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Combining system dynamics
and multi-objective optimization

with design space reduction
Tehseen Aslam and Amos H.C. Ng

School of Engineering Science, University of Skövde, Skövde, Sweden

Abstract
Purpose – The purpose of this paper is to introduce an effective methodology of obtaining Perot-
optimal solutions when combining system dynamics (SD) and multi-objective optimization (MOO) for
supply chain problems.
Design/methodology/approach – This paper proposes a new approach that combines SD and MOO
within a simulation-based optimization framework for generating the efficient frontier for supporting
decision making in supply chain management (SCM). It also addresses the issue of the curse of
dimensionality, commonly found in practical optimization problems, through design space reduction.
Findings – The integrated MOO and SD approach has been shown to be very useful for revealing how
the decision variables in the Beer Game (BG) affect the optimality of the three common SCM objectives,
namely, the minimization of inventory, backlog, and the bullwhip effect (BWE). The results from the
in-depth BG study clearly show that these three optimization objectives are in conflict with each other,
in the sense that a supply chain manager cannot minimize the BWE without increasing the total
inventory and total backlog levels.
Practical implications – Having a methodology that enables effective generation of optimal trade-
off solutions, in terms of computational cost, time as well as solution diversity and intensification,
assist decision makers in not only making decision in time but also present a diverse and intense
solution set to choose from.
Originality/value – This paper presents a novel supply chain MOO methodology to assist in finding
Pareto-optimal solutions in a more effective manner. In order to do so the methodology tackles the
so-called curse of dimensionality by reducing the design space and focussing the search of
the optimization to regions of inters. Together with design space reduction, it is believed that the
integrated SD and MOO approach can provide an innovative and efficient approach for the design and
analysis of manufacturing supply chain systems in general.
Keywords System dynamics, Supply chain, Multi-objective optimization
Paper type Research paper

1. Introduction
Modeling is an effective way of designing, understanding or analyzing real-world
processes and systems. A model helps a decision maker gain a better understanding
of the complexity of a process/system and evaluate/predict its performance under
various circumstances. A supply chain incorporates the integrated processes during
which products are transformed from raw material, e.g., from the suppliers, to
finished products delivered to end customers. Typically, these processes include
different business functions in a company, e.g., procurement, production, logistics,
etc., as well as the need to collaborate, coordinate and interact with each other, in
order to produce the commodity of the supply chain (Kim et al., 2004). Hence, supply
chains can be seen as good examples of such complex systems which require the
modeling of processes in the presence of multiple autonomous entities (i.e. suppliers,
manufacturers, distributors, retailers, etc.), multiple performance measures and
multiple objectives, both local and global, which together constitute the effects of
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very complex interaction (Keramati, 2010). Li et al. (2002) point out that supply chain
modeling is more or less a prerequisite for supply chain integration and present four
incentives for supply chain modeling: first, capturing supply chain complexities,
e.g., interaction effects between supply chain members, by a better understanding
and a uniform representation of the supply chain; second, designing the supply chain
management (SCM) process, in order to manage supply chain interdependencies;
third, establishing the visions to be shared by supply chains members and providing
a basis for supply chain coordination and integration; and fourth, facilitating the
reduction of supply chain dynamics at supply chain design phases.

Over the years, supply chains have been depicted by using various modeling
approaches ranging from process, statistical, optimization, analytical, and simulation
models. The advantage of simulation models is that they are able to model the
complexities and incorporate the dynamic behavior of supply chains, as well as provide
an understanding of the relationships between the input and output parameters.
Despite the advantages, simulation models do not provide the capability of obtaining
optimal solutions sets (Abo-Hamad and Arisha, 2011). Obtaining optimal solution sets
requires evaluating a large number of system configurations, by assessing a set of
output parameters from an evaluation with a specific set of input parameter settings.
Optimization modeling approaches, employing, e.g., mathematical programming,
require an equation-based model of the system, which is then used for optimizations
using appropriate algorithms. The models also require that the developers have a
comprehensive knowledge of optimization (Hong, 2005). In addition, the majority of the
real-world problems are too complex to be formulated as manageable mathematical
equations, so that pure optimization models, on their own, are incapable of
incorporating the dynamic behavior and complexities of systems or processes such as
supply chains (Better et al., 2008). Hence, in a supply chain optimization problem, the
supply chains need to be depicted using simulation modeling, in order to capture their
dynamic behavior, and be combined with optimization methods, in order to attain
optimal solution sets. This combined usage of the two approaches is called simulation-
based optimization (SBO).

The modeling method for supply chains, proposed in this paper, is based on System
Dynamics (SD), which is an approach based on information feedbacks and delays in the
model, in order to understand the dynamical behavior of a system (Angerhofer and
Angelides, 2000). A SD model facilitates the representation, both graphically and
mathematically, of the interactions governing the dynamic behavior of the studied
system or process, as well as the analysis of the interactions and their emergent effects.
Modeling with SD enables users to take a causal view of reality and implements
quantitative means to investigate the behavior of the system and its response to
various policies. A SD model is derived from an internal non-linear structure of the
system and is able to create new kinds of behaviors that might not have been observed
in present time but may occur in the future (Bhushi and Javalagi, 2004). Sterman (2000)
points out that a supply chain, being a system containing multiple autonomous entities,
is characterized by a stock and flow structure for acquisition, storage, the conversion of
inputs into outputs, as well as the decision rules that govern these flows. The existing
flows in the supply chains, such as information, material, orders, money, etc., create
important feedbacks among the members of the supply chain, thus making SD a well-
suited approach for modeling and analyzing supply chains (Georgiadis et al., 2005).

However, despite the increase in research within the domain of utilizing SD for SCM
issues Angerhofer and Angelides (2000), Aslam et al. (2011) and Dudas et al. (2011)
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show that only a few articles in the literature are related to the integration of SBO,
particularly multi-objective optimization (MOO), with SD models. The area of supply
chain optimization has been studied for more than two decades; however, the main
focus of the research studies has traditionally been on minimizing the overall cost or
maximizing the total revenue, as a single-objective optimization problem. Despite the
successful implementations of several supply chain single-objective optimization
studies, such as Cohen and Lee (1989), Arntzen et al. (1995), Voudouris (1996), Amiri
(2006), Jayaraman and Pirkul (2001), Kristianto et al. (2012), Duan and Liao (2013), Yu
et al. (2013), in our view, supply chain decisions are much more complex than treating
them as single-objective optimization problems. For instance, while cost, revenue and
flexibility, as presented in Voudouris (1996), can be the indicators that determine the
performance of a supply chain, other important metrics used in supply chain analyses,
such as lead time, inventory levels, service levels, work-in-process (WIP), etc., should be
considered when optimizing a supply chain network. A short average lead time means
that the total time a product is stored in the system is reduced, which also means that
customer orders can be fulfilled more quickly, which thus leverages the overall
performance of the supply chain. A low WIP means that transportation and inventory
costs are reduced, which is also highly desired. Therefore, to a decision maker, an ideal
configuration is the one that maximizes the level of the delivery service while it
simultaneously minimizes lead time andWIP. Due to the conflicting nature of the above
mentioned metrics, modeling a system using traditional optimization techniques in
which a single-objective or a single weight-based objective to combine multiple
objectives in an optimization would very likely lead to misleading results in a dynamic
system such as a supply chain.

One of the major research areas within the supply chain domain is the bullwhip
effect (BWE), which refers to a supply chain phenomenon where the demand
variability of incoming orders is amplified as they move up the supply chain. Over the
years, researchers have presented different proposals on how to solve the BWE issue,
such as Swafford et al. (2008), Liang and Huang (2006), Costas et al. (2015). Some
recent studies in which the authors have addressed the BWE through SD models are
Cannella et al. (2015), Hwarng and Xie (2008), Udenio et al. (2015). In Cannella et al.
(2015), the authors investigate the impact of inventory recording inaccuracy on the
dynamic of a collaborative supply chain. Hwarng and Xie (2008), on the other hand,
investigate the impact of the order of inventory variability, employing a chaos theory
perspective, and its effects on a multi-level supply chain. In Udenio et al. (2015), the
authors study and analyze a BWE phenomenon caused by the great downfall in sales,
observed in the manufacturing industry at the end of 2008, following the bankruptcy
of Lehman Brothers.

This paper presents an integrated SD and MOO approach to find and investigate the
Pareto-optimal solutions of a pedagogical SCM model, namely, the Beer Game (BG), in
which the main intention of the BG is to demonstrate the existence of the so-called BWE.
In contrast to formulating inventory and backlog into a single optimization objective, in
order to minimize the total cumulative cost, the current study attempts to minimize total
backlog cost and minimize total inventory, within a truly MOO context. In addition
to minimizing the total inventory and backlog costs, this study also considers minimizing
the demand fluctuations, as the third optimization objective, for the purpose of reducing
the BWE in a supply chain. However, when the number of objectives and the number
of decision variables increase, it can be a big computational challenge and too
time-consuming for a MOO algorithm to obtain the optimal solution set. In order to
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address this issue, a novel SD-MOO methodology is presented in this paper, with a
twofold purpose: first, to investigate the application of MOO to supply chains analysis
and second, to propose an efficient methodology which allows the MOO analysis of
supply chains to be performed in a computationally cost-effective way, in terms of the
efficiency, solution intensification and accuracy of the obtained Pareto-optimal front. The
remainder of the paper is presented as follows: Section 2 presents the meta-heuristics
approach implemented for the optimization in the paper, while Section 3 introduces the
concept of applying MOO to the SCM domain. Section 4 presents the simulation-based
MOO methodology. Section 5 introduces the BG, including its background and the SD
model developed for the case study in this paper, and Section 6 presents the objective
functions for the case study. The MOO results and analysis, particularly the use of data
visualization methods like Parallel Coordinates (PC), are found in Section 7, which is
followed by our conclusions.

2. Multi-objective meta-heuristics
As in the case of single-objective optimization, MOO approaches can be classified into
exact algorithms and approximate algorithms, which are also known as heuristic
approaches. One branch of heuristic approaches is meta-heuristics algorithms, which
are general-purpose algorithms that consider high-level strategies to guide underlying
heuristic algorithms in exploring the search space and solving the optimization
problem (Blum and Roli, 2003). Jones et al. (2002) argue that the greatest advantage of
meta-heuristic algorithms is their flexibility regarding their applicability to a diverse
set of problem domains and optimization problems.

Over the years, researchers have also demonstrated the applicability of meta-
heuristics to supply chain problems. For example, in their state-of-the-art review
regarding SBO approaches in the context of SCM, Abo-Hamad and Arisha (2011)
disclose that meta-heuristics has been the most popular optimization technique
implemented during the last decade, within the application areas of SCM, such as
inventory management, production planning and scheduling, transportation and
logistics, as well as supply chain design, integration and collaboration. A compressive
review regarding the implementation of meta-heuristic algorithms in the supply chain
domain can be found in Abo-Hamad and Arisha (2011) and Griffis et al. (2012).
Lourenco (2001) points out that features of the meta-heuristic algorithms are well-suited
to solving SCM problems. Besides the ability to solve very complex and hard
combinatorial optimization problems, their modular nature and problem independence
result in shorter development and updating time of the optimization problem, which is
crucial for coping with the rapid changes in a supply chain and the resulting short
decision-making window for a decision maker. The features of meta-heuristics and
their proven applicability in supply chain problems have motivated their use for the
optimization procedure implemented in this paper. Specifically, the optimization
procedure in this paper utilizes a population-based meta-heuristics so that multiple
Pareto solutions can be captured in a single optimization.

Although meta-heuristic algorithms can offer many advantages, their application is,
however, not completely straightforward. Talbi (2009) denotes that when meta-
heuristics are applied to a multi-objective problem, the designer of the meta-heuristics
algorithm has to consider the dynamic balance of intensification and diversification,
where intensification refers to the exploitation of the best solutions found by the
algorithm and convergence to the optimal solution sets, while diversification refers to
the exploration of the search space and distribution of the obtained solutions around
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the optimal set. Hence, intensification ensures the generation of the approximated or
near-optimal solutions and diversification ensures a wider spread of the optimal
solutions covering different areas of the objective space, in order to limit the loss of
valuable information regarding the trade-offs of the conflicting objectives. Another
aspect to consider with meta-heuristics is that many real-world problems are
NP-complete, and NP-complete problems are known to be associated with a high
computational cost, since finding an optimal solution requires an extensive search
(Syberfeldt, 2009). A problem can also be computationally expensive even though it is
not NP-complete; real-world optimization problems generally involve an immense
number of possible solutions, and hundreds or thousands of simulation evaluations are
needed before an acceptable solution is found (Boesel et al., 2001). This holds true
especially for multi-objective problems, where a significantly larger portion of the
search space needs to be explored to obtain a set of Pareto-optimal solutions (Streichert
et al., 2005). Even with improvements in computer processing speed, one single
simulation may take a couple of minutes or even hours of computing time. This
potentially requires enormous amounts of optimization time and is an issue that must
be considered when applying meta-heuristics in real-world scenarios.

3. MOO for SCM
MOO is a discipline that has been studied since 1970s, and its application areas range
widely from resource allocation, transportation, investment decision to mechanical
engineering, chemical engineering, automation applications, to name a few. In contrast
to single-objective optimization, where only one optimal solution can be expected to be
found, MOO seeks to identify a set of optimal solutions which are defined as
Pareto-optimal solutions. A solution is considered to belong to the Pareto set, when
there is no other solution that can improve at least one of the optimization objectives
without degrading any other objective. These sets of solutions are also known as the
Pareto-front, when plotted on the objective space. The main concept of MOO is to
evaluate two or more conflicting objectives against each other and obtain the
Pareto-optimal solutions and the Pareto-front (Basseur et al., 2006).

A simple method of handling a MOO problem is to form a composite objective
function as the weighted sum of the conflicting objectives. Since the weight for an
objective is proportional to the preference factor assigned to that specific objective,
this method is also called preference-based strategy (Deb, 2001). Apparently,
preference-based MOO is simple to apply, because by scalarizing an objective vector
into a single composite objective function, e.g., combining all performance measures
into a weighted average objective function to represent the overall system cost, a MOO
problem can be converted into a single-objective optimization problem and, thus, a
single trade-off optimal solution can be sought effectively. However, the major
drawback is that the trade-off solution obtained by using this procedure is very
sensitive to the preference vector. Therefore, the choice of the preference weights and
thus the obtained trade-off solution is highly subjective to the particular decision
maker. At the same time, it is also argued that using preference-based MOO to obtain a
single “global” optimal solution for multi-tier systems, like supply chains, is not
desirable if the “global” optimum suggests a set of decision variable values that may
sacrifice the performance of the sub-system level. For example, the optimal solution
found by the SBO may be optimal, when considering the overall supply chain, but
totally unacceptable to the company that plays the role of the manufacturer. Therefore,
for a decision maker, it would be useful if the posterior Pareto-front can be generated
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quickly by using a MOO algorithm, as shown in Figure 1, so that he/she can choose the
most suitable configuration among the trade-off solutions generated.

Examining a supply chain clearly indicates that it is a complex system consisting of
multiple entities (e.g. suppliers, manufacturers, distributors and retailers, as mentioned
earlier), which individually have their own performance measures and objectives to
optimize. For example, the retailer might aim to minimize the product price and lead
time and the distributor might be measured on its ability to fully utilize the warehouse
and its response to consolidating the customer order by shorter pick-up times or
efficient pick-up routes. The manufacturer and supplier, on the other hand, have
another set of key performance measures. The manufacturer aims to maximize the
throughput while minimizing the WIP together with minimizing its production batch
sizes and set-up times, while the supplier might seek to minimize its WIP and delivery
time, as well as maximize quality and service levels. However, optimizing these
individual entities is not adequate when optimizing a supply chain, since it is a dynamic
network consisting of multiple transaction points with complex transportation, as well
as information and financial transactions between entities. Hence, optimizing the
supply chain as whole is as crucial as the optimization of the individual entities.
The aim of SCM is to align and combine all these objectives, individual as well as the
supply chain, so that they work toward a common goal – increasing the efficiency and
profitability of the overall supply chain. SCM is thus multi-objective in nature
and involves several conflicting objectives, both at the individual entity level and the
supply chain level.

A comprehensive literature survey, presented in Aslam et al. (2011) in which the
authors have investigated 42 journal papers concerning MOO for SCM problems, has
shown that the majority of papers, or more exactly 53 percent, have used a
mathematical approach, such as linear programming, mixed integer programming and
mixed integer linear programming, etc. Further investigation showed that the most
popular mathematical approach used to model supply chains is mixed integer non-
linear programming, which accounts for 33 percent of the papers, followed by mixed
integer linear programming, as the second most implemented mathematical approach
(21 percent). The remainder of the methods are fairly equally distributed. Simulation
approaches, on the other hand, like discrete event, agent-based or SD simulation,

Step 1

• Formulation of multi-objective
  optimization problem

• Multi-objective optimization

• Trade-off solutions

• High-level user information

• Selection of solution

• Minimise f1, Minimise f2

Step 2

Step 3

Step 4

Step 5

Figure 1.
General Pareto-based
MOO procedure
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only account for 24 percent of the implemented modeling techniques. Surprisingly, only
one paper was found that implemented SD and MOO for SCM problems. As a short
conclusion, it seems that the study of using SBO, especially within the context of MOO,
is far from adequate. Having said that, an exception can be found in Duggan (2008)
where the author proposes a similar approach as in this current paper, i.e., the use of SD
and SBO for SCM. Duggan (2008) presents a MOO study of a SD BGmodel based on the
stock management structure presented in Sterman (2000) containing only two entities,
namely, the wholesaler and the retailer. The objective function for the MOO in that
paper was to minimize the total cumulative cost for the two represented entities in the
supply chain. In contrast to Duggan (2008), this work presents a methodology for
performing supply chain MOO and investigates the MOO of the well-known BG,
in which the objectives of the optimization are to find the Pareto-optimal supply chain
configuration settings, by minimizing the overall supply chain inventory cost,
minimizing the overall supply chain backlog cost and minimizing the BWE.

4. A methodology for MOO of supply chain models
Despite the many advantages of SBO and MOO presented in previous sections, these
approaches still have some hurdles to overcome. Chen et al. (2002) explain that
obtaining optimal solution sets for a multi-objective problem is often far more time-
consuming than solving a single-objective problem where the increased computation
time is not just due to the increased number of objectives, but also due to the so-called
curse of dimensionality, which may increase the convergence time of the optimization
algorithm. The term curse of dimensionality, also denoted as the problem of size by
some (Shan and Wang, 2010), refers to the issue of rapid growth in combinatorial
difficulty for problems as the number of variables (i.e. input and output parameters) or
dimensions (i.e. objectives) increases (Kuo and Sloan, 2005). Also, Shan and Wang
(2010) argue that the high dimensionality of input and output variables demonstrates
an exponential growth in difficulty, regarding the modeling of the problem and
optimization. Deb and Saxena (2005) also raise this issue and state that when the
dimensionality of the objective space is increased, generally, the dimensionality of
the Pareto-front is also increased, which would require an exponential number of points
in the objective space to represent the Pareto-front, because adding one additional
objective causes the dimension of the Pareto-front to increase by one. In connection to
this, Koch et al. (1997) also explain that due to the combinatorial explosion of the
problem, with regard to the number of variables and objectives included in the problem,
both the efficiency and accuracy of the optimization are also sacrificed. Shan andWang
(2010) present several strategies for tackling the difficulties caused by the curse of
dimensionality or high dimensionality. These strategies include: parallel computing,
increased computer power, screening for significant variables, reduction of design
space, decomposition of the problem into sub-problems, mapping, and visualization of
the variable or design space.

In order to address the issue of dimensionality and combinatorial difficulty for
MOO, from a supply chain problem perspective, this paper presents a methodology
for executing supply chain MOO in a computationally cost-effective way, in terms of
the efficiency, solution intensification, and accuracy of obtaining the Pareto-optimal
front for supply chain problems. The methodology for supply chain MOO, presented in
Figure 2, is based on the iteratively interactive guidance approach, which specifies that
the MOO procedure utilized in this paper does not require a user-optimization
interaction after each evaluation. Instead, the decision maker is presented with the
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search results from the optimization and subsequently evaluates whether the
preference goals have been achieved or not. If the goals have not been achieved,
the decision maker starts a new set of optimization runs, following the optimization
methodology, in order to guide the search toward regions or sub-spaces of interest and
increase the quality, accuracy, intensification, etc., of the solutions. This methodology
for supply chain MOO also utilizes some of the strategies presented by Shan and Wang
(2010), in order to obtain the Pareto-optimal front in a feasible time period.
The methodology includes three main activities, namely, decision space sampling,
global objective space search, and local objective space refinement, where each activity
is established upon an internal process. Here, the aim of the decision space sampling
activity is to roughly estimate the behavior of the problem, by exploring the decision
space parameters and investigating how each parameter and its interaction with the
other respond to the investigated problem, as well as exploring the parameter intervals,
in order to set parameter interval boundaries for the optimization further on.
The internal process of the decision space sampling activity starts by generating an
initial population and then executing a sampling method, which can be any design of
experiment approach, to fill the design space with solutions and thus initiate the design
space exploration. Besides the aforementioned possibility of roughly estimating the
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Local Objective
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behavior of the problem, exploring the design space also offers the opportunity to
screen for significant parameters. According to Shan and Wang (2010), screening
implies identifying and preserving vital input parameters and interactions, as well as
removing less essential parameters or noise from the investigated problem and, thus,
reducing the issue of dimensionality and combinatorial difficulty, in order to save
computational cost. Hence, the decision space sampling procedure is able to provide
information and understanding about the problem and the design space, in order to
serve as the starting point for the subsequent global objective space search procedure.
It is important to point out that the decision space sampling activity is not a
prerequisite for the global objective space search, since a decision maker might already
have an a priori problem, system and parameter knowledge, as well as a defined set of
objectives, input parameters, and input parameter boundaries for the optimization.

In contrast to decision space sampling, which aims to provide problem and
parameter-specific knowledge, the purpose of the global objective search activity is to
provide a first set of Pareto-optimal solutions by executing the optimization; a
prerequisite of this activity is that the user/decision maker has defined a set of
objectives to optimize and a set of input parameters to manipulate, together with their
upper and lower boundaries. As in the previous step, the activity is initiated by
generating an initial population and then executing the optimization. The intention of
this first optimization is to generate, in a feasible time period, a first set of Pareto-
optimal solutions, in order to obtain an overview of the whole Pareto set. However,
since this activity is a global objective space search, the solutions obtained from this
global search are more likely to be spread over the objective space and over regions or
sub-spaces which are not interesting for the investigated problem. Hence, in order to
intensify the solutions, the search needs to be concentrated toward a region or
sub-space of interest for the problem at hand. Thus, when a region or sub-space of
interest has been identified, the Pareto-optimal solutions within that region or sub-
space will act as a preconditioned population in the local objective space refinement
activity. The final step is the local objective space refinement, which is an iterative
activity that aims to focus the search and intensify the solutions in a region or
sub-space of interest. The activity is initiated by implementing the Pareto-optimal
solutions, identified in the previous procedure, as the population for the optimization.
This approach is also known as preconditioning or preconditioned search, and, as
explained, it utilizes a set of Pareto solutions as a starting point, in order to improve the
search process of the optimization (Nicklow et al., 2010). In terms of search efficiency
and reliability, a number of studies reported by Nicklow et al. (2010) have shown that
the preconditioned search contributes significantly to the optimization process. The
authors also explain that in the aforementioned studies, the good solutions found from
the search are continuously injected into the population until the search results
continue to show improvements in solution quality or until a user-defined
computational limit has been reached. Continuing with the internal process of the
local objective space refinement activity, after executing the optimization and exploring
the objective space with the new solutions, the user/decision maker needs to decide
whether the goals of their preferences, e.g., in terms of quality, intensification, accuracy,
etc., have been achieved. If the goals have been reached, the decision maker has
obtained a set of Pareto-optimal solutions for the problem.

However, if the preference criteria have not been fully reached, one should continue
and identify a region or sub-space of interest within that objective space, as well as
identify a new set of Pareto-optimal solutions for the preconditioned search.
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Nonetheless, before executing the preconditioned search, the user needs to reduce the
design space and/or place constraints on the optimization. Design space reduction does
not imply the elimination of design variables, as previously carried out during the
screening process, but refers to the reduction of the design variable intervals, in order
to decrease the design space, with the aim of reducing the computational effort of the
optimization and focussing the optimization toward the most promising region or
sub-space (Shan and Wang, 2010). While placing constraints on the optimization could
limit the search space and potentially reduce the size of the complexity of the problem,
in general this would require the optimization algorithm to embed an efficient
constraint handling, in order to generate valid solutions (Deb, 2001). In some cases, for
example, equality constraints are very difficult to handle and require special constraint
handling techniques to find valid solutions. A way to handle equality constraints in
SBO using linear programming and Hamilton distance can be found in Bernedixen and
Ng (2014). Thus, by implementing these actions, the user/decision maker will
subsequently face the same question again: have the preference goals been reached?
If no, then the iteration of the local objective space refinement activity continues until
the preference goals have been achieved or the optimization process has reached a user/
decision maker time limit. One important aspect to mention is that the methodology
presented here only concerns the optimization process under the SBO framework; the
modeling or the simulation model utilized together with this optimization approach is
presented in the next section.

5. The BG
The BG is a role playing simulation game which aims to replicate a multi-echelon
supply chain incorporating four entities, namely, Factory (F), Wholesaler (W),
Distributor (D) and Retailer (R), which together build a beer production and distribution
supply chain with the overall objective to fulfill customer demand. The BG was
originally developed at MIT Sloan School of Management in the 1960s (Sterman, 1989).
As explained previously, the main intention of the game was to demonstrate the
existence of the so-called BWE, which refers to a phenomenon in supply chains where
demand variability of incoming orders is amplified as the orders move upstream in the
supply chain (Lee et al., 1997). It points out the role of collaboration, coordination,
information management, inventory and production control, order management,
purchasing, etc., in order to manage the BWE. The BG is quite straightforward and
simple in its structure. Nonetheless, it incorporates a rather vast intrinsic dynamic
complexity. Sterman (2000) points out that the majority of people might think
of complexity in the form of number of components in a system or the amount of
various combinations of inputs/information a decision maker must consider when
making a decision. However, Sterman (2000) argues that in contrast to the
combinatorial complexity or detail complexity of a problem or a system, the
dynamic complexity can arise from very simple structures with low-combinatorial
complexity, of which the BG is such a structure/model where the dynamic complexity
arises from the interaction between the entities in the BG supply chain.

The original game is played on a board with physical chips/markers that move
around, for instructions of the rules and regulation of this BG, the reader is referred to
Sterman (1989). However, in this paper we present a replica of a SD model presented in
Joshi (2012) which, in turn, is a modified version of the original SD-BG model built by
Kirkwood (2012). The overall purpose of the models presented in Joshi (2012)
and Kirkwood (2012), which is the same for the BG played on a board, is to show the
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existence of the BWE and how to manage it, by implementing different information
sharing policies. However, our main intention is to implement MOO into SD, within the
supply chain context, and investigate the Pareto-optimal trade-off solutions when
minimizing the supply chain inventory cost, backlog cost and the BWE.

Each entity in the SD-BG model follows the generic structure presented in Figure 3;
the thicker lines/arrows in the structure represent elements in the system where delay
has occurred. As in the case of the original BG presented in Sterman (1989), the entities
in the simulation model have no collaborative interaction between themselves. Each
entity places orders with its supplier, according to the observed demand pattern from
its downstream customer, two exceptions are the raw material supplier, who only
delivers what is ordered by F, and the end customer, who only places orders with R.
Before continuing with the model description and default settings of the BG, it is
essential to describe the notions and definitions of the main variables in the generic
structure, for a full and comprehensive list of the BG model, readers are referred to
Joshi (2012). The main variables that are of most interest in our case study are the
ordering policy, the total supply chain inventory cost, the total supply chain backlog
cost and the total supply chain cost. Equations for these variables in the generic SD-BG
entity model are presented below.

The inventory cost of the entire supply chain is given by:

INVSC
t ¼ INVSC

t�1þ
X
i

INV i
t (1)

where:

INVi
t ¼ INVi

t�1þ IU i
t�SUi

t (2)

INFORMATION FLOW

DI(i)

DSL(i)

D(i)

SLR(i)
SL(i)

D(i+1)

IU(i)

BR(i)

B(i)

INV(i)
SU(i)

C(i)
CI(i)

EI(i)

<INV(i)> <B(i)>

OP(i)

MATERIAL FLOW

�(i) �(i)
�(i)

Figure 3.
A generic SD-BG

entity model
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and:

CINVSC
t ¼ CIN VCSC

t�1þ INVSC
t � cf INV

� �

cf INV ¼ 0:5
(3)

INVSC
t , inventory of the entire supply chain, in period t – indicates the aggregated

inventory of the supply chain. INVi
t , inventory of entity i, in period t – the on-hand

inventory at each entity i. IU i
t , incoming units to entity i from entity i−1 in period t –

entity F, which does not have an upstream entity, receives units from a raw material
supplier who just sends the number of units ordered by F; incoming units are received
with a delay. SUi

t , sold units from entity i to entity i+1, in period t – entity R, which
does not have an upstream entity, sends the sold units to a sink and the units are
consumed by the model. CINVSC

t , cost of supply chain inventory, in period t –
indicates the holding cost of aggregated inventory of the supply chain. cf INV, cost
factor for inventory – penalty factor for holding inventory.

The backlog cost of the entire supply chain is given by:

BSC
t ¼ BSC

t�1þ
X
i

Bi
t (4)

where:

Bi
t ¼ Bi

t�1þBRi
t (5)

where:

BRi
t ¼ Diþ1

t �SUi
t for each entityi;

except entity R where Diþ1
t ¼ Dcust

t (6)

and:

CBSC
t ¼ CBSC

t�1þ BSC
t � cf B

� �
(7)

BSC
t , backlog of entire supply chain, in period t – indicates the aggregated backlog of

the supply chain. Bi
t , backlog of entity i, in period t – indicates the aggregated backlog

of entity i. BRi
t , backlog rate of entity i, in period t – is the accumulation of backlog in

entity i. Di
t , orders placed by entity i to entity i−1, in period t – when orders are placed

to entity i−1 then Diþ 1
t ¼ Di

t ; entity R, which does not have an upstream entity,
receives orders placed by the end customer; orders are placed with a delay. Dcust

t , end
customer demand. CBSC

t , cost of supply chain backlog, in period t – indicates the cost of
the aggregated backlog orders of the supply chain. cf B, cost factor for backlog –
penalty factor for having backlog.

The cumulative cost of the entire supply chain is given by:

CSC
t ¼ CSC

t�1þCISCt (8)

where:

CISCt ¼ CINVSC
t þCBSC

t (9)

302

IMDS
116,2

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
1:

53
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



CSC
t , cost of entire supply chain, in period t – indicates the aggregated cost of the supply

chain. CISCt , rate of cost increase of the entire supply chain, in period t – is the
accumulation of the cost in the supply chain.

As mentioned earlier, each entity in the SD-BG model is based on the generic
structure presented in Figure 3 and includes the equations presented above.
The governing variable in this structure, and thus in each entity, is the ordering policy
which is based on an anchoring and adjustment heuristic, first presented in Tversky
and Kahneman (1974). The anchoring and adjustment heuristic is used to estimate an
unknown quantity, by first setting or defining an anchor, e.g., recalling a known
reference point, and then adjusting factors, e.g., additional information or updated
information, to estimate the unknown quantity (Sterman, 1989). As mentioned earlier,
the entities in the simulation model have no collaborative interaction between
themselves, thus the ordering policy heuristics aim to utilize is the local information
available for the entities in the supply chain, such as local inventory, backlog, supply
line information. The ordering policy is defined on the basis of four aspects: the order
must be non-negative; order enough to cover the expected inventory losses; reduce the
discrepancy between desired and actual inventory; reduce the discrepancy between
desired and actual supply line.

The ordering policy at each entity i is given by:

OPi
t ¼ MAX 0;DOPi

t

� �
(10)

where:

DOPi
t ¼ DFi

tþai DI i� INVi
t�Bi

t

� �� �
þbi DSLi�SLi

t

� �
(11)

where:

DFi
t ¼ SMOOTH Diþ1

t ; gi
� �

; (12)

where:

Diþ 1
t ¼ Dcust

t in entity R

gi ¼ 1

and:

SLi
t ¼ SLi

t�1þSLRi
t (13)

where:

SLRi
t ¼ OPi

t�IUi
t (14)

OPi
t , ordering policy of entity i, in period t – represents the actual order amount to be

placed; this is defined once a week. DOPi
t , desired ordering policy of entity i, in period t –

represents the desired order amount, calculated with the anchoring and adjustment
heuristic.DFi

t , demand forcast by entity i, in period t demand forecast by entity i, in period
t – use the Vensim® SMOOTH function to make a demand forecast; SMOOTH( ) function
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is based on exponential smoothing technique. SLi
t , supply line of entity i, in period t –

indicates the aggregated amount of units to be received for entity i. SLRi
t , supply line rate

of entity i, in period t – is the accumulation of the orders estimated by the ordering policy
less those which have been delivered. DIi, desired inventory at entity i – preferred amount
of units in the inventory.DSLi, desired supply line at entity i – preferred amount of units in
the supply line. α I, forecasting parameter at entity i – forecasting parameter for the
inventory; the parameter is usually represented in the range of αi¼ 0⩽αi⩽ 1. βi,
forecasting parameter for supply line at entity i – forecasting parameter for the supply
line; the parameter is usually represented in the range of βi¼ 0⩽ βi⩽ 1. γi, smoothing time
parameter at entity i – time input to Vensim® SMOOTH function.

The first aspect of the ordering policy, i.e., the order must be non-negative, is applied
by (Equation 10) where the MAX() function in Vensim prevents OPi

t to place order
values less than zero. The other three aspects refer to the anchoring and adjustment
heuristic in (Equation 11) where the depletion or surplus of inventory and supply line
will require adjustment toward the desired inventory and supply line levels, which
is done by aiðDI i�ðINVi

t�Bi
tÞÞ and biðDSLi�SLi

tÞ, respectively, in (Equation 11).
Here, the αi and βi parameters represent the discrepancy of the amount of units needed
in the inventory in the case of αi and βi represents the fraction of supply line taken into
account when determining OPi

t . Thus, a high αi value would indicate that the majority
of the required units for the inventory will be ordered or, e.g., that the manager at entity
i will implement an aggressive policy/effort in order to adjust the inventory toward the
desired inventory level. In the case of βi, a value of, e.g., βi¼ 1 would indicate that all
the orders in the supply line have been taken into account, when deciding the amount of
orders to place with the supplier, whereas βi¼ 0 would indicate that no order in the
supply line has been taken into account.

Turning to the running of the simulation model and its default settings, in the
overall SD-BG supply chain, which is presented in Figure 4, one can see that the flow of
information, i.e., orders, moves upstream in the supply chain and the flow of material,
i.e., beer crates, moves downstream in the supply chain. The simulated BG begins at
t¼ 0 and every incremental week each entity of the supply chain has to make a decision
regarding how many crates need to be ordered from the supplier, which is calculated in
OPi

t for each entity, and how many crates can be shipped upstream to its customer,
which is done in SUi

t . Thus, in the default simulation settings, the models start out in
equilibrium, i.e., t¼ 0, with no oscillating effect in the supply chain. The end customer
demand, i.e., Dcust

t , starts out by ordering four crates of beer during the first four weeks,
and then suddenly in week five the end customer increases its demand to eight crates a
week for the remaining part of the simulation, which is run for 0⩽ t⩽ 200 weeks. It can
be pointed out here that in the SD-BG model, presented in Joshi (2012), the results were
presented in the interval of 0⩽ t⩽ 36 weeks. However, our output data were collected in
the interval of 0⩽ t⩽ 130 weeks, in order to ensure that the output data of the BWE in
the supply chain is fully captured, since tweaking the input parameters for the entities
in the supply chain for the optimization might lead to the fact that some parameter
settings might prolong the BWE and thus outrange the interval used in Joshi (2012).

The default initial values for variables at each entity at t¼ 0 are[1]:

INVi
0; IU

i
0;D

i
0; SL

i
0;DI

i;DSLi; ai; bi; gi ¼ 12; 4; 4; 8; 12; 14:7; 0:26; 0:088; 1

Figure 5 clearly shows the existence of the BWE from the output of the SD-BG model;
this oscillating effect was captured using the default settings of the simulation model
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supply chain
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and shows how an increase in end customer demand, from four crates to eight, has led
to a huge oscillating effect at the final entity F, where the demand ranges from zero to
nearly 27 crates.

6. MOO of the BG
The experiment in this paper was conducted through two optimization scenarios. Both
scenarios used the same function/equation/method to minimize the inventory cost and
backlog cost values, however, the two scenarios differed with regard to how the BWE
was minimized. In scenario 1 (S1), the BWE was minimized using an approach
presented in Dudas et al. (2011), where the authors intended to minimize the BWE by
minimizing the highest order value. On the other hand, in scenario 2 (S2) an approach
presented by Chen et al. (2000) was implemented, in which the BWE was quantified or
measured by obtaining the ratio between the variance of orders and the variance
of demand. Two key factors that enable a successful MOO experiment are first, being
able to formulate one’s business problem into an optimization problem that can be
confided in the optimization algorithm and the simulation model and second, being able
to define a clear interface between the simulation model and the optimization engine.
Thus, here follows a notation regarding how the business goals in this paper,
i.e., minimize inventory cost, backlog cost and the BWE of the entire supply chain,
formulate into an objective function that produces quantitative values for evaluation. It
should be noted that the BWE in this paper is minimized by implementing the two
BWE approaches at entity F, since this entity is the final one in the supply chain, as
shown in Figure 5. It is this entity which experiences the highest demand fluctuations
compared to other supply chain members. Hence, minimizing the BWE at entity F is
crucial. Furthermore, by limiting or minimizing the demand fluctuation at entity F, it
would be interesting to know whether the demand amplification from the entity R
through entity D can also be reduced.

The objective functions for the optimization scenarios are denoted as:

OS1
F

Min OS1
f 1 CINVSC
� �

¼ Min mCINVSC

Min OS1
f 2 CBSC
� �

¼ Min mCBSC

Min OS1
f 3 BWEF

max

� �
¼ Min maxOPF

8>>>>><
>>>>>:

; (15)

OS2
F

Min OS2
f 1 CINVSC
� �

¼ Min mCINVSC

Min OS2
f 2 CBSC
� �

¼ Min mCBSC

Min OS2
f 3 BWEF

var

� �
¼ Min s2

OPF=s2DD

8>>>>><
>>>>>:

; (16)

where:

I ¼ DI i;DSLi; ai;bi (17)

and:

O ¼ mINVi ;mBi ;mSLi ;mCi ;mINVSC ;mBSC ;mCSC (18)
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where:

mINVi ¼
PT

t¼0 INVi
t

T
; (19)

mBi ¼
PT

t¼0 B
i
t

T
; (20)

mSLi ¼
PT

t¼0 SL
i
t

T
; (21)

mCi ¼
PT

t¼0 C
i
t

T
; (22)

mCINVSC ¼
PT

t¼0 INVSC
t

T
; (23)

mCBSC ¼
PT

t¼0 B
SC
t

T
; (24)

mCSC ¼
PT

t¼0 C
SC
t

T
; (25)

subject to:

CSi ¼ OPiX0; 0pDI iX12; 0pDSLiX12; 0paiX1; 0pbiX1 (26)

OS1
F and OS2

F , all optimization objectives – states all objective functions for the optimization
of respective scenario.OS1

f 1 and OS2
f 1 , first objective function – states the optimization function

to minimize the supply chain inventory of respective scenario. OS1
f 2 and OS2

f 2 , second
objective function – states the optimization function to minimize the supply chain
backlog of respective scenario. OS1

f 3 and OS2
f 3 , third objective function – states

the optimization function to minimize the BWE of respective scenario, where, in OS1
f 3

the function/method BWEF
maxis utilized and in OS2

f 3 the function/method BWEF
var is

utilized. BWEF
max, highest order value of entity F – states the highest value of order

placed (maxOPF) by entity F; for details regarding this approach readers are referred to
Dudas et al. (2011). BWEF

var , ratio of order and demand variance – states the ratio
between order variance (s2

OPF ) at entity F and demand variance (s2
DD ) of entity D; for

details regarding this approach readers are referred to Chen et al. (2000). I, input
variables – indicates all the input variables utilized in the optimization of both scenarios.
O, output variables – indicates all the output variables utilized in the optimization of both
scenarios; each output represents a performance measure of the input variables in each
optimization evaluation. CSi, default model constraints of entity i – indicates all the
constraints in the model for entity i – defined in most cases as the upper and lower
bounds of decision variables, e.g I. mINV i , mean inventory of entity i – gives the mean
value of the inventory at entity i. mBi , mean backlog of entity i – gives the mean value of
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the backlog at entity i. mSLi , mean supply line of entity i – gives the mean value of the
supply cline at entity i. mC i , mean cost of entity i – gives the mean value of the overall cost
at entity i. mCINVSC , mean inventory cost of the supply chain – gives the mean value of
the inventory holding costs for the entire supply chain. mCBSC , mean backlog cost of the
supply chain – gives the mean value of the backlog costs for the entire supply chain. mCSC ,
mean cost of the supply chain – gives the mean value of the overall cost for the entire
supply chain. T, end of output data collection period – states the end time of the output
data collection period; in this paper T¼ 130 weeks.

7. Results and analysis
7.1 Optimization methodology analysis
The execution of the optimization experiments is based on the aforementioned optimization
methodology presented in Section 6. The experiments were not initiated through the
decision space sampling activity, since the objectives, input variables, and input intervals of
interest were already defined, because we had an a priori problem, system and parameter
knowledge based on the models of Joshi (2012) and Kirkwood (2012). Hence, the
experiments began by running the global objective space search with a total of 60,000
evaluations for each scenario, from which the optimization obtained 1,247 and 1,372
Pareto-optimal solutions for S1 and S2, respectively. The Pareto-optimal solutions obtained
from the S2 scenario are presented in Figure 6. The first graph in Figure 6 clearly shows
the diversity of the obtained Pareto solutions which are spread over the objective space and
on regions or sub-spaces of less importance for the investigated problem.

Thus, the optimization methodology identified a region or sub-space of interest, as
shown in graph 2. This region or sub-space was particularly interesting for the problem
at hand, as all objectives in this case were to be minimized. In another case setting,
e.g., the maximization of one of the objectives, other regions or sub-spaces would have
been of interest. Thus, the Pareto-optimal solutions in the selected region or sub-space
in graph 3 will act as the solution in the preconditioned search, in order to focus the

Region /Sub-
space of interest

Graph 1 Graph 2

Min BWE F
var Min BWE F

var

Min CB SC
Min CINV SC Min CB SC

Min CINV SC

Figure 6.
Pareto-optimal
solutions for S2

obtained from global
objective search
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optimization search within this region. Graph 4 in Figure 6 intends to show that this
region or sub-space is then diminished or constricted even more during the local
objective space refinement activity, by reducing the design space, i.e., reducing the
input parameter intervals, and implementing constraints on the optimization,
which can increase the Pareto solution quality, accuracy, and intensification within
the region or sub-space of interest. Figures 7 and 8 display the Pareto-optimal solutions
obtained from the final local objective search iteration of the respective optimization
scenario. It should also be pointed out that these Pareto solutions were obtained from
the fourth local objective search iteration for each of the scenarios. Comparing Figure 7
and graph 3 in Figure 6 clearly demonstrates that by focussing the search, constricting
the design space and utilizing optimization constraints, the optimization was able to
increase the Pareto solution quality, accuracy and intensification, within our region or
sub-space of interest.

Since it required 60,000 (60 K) evaluations in the global objective space search activity,
and an additional 240,000 evaluations in the local objective space refinement activity, to
reach the Pareto solutions’ intensity and accuracy, as shown in Figures 7 and 8, it
could be argued that by just executing a total of 300,000 (300 K) evaluations, without
implementing the presented optimization methodology, one might be able to reach the
intensity and accuracy of the Pareto solution shown in the aforementioned figures.
In order to confirm the computational cost effectiveness, in terms of efficiency,
solution intensity and accuracy of the MOO methodology presented in this
application case study, a comparison was made between the Pareto-optimal solutions
gained from the aforementioned global objective space search, where a total of
60 K evaluations were executed, and a global objective space search with 300 K
evaluations were executed. The F-1 graph in Figure 9 presents the Pareto solutions
obtained from 60 K evaluations and the F-2 graph displays the Pareto solutions obtained
from 300 K evaluations, whereas the F-3 graph presents the combined Pareto solution sets
of the two evaluation runs. Examining these three graphs and comparing the F-4 graph in
Figure 9 to graph 3 in Figure 6, it is clear that the 300 K evaluation run has been able to
obtainmore Pareto solutions, approximately 600 additional Pareto solutions, than the 60 K
evaluation run. However, as in the case of graph 3 in Figure 6, the F-4 graph in Figure 9
is still far from achieving an equivalent Pareto solution quality, accuracy, and
intensification as presented in Figure 7. Analysis of the obtained Pareto-optimal
solutions will be analyzed in the coming section.

Min BWE F
var

Min CB SC
Min CINV SC

M
in CINV SC Min CB

SC

M
in

 B
W

E
F va

r

Figure 7.
Final Pareto-optimal
solutions for S2
obtained from local
objective search
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Min BWE
F
max

Min BWE
F
max

M
in

 C
IN

V
S
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M
in

 C
B
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 C
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S
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in
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vi
ew

R
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ht
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M
in

 B
W

E
F m
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M
in

 C
IN

V
S

C

M
in

 C
IN

VSC

Figure 8.
Final Pareto-optimal

solutions for S1
obtained from local

objective search
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7.2 Scenario analysis
7.2.1 Scenario 1. As mentioned earlier, the aim of S1, besides minimizing the supply
chain inventory and backlog costs, was to minimize the BWEF

max by utilizing the
approach presented in Dudas et al. (2011). During the execution of the experiments, a
total of 240,000 evaluations were run for S1, before the preference goals were satisfied
in the local objective space iteration procedure and, from these evaluations, the
optimization generated more than 2,500 Pareto-optimal solutions. Figure 8 displays
these solutions as a Pareto-front on the objective space and Figure 10 displays these
solutions with a PC showing the design variables and their resulting objective function
values. PC-1 in Figure 10, which displays all the Pareto-optimal solutions obtained
without any filter, shows that the majority of the α and β values are located in the lower
regions of their parameter boundaries, except for βR, βD and maybe αF with the
approximate intervals of (0.014-0.59), (0-0.38) and (90.01-031) for respective parameter
where the default value for βi was 0.088.

The higher values of βR and βD, then βW and βF, indicate that for some of the Pareto-
optimal solutions, the decision maker/supply chain manager in entity R or D needs to
take greater consideration of its incoming supply line than the rest of the entities. This
is significantly highlighted in PC-4, which shows that if the Pareto solutions are filtered

60K pareto solutions

60K+300K pareto solutions

300K pareto solutions

F-1 F-2

Min BWE F
chen

Min CB SC Min CINV SC

F-4

F-3

Figure 9.
Comparison of 60 K
and 300 K Pareto-
optimal solutions
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on BWEF
max, i.e., the minimization of BWEF

max is prioritized, the decision maker of
entity R needs to consider its supply line to a much greater degree than its supply chain
partners when defining DOPR. However, if the Pareto solutions are filtered on CINVSC,
i.e., the minimization of CINVSC is prioritized, then, as PC-3 depicts, the decision maker
of D would have to consider its supply line to a greater degree than the rest of the
supply chain members.

7.2.2 Scenario 2. In contrast to S1, scenario S2 utilizes the BWEF
chen approach

presented by Chen et al. (2000), in order to minimize the BWE; the other two objectives
are the same as in S1. S2 was also run for 240,000 evaluations before the preference
goals were reached. However, in comparison to S1, the optimization in S2 obtained
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�F �D �W �R �F �D �W �R

�F �D �W �R �F �D �W �R

�F �D �W �R �F �D �W �R
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Figure 10.
Parallel Coordinate

of S1 Pareto
Solutions
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more than 4,100 Pareto-optimal solutions, i.e., approximately 1,600 more Pareto
solutions than S1. Figure 7 displays these solutions as a Pareto-front on the objective
space and Figure 11 presents a PC of S2 design variables and their resulting
objective function values. Examining Figure 11 and PC-5 reveals that the α and β
design variables have a higher interval span where especially αD and βF distinguish
themselves with an interval span of β F (0.6740-1), whereas αDwhich is divided into two
areas, as shown in PC-5, shows that the upper region span is αD (0.6509-0.8536). Both
these parameters indicate that the manager at each of the respective entities, i.e., D and
F, needs to implement an aggressive ordering policy. The αD(0.6509-0.8536) denotes
that when the manager at D defines its OP, an aggressive policy/effort will need to be
implemented, in order to adjust the inventory toward the desired inventory level.

�F �D �W �R �F �D �W �R

�F �D �W �R �F �D �W �R
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chen
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chen
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The results in PC-5 also show that αD is more important than βD for the manager at
entity D when defining its ordering policy according to Equation (11), since the interval
span for βD is much lower than the αD interval presented for the obtained Pareto
solutions. Hence, for the decision maker at entity D, the adjustment of the inventory
toward the desired levels DID is more important than considering the supply line to a
great extent. However, by examining the βF (0.6740-1) and comparing it with the
interval span of its αF parameter, the opposite behavior is apparent. For the decision
maker at entity F, the priority lies in considering its supply line instead of
implementing an aggressive policy to adjust the inventory toward DIF.

Filtering the Pareto solutions on CBSC, i.e., the minimization of CBSC is prioritized by
the decision maker, reveals that these solutions presented in PC-6 are represented
by the lower region of αD(0.2847-0.5938) and that some of the DI and DSL parameters
only have values within a certain interval region. For instance, PC-6 shows that DIF is
(11-12), indicating that for Pareto solutions for which the decision maker prioritizes
CBSC, the desired inventory for entity F should be either 11 units or 12 units. Similarly,
DIW(2-12) indicates that entityW needs to keep at least a desired inventory of two units,
whereas DIR shows that for these filtered Pareto solutions the decision maker at entity
R only needs to have a desired inventory of (8), (10) and (12), all other values of DIR are
non-optimal when the obtained Pareto solutions are filtered on CBSC. Observing the
DSL parameter, the PC-6 diagram shows that DSLF requires a desired supply line value
of (12) at entity F for these Pareto solutions, whereas the desired supply line at R has a
slightly larger interval span DSLR(9-12) where the values indicate that for these filtered
solutions entity R is required to keep a supply line of at least nine units. However,
observing the aforementioned parameter in PC-7 of Figure 11, where the Pareto
solutions have been sorted on CINVSC, reveals that in CINVSC-filtered solution αD the
upper interval span of (0.6509-0.8536) has more impact on these solutions compared to
the CBSC-filtered solutions presented in PC-6, where the lower interval span of αD has a
greater impact on the CBSC-filtered solutions. The βF parameter, which already
has a very high interval span βF(0.6740-1) in PC-6, has an even higher span βF(0.9450-1)
in PC-7, for the vast majority of the solutions. This illustrates that the manager at F
needs to take the supply line into account to an even greater extent for the CINVSC-
filtered solutions than the CBSC-filtered solutions. The DI and DSL parameter intervals
in PC-7 also differ from the solutions in PC-6, where DIF ranges from (0-12) in PC-7,
instead of (11-12) in PC-6, and where DIR requires a desired inventory of (8), (10) and (12)
in PC-6, whereas in PC-7 it requires a value of 12 units at minimum. The values of the
desired supply line of entity F are also spread over a larger interval in PC-7 than in PC-6
in which the CBSC-filtered solutions require a minimum of 12 units for DSLF, whereas in
CINVSC-filtered solutions the values span between DSLF(0-12).

However, for solutions filtered on BWEF
chen, one sees that in PC-8 the minimum value

of DSLF is five units, which indicates that for these solutions a DSLF parameter value
less than five units does not have any effect on the CINVSC-filtered solutions. The PC-8
diagram also shows that the DIR values span between two regions, that is, between (4-8)
and (10-12), and that DID, in contrast to its interval values in PC-6 and PC-7, has an
interval of (6-12), which means that the desired inventory should never be less than six
units for entity D, if the manager prioritizes the BWEF

chen objective over the other two
objectives. The BWEF

chen-filtered solutions also show that the βF parameter requires
more or less the same consideration of the supply line as the majority of the CINVSC-
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filtered solutions. However, the αD parameter has an interval span of (0.2978-0.5388) for
the vast majority of the BWEF

chen-filtered solutions, which in contrast to βF is more
similar to the CBSC-filtered solutions, indicating that the solutions filtered on BWEF

chen
and CBSC require a less aggressive inventory adjustment policy/effort by the manager
at entity D than for solutions filtered on CINVSC.

7.2.3 Scenario 1 vs scenario 2. An analysis of Figures 10 and 11 clearly illustrates
that the optimization objectives defined in the two scenarios are obviously in conflict.
For instance, Figure 10 shows that minimizing the CBSC-objective will result in a
greater holding cost for the supply chain inventory and cause a significant BWE, while
minimizing the CINVSC-objective will cause an even greater demand amplification and
result in a rather high backlog cost for the supply chain. However, the minimization of
the bullwhip, in this case BWEF

max, will generate a very high backlog cost for the
supply chain, together with a quite high supply chain cost for holding inventory. This
trade-off behavior between the three optimization objectives is also demonstrated in
Figure 12, which depicts the average value of the 1,000 best Pareto-optimal solutions
sorted on CSC, i.e., total supply chain cost. An evaluation of the two averages from the
respective scenario shows that S2, depicted as the black line, achieves a much lower CSC

than S1. The fact that S2 has a much lower total supply chain cost is because S2 also
has a significantly lower backlog cost for the entire supply chain and, as we know from
Equation (7), having a backlog is twice as expensive as holding inventory. This
relationship can be interpreted in Figure 12, where S2 has a much higher CINVSC, but
as its CBSC value is very low, having a higher inventory holding cost does not have any
significant effect on the CSC parameter.

The fact that the CINVSC value of S2 is 5.16 indicates that the supply chain must
accept this average inventory holding cost, in order to achieve the level of CBSC and CSC

for S2 depicted in Figure 12. One can also deduce from Figure 12 that, on average, the
managers in S2 are required to implement a more aggressive policy/effort, in order to
adjust the inventory toward the desired inventory level. In addition, they must consider
the supply line, especially βF, to a significantly greater extent, when determining the
order value. The supply chain in S2 also needs to have higher desired inventory and
desired supply line levels. However, all these efforts and higher values of the design
parameters of S2 are rewarded by the resulting lower total supply chain and backlog
costs. Besides outperforming S1 by having lower total supply chain and backlog costs,
S2 also outperforms S1 in terms of minimizing the BWEF-objective, i.e, minimizing the
BWE; the CINVSC-objective is the only S1 optimization objective that outperforms its
S2 counterpart. Thus, the approach presented in Chen et al. (2000) outperforms the
approach implemented in Dudas et al. (2011), in terms of total supply chain cost, with
the optimization objectives to minimize the BWE, as well as the supply chain inventory
and backlog costs.

8. Conclusions
The methodology presented in this paper not only defines a method for executing and
combining SD and MOO for supply chain analysis, but also attempts to address the
issues of the curse of dimensionality, commonly found in practical optimization
problems, through design space reduction. The developed SD-MOO methodology,
which is based on the SBO framework, aims to execute supply chain MOO in a
computationally cost-effective way, in terms of the efficiency, solution intensification
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and accuracy of obtaining the Pareto-optimal front. The presented SD-MOO
methodology has then been evaluated through a pedagogical SCM model, namely,
the BG, in order to find and investigate the Pareto-optimal solutions in a
computationally cost-effective way. The goal of achieving both solution
intensification and good accuracy for a reasonable computational cost has been done
through several key steps: first, performing a global search, in order to quickly
generate a set of Pareto-optimal solutions, so that the behavior of the problem can be
understood; second, executing an iterative refinement of the solution set, by identifying
interesting regions and analyzing the properties of the solutions within the selected
region; and third, subsequently focussing the search on the region of interest through
limiting design variable boundaries by imposing new constraints on the optimization.
The results from evaluating the methodology through the case study, in which the
objectives were to simultaneously minimize the total inventory and backlog costs as
well as minimize the demand fluctuations, i.e., the BWE in the supply chain, clearly
show that the Pareto-optimal front has been obtained in a significantly more
computationally cost-effective manner, through the use of the proposed method in the
optimization process. It is believed that the SD-MOO methodology concept can further
be applied to real-world supply chain problems, where the methodology would assist
decision makers to effectively generate a set of Pareto-optimal alternatives. Other
results gained from the integration of SD and MOO for the BG also show that the three
optimization objectives, defined for the case study, are in conflict with each other, in the
sense that a SC manager cannot minimize the BWE without increasing the total
inventory and total backlog levels. As a conclusion, the integrated SD and MOO
method is believed to provide an innovative approach for the analysis of
manufacturing supply chain systems.

Note
1. Please note that only variables with an initial value W0 are presented here.
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