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Abstract
Purpose – The use of mobile devices in handling our daily activities that involve the storage or access
of sensitive data (e.g. on-line banking, paperless prescription services, etc.) is becoming very common.
These mobile electronic services typically use a knowledge-based authentication method to
authenticate a user (claimed identity). However, this authentication method is vulnerable to several
security attacks. To counter the attacks and to make the authentication process more secure, this paper
aims to investigate the use of touch dynamics biometrics in conjunction with a personal identification
number (PIN)-based authentication method, and demonstrate its benefits in terms of strengthening the
security of authentication services for mobile devices.
Design/methodology/approach – The investigation has made use of three light-weighted matching
functions and a comprehensive reference data set collected from 150 subjects.
Findings – The investigative results show that, with this multi-factor authentication approach, even
when the PIN is exposed, as much as nine out of ten impersonation attempts can be successfully
identified. It has also been discovered that the accuracy performance can be increased by combining
different feature data types and by increasing the input string length.
Originality/value – The novel contributions of this paper are twofold. Firstly, it describes how a
comprehensive experiment is set up to collect touch dynamics biometrics data, and the set of collected
data is being made publically available, which may facilitate further research in the problem domain.
Secondly, the paper demonstrates how the data set may be used to strengthen the protection of
resources that are accessible via mobile devices.

Keywords Touch dynamics, Biometrics, Benchmark data set, Keystroke dynamics,
Mobile authentication

Paper type Research paper

1. Introduction
Mobile devices have become an integral part of our routine activities. This is
particularly the case with the rapid growth and widespread use of smartphones and
digital tablets. The processing capability of these devices has advanced up to the point
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that most digital activities that can be accomplished on workstations or laptops can also
be performed on these portable devices. Routine activities, such as personal and
corporate e-mail communications, on-line banking transactions, accessing paperless
prescriptions services, route navigation, etc., can also be carried out ubiquitously with
these devices.

According to a forecast by networking giant Cisco (2015), there will be approximately
11.5 billion mobile-connected devices by 2019, and the global mobile data traffic will
increase nearly tenfold between 2014 and 2019, reaching 24.3 exabytes per month by
2019. This shows our increasing reliance on mobile devices, and also implies that our
private and sensitive data will increasingly be handled, managed and processed by
these devices. Therefore, the security of accessing mobile devices and accessing data,
services and other resources through the mobile devices is of a prime concern. More
stringent security services (or measures) should be embedded in mobile devices. One of
these services is user authentication, i.e. how to securely verify a claimed identity.

Authentication is the first-line of defence in any computer system or device, as it is a
pre-requisite for several other security services such as authorisation and
accountability. In a mobile device context, authentication is typically achieved via a
knowledge-based authentication method, and with this method, a user proves their
identity by demonstrating the knowledge of a secret. This secret could be a PIN
(personal identification number), a password, a shared secret (which is similar to a
password, but with higher entropy) or a private key corresponding to a public key
certified in a digital certificate. Authentication by using a low entropy secret (such as a
PIN or a password) is vulnerable to a number of security attacks, e.g. theft of a mobile
device, shoulder spoofing and brute force attacks. Authentication by using a high
entropy secret (using a shared secret or a private key) usually requires some means to
store the secret securely and this may hinder usability and/or introduce a higher cost. To
address these issues and to make the authentication service more secure, while, at the
same time, without hindering usability, we have been working on integrating a
biometric-based (touch dynamics) authentication method with a knowledge-based (PIN)
authentication method, called a touch dynamic-based multi-factor authentication
solution (TDAS).

This paper reports our effort on the creation and use of a touch dynamics data set to
investigate the benefits of integrating touch dynamics with a PIN-based authentication
method. It describes the process of collecting a comprehensive reference data set
consisting of two sets of input PINs from 150 subjects, the extractions of feature data
from the data set and the use of the extracted feature data as a second authentication
factor. The extracted feature data are timing, finger touch size and pressure feature data.
The data are classified by using three light-weight classification algorithms, and are
used to support the identification of a user in addition to using the PIN-based
authentication method. The experiments show that this two-factor approach to
authentication can make impersonation attacks much more difficult, significantly
increasing the assurance level of the authentication process. The paper has also
discussed various factors that may impact the accuracy performance of TDAS, such as
the timing resolution of feature data type, combinations of feature data types, subject
size and input string length.

The structure of this paper is as follows. The next section gives an overview of touch
dynamics biometrics. Section 3 explains the experimental setup and the methods and
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procedures used in collecting (i.e. acquiring) the touch dynamic biometrics data. Section
4 describes the properties of the data set. Section 5 describes potential feature data that
can be extracted from the data set and, for proof-of-concept, it illustrates how the
captured feature data may be used for authenticating users in a mobile context and the
level of improvements in terms of accuracy performance (Section 6). Section 7 critically
analyses the related work in the problem context, compares our data set with other
public data sets and outlines open issues and potential research directions. Finally,
Section 8 concludes the paper.

2. Background
2.1 Overview of touch dynamics
Prior to the emergence of touch dynamics, one of the earliest research work on using
keystroke dynamics (i.e. the patterns of interactions between human input and a
physical keyboard) to identify users was by Gaines et al. (1980). They attempted to
recognise six professional secretaries by analysing the way they typed three passages of
text consisting of 300 to 400 words each. Since then, keystroke dynamics either on
workstations (Bleha et al., 1990; Obaidat, 1995) or in a Web-based environment (Cho
et al., 2000; Stewart et al., 2011) have been the major topics of research. With the rapid
development of mobile communication technologies, recent research efforts in the area
have been focusing on mobile devices with physical keypads (Campisi et al., 2009; Clarke
and Furnell, 2007). According to the literature survey of related works in the topic area
of keystroke dynamics (Teh et al., 2013), since 2007, there have been growing efforts on
examining the possibility of applying the concept of keystroke dynamics to user
authentication on mobile platforms. More recently, the research activities are largely
carried out in the context of touchscreen mobile devices (Saravanan et al., 2014; Dhage
et al., 2015).

Touch dynamics refers to the process of measuring and assessing human touch
rhythm on mobile devices, such as digital tablets, smartphones or touchscreen panels.
When a human interacts with a mobile device, a digital signature is generated. The
signatures generated by different individuals are believed to be rich in discriminative
properties, which hold potentials as personal identifiers. The availability of
higher-resolution sensors in recently released mobile devices provides added
opportunities to the development of touch dynamics biometrics, as these sensors allow
the extraction of more discriminative feature data types. Touch dynamics biometrics
can be integrated with an existing knowledge-based authentication method to form a
so-called multi-factor authentication solution. Such a solution can make unauthorised
accesses to mobile devices harder, thus strengthening the security level of mobile
devices. Using touch dynamics to identify a user has its unique advantages, and, at the
same time, it also introduces challenging issues. The following highlights the
advantages and challenging issues.

2.2 Advantages
• Transparency: A touch dynamics-based authentication method requires little or

no additional interventions from a device user. This is because the capture and
processing of touch patterns can be carried out in the background while the user
is using the device. Users may not even be aware that they are being authenticated
periodically or are being protected by an extra layer of authentication. This is in a
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stark contrast to other biometrics based authentication methods that usually
requires explicit alignment of a biometrics feature to a specific sensor. For
example, in the case of iris recognition, a user is required to look straight into an
intra-red camera to take an iris image, and in the case of finger based
authentication, a user needs to put one of his/her fingers on the fingerprint sensor.

• Familiarity: The touch dynamics feature data used for authentication are collected
during mobile users’ routine input activities. This is a process which mobile users
are already familiar with, so the feature data collected tend to have a gentler
learning curve with a higher usability level.

• Revocability: The touch dynamics feature data can be replaced should a passcode
associated to a touch dynamics pattern be compromised, as a new touch dynamics
template can easily be associated to a new passcode. However, this is not the case
for other physiological biometrics, e.g. for iris or face biometrics, once they are
compromised, there will be no replacement, and for fingerprints, the number of
replacements is limited (there are only ten fingers to use after all).

• Non-dependency: The feature acquisition of touch dynamics is less sensitive to
environmental factors. Therefore, it is more suited to, and can be more easily
deployed in, a mobile context. A mobile device is usually operated in an on-the-go
manner, so the values of some environmental factors, such as the screen lighting
level and background noise level, are constantly changing. Other biometrics
features such as iris or voice biometrics are sensitive to these environmental
factors.

• Cost-effectiveness: In contrast to other physiological biometrics systems such as
iris and fingerprint recognitions, which typically require the use of some specialist
hardware, touch dynamics recognition only requires the use of build-in mobile
sensors. This can reduce device costs and it is ideal for large-scale deployments.

2.3 Challenging issues
• Algorithm and communication costs: Computational capabilities of mobile

devices are typically lower than desktop computers. This means that certain
criteria such as algorithm complexity, communication cost and authentication
delay are important and should be considered in the design of touch
dynamics-based authentication solutions. In other words, computational and
communication costs introduced as the result of deploying this authentication
means should be minimal.

• Energy consumption: Mobile devices, unlike their desktop counterparts, are
typically battery-powered, so the less the energy an application consumes, the
longer the device can operate. Though communication is the major consumer of
the power of a device, the number and usage frequencies of various sensors
embedded in a mobile device, which are used to extract touch feature data, also
have a direct impact on the mobile device battery consumption level. Various
measures, such as reducing the sampling rate or frequency of data sensing Niu
and Chen, 2012), or performing complex computations only when a device is being
recharged (Crawford et al., 2013), have been proposed to reduce power
consumption of a mobile device.
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• Non-permanence: Usually, human behavioural characteristics change more
frequently than physiological characteristics. Similarly, a user’s touch dynamics
may change gradually, as the user is getting more familiar with the passcode,
input method, device and other external factors. Adaptive approaches (Xu et al.,
2014) have been proposed in literature to take into account any gradual changes in
touch patterns.

2.4 Operational process
Figure 1 shows a typical touch dynamics biometrics authentication system. From the
figure, we can see that the operation of this system can largely be captured in two major
phases:

(1) user enrolment, where touch pattern feature data are collected, processed and
stored as a reference template; and

(2) user authentication, where a test sample is compared against the stored
reference template(s) to determine the similarity.

The two operational phases are accomplished by a number of functional blocks (i.e.
architectural components), each of which performs a well-defined function or operation.
These components and their respective operations are described as follows:

• Data acquisition: It is an operation by which raw touch feature data are collected.
This is usually carried out as the first step and during the setup stage of a touch
dynamics biometrics authentication system. The collected raw feature data
typically consist of repetitive input samples or collections of input samples over a
specified period. Devices commonly used in the data acquisition experiments are
commercial off-the-shelf smartphones (Buschek et al., 2015) or, on some occasions,
digital tablets (Saravanan et al., 2014).

• Data pre-processing: Once the raw feature data are collected, a data pre-processing
operation is carried out to remove outliers in the raw feature data, improving data
quality and accuracy performance. Additionally, to optimise computational
efficiency on resource-limited mobile devices, a dimension reduction technique
may also be used to ensure that the selected raw feature data remain small yet
representable (de Mendizabal-Vazquez et al., 2014).

Figure 1.
Touch dynamics

biometrics
authentication

framework
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• Feature extraction: Feature extraction is another mandatory operation which is
carried out in both the enrolment and authentication phases. The main task of this
operation is to identify and extract distinctive features common to a subject from
the collected raw data. These features will later be used for template generations.

• Template generation: Depending on the classification algorithm selected, the
template generation can be an operation that is used to transform the extracted
touch feature into a compact form or an operation that trains, selects and stores
classification models that uniquely represent each user’s touch dynamics
characteristics.

• Data classification: This is the major operation for most biometrics systems, where
feature data are categorised and compared against reference templates or models.
The outcome of this operation is normally associated with a matching score used
for decision-making.

• Decision-making: This is the last operation carried out by a touch dynamics
authentication system in authenticating a user. It is to determine if a presented
touch pattern has indeed originated from the target subject. The decision is
usually made by comparing the similarity or dissimilarity score generated from a
classifier against a predefined threshold (Bo et al., 2014).

3. Experiment setup
This section describes and justifies the experiment setup in which raw touch feature
data are collected.

3.1 Deployment and working modes
A touch dynamics biometrics system may be deployed in one of the two modes,
identification and verification. Each of these modes functions uniquely and serves a
different purpose and use-case scenario. The purpose served by the identification mode
is to classify unknown touch dynamics samples. This mode is typically deployed for
forensic investigations and intrusion detections. Its use on mobile devices is rather
limited. The verification mode, on the other hand, is typically used to prove or verify a
claimed identity.

The verification mode of touch dynamics biometrics can be further divided into two
working modes: a static and a dynamic working mode. In the static working mode, a
user is authenticated at the initial instance of, or, at some predefined intervals, during,
the user-to-system interaction. Unlike the case for the static working mode, in the
dynamic working mode, a user may be authenticated at any instant of a user-to-system
interaction or for every service access (i.e. continuously) throughout a service access
session (in addition to the initial authentication). The functions performed in both modes
are complementary, which means that they can be deployed alongside each other to
enhance the security of mobile devices or the security of service access using mobile
devices. Our experiment is conducted under the assumption that the static working
mode of the verification mode is used.

3.2 Data collection devices
As mentioned above, there are different types of mobile devices, e.g. featured phones,
smartphones, digital tablets and laptops. Most research works in relation to touch
dynamics are carried out using various mobile phones. In comparison with mobile
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phones, digital tablets have a relatively larger screen resolution, which means that a
higher subject input variation, and therefore a better feature discrimination, can be
captured (Saravanan et al., 2014). For this reason, we have chosen to use a digital tablet
as our data collection device. The device is a commercial off-the-shelf Samsung Galaxy
Tab 10.1 (GT-P7510) digital tablet. It has a 10.1” widescreen, and is powered by 1-GHz
dual-core processor and equipped with a 1-GB RAM. The device runs under Android
4.0.4 (Ice Cream Sandwich) and a data collection tool that was developed using Java and
Android API Level 15. The entire data collection process was performed using this
tablet. The justification for using a predefined device, rather than the devices chosen by
the subjects, is to remove any uncontrolled variables such as subject preferences,
program compatibility and functionality differences. In this way, the results obtained
from the experiment can better capture the discriminative power of touch dynamics
feature data and the classification algorithm used.

3.3 Data collection environments
There are three main environments in which raw touch feature data may be collected:

(1) while the subjects carry out their activities as usual;
(2) under a controlled laboratory environment in a fixed location; or
(3) in multiple fixed locations.

The first option is expensive, as due to the ubiquitous nature of mobile devices, subjects
are likely to be on-the-move and following the subjects while collecting the data may not
be convenient and could be costly. The second option is least costly in terms of setting up
and running the experiments, but the data collected may not give a true reflection of
real-world scenarios. To balance costs/feasibility with real-life situations, we have
chosen to use the third option, i.e. we let subjects to choose their preferred locations
where their touch dynamics are extracted. The locations used included offices, homes,
inside cars, classrooms, cafés and public areas.

3.4 Collection method
Data should be collected when subjects are in a stable state, i.e. after they are familiar
with the device input facility and the data collection procedure, as, otherwise, data
collected may not properly capture subjects’ input features. Data captured improperly
may increase false acceptance and false rejection rates when they are used to
authenticate the subjects. According to Ngugi et al. (2011b), input patterns, styles or
speeds can vary and stabilise over time. To ensure data are collected after the patterns,
styles and speeds are stabilised, and to reduce the effect of subjects’ unfamiliarity with
the input facility and procedure, one of the two approaches may be used. The first one is
to divide a data collection session into multiple sub-sessions and the sub-sessions are
separated by a selected time frame. For example, we may have four sub-sessions each
with 1 week apart, and the data collected in multiple sub-sessions are cumulatively
merged into a single set. This approach provides a good level of accuracy, but may
suffer from a high dropout rate (De Luca et al., 2012), as the data collection process is
usually carried out on a voluntary basis and we cannot expect all the participants to take
part in all the sub-sessions. As a result, the sample size of the data set may be reduced.
The second approach is to collect data in a single session, but the subjects are asked to
familiarise themselves with the input facility and procedure as many times as necessary
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before a data collection process actually takes place. The entire data collection process
takes an average of 15 to 20 min (in addition to the time taken to familiarise the input
device and procedure). This latter approach is commonly used in experiments reported
in the literature (Chong et al., 2010; Kim et al., 2010; Loy et al., 2007). So in our
experiments, we have chosen to use the second approach.

4. Data set
4.1 Subject size
The subject size refers to the number of subjects from whom data are collected.
Typically, a subject size of greater than 100 subjects is regarded as a large subject size
(Teh et al., 2013). Using a larger subject size can provide more data to verify the
scalability of a chosen classifier, as mentioned by Clarke and Furnell (2007). Most of
the relevant works in the touch dynamics domain were carried out with a subject size
smaller than this value. Only a handful of published works (Gascon et al., 2014;
Serwadda et al., 2013; Trojahn et al., 2013) use a subject size greater than 100 subjects.
However, in the latter group of works, the subjects involved were restricted to a certain
profession and the data sets were not made publically available for evaluation. At the
time of this writing, our data set contains touch dynamics data of 150 subjects with a
diverse range of professions. The data set is grouped in three different packages. The
first package contains data from 50 subjects, the second package contains data from 100
subjects and the third package contains data from all of the 150 subjects. In this way, the
data sets may be used, in different ways, for comparisons between different subject sizes
within the same subject grouping.

4.2 Subject demography
Experimental subjects are typically selected based on some criteria. The commonly
used criteria are age distribution, population mixture and profession diversity. Subjects
from different age groups, with different backgrounds and/or different professions, tend
to use their devices at different frequencies. Therefore, if the subjects are not selected
properly, there may be unintended bias in the experimental results. To reflect real-world
situations as much as possible, the demography of the subjects taking part in the data
collection should be as diverse as possible. In other words, people from different age
groups, of different genders and with different device usage frequencies should be
represented as much as possible.

Most of the published works are based on subjects that are selected from:
• a narrow age distribution (i.e. 19-26) (Antal and Szabó, 2014);
• confined to only people within the same organisation (i.e. within research

institute) (Giuffrida et al., 2014); or
• restricted to limited profession (i.e. students) (Draffin et al., 2014).

These options are frequently selected because they are less costly and may be easier to
conduct the experiments. Data collected in this way may not properly capture the
biometric features from a wider community. El-Abed et al. (2014), Kolly et al. (2012) and
Trojahn et al. (2013) are the few pieces of work we are able to find in the literature, which
recruited subjects from dissimilar age groups, and diverse population groups and
professions. Inspired by these works, we have made our best effort to reach out to the
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general public within our resource budget. Table I summarised the demography of the
subjects recruited in our experiment.

4.3 Input type
Input string types are an important experimental variable that should be considered in
touch dynamics biometrics research. This is because the feature used for touch
dynamics biometrics is extracted from a subject’s input string. Generally, experimental
subjects are required to provide character-based, numerical-based (PIN) or other
non-specific touch events. PIN input has been the most widely used authentication
method for mobile devices, so we first used a 4-digit numerical input (“5560”), and then
a 16-digit numerical input (“1379666624680852”). The use of two different PIN lengths
allows us to evaluate the effects of different input string lengths experimentally. These
two predefined numbers were carefully chosen with the following key positioning
combination strategies:

• Apart: Keys are separated by at least one key apart.
• Repetition: Reoccurrence of identical key.
• Adjacent: Keys located diagonally to each other.
• Sequence: Keys situated horizontally or vertically to each other.

These positioning strategies were used to spread the variety of input strings. A
graphical illustration of the approach is depicted in Figure 2. Requiring all the subjects
to use a single predefined input string (for each string length) allows us to increase the
number of impersonation samples available for our testing phase (Section 6.2) without
the need for collecting additional data.

Table I.
Subject demography

of our data set

Properties Details
Subjects 50 100 150

Population
Academia 9 11 18
Public 41 88 132

Age
�20 8 13 28
20-40 27 49 66
�40 15 38 56

Gender
Male 12 24 45
Female 38 76 105

Usage frequency
Rare 16 32 49
Average 12 20 32
Often 22 48 69

Hand preference
Left-handed 5 8 14
Right-handed 45 92 136
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4.4 Sample size
The input sample size affects the accuracy, robustness and outcome of an experiment
(Sen and Muralidharan, 2014). A larger number of samples used would allow us to gain
a better representation of a subject’s touch dynamics behaviour, and, as a result, achieve
a higher level of accuracy (Tasia et al., 2014). Though it is desirable to have a large
number of sample data, it is not always practical to expect subjects to repeat the input
for a large number of times during the enrolment stage. This is because subjects may not
be available for a long stretch of time, or may feel uncomfortable with a lengthy
acquisition procedure (Tasia et al., 2014). Therefore, selecting an optimal input sample
size for each data acquisition session is necessary.

According to the work reported in literature, the benchmark for the number of
samples collected per subject per session is somewhere between 10 to 20 repetitions for
a fixed input type (Buschek et al., 2015; Sen and Muralidharan, 2014; Trojahn et al.,
2013). Therefore, in our data collection process, subjects were required to repeat each
input string for 10 consecutive times, resulting in 20 samples per subject (10 for the short
digit sample and 10 for the long digit sample). In terms of error handling, any input
mistake made by a subject was automatically discarded and the subject was prompted
to repeat that particular input sample, and this is a common practice, as explained in the
literature (Campisi et al., 2009; Maiorana et al., 2011; Robinson et al., 1998).

4.5 Raw feature representation
A number of application programming interfaces (APIs) have been used to capture a
subject’s feature data. In detail, each single-screen touch event (finger touching down or
lifting up from the touchscreen) is detected by the onTouchListener API. The
timestamps of each key press and release are logged by invoking the nanoTime() API.
This API returns the most precise time (in nanoseconds) that is available on the device.
We also use the API functions getSize() and getPressure() under the MotionEvent class
to retrieve the values of finger circumference and pressure, respectively. These
functions return a normalised decimal value between 0 and 1. However, we have noticed
that getPressure() always returns a value of 1.0. We have tried to resolve this issue but
with no success. However, as some other devices also encounter the same problem, we
anticipate that this problem will be resolved by the mobile operating system’s provider
in their subsequent API version update. Each completed touch event on a key generates
two timestamps (tpress and trelease), a finger touch size (ps) and a pressure value (pv). The
data collected from these events will go through feature extraction and template
generation process. For each repeated input sample (r) of raw touch dynamics data, the
feature data and the particular key press (kpress) and key release (krelease) are recorded
using the format shown below and the recorded data are stored in a separate file for each
subject:

Figure 2.
Four different key
positioning strategies
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r, kpress, tpress, krelease, trelease, ps, pv

5. Methodology
5.1 Feature extraction
Two types of features are captured. These are timing data and finger touch size (ps).
Both are captured during the subject-to-device interactions with the input keys. ps is
obtained directly from the returned value of an Android API function without further
customisation. However, for timing data acquisition, some manipulation to the touch
event timestamps is required.

A timing data can be extracted in different feature length. The shortest feature length
is known as a uni-graph, which are the timing data extracted between touch event
timestamp values of the same key. Subsequently, the timing data extracted from two or
more keys are called a di-graph and an n-graph, respectively. Figure 3 shows the
different n-graph sizes for a given sample input string. In our experiments, we have
chosen to extract timing data of a uni-graph and a di-graph.

The timing data extracted can be further divided into two categories:
(1) dwell time (DT), i.e. the time duration for the touch action of the same key (also

known as interval, press or hold time); and
(2) flight time (FT), i.e. the time interval between the touch actions on two

successive keys (also known as latency).

As shown in Figure 4, there are four variants of FT .

Figure 3.
The different timing

data feature length

Figure 4.
Types of timing

feature data
extracted
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5.2 Template generation
Template generation is a process by which a subject’s touch feature samples are
combined and transformed into a compact yet representative structure. A subject’s
template should uniquely capture the subject’s touch feature. For each subject, we use
six feature data types, and, for each feature data type, template data are generated.
These template data consist of two items, a mean (�) value and a standard deviation (�)
value. The equations below show how the template data for a feature data type, DT, are
calculated. For example, given a training sample set of n number of DT, the template
data for DT are calculated as:

� �
1
n

� �
i�1

n

DTi

� � �1
n

� � �
i�1

n

DTi
2 �

( � i�1

n
DTi)

2

n �
The same procedure and computation are applied to other feature data types.

5.3 Classifier
We use three matching functions to, respectively, compute and compare the likeliness of
a test sample against a reference template feature. The likeliness, which is measured in
terms of a similarity score (s), is computed by feeding the test sample value (�) of a
feature vector element of position (i) and the value of � and � from the reference template
into each function, i.e. si � f(�i, �i, �i). The three matching functions used are Gaussian
estimation (GE), z-score (ZS) and standard deviation drift (SD), as given below:

fGE(�i, �i, �i) � e
�

(�i � �i) 2

2�i
2

fZS(�i, �i, �i) �
��i � �i�

�i

fSD(�i, �i, �i) � e
�

��i��i�
�i

We calculate a similarity score for each individual element within the intended feature
vector. Then we compare these scores against an empirical threshold (	) to make a
partial decision (Di) for each feature data element of position (i) in that feature vector, i.e.:

Di � �0, si 
 	
1, si � 	

Here, 1 and 0, respectively, indicate acceptance and rejection. A final decision is then
made to determine if a test sample belongs to the reference template, and this is done by
using the formula:
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Dfinal � �accept,
� i�1

n
Di

n
� 0.5

reject,
� i�1

n
Di

n
 0.5

where n refers to the total elements in the feature vector considered, and Dfinal is the final
acceptance or rejection decision of a given test sample.

6. Performance evaluation
6.1 Evaluation criteria
To evaluate the accuracy level of a biometrics authentication system, three main metrics
are commonly used. These are the false acceptance rate (FAR), false rejection rate (FRR)
and equal error rate (EER). FAR is the percentage ratio of the number of illegitimate
trails that are falsely accepted against the total number of illegitimate trials. A lower
FAR indicates fewer illegitimate trails are falsely accepted, thus the higher the security
level of the biometrics authentication method. FRR is the percentage ratio of the number
of legitimate trials that are falsely rejected against the total number of legitimate trials.
A lower FRR indicates fewer legitimate trails are falsely rejected, thus the higher the
usability of the method. The third performance metric, EER, is a single-number
performance metric, which is commonly used to measure and compare the overall
accuracy of different biometrics systems. EER is obtained by first plotting a graph for
each of FAR and FRR against a matching threshold and then taking the interception
point of the two graphs. Typically, the lower the FAR and FRR values, the lower the
EER value. A lower EER value indicates a better performance of the biometrics
authentication method. However, it is impractical to lower both FAR and FRR
simultaneously, as FAR and FRR are negatively correlated. Therefore, in practice, we
usually choose the threshold value to achieve a required security level.

6.2 Training and testing setup
For each subject recruited, two sets of ten input samples are collected, one set for the
4-digit input and the other for the 16-digit input. For each of the two input length
categories, seven out of ten are used for training (i.e. for generating a template for the
subject) and the remaining three for testing (i.e. for estimating the FAR and FRR values).
To reduce intra-session variations, the seven samples are selected randomly from the
ten-sample set. The samples used for training are not reused for testing, so that the
performance assessment can be made independent of the model development. In a FAR
test, a subject’s template was compared against all the other subjects’ testing samples.
This process was reiterated for all the subjects’ templates. As there are a total of 150
subjects recruited and each subject has three testing samples, the total number of
illegitimate trials conducted is 150 � (150 � 1) � 3 � 67,050. In a FRR test, a subject’s
template is compared against the subject’s own testing samples. As there are a total of
150 subjects and each subject has three testing samples, the total number of legitimate
trials is 150 � 3 � 450.
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6.3 Results discussion
6.3.1 Timing feature data scaling. The accuracy of timing feature data extracted from
timestamps is influenced by the timing resolution used, so it is important to choose
an appropriate timing resolution before extracting the timing feature data. As
discussed in Section 5.1, timing feature data are extracted by subtracting the
timestamps of different touch actions (i.e. a key press or release). By default, the
timestamps recorded by a mobile device’s nanoTime() API has a timing resolution in
the order of nanoseconds. This resolution is inappropriate because a human’s
tapping speed is usually at a much slower pace than this order. To solve this
problem, an original timestamp (t) should be normalised by a scaling factor (s) to
create a normalised timestamp (Tnorm) with the chosen resolution, and this can be
done by using the following formula:

Tnorm � t � e�s

To investigate the effects of using different scaling factor values, we have calculated the
EER values of timing feature data extracted from timestamps normalised with different
scaling factor values. Figure 5 shows the EER values of the timing feature data type FT4.
The same trend has been observed for all the other timing feature data types. As can be
seen from the figure, the EER values are higher when the scaling factor uses a very small
or a very big value; the EER values for both input string lengths decrease when the
scaling factor value increases from 1 to approximately 4, plateau from 4 to 8 and then
they start to increase sharply. This result may be explained as follows. When
timestamps are normalised by using a smaller or moderate scaling factor, the timing
feature data gradually resemble better a typical human tapping speed, and so is the
ability to better represent a human’s touch pattern. However, when the scaling factor of
9 is used, the timestamp value becomes so small that it conveys little useful timing

Figure 5.
Accuracy
performances of
different scaling
factor values
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information. Therefore, when an extreme scaling factor value is used, the EER value
increases sharply. In this experiment, we have chosen to use a moderate scaling factor
value of 5.

6.3.2 Single feature data types. Experiments have been conducted to investigate the
accuracy performances of different feature data types. As shown in Figure 6, the ps
feature outperforms all timing-related feature data types for both the 4-digit and 16-digit
input strings. This may be due to the fact that ps could capture more properties from a
subject’s touch pattern. For example, the amount of force used, finger arrangement,
touch angle and finger thickness. The mixture of these properties establishes a
distinctive pattern, which can better capture the uniqueness in each subject’s touch
pattern.

As for timing-related feature data types, the accuracy performance of any variant of
FT is slightly better than DT. This implies that the time taken for a subject’s finger to
traverse from one key to another has more discriminative power than how long a key is
held down. Throughout the data collection process, we observed that the key
combinations entered by different subjects are different even if the input strings entered
are identical. This may be due to the fact that breaking up an input string into multiple
smaller subsets (i.e. chunks) can make it easier to memorise (Ngugi et al., 2011a). The
information embedded within the natural short pauses between different chunks may
have increased the uniqueness of FT. This is particularly the case for strings with a
longer string length, due to the increased number of possible chunk combinations, as
shown in Figure 7.

6.3.3 Combining different feature data types. Although ps proved to be the best
feature data type in terms of EER, its EER performance of 15.98 per cent (the 4-digit
string) and 12.44 per cent (the 16-digit string) are still rather unsatisfactory. To improve
this performance, we have combined ps with different combinations of timing feature
data types. So, in a given authentication instance, multiple feature data types are used,
and the decision made for the authentication instance is made by combining the
decisions made on each chosen feature data type using the AND voting rule. Table II

Figure 6.
Accuracy

performances of
single versus

different feature data
type combinations
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shows the best EER values of different feature data type combinations. The values in
brackets indicate the accuracy performance gains for using different feature data type
combinations against a single feature data type. As can be seen from the table, the more
feature data types used, the lower the EER value, the better the accuracy performance.
The lowest EER value is achieved when all the six feature data types are used. In this
case, the EER values for the 4-digit and 16-digit input strings are, respectively, 7.71 per
cent and 6.27 per cent, which are less than half of the respective EER values when ps is
used alone.

From the results shown in Figure 6, it is clear that combining two or more feature
data types can lead to a significantly better accuracy performance than using a
single feature data type. This indicates that when more feature data types are used
to train the model, the ability to distinguish between a legitimate and an illegitimate
user sample also increases.

6.3.4 Input string lengths. Input string lengths may also affect the accuracy
performance of a biometrics authentication system. To investigate the effect, we have
calculated the EER values using the three matching functions and two sets of PINs with
respective string lengths of 4 and 16 digits. The 4-digit set represents a short-input
string case, while the 16-digit set represents a long-input string case. The analysis
results are plotted in Figure 8. As can be seen from the figure, a longer input string leads
to a lower EER value, which indicates a better accuracy performance. This result can be
explained as follows. When the input string length increases, feature data samples
within each input string, and the number of different chunk combinations also increase,
and so is the ability to better capture a subject’s touch pattern. In addition, when the
input string length increases, the number of illegitimate feature data samples required to
match that of a legitimate reference template will also increase. Therefore, the longer the

Figure 7.
The different
possible chunk
combinations of
different input string

Table II.
EER values of
different feature data
type combinations

Feature data types No. of feature
EER

4-Digit 16-Digit

PS 1 15.98 12.44
FT4, PS 2 10.17 (�36.36%) 8.12 (�49.19%)
DT, FT1, PS 3 7.63 (�52.25%) 7.67 (�52.00%)
DT, FT1, FT4, PS 4 7.48 (�53.19%) 6.39 (�60.01%)
DT, FT1, FT2, FT4, PS 5 7.75 (�51.50%) 6.33 (�60.39%)
DT, FT1, FT2, FT3, FT4, PS 6 7.71 (�51.75%) 6.27 (�60.76%)
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input strings, the better the accuracy performance one could achieve from a PIN-based
biometrics authentication system.

6.3.5 Subject size. We have also investigated the effects of subject sizes on the EER
values. This experiment is based on three matching functions: GE, ZS and SD. Two
subject sets are used: one set has 50 subjects and the other has 150 subjects. For each
subject set, we used two input strings, 4-digit and 16-digit. The experimental results are
shown in Table III. Ideally, an input string tested on a larger subject size should achieve
a lower or at least a comparable error value than when tested on a smaller subject size.
If this case holds, it indicates that the proposed method is scalable at different subject
sizes. As shown by the results in the table, when the input string length is 16 digits, the
differences in the EER values produced by using different matching functions remain
fairly constant when the subject size goes up from 50 to 150. This indicates that the
16-digit input string can provide us with more consistent experimental results. From the
table, we can also observe that when the subject size of 50 is used, the average EER value
decreases slightly from 7.93 to 6.81, as the input string length increases from 4 digits to
16 digits. However, when the subject size is 150, this average value decreases
considerably from 8.92 to 5.59, as the input string length increases from 4 digits to 16
digits. This inconsistency may be due to the fact that an input string with a shorter
length is less able to discriminate different touch patterns (as discussed in the previous
section).

Table III.
EER values vs

subject sizes

Classifier
4-Digit 16-Digit

50 subjects 150 subjects 50 subjects 150 subjects

GE 7.71 8.55 6.27 5.49
ZS 8.51 9.30 6.70 5.54
SD 7.57 8.92 7.45 5.74
Average EER 7.93 8.92 6.81 5.59

Figure 8.
The effects of the

input string lengths
on the EER values
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6.3.6 Classifier performance. The EER values produced by all the three functions are
shown in Table IV. Two input string lengths, i.e. 4 digits and 16 digits, are used and
the subject size chosen is 150. From the results, it can be seen that, generally, the
fluctuations in the results produced by the different classifiers are smaller when the
input string length is 16 digits in comparison with the 4-digit input string length. For
example, when the input string length is 16 digits, the differences in the EER values are
less than 0.25 per cent, whereas when the input string length is 4 digits, the differences
are at least 0.37 per cent. Among the three functions, the GE produces the lowest EER
value, i.e. 8.55 per cent when the input string is 4 digits in length and 5.49 per cent when
the input string is 16 digits in length. This says that, even if the input string is known to
the impersonator, nine out of ten impersonation attempts can be successfully identified.
As the input string length increases, the success rate in identifying impersonation
attempts also increases. These results are encouraging. They indicate the potential of
using touch dynamics in conjunction with knowledge-based authentication to
strengthen the security level of user authentication in mobile devices or service accesses
via mobile devices. In addition, touch dynamics biometrics is cost-effective, as it does
not require the use of additional hardware, and usable, as it is already part of the mobile
device interface. So, it can be an attractive building block for other authentication
solutions not only in a physical, but also a virtual environment.

6.3.7 With and without touch dynamics. One potential application area of touch
dynamics biometrics is to integrate it into an existing authentication system to extend
the system into a so-called multi-factor authentication system. Assuming a two-factor
authentication system is used: one factor is PIN-based authentication and the other is
touch dynamics authentication. Then an impersonator, to successfully sneak through
the authentication verification process, would have to produce an acceptable touch
pattern, in addition to successfully passing the PIN verification process. As shown in
Table V, in the case where the PIN is exposed, the chances for the impersonator to be
successfully authenticated are drastically reduced from 100 per cent (if only a PIN is
used) to 12.21 per cent (if both a 4-digit PIN and the touch dynamics are used) or to 9.43
per cent (if both a 16-digit PIN and the touch dynamics are used). To put things into
perspective, assuming that there are ten impersonation attempts, the system will only
fail to detect once. Conversely, given the same case, the PIN-based authentication will
fail to detect any of the impersonation attempts. However, the price to pay for this

Table IV.
Performance between
classifiers on
different input
lengths

Classifier
4-Digit 16-Digit

FAR FRR EER FAR FRR EER

GE 12.21 4.89 8.55 9.43 1.56 5.49
ZS 15.27 3.33 9.30 8.64 2.44 5.54
SD 8.95 8.89 8.92 10.36 1.11 5.74

Table V.
The comparison
between FAR and
FRR with the
presence of touch
dynamics

Feature FAR FRR

PIN 100 0
PIN (4-digit) � touch dynamics 12.21 4.89
PIN (16-digit) � touch dynamics 9.43 1.56
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enhanced impersonation detection capability (i.e. enhanced security level) is that by
using the touch dynamics-based authentication method, there is an increase of 4.89 per
cent (4-digit) or a 1.56 per cent (16-digit) chance to reject a legitimate subject incorrectly.
In other words, 1 out of 25 legitimate login attempts may be incorrectly rejected. With
the PIN-based authentication method, on the other hand, a login attempt will not be
rejected as long as the PIN entered is correct. In summary, with the use of the touch
dynamics-based multi-factor authentication method, there is a trade-off between
security and usability. Our future effort is to investigate how to enhance or maintain the
security level of this method, while minimising the usability cost.

7. Related work
In this section, we provide a literature review of the related works with regards to
evaluating the accuracy performance of touch dynamics biometrics and touch dynamics
biometric data collections. We also highlight open issues and opportunities in the topic
area.

7.1 Performance investigation
Our related work review only focuses on touch dynamics biometrics using PIN-based
input strings. The experimental work reported in the paper by Sen and Muralidharan
(2014) was carried out to test the viability of identifying subjects based on touch
dynamics biometrics using numerical input strings. In this experiment, only ten
subjects were recruited and each subject was asked to input a predefine PIN (“1593”) on
a HTC Nexus-One smartphone. To investigate if an impersonator could imitate another
subject’s touch pattern in the event if the subject’s PIN is known to the impersonator, the
author designed a visualisation tool to facilitate a separate set of attackers to imitate a
legitimate subject’s input pattern. Even by deliberately exposing the PIN, the timing and
pressure feature information via the visualisation tool to the attackers, the method was
still able to achieve a FAR value of 16 per cent. Though some interesting results were
obtained from this experiment, the number of subjects used was too small to draw any
conclusive remark. This is also the case for the work conducted by several other works
(Amin et al., 2015; Buriro et al., 2015; Li et al., 2015).

The accuracy performance of touch dynamics applied on 4-digit PIN was also
investigated by de Mendizabal-Vazquez et al. (2014). They extracted data with regard to
timing, finger touch size and pressure by using device build-in touchscreen sensors, and
in addition, they also extracted linear and angular acceleration as feature vectors using
accelerometer and gyroscope sensors. As the size of data collected from these two
sensors is large, they applied a pre-processing technique to reduce the size of the data.
As a result, the computational resource required for data classification is reduced.
However, the data set in this experiment was collected in a quite constrained setting,
where subjects had to hold the mobile phone in a fixed position. By using a Euclidean
distance-based classifier, they obtained a performance of 20 per cent EER on a 4-digit
PIN input. The performance comparisons of individual features were not given. Also,
the use of the additional sensors (i.e. accelerometers and gyroscopes) to extract linear
and angular acceleration feature data means that this technique may not be applicable to
the mobile devices that are not equipped with these sensors.

Zheng et al. (2014) also conducted their experiment on several 4- and 8-digit PINs. The
authors used a statistical one-class learning classifier and obtained average EER values
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of 3.65, 6.96 and 7.34 per cent using three different 4-digit PIN numbers, “3244”, “1111”
and “5555”, respectively. This shows that a higher repetition of digits can reduce
accuracy performance. The experiment also compared the accuracy performances of
two different 8-digit PINs (i.e. “12597384” and “12598416”). Surprisingly, the EER value
of one of the 8-digit PINs (“12598416”) was 4.45 per cent, marginally worse than the
4-digit PIN (“3244”). This contradicts with our experimental observation that a longer
input string can produce a better accuracy performance. However, similar to our
experimental observation, the accuracy performance provided by a combination of
multiple feature data types outperforms that provided by a single feature data type.

The experiment reported by Tasia et al. (2014) was carried out on a larger number of
subjects than the experiments described above, and it used input PINs ranging from 4 to
8 digits in length. An EER of 8.4 per cent was achieved by using a simple statistical
classifier. In this paper, the authors have also studied the time taken to perform the
classification and verification of different PIN lengths and feature combinations;
both consumed an average of 12 ms each. This experimental result is useful when
considering the deployment of touch dynamics biometrics on power-limited mobile
devices.

The work reported by Chang et al. (2015) was rather unique. The author proposed a
method to allow subjects to change their PINs without rebuilding the classification
model. The subjects were asked to input ten different randomly selected 10-digits PINs.
To reduce work burdens on the subjects, each subject was only required to provide five
samples for each PIN. Based on all the samples collected, the authors produced a table of
all possible feature data type values for each digit. They achieved EER values of 23, 21
and 18 per cent on three different PINs with the string lengths of 6, 8 and 10, respectively.
This set of results is consistent with our experimental observation that, when the
16-digit PIN is used, a lower EER value can be achieved than using a 4-digit PIN.
However, as the subjects involved in this experiment were at the age 17-20 years, it is not
clear whether the experimental results are applicable to other age groups.

Most of the experiments reported in literature extracted timing data from the two
shortest possible feature lengths (i.e. uni-graph and di-graph). An exception of these is
the work carried out by Trojahn et al. (2013). In this work, the authors compared the
accuracy performances of timing features produced from three different feature lengths
(i.e. the uni-graph, di-graph and tri-graph) of a 17-digit PIN. The experimental result
suggested that the uni-graph produces a better accuracy performance than the tri-graph.
This may be due to the fact that the timing feature data expressed by a shorter feature
length contains a higher level of granularity than a longer feature length. The authors
also remarked that, by combining the results from the uni-graph and di-graph, they
could achieve a lower error rate. This is similar to the observations we made in our
experiment that combining multiple feature data types produces a better accuracy
performance than using a single feature data type. The similar observation has also
been reported in other works, such as Tasia et al. (2014) and Zheng et al. (2014).

By far, the best accuracy performance reported in literature was achieved by Wu and
Chen (2015). They achieved an average EER value of 0.56 per cent. The work trained a
classification model by using the support vector machine and both legitimate and
illegitimate subject samples were used. In the experiment, each subject provided four
different 8-digits PINs. Two main discoveries were made in their experiments. Firstly, a
PIN with more repetitiveness (e.g. “11111111”) resulted in a lower accuracy performance
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than a PIN with less repetitiveness (e.g. “16843752”). Secondly, the accuracy
performance can be increased by increasing the size of legitimate subject samples, by
using a combination of different feature data types and by pre-processing feature data in
terms of data normalisation and outlier removal. In their experiment, they imposed a
condition that the experimental subjects were selected from those who were very
familiar with touchscreen smartphones. This condition might have played a role in
achieving the high accuracy performance. It is not clear if the same level of accuracy
performance could still be achieved if this condition is removed. Also, in their
experiment, a two-class classifier was used to build the classification model. In other
words, to build the classification model, samples from both legitimate and illegitimate
subjects are required. However, in real life, as mobile devices are very much personal
devices, illegitimate subject samples may not be always available.

There were also experiments (Dhage et al., 2015; Giuffrida et al., 2014; Huang et al.,
2012; Kambourakis et al., 2014) carried out on character-based passwords. As the scope
of our work is on numerical PIN inputs, we do not discuss character-based experiments
any further. A summary of the comparisons between our work and the related works is
given in Table VI.

7.2 Public data sets
As touchscreen devices only came along not long ago, there are still limited benchmark
data sets publically available; so far, we are only able to find three such data sets, but
only one of the data sets uses PIN-based input and none of these is collected on a
widescreen digital tablet.

The data collection process conducted by El-Abed et al. (2014) involved 51 subjects.
The input is a fixed password “rhu.university” entered on a virtual keyboard of a
window touchscreen phone (Nokia Lumia 920). Each subject attended three sessions
with an average of five days apart. The first of the three sessions was used as a practice

Table VI.
Comparison to
existing touch

dynamics work
carried out on PIN

input

Paper Length Subjects Input Device FAR FRR EER

Trojahn et al. (2013)) 17 152 Fixed Samsung Galaxy Nexus 4.19 4.59 –
Sen and Muralidharan
(2014) 4 10 Fixed HTC Nexus-One 14.1 14.1 15.2
Zheng et al. (2014) 4 80 Fixed Samsung Galaxy Nexus – – 3.65

8 – – 4.45
de Mendizabal-
Vazquez et al. (2014) 4 80 Fixed – – – 20
Tasia et al. (2014) 4-10 100 Random Motorola Milestone 8.4 8.32 8.4
Wu and Chen (2015) 8 100 Fixed – – – 0.56
Buriro et al. (2015) 4 12 Fixed Google Nexus 5 1 1 –
Li et al. (2015) 4 15 Fixed HTC Droid DNA – – 4.2
Amin et al. (2015) 7 12 Fixed Samsung Galaxy Note

N7000
13.9 0.53 –

Chang et al. (2015) 6 100 Random HTC Desire Z – – 23
8 – – 21

10 – – 18
This paper 4 150 Fixed Samsung Galaxy Tab

10.1
12.21 4.89 8.55

16 9.43 1.56 5.49
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session, so the actual data collection started from the second session. A total of 15
samples were collected from each subject in the two sessions. Only the timing feature
was captured from this data set, whereas our data set also captures the finger touch size
and pressure feature.

Another related effort on collecting and sharing their data sets publically was made
by Antal and Szabó (2014). This work differs from ours in a number of ways. Firstly, the
number of subjects involved is more than three times smaller than ours. Also the entire
subject population recruited in this work was students, which is different from our
case where the population consists of the members of a university as well as general
public. In addition, different from our case where all the data were collected via the use
of a single device, the data collection in this work was done via the use of two types of
devices. In all, 37 subjects provided their inputs on a Nexus 7 device, while the remaining
five via the use of a LG Optimus L7 P700 smartphone. The paper did not explain if the
use of the two device types would have any performance implications. To allow the
sample data to be used in EER estimations, the input string was predefined
(“.tie5Roanl”), which is also the case in our data collection. Also, in this work, the touch
events captured include not only the input string but also shift key (toggle between lower
and uppercase characters) and keyboard switch key (toggle between characters and
numerical keys). These secondary key events may capture valuable and distinctive
information about a subject. Inspired by this idea, in addition to capturing touch events
on digit input, we have also recorded the Enter key event (pressed upon the completion
of a PIN input) in our data set. Also in this related work, most of the subjects provided
their passwords for 30 times each on two isolated sessions in a period of two weeks (the
time duration between the two sessions is not mentioned in the paper). As some invalid
inputs were removed, so the resulting data set only contains 51 input samples per
subject (instead of 60 from both sessions).

Tasia et al. (2014) have also reported a collection of a data set based on numerical
inputs. In this data collection process, the device used was an early-generation
smartphone with a physical keypad running on Android 2.0.1 (Éclair) API level 6, which
was released in December 2009. By contrast, we adopted a more recent high-resolution
digital tablet with a later version of a mobile operating system. The subjects were only
required to provide two samples per session and five sessions were used with an interval
of at least one week apart for each session to eliminate intra-session typing variations.
Different from our case where data were collected in a non-restrictive environment, their
data were collected in a classroom, a rather confined environment. The age distribution
of the subjects involved is biased towards young people, where 85% of the total subjects
are at the age of 25 or younger. This is different from our case, where our data set was
collected from a diversified population and with different age groups and backgrounds.
Also in this data set, subjects were allowed to freely choose a PIN, and most of the chosen
PINs have a length of 4 to 8 digits. However, the actual PIN selections by each subject
were not recorded in the shared data set. In this data set, raw finger touch sizes and
pressure data have been recorded, and the timing feature was only recorded in a
post-processed format (the duration and the latency). In other words, raw timing values
were not recorded. This missing information may hinder the usability of the data set in
a wider context. Finally, different from the usual practice, test samples collected for the
FAR test were collected separately from those for FRR test. Ten subjects are randomly
chosen to act as impersonators. These impersonators were given the PINs of every other
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subject and were asked to impersonate the subjects by providing five samples for each
subject. In this way, the samples used for the FRR tests cannot be reused for
impersonation test samples, thus significantly reducing the size of the samples available
for the FAR tests.

The creation and collection of live data is a time- and resource-consuming process,
and this may be the reason for the lack of open data sets (Giot et al., 2009). However, the
research, design and performance evaluation of touch dynamic biometrics systems
require the availability of such benchmark data sets. To overcome these restrictions, we
have collected touch dynamics data from 150 subjects. The data set is made available to
download at https://goo.gl/sNACU8.

An overview of presently available public data sets is summarised in Table VII,
where T, S and P indicate timing, finger touch size and pressure values, respectively.

7.3 Open issues and opportunities
This section outlines open issues and potential research opportunities we have
identified in doing our research:

• Optimal input length: In general, the longer the input length, the better the
accuracy performance we may achieve. However, the use of a longer input length
increases the difficulty of remembering it by a subject, thus reducing usability.
Further research work is necessary to study the trade-off between the accuracy
performance and the usability.

• Feature data enrichment: Exiting efforts on increasing the accuracy performance
of touch dynamics biometrics have largely been focusing on using different
classification techniques. An alternative way to increase the accuracy
performance is by increasing the quality or variety of feature data. This can be
done by deriving different types of feature from raw sensor data.

• Effective classification technique: As the primary input for a classification
technique in this problem context is subjects’ touch pattern samples, we may also
categorise samples based on the types of the samples used and determine the type
of classifier that we should use. For example, a one-class classifier (e.g. distance
measure) is modelled or trained by only using legitimate samples, and a two-class
classifier (e.g. neural network) is modelled or trained by using both legitimate and
illegitimate samples. A mobile device is a highly personal device (rarely shared
between multiple users), obtaining illegitimate samples in practice is not easy. So
in the mobile device context, the use of a one-class classifier may be a more viable

Table VII.
Comparison of public

data sets

Dataset Subject Population Sample Input Feature Setting Platform

El-Abed et al.
(2014)

51 Restricted 15 “rhu.university” T Confined Phone

Antal and
Szabó (2014)

42 Restricted 51 “.tie5Roanl” T, S, P Confined Phone

Tasia et al.
(2014)

100 Restricted 5 6 to 8 digits T, S, P Confined Phone

This paper 150 Diversified 10 “5560”,
“1379666624680852”

T, S, P Flexible Tablet
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option. Further research work is necessary to study the accuracy performance
difference between a one-class and two-class classifier.

• Adaptive learning: Human touch patterns are subject to change over time. To
accommodate this change, a pattern adaptation method should be implemented in
the underlying authentication system to update existing reference templates or
classifier to reflect the most recent touch pattern of a subject. More work is
necessary to evaluate the effectiveness of the adaptation approach.

• Standardise evaluation criteria: There is an inconsistency in the performance
evaluation metrics (as shown in Table VI) used by different researchers, and this
has made it difficult to compare the accuracy performances produced using
different methodologies and/or by different researchers. To facilitate effective
comparisons of the related works, all the three standard accuracy performance
evaluation metrics (i.e. FAR, FRR and EER) should be used.

8. Conclusion
Touch dynamics-based authentication may provide us with a number of benefits, such
as it is an inherent feature of a majority of the mobile devices already in use and it is
readily deployable as an additional authentication factor to strengthen e-authentication
assurance levels. This paper has investigated the feasibility and benefits of adopting a
touch dynamics-based authentication method by integrating it with the PIN-based
authentication method. To evaluate the effectiveness of this integrated approach, a
proper data set is required. With this motivation, we have reported how a
comprehensive data set is collected. The data set can also serve further research on
various issues in this context, such as further investigation and comparison of different
classification methods or the potential use of touch dynamics for authentication
purposes. We have then illustrated the extraction of different feature data from the data
set and how the captured feature data could be used for authentication to identify a user.
We have also applied three light-weight matching functions to the data set to study their
accuracy performances. The matching functions used in this experiment were chosen on
the ground that they are computationally less expensive than the other functions, so the
resulting authentication system could consume less power and introduce less delay in
authenticating a user. We have also investigated how the accuracy performance may be
influenced by variations in factors such as the timing resolution of timing feature data,
combinations of different feature data types, input string lengths and subject sizes.
Experimental results show that, with the use of the two-factor authentication method,
even if an impersonator knows the input string (i.e. PIN) of a legitimate subject, nine out
of ten impersonation attempts can be successfully identified. We also showed that the
accuracy performance can be increased by combining different feature data types. The
results we have obtained so far demonstrate that touch dynamics biometrics can be an
effective solution to strengthen the security level offered to mobile devices.
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