
International Journal of Pervasive Computing and Communications
Model-driven framework to support evolution of mobile applications in multi-
cloud environments
Nacha Chondamrongkul

Article information:
To cite this document:
Nacha Chondamrongkul , (2016),"Model-driven framework to support evolution of mobile applications
in multi-cloud environments", International Journal of Pervasive Computing and Communications, Vol.
12 Iss 3 pp. 332 - 351
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-01-2016-0003

Downloaded on: 07 November 2016, At: 22:17 (PT)
References: this document contains references to 18 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 76 times since 2016*

Users who downloaded this article also downloaded:
(2016),"A model for contextual data sharing in smartphone applications", International Journal of
Pervasive Computing and Communications, Vol. 12 Iss 3 pp. 310-331 http://dx.doi.org/10.1108/
IJPCC-06-2016-0030
(2016),"Using adaptive clustering scheme with load balancing to enhance energy efficiency
and reliability in delay tolerant with QoS in large-scale mobile wireless sensor networks",
International Journal of Pervasive Computing and Communications, Vol. 12 Iss 3 pp. 352-374 http://
dx.doi.org/10.1108/IJPCC-10-2015-0035

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-01-2016-0003

Model-driven framework to
support evolution of mobile
applications in multi-cloud

environments
Nacha Chondamrongkul

School of Information Technology, Mae Fah Luang University,
Chiang Rai, Thailand

Abstract
Purpose – The development of mobile applications in multiple clouds environment is a complex task
because of the lack of platform standards in cloud computing and mobile computing. The source code
involves various proprietary programming libraries for different platforms. However, functionalities
are inevitably changed over time, as well as the platform. Therefore, a great deal of development effort
is required, when changes need to be made at functional and platform level. This paper aims to propose
SIMON, a framework that eases complexity of the development to support software evolution.
Design/methodology/approach – SIMON shields the developer from the complexity of mobile and
cloud platforms in the development of mobile applications in multiple clouds environment. The
framework uses model of application design to automate the development and support execution of
mobile applications in system environment that needs integration to the number of data sources located
on multiple clouds. The framework is composed of prefabricated components that support function
changeability and platform adaptability.
Findings – The framework is examined with the development of a sample application. After it is
evaluated with scenarios that involve changing at functional and platform levels, the result shows
significant reducing of the development effort by comparing with the other approaches.
Originality/value – The framework facilitates the implementation of mobile applications in the
software system that involves integration to multiple clouds, and it supports software evolution with
lesser development effort.

Keywords Mobile computing, Cloud computing, Model-driven development,
Platform heterogeneity, Software evolution, Software maintenance

Paper type Research paper

1. Introduction
Mobile devices are generally miniature in nature and light weight to support mobility.
These general characteristics of mobile devices impose computational constraints such
as low computational power and limited memory. This requires changes on both
hardware and software level. However, software-level change would be more effective to
enable mobile devices to achieve unlimited computational resources (Kemp et al., 2009).
Therefore, cloud computing fits to pursue this goal by enabling mobile applications to
remotely access necessary resources that are manageable by cloud computing. For
data-oriented applications, the mobile application requires intensive unidirectional flow
of information to data storage on the cloud and yet maintain various security attributes
such as integrity, confidentiality and availability through different security

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

IJPCC
12,3

332

Received 20 January 2016
Revised 20 January 2016
Accepted 7 July 2016

International Journal of Pervasive
Computing and Communications
Vol. 12 No. 3, 2016
pp. 332-351
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-01-2016-0003

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-01-2016-0003

mechanisms (Unhelkar and Murugesan, 2010). In the enterprise infrastructure, both
private and public clouds are concurrently used to serves different kind of data. The
private cloud hosts sensitive data, while the public cloud hosts non-sensitive data (Erbes
et al., 2012). Therefore, mobile applications in multiple clouds environment (MAIMC)
need a number of integrations to diverse cloud-based data storage.

There is a lack of standards at the platform level. This brings up issues of platform
heterogeneity to the development of MAIMC. For mobile application development, different
versions of an application need to be developed for various operating systems that different
mobile devices in the market run. The development of a mobile application is obligated to a
specific programming language and development platform for an operating system.
Likewise, the integration to multiple clouds involves multiple proprietary platforms which
have technical variations. Therefore, the development of MAIMC becomes a complex task
that needs specialized knowledge of both cloud and mobile platforms (Khan et al., 2014). As
a result, the source code of MAIMC becomes tightly coupled to both mobile and cloud
platforms; this consequently leads to a major obstacle when any changes need to be made
(Sanaei et al., 2014). The data structure and related functionalities are inevitably changed
over time during the maintenance phase, as well as the specification of platform. Therefore,
software evolution is a challenging topic in a software system of MAIMC that tightly
integrates with a number of platforms.

To ease the complexity in the development of MAIMC, the proprietary programming of
mobile and cloud platforms have to be abstracted and concealed from the developer (Khan
et al., 2014). There are existing approaches proposed from research groups to developer
communities. There these approaches aim to make the development independent from either
mobile platform or cloud platform. The combination of these approaches can possibly be
used to develop MAIMC. However, we found limitations and issues. Therefore, this paper
proposes a software framework referred to as SIMON. SIMON automates the development
and helps execution of MAIMC. The framework applies two software development
techniques: component-based software engineering (CBSE) and model-driven engineering
(MDE). Both techniques pursue the same goal: to reduce development and maintenance cost.
MDE shields developers from the complexity of the construction of the software system by
using high-level models in every phase of the software development (Deursen et al., 2007).
CBSE helps developers to construct large system software by assembling independent and
reusable software components (Szyperski, 2002). Most of the existing MDE approaches
introduce code generation to automate repetitive coding. However, developers are still left
with daunting manual tasks such as deployment and runtime performance tuning, which
are still tied to the source code and involved configuration artifacts. Therefore, SIMON does
not generate code, but it assembles prefabricated components that are pre-deployed and
process model at runtime, to give application functionalities to the user. The framework
provides an abstraction layer on top of cloud and mobile platforms, so the functionalities can
be changed by changing the models of application design. As a result, the developer can
focus on the application design without being concerned with complexities in the platform,
and the cost of development consequently decreases. To support platform evolution
(Deursen et al., 2007), SIMON provides programming libraries which are extensible to
support new mobile and cloud platforms for the purposes of reducing development effort,
when platform migration is required.

The rest of the paper is organized as follows. Section 2 addresses MAIMC and
highlights challenges and issues when existing techniques are used to implement

333

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

MAIMC. Section 3 introduces proposed framework, architecture and mechanism.
Section 4 presents sample implementation and the evaluation result compared to the
conventional approach. The paper concludes in Section 6 with future research direction.

2. Mobile application in multiple clouds
The architecture of MAIMC is shown in Figure 1. The development of MAIMC typically
involves three major parts:

(1) Mobile application.
(2) Representational State Transfer (REST)-based backend service on the cloud.
(3) Integration links between mobile application and backend service.

The interoperability becomes a challenge because collaborations have to be done between
various mobile devices and number of services located on multiple clouds. Also, the
integration to diverse data sources is a key challenge for the mobile application development
(Unhelkar and Murugesan, 2010). MAIMC needs to access both local data storage and
remote storage service managed by public cloud vendors such as Amazon Web service
(AWS)[1] and Google App Engine (GAE)[2]. The cloud vendor provides REST-based
interface and application programming interface (API) library that allow the application
client to use their services on the cloud. However, different cloud vendors offer different
specifications of service interfaces with technical variations such as data structure and query
methods. Therefore, the development of MAIMC requires a great amount of effort to apply a
number of API libraries provided by cloud platforms in the source code of mobile application
for a mobile platform (Flores and Srirama, 2014). Suppose the number of involved cloud
platform is Pc, and Pm is the number of mobile platform to support, the number of integration
links between mobile application and cloud is Pm � Pc, so the total development effort of a
MAIMC can be calculated as follows:

Figure 1.
Mobile application in
multi-cloud
architecture

IJPCC
12,3

334

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-000.jpg&w=335&h=211

Te � �
j�0

Pm

Tmj
� �

j�0

Pc

Tcj
� �

j�0

Pm�Pc

Tij

Tm is the amount of effort taken to develop the mobile application for a specific mobile
operating system, while Tc is amount of effort to develop backend services on different
cloud platforms, and Ti is the amount of development effort for each integration link.
The development effort for MAIMC strongly depends on the number of cloud platforms,
the number of mobile operating systems it is compatible with and the total number of
integration link between mobile application and clouds.

2.1 Vendor lock-in
The major cloud vendors offer storage service such as GAE’s Datastore service and
AWS’s DynamoDB. A primary goal of these cloud-based storage services is data
management which is the same purpose that relational database management system
(RDBMS) serves. These storage services are usually NoSQL database and allow
managing data remotely through REST-based interface or API library. However, there
are technical variations which intensify issues in software evolution (Sanaei et al., 2014).
These technical variations can be described as follows:

• Data management: For example, DynamoDB manages a data entity as Table.
There are hash primary key and range primary key which have to be manually
defined to Table, to identify uniqueness among data records. The read and write
operation’s throughput need to be specified, when creating a Table. While GAE’s
Datastore manages a data entity as Entity with Key that is automatically
generated to identify uniqueness.

• Pricing model: The cost of using DynamoDB depends on read and write
throughput parameters defined to Table, while the cost of using Datastore
depends on data record and transaction size.

• Data type: Datastore supports integer, floating number, string, date and binary
data type, while DynamoDB supports only number and string data type.

• Query method: DynamoDB provides two methods, namely, Query and Scan.
Query has better speed of data retrieval because it searches data by specifying
value of hash primary key and range primary key, while Scan examines every
record of data entity for matching set of conditions. Datastor provides query
method that takes comparison condition and find a matching record.

These differences between cloud-based services pose semantic and syntactic
dependencies from mobile application to the backend service. Therefore, the
modification of cloud-based service can cause ripple effect (Bass et al., 2004) to the
mobile application. For the mobile application to run correctly, the signature and
semantic of cloud-based storage services provided by cloud vendor and invoked by
mobile application must be consistent with the assumptions of mobile application. Any
changes in cloud services consequently require changing on the mobile application.

To develop a native mobile application, the developer needs to use a specific development
platform for a particular operating system. Likewise, the public cloud vendor uses their own
proprietary API to access services on the cloud, so the MAIMC has a major problem known
as vendor lock-in which is the state when the software implementation is tight to specific

335

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

mobile and cloud platforms (Sanaei et al., 2014). This affects two software quality attributes
that influence software evolution, namely, changeability and adaptability. The
changeability is the ability to make functional change, and adaptability is the ability to
change to new specifications of operating environments.

2.2 State of the art
The vendor lock-in problem requires a platform-independent approach which allows
different platform of mobile application to integrate with number of backend services on
different cloud platform (Sanaei et al., 2014). To achieve platform independence, the
platform-specific details have to be separated from the platform-independent details to
effectively support software evolution such as platform adaptability (France and
Rumpe, 2007) and function changeability.

For mobile application development, different proposals have been proposed to achieve
mobile platform independence such as DIMAG (Miravet et al., 2013), PhoneGap[3] and
Appcelerator[4]. DIMAG framework allows developers to declare specification of
client-server details for a mobile application in XML and capable of generating both backend
service and mobile application for several target platforms. The code generation of server
side services is only compatible with Java EE platform. Also, it is lack of concrete approach
that enables access to storage service on the public cloud platform. PhoneGap is an open
source framework that helps developing mobile application with standard Web
technologies. The user interfaces are rendered through embedded Web browser component
which is available on native mobile operating systems. This enables the application to be
portable across different mobile platforms. PhoneGap provides JavaScript API libraries that
are able to access different sensors on device and remotely call backend services. However,
PhoneGap does not address backend service development. Appcelerator Titanium is a
platform for developing mobile applications across different mobile platforms. The
developer writes source code of JavaScript containing specification of user interfaces and
behaviors. The source code can later be transformed into native mobile application by the
platform. The platform facilitates the application testing task with an ability to automate
testing on different operating systems and devices. Appcelerator also provides cloud-based
data storage service which can be accessible through REST-based API. The Appcelerator’s
cloud-based storage service is also known as Backend as a Service (BaaS) in the mobile
developer communities. There are similar BaaS vendors such as Kinvey[6] Parse[6],
Firebase[7] and Dreamfactory[8]. BaaS aims to facilitate mobile application developer in the
development of backend service, which involves knowledge of infrastructure configuration
and the number of proprietary APIs to manage data on the cloud or local data storage. BaaS
vendors usually provide user-friendly tools that allow developers to define data structure
and different service configuration. It provides REST-based API to manage data with some
additional features such as user management, push notification and integration to other data
sources. Although BaaS shields developers from the complexity of backend service
development, the application is still locked-in to BaaS vendors. This poses a risk because the
vendor may change their pricing policy or end their businesses.

Because different vendors provide cloud-based storage services that can be
accessible through proprietary APIs, the development of backend services become
tightly coupled with APIs which may suffer from any changes made by the cloud
vendor. There are several existing open source projects that aim to solve cloud
dependency problems such as Daesin Cloud[9], Apache Libcloud[10] and Apache

IJPCC
12,3

336

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

jclouds[11]. These projects provide unified API libraries that abstract differences
between proprietary cloud’s APIs; however, they can be used by a specific programming
language which pose limitations to use on some mobile platforms. For instance, the
development of iOS and Windows Phone uses Objective C and C#, respectively, as a
programming language, but Daesin Cloud and Apache jclouds only support Java, while
Apache Libcloud support Python. Therefore, they cannot be used in native mobile
applications on iOS and Windows Phone. In Flores et al., the authors propose mobile
cloud middleware (MCM) (Flores and Srirama, 2014) which is an intermediary between
mobile applications and cloud-based services by abstracting APIs of different cloud
vendors. It aims to decrease offloading times to the cloud from the mobile devices by
reducing the number of mobile-to-cloud interactions. Although MCM can significantly
ease complexity in the development of cloud-based backend services, it does not deal
with the development of mobile applications.

The combination of existing approaches could potentially achieve true platform
independency in the development of MAIMC. For instance, we used Apache jclouds as a
cloud abstraction library to develop backend services that manage data on multiple
cloud-based storage services from different vendors such as AWS S3 and Microsoft Azure
Blobstore. We used Appcelerator Titanium to develop a cross-platform mobile application.
The integration to backend services is developed using Titanium.Network.HTTPClient
library. The development effort of MAIMC decreases because less effort is required for the
development of mobile application and back-end service integration. The mobile application
can interoperate data stored on different clouds. However, we found issues as follows:

• The cloud abstraction library only supports particular cloud-based services
provided by some vendors without any solution addressed to support the
integration to other cloud-based services or local data sources.

• The cloud abstraction library requires distinct configuration details to be made
for different cloud platforms, so custom source codes for each integration to cloud
is still existing in the mobile application.

• Although the development effort decreases, the total effort depends on the
complexity of cloud abstraction library and cross-mobile development
platform.The total development effort can be calculated as follows:

Te � Tm � �
j�0

Pc

Tcj
� �

j�0

Pc

Tij

Tm is the amount of effort taken to develop a mobile application using cross-mobile
development platform, whereas Pc is the number of clouds and Tc is the amount of effort
to develop services on different cloud platforms using cloud abstraction library. Ti is the
amount of effort to develop integration to each backend service. Therefore, Ti relies on
the number of backend services to integrate with: if we need to make any changes in data
structure and its involved functionalities, the source code of both backend service and
mobile application will need to be substantially modified.

3. Proposed framework
SIMON is a software framework deployed on top of cloud and mobile platform to
automate the development and help execution of MAIMC in the heterogeneous

337

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

environment, which involves mobile platforms and clouds platforms. The framework
supports two fundamental data-oriented functionalities: information acquisition and
information presentation (Mahjourian, 2008). SIMON is based on MDE, so it comprises
prefabricated components that process high-level model of the application design. With
SIMON, the developer defines three essential design aspects of data-oriented application
in application blueprint, namely, Data Model, Security Policy and User Interface
Configuration. Data Model defines data structure design which contains specification of
data entities and their relationship. Security Policy is a set of security rules that define
different levels of data access for different user roles. User Interface Configuration
defines how data are presented and acquired through the user interface. The framework
is developed with Java, an object-oriented programming language, so the framework’s
programming units are extendable and reusable. The framework can be deployed on
any J2EE (Java 2 Enterprise Edition) technology (Singh et al., 2002) compatible
application server such as cloud-based J2EE runtime of AWS Beanstalk. The
performance can be tuned at the application server level. For example, more worker
nodes can be added to the application server to support more volumes of transaction.

As depicted in Figure 2, the architecture of SIMON is divided into three layers. The
foundation service layer contains components that generally serve data management
such as local relational database system and remote cloud-based storage service. The
Application layer contains three core components, namely, Data Runtime Engine (DRE),
Security Runtime Engine (SRE) and Blueprint Engine (BE). These core components
work together to serve functionalities according to designs in the application blueprint.
DRE interoperates data at different data sources including cloud-based storage and
RDBMS at local infrastructure. DRE provides remote services which are for the purpose
of performing typical data-oriented operations such as insert, update, query and delete.
SRE provides remote services that enforce Security Policy in the application blueprint; it
authenticates user credentials, verifies user roles and validates whether a user has
enough privilege to access to the data. BE is a main component that manages the
application blueprint and serves necessary information of application design to the

Figure 2.
SIMON’s architecture

IJPCC
12,3

338

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-001.jpg&w=235&h=178

other components. The components within application layers can be deployed either on
public cloud or local infrastructure. The mobile application is executed by native mobile
runtime engine (NMRE) located at the client layer. NMRE is a runtime engine developed
on top of a native mobile platform such as Android, iOS and Windows Phone. NMRE is
composed of prefabricated components that are responsible for presenting application
functionalities to the user by using necessary services provided by core components.

3.1 Framework in action
The core components consist of programming units that provide remote services as
REST API (Richardson and Amundsen, 2013). These remote services exchange
information in the format of JSON (JavaScript Object Notation). JSON is compact size
and convenient for transmitting over network, so it is suitable for bandwidth-limited of
communication link between remote services and mobile application. Different parts of
the application blueprint are managed by different core components. Data Model and
User Interface Configuration are managed by BE, whereas the Security Policy is
managed by SRE. BE wraps Data Model and User Interface Configuration together as
an artifact referred to as Client artifact. During initialization of mobile application,
NMRE retrieves Client artifact from BE and stored locally on its embedded storage at
the mobile device.

During runtime, NMRE renders user interface according to User Interface Configuration.
SIMON supports data-oriented functionalities with two types of user interface, namely, data
grid and data form to serve information presentation and acquisition, respectively. Figure 3
shows the screenshot of a sample mobile application running on Android, Part A is the data
grid that is for the purpose of showing list of data records in the tabular format. NMRE uses
services provided by DRE to query at the data source. To use DRE’s services, NMRE has to
send necessary parameters to the service according to the structure specified in the data

Figure 3.
Sample user interface

339

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-002.jpg&w=149&h=214

model. After the result is received, the data grid is dynamically rendered to show a table filled
with result records. The gesture controls and buttons are by default presented for
data-oriented functions such as insert, update and delete. When creating a new data record or
editing an existing record, the data form is presented for the purpose of data entry through
various kinds of input as depicted in Part B. After the user completes filling in the data form,
NMRE formats information that the user inputs into JSON format and sends to DRE to insert
or update data at the data source.

3.2 Matter of security
Figure 4 shows interaction between components when MAIMC is executed using the
framework. The user logs on through mobile application by entering credential
information for authentication. The authentication can be done by a service provided by
SRE. If the credential information is authentic, SRE will generate Authorization key as a
pair characters of alphanumeric. Authorization key is temporarily stored and mapped
with a user name on SRE before it is sent to NMRE. NMRE puts Authorization key in the
header part of every request to DRE services for the following reasons:

• DRE has to verify whether incoming request is trustworthy for further process;
and

• DRE needs to be able to identify the user to determine the access privilege.

Authorization key is valid for a limited time (30 min by default) after last request has
been received by DRE’s services. If Authorization key has expired, the user needs to go
through authentication process by logging on to the application.

3.3 Software evolution
The functional change is inevitable in the software system, as well as changes at the
platform that the application is running on. Therefore, the framework aims to support

NMRE SRE DRE

Authenticate

ReturnResult

Update

CheckAuthorizedKey

ReturnResult

ReturnResult

Update

ValidateCredential

GenerateAuthorizedKey

StoreAuthorizedKey

StorageService

ReturnResult
Figure 4.
Components
interaction

IJPCC
12,3

340

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

quality attributes for software evolution, namely, function changeability and platform
adaptability. The meta-model gives a scope of what change can be done on the function.
To support platform adaptability, the framework provides programming libraries
which are extendable to support changes at the platform, as well as migration to a
complete new platform in the future.

3.3.1 Function changeability. MDE takes model as a development artifact throughout
the software development process. Any changes to the functionality can be done through the
model. The meta-model is therefore designed to support modeling of the application
blueprint. The meta-model is platform independency model processed by SIMON to
automate development and support execution of MAIMC. The application blueprint can be
managed using a Web-based application referred to as Blueprint Manager. Blueprint
Manager enables developers to make changes that the structure of meta-model supports
such as data model, security policy and user interface. For example, new data entities and
attributes can be added, or the security rule can be updated to allow an additional user role
to access some data. When there are any changes made to the application blueprint, the
application’s functionality will also be changed, after the framework reloads the application
blueprint. The application blueprint can be reloaded to make functional change without any
downtime of the infrastructure.

The meta-model is depicted in Figure 5, it gives a scope of what functional change can
be done on the application system. The meta-model is composed of three parts that are
specification of three essential design aspects in the application blueprint. Each part has
the structure of meta-elements which gives detailed description of how the application
should be designed. Because the framework aims to support data-oriented functionality,
so meta-data model is a core of meta-model. Meta-data model is a specification that
covers essential structure of typical data modeling namely, data entity, data attributes
and relationship. The meta-data model coexists and relates with a number of
meta-elements that give specification of security policy and user interface configuration.
The user interface configuration is designed to define characteristics of user interface

Figure 5.
Application blueprint

specification

341

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-003.jpg&w=234&h=179

that support acquisition and presentation of information. The security policy
specification is designed for rules that enforce confidentiality and integrity of the data.

XML format of sample application blueprint:
Part A: Data Model

�data-model�
�entity name � “Employee” datasource�“AWS”�

�attribute name � “firstname” datatype � “string” /�
�attribute name � “lastname” datatype � “string” /�
�attribute name � “birthday” datatype � “date”/�

�attribute name � “photo” datatype � “file”/�
�attribute name � “position” datatype � “string” /�

. . . .
�/entity�
�entity name�“Phone” datasource � “GAE”�

�attribute name � “label” datatype � “string” /�
�attribute name � “number” datatype � “string” /�

�/entity�
�relationship name � ”Employee-Phone”�

�source�Employee�/source�
�target�Phone�/target�
�type�1-n�/type�

�/relationship�
�/data-model�

Part B: UI Configuration
�datagrid�

�name�EmployeeGrid�/name�
�displayName�Employee�/displayName�
�type�generic�/type�
�bindEntity�Employee�/bindEntity�
�displayColumn�

�bindAttribute�firstname�/bindAttribute�
�displayName�First Name�displayName�
�width�100�/width�
�visible�true�/visible�
�/displayColumn�

. . . .
�/datagrid�
�dataform�

�name�EmployeeForm�/name�
�displayName�Employee Form�/displayName�
�type�generic�/type�
�bindEntity�Employee�/bindEntity�
�inputField�

�bindAttribute�firstname�/bindAttribute�
�displayName�First name�/displayName�
�type�text�/type�

�hint�Required Field�/hint�
�required�true�/required�

�/inputField�
. . . .

�/dataform�

IJPCC
12,3

342

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Part C: Security Policy
�organization�

�roles�
�role�manager�/role�
�role�office�/role�

�/roles�
�/organization�

�application name � “Human Resource Management” code � “HRM”�
�ACL�

�permission�
�role�manager�/role�
�entity�Employee�/entity�
�level�3�/level�

�/permission�
�permission�

�role�officer�/role�
�entity�Employee�/entity�
�level�2�/level�

�/permission�
�/ACL�

�/application�

The above XML format of an application blueprint can be exported by Blueprint
Manager. The sample application is a part of human resource management system, and
it has data-oriented functions that allow users to manage information of employee and
phone.

The meta-data model is presented in the highlighted part of Figure 5. A record of
Entity represents a data entity in the application which is one-to-many related to
Attribute because a data entity can have a number of attributes. Attribute defines
properties of data attributes such as attribute name and its data type. The framework
currently supports the following data types: string, date, number and file. Relation
supports information of the relationship made between data entities in the application;
therefore, it has two relationships to Entity in the meta-data model, to the handle the
source and target of a relationship. DataSource aims to keep configuration parameters
that are necessary to access the data source. In an application, different entities can be
designed to store on different data source located on different clouds or local RDBMS, so
Entity has a link to DataSource. Part A shows the sample of a data model which defines
two data entities, namely, Employee and Phone. The relationship is defined in
�relationship�. The type of relationship is specified as “1-n” representing 1-to-many
relationship; this expresses that an employee can have one or many phones.

Figure 5 shows the specification of user interface configuration which has
meta-elements that are related to the meta-data model. Each Entity has one or more
DataForm for the purpose of defining how data are entered. A DataForm is composed of
a number of InputField which defines how the value of each attribute is entered.
Relationfield defines how relationships can be made, either to select an existing record or
create a new record to relate with. DataGrid defines how data are presented in the data
grid. A data grid is composed of the number of DisplayColumn. Each DisplayColumn
gives details of format showing data attributes in columns of the data grid. Part B shows
a sample data grid configuration defined at �datagrid�. This data grid presents

343

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

records of an employee. And �dataform� defines how data are entered for each
attribute of an employee.

The security policy is based on Access Control List (ACL) pattern (Messaoud, 2006),
it contains ACL rules that define user roles and their privileges to access different data.
An application has the number of ACL. Each of ACLs contains a set of Permission.
Permission has a designated number specified to represent the level of data access (3 �
Delete, 2 � Update, 1 � Read and 0 � None). Permission has Entity and Role defined to
specify who can access what. A user can subscribe to one or more Role to get the
authorization to access data. Part C shows a sample of security policy.

SIMON uses the application blueprint at runtime to help set up data structure at the data
source, as well as providing necessary REST-based services to support functionality on the
mobile application. The application blueprint is processed by model loader during the
framework’s initiation. The model loader can also be triggered to run anytime when there is
any change made in the application blueprint, it fetches data model and sets up data
structure on designated data storage through the cloud adaptor’s Data Access Object (DAO)
class. The DAO class has createTable(), a function that helps create data structure at the data
source which can be either cloud-based storage service or local RDBMS. Below is pseudo
code that explains the algorithm to create data structure:

1: Input: Data model
2: for all Entity do
3: if table for entity is not exists then
4: Select appropriate adaptor for specified data source
5: Create a table for entity with entity_id as primary key
6: end if
7: end for
8: for all Relationship do
9: if table for relation is not exists then

10: select appropriate adaptor for source’s data source
11: source_id � append(entity’s name of source, “entity_id”)
12: target_id � append(entity’s name of target, “entity_id”)
13: create a table for relationship with source_id and target_id as primary key
14: end if
15: If Relationship is bi-directional then
16: select appropriate adaptor for target’s data source
17: source_id � append(entity’s name of source, “entity_id”)
18: target_id � append(entity’s name of target, “entity_id”)
19: create a table for relationship with source_id and target_id as primary key
20: end if
21: end for

According to the meta-data model described in Section 3.3.1, the model loader processes
each Entity and creates a corresponding table on designated data storage which is
defined at Entity’s associated Datasource. entity_id is automatically inserted into every
table for primary key. The cloud adaptors manage data according to the requirement
given by cloud vendors. For primary key, entity_id is created as hash key on AWS’s
DynamoDB, while it is created as key on GAE’s Datastore. After all entities are created,
a table for each relationship is created according to details defined at Relationship. These
relationship tables contain two properties, namely, source’s entity_id and target’s
entity_id to record primary keys of associated entities. On AWS’s DynamoDB, source’s

IJPCC
12,3

344

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

primary key is hash key, and target’s primary key is range key for enhancing
performance when there is a query to find a relationship. On GAE’s Datastore, primary
key of source and target are created as key in the relationship table. If the relationship is
bi-directional, an additional table will be created to support reverse relationship from the
target back to the source.

To support different designs of data-model, we need to standardize the structure of data
exchanging within the frameworks, so that the design changes do not require changes made
at the part of the source code that supports data exchanging. Figure 6 presents the structure
of data that is used at runtime to syntactically standardize data transported between NMRE
and DRE through the cloud adaptor. To perform data operations on different clouds, the
cloud adaptor’s DAO class has standard functions for typical data operation such as insert(),
update(), remove() and relate(), which help to insert a new record, update, delete and make a
relationship, respectively. These functions process data encapsulated within
RuntimeEntity class. The RuntimeEntity class has a structure that fits to any design
of data model, it encapsulates the attribute’s values and associated relationships.
When insert() and update() are called, the functions extract the attribute’s value from
RuntimeEntity according to the attribute’s name defined in the data model. After that,
the attribute’s value is later processed by the cloud adaptor through proprietary API
corresponding to the data source. The cloud adaptor also has query() method which
supports different queries to the data source. query() takes RuntimeEntityQuery as a
parameter which represents the query expression. RuntimeEntityQuery consists of a
number of RuntimeAttributeQuery. RuntimeAttributeQuery supports expression to find
a matching data by its attribute’s value, it defines data attribute’s name, value to find and a
comparison operator. RuntimeRelationQuery supports expression to find a matching
relationship.

Because of the mechanism described above, the framework can dynamically adapt to
changes in the model of application blueprint without any changes required to be made
in the source code. As a result, the functional changes can be done at runtime without
restarting the infrastructure that supports the application.

3.3.2 Platform adaptability. The development of MAIMC has a major problem known
as vendor lock-in that is an obstacle of platform adaptability. The proposed framework
therefore aims to prevent vendor lock-in problem. SIMON is designed with the
mechanism that abstracts proprietary programming details of cloud and native mobile
platform. The platform’s programming details are isolated in the adaptor to prevent
ripple effect. If there are any changes on the platform, the modification is only required

Figure 6.
Interoperability

using SIMON

345

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-004.jpg&w=237&h=120

to be made on the adaptor without any impact propagating to the functionality.
Moreover, the framework provides programming libraries which are extendable to
support new mobile and cloud platforms.

3.4 Mobile platform
The mobile application runs by NMRE. NMRE is designed to be a middleware that
supports running the mobile application on native mobile platform. It renders user
interface and give functionality to the user according to the application blueprint.
Therefore, if there are any changes required to be made on the functionality of the mobile
application, the changes can be made at the application blueprint, and it is propagated to
the mobile application without the need to make any change at the development artifacts
of mobile application. The development of NMRE follows a standard specification,
which is composed of three major subcomponents: ApplicationInitiator, UIRenderer and
ServiceCaller. Each subcomponent has various methods to support the execution of
data-oriented functions on the mobile application. During initiation, ApplicationInitiator
is triggered to work to load necessary configuration from Client Artifact retrieved from
BE. UIRenderer dynamically renders user interfaces according to the user interface
configuration defined in the application blueprint. ServiceCaller supports interaction to
services provided by core components. ServiceCaller prepares the requesting message
including necessary parameters in JSON format; it then sets up a network connection to
the service and receives back responding messages in JSON format which is later
converted into the format that UIRenderer can use to present data to the user.

3.5 Cloud platform
The storage service on different clouds must be used through different proprietary
APIs, so SIMON abstracts programming details of the storage service’s APIs with the
cloud adaptor. The cloud adaptor is developed as an intermediate to data storage which
can be either public cloud-based service or local data storage on private cloud
infrastructure. The cloud adaptor is attached to DRE; it contains any proprietary details
that are required to access cloud-based storage service and local RDBMS. Therefore, any
changes on the cloud platform only need modification on the cloud adaptor and do not
affect the other parts. The cloud adaptor consists of modules which contain source code
that uses proprietary data storage’s APIs to access data sources. These modules are Java
classes that are based on DAO pattern (Matic et al., 2004), and they are inherited from
IDataAccessObject. a Java interface that has the number of standard methods for the
following two purposes. Meta-data administration helps setting up data structure on
designated data storage according to the meta-data model, and typical data operation is
for the purpose of performing basic data operation on data storage. At runtime, NMRE
and DRE’s services exchange data in JSON format which follows common structure
described previously. For the sample implementation, two adaptors are developed
particularly for two cloud-based storages, namely, AWS’s DynamoDB and GAE’s Data
store. An adaptor is also developed for MySQL database to access data stored locally at
private cloud infrastructure.

Figure 7 shows that SIMON supports interoperability in the heterogeneous
environment of MAIMC. NMRE and cloud adaptor are shields against various
platforms involved in the application system. As a result, mobile applications on

IJPCC
12,3

346

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

different operating system can seamlessly interoperate cloud-based services on multiple
clouds with platform adaptability.

4. Implementation and evaluation
We compare SIMON with the conventional approach for the development of MAIMC.
The conventional development raises vendor lock-in problem and consequently adds
complexity to the development. Two scenarios are used to assess function changeability
and platform adaptability. This evaluation concentrates on the measurement of effort
taken for the development using Source line of code (SLOC). SLOC is a software metric
used to measure the size of a software program by counting the number of lines in the
source code that the developer has to develop; it is one of the influential factors that
determine the amount of development effort (Garcia et al., 1996). The greater SLOC
causes more inertia to make any changes in the system (Booch, 2008).

Safety engineering system is selected to be a sample application system used to examine
with both approaches. The application system serves the safety engineering department at
Electricity Generating Authority of Thailand (EGAT). The safety engineering department is
responsible for managing and maintaining various kinds of safety appliances such as fire
alarms, springer pipe systems and fire hydrants. The safety appliances are periodically
inspected and tested, this requires the engineer team to record information. The information
of testing and inspection are later used by the department to prepare several annual
summary reports, which are required to be regularly submitted to the government agency
for regulation review. The routine inspection and testing must be performed in parallel at
multiple locations because numerous appliances are located separately in different rooms at
different terminal buildings. Therefore, the application system needs to allow a group of
engineers to simultaneously input information on the mobile application, and the
information will be remotely stored on the centralized database which can be later queried.

The data model of this application system is shown in Figure 8. There are two types of
data entities, namely, master data and transactional data. Master data are generally the core
data that is essential to the operation of business such as department, building, room and
equipment. These master data are required before making a transactional data which are
information recorded for inspection and testing. The data model can be described as follows.
Department, Terminal, Room and Equipment are for the purpose of keeping information of

Figure 7.
Runtime class

diagram

347

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-005.jpg&w=235&h=152

appliances and their location. The appliances can be categorized into different kinds
specified byEquipmentType. Because these appliances are periodically inspected and tested,
so InspectionRecord and TestingRecord are used to keep information of inspection and
testing. TestingMethod keeps method of testing. The information of inspection and testing
can also include videos and images of the safety appliances. The system keeps the
employee’s profiles and contact information in Employee and Phone. The security policy
defines two user roles, namely, Engineer and Team support. Team support is responsible for
managing the master data. Engineer can browse through the master data to find equipment
to record details of inspection and testing. For the master data, Teamsupport has permission
to write, while Engineer has permission to read only. The master data have to be stored on
local RDBMS located in the private cloud infrastructure because they are the company’s
sensitive information that must be highly protected from unauthorized access. The records
of inspection and testing are high volume because of the video and image files so they are
stored on GAE’s Datastore, a cloud-based storage service.

The application system initially includes a mobile application for Android and
backend services that helps managing data on MySQL and GAE’s Datastore. With
SIMON, the development efforts are primarily taken for designing and creating the
application blueprint using Blueprint Manager Therefore, SLOC is significantly lower
than conventional approach (as shown in the first row of Table I) because the
conventional approach requires effort to develop the mobile application and backend
services from scratch. Two change scenarios are used to evaluate the amount of effort
taken for making different changes as follows.

Figure 8.
Data model of safety
engineering
application system

Table I.
Development
complexity
comparison

Development scenario Conventional (SLOC) SIMON (SLOC)

Development 6.224 280
Change Scenario 1 153 16
Change Scenario 2 6.324 4.014

IJPCC
12,3

348

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0003&iName=master.img-006.jpg&w=143&h=166

4.1 Change Scenario 1 – functional change
This scenario demonstrates a change in the data model. The inspection requires the
method to be specified in the same way that the testing has. Therefore,
InspectionMethod entity is added to the data model and has a one-to-many relationship
to InspectionRecord. To make this change, SIMON needs slight changing in the data
model part of the application blueprint. The conventional approach requires changing in
source code for both backend services and the mobile application. With SIMON, SLOC
this change can significantly be reduced by 89 per cent compared to the conventional
approach as the result shown in the second row of Table I.

4.2 Change Scenario 2 – platform change
This scenario demonstrates a platform adaptability which requires data that have to
be migrated to Microsoft Azure as cloud-based data storage. And a new version of
mobile application has to be developed for Windows Phone. With SIMON, a new
version of NMRE has to be developed specifically for Windows Phone. The
Windows Phone version of NMRE follows the specification described in Section
3.3.2. Similarly, a new adaptor is developed for SQL Database service on Microsoft
Azure. With the conventional approach, the back-end service and mobile application
have to be developed from the very beginning, the existing source code cannot be
reused anywhere. With SIMON, SLOC considerably decreases by approximately 37
per cent compared with the conventional approach. The number of SLOC can be seen
in the third row of Table I.

SIMON is systematically compared with several existing approaches by examining
selected features. Each approach has its own contribution, so the evaluation does not aim to
determine which one is the best, but rather how it fits to support the development of MAIMC
and adaptability to support additional mobile and cloud platform. The evaluation’s results
are presented in Table II. PhoneGap and Appcelerator have been used to develop real-world
applications, while DIMAG and SIMON has only been the research prototype. SIMON is the
only framework that does not generate any code, this cut off effort taken for deployment task
and consequently allows function changeability at runtime. All approaches provide native
mobile application except PhoneGap. For the development of backend services,
Appcelerator and SIMON support REST API as the service interface. DIMAG and SIMON
propose a mechanism to extend their framework to support new mobile platforms. SIMON
is the only approach that is extensible to support new mobile and cloud platforms.

Table II.
Feature comparison

to existing work

Feature DIMAG PhoneGap Appcelerator SIMON

1. Production applications – ✓ ✓ –
2. Code generation ✓ ✓ ✓ –
3. Native mobile application ✓ – ✓ ✓
4. Support REST API service development – – ✓ ✓
5. Support mobile application development support ✓ ✓ ✓ ✓
6. Extensible to support new cloud platform – – – ✓
7. Extensible to support new mobile platform ✓ – – ✓

349

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

5. Conclusion
This paper presents SIMON, a software framework that supports the development of
data-oriented MAIMC. SIMON executes mobile applications that reside in the
heterogeneous system environment consisted of various data sources located at private
cloud and public cloud. The framework comprises prefabricated components that
support function changeability and platform adaptability. SIMON has been used to
develop a security engineering system for EGAT and is evaluated with different change
scenarios to demonstrate the support of software evolution. The result shows significant
decreasing in the amount of efforts taken for making changes.

Although SIMON only supports data-oriented applications, there are other
applications that require information sending in the workflow according to business
processes and rules. Therefore, the future work of SIMON will be extended to cover the
functionality that supports the workflow application.

Notes
1. http://aws.amazon.com

2. https://cloud.google.com/appengine/

3. www.phonegap.com/

4. www.appcelerator.com

5. www.kinvey.com

6. www.parse.com

7. www.firebase.com

8. www.dreamfactory.com

9. http://dasein-cloud.sourceforge.net

10. https://libcloud.apache.org

11. https://jclouds.apache.org

References
Bass, L., Clements, P. and Kazman, R. (2004), Software Architecture in Practice, Addison Wesley,

Boston, MA.
Booch, G. (2008), “Measuring architectural complexity”, IEEE Software, Vol. 25 No. 4, pp. 14-15.
Deursen, A.V., Visser, E. and Warmer, J. (2007), “Model-driven software evolution: a research

Agenda”, Proceedings of International Workshop on Model-Driven Software Evolution
(ECSMR’07), Amsterdam, The Netherlands.

Erbes, J., Motahari Nezhad, H.R. and Graupner, S. (2012), “The future of enterprise IT in the cloud”,
Journal of Computer, Vol. 45 No. 5, pp. 66-72.

Flores, H. and Srirama, S.N. (2014), “Mobile cloud middleware”, Journal of Systems and Software,
Vol. 92 No. 1, pp. 82-94.

France, R. and Rumpe, B. (2007), “Model-driven development of complex software: a research
roadmap”, Proceedings of Future of Software Engineering (FOSE), Minneapolis.

Garcia, M.A., Ellis, N.C. and Simmons, D.B. (1996), “A knowledge base system used to estimate
schedule, effort, staff, documentation and defects in a software development process”,
Proceedings of Mexico-USA Collaboration in Intelligent Systems Technologies, pp. 306-314.

IJPCC
12,3

350

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://aws.amazon.com
https://cloud.google.com/appengine/
http://www.phonegap.com/
http://www.appcelerator.com
http://www.kinvey.com
http://www.parse.com
http://www.firebase.com
http://www.dreamfactory.com
http://dasein-cloud.sourceforge.net
https://libcloud.apache.org
https://jclouds.apache.org
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FFOSE.2007.14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMC.2012.73
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jss.2013.09.012
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMS.2008.91&isi=000256966500004

Kemp, R., Palmer, N., Kielmann, T., Seinstra, F., Drost, N., Maassen, J. and Bal, H. (2009),
“eyeDentify: multimedia cyber foraging from a smartphone”, Proceedings of 11th IEEE
International Symposium on Multimedia.

Khan, A.R., Othman, M., Madani, S.A. and Khan, S.U. (2014), “A survey of mobile cloud computing
application models”, IEEE Communications Survey & Tutorials, Vol. 16 No. 1, pp. 393-413.

Mahjourian, R. (2008), “An architectural style for data-driven systems”, Proceedings of 10th
International Conference on Software Reuse, pp. 14-25.

Matic, D., Butorac, D. and Kegalj, H. (2004), “Data access architecture in object oriented
applications using design patterns”, Proceedings of Electrotechnical Conference
(MELECON), pp. 595-598.

Messaoud, B. (2006), Access Control Systems: Security, Identity Management and Trust Models,
Spring Science Business Media Inc, New York, NY.

Miravet, P., Marin, I., Ortin, F. and Rodriguez, J. (2013), “Framework for the declarative
implementation of native mobile applications”, IET Journal of Software, Vol. 1 No. 1,
pp. 19-32.

Richardson, L. and Amundsen, M. (2013), RESTful Web APIs, O’Reilly Media, CA.
Sanaei, Z., Abolfazli, S., Gani, A. and Buyya, R. (2014), “Heterogeneity in mobile cloud computing:

taxonomy and open challenges”, IEEE Communications Survey & Tutorials, Vol. 16 No. 1,
pp. 369-392.

Singh, I., Steans, B. and Johnson, M. (2002), Designing Enterprise Applications with the J2EE
Platform, Pearson Education, New Jersey.

Szyperski, C. (2002), Component Software: Beyond Object-Oriented Programming, Addison-Wesley
Professional, Boston, MA.

Unhelkar, B. and Murugesan, S. (2010), “The enterprise mobile applications development
framework”, IT Professional, Vol. 12 No. 3, pp. 33-39.

Corresponding author
Nacha Chondamrongkul can be contacted at: nacha.cho@mfu.ac.th

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

351

Model-driven
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
2:

17
 0

7
N

ov
em

be
r

20
16

 (
PT

)

mailto:nacha.cho@mfu.ac.th
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSURV.2013.062613.00160&isi=000338700300019
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMELCON.2004.1347000
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMELCON.2004.1347000
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMITP.2010.45&isi=000208329300008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSURV.2013.050113.00090&isi=000338700300018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FISM.2009.21
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FISM.2009.21

	Model-driven framework to support evolution of mobile applications in multi-cloud environments
	1. Introduction
	2. Mobile application in multiple clouds
	3. Proposed framework
	4. Implementation and evaluation
	5. Conclusion
	References

