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Abstract
Purpose – This paper aims to focus on applying a range of traditional classification- and semantic
reasoning-based techniques to recognise activities of daily life (ADLs). ADL recognition plays an
important role in tracking functional decline among elderly people who suffer from Alzheimer’s disease.
Accurate recognition enables smart environments to support and assist the elderly to lead an
independent life for as long as possible. However, the ability to represent the complex structure of an
ADL in a flexible manner remains a challenge.
Design/methodology/approach – This paper presents an ADL recognition approach, which
uses a hierarchical structure for the representation and modelling of the activities, its associated
tasks and their relationships. This study describes an approach in constructing ADLs based on a
task-specific and intention-oriented plan representation language called Asbru. The proposed
method is particularly flexible and adaptable for caregivers to be able to model daily schedules for
Alzheimer’s patients.
Findings – A proof of concept prototype evaluation has been conducted for the validation of the
proposed ADL recognition engine, which has comparable recognition results with existing ADL
recognition approaches.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

Activities of
daily life

recognition

347

Received 22 January 2015
Revised 7 April 2015

Accepted 8 April 2015

International Journal of Pervasive
Computing and Communications

Vol. 11 No. 3, 2015
pp. 347-371

© Emerald Group Publishing Limited
1742-7371

DOI 10.1108/IJPCC-01-2015-0002

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

35
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJPCC-01-2015-0002


Originality/value – The work presented in this paper is novel, as the developed ADL recognition
approach takes into account all relationships and dependencies within the modelled ADLs. This is very
useful when conducting activity recognition with very limited features.

Keywords Assisted living, Activity recognition, Alzheimer’s disease, Activities of daily life,
Elderly monitoring, Inference engine

Paper type Research paper

1. Introduction
Alzheimer’s disease (AD) is the most common form of dementia and contributes 62 per
cent in comparison to other forms of dementia in the UK. This progressive disease of the
brain is a fatal neurodegenerative disorder that is visible via cognitive and memory
deterioration of elderly people as they try to carry out activities of daily living (ADLs)
(Jeffery and Cummings, 2004).

Elderly people should be able to perform daily tasks such as cooking, dressing and
other activities of daily living, such as personal hygiene, eating and functional
movements. The ability to monitor ADLs in a ubiquitous environment (Aztiria et al.,
2012; Doctor et al., 2005) is seen as key for tracking functional decline among elderly
people (Fleury et al., 2010).

In the USA, caregivers prescribe a set of ADLs to elderly patients with dementia,
which they are expected to conduct during the day; information is then collected on each
regular visit from the caregiver, via interaction with the elderly person to see if they have
been successfully carrying out the ADLs. Collected information by the caregivers is
considered vital, as medicines are prescribed depending on it. However, collecting
information in this manner can often lead to inaccurate data (McDonald and Curtis,
2001). Another drawback of this approach is the window used for collecting information,
in comparison to the period being evaluated. Therefore, manual data collection
regarding ADLs can be long and tedious which imposes further workload on caregivers.

In addition to information about the safety and well-being of an elderly person,
recognition of activities can support providing assistance given a particular scenario.

For recognising activities of Alzheimer’s patients, this research involves an ADL
recognition approach. We introduce a novel concept of modelling hierarchical ADLs
based on task-specific and intention-oriented plan representation language called Asbru
(Fuchsberger et al., 2005). While prior work has focused on the lower tier of task
recognition and the interaction with the higher tier of the framework (Naeem and
Bigham, 2007a, 2009), this paper focuses primarily on the higher-tier ADL recognition
that is based on understanding the constituent set of lower-tier ADLs and the novel
approach for modelling these ADLs. We describe the ADL recognition engine with a
worked example that is based on a hierarchical structure, which has the capability to
generate a range of possible task sequences from a stream of sensor data to determine
the ADL being conducted. The remainder of the paper is organised as follows. Section 2
provides an overview of the related literature, while Section 3 describes the hierarchical
framework for ADLs. Section 4 describes the novel approach of modelling ADLs using
Asbru, followed by the implementation overview of the ADL recognition engine in
Section 5. Finally, experimental results are presented in Section 6.
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2. Related work
Feature detection plays an important role in carrying out robust activity recognition.
These data can be captured using visual surveillance equipment, which can be intrusive
and computationally expensive when analysing video footage.

A popular alternative to vision systems is to capture object usage data which is made
possible by “Dense Sensing” (Buettner et al., 2009; Philipose et al., 2004). This feature
detection approach is based around numerous individual objects, such as toasters and
kettles, being tagged with wireless battery-free transponders that transmit information
to a computer via a radio frequency identification (RFID) reader (Kalimeri et al., 2010;
Philipose et al., 2005) when the object is either used or touched. Wearable sensors such
as accelerometers can be seen as more intrusive than RFID tags; however, they are
practical for capturing human body movements (Wang et al., 2007).

ADL recognition frameworks (Fleury et al., 2010; Medjahed et al., 2009; Ros et al., 2013)
can be divided into two main categories, inductive and deductive. Inductive frameworks
such as machine learning have the potential to learn and generalise (Delgado et al., 2009; Ros
et al., 2011), while deductive methods can provide powerful means to encode semantic
process knowledge (Suzuki et al., 1999). The proposed hierarchical approach leverages both,
as the lower task recognition tier is based on an inductive framework, while the higher-tier
ADL recognition is based on a deductive framework.

One of the favoured approaches in inductive frameworks is hidden Markov models
(HMM) (Kim et al., 2010) used for probabilistic state transition models. Wilson et al. (2005)
integrated HMMs and Viterbi algorithm for an activity recognition process. Unfortunately,
such approaches cannot recognise activities when they are carried out in a random order,
typical in normal ADLs Sanchez et al. (2008) developed an approach for automatically
estimating hospital staff activities by training discrete HMMs for mapping contextual
information to user activities. This approach suffers from “cold start”, as large data sets are
required. Also, if there are large numbers of users with different ADLs and with a diversity
of ways an ADL can be performed, this approach will be very slow, and it will be difficult to
learn each and every activity model for all users.

Novak et al. (2012) presented an approach for anomaly detection in users’ activities
by utilising data from unobtrusive sensors. The data utilised were from activities that
had a typical duration of around 15 minutes or more. This particular approach was not
able to detect any anomalies when dealing with interweaving activities, as the anomaly
detection was based on the presence of a user at certain places which can not specifically
distinguish between normal or abnormal activities.

Knowledge-driven techniques for ADL recognition have mainly focused on the use of
ontologies to specify the semantics of activities and semantic reasoning to recognise
ADLs based on contextual information. Preliminary results suggest that existing
ontological techniques underperform data-driven ones, mainly because they lack
support for reasoning with temporal information. However, Riboni et al. (2011) conclude
that when ontological techniques are extended with even simple forms of temporal
reasoning, their effectiveness becomes comparable to one of a state-of-the-art technique
based on HMM. We believe that hybrid statistical/probabilistic and semantic reasoning
approaches have great potential for ADL recognition applications.

The most common ontology-based approaches to ADL recognition (Chen et al., 2012;
Riboni and Bettini, 2011) consist of specifying the semantics of ADLs based on the
observation of a user’s current context, such as current location, current time and objects
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that individual users are using. Chen et al. (2012) proposed a knowledge-driven
approach to real-time and continuous ADL recognition in smart home environments
that is based on ontological modelling and semantic reasoning. Their approach uses
domain knowledge in the life cycle of activity recognition and exploits semantic
reasoning and classification for inferring activities, enabling both coarser and
finer-grained ADL recognition. Their work presents a generic system architecture based
on their proposed knowledge-driven approach and describes the associate semantic and
assumption reasoning algorithms for activity recognition. Riboni et al. (2011) defined an
architecture for a mobile context-aware activity recognition system that is capable of
detecting information about simple activities, which are recognised by a hybrid
ontological and statistical reasoning approach. The architecture includes an ontology of
human activities and reasoners, which executes on users’ personal mobile devices. At
run-time, context information coming from distributed sources in an intelligent
environment is retrieved and aggregated by the middleware. Context data are mapped
to ontological classes and properties are added as individual instances belonging to
theses classes. Ontological reasoning to recognise ADL activities is performed by the
reasoning engine, either periodically or on the occurrence of specific events.

Scalability issues are a major challenge faced by activity recognition approaches.
One such top-down, goal-driven approach addressed this by hierarchically structuring
activities, which is made up of execution conditions and abstract sensor mappings
(Rafferty et al., 2013). The work proposed in this paper carries out a similar function, as
it also structures ADLs as a hierarchical entity.

This work proposes a novel approach for activity modelling and recognition based
on exploiting a process representation language called Asbru (Fuchsberger et al., 2005).
Asbru is a task-specific and intention-oriented plan representation language for
defining clinical guidelines and protocols in XML. It represents clinical protocols as
skeletal plans, which can be instantiated for each patient’s specific treatment. These
skeletal plans are useful guides for physicians when monitoring patients on a treatment
protocol (Kosara et al., 1998). Asbru allows each skeletal plan to be flexible and to work
with multiple skeletal strategies. Each ADL can be represented as a skeletal plan, which
can then be instantiated with the specific ordering and temporal intervals based on the
characteristics for each user. In comparison to other languages and methodologies, the
ability to manage execution orderings of nested elements within skeletal plans and
temporal phases is specific to Asbru for representing hierarchical ADLs. The flexibility
and scalability of the proposed ADL modelling approach can also be used to
complement existing works (Okeyo et al., 2012; Meditskos et al., 2013; Bouchard et al.,
2007), which are based on different hybrid frameworks for complex activity recognition.

In addition, a recognition engine has been developed that exploits the plans that have
been modelled as ADLs.

3. Hierarchically structured ADLs
ADLs have been modelled in a hierarchical structure, which enables scalable modelling of
ADLs (Rafferty et al., 2013; Lazaridis et al., 1994; Kempen et al., 1995). The hierarchical
structure has the capability to represent simple tasks, such as “turn on tap”, to more complex
activities, such as “making lunch”. To accommodate the different degrees of complexity,
ADLs have been modelled as plans, which can contain sub-plans. A plan that cannot be
decomposed further is known as a task. This type of modelling requires two phases of
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recognition: task recognition phase and ADL recognition phase. When an ADL is performed,
a task generates sensor events that are based on the objects (e.g. kettle) that are used to
perform the ADL; hence, task recognition is solely based on recognising tasks from the
captured sequence of sensor events. ADL recognition is responsible for recognising ADLs
from the tasks identified in the task recognition phase.

Figure 1 gives a schematic representation of the hierarchical ADL “Make Breakfast”,
which shows a breakdown of the recognition phases. Starting from the bottom, a
(potentially variable) number of sensor readings correspond to a particular task, which
could be currently active. A number of tasks determine an ADL or a set of ADLs that
could be active. The ADL “Make Breakfast” contains a simple sequence of tasks, Make
Tea, Make Toast. Figure 1 illustrates a very simple sequence of sensor events that could
be triggered whilst Making Tea. However, the task recognition phase is also responsible
for ensuring that it is able to deal with a more complex sequence of sensor events. For
example, the sensor event “Kettle” could be triggered twice or more because the user
might be “filling the kettle”, “boiling kettle” or “pouring water from kettle”. Therefore,
the RFID reader could capture the following sequence, “kettle”, “tap”, “kettle”, “teabag”,
“cup”, “kettle”. This sequence of events would then be used by the lower-tier task
recognition to determine the task being conducted by the user.

For the lower-tier task recognition phase, three different approaches have been
developed. One is based on Multiple Behavioural Hidden Markov Models, which
accommodates different possible task orderings with different models (Naeem and
Bigham, 2007a), while the second technique is based on an approach inspired by a text
segmentation technique, namely, Task Associated Sensor Events (TASE) segmentation

Figure 1.
Hierarchal activities
of daily life example

351

Activities of
daily life

recognition

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

35
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2015-0002&iName=master.img-000.jpg&w=275&h=254


(Naeem and Bigham, 2007b). This approach has the ability to segment tasks given a
series of captured sensor event sequences. The third approach is an extension of the
TASE approach, which generates a set of different task sequences from a stream of
objects usage data that are based on the conjunction of the disjunction of tasks
possibilities for each sensor event. This approach is called Generating Alternative Task
Sequences (Naeem and Bigham, 2009). The recognition engine presented in this paper
uses this approach for the lower-tier task recognition described next.

3.1 ADL recognition phase
The objective of the higher-tier ADL recognition phase is to determine which ADL is
being conducted based on identified tasks. In contrast to the approaches used in the
lower-tier task recognition phase, the ADL recognition phase required an approach that
gave an overview of all possible ADLs that could occur within a given time. The
approach had to consider any overlapping ADLs and also to distinguish which ADL is
currently active by the tasks that are discovered at the lower level.

The elements of an ADL are made of behavioural patterns, and ADL itself can be
classified as a type of behaviour. One way of representing and modelling high-tier
behaviour could have been by using workflows, such as using an augmented Petri net
(Zurawski and Zhou, 1994).

Within a workflow system, a process is used to represent a set of tasks that is
required to occur in an agreed sequence to achieve an outcome (Browne et al., 2004). The
goals of a person typically require particular constituent activities (tasks or
sub-activities) to be ordered sequentially or in parallel. A majority of ADLs that the
elderly people carry out are process oriented, and so workflow systems are potentially a
good modelling tool.

One approach for dynamic workflow processes to enable ad hoc and evolutionary
changes is described by Van der Aalst (1999). Ad hoc changes are usually caused by rare
events occurring, while evolutionary changes often arise to make the workflow more
efficient. An example of the latter could be removing unused nodes in the Petri net.

However, workflows are too prescriptive in their ordering. If workflows are applied
in dynamically changing environments, they require a large number of permutations to
be explicitly enumerated. Workflows can scale badly to cases where there are many
possibilities, and this is often the case for goals performed by people (Van der Aalst,
1999). In addition to scalability issues, it can be very difficult to manage the
representation of priorities and ordering. Thus, more flexibility is required when
modelling hierarchical ADLs.

4. Modelling with Asbru
The Asbru language is a process representation language which has similarities to
workflow modelling, but it has been designed to provide more flexibility than
workflows. Its roots are in the modelling of medical protocols and monitoring the
application of such protocols (Kosara et al., 1998). Asbru allows flexibility in how it can
represent temporal events, namely, their duration and sequence. ADLs have a number of
attributes and characteristics which make them difficult to represent in a logical
framework. These characteristics include variable duration, variable ordering of the
tasks and overlap with other ADLs. Techniques which attempt to map these as a flat
structure are problematic because they are unable to model flexible scenarios, such as
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interweaving ADLs. The ability to monitor interweaving ADLs is a key advantage of
the proposed approach over existing ADL modelling approaches (Chen and Nugent,
2009; Aztiria et al., 2012). This is because the proposed approach has the ability to model
a variety of temporal phases and execution orderings of sub-activities and tasks within
ADLs, which provides the capability of representing and managing the execution of
multiple ADLs.

In relation to the high-tier modelling, Asbru is being used as a representation
language to model ADLs. The skeletal plans in Asbru represent ADLs and
sub-activities within an ADL. Like workflows, in Asbru, when a goal is reached, it is
represented as a plan being executed. In the case of the high-tier modelling of an ADL,
when all of the phases and conditions of an ADL have been met, the ADL can be
classified as being executed. An ADL will only be classified as executed once all its
mandatory sub-activities have been executed. For example, if a Prepare Breakfast ADL
has a mandatory sub-activity called Make Tea, this sub-activity needs to be executed for
the Prepare Breakfast ADL to be classified as successfully completed. The inclusion of
a learning mechanism and context awareness data from smart devices (e.g. weather in
local region) can also make it possible to adjust the mandatory options for a sub-activity.
For example, sub-activity “put the coat on” could be changed from mandatory to
optional during the summer or when the weather above a certain temperature.

In a real-life scenario, the instantiation of the ADLs will be different depending on the
individual who is being monitored; therefore, to achieve reliable modelling, the ADLs
modelled in this paper are based on planned activity examples constructed by the
Alzheimer’s Association for people with dementia (Table I). An individual with
dementia has an organised day consisting of activities to meet each individual’s
preference, enhance the individual’s self-esteem and improve quality of life (The
Alzheimer’s Association, 2012).

The proposed method may seem very prescriptive, as it relies on a crisp set of
modelled ADLs; however, we feel the use of this method is justified as Alzheimer’s
patients require prescriptive assistance in the form of ADL schedules. While many
common activities can be modelled within a library of ADLs, it is impossible for a library
to contain plans for every possible ADL.

4.1 Phases and conditions in ADL execution
With Asbru, each ADL can have seven possible phases in its execution. The plan phase
model is called the ADL phase model and shows a possible sequence of ADL phases. As
shown in Figure 2, the first three phases (considered, possible and ready) constitute the
preselection phase, while the latter four phases (activated, suspended, aborted and

Table I.
Daily activity plans

constructed by
Alzheimer’s
Association

Morning Afternoon Evening

Wash, brush teeth and get
dressed
Prepare and eat breakfast
Discuss the newspaper or
reminisce about old photos
Take a break and have
some quiet time

Prepare and eat lunch, read mail
and wash dishes
Listen to music or do a
crossword puzzle
Take a walk

Prepare and eat dinner
Play cards, watch a
movie or give a massage
Take a bath and get
ready for bed
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completed) form the execution phases. For an activated ADL, the suspended, completed or
aborted phases are optional.
4.1.1 Preselection phases
4.1.1.1 Considered. This first phase of an ADL considers any filters to be fulfilled. If the
filter preconditions are fulfilled, the ADL moves onto the possible phase. If the filter
conditions are not fulfilled, the ADL does not execute any further. For example, the ADL
“Breakfast” would only be considered if the person has been awake for “10” minutes or
more. Figure 3 shows an XML representation of this filter precondition.

4.1.1.2 Possible. This preselection phase of the ADL checks whether all the set-up
preconditions of the main ADL have been fulfilled. Set-up preconditions are imposed
when the filter precondition cannot be achieved. These set-up preconditions need to be
fulfilled for the ADL to be in the ready phase. The difference between filter preconditions
and set-up preconditions is that filter preconditions consider whether it is possible for an

Figure 2.
ADL phase model
representation in
Asbru

Figure 3.
Filter precondition in
XML
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ADL to be carried out, while set-up preconditions must hold before an ADL can be
executed. Set-up conditions can also have a dependency on time. For example, if a set-up
condition is not fulfilled during a particular time frame that has been defined by an
optional waiting period, the ADL is not executed. However, if there is no time frame
assigned for the ADL, the ADL stays in the possible phase until all preconditions have
been fulfilled.

4.1.1.3 Ready. Once the set-up conditions have been fulfilled, the ADL is ready for the
activation phase. Depending on the type of ADL or sub-activities within the ADL, an
ADL may not move to the activation stage straight away. If an ADL or a sub-activity has
to be executed in a parallel order, the ADL that is in the ready phase must wait for the
ADL that is in the activated phase to be completed, aborted or suspended.
4.1.2 Execution phases
4.1.2.1 Activated. Before an ADL is activated, it takes into consideration the activation
condition. This condition is a token that determines if an ADL is either manual or
automatic. This is specified by using the attributes overridable and confirmation. These
attributes are generally used for plans that have been modelled for clinical procedures
and not used for ADLs. However, once an ADL is in the activated phase, it will then
move on to any one of these three phases: suspended, aborted or completed. An example
of an ADL being activated is when a task (i.e. Make Tea) has occurred that is a part of an
ADL activity, such as Make Breakfast.

4.1.2.2 Suspended. An ADL in an activated phase will only move on to the suspended
phase if the conditions for suspension have been fulfilled. The only way an ADL can
move out of the suspension phase and back into the activated is if the reactivate
conditions have been fulfilled.

4.1.2.3 Aborted. An ADL in an activated phase will move to the aborted phase if the
conditions for aborting the ADL have been fulfilled.

4.1.2.4 Completed. When an ADL is in the completed phase, all sub-activities
(consisting of tasks from the lower-tier recognition phase) and actions (tasks in the low
tier) have been completed, thus allowing for the next ADL in the ready phase to be
activated.

Some ADLs modelled with Asbru have preconditions that can only be started if a
certain action (task) that satisfies the ADL’s precondition has been executed. For
example, a precondition for an ADL “washing face” may be to apply soap. Another
feature of the condition element is that it allows ADLs to suspend and restart if another
ADL is going to become active. For example (Figure 4), if an elderly person is cooking
(ADL A) and a phone call occurs (ADL B), the elderly person then picks the phone up;
with the aid of the conditions, Asbru can suspend ADL A and start ADL B. Once an
elderly person is off the phone, then ADL A will be reactivated and ADL B will be

Figure 4.
Using conditions to

suspend tasks
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suspended. The recognition of whether a particular phone call was completed
successfully would be captured by the object usage data generated by picking up and
putting down the handset. The time interval between these two actions enables the
possibility of determining the call duration and different instances of phone calls.

When a suspension occurs, it is important that certain conditions are satisfied (like
the gas cooker is turned down) or certain monitors to check that certain conditions (such
as the food on the hob is not boiling over) are set-up.

The example in Figure 4 demonstrates the suspension and activation of two ADLs
and shows how an ADL resumes after being interrupted. However, this does not mean
that another ADL could not be activated before the initial ADL resumes. This is
important, as there might be situations where the elderly person with AD conducts an
initial activity and after an interruption forgets to resume that activity and starts
executing another ADL. In this situation, the ADL that has been suspended may have a
condition triggering abortion if the ADL has not been reactivated within a few hours.

4.2 ADL execution synchronisation
Asbru has the capability of representing and managing the execution of more than one
ADL at a given time. In Figure 5, the child is an ADL (sub-activity “Watch TV”) invoked
by another parent ADL (ADL “Breakfast”). The child’s preselection phase starts only
after the parent’s preselection phase terminates. In other words, the sub-activity’s filter
condition is not checked until the ADL is activated. Thus, an ADL is executed once the
complete condition of the ADL has been fulfilled and all of its mandatory sub-activities
have been completed.

Another aspect of Asbru is that it allows different ADLs to have different execution
orders. The execution orders of an ADL have been represented as sequential, parallel,
any-order and unordered execution order.

4.2.1 Sequential execution order. For an ADL that has a sequential execution order,
its children execute in the prescribed sequence. The second ADL’s preselection phase
cannot begin until the first ADL completes or aborts (Figure 6). This is the same for any
sub-activities that are sequential within an ADL that might not have a sequential
execution order.

4.2.2 Parallel execution order. All sub-activities with a parallel execution order are
executed so that they are synchronised together. If the conditions or filters in the
preselection phase of ADL 1 are not fulfilled, then ADL 2 has to wait until ADL 1 has
fulfilled its conditions. If ADL 1 is aborted, then ADL 2 cannot be executed, which leads
to the ADLs not being executed (Figure 7).

Figure 5.
Parent– child
synchronisation
between ADLs
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For instance, an ADL “Make Breakfast” may have two parallel sub-activities, which are
“Make Tea” and “Make Coffee”, as the person being monitored may make tea for himself
and coffee for someone else. In Figure 7, the preselection phase could be that the kettle
has not reached the boiling point, hence “Make Coffee” has not been activated. Until the
kettle reaches the boiling point, none of these sub-activities can be executed.

4.2.3 Any-order execution. With this type of execution, the preselection phase is done
in parallel to the other ADLs; however, the execution is one at a time. The other ADLs
remain idle when the execution of an ADL is taking place (Figure 8).

4.2.4 Unordered execution order. An ADL with an unordered execution order is able
to execute all phases of an ADL together (in parallel) or in any order, which means that
ADLs can stay idle throughout the preselection and execution phases (Figure 9).

Figure 6.
Sequentially ordered

ADL

Figure 7.
Parallel ordered ADL

Figure 8.
Any order ADL

execution
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5. ADL recognition engine
The Java-based ADL recognition engine includes an ADL recogniser that reads the
features captured, a sequence of sensor events (e.g. objects triggered during activity).
These are then used to generate a sequence of tasks (e.g. Make Tea � Make Coffee)
given the associated sensor event (e.g. Kettle). The ADL recogniser then reads the
generated stream of tasks and calculates the possibility of each ADL being an active
ADL using the discrepancies with each ADL and sub-activities that could currently be
active. A discrepancy is the count of observed tasks that are inconsistent with a
particular ADL. The system has also incorporated surprise indexes for each ADL to
reflect that some tasks are more likely than others.

The system reads in the ADL descriptors and stores them as a Document Object
Model tree. The ADL descriptors are constructed in XML, as each ADL descriptor has
the relevant sub-activities and tasks nested within them. The XML files are created
either by hand as a source XML document or by a graphical tool called AsbruView [26],
which provides a graphical visualization of the ADL descriptors. Using this tool
alleviates the possibility of creating inaccurate ADL descriptors.

Once the ADL descriptors have been loaded into memory, the ADL recogniser acts as
a server which listens for incoming task notifications. These task notifications are the
tasks that have been determined from the lower-tier task recognition phase. After each
task is read, the estimator outputs the names of the ADLs and sub-activities that may be
currently active. Depending on how many ADLs the task belongs to, the ADL recogniser
provides a list of the most probable ADLs that may be currently active. The output of the
most probable ADL is determined by a dynamic weight tuning, which is based on the
level of discrepancies and surprise indices that are calculated by the ADL recogniser.
The following illustrates the behaviour of the ADL recognition engine with a sample
sensor event stream.

5.1 Lower-tier task inference
The lower-tier recognition component computes a list of all possible task sequences given a
sequence of sensor events (object usage data), which is based on the conjunction of the
disjunction of tasks possibilities for each sensor event. For example, the object “Kettle” (x)
can be associated with the tasks “MakingTea” (A) or “Making Coffee” (B). Hence, the sensor
event “Kettle Sensed” is replaced by the disjunction Making Tea | Make Coffee, which is
represented as x � A � B, where � is used to represent the disjunction.

Each task sequence has a generated cost, where the highest task sequence is
considered to be the most likely task sequence, as the cost function reflects the

Figure 9.
Unordered ADL
execution
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compliance of the task sequence with the captured sensor event sequences and the
relative frequencies of ADLs. The function of the lower-tier task recognition component
can be represented as:

e1, e2, . . . en ¡ ��TS1, c1 � � � TS2, C2 � � � TSm, cm�� (1)

In equation (1), TS represents a task sequence, where m is an upper limit chosen when
the task recogniser is asked for its set of task sequences that match the events. This also
ensures that if there are fewer than m possibilities, then only the actual possibilities are
generated. For example, the sensor events sequence will generate the following task
sequences and associated costs, where A, B, C and D are tasks:

e1, e2, e3 ¡ ��ABC, c1 � � � ABD, c2 �� (2)

In the following example, the captured sensor event sequence (e1, e2, e3, e4) contains the
task “Make Tea” being carried out. However, there are also some partial tasks that could
potentially be carried out given the sensor events such as “Make Coffee” and “Make
Toast”. The notation below maps the objects as sensor events and tasks as letters:

• e1 � kettle
• e2 � sugar bowl
• e3 � refrigerator
• e4 � teabag bowl
• e5 � coffee bowl
• e6 � toaster
• A � Make Tea
• B � Make Coffee
• C � Make Toast

These are then represented as TASE, with their associated prior conditional probability
values. As there are no training data, these values are based on the number of
associations each task has with the sensor event.

Sensor event sequence � e1, e2, e3, e4

e1 � A(0.5) � B(0.5)

e2 � A(0.5) � B(0.5)

e3 � A(0.33) � B(0.33) � C(0.33)

e4 � A(1)

Therefore,
Maximum conditional probability values equal the following:
A � 1
B � 0.5
C � 0.33

Given the sensor event stream e1, e2, e3, e4, the disjunction will be as follows:
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(A � B)(A � B)(A � B � C) A� (AA � AB � BA � BB)(A � B) A

AA can be reduced, and the task sequences are to be generated by computing the
function in the following way:

� (A � AB � BA � B)(A � B � C) A
� (A � ABA � BA � AB � BABA � B � AC � ABC � BAC � BC) A
� A � ABA � ACA � ABCA � BA � BABA � CA

To generate the associated cost for each task sequence, the maximum of the conditional
probability values assigned to each task above is used to find the cost for each task
sequence, for example: ABA � (A)1 � (B)0.5 � (A)1 � 0.5. The associated costs for each
of the task sequence are as follows:

e1, e2, e3, e4 ¡ ��A, 1.0 � � � ABA, 0.5 � � � ACA, 0.33 �

� � ABCA, 0.165 � � � BA, 0.5 � � � BABA, 0.25 � � � CA, 0.33��

This approach mitigates the chances of not being able to infer tasks that have been
performed using different orderings of objects, as this approach considers all the
possible types of task sequences given the TASE. Also this approach considers the
conjunction of the disjunction of tasks possibilities for each sensor event, including
noise. For example, if a sensor event sequence is made up of noise, then this will be
reflected in the generated cost, as this task sequence will have a lower cost than other
tasks sequences. This means that the captured sensor events do not comply with the
task sequence.

5.2 Dynamic weight tuning by computing discrepancies and surprise indices for ADL
inference
Recognition of ADLs is dependent on the tasks that have been inferred in the lower tier;
hence, the recognised task is used as an input to determine the ADL that it belongs to.

When constructing an ADL descriptor, it is possible to construct one ADL per XML
file, or several ADLs can be constructed into one larger XML file. Both of these options
are likely to lead to a situation where one XML file will contain the same tasks.

When an ADL has been detected by the ADL recogniser, this is represented by the
absolute pathname of the nested elements within ADL XML file that has been detected,
for example:

(1) ADL: Make Breakfast
• Sub-activity: Prepare Food

– Task: Make Tea

Make Breakfast ¡ Prepare Food ¡ Make Tea
In an XML file, a discrepancy is a task (i.e. single step plan) that has not been detected

or that should have been detected if the ADL were executed. The overall discrepancy of
an ADL is computed by summing the discrepancies of its sub-activities.

To compute the overall discrepancy, two discrepancy counts for each ADL are
calculated, namely, the completed and incomplete discrepancy counts. If the
sub-activity is known to be complete, then the completed discrepancy of the sub-activity
is used when computing the sum, otherwise the incomplete discrepancy is used.
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Whether an ADL has been logically completed, it is represented by true or false of its
completed labels. The completed labels have a default false value. All labels in the
absolute pathname of an XML file are set recursively to true once a new task is detected
in the XML file. When the completed label is set to true, the ADL can be idle, as tasks
within this ADL might be detected later.

The mechanism to mark labels as complete is based on:
• The execution order: sequential, parallel, any-order or unordered.
• The continuation condition: whether a sub-activity is optional or mandatory for its

parent ADL’s continued execution.
• The filter precondition: the compulsory conditions for an ADL to be activated.

Once a new task is detected or otherwise known as completed in the higher-tier
component, the following discrepancy counting processes occur:

• Process 1: If the parent ADL has filter preconditions, then all other ADLs that are
compulsory to fulfil the preconditions should have been completed. Hence, these
ADLs are set as being completed.

• Process 2: If all tasks and mandatory sub-activities of an ADL have been set to
completed, then this ADL is set as being completed.

• Process 3: An ADL is only set as completed, once it has been completed, according
to the assigned order of execution. For example, if a parent ADL is sequential, then
all its preceding mandatory child ADLs should have been completed in the
sequential order. This is also true for ADLs that have parent plans that are either
parallel, any-order or unordered, as the child ADLs will only be set as completed
once they have been executed in a particular order.

• Process 4: If an ADL has been set as completed, then all mandatory children ADLs
should have been completed; hence, these mandatory children ADLs are set to
complete. This process traverses down the ADL to the sub-activities that are
nested within it.

• Process 5: The process continues in a depth-first search-like manner – traversing
from the current ADL to its siblings, then parents, repeating Processes 1-4 until no
parent ADL is available. The completed discrepancy and incomplete discrepancy
of each ADL are updated if any changes take place.

5.2.1 Working example. A working example has been modelled to illustrate how
discrepancies are computed for a simple “Having Breakfast” ADL (Figure 10): it is
supposed that the following tasks are detected in the low level modelling – “Enter
Kitchen”, “Prepare Toast”, “Drink Tea”, “Eat Egg”, “Clean Dishes” and “Leave
Kitchen” – in this order. At the detection of each task in the higher tier (e.g. output task
from lower tier), the above recognition processes (1-5) will take place. By convention, in
Asbru, all single task plans are mandatory. If a single task needs to be optional, it has to
be embedded in another optional plan, which can contain the single activity.

5.2.1.1 Enter Kitchen is detected. Enter Kitchen is the only task in sub-activity Enter
Kitchen; hence, Process 2 will occur here, and the single step plan (task) Enter Kitchen is
set to completed. The update process continues and stops when reaching the sequential
root plan Have Breakfast, as Enter Kitchen has no preceding plans.
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Figure 10.
Modelled ADL
example of “Having
Breakfast”
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5.2.1.2 Prepare Toast is detected. Similar to the case when Enter Kitchen was
detected, Process 2 also occurs here and the single step plan (task) Prepare Toast is set
to completed. The discrepancy counting algorithm goes to the sequential sub-activity
Prepare Food, and Process 3 occurs because the single step plan (task) Prepare Tea,
which as a preceding mandatory child ADLs, should have been completed. However, it
has not been detected and is calculated as a discrepancy. The update process continues
until the root ADL is reached.

5.2.1.3 Drink Tea is detected. Process 2 occurs because sub-activity Eat Food has
been set as completed, as the only mandatory child single step plan (task) Drink Tea is
completed. Also the sub-activity Prepare Food is set to complete, as it is a preceding
sub-activity to Eat Food. Prepare Food is set to complete because there is a possibility
that the task recognition component may have not discovered the task Prepare Tea.
Even though the sub-activity Prepare Food has now been set to complete, the
discrepancy count remains the same. An ADL plan that has a high discrepancy count is
less likely to be the ADL that is being conducted.

5.2.1.4 Eat egg is detected. Process 1 occurs as to fulfil the filter condition “egg is
cooked”, the single step plan (task) Prepare Egg should have been completed. Like the
previous Prepare Tea situation, Prepare Egg is also set to complete, where the
discrepancy count for the sub-activity Prepare Food remains the same and does not
decrement.

5.2.1.5 Clean dishes is detected. Any order sub-activity Cleaning is not set to
completed because only the task clean dishes was detected, and both of the tasks (clean
dishes and clean table) were required for the sub-activity to be set to complete, as the
sub-activities were mandatory.

5.2.1.6 Leave Kitchen is detected. Process 2 occurs, as the ADL Leave Kitchen is set to
completed; also, as this is the last task of the task sequence, the overall discrepancy of
the ADL can be calculated.

The completed discrepancy and incomplete discrepancy counts of each ADL,
sub-activity and single step plan (tasks) are updated if any changes take place. The
overall discrepancy is calculated as the sum of the chosen completed or incomplete
discrepancies of each ADL and sub-activity.

In this example, the modelled ADL’s final matching result is shown in Table II. The
overall discrepancy of “Having Breakfast” is 3; if other ADLs have a higher overall
discrepancy than 3, then “Having Breakfast” is the ADL rated as being conducted. The
recognition process does not necessarily just rely on the overall discrepancy, as at each
step when a task is discovered, the individual discrepancies and complete labels can be
used to assist the recognition process, meaning there is no need to wait for a complete
stream of task sequences before determining the activity.

The surprise index is used to account for the absence of some sensor events being
more unusual than others and quantifies this by accruing a measure of how likely a
sensor event is when a task is being executed.

While the discrepancy is computed whenever there is any missing mandatory task,
such as “Make Tea”, for the ADL “Having Breakfast”, the surprise index of a missing
sub-activity is the maximum of the conditional probabilities P�ai�b� of its missing
sub-activities tasks occurring �aiS� given that the ADL �b� is being conducted. A
mandatory task will have probability of 1. The maximum is taken over the immediate
sub-activities or tasks, i.e. children. This approach is cautious and ad hoc, but the

363

Activities of
daily life

recognition

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

35
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



information required to use a more sophisticated approach, would need significant
knowledge collection. Equation (3) is used to compute the maximum likelihood
probability estimates, N(oi,a) represents the number of times object oi occurs in activity
a, while �o� represents the cardinality of the set of all objects (Tapia et al., 2006):

P(oi�aj) �
N(oi, aj)

� s�1

�o�
N(os, aj)

(3)

6. Proof of concept prototype evaluation
The objective of this evaluation was to investigate the performance of the ADL
recognition engine, which utilises the hierarchical ADLs modelled with Asbru. The
effectiveness of the ADL modelling and performance of the proposed recognition engine
has been measured by calculating the precision and recall rates of each ADL given its
constituent tasks that were performed.

The precision (P) and recall (R) are calculated as follows:

P �
True Positive

True Positive � False Posotive

R �
True Positive

True Positive � False Negative

(4)

The feature detection technique used was based on the collection of object usage data,
where an RFID reader was used to collect data from transponders that had been
installed on household objects (such as cup, kettle and utensils) in the kitchen. The RFID
reader was the size of a matchbox and was worn on the finger of the subject conducting
the experiment. There were occasions where the RFID reader captured objects that were
not part of the ADLs being conducted. Hence, it was imperative that the proposed
approach was able to address this problem.

Ten volunteers were recruited from the community to carry out these experiments.
The volunteers were asked to perform each ADL three times by changing the ordering
of objects used, which also increased the degree of variation within the data collected.

Table II.
ADL discrepancies
for Having Breakfast

ADL/sub-activities/
task

Execution
order

Mandatory
or optional

Complete
label

Complete
discrepancy

count

Incomplete
discrepancy

count

Having Breakfast Sequential Root plan False 0 0
Enter Kitchen Unordered Optional True 0 0
Leave Kitchen Unordered Optional True 0 0
Prepare Food Any order Mandatory True 1 0
Prepare Toast Unordered Optional True 0 0
Prepare Egg Unordered Optional True 1 0
Eat Food Any order Mandatory True 0 0
Eat Egg Unordered Optional True 0 0
Eat Toast Unordered Optional False 0 0
Cleaning Any order Optional False 0 1

Overall discrepancy of plan Having Breakfast is 3

IJPCC
11,3

364

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

35
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



The subjects reported the ADLs they had conducted within a given time frame. This
reported information was then used as a ground truth.

The experiments were based around eight ADLs, which were made up of a series of
sub-activities and tasks that belonged to more than one ADL (Table III). This was done
intentionally to see how the ADL recogniser would deal with tasks that belong to more
than one ADL.

Figure 11 shows that the precision rates ranged from 93 to 86 per cent, which is based
on the instances of the ADLs recognised being relevant to the actual ADL being
performed. The recall rates ranged from 96 to 90 per cent, indicating that the hierarchical
modelling enables the ability to consider all possible relevant tasks when performing
ADL recognition. This is very important, as a task could belong to more than one ADL;
hence, it is important that the recognition process does not rule out task sequences

Table III.
ADL, sub-activities

and tasks conducted
for experiments

ADL Sub activities Tasks

Breakfast Enter Kitchena ¡ Enter Kitchen
Prepare Food ¡ Make Tea, Make Coffee and Make Toast
Eat Food ¡ Drink Tea, Drink Coffee and Eat Toast
Cleaning ¡ Clean Table and Clean Dishes
Exit Kitchena ¡ Exit Kitchen

Prepare Lunch Enter Kitchena ¡ Enter Kitchen
Prepare Food ¡ Make Sandwich and Make Wrap
Cleaning ¡ Clean Table and Clean Dishes
Exit Kitchena ¡ Exit Kitchen

Put Shopping Away Enter Kitchena ¡ Enter Kitchen
Groceries Away ¡ Fridge Shopping Away

Cupboard Shopping Away
Exit Kitchena ¡ Exit Kitchen

Prepare Snack Enter Kitchena ¡ Enter Kitchen
Prepare Food ¡ Make Tea, Make Coffee and Get Biscuits
Eat Food ¡ Drink Tea, Drink Coffee and Eat Biscuits
Exit Kitchena ¡ Exit Kitchen

Clean Kitchen Enter Kitchena ¡ Enter Kitchen
Clean Floor ¡ Sweep Floor
Clean Worktop ¡ Wipe Countertop with Wipes
Exit Kitchena ¡ Exit Kitchen

Laundry Enter Kitchena ¡ Enter Kitchen
Wash Clothes ¡ Wash Clothes – Washing Machine

Dry Clothes Using Tumble Dryer
Exit Kitchena ¡ Exit Kitchen

Prepare Ready Meal Enter Kitchena ¡ Enter Kitchen
Warm Up Meal ¡ Heat Up Food in Microwave
Exit Kitchena ¡ Exit Kitchen

Clean Up (Post-Lunch) Enter Kitchena ¡ Enter Kitchen
Cleaning ¡ Clean Table, Clean Dishes
Clean Floor ¡ Sweep Floor
Exit Kitchena ¡ Exit Kitchen

Note: a Optional
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during the recognition process. The recall and precision rates suggest that the proposed
hierarchical modelling in Asbru with the ADL recognition engine was able to return
more relevant recognition instances of an ADL as opposed to irrelevant instances.

This experiment has also shown that the performance depends very much on the
degree of overlap between tasks in different ADLs. Because of this, different scenarios
with different degrees of overlap are currently being considered.

However, even for such a scenario, the ADL recogniser still needs to be improved.
This, of course, depends on the nature of the ADL. The more optional sub-activities and
the more sharing of sub-activities, the more difficult it is to be absolutely certain.
However, even if ADLs are not identified uniquely, the set of possible ADLs may be
enough to give feedback to the task identification system and support context-sensitive
help – as the ADLs may be related.

These experiment results are comparable in terms of the recognition rates with existing
ADL recognition approaches (Rashidi et al., 2011; Baños et al., 2013). However, it is important
to highlight that the other approaches have deployed feature-detection techniques that
capture richer data (e.g. acceleration data for movement, ambient temperature readings,
analogue sensors for hot and cold water, phone usage data and pressure sensors). The
approach presented in this paper is primarily based on object usage data collected by RFID
transponders; hence, if the proposed approach used a similar feature detection technique,
then this would have further improved the recognition results.

7. Conclusion
This research focused on how ADLs could be structured in a hierarchical structure
based on the fundamentals of the task-specific and intention-oriented plan
representation language called Asbru. The experiment conducted indicates that the
hierarchical structure of ADLs makes it possible to recognise an ADL even though all of
the tasks within the ADL may not have been fully completed or correctly recognised by
the lower-tier recognition. This is made possible by the flexible nature of how the ADLs
have been modelled in a hierarchical structure.

This work is a very important step towards carrying out intention analysis. As the
representation of prescribed ADLs for Alzheimer’s patients can enable recognition

Figure 11.
ADL precision and
recall rates

IJPCC
11,3

366

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

35
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2015-0002&iName=master.img-010.jpg&w=299&h=156


systems to be pre-emptive when trying to determine the future actions of a person. This
can enable the possibility of safeguards being initiated before a certain activity takes
place. However, the proposed approach does not currently run in real-time, which is a
major limitation. To make this possible, a series of bottlenecks will need to be addressed.
First, we will need to address the issue of deploying a learning mechanism, which will
support the knowledge base. Second, a challenge that needs to be addressed is
determining the length of the captured sensor events stream that will be useful for
real-time inference. One option could be to carry-out inference at regular timing
intervals; however, this could be very inefficient, as only the most recent events could be
of interest. These challenges will be carried out as part of future work.

Additionally, the proposed ADL recognition modelling and inference approach could
be applied to the lower-tier task recognition level, as tasks could also be modelled as an
activity that is composed of the tasks corresponding to sensor events that need to be
executed within a certain order and within certain temporal constraints.
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