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Abstract
Purpose – The Video Quality Metric (VQM) is one of the most used objective methods to assess video
quality, because of its high correlation with the human visual system (HVS). VQM is, however, not
viable in real-time deployments such as mobile streaming, not only due to its high computational
demands but also because, as a Full Reference (FR) metric, it requires both the original video and its
impaired counterpart. In contrast, No Reference (NR) objective algorithms operate directly on the
impaired video and are considerably faster but loose out in accuracy. The purpose of this paper is to
study how differently NR metrics perform in the presence of network impairments.
Design/methodology/approach – The authors assess eight NR metrics, alongside a lightweight FR
metric, using VQM as benchmark in a self-developed network-impaired video data set. This paper covers a
range of methods, a diverse set of video types and encoding conditions and a variety of network impairment
test-cases.
Findings – The authors show the extent by which packet loss affects different video types, correlating the
accuracy of NR metrics to the FR benchmark. This paper helps identifying the conditions under which
simple metrics may be used effectively and indicates an avenue to control the quality of streaming systems.
Originality/value – Most studies in literature have focused on assessing streams that are either
unaffected by the network (e.g. looking at the effects of video compression algorithms) or are affected by
synthetic network impairments (i.e. via simulated network conditions). The authors show that when
streams are affected by real network conditions, assessing Quality of Experience becomes even harder,
as the existing metrics perform poorly.

Keywords Network impaired videos, No-reference video quality, Quality of experience

Paper type Research paper

1. Introduction
Video streams are affected by network protocols and impairments (such as jitter and
packet loss) according to non-linear quality degradation functions, often in unexpected
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and unpredictable ways (Liotta, 2013). Thus, assessing video degradation has become
the subject of many studies, especially by means of Quality of Experience (QoE) tools
(Menkovski et al., 2010). What is really crucial is to find reliable yet simple and scalable
methods that can be used by service and content providers to manage their services,
adjusting the streams’ quality according to both the network conditions and the human
perceptual models. This goal becomes particularly challenging, as quality assessment
algorithms are either too complex or too unreliable. Herein, we experimentally survey
the most popular algorithms, identifying their operational conditions.

QoE is defined as the degree of delight or annoyance of the user of an application or
service (Le Callet et al., 2012). Due to its subjective essence, the legitimate judges of
visual quality are the humans, whose opinion can be obtained through subjective
analyses (Shahid et al., 2014). In practice, presented stimuli (e.g. impaired video
sequences) are rated by subjects under controlled conditions (Zinner et al., 2010). These
ratings express the subjective QoE (sQoE) described typically by the Mean Opinion
Score (MOS). However, due to the time-consuming nature and bias of subjective
experiments (Menkovski et al., 2011), in the past years, great effort has been placed onto
developing objective quality metrics which could provide with a valid alternative, that
is, objective QoE (oQoE) (Staehle et al., 2008).

The ultimate goal of the oQoE metrics is to provide the best possible correlation to
subjective studies and the human vision system (HVS) by means of only the reference
(original) and the received material. Depending on the amount of reference information
necessary to perform the assessment, the oQoE approaches are classified in three
categories: Full Reference (FR), Reduced Reference (RR) and No Reference (NR). FR and
RR metrics require the original material (either in its totality or through the analysis of
certain features) to perform their assessment. Examples of these metrics are the FR
Peak-Signal to Noise Ratio (PSNR) and the Structural Similarities (SSIM) algorithms
(Wang et al., 2004) or the RR approaches of Mocanu et al. (2014b, 2015). Specifically
because of its good correlation with subjective values, the Video Quality Metric (VQM)
(Pinson and Wolf, 2004) is commonly used as the FR benchmark metric (Chikkerur et al.,
2011). However, its high complexity, running time and the fact that, as a FR metric, it
requires both the original and the impaired material make VQM not a viable solution in
real-time deployments, such as mobile streaming services. To fill the gap, NR metrics
have started to take a predominant role. Their biggest asset is the fact that they do not
rely on highly complex comparisons among streams but on the measurements of
external factors to model the multimedia quality. These metrics, which base their
quality assessment on the analysis of video features at the bit-stream level (bitrate, scene
complexity, video motion and other parameters in the codec) or at the frame pixel level
(blur, noise, blockiness), provide a very fast or even real-time assessment while being
able to be deployed in lightweight environments (Torres Vega et al., 2015a, 2015b).
Despite this fact, their accuracy in assessing video degradations and their correlation to
subjective analysis are still open issues. This situation makes it particularly hard to
automate the assessment of real-time streams that have been subjected to network
packet loss, which is the main focus of our study. Most studies in the literature have
focused on the assessment of streams that are either unaffected by the network (e.g.
looking at the effects of video compression algorithms) or are affected by synthetic
network impairments (i.e. via simulated network conditions). We show that when
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streams are affected by real network conditions, assessing QoE becomes even harder, as
the existing metrics perform poorly.

In this paper, we present an experimental analysis of the accuracy of NR metrics in
network impaired videos, extending the early results in our previous work (Torres Vega
et al., 2015c). Based on a prior thorough study on the currently used state-of-the-art NR
metrics and the features most commonly used for their assessment, we designed and
implemented an RTP-video client tool which first analyses the impaired video using
eight different NR features alongside the lightweight FR metric SSIM and VQM (used as
the quality benchmark). In an experimental test bed, we prepared an impaired video set
of 960 videos, which covers a diverse set of video types, encoding conditions and
network situations, and we deployed our methodology and explored the accuracy of the
NR features and SSIM by correlating their values with the benchmark quality. The
purpose of this study is to provide a NR framework for video quality assessment and to
show the extent by which network impairments affect different video types, correlating
the accuracy of NR metrics to the FR benchmark. Our work helps identify the conditions
under which simple metrics may be used effectively and in line with human perception.

The remainder of this paper is organized as follows. Section 2 provides an overview
on the video features currently used for assessing the quality in a NR manner. Section 3
presents our proposed methodology, as well as giving insights on the development of
the different NR metrics. The experimental video set is introduced in Section 4. Section
5 provides an evaluation of results focusing not only on impairments derived from the
compression degradation but also the ones derived from real network conditions.
Finally, Section 6 draws conclusions, highlighting key contributions and suggesting
directions for future work.

2. NR-Video features and artifacts
Reibman et al. (2005) classified NR approaches as either stemming from statistics
derived from pixel-based features, NR pixel (NR-P), or computed directly from the coded
bitstream, NR bitstream (NR-B). In a more recent classification, Shahid et al. (2014)
added to this classification a third category in which approaches combining both pixel
and bitstream assessments are included, that is, Hybrid NR-P-B metrics.

NR-P methods have focused their attention on the employment of certain artifacts
related to a specific type of degradation of the visual quality. Blur, noise, blockiness or
temporal impairments have been quantified for measuring the end-user’s quality. Blur,
measured frame by frame, appears as a loss of spatial detail and a reduction of edge
sharpness (Winkler, 2005). Examples of blur-based NR video quality assessment can be
found in Ciancio et al. (2011) and Ferzli and Karam (2006). Noise has also been used to
assess quality, like in the block-based approach of Rank et al. (1999). Blockiness
manifests itself as a discontinuity between adjacent blocks in images and video frames
(Hemami and Reibman, 2010). Several research lines have focused on blockiness,
examples of that are the Block-Edge metric of Wu and Yuen (1997) or the HVS-based
blocking method of Liu and Heynderickx (2008). Finally, temporal impairments incur by
the network through delay or packet loss. These result in a degradation of the video in
the form of jerkiness (non-fluent and non-smooth presentation of frames) (Borer, 2010),
frame freezes or jitter. Because videos can be affected by more than one artifact at a time,
methods combining contributions of different artifacts appeared, such as the linear
combination of noise and blur components of Choi et al. (2009).
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NR-B methods are relatively simpler to compute, and quality scores can be obtained
in the absence of the full decoder. But they tend to have a limited scope of application, as
they are usually designed for specific coding techniques, for example, H.264/AVC
(Brandão and Queluz, 2010). Another issue is to find the correlation between the bitlayer
parameters and quality, without increasing the complexity. Learning tools have proven
to be a promising solution for this type of approaches. Shahid et al. (2011) proposed a
model combining different bitstream-layer features using an Artificial Neural Network
to estimate the quality.

The performance of NR-B metrics can be enhanced by adding some input form of
NR-P-based quality assessment. These methods are called hybrid methods. Shanableh
(2011) suggest a multi-pass prediction system based on step-wise regression using
features included in the coding information of a Macro Block (MB), some relative
measures of motion vector of neighboring MBs and some numerical values related to
textures of the MB. This method has shown good correlation to SSIM, but its complexity
makes it not quite fit for online analysis. Another interesting approach is the one
provided by Keimel et al. (2012). They measure the quality by linearly combining
bitstream and pixel-related features. Despite substantially reducing complexity, their
approach does not, however, correlate well with either PSNR (Peak Signal to Noise
Ratio) or SSIM, two of the state-of-the-art objective metrics in current use. Finally, in our
previous research, we developed a lightweight algorithm combining bitstream
parameters (video bitrate, complexity and motion) with pixel artifacts (blur and noise).
In Torres Vega et al. (2015a), we presented the algorithm and showed a high correlation
with SSIM.

3. Methodology
The aim of this study is to understand how accurately different NR features and
artifacts assess degradations on the video quality. Thus, the first step was to define
which metrics would be used. Then, we had to decide which FR metric would be most
suited as benchmarking and how to perform it.

As already introduced in the previous section, NR metrics have been traditionally
classified according to the features they take into consideration to assess multimedia
quality. In this way, NR-P metrics focus on frame- and pixel-level features and NR-B on
the bitstream characteristics. Both types combined have been demonstrated to provide
better analysis and are, nowadays, the base for the development of the state-of-the-art in
NR-metrics. Following this trend, we selected metrics in both levels. Because the
purpose of this analysis is to understand under which circumstances a very high
computational FR analysis could be substituted by a low complexity NR metric, an extra
requirement for all the NR features selected was for them to be obtainable in real time, at
low computational complexity and, thus, suited both for standard and very lightweight
devices.

A video stream can be characterized by several parameters that will affect video
types differently. Parameters regarding the video composition have been demonstrated
to affect quality to a large extent because they robustly combine different characteristics
obtained from the video encoding. In particular, the scene complexity and the video
motion have proven to provide a high level of correlation with quality degradations
(Liotta et al., 2013; Hu and Wildfeuer, 2009). First, the scene complexity quantifies the
number of objects or elements present at the video scene. Second, the video motion can
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be described as the amount of movement present in the video. Both features can be
empirically derived from the received encoded video in real time following equations (1)
and (2) for scene complexity and video motion, respectively (Liotta et al., 2013):

C �
BitsI

2 * 106 * 0.91QPI
(1)

M �
BitsP

2 * 106 * 0.87QPP
(2)

where BitsI and BitsP are bits of coded Intra (I) and Inter (P) frames, and QPI and QPP
represent the average I-Frames and P-Frames quantization parameter.

Extensive research has been performed on NR-pixel-level features. Metrics such as
the level of noise, the clipping or the frame edges’ blur have been used to measure
multimedia quality in a NR way. For this analysis, we focused on four features which
have been demonstrated to provide a degradation assessment and which are
fundamental when dealing with impaired video streams. The network and the encoding
will provoke the appearance of different artifacts on the frames. First of all, the images
will develop blocks in which the image is not clear and cannot be processed. This effect
is called blockiness and can be easily calculated for each of the video frames. In our
study, we followed the procedure described in the study by Perra (2014) and Wu and
Yuen (1997). Furthermore, degradations can be observed in terms of the sharpness and
the cleanness of the frame. A blur and noise measure gives the quantitative assessment
on both effects (Choi et al., 2009; Torres Vega et al., 2015a, 2015b, 2015c). Choi et al. (2009)
developed an algorithm to assess the quality by means of blur and noise components.
From this algorithm, four measurements can be obtained: average video blur mean,
average blur ratio, average noise mean and average noise ratio. These four features are
linearly combined to obtain the quality value. In our previous work (Torres Vega et al.,
2015a), we extended their algorithm to videos by introducing weights adapted to the
video type. Here, the accuracy of each of these four features is assessed independently.
The blockiness, noise (mean and ratio) and blur (mean and ratio) values are obtained per
frame and averaged by the number of frames in the video. Finally, temporal aspects
such as freezes and jerks can degrade the quality in unexpected and unrecoverable
ways. In our set of features, we include temporal aspects by measuring the video
jerkiness, which can be derived by means of the minimum square difference (MSD)
between frames method developed by Borer (2010). Thus, this calculation is performed
in sequential pairs of frames all over the video and averaged and normalized at video
ending.

Objective QoE FR metrics have been traditionally used as a valid alternative to
assess end-user quality in the absence of subjective data. A well-known example of these
metrics is SSIM which, thanks to a very exhaustive frame-by-frame analysis, provides
results in line with the HVS. However, this algorithm, although well suited for images,
lacks a temporal assessment, and thus, it fails to perform accurately for the assessment
of videos. VQM (Pinson and Wolf, 2004), on the other hand, combines analyses both in
the temporal and the spatial video levels to obtain an assessment highly correlated with
the HVS (Chikkerur et al., 2011). Thus, we used VQM as the baseline benchmark for the
NR metrics. Furthermore, to fully understand how far in terms of accuracy is SSIM
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compared to the state-of-the-art, we decided to include this lightweight FR metric in the
accuracy framework.

Finally, to automate the whole measurement, calculation and benchmark, we
designed an RTP-Video Client tool as schematized in Figure 1. On arrival to the client,
the eight NR-features present in the impaired video are quantified. At the same time, a
copy of the original video is made available on the client side to be used to perform two
FR assessments, SSIM and VQM. Once all metrics and the benchmark quality have been
obtained, they are pre-processed to simplify the comparison. First, metrics are
normalized between 0 and 1. Second, metrics measuring the level of degradation instead
of the actual quality are inverted. As a consequence of this process, all metrics and the
benchmark quality are in the same range between 0 and 1, where 0 represents total loss
of quality and 1 means full quality, that is, no degradation. Accuracy is then assessed by
means of a Pearson correlation (Kendall et al., 1987) between the metric under scrutiny
and the benchmark normalized quality.

4. Video data set
Figure 2 shows the test-bed used for generating our video quality evaluation framework.
The RTP-video server streams videos on demand to the RTP-video client. Between
server and client, a network emulator is installed. This device is able to emulate real-time
network conditions. On reception of the impaired video, the client performs the NR-video

Original
Video

Impaired
Video

ACCURACY

ASSESSMENT

QVQM

RTP-Video Client

C

M

μN , rN

J

QSSIM

BENCHMARK

Bitrate level
Scene Complexity

Video Mo�on

Pixel level

Blockiness

Noise

Jerkiness

Blur μb , rb

BD

NR-FEATURES

SSIM

VQM

FR-QUALITY METRICS

Figure 1.
NR metrics accuracy

assessment tool

Original
Video

Impaired
Video

RTP-
Video
Server

Network
Emulator

PL%

RTP-
Video
Client

Figure 2.
Test-bed block

diagram
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features assessments and the FR metrics following the methodology introduced in the
previous section.

The original video set used for the evaluation consists of 10-s videos at 25 fps
from the Live Quality Video Database (Seshadrinathan et al., 2010a, 2010b). Each of the
videos is of a different dynamic composition and type (Table I). These videos are
compressed to H264/MPEG4 at a resolution of 768 � 432 at eight different bitrates (64
kbps, 640 kbps, 768 kbps, 1,024 kbps, 2,048 kbps, 3,072 kbps, 4,096 kbps and 5,120
kbps). The selection of the encoding bitrates has been done in a way as to obtain the most
diverse variety of video qualities. For example, very low quality transmissions (64 kbps)
are nowadays, with the currently used systems and Internet speeds, highly unlikely to
occur. However, they could still be used in mobile devices in a very congested network.
With this variety of bitrates, our data set covers a broad range of video types, which
allows a comprehensive NR analysis.

Packet loss has been demonstrated to be the main cause of degradation in RTP video
transmissions (Mocanu et al., 2014c; Suárez et al., 2015). Thus, to make our data set most
suitable to real network situations, we focused on videos impaired by the influence of
packet losses. For the generation of the full data set, 80 original videos (ten types at eight
quality levels each) were transmitted from server to client through a lossy network.
Each video type and bitrate was streamed through the network 11 times. Each video
was subjected to all different levels of packet loss (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 10
per cent). This means that we generated a video set consisting of 960 videos, obtained
from 10 original videos, each encoded at 8 different bitrates and 12 different conditions
(1 compression degradation � 11 compression degradation and packet loss).

Table I.
Video test set:
acronym, name and
description

Acronym Name Description

bs1 Blue Circular camera motion
sky Blue sky and trees

mc1 Mobile Camera pan, horizontal tor train
calendar Calendar moving vertically

pa1 Pedestrian Still camera
area People walking on intersection

pr1 Park Camera pan
run Person running across a park

rb1 River Still camera
bed River bed, pebbles in the water

rh1 Rush Still camera
hour Rush hour traffic on the street

sf1 Sunflower Still camera
Bee over a sunflower in close-up

sh1 Shields Camera pan, still and zoom
Person across a display of shields

st1 Station Still camera
Railway track, one train and people walking across

tr1 Tractor Camera pan
Tractor moving across fields
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5. Evaluation
For the sake of simplicity, we have divided the analysis in two different parts. In the first
one (Section 5.1), we focus on the accuracy of NR metrics in videos that are affected only
by compression degradation, testing the original 80 videos, compressed at different
levels (no network impairments). This provides a clean benchmark for the different NR
metrics under conventional conditions (no network effects). In the second section
(Section 5.2), we extend the analysis to study how network impairments affect the
accuracy of NR metrics, thus showing more realistic conditions than what is known
from the literature (including the whole 960 video set).

5.1 Quality versus compression
In this first part of the study, we focused on analyzing the accuracy of the NR-metrics
when the videos are only affected by the degradations derived from the video
compression. Thus, we used the original 80 videos compressed from the original 10 raw
videos at 8 different bitrates. The results are shown in two figures. First, we show the
behavior of the benchmark quality in these original 80 videos (Figure 3). And then, we
present the accuracy results for the eight NR features and SSIM (Figure 4).

In the colormap presented in Figure 3, bitrates can be seen on the x-axis, while the
main y-axis shows the 10 video types, and the secondary y-axis presents the average
quality value per bitrate (aggregating all video types). Dark blue indicates full quality.
As the quality degrades, the sample color goes from light blue to yellow, orange and

64 640 768 1,024 2,048 3,072 4,096 5,120

Figure 3.
Benchmark quality

of the original 80
videos
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finally red (poorest quality). As expected, for all video types, quality increases
proportionally to the bitrate. Most of the video types show red or dark orange values at
very low bitrates and dark blues at the highest ones. However, it can be seen that each
video type behaves in a different manner. While some videos, such as the Rush hour
(rh1, sixth line from the top) or the Sunflower (sf1, seventh line from the top), reach
maximum quality at bitrates of 3 or 4 Mbps, others like the Park run (pr1, fourth line
from the top), the River bed (rb1, fifth line from the top) or the Shields (sh1, eighth line)
are still far from the maximum quality index (1, dark blue) encoded at 5 Mbps. These
different behaviors demonstrate the generality of our data set.

The accuracy of the eight NR metrics and SSIM in the presence of compression
degradation is shown in Figure 4. Each of the colormaps shows one metric for the 80

64 640 768 1,024 2,048 3,072 4,096 5,120 64 640 768 1,024 2,048 3,072 4,096 5,120 64 640 768 1,024 2,048 3,072 4,096 5,120

Figure 4.
NR metrics and SSIM
correlation to the
benchmark quality
for all the videos for
encoding-related
degradation
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videos (type and bitrate). As for the previous figure, the x-axis presents the bitrate and
the y-axis shows the ten video types. A dark blue value means full correlation
(quality � 1). As the correlation degrades, the color goes from light blue to green (0 or no
correlation), yellow and final red (�1, the two metrics are anti-correlated, that is, they
follow opposite trends).

If we look at the bitstream layer parameters, complexity and motion (first and second
colormaps, first row), then it can be seen that both features correlate very well for all the
videos (dark blue). However, in some specific cases, such as the river bed (rb1, fifth line)
– in the case of complexity – or the Park run (pr1, fourth line) – in the case of motion – the
correlation starts degrading from a certain bitrate on. The reason for this is that at
certain levels of compression (bitrate), the metric saturates and cannot further improve,
while the benchmark quality (which takes into account many different parameters)
continues improving.

The blockiness (third colormap, first row) shows full correlation (dark blue) for
nearly all bitrates and video types. In some cases, the correlation degrades at very high
bitrates. Examples of this behavior are the Pedestrian area (pa1, third row), the
Sunflower (sf1, seventh row) or the Station (st1, ninth row). The reason for it can be
found by looking at the reference quality of these videos (Figure 3). In these three cases,
the quality is maximum from early stages of bitrate (roughly 2 Mbps), while the
blockiness quality (Figure 4) keeps showing improvements.

While the noise components (first and second colormaps, second row) show no
correlation with the benchmark quality for any of the videos or bitrates, the blur
components (first and second colormaps, third row) of the videos show quite an
interesting behavior. For seven of the videos, the average blur is highly anti-correlated,
while the ratio is highly correlated. However, this cannot be considered a general
characteristic. The video Park run (pr1, fourth row) presents the complete opposite
pattern. Furthermore, the Rush hour (rh1) and the Sunflower (sf1), sixth and seventh
lines, show full correlation in both metrics for all the bitrates.

The jerkiness shows high levels of correlation (dark blue) in eight of the ten video
types. The anti-correlation seen for the Rush hour (rh1, sixth line) and the Station (st1,
tenth line) can be explained by the video composition which makes them quite resistant
to jerkiness artifacts.

Finally, SSIM (third colormap, third row) shows high correlation with the benchmark
quality. It can be observed that in some of the cases, the correlation degrades lightly for
higher bitrates, while in others, the correlation is maintained.

5.2 Quality versus network impairments
In this second part of the study, we extended the analysis to the whole 960 video set. As
in the previous case, the results are shown in two parts. First, we show the benchmark
quality in the 960 videos of the data set (Figure 5). Then, we present the accuracy results
for the eight NR features and SSIM (Figures 6-15) for all ten videos types.

Figure 5 presents the quality analysis of the impaired video set. Each of the
colormaps shows a video type. The packet loss level is seen on the x-axis, while the main
y-axis shows the bitrates and the secondary y-axis presents the average quality
(aggregated across all bitrates) for each of the packet loss levels. As in the previous case,
dark blue indicates full quality, and as the quality degrades, the sample color goes from
light blue to yellow, orange and a final red (poorest quality). In all these cases, dark blue
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NR metrics and SSIM
correlation to the
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for selected video
type bs1 and all
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of the 960 videos of
the impaired video
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is found at the lower levels of packet loss and high bitrates. The color gradually turns to
yellow as the network packet loss increases. In none of the cases, quality degrades
beyond values of 0.1-0.3 (red-dark orange). One interesting finding is that as the bitrate
decreases, the influence of packet loss is less noticeable. In all the tested cases, bitrates of
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Figure 7.
NR metrics and SSIM

correlation to the
benchmark quality

for selected video
type mc1 and all

impairment
conditions
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NR metrics and SSIM

correlation to the
benchmark quality

for selected video
type pa1 and all
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conditions
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64 kbps and 640 kbps get hardly impaired by the network conditions (constant color
between yellow and orange depending on the video). Furthermore, as it was hinted in the
study of the original video set, the video types are affected by packet loss to a greater or
a lower extent, depending on their dynamic composition. For example, the videos Park
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Figure 9.
NR metrics and SSIM
correlation to the
benchmark quality
for selected video
type pr1 and all
impairment
conditions

Figure 10.
NR metrics and SSIM
correlation to the
benchmark quality
for selected video
type rb1 and all
impairment
conditions
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run (pr1) or River bed (rb1) suffer more degradation from the compression than from the
influence of packet loss (near constant colors in all the bitrates). In the other extreme,
cases such as the Mobile calendar (mc1), Blue sky (bs1) or Rush hour (rh1) suffer great
degradation from packet loss. Finally, videos like the Shields (sh1) or the Tractor (tr1)

Figure 11.
NR metrics and SSIM

correlation to the
benchmark quality

for selected video
type rh1 and all

impairment
conditions

Figure 12.
NR metrics and SSIM

correlation to the
benchmark quality

for selected video
type sf1 and all

impairment
conditions
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show a counter-intuitive behavior because they suffer faster degradation for low packet
loss (until roughly 3 per cent) and slow degradation from that point on.

Figures 6-15 show the correlation results for the ten video types of our data set. Each
figure presents a different video type, whereby each colormap shows the correlation of

Figure 13.
NR metrics and SSIM
correlation to the
benchmark quality
for selected video
type sh1 and all
impairment
conditions

Figure 14.
NR metrics and SSIM
correlation to the
benchmark quality
for selected video
type st1 and all
impairment
conditions
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a specific metric to the benchmark quality. The x-axis presents the packet loss level, and
the y-axis shows the correlations for each of the bitrates under scrutiny. As in the
previous section, a dark blue value denotes full correlation (quality � 1). As the
correlation degrades, the color goes from light blue to green (0 or no correlation), yellow
and final red (�1, the two metrics are anti-correlated, that is, they follow opposite
trends). Some of the cases in which an anti-correlation takes place (red) present, at
certain levels of packet loss, an apparent improvement in correlation. This is just an
effect of the metric failing to perform an accurate measurement due to high losses (i.e.
missing frames).

As in the previous part of the analysis, we can first take a look at the bitstream
features, complexity and motion (first and second plots of the first row, in each of the ten
plots). In general, it can be seen that the scene complexity correlates better with the
benchmark quality as the bitrate increases. The correlation occurs up to a certain level
of packet loss, changing across different types of video and bitrate but ranging between
2.5 and 4 per cent, from which the correlation starts degrading. Depending on the video
type, the lower bitrates present low correlation or even anti-correlation. For example,
while in the videos River bed (rb1, Figure 10) and Shields (sh1, Figure 13) the complexity
presents high levels of correlation for all the bitrates, the remaining eight videos present
well-defined bitrate thresholds from which the correlation starts and below which the
metric is completely anti-correlated with the benchmark quality. This threshold is, for
example, 2 Mbps for the Blue sky (bs1, Figure 6) or 640 kbps for the Mobile calendar
(mc1, Figure 7). An extreme case is the one presented in the video Pedestrian area (pa1,
Figure 8). In this case, the correlation occurs not only depending on the level of packet
loss but also on the compression bitrate. In this way, no correlation is present for
compression rates of 5 and 1 Mbps, but it appears for all the other rates. The video
motion follows a similar behavioral pattern as for the complexity. Correlation occurs

Figure 15.
NR metrics and SSIM

correlation to the
benchmark quality

for selected video
type tr1 and all

impairment
conditions
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predominantly on high-quality videos and, as the packet loss level increases, the
correlation slowly decreases (lighter blue). However, in contrast to what was found in
the complexity study, the correlation of the motion occurs in a more reduced number of
places, and no video type presents a motion correlation in any of its variants and
network conditions. One extreme example is the River bed (rb1, Figure 10), in which,
depending on the bitrate, the motion either fully correlates or anti-correlates.

The blockiness (third plot, first row of the ten figures) presents, in general, higher
correlations for low bitrates (up to 1-2 Mbps depending on the video) and low level of
packet losses (up to 2-4 per cent). For the high bitrates compression variants, the trend
depends fully on the video type. In seven out of the ten video types, correlations are to be
found also at high bitrates up to a certain level of packet loss. From the remaining three
video cases, Mobile calendar (mc1, Figure 7) and the River bed (rb1, Figure 10) present
no blockiness correlation at high bitrates, and the Pedestrian area (pa1, Figure 8)
presents correlation dependent on the bitrate. While for the 5 and 4 Mbps variants of the
video, the blockiness is correlated up to close to 5 per cent packet loss level, in the 2 and
1 Mbps variant, the correlation is negative.

If we now focus on the components of the image NR-metric developed by Choi et al.
(2009), noise and blur (first and second plots, second and third row of the 10 Figures),
then we can see that the correlation is poor for most of the video types but completely
dependent on video type and bitrate. For example, while the noise mean fully
anti-correlates in most of the cases, it correlates for certain bitrate variants of the
Pedestrian area (pa1, Figure 8) and Shields videos (sh1, Figure 13).

The jerkiness’ (third plot, second row for the 10 Figures) correlation depends
completely on the video type and bitrate. On the one hand, videos such as the Blue sky
(bs1, Figure 6), the Pedestrian area (pa1, Figure 8) or the River bed (rb1, Figure 10)
present a complete lack of correlation between jerkiness and quality. On the other hand,
the Park run (pr1, Figure 9) and Sunflower (sf1, Figure 12) show good correlation
between the metric and the quality. Finally, others, such as the Station (st1, Figure 14),
present a combined pattern, in which correlation appears at high bitrates and a complete
lack of it at low bitrates and high packet losses. The different behaviors come from the
composition of the videos. Furthermore, it is worth noticing that the nature of the
transmissions (the real time protocol) avoids the appearances of freezes or time laps,
while it is more vulnerable to blocks and bitrate reductions.

Finally, SSIM (third plot, third row for the ten figures) correlates in nearly all the
cases and bitrates with the exception of very low bitrates (64 kbps) and very high levels
of packet loss (roughly 2-4 per cent). One clear example of this is the case of the River bed
(rb1, Figure 10), in which for all bitrate compression (except 64 Kbps), the correlation is
nearly perfect until 3 per cent packet loss to decay to zero correlation for higher packet
loss levels. This general correlation proves that even if considered a lesser FR metric in
terms of accuracy, SSIM is still a valid indicator of the degradation of video services.

From these results, we can conclude that for each metric, we can always find a
specific range of good operational quality. However, none of the NR metrics operates
uniformly well, that is, under an overall representative range of conditions. This result
suggests that contrary to what is normally done in the objective QoE assessment, NR
metrics cannot be deemed appropriate to evaluate network-impaired video streams.
Furthermore, our work confirms that FR metrics such as VQM are indeed accurate not
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only to assess quality loss due to compression (as it is well known) but also to assess
quality loss in the presence of substantial packet and frame losses.

6. Conclusions
In this work, we wanted to find out the extent by which simple NR metrics would work
for network-impaired video streams. This was motivated by some of our own earlier
studies on QoE evaluation of video streaming systems, which unveiled substantial
issues with the current methods particularly under lossy conditions (Mocanu et al.,
2014a, 2014b, 2014c; Torres Vega et al., 2014). The contribution of this paper is, first, to
verify that VQM is reliable even at high packet loss rates. Our stress tests cover a broad
range of video types and network impairments up to 10 per cent packet loss rates,
showing that despite being computationally intensive, VQM can be used as a reliable
benchmark to evaluate other lightweight metrics. We could then carry out a
comparative experimental survey covering a range of NR metrics, including the
lightweight FR metric SSIM, establishing that, indeed, NR-metrics are accurate only
within restricted operational conditions. None of the tested metrics operated accurately
on a sufficiently broad set of test cases. This leads to the conclusion that common
practices on NR QoE assessment studies should be considerably revisited, particularly
when evaluating real-time streams over realistic network conditions.

On a more positive note, we can see that if combined, the different NR metrics could
actually cover a broad range of operational conditions. Armed with these results, our
next move is to study new methods to automatically determine the operational range of
each metric and to build a new hybrid metric that combines the simplicity of NR
algorithms with the accuracy of VQM.
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