
International Journal of Pervasive Computing and Communications
A framework for programmatically designing user interfaces in JavaScript
Henry Larkin

Article information:
To cite this document:
Henry Larkin , (2015),"A framework for programmatically designing user interfaces in JavaScript",
International Journal of Pervasive Computing and Communications, Vol. 11 Iss 3 pp. 254 - 269
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-03-2015-0014

Downloaded on: 07 November 2016, At: 22:30 (PT)
References: this document contains references to 16 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 229 times since 2015*

Users who downloaded this article also downloaded:
(2012),"Data output from Javascript", Kybernetes, Vol. 41 Iss 10 pp. 1604-1606 http://
dx.doi.org/10.1108/03684921211276774
(2015),"Early gesture recognition method with an accelerometer", International Journal of
Pervasive Computing and Communications, Vol. 11 Iss 3 pp. 270-287 http://dx.doi.org/10.1108/
IJPCC-03-2015-0016

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-03-2015-0014

A framework for
programmatically designing user

interfaces in JavaScript
Henry Larkin

School of IT, Deakin University, Melbourne, Australia

Abstract
Purpose – The purpose of this paper is to investigate the feasibility of creating a declarative user
interface language suitable for rapid prototyping of mobile and Web apps. Moreover, this paper
presents a new framework for creating responsive user interfaces using JavaScript.
Design/methodology/approach – Very little existing research has been done in JavaScript-specific
declarative user interface (UI) languages for mobile Web apps. This paper introduces a new framework,
along with several case studies that create modern responsive designs programmatically.
Findings – The fully implemented prototype verifies the feasibility of a JavaScript-based declarative
user interface library. This paper demonstrates that existing solutions are unwieldy and cumbersome to
dynamically create and adjust nodes within a visual syntax of program code.
Originality/value – This paper presents the Guix.js platform, a declarative UI library for rapid
development of Web-based mobile interfaces in JavaScript.

Keywords JavaScript, Declarative UI, Mobile Web applications, Programming languages,
User interface

Paper type Research paper

1. Introduction
Declarative user interfaces have unique advantages for the development of applications.
Traditional programming syntax and API development make it difficult to visualize
layouts, often leading to cumbersome and “shortest solution” approaches to interfaces.
Although, ideally, artists may design interfaces, there are many situations where the
interface is so dynamic that the majority, if not all, of the application’s interface must be
created within program code.

Figure 1 shows an example of a dynamically generated user interface for a
JavaScript-based mobile application for learning Korean vocabulary. In it, individual
game tiles are created dynamically, based on how many flip tiles to include in the game
based on screen size and game complexity. Furthermore, the colors of tiles, the text and
the flipping animations are all dynamic. Such dynamic design is not possible in purely
graphical images or even HTML. And yet the program code required to generate
dynamic components in JavaScript is overly complex.

The following four examples demonstrate the shortest code approaches, in four
different frameworks, to programmatically create a HTML header 1 Document Object
Model (DOM) element (H1) and append it to a div element. In Algorithm 1, this is done in
pure JavaScript (with the included text variable declaration). As can be seen, this
example is overly lengthy and difficult to read. In Algorithm 2, this is done using
jQuery[1], a popular library that simplifies some JavaScript actions. In Algorithm 3, a

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

IJPCC
11,3

254

Received 9 March 2015
Revised 9 March 2015
Accepted 5 April 2015

International Journal of Pervasive
Computing and Communications
Vol. 11 No. 3, 2015
pp. 254-269
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-03-2015-0014

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-03-2015-0014

declarative user interface (UI) framework Nano.js[2] is used. This framework does
simplify the code required when compared with JavaScript, but it is still overly verbose.
In Algorithm 4, the code solution is shown using the JavaScript framework Guix.js, the
framework presented with this paper. As can be seen, its readability is far more ideal
than the previous examples, foregoing the need for constructors, object parameters and
named parameters within those objects:

Algorithm 1. Using native JavaScript example
var text � “Title Text”;
var div � document.createElement(“div”);
var h1 � document.createElement(h1);
h1.innerHTML � text;
div.appendChild(h1);

Algorithm 2. Using jQuery example
$(“�div/�”).append(“�h1�”�text“�/h1�”);

Algorithm 3. Using Nano.js example
new nano({parent: nano.body(), tag: “div”})
.add({tag: ‘h1=, text: text});

Algorithm 4: Using this paper’s framework example
div(h1(text));

Against this background, in this paper, we:
• Review existing JavaScript frameworks for declaring user interfaces (Section 2).
• Present an overview of the approach of this paper, addressing the primary

methods that overcome the limitations present within JavaScript (Section 3).
• Introduce an approach to solving multi-lingual issues in user interface

development (Section 4).

Figure 1.
Example of a
dynamically

generated interface

255

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-000.jpg&w=137&h=159

• Introduce an approach for resolving run state on devices where the application
run life cycle may be short (Section 5).

• Present selected case studies (Section 6).
• Eventually, in Section 7, we conclude.

2. Existing frameworks
In mobile Web applications (and native applications that use a Web component for their
interface), JavaScript is the predominant language for development. There are several
basic declarative UI languages for HTML and JavaScript-based applications currently
in existence. Most of these frameworks, such as Knockout.js[3] (Algorithm 6) and
Quilt.js[4] (Algorithm 6), provide a way of enhancing HTML code with access to data
and JavaScript programming. However, they work only within HTML markup, and not
in JavaScript itself. One of the frameworks that can be used in JavaScript is Nano.js[2],
demonstrated in Algorithm 3 previously. It does provide a declarative framework for
JavaScript, though the approach is only a basic framework, and vastly lacks the
simplicity and clarity possible. There is room for a new framework to be developed:

Algorithm 5: Knockout.js example
There are �span data– bind�“text:myItems().count”��/span� items

Algorithm 6: Quilt.js example
�div�

�%� locales.translate(‘welcome’) %�
�/div�
�% if (model.get(‘visible’)) { %�
�div�

�img src�“�%� model.photo_url %�”/�
�a href�“�%� model.get(‘url’) %�”�

�span��%� escape(model.get(‘first_name’)) %��/span�
�span��%� escape(model.get(‘last_name’)) %��/span�

�/a�
�p��%� truncate(‘bio’) %��/p�

�/div�
�% }; %�

There are several issues that arise in developing declarative UI frameworks for
JavaScript. First, the type information available in JavaScript is limited when compared
with other languages, where even arrays and objects have the same JavaScript type
(typeof(array) and typeof(object) both return “object”). Being able to determine the type
of the information passed within a node’s constructor parameters is useful in
determining what should be done with differing types of objects in a parameter list. In
the simplest instance, for example, when calling an add() function on a node, different
data types would be appended in different ways. Strings would be added as plain text to
a component, objects that are a HTML DOM type would be appended as HTML
elements and arrays would have all elements individually added, either as text or as
HTML DOM elements recursively.

Another issue that arises is that HTML DOM elements have issues with saving event
handlers when a DOM object is not attached to the DOM window. Due to the way events

IJPCC
11,3

256

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

are currently managed in most HTML rendering engines, elements need to be attached
to a live window to function properly. A third issue is how to add multi-lingual support,
which in this day and age is almost a necessity in planning, even if the initial language
of an application would be in the native language of the developers. This does become an
issue, as when rapidly designing an interface declaratively in program code, it is
common for programmers to hardwire text strings. A final issue is how to handle the
short runtime life cycle of mobile and Web apps, where apps are shutdown when not in
use, even if not in use temporarily, to save random-access memory. It is a common user
expectation that when an application is restarted, it remembers the user state and
continue as if the application had never been shut down.

3. Approach
This paper describes the issues of and solutions to designing a declarative UI
framework for JavaScript, Guix.js, a system for rapidly prototyping JavaScript-based
mobile Web applications using a short amount of readable code. The system is designed
to be as forgiving as possible and accepting as much as possible as valid input to create
the interface. This is due to JavaScript’s weakly typed system and the general lack of
type checking that is a feature of many other compilers.

The essential perspective, from which short readable declarative code can be
designed, is to center each DOM object creation around a function call of that DOM
type’s name. For example, to create a heading 1 (H1 tag), one would use h1(). To create a
heading 2, one would use h2(); to create a div, one would use div(). In each instance, the
function call instantiates the DOM element and any supplementary information needed
by the rapid prototyping language. Furthermore, all arguments provided during the
component’s construction are treated as either subcomponents of that container or, in
the case of a function, as event handlers. Consider the following example of creating a
table with a single row and two columns (Algorithm 7). The table is instantiated after
having a subcomponent row instantiated first. This row consists of two text elements
added to each cell:

Algorithm 7: Creating a table with one row and two columns
table(row(“Hello”, “there”))

The need for the system to be accepting and forgiving of varying data types is important
in JavaScript-based applications, as there is a general lack of IDE support for checking
type data. This is due to the fact that JavaScript is a weakly typed language. Consider
another example given below in Algorithm 8 for creating a ruby element (where
transliterations are placed above words, e.g. 你好). Two versions of creating a ruby
element are presented, each creating the same output. The ruby function in this
framework supports both forms of adding subcomponents. In the first example, specific
DOM elements, RB (ruby bottom) and RT (ruby top) can be added in any order.
However, as shorthand, one could imagine many cases where a programmer simply
types text directly into the ruby function’s arguments, intending these to be the bottom
and top elements of a ruby component. In this case, the ruby function caters for both
situations where if text is provided, then the text is added to ruby bottom and ruby top
instantiated components (in that order):

257

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Algorithm 8: Two approaches to adding ruby
ruby(rb(“你好”),rt(“nǐ hǎo”))
ruby(“你好”, “nǐ hǎo”)

The other essential design feature required for declarative UI languages is that it should
be possible to customize a component on-the-fly, without needing to put the component
into a variable. In Algorithm 9 below, two radio buttons are instantiated, with the first
also becoming selected (toggled). Both are added to a paragraph tag without ever being
assigned into variables. The paragraph tag itself also has a function called upon it,
adding the group “gender” to each of its child elements (e.g. the two radio buttons). As
components are instantiated and used anonymously, there is a need to chain functions,
where each function returns a reference to the HTML DOM element being operated on.
Without chaining, Algorithm 9 would be far more complex, with each radio button
separately having to be stored in a variable, and then included in the paragraph
container, as is done in other JavaScript helper libraries (see Algorithm 1 on the first
page). Without function chaining, declarative user interfaces would not be possible:

Algorithm 9: Function chaining
p(

radio(“Male”).select(),
radio(“Female”)

).groupChildren(“gender”)

3.1 Handling variable function arguments
To be able to deal with any input being provided into a DOM-instantiating series
argument, there is a need to track the types of components, and how each component
will handle both other components and primitive data types being added. To support
this, several mechanisms are used.

First, each component is created with a function of the same name. All functions then
call a helper function htmlcode, which instantiates the component with a range of
additional functions. The “type” of a component, whether it’s a native HTML component
or a newly designed custom component, is then stored as a field within the component
wrapper created by the htmlcode function.

One of the parameters of the htmlcode function is a map of actions to perform on child
data types. This provides the ability for every component to have its own optional code
to perform on inputs being added. This mapping system is the centerpiece of all
components, which takes types (JavaScript primitive types, HTML DOM types or
custom object types), and determines what to do with them by using an attached
function. The function is given two parameters, the parent component and the child
component. The function then executes whatever functionality is necessary to apply the
child information to the parent.

Through the same logic, it is also possible for any developer to design their own
components, which in turn consist of other components. Algorithm 10 below shows a
code snippet of a radio component. In HTML, a radio input type has no feature of
providing text alongside the radio button, which is a common feature requested in user
interfaces. A more advanced radio component could then consist of the radio input and
an optional label. The example below shows how the “text” provided to a radio button (in
the form of a string data type) is used both as the value of the input component and the

IJPCC
11,3

258

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

text for the label. Although several details have been omitted (such as creating the label
if it does not exist, and storing references to both the radio input and label to speed up
access), it shows how a component can be created and can make use of its own
sub-components. This allows programmers to design their own components that are not
part of standard HTML or other JavaScript libraries, such as panels, menus, game tiles,
etc:

Algorithm 10: Radio component snippet
function radio() {

return htmlcode(‘div’, {
string:function(parent, txt) {
// Add the value
parent.find(“input”).attr(“value”,txt);
// adjust the label
parent.find(“label”).addChild(txt);
}

}).add(input().type(“radio”));
}

For primitive types such as strings and functions, the type of the JavaScript object can
be determined immediately using the JavaScript typeof operator. For DOM components
such as in the case of RUBY, RB and RT components, the type of the component is stored
as a data type value within the component’s wrapper. Regardless, when adding
elements, the type of an object is extracted and then an appropriate mapping is searched
for. When no mapping exists, default actions are used to simply add the component, text
or function to the DOM component. In the case of a function, the function is attached to
an onclick handler for the component, and to a special object attached to the window for
this user interface framework. It will be discussed next.

3.2 Dealing with events
In many HTML rendering engines, events are often lost on DOM objects when they are
detached from the DOM window. To solve this problem, each instantiated DOM element
in Guix.js has attached to its data attribute, a unique reference in a user interface events
object map. Inside this map, each DOM element’s unique reference has a map, mapping
event types to functions. Anytime an existing element is added to the DOM, its unique id
is checked in the event table to see if it has events that need attaching, and then all of its
subcomponents are recursively called to see if they too have events that need to have
events attached.

Consequently, a special destroy action also exists, where removing a DOM element
safely removes any event handlers attached before proceeding. This destroy function is
available to all components. In this case, a programmer does need to be aware of events
being mapped. Especially if a program is iteratively creating components and
destroying them, there will be an issue with the event space mapping possibly becoming
quite large. As JavaScript does not have a native deconstructor implementation,
programmers must manually remove a component by calling destroy to remove all
additional data that have been saved.

259

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

4. Multi-lingual support
An important consideration in designing mobile applications is to plan in anticipation of
multi-lingual support. From a rapid prototyping prospective, multiple languages are
rarely considered in the initial creation of an application. It is simply by way of
convenience that programmers often hardwire strings into the application without
giving thought to how they will later support translations in a simplified fashion.
Guix.js overcomes this issue by treating every string as having the ability to reference
language variables. The application makes use of a language field within the user
interface address space. Here, any language constants can be added at anytime by any
JavaScript files or loaded as text files through helper functions to assign conversions
between constants as used in the application. Whenever a string is added to a
component using the default add() function for text, the current language of the interface
is first searched to see if a corresponding user interface variable is available, and if so,
the mapping is applied. An example of this is shown in Algorithms 11 and 12. Algorithm
11 demonstrates creating a paragraph with the text “help”, which is looked up in the
language database and translated if an entry exists for the word in the user’s language.
This lookup matches whole words only, and is case-insensitive:

Algorithm 11: Using multi-lingual constants
P(“help”)

Algorithm 12: Multi-lingual specification

UI[“languages”] � {
“en”:{

“settings”:“Settings”,
“help”:“Help”,
“support”:“Support”,

},
“zh-cn”:{

“settings”:“设置”,
“help”:“帮助”,
“support”:“支持”

},
“zh-tw”:{

“settings”:“設置”,
“help”:“幫助”,
“support”:“支持”

},
“ko”:{

“settings”:“ ”,
“help”:“ ”,
“support”:“ ”

}
}

The interface language can be changed at any time through the framework’s API. When
changed, all top-level components attached to the current window have their
refreshText() function called, which in turn refreshes the text on all attached child
components. This refresh will repeat a search, given the current (new) language, and
draw text on components based on this lookup.

IJPCC
11,3

260

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Figures 2 and 3 demonstrate how all text within the current window changes
immediately between English and Korean when the interface language is changed in a
“Settings” page, without reloading the page. This approach aids in the rapid
prototyping of mobile applications, where strings can be hardwired and used in fully
functional end-result applications, while still allowing the application to be open for
future multi-lingual changes.

5. Loading and saving data
Another expectation from users of mobile applications is that the application state
resumes where the user left the application. In mobile device scenarios, it is common for
an application’s usage to be interrupted, due to phone events (such as incoming texts),
the user rapidly switching between applications or the user temporarily closing their
phone to interact with the real world around them. The user expectation is that, when the
application is returned to, the application state will resume precisely where the user left
the application. In declarative UI programming, there is little room for breaking the
declarative flow to search for any existing application state variables and include them
in the interface. Rather, it would be ideal to have a mechanism where form-based data
are automatically saved and loaded, given the form component’s position and optionally
a specific id.

To support this, all components within the user interface have the possibility of
having their data and all subcomponents’ data automatically saved in HTML5 data
stores. This is accomplished using simple save and load functions available on any
component, so long as the top-level component has a unique id to reference the saved
information in the data store. When the save function is called, a name space is created
in the HTML5 data store as save.unique identifier.component name/index (with

Figure 2.
English selected

261

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-001.jpg&w=131&h=232

recursive levels of unique identifiers/component names/indexes being used, as
appropriate). At each level, a component is referenced by a sequential order, a name or
an id. Ideally an id (which is unique) or a name (which does not have to be unique, only
unique within the current container) would be provided to allow components to be
found. This allows the interface to be more accurate in finding a matching component,
particularly when an application is upgraded and user interface components may be
added, removed or shifted. However, as previously stated, one of the core premises of
this work is that the framework be as forgiving as possible. So even where the developer
does not provide unique names, the fields’ index positions will be used as a replacement.
An example would be a login window, consisting of username and password fields, but
without names on the elements (example shown in Figure 4). As this interface is unlikely
to change, the framework can trust the programmer’s lack of identification of
components and reference each component by its sequential index.

When loading data, the reverse process is undertaken. Any component with an id can
have data loaded and refreshed over the components in real time, through the load()
function. All sub-components within the DOM tree are checked to see if data have been
saved, although here, where a save data type does not match up with the form
component, it is simply ignored. In the case of an interface being upgraded between

Figure 4.
Login user interface

Figure 3.
Korean selected

IJPCC
11,3

262

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-002.jpg&w=119&h=49
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-003.jpg&w=131&h=231

versions, it is possible that some data might not be restored. However, the application
will not stop working and will display as much data as it is able to, based on the indexing
and/or identification of components and subcomponents.

Data are stored in HTML5 data stores, using the top-level component’s id as the key.
Each individual field is saved as its own entry within the database, with the id being
constructed as each level’s id, name or sequence number, separated by an underscore.
For example, a “login” component with “username” and “password” fields would have
two saved entries:

• login_username � …
• login_password � …

In the case where no ids are present on components, the components are indexed, as
follows:

• login_0 � …
• login_1 � …

Alternatively, a UI global variable JSON_TABLES contains a list of specific IDs that are
to be saved as JSON[5] representations. If a top-level id has been added to this list, then
a JSON render of the data of all sub-components is stored as a text string within the
database. Each JSON key is then an id, a name or an index position, depending on which
one is available.

A further feature added in the Guix.js framework is that of auto-saving. In mobile
applications, where an application may be closed due to being in a background state too
long because a device may be low on memory, a common user expectation is for the
application to seamlessly resume where the user left off, including all form field edits
made. This framework provides an auto-save feature, which can be toggled on any
component and will automatically save data of all form components contained at any
depth within it. This is an extremely simple approach, from a programmer’s perspective,
of tracking the state of user input within an application.

In a practical sense, the auto-save function toggles a flag on the given top-level
component, and recursively to all child components. Any newly added component will
also inherit the status of the auto-save flag. During specific events, such as option toggle
or text field blur, if the auto-save flag is set, then the data are stored into the HTML5 data
store.

Algorithms 13 and 5 demonstrate the use of toggling auto-save on a settings form. It
also demonstrates the use of several components. A form is created, consisting of four
primary components and, optionally, any additional settings defined in a configuration
variable elsewhere. A H3 tag is created, with multi-lingual support that may or may not
be used. As it contains a text string pre-capitalized and ready for immediate output, if it
is missing from the multi-lingual language specification then it will still render how the
programmer envisions. Following this, three toggle buttons are introduced, which
create a custom switch-like component for toggling between two options. A toggle
component takes any text string to be added to the label of the toggle, and any array to
be used as the values of the toggle buttons (which again make use of multi-lingual
support). In the case where data types are used (e.g. true and false), these are looked up
in the user interface language specification as “Progress Tracking_true” and “Progress

263

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Tracking_false” reference keys. If values are found, then these are custom-written as the
labels. If not found, default “true” and “false” keys are looked up (e.g. to provide generic
“Yes” and “No” values). Otherwise, “True” and “False” are used as the text in the last
instance.

Also note that a function can be added at any time in arguments, where the function
provided is called any time the setting is changed. This provides the programmer with
the ability to make quick calls when settings are changed or user interface buttons are
toggled, like selected a game’s skill level and having the current game stats reset. Also
of note is that the toggleSetting() component is different from a toggle() component. The
toggleSetting component automatically saves and loads the values of each entry in a
unique global settings namespace within the application’s local data store and within the
JavaScript window.settings namespace. Guix.js provides an additional set of xxxSetting
components that can be automatically used for global settings, without any further
variable declarations required. They call the same interface construction logic as their
original forms (e.g. toggleSetting calls toggle() component constructor, textSetting calls
text() component constructor). However, in addition, they automatically save and load
data whenever the data are changed, to the global window.settings namespace, as well as
in a HTML5 data store settings. This is to facilitate the use of data that are used
throughout the application for user app configuration. For example, toggleSetting
creates a toggle component for a boolean setting, intSetting creates a textbox restricted
to numbers and textSetting creates a textbox for working with string settings. As can be
seen from the code in the example, the programming required by the programmer is
extremely minimal to create a settings interface, complete with automatic loading and
saving of settings:

Algorithm 13: Using auto-save on a form
form(

(config.additionalSettings?
config.additionalSettings : null),

h3(“Learning Settings”),
toggleSetting(“Skill Level”,

[“Beginner”, “Advanced”],
function() { GameSetup.reset(); }),

toggleSetting(“Progress Tracking”,
[true, false}),

toggleSetting(“Wordcap”,
[true, false],
function() { GameSetup.reset(); })

).id(“learning_settings”).autosave(true);

A demonstration of the interface generated using Guix.js is shown in Figure 5. The first
item included is the use of additional settings, where one additional toggle setting is
included. Following this, a HTML header 3 is added, and then three toggle setting
components. Each toggle setting component has a label (which in this particular CSS
style is included before the toggle buttons). Following this are the two toggle options for
each case. Note how that a selection in all cases is already made, as there will be either
settings retrieved from the application’s data store, or default setting values, for each of
these keys.

IJPCC
11,3

264

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

6. Case studies
Several interface elements will now be shown from one of the example applications built
with this framework. To extend on from Algorithms 13 and 5 previously, consider the
situation of including the previously detailed form inside a tabbed pane. Algorithm 14
demonstrates use of a tabs component in program code, where text strings become tab
titles, and components become the tab content for each tab. This demonstrates how an
interface can be “built up” in a completely dynamic approach, without the need for
variable declarations or specific adder functions. The entire user interface can be
constructed in a single declaration. Figure 6 shows the tabbed interface with the “Game”
tab selected, and the previous “Settings” panel shown:

Algorithm 14: Using tabs
tabs(

“Game”,
form(

// code from Example 13
).id(“learning_settings”).autosave(true),
“Expert”,
form(),
“Sync”,
form(),

)

In the next scenario, a footer component for a spaced repetition system (SRS) learning
game is created. The program code (Algorithm 15) describes three separate buttons
being created, each placed in their own div for positioning purposes and finally placed in
a single parent div. Each button has hardwired text (“incorrect”, “unsure” and “correct”),
which is looked up in the multi-lingual text mappings, where “incorrect” is replaced with
“Wrong”. Each button also has unique classes added, based on the button styling
requirements. Finally, each button also has its own event action to call when tapped.
Figure 7 illustrates the rendered footer interface:

Figure 5.
Example settings

interface

265

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-004.jpg&w=167&h=181

Algorithm 15: Footer UI example
this.footerResponse � div(

div(button(“incorrect”).addClass(“button–left red”).onTap(function() {
GameSetup.currentGame.setIncorrect();

})).addClass(“ui– block–a”),
div(button(“unsure”).addClass(“button– center yellow”).onTap(function() {

GameSetup.currentGame.setUnsure();
})).addClass(“ui– block– b”),
div(button(“correct”).addClass(“button–right green”).onTap(function() {

GameSetup.currentGame.setCorrect();
})).addClass(“ui– block– c”)

).addClass(“ui– grid– b”);

In this final scenario, the basics of a four-button multiple-choice interface are
demonstrated (Algorithm 16). Note that not all of the interface is included for the
purposes of brevity. Four specific buttons are created as the user-selectable

Figure 6.
Tabs example

Figure 7.
Footer UI rendered

IJPCC
11,3

266

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-005.jpg&w=167&h=297
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-006.jpg&w=167&h=24

multiple-choice options. These are custom user interface components created
specifically for this application, as the buttons are one-way toggleable (they “lock down”
when pressed), revealing additional information. This button type is labeled
“fastCharButton” and is written into the Theme object for this application. The main
interface is then constructed as a 3 � 3 table, with the top and bottom rows having the
multiple-choice buttons on the left and right sides, and the center row and cell having the
question and optional audio button (if the question is an audio event). Figure 8 presents
the completed interface, which includes the four multiple-choice buttons detailed in this
scenario:

Algorithm 16: Multiple-choice UI example
this.buttonNodes � [

Theme.fastCharButton().onTap(function(){GameSetup.currentGame.clicked(0);}),
Theme.fastCharButton().onTap(function(){GameSetup.currentGame.clicked(1);}),
Theme.fastCharButton().onTap(function(){GameSetup.currentGame.clicked(2);}),
Theme.fastCharButton().onTap(function(){GameSetup.currentGame.clicked(3);})

];
this.mainInfo � table(

tr(this.buttonNodes[0],“ ”,this.buttonNodes[1]),
tr(div(this.audioButton, this.questionNode).addClass(“question–mark”)).colspan(3),
tr(this.buttonNodes[2],Theme.inlineButton(“?”).addClass(“skipbutton”).onTap

(function(){GameSetup.currentGame.skip();}), this.buttonNodes[3])
);

7. Conclusion
Developer-friendly programming libraries and architectures appear to be the direction
for the fast-paced and high-user-requirement world of mobile application development.
Such frameworks require a modern look at the requirements and expectations of user
applications within internationally pervasive and short runtime life cycle applications.

Figure 8.
Multiple-choice

render

267

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-03-2015-0014&iName=master.img-007.jpg&w=167&h=188

This paper presents a framework for rapidly developing mobile Web applications in
JavaScript. It builds on existing principles from declarative UI languages. However, it
differs from other JavaScript frameworks in that the user interface can be designed
entirely from JavaScript. Furthermore, the system features modern user interface
features such as multilingual support and being able to save and load the state of any set
of HTML components.

Notes
1. jQuery Foundation, jQuery, available at: http://jquery.com (accessed 6 March 2015).

2. Nano.js, available at: http://nanojs.org (accessed 6 March 2015).

3. Knockout.js, available at: http://knockoutjs.com (accessed 6 March 2015).

4. Quilt.js, available at: http://pathable.github.io/quilt (accessed 6 March 2015).

5. JSON, available at: www.json.org/ (accessed 6 March 2015).

Further reading
Abams, M., Phanouriou, C., Batongbacal, A., Williams, S. and Shuster, J. (1999), “UIML: an

appliance-independent XML user interface language”, Computer Networks: The
International Journal of Computer and Telecommunications Networking, Vol. 31 Nos 11/16,
pp. 1695-1708.

Ballagas, R., Memon, F., Reiners, R. and Borchers, J. (2007), “iStuff Mobile: rapidly prototyping
new mobile phone interfaces for ubiquitous computing”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems 2007, ACM, New York, NY,
pp. 1107-1116.

Cassino, R. and Tucci, M. (2011), “Developing usable web interfaces with the aid of automatic
verification of their formal specification”, Journal of Visual Languages & Computing,
Vol. 22 No. 2, pp. 140-149.

Dix, A. (1999), “Design of user interfaces for the web”, paper presented at UIDIS’99 – User
Interfaces to Data Intensive Systems, Edinburgh, 5-6 September, available at: www.hiraeth.
com/alan/topics/web (accessed 6 March 2015).

Dubé, D., Beard, J. and Vangheluwe, H. (2009), “Rapid development of scoped user interfaces”,
Proceedings of the 13th International Conference Human-Computer Interaction Part I: New
Trends, Springer-Verlag Berlin, Heidelberg, pp. 816-825.

Frank, C., Naugler, D. and Traina, M. (2005), “Teaching user interface prototyping”, Journal of
Computing Sciences in Colleges, Vol. 20 No. 6, pp. 66-73.

Giereth, M. and Ertl, T. (2008), “Design patterns for rapid visualization prototyping”, Proceedings
of the 12th International Conference of Information Visualisation, IEEE, London,
pp. 569-574.

Helms, J. and Abrams, M. (2008), “Retrospective on UI description languages, based on eight
years’ experience with the user interface markup language (UIML)”, International Journal
of Web Engineering and Technology, Vol. 4 No. 2, pp. 138-162.

Meszaros, T. and Dobrowiecki, T. (2010), “Rapid prototyping of application-oriented natural
language interfaces”, Proceedings of Information Technology Interfaces (ITI) 32nd
International Conference, IEEE, Cavtat/Dubrovnik, pp. 97-102.

Nebeling, M. and Norrie, M. (2012), “jQMultiTouch: lightweight toolkit and development
framework for multi-touch/multi-device web interface”, Proceedings of the 4th ACM

IJPCC
11,3

268

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://jquery.com
http://nanojs.org
http://knockoutjs.com
http://pathable.github.io/quilt
http://www.json.org/
http://www.hiraeth.com/alan/topics/web
http://www.hiraeth.com/alan/topics/web
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jvlc.2010.12.001&isi=000289587200003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FIV.2008.36
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FIV.2008.36
http://www.emeraldinsight.com/action/showLinks?isi=000080662500046
http://www.emeraldinsight.com/action/showLinks?isi=000080662500046
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJWET.2008.018095
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-02574-7_91
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJWET.2008.018095
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1240624.1240793
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-02574-7_91
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1240624.1240793
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2305484.2305497

SIGCHI Symposium on Engineering Interactive Computing Systems, ACM, New York, NY,
pp. 61-70.

Ni, L., Xu, Z., Wu, T. and He, W. (2013), “Visualizing linked data with javascript”, Proceedings of
Web Information System and Application Conference (WISA), in Yangzhou 10-15
November, IEEE, Los Alamitos, pp. 211-216.

Phanouriou, C. (2000), “UIML: a device-independent user interface markup”, Virginia Tech
Electronic Theses and Dissertations, VA Polytechnic Institute and State University, VA.

Rexilius, J., Jomier, J., Spindler, W., Link, F., König, M. and Peitgen, H. (2005), “Combining a visual
programming and rapid prototyping platform with ITK”, Bildverarbeitung für die Medizin
2005, Springer, Heidelberg, pp. 460-464.

Ssekakubo, G., Suleman, H. and Marsden, G. (2014), “A streamlined mobile user-interface for
improved access to LMS services”, Proceedings of eLmL 2014 The Sixth International
Conference on Mobile, Hybrid, and On-line Learning 23-27 March 2014 in Barcelona,
Spain, IARIA, Barcelona, pp. 92-101.

Trætteberg, H. (2007), “A hybrid tool for user interface modeling and prototyping”,
Computer-Aided Design of User Interfaces V, pp. 215-230.

Yanagisawa, H., Uehara, M. and Mori, H. (2008), “Interface implementation using ajax for
web-based instruction set simulator”, Proceedings of Advanced Information Networking
and Applications – Workshops, 22nd International Conference, IEEE, Okinawa,
pp. 1511-1516.

About the author
Henry Larkin is a Lecturer of Mobile Applications at Deakin University. He obtained his PhD in
wireless pervasive networks in 2005 at Bond University, followed by a postdoc at Aizu University
in Japan. He has published over 30 papers in mobile and Web-related fields. His research interests
include mobile applications, Web technologies, ubiquitous and pervasive computing and wireless
ad hoc networks. Henry Larkin can be contacted at: henry.larkin@deakin.edu.au

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

269

Designing
user interfaces

in JavaScript

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

30
 0

7
N

ov
em

be
r

20
16

 (
PT

)

mailto:henry.larkin@deakin.edu.au
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2305484.2305497
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWISA.2013.48
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWISA.2013.48
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWISA.2013.48
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4020-5820-2_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWAINA.2008.285
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FWAINA.2008.285
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-26431-0_94

	A framework for programmatically designing user interfaces in JavaScript
	1. Introduction
	2. Existing frameworks
	3. Approach
	3.1 Handling variable function arguments
	3.2 Dealing with events

	4. Multi-lingual support
	5. Loading and saving data
	6. Case studies
	7. Conclusion

