol, but says that this can lead to
higher battery use and offers users the option of switching to Google Cloud Messaging.

6. Mitigation of phone book disclosure
The value (Marlinspike, 2014) of a social network depends on its size, as most people
would not join a social network if none of their friends were already using it. This creates
a conundrum when building a social network – if nobody has joined yet, nobody will
want to join. To avoid this problem when creating a new app, many developers decide to
build on an existing social graph, such as Facebook. When the application is intended
for a smartphone, however, there is another existing social graph that can be used – the
user’s address book. When a new app identifies users via their e-mail addresses or phone
numbers – i.e. information that is already stored in address books – it can recognize
quite easily which of the contacts already use the app. This means that users do not
have to look for their friends, as they immediately show up as contacts. This mitigates
the problem with the creation of a new social network as described above. However, the
problem with this approach is the following question: how does the app know which
contacts already use the service? In most cases, the entire address book is sent to the
server, where each contact is checked against an index of all phone numbers that use the
service. But what options are there other than sending the entire address book to a
server? The address book might contain sensitive information regarding contacts, or
people may feel uncomfortable simply because all information is sent to some server.

IJPCC
11,2

146

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



6.1 Hash values
One option (Marlinspike, 2014) that initially seems like an answer is not to use the phone
number but its hash[14]. This way, it would not be necessary to transmit the individual
contacts to the server, only their hashes, so that the server would have no access to the actual
information, i.e. phone numbers or names and other personal details. The problem with this
approach is the relatively low number of possible phone numbers. This means that it would
be possible to try all phone numbers in an acceptable time by brute force. It is not possible to
use a salt in this case, as the other smartphones would have to use the same salt when
sending their address books to the server. The number of possible e-mail addresses is
considerably larger, but still not enormous.

6.2 Bloom filters
One strategy for mitigating the problem outlined in Section 6.1 would be the use of
Bloom filters (Marlinspike, 2014).The basic idea is that if the server were to send the
entire database of registered users to the client, the client could verify the data locally
without the need to query the server. Bloom filters could be used to optimize network
efficiency in such a case. One problem, however, would be that the entire database could
be read on the client. This can be avoided by using encrypted Bloom filters. The client
could not simply search for a certain number in the Bloom filter, but would have to first
request a blind signature from the server. This way, the server would retain access
control to the Bloom filter while not knowing what the client is searching for. The
problem with Bloom filters in general, however, is the data volume that needs to be
transmitted. As Marlinspike (2014) writes on his blog, this approach cannot be used for
the TextSecure messenger. If approximately ten million users were to use the service
and would update the Bloom filter only once a day, this would still amount to 40 MB
being queried from the server 116 times a second. This problem aside, a daily update of
approximately 40 MB can still be quite costly, depending on the individual mobile
contract of the respective user.

7. Conclusion
Generally speaking, the re-evaluation of the eight previously analyzed applications
showed almost no improvement – while one of the flawed authentication mechanisms
was fixed along with most of the other vulnerabilities present in the application
(WhatsApp) and one completely broken application is off the market entirely (Voypi),
new authentication weaknesses have been identified or introduced in both Forfone and
XMS.

On the other hand, the newly evaluated applications paint a much better picture:
virtually, all of them use a seemingly well-implemented passive SMS authentication
approach, and with the exception of WeChat’s logging vulnerability (as described in
Paleari, 2013) and a potential weakness in JaxtrSMS (which we were not able to
exploit though), we could not identify any serious vulnerabilities. In regards to
privacy and enumeration, two currently very popular applications (Line and
WeChat) incorporate privacy settings that allow users to stay hidden from random
people. This appears like a good privacy-preserving feature, and the inclusion of
similar mechanisms into some of the more popular messaging applications would be
a desirable development for the near future. More privacy-preserving smartphone

147

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



messaging could be accomplished under certain conditions, but this would severely
influence usability in most cases. The need to create one’s own contact list, high
battery use or a slower connection, as with Tor, limit usability and, therefore,
probably lead to lower user numbers compared to products such as WhatsApp,
Viber and Facebook. Furthermore, in the last section of the paper, we discussed
several techniques for protecting the sensitive data inside the users’ phone books
while still allowing the application provider to establish a network between the
individual users of the application. Although currently, no solution working in
real-life environments has been found, the pros and cons regarding the existing
solutions can be seen as valuable starting points for future developments in this
area.

Notes
1. http://xyo.net/iphone/, last accessed: 1 October 2014.

2. http://mitmproxy.org/index.html, last accessed: 1 October 2014.

3. www.roe.ch/SSLsplit, last accessed: 1 October 2014.

4. http://spoofsms.net, last accessed: 1 October 2014.

5. http://xmpp.org, last accessed: 1 October 2014.

6. www.facebook.com/mobile/messenger, last access 25 July 2014.

7. Service set identifier: for distinguishing between several WIFIs.

8. Received signal strength indicator: received field strength of wireless network.

9. www.torproject.org/, last access 25 July 2014.

10. Download at https://play.google.com/store/apps/details?id�org.torproject.android, last
access 25 July 2014.

11. https://threema.ch, last access 26 February 2015.

12. https://whispersystems.org, last access 26 February 2015.

13. https://telegram.org, last access 26 February 2015.

14. A one-way function that can map a text of arbitrary length to a character string of fixed
length. The hash cannot be reversed to gain plaintext.

References
Android Developers (2014), “Google cloud messaging for Android”, available at:

https://developer.android.com/google/gcm/index.html (accessed 25 July 2014).

Bishop, M. (2002), Computer Security: Art and Science, Addison-Wesley, Boston.

Braga, A. (2013), “Integrated technologies for communication security on mobile devices”, The
Third International Conference on Mobile Services, Resources, and Users, Santa Clara
Marriott, CA, pp. 47-51.

Cheng, Y., Ying, L., Jiao, S., Su, P. and Feng, D. (2013), “Bind your phone number with caution:
automated user profiling through address book matching on smartphone”, in Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, Berlin, ACM, pp. 225-340.

IJPCC
11,2

148

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://xyo.net/iphone/
http://mitmproxy.org/index.html
http://www.roe.ch/SSLsplit
http://spoofsms.net
http://xmpp.org
https://www.facebook.com/mobile/messenger
https://www.torproject.org/
https://play.google.com/store/apps/details?id=org.torproject.android
https://threema.ch
https://whispersystems.org
https://telegram.org
https://developer.android.com/google/gcm/index.html
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2484313.2484356
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2484313.2484356
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2484313.2484356


Davi, L., Dmitrienko, A., Sadeghi, A. and Winandy, M. (2011), “Privilege escalation attacks on
android” in Information Security, Springer, Berlin, Heidelberg, pp. 346-360.

Egele, M., Kruegel, C., Kirda, E. and Vigna, G. (2011), “Pios: detecting privacy leaks in IOS
applications”, Network and Distributed System Security Symposium (NDSS), San Diego,
CA.

Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S. (2011), “A study of android application
security”, USENIX Security Symposium, Vol. 2, p. 2.

Enck, W., Ongtang, M. and McDaniel, P. (2009), “On lightweight mobile phone application
certification”, in Proceedings of the 16th ACM Conference on Computer and
Communications Security, Chicago, IL, pp. 235-245.

Felt, A., Wang, H., Moshchuk, A., Hanna, S., Chin, E., Greenwood, K., Wagner, D., Song, D.,
Finifter, M. and Weinberger, J. (2011), “Permission re-delegation: attacks and defenses”,
20th Usenix Security Symposium, San Francisco, CA.

Fu, K., Dit, E., Smith, K. and Feamster, N. (2001), “Dos and Don’ts of client authentication on the
web”, in Proceedings of the 10th Conference on USENIX Security Symposium, Boston, MA,
Vol. 10, USENIX Association, p. 19.

Heupel, M. (2010), “Porting and evaluating the performance of IDEMIX and TOR anonymity on
modern smartphones”, Master’s thesis, University of Siegen, Siegen.

Koum, J. (2013), 400 Million Stories, available at: http://blog.whatsapp.com/index.php/2013/12/
400-million-stories/ (accessed: 4 August 2014).

Lampson, B., Abadi, M., Burrows, M. and Wobber, E. (1992), “Authentication in distributed
systems: theory and practice”, ACM Transactions on Computer Systems (TOCS), Vol. 10
No. 4, pp. 265-310.

Marlinspike, M. (2014), “The difficulty of private contact discovery open whispersystems –
blog”, available at: https://whispersystems.org/blog/contact-discovery/ (accessed 25
July 2014).

Mehnert, H. (2008), ‘Secure Instant Messaging – am Beispiel XMPP’, CCC, Berlin.
Millward, S. (2013a), Line Reveals Latest user Numbers in Japan, Thailand, Taiwan, Indonesia,

available at: www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-
august-2013/ [accessed 4 August 2014).

Millward, S. (2013b), Tencent: Wechat now has 271.9 Million Monthly Active Users Around the
World, available at: www.techinasia.com/tencent-wechat-272-million-activer-users-q3-
2013/ (accessed 4 August 2014).

Paleari, R. (2013), A Look at Wechat Security, available at: http://blog.emaze.net/2013/09/
a-look-at-wechat-security.html (accessed 4 August 2014).

Schrittwieser, S., Fruehwirt, P., Kieseberg, P., Leithner, M., Mulazzani, M., Huber, M. and
Weippl, E. (2012), “Guess who’s texting you? Evaluating the security of smartphone
messaging applications”, Network and Distributed System Security Symposium (NDSS),
San Diego.

Stallings, W. (2010), Cryptography and Network Security: Principles and Practice, Prentice Hall
Press, Upper Saddle River, New Jersey.

Stirparo, P. and Kounelis, I. (2012), “The mobileak project: forensics methodology for mobile
application privacy assessment”, International Conference for Internet Technology and
Secured Transactions, London, IEEE, pp. 297-303.

Whitfield, K. (2013), 17 Incredible Facts about Mobile Messaging that you Should Know, available
at: www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-
that-you-should-know.aspx (accessed 4 August 2014).

149

Smartphone
messaging

applications

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://blog.whatsapp.com/index.php/2013/12/400-million-stories/
http://blog.whatsapp.com/index.php/2013/12/400-million-stories/
https://whispersystems.org/blog/contact-discovery/
http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/
http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/
http://www.techinasia.com/tencent-wechat-272-million-activer-users-q3-2013/
http://www.techinasia.com/tencent-wechat-272-million-activer-users-q3-2013/
http://blog.emaze.net/2013/09/a-look-at-wechat-security.html
http://blog.emaze.net/2013/09/a-look-at-wechat-security.html
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-know.aspx
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-know.aspx
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F138873.138874&isi=A1992KG95600001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-18178-8_30


About the authors
Robin Mueller received his bachelor’s degree in Computer Science from the Vienna University of
Technology. His main research interests lie in the area of mobile security.

Sebastian Schrittwieser received his master’s degree in Business Informatics with focus on
information technology security from the Vienna University of Technology and his PhD in
Security for his work in the area of Software Obfuscation. Currently, he is with the St. Poelten
University of Applied Sciences as a Scientist and Lecturer.

Peter Fruehwirt received his bachelor’s degree in Software and Information Engineering and
in Business Informatics, as well as his master’s degree in Software Engineering from the Vienna
University of Technology. In 2015, he obtained his PhD in Security for his work in the area of
database forensics.

Peter Kieseberg received his master’s degree in Technical Mathematics in Computer Science
from the Vienna University of Technology. He worked as a consultant in the telecommunication
sector for several years before joining SBA Research. His main research interests include digital
forensics, cryptography and mobile security. Peter Kieseberg is the corresponding author and can
be contacted at: PKieseberg@sba-research.org

Edgar Weippl, after graduating with a PhD from the Vienna University of Technology,
worked in a research startup for two years. He then spent one year teaching as an Assistant
Professor at Beloit College, WI. In 2004, he joined the Vienna University of Technology and
co-founded the research center SBA Research.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJPCC
11,2

150

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:PKieseberg@sba-research.org
mailto:permissions@emeraldinsight.com


This article has been cited by:

1. Bruno Nardo, Marco Cannistrà, Vincenzo Diaco, Agostino Naso, Matteo Novello, Alessandra
Zullo, Michele Ruggiero, Raffaele Grande, Rosario Sacco. 2016. Optimizing Patient Surgical
Management Using WhatsApp Application in the Italian Healthcare System. Telemedicine and e-
Health 22:9, 718-725. [CrossRef]

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

33
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1089/tmj.2015.0219

