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Abstract
Purpose – The purpose of this paper is to perform an extensive literature review in the area of
decision making for condition-based maintenance (CBM) and identify possibilities for proactive online
recommendations by considering real-time sensor data. Based on these, the paper aims at proposing a
framework for proactive decision making in the context of CBM.
Design/methodology/approach – Starting with the manufacturing challenges and the main
principles of maintenance, the paper reviews the main frameworks and concepts regarding CBM that
have been proposed in the literature. Moreover, the terms of e-maintenance, proactivity and decision
making are analysed and their potential relevance to CBM is identified. Then, an extensive literature
review of methods and techniques for the various steps of CBM is provided, especially for prognosis
and decision support. Based on these, limitations and gaps are identified and a framework for proactive
decision making in the context of CBM is proposed.
Findings – In the proposed framework for proactive decision making, the CBM concept is enriched in the
sense that it is structured into two components: the information space and the decision space. Moreover, it
is extended in a way that decision space is further analyzed according to the types of recommendations
that can be provided. Moreover, possible inputs and outputs of each step are identified.
Practical implications – The paper provides a framework for CBM representing the steps that need
to be followed for proactive recommendations as well as the types of recommendations that can
be given. The framework can be used by maintenance management of a company in order to conduct
CBM by utilizing real-time sensor data depending on the type of decision required.
Originality/value – The results of the work presented in this paper form the basis for the development
and implementation of proactive Decision Support System (DSS) in the context of maintenance.
Keywords Decision making, Condition-based maintenance, E-maintenance, Proactivity,
Real-time data, Recommendations
Paper type Research paper

1. Introduction
In manufacturing, equipment maintenance is a significant contributor to the total
company’s cost, so having an optimal maintenance policy in terms of cost, equipment
downtime and quality is an important efficiency enabler (Waeyenbergh and Pintelon, Industrial Management & Data
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2004; Garg and Deshmukh, 2006). Maintenance is related to all the processes of
a manufacturing firm and focusses not only on avoiding the equipment breakdown but
also on improving business performance, for example, in terms of productivity,
elimination of malfunctions, etc. Various maintenance policies have been examined in
both the academic and industrial realms and a multitude of maintenance strategies
have been recommended in an effort to develop a holistic approach for maintenance
management, which supports both reactive and proactive support maintenance actions
(Waeyenbergh and Pintelon, 2004).

“Proactivity” in the context of information systems refers to the ability to avoid or
eliminate undesired future events or exploit future opportunities by implementing
prediction and automated decision making technologies (Engel and Etzion, 2011).
Proactivity is leveraged with novel information technologies that enable decision
making and support human actions before a predicted critical event occurs.
Application domains that can take advantage of such technologies include transport,
fraud management and maintenance (Artikis et al., 2014; Magoutas et al., 2014).
In manufacturing, sensors have the capability of measuring a multitude of parameters
frequently and collecting plenty of data. Analysis of Big Data, both historical and real-
time, can facilitate predictions on the basis of which proactive maintenance decision
making can be performed.

E-maintenance is related to the notion of proactivity because it supports the
transmission of the enterprise from “fail and fix” to “predict and prevent” concept while,
at the same time, maintenance is addressed as an enterprise process, integrated with
both internal and external business processes (Macchi et al., 2014), for improving
business performance (Lee et al., 2006; Iung et al., 2009). E-maintenance assumes that
data should be available to all enterprise components and actors with the aid of ICT
at the right time and place in order to make optimal maintenance decisions based on
underlying predictions (Iung et al., 2009).

Generally, the need for a business turning from reactive to proactive is increasing.
Proactive enterprise leads to increased situation awareness capabilities even ahead of
time. This will lead to a new class of enterprise systems, proactive and resilient
enterprises, that will be continuously aware of that what “might happen” in the relevant
business context and optimize their behavior to achieve what “should be the best
action” even during stress and balancing on demanding margins. Proactive enterprise
systems will be able to suggest early on to the decision makers the most appropriate
process adjustments to avoid singular system behavior and optimize its performance
(Magoutas et al., 2014).

Although during the last years there have been some efforts toward increasing the
level of proactivity in maintenance decision making, existing approaches are still under
development and suffer from some limitations. The degree of proactivity is usually
low and decisions are narrowed to recommendations about the maintenance schedule,
i.e., the sequence of maintenance actions, the maintenance strategy or, more rarely, the
optimal time of applying a predefined action. In other words, optimization is done for
one criterion at a time, while recommendations involve a general decision. Moreover,
contributions are not presented as part of a wider framework that can support their
integration in manufacturing processes. In addition, the vast majority of prognostic
models are validated within a laboratory environment by doing experiments and not in
industrial settings. This paper aims to review existing works in maintenance decision
making methods and synthesize a generic framework that can support
the development of proactive decision support systems (DSS) that include
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predictions and proactive actions based on these predictions (Engel et al., 2012).
To the best of our knowledge, there is no a holistic e-maintenance framework for
decision making in CBM providing reactive and, even more importantly, proactive
support based on the degradation state of equipment and the prediction of its evolution,
exploiting large amounts of condition data collected automatically by sensors.
In this paper we aim to fill this gap by providing a Proactive Decision Making
Framework for Condition-Based Maintenance (CBM).

The paper is structured in five sections. Section 2 describes the theoretical
background and the motivation for creating a framework for proactive decision
making in the context of CBM. Section 3 provides a review of methods and techniques
used in the steps of CBM, focussing on prognosis and decision support, while Section 4
presents the framework for maintenance decision making. Section 5 presents a
practical demonstration of the proposed framework. Finally, Section 6 discusses the
added value and practical implications of the proposed framework, while Section 7
concludes the paper and presents our plans for future work.

2. Decision making for maintenance operations
2.1 Types of maintenance
Although there is no absolute agreement in the literature about the classification
of maintenance types, we can broadly distinguish between three categories: breakdown
maintenance which takes places when a failure occurs; time-based preventive maintenance
which sets certain activities when a defined period of time passes; and CBM
which recommends actions according to the current and future health state of the
manufacturing system based upon data gathered through condition monitoring
( Jardine et al., 2006).

Breakdown maintenance is the oldest type of maintenance that fixes equipment
as soon as they need to. Time-based preventive maintenance is the evolution of
breakdown maintenance ( Jardine et al., 2006). Time-based preventive maintenance is
widely used in industry; however, companies are increasingly turning to CBM, with
manufacturing companies considering the use of condition monitoring. Currently, even
large manufacturing companies either do not use sensors for measuring indicators of
equipment degradation at all or, even if they do so, they have not developed a complete
CBM strategy in order to utilize its benefits. However, CBM is becoming essential for
every manufacturing business as products have become more and more complex
thanks to the evolution of technology and thus, quality and reliability have become
issues of high significance ( Jardine et al., 2006; Peng et al., 2010). Consequently, the
costs of time-based preventive maintenance have increased and CBM has started to be
evolved as a novel lever for maintenance management (Jardine et al., 2006). CBM is
tightly linked to the notion of proactivity which is the focus of our study and hence we
examine it in detail below.

2.2 CBM
CBM relies on diagnostic and prognostic models and uses them to support decisions
about the appropriate maintenance actions based on the current health state
of a system and/or its predicted performance and remaining lifetime. CBM can be
applied for supporting decisions either about Corrective And Preventive Actions
(CAPA) or about proactive actions. In the first case, only diagnosis is required
so that the actual condition of the system is identified and if it has been failed,
decisions for repair CAPA are taken. In the second case, prognosis is required

1227

Proactive
decision
making

framework

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

04
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



as well, so that future condition of the system is predicted and decisions
about proactive maintenance actions are taken ( Jardine et al., 2006; Peng et al., 2010;
Voisin et al., 2010).

Several maintenance frameworks have been proposed in the literature outlining the
steps involved in performing CBM. Lee et al. (2004) describes three core steps: first, data
acquisition, to collect the data; second, data processing, to handle the data; and third,
maintenance decision making, to decide about the optimal maintenance policy.
Peng et al. (2010) focussed on the third step (maintenance decision making), further
detailing it into diagnosis and prognosis. The authors also indicated the need for
historical data and for the development of a model for representing system behavior.
Irigaray et al. (2009) focussed on supporting CBM by storing relevant data and
information and utilizing them so that the most appropriate decisions are drawn
and are updated dynamically by means of a platform based on web services and
a systematic process consisting of four layers: condition monitoring, assessment of the
health state, prognosis and decision making.

Peng et al. (2010) described in detail a maintenance decision support framework
consisting of five main steps: first, feature selection, which is conducted with the aid of
historical data as well as several methods such as principal component analysis,
genetic algorithms and support vector machine (SVM); second, data training (analysis);
third, diagnostics and prognostics, by using real-time data; fourth, reliability and
remaining useful life (RUL) where the result is verified and its precision is assessed
in order to give feedback to steps second and fifth; and fifth, maintenance schedule,
which considers the cost function which is extracted from the relationship between
the maintenance cost, RUL and reliability of the system. Figure 1 depicts this
relationship and shows that while time to failure is approaching zero, reliability is
decreasing (Peng et al., 2010). When time to failure becomes zero, a breakdown of the
equipment occurs. The best time to do maintenance is when the maintenance cost is
minimum and reliability has started to increase significantly.
An important principle of CBM is the P-F curve, which can be used to estimate RUL of
some part of equipment. Figure 2 illustrates how a failure starts and deteriorates to the
point at which it can be detected (the potential failure point “P”). Thereafter, if it is not

Time To Failure
0

M
aintenance cost

R
eliability

Best time for
maintenance

Source: Based on Peng et al. (2010) 

Figure 1.
Relationship among
RUL, reliability and
maintenance cost
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detected and no suitable action is taken, it continues to deteriorate – usually at an
accelerating rate – until it reaches the point of functional failure (Point “F”). The amount of
time which elapses between the point where a potential failure occurs and the point where
it deteriorates into a functional failure is known as the P-F interval (Veldman et al., 2011).
This interval can be seen as an opportunity window during which actions can be taken
with the aim to eliminate the anticipated functional failure or mitigate its effect.

Arguably the most generic conceptual framework for proactive maintenance
decision support has been proposed by Voisin et al. (2010). This framework considers
the interactions of prognosis with the whole business environment and represents
the business processes which are integrated with prognosis as shown in Figure 3
(Iung et al., 2009; Voisin et al., 2010). Moreover, it separates the decision support step

Point where a failure
starts to occur

Point where it has failed
(functional failure)

Point where it can be found out
that it is failing (potential failure)

C
on

di
tio

n

Time

F

P

Figure 2.
P-F curve

Signal Processing
and Acquisition

Data about
system and
environment

Data Monitoring
and Diagnosis

Prognosis

Decision Support

Company Management

Prognostic Knowledge
by prognostic expert

Preferences and choices
by decision maker

Historical data

Maintenance
Management

Source: Adapted from Voisin et al. (2010)

Figure 3.
The role of diagnosis

and prognosis
in CBM
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from diagnostics and prognostics by combining and updating two earlier frameworks
(Léger and Morel, 2001; Muller et al., 2008a; Lebold and Thurston, 2001).

In the industrial realm, the open systems architecture for CBM (OSA-CBM)
framework has already been implemented in several industries, such as aerospace
industry within the framework of Integrated Vehicle Health Management (IVHM)
(Lebold and Thurston, 2001; Dunsdon and Harrington, 2008; Benedettini et al., 2009).
The OSA-CBM framework consists of seven sequential layers as shown in Figure 4.
Its goal is to enable the integration of prognostics and equipment health management
information from a variety of sources. OSA-CBM describes the entire process of CBM
starting from the collection of data and ending with the decision making step and the
presentation of the results (Lebold and Thurston, 2001; Dunsdon and Harrington, 2008).

2.3 E-maintenance
E-maintenance refers to the convergence of emerging information and communication
technologies with DSS which take into account the resources, services and management
to enable decision making in a proactive way (Muller et al, 2008a). E-maintenance has
become important in the last years due to the emergence of technologies which are able
to optimize maintenance-related workflows and the integration of business performance,
which enable openness and interoperation of e-maintenance with other components
of e-enterprise (Iung et al., 2009). This support does not include only technologies, but also
operations and processes related to maintenance such as condition monitoring, diagnostics,
prognostics, etc. (Muller et al., 2008a; Muller et al., 2008b; Irigaray et al., 2009; Levrat
and Iung, 2007). E-maintenance is considered not only in production and operation
stages but also as an integral part of the whole lifecycle management. Therefore, apart
from production issues, e-maintenance should also embed eco-efficiency and
product design, disassembly and recycling in a way that consists a useful tool for
business process improvement in the context of maintenance lifecycle management
(Takata et al., 2004; Iung et al., 2009).

Presentation

Decision Support

Prognosis

Diagnosis

Condition Monitoring

Signal Processing

Sensor module

GUI-man/machine interface (display data and information to user)

Prediction of future health based on historical and real-time data, diagnosis and knowledge

Automated decision making based on predictions and domain knowledge

Health Assessment with the use of historical and Condition Monitoring data

Comparison of Signal Processing data with pre-defined features

Pre-processing and feature extraction (low level computation on sensor data)

Transducer (conversion to signal) and Data Acquisition for measuring parameters

Source: Lebold and Thurston (2001)

Figure 4.
The OSA-CBM
framework
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Next generation DSS for maintenance can use raw sensors events, domain knowledge
events, effect events, cause events and action events (Dunkel et al., 2011). Future
DSS should also include predictions and proactive actions based on these predictions
(Engel et al., 2012). Currently however, existing DSS in manufacturing support only
reactive event-driven applications as actions are taken after events have occurred.

A conceptual architecture for proactivity comprising predictive and proactive
agents for forecasting and automated decision making technologies, respectively,
has been proposed by Engel and Etzion (2011). Moreover, Artikis et al. (2014) presented
a conceptual methodology for scalable processing and event-driven decision making
which uses real-time optimization techniques in order to develop real-time proactive
planning tools applicable to traffic and credit card fraud management with various
levels of autonomy. However, there are opportunities for the development and
implementation of a holistic framework for providing novel information systems in
alignment with the e-maintenance needs of modern enterprises leveraging the potential
applications of proactivity and facilitating the way decisions are made.

3. Review of CBM methods and techniques
There are three main steps in CBM: diagnosis, prognosis and decision support
(Voisin et al., 2010; Peng et al., 2010). Diagnosis has to do with the actual monitoring of
a system and detection of failures, while prognosis has to do with prediction of the RUL
of the system based upon its actual health state (Venkatasubramanian, 2005). Although
diagnosis, which is usually mentioned as the step before prognosis, is not always
prerequisite, it can efficiently complement the proactive maintenance DSS in cases
when an undesired effect which has not been predicted occurs ( Jardine et al., 2006;
Peng et al., 2010).

Methods used for CBM can be classified in four categories (Venkatasubramanian,
2005; Goh et al., 2006): model-based; knowledge-based; data-driven; and combination of
them. In the current research work, data-driven methods are examined. However, they
are usually accompanied with some degree of knowledge depending on the availability
of data and the required output.

There are research works using methods for providing a diagnostic output,
a prognostic one or decision support, in other words they may stop to a different step
of CBM, based on Figure 3. For example, research works dealing with prognosis cover
the three first CBM steps of Figure 3, while those dealing with decision support cover
the decision support step as well. In other words, in the latter case, prognostic methods
provide a prediction based on which recommendations are generated.

Diagnosis and reactive recommendations (CAPA) is a well explored area (Ding et al.,
2002; Nandi et al., 2005; Jung et al., 2006; Qian et al., 2008; Bennouna and Roux, 2013;
Ruiz-Mezcua et al., 2011; Prakash and Ceglarek, 2013; Pal and Ceglarek, 2013;
Pal et al., 2014). For this reason, the focus of the current review is prognosis and
prognostic-based decision making.

The papers examined were identified by searching Google scholar with the
keywords “CBM,” “Condition Based Maintenance,” “recommendations,” “decision
support,” “decision making,”’ manufacturing,” “maintenance,” “e-maintenance,”
“real-time” and “proactivity” in various combinations among them. We focussed on
papers dealing with the decision step of CBM. However, we realized that most of them
either were narrowed in the prognostic step of CBM (without reaching the decision step
for the provision of recommendations) or proposed a combination of methods so that
they develop a prognostic model based on real-time data and then, based on this, they
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provide recommendations for maintenance. The focus was on most recent papers,
after 2008, with exceptions in cases where an older paper satisfied the keywords and
proposed a novel and useful method which has not been extended until now.

3.1 Prognosis
Voisin et al. (2010) focussed on the components of the prognostic process by focussing
on the prognosis sub-steps and illustrating its interactions with the other components
of the CBM strategy’s steps, as shown in Figure 5.

A significant body of research regarding the development of prognostic models has
been conducted. Several methods and techniques have been used in order to estimate
the RUL/ remaining life distribution (RLD) and/or the probability distribution about
the occurrence of a breakdown or other undesired events.

Banjevic and Jardine (2006) presented the failure process as a discrete Markov process
and Kolmogorov equation is used accompanied with product-integration method for the
calculation of RUL. Muller et al. (2008a) proposed a methodology which implements
the proactive logic in a prognosis model by combining probabilistic (dynamic Bayesian
networks – DBN) and event methods for degradation modeling and monitoring.

Salfner and Malek (2007) used HSMM in order to conduct online failure prediction
by using event-driven sources such as errors. The methodology was compared with
Dispersion Frame Technique, a reliability model and an event-based method in terms
of several performance measures such as precision, recall, F-measure, false-positive
rate and computing time. Gebraeel and Lawley (2008) developed a degradation model
based on condition monitoring with the use of NN. The model estimates and
continuously updates the RLD.

Gebraeel et al. (2009) presented a degradation modelling framework without
having historical data about degradation. So, they assume that failure time data follow
a Bernstein distribution to estimate the characteristics of the stochastic parameters
needed for the degradation modelling. Moreover, they assume that degradation
follows either a linear or an exponential distribution. The proposed methodology
estimates and continuously updates the RLD. Caesarendra et al. (2011) developed
a prognostic model based on statistical analysis to identify the actual degradation
of the component and to estimate the failure probability and its variance.

Prognostic
knowledge by

prognostic expert
Historical

data

To pilot
prognostics

Company Management (costs,
prognostic horizon, etc.)

To initialise state
and performances

To project

To compute RUL

RUL, confidence
level, future
performance

Diagnostic
Output

Source: Based on Voisin et al. (2010)

Figure 5.
Components of
prognostic process
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Kim et al. (2012) presented a prognostic methodology for bearings of high pressure-
liquefied natural gas pumps which models the dynamic and stochastic degradation
process and estimates the RUL with the use of SVM. Tobon-Mejia et al. (2012a)
proposed a methodology for real-time data-driven prognosis with the use of a Mixture
of Gaussians- Hidden Markov Models (MoG-HMMs) and DBN, accompanied with other
techniques such as Baum-Welch algorithm, Viterbi algorithm, data clustering and
curve fitting, in order to calculate the RUL of the degrading machine tool and the
relevant confidence level.

Tobon-Mejia et al. (2012b) proposed a prognostic methodology for the estimation of
RUL and the relevant confidence level by using Wavelet Packet Decomposition
technique and the MoG-HMM as well as Baum-Welch algorithm and Viterbi algorithm.
Ferreiro et al. (2012) presented a framework for prognosis based on BNs embedded
to the IVHM concept. The output of the prognostic model is an estimation of RUL of the
component of the aircraft as well as its confidence values. The authors argue that this
prognostic information can contribute to the reduction of the costs caused by
cancellations or delays due to failures.

Bangalore and Tjernberg (2013) proposed a prognostic model based on ANN which
are updated continuously with the aid of an automated self-evolving approach and the
training data set is optimized. The model utilizes data taken from a Supervisory Control
and Data Acquisition (SCADA) system which is used for monitoring parts of
equipment.

Table I shows the prognostic methods that each paper uses accompanied with their
inputs and outputs.

Although a variety of methods have been used in order to provide useful
diagnostic and prognostic capabilities by utilizing real-time data from the
manufacturing domain such as the ones examined here, most have a low level
of autonomy because they narrow their decision support for human operators and
do not support partial or full autonomous decision making (Peng et al., 2010; Voisin
et al., 2010; Artikis et al., 2014).

3.2 Decision support
Several research works have examined and developed autonomous decision making
methods based on both historical and real-time data as well as expert knowledge with
the aim to address different maintenance challenges for components subjected to
condition monitoring.

Maintenance decision support is related to reliability, safety and environmental
issues as well as costs because of downtime of the equipment in case of a breakdown
or malfunctions of machines so it is a crucial operation function of the enterprise
(Peng et al., 2010). First, diagnostic and/or prognostic methods are applied and then,
the system recommends appropriate actions either for immediate implementation
due to an actual failure (reactive) or for future implementation in order to
avoid an undesired event (proactive actions). However, the latter is the least
explored area.

Several research works dealing with maintenance decision support are based on
predictions. Predictions are not considered as given in these works, e.g., as prognostic
functions, probabilistic estimates or expert knowledge. Hence, research works dealing
with decision support usually develop a prognostic model analyzing and processing the
historical and real-time data available and, based on these, they develop decision
methods in order to provide prognostic-based recommendations.

1233

Proactive
decision
making

framework

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

04
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



R
ef
er
en
ce
s

In
pu

t
Pr
og
no
st
ic
m
et
ho
ds

O
ut
pu

t

M
ul
le
r
et
al
.(
20
08
a)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

fa
ilu

re
/

de
gr
ad
at
io
n
da
ta

K
no
w
le
dg

e:
pr
oc
es
s
kn

ow
le
dg

e

D
yn

am
ic
B
ay
es
ia
n
ne
tw

or
ks

(p
ro
ba
bi
lis
tic

m
od
el
)

E
ve
nt

m
od
el

Pr
ob
ab
ili
ty

di
st
ri
bu

tio
n
ov
er

al
lv

ar
ia
bl
es

Co
ns
is
te
nc
y
of

pr
og
no
si
s

B
an
je
vi
c
an
d

Ja
rd
in
e
(2
00
6)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
(e
.g
.v

ib
ra
tio

n
or

oi
l)

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

fa
ilu

re
/

de
gr
ad
at
io
n
da
ta

K
no
w
le
dg

e:
w
ea
r
st
ag
es

D
eg
ra
da
tio

n
M
od
el
lin

g
M
ar
ko
v
Ch

ai
n

R
el
ia
bi
lit
y
fu
nc
tio

ns
Ca

lc
ul
at
io
n
of

R
U
L
as

a
fu
nc
tio

n
of

th
e

cu
rr
en
t
co
nd

iti
on
s

Sa
lfn

er
an
d
M
al
ek

(2
00
7)

R
ea
l-t
im

e
da
ta
:r
ea
lt
im

e
m
on
ito

ri
ng

of
er
ro
r
lo
gs

H
is
to
ri
ca
ld

at
a:
re
co
rd
ed

er
ro
r
lo
gs

H
id
de
n
Se
m
i-M

ar
ko
v
M
od
el
s
(H
SM

M
s)
(th

at
us
e

ev
en
t-d

ri
ve
n
so
ur
ce
s
su
ch

as
er
ro
rs
)

Fo
re
ca
st
in
g
of

th
e
oc
cu
rr
en
ce

of
fa
ilu

re
s

G
eb
ra
ee
la

nd
La

w
le
y
(2
00
8)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
si
gn

al
s

(e
.g
.v

ib
ra
tio

n
si
gn

al
s)

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

de
gr
ad
at
io
n
da
ta

(e
.g
.v

ib
ra
tio

n)

N
eu
ra
lN

et
w
or
k

D
eg
ra
da
tio

n
M
od
el
lin

g
Co

m
pu

tin
g
re
si
du

al
lif
e
di
st
ri
bu

tio
n

U
pd

at
in
g
re
si
du

al
lif
e
di
st
ri
bu

tio
n

G
eb
ra
ee
le
t
al
.

(2
00
9)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
si
gn

al
s

(e
.g
.v

ib
ra
tio

n
si
gn

al
s)

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

fa
ilu

re
tim

e
da
ta

K
no
w
le
dg

e:
w
ea
r
st
ag
es

D
eg
ra
da
tio

n
m
od
el
lin

g
B
ay
es
ia
n
ne
tw

or
ks

R
es
id
ua
ll
ife

pr
ed
ic
tio

n

Ca
es
ar
en
dr
a
et
al
.

(2
01
1)

R
ea
l-t
im

e
da
ta
:v

ib
ra
tio

n
co
nd

iti
on

m
on
ito

ri
ng

da
ta

H
is
to
ri
ca
ld

at
a:
be
ar
in
g
fa
ilu

re
da
ta

R
el
ev
an
ce

ve
ct
or

m
ac
hi
ne

Lo
gi
st
ic
re
gr
es
si
on

A
ut
or
eg
re
ss
iv
e
m
ov
in
g
av
er
ag
e

D
em

ps
te
r-
Sh

af
er

re
gr
es
si
on

St
at
is
tic
al

pr
oc
es
s
co
nt
ro
l

Pr
ed
ic
tio

n
of

th
e
fa
ilu

re
pr
ob
ab
ili
ty

of
in
di
vi
du

al
un

its
of

be
ar
in
g
sa
m
pl
es

A
na
ly
si
s
of
va
ri
an
ce

of
th
e
fa
ilu

re
pr
ob
ab
ili
ty

K
im

et
al
.(
20
12
)

R
ea
l-t
im

e
da
ta
:v

ib
ra
tio

n
si
gn

al
s

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

de
gr
ad
at
io
n
(v
ib
ra
tio

n)
da
ta

K
no
w
le
dg

e:
w
ea
r
st
ag
es

Su
pp

or
t
ve
ct
or

m
ac
hi
ne

(S
V
M
)c
la
ss
ifi
er

O
pt
im

al
pr
ed
ic
tio

n
of

R
U
L

(c
on

tin
ue
d
)

Table I.
Reviewed research
works on prognosis

1234

IMDS
115,7

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

04
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



R
ef
er
en
ce
s

In
pu

t
Pr
og
no
st
ic
m
et
ho
ds

O
ut
pu

t

T
ob
on
-M

ej
ia

et
al
.

(2
01
2a
)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
da
ta

H
is
to
ri
ca
ld

at
a:
de
gr
ad
at
io
n
da
ta

K
no
w
le
dg

e:
w
ea
r
st
ag
es

M
ix
tu
re

of
G
au
ss
ia
n-
H
id
de
n
M
ar
ko
v
m
od
el

D
yn

am
ic
B
ay
es
ia
n
ne
tw

or
k

B
au
m
-W

el
ch

al
go
ri
th
m

V
ite
rb
ia

lg
or
ith

m

R
U
L
an
d
co
nf
id
en
ce

va
lu
e

T
ob
on
-M

ej
ia

et
al
.

(2
01
2b
)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
si
gn

al
s

(e
.g
.v

ib
ra
tio

n
si
gn

al
s)

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

de
gr
ad
at
io
n
da
ta

(e
.g
.v

ib
ra
tio

n)
K
no
w
le
dg

e:
w
ea
r
st
ag
es

M
ix
tu
re

of
G
au
ss
ia
n-
H
id
de
n
M
ar
ko
v
m
od
el

D
yn

am
ic
B
ay
es
ia
n
ne
tw

or
k

W
av
el
et

pa
ck
et

de
co
m
po
si
tio

n
B
au
m
-W

el
ch

al
go
ri
th
m

V
ite
rb
ia

lg
or
ith

m

R
U
L
an
d
co
nf
id
en
ce

va
lu
e

Fe
rr
ei
ro

et
al
.

(2
01
2)

R
ea
l-t
im

e
da
ta
:d

eg
ra
da
tio

n
si
gn

al
s

H
is
to
ri
ca
ld

at
a:
hi
st
or
ic
al

de
gr
ad
at
io
n
da
ta

K
no
w
le
dg

e:
do
m
ai
n
kn

ow
le
dg

e
ab
ou
t
ca
us
es

an
d
ef
fe
ct
s

B
ay
es
ia
n
ne
tw

or
ks

T
im

e
to

fa
ilu

re
R
U
L
an
d
co
nf
id
en
ce

va
lu
e

B
an
ga
lo
re

an
d

T
je
rn
be
rg

(2
01
3)

R
ea
l-t
im

e
da
ta
:s
ig
na
ls
fr
om

SC
A
D
A

sy
st
em

K
no
w
le
dg

e/
hi
st
or
ic
al

da
ta
:n

or
m
al

be
ha
vi
ou
r
of

co
m
po
ne
nt
s

A
rt
ifi
ci
al

ne
ur
al

ne
tw

or
k

Fa
ul
t
pr
og
no
si
s

Table I.

1235

Proactive
decision
making

framework

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

04
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



Kaiser and Gebraeel (2009) proposed a method for predictive maintenance management
by utilizing real-time degradation data. They developed a degradation model in order to
estimate and update in real time the RLD of some part of equipment and the most
suitable maintenance policy is recommended based on the frequency of failures and the
maintenance costs.

Besnard and Bertling (2010) presented a method for applying CBM to wind turbine
blades. Provided that degradation of a part of equipment can be classified into one
category in terms of severity of damage, the method optimizes decisions about different
maintenance strategies. The strategies examined in this paper are visual inspection,
inspection with a condition-monitoring technique and online condition monitoring.

Besnard et al. (2011) presented a model for the optimization of maintenance planning
in offshore wind farms. The model uses stochastic optimization in order to perform the
optimum maintenance schedule at the lowest cost based upon the wind and production
forecasting.

Castro et al. (2012) proposed a cost modelling approach for predictive maintenance
policy based on the RUL estimated after each inspection. The method recommends the
optimal time of applying maintenance to avoid a future breakdown. The failures that
are assumed to happen can depend on degradation or on immediate shocks of the
equipment.

Wu et al. (2007) developed a DSS in order to minimize the expected cost by taking
into account the RUL. The authors propose an ANN to predict and update in real-time
the RUL of the equipment and cost modelling techniques accompanied with probability
theory for calculating the replacement time which minimizes cost at each unit
operational time.

Ivy and Nembhard (2005) proposed a method for recommending the optimal
maintenance policy by using statistical quality control (SQC) and partially observable
Markov decision process (POMDP). SQC techniques were used in order to define the
observations distributions and the structure of POMDP. Results of POMDP were
evaluated in terms of robustness and accuracy.

Aissani et al. (2009) used reinforcement learning and Markov decision process
(MDP) in order to automate maintenance tasks scheduling in petroleum industry and to
update them in real time. The model developed has multiple agents which function in
the logic of continuous improvement by learning the best behaviours of their roles and
improving the solution about the corrective and predictive tasks provided.

Elwany and Gebraeel (2008) proposed a decision model for component replacement
and spare parts inventory based upon the RLD instead of failure time distribution. RLD
is calculated and is continuously updated and is then used as input to the decision
model which calculates the optimal replacement time as well as the optimal inventory
ordering time.

Bouvard et al. (2011) proposed a method for the optimization of maintenance
planning for systems with multiple components such as commercial heavy vehicles.
First, maintenance actions are grouped according to the component to which they are
linked. Then, degradation models are developed in order to monitor each component,
recommend the optimal maintenance planning and update it dynamically when
necessary.

Huynh et al. (2012) proposed a method for assessing, comparing and selecting the
most appropriate and cost-effective maintenance policy for a single-unit degrading
system under condition monitoring. Muller et al. (2007) proposed a methodology which
implements the proactive logic in a prognosis model for supporting the maintenance
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strategy. This evolution of prognostic models combines probabilistic and event
methods in order to evaluate different maintenance plans in terms of effectiveness and
cost and to calculate the optimal maintenance policy.

Engel et al. (2012) provided a methodology for proactive event-driven computing with
potential application to CBM, however, it is conceptually described and sets the guidelines
for future development. Suitable methods for proactive applications could be BN andMDP.

Table II summarizes the prognostic-based decision support methods reviewed,
as well as their inputs and outputs. The methods have been separated in two groups;
one group supports the prognostic and the second the decision step. The prognostic
step of CBM is the one that contributes to the input of the decision support step.

Despite the advances in CBM, limitations and open issues still exist, such as
( Jardine et al., 2006; Iung et al., 2009; Peng et al., 2010):

• Prognostic models used for CBM are not always continuously updated by
real-time data through sensors, but they receive batches of data. This fact affects
negatively the responsiveness of the system to provide prognostic information
and recommendations for maintenance. The reason for this is that high
computation speed is required, so an appropriate system needs to be developed.

• Although there are several theoretical research works, there is a limited number
of practical applications.

• Recommendations of maintenance actions and maintenance policy for CBM are
not usually embedded in integrated maintenance platforms.

• Despite the plethora of existing works for both prognosis and diagnosis in
maintenance, most of them do not examine automation of decisions by providing
recommendations for maintenance actions.

• E-maintenance could be a significant contributor to the conversion
of maintenance from reactive to proactive.

• Collecting all necessary data (both historical and real-time) in order to develop
a method which provides reliable results is a major challenge.

4. Proactive decision making framework for CBM
In this section we present a conceptual framework for supporting CBM decisions
within an e-maintenance/real-time data infrastructure. As shown in Figure 6, our
framework represents the sequence of steps, which need to be followed in order to
support decision making in e-maintenance. The framework is based on the OSA-CBM
framework (Lebold and Thurston, 2001) and the prognostic process outlined by
Voisin et al. (2010), as outlined in Section 2. The conceptual framework of Figure 6
extends the aforementioned works in two ways: first, the CBM constituents are
identified and structured in two categories and second, the decision support constituent
is further analyzed according to the types of decisions that can be provided. Specifically,
the two categories are the information space and the decision space. The former
consists of diagnosis and prognosis and provides information about the current and
the future health state of the equipment, respectively, while the latter consists of
maintenance actions, both reactive and proactive ones. An integrated view of the
information and decision spaces is a prerequisite for providing timely and reliable
recommendations because the input of the decision space relies on the predictions made
within the information space.
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In the general case, all steps shown in Figure 6 should be followed; however
there may be limitations regarding the availability of data, which may hinder
some steps. For example, if there is no list of actions and their mapping to
types of failures or defects, or there is lack of other information regarding maintenance
strategy or schedule, the framework can only provide prognostic information
and cannot provide automated support for making decisions about the strategy,
schedule or action.

Two main steps are included within the information space: diagnosis; and
prognosis. Diagnosis involves a sequence of three sub-steps which represent the
required analysis of the raw sensor data that are gathered until the detection of the
current equipment health state. These sub-steps are:

(1) Signal processing, which provides some initial and primitive computation of
sensor data.

(2) Condition monitoring, which compares the results of signal processing data
analysis with predefined features.

(3) Health assessment, which combines condition monitoring data and historical
data in order to provide information about the actual health state of the system
examined (fault detection).

Information Space Decision Space

Reactive Recommendations

Recommendations about CAPA

Proactive Recommendations

Recommendations about optimal
time for a predefined action

Recommendations about optimal
action and time

Recommendations about
maintenance strategy or schedule

Recommendations about
maintenance strategy or schedule

Diagnosis

Signal Processing

Condition Monitoring

Health assessment

Prognosis

Figure 6.
Framework for

decision making in
maintenance
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In case of recommendations for reactive actions, the next step would be
recommendations about CAPA or maintenance strategy or schedule. In other words,
based on the information about the current health state provided by the information
space, the decision space focusses on generating the recommendations for mitigating
actions. Support for reactive actions should be embedded even within a proactive
DSS, because there is always the possibility that an undesired event, which has
not been predicted, occurs. In this case, diagnostic information should be provided and
maintenance actions for immediate implementation should be recommended.

Having examined the health state of the system, a prognostic model should be
developed in order to support proactive recommendations. The prognostic model
combines the diagnostic information and historical degradation data and patterns
leading to a failure as well as domain knowledge and represents progression of system
health. Domain knowledge can be modelling wear stages, degradation threshold
limit, failure mode effects and criticality analysis, root cause analysis, fault tree
analysis, etc. For example, relationships between effects such as failure and
malfunction, and sensor parameters such as temperature and vibration should
be identified. In this way, predictions can be made for when a failure will occur,
calculating probability distributions of the occurrence of undesired events (e.g. failure if
no action is implemented, failure even though an action has been implemented, etc.)
and/or providing early warnings.

The output of the prognostic model feeds into the proactive decision making process,
which is represented by the Proactive Recommendations constituent of our conceptual
framework’s Decision Space. Proactive decision making utilizes domain knowledge
(e.g. list of actions, time intervals for each possible action, cost function, etc.) and
recommends the optimal maintenance strategy, the optimal schedule, the optimal time of
applying a predefined action or the optimal action and its time of applying. The output of
proactive decision making depends on the user requirements as well as the available data
and knowledge and it ranges from generic (e.g. maintenance strategy or schedule) to
specific recommendations (e.g. maintenance action and time of applying it).

Each step of the decision making framework shown in Figure 6 requires specific input
and provides specific output which feeds into the next step. Input depends on the
availability of the appropriate data and information and output can vary based upon the
user’s requirements, the method used and the taken input. Table III summarizes the input
and output of each step of the decision making framework based on our literature review.

Our conceptual framework extends the existing works in CBM in two ways. First,
it identifies the CBM constituents and organizes them in the Information Space and the
Decision Space. The Information Space includes the diagnosis phase dealing with
the provision of information about the current state of equipment, and the prognosis
phase dealing with the provision of information about the future health state
of equipment. This information supports informed decision-making about maintenance
in the sense that it reveals issues that are not visible even by an experienced engineer.

Second, while the Information Space has been extensively researched, our literature
review revealed that the Decision Space has not been investigated thoroughly.
Therefore, we further analysed the decision support constituent according to the types
of recommendations that can be provided. The latter have been separated in two types:
reactive and proactive recommendations. Each one of these types has been further
analysed according to the provided output as shown in Table III. Reactive
recommendations deal with actions that are implemented after the occurrence of an
undesired event (e.g. breakdown). We found out that these actions can involve either
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the implementation of a CAPA (Qian et al., 2008; Peng et al., 2010; Ruiz-Mezcua et al., 2011;
Prakash and Ceglarek, 2013; Pal and Ceglarek, 2013; Pal et al., 2014) or a change in the
maintenance strategy or schedule. On the other hand, proactive recommendations are
based on predictions about an undesired event (e.g. a future breakdown). We found
out that proactive recommendations can be separated in three categories, according to
their output which can be: a change in maintenance strategy or maintenance schedule
(Muller et al., 2007; Kaiser and Gebraeel, 2009; Aissani et al., 2009; Besnard and Bertling,
2010; Besnard et al., 2011), the optimal time of applying a predefined action
(e.g. replacement) (Wu et al., 2007; Elwany and Gebraeel, 2008; Bouvard et al., 2011;
Castro et al., 2012; Huynh et al., 2012) or pairs of optimal actions and optimal time for
their implementation (Engel et al., 2012).

5. Practical demonstration of the proposed framework
In this section we present a practical application of the proposed proactive decision
making framework for CBM in the oil and gas industry. We describe the practical
role and use of the proposed framework focussing on how it can support proactive
decision-making ahead of time on the basis of real-time observations and predictions
about future undesired events, through a real maintenance scenario.

Input Output

Diagnosis Sensor data (about the measured parameter
used as indicator of degradation)
Historical data (about the measured parameter
used as indicator of degradation till failure)

Current health state

Reactive
actions

Current health state
List of actions (that are integrated with the
current undesired event) or predefined action or
alternative strategies

Notification
Recommendations about
CAPA
Maintenance strategy or schedule

Prognosis Current health state
Sensor data (about the measured parameter
used as indicator of degradation)
Historical data (about the measured parameter
used as indicator of degradation till failure)
Threshold limit (where a failure/ malfunction
occurs)
Wear stages (from domain knowledge)
Other domain knowledge

Early warnings
RUL and confidence level
Probability distributions of the
occurrence of undesired (e.g. failure,
malfunction, etc.)

Proactive
actions

Early warnings
RUL and confidence level
Probability distributions of the occurrence of
undesired events (e.g. failure, malfunction, etc.)
List of actions (that mitigate or eliminate the
future undesired event) or predefined action or
alternative strategies
Cost functions (for the forecasted event
and for the possible actions)
Time intervals (delays) for each
possible action

Early notification
Recommendations about
Maintenance strategy or schedule
Optimal time for a predefined action
Optimal action and time

Table III.
Input and output in

each step of the
decision making

framework
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CBM in the oil and gas industry employs various monitoring means to detect
deterioration and failure in some critical drilling equipment. In our example, we focus
on the gearbox drilling equipment and consider as indicators the rotation speed of the
drilling machine’s main shaft in Rounds Per Minute (RPM), along with the lube
oil temperature of the drilling machine’s gearbox. Temperature sensors gathering
real-time data in a high frequency (every 20 ms), along with historical data of oil
temperature, RPM events and gearbox equipment failure, are used for assessing the
health state of the gearbox in real-time (see Figure 6). The high frequency of the
real-time data requires a Big Data infrastructure and an appropriate architecture
(e.g. EDA). Diagnosis step identifies that a drilling gearbox equipment failure starts to
occur and, therefore, informs about its actual health state (e.g. anomalies detection).

The prognosis step involves the usage of statistical/machine learning methods to
build a prognosis model of the equipment health offline, as well as the online prediction
of gearbox’s RUL along with the probability distribution function of the gearbox
breakdown by using methods such as Bayesian networks, neural networks, etc.
The prognostic output (e.g. a specific exponential probability distribution) is needed as
input for the proactive decision making process accompanied with a list of alternative
maintenance actions (lube oil change, system restart, lower pressure, full maintenance),
the cost of each action as a function of time, the cost of gearbox breakdown, the time of
next planned maintenance and the RUL after the implementation of each action.
A recommendation about the optimal action and the optimal time for its implementation is
provided by employing decision making methods such as MDP. In this way, the oil and
gas company is able to know which action to do and when. To eliminate the risk that an
undesired event, which has not been predicted, occurs, the company has also defined
based on domain knowledge, a list of reactive actions in the form of IF-THEN rules.

In this way, the company is guided about how to utilize its sensors and historical
data as well as its domain knowledge in order to improve its maintenance management
business process and turn from reactive to proactive for the improvement of its
efficiency.

6. Discussion
Although decision making methods based on predictions about the health state of the
equipment has been proposed in the last years, not all of the capabilities of proactive
computing have been exploited. The proposed framework allows embedding in the
CBM concept e-maintenance capabilities in conjunction with proactive decision making
in order to allow the provision of more detailed recommendations. In this way,
the decision maker is based less on his/her personal judgement and is able to take
proactively informed decisions. At the same time, the time window for taking decisions
about how to resolve a problem is increased, as the decision epoch starts upon
the prediction of the problem instead of upon its occurrence. So, on the one hand the
probability of human error is decreased while, on the other hand, there is more time for
planning and undertaking other manufacturing operations that are closely related
to maintenance (e.g. logistics issues, such as the ordering of spare parts). Furthermore,
based on the proposed framework, the optimal time for maintenance can be
accompanied with the appropriate action according to the predictions, the user
requirements and the company policies. Therefore, the higher the level of proactivity is
achieved, the more efficient the maintenance becomes, because undesired events
are eliminated or mitigated and all the business functions that are related to
maintenance, such as production, ordering of spare parts, etc., operate seamlessly.
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The systematic formulation of CBM strategy in the proposed framework enables its
embodiment to an information system for the full exploitation of proactive decision
making in the context of CBM. In this sense, the proposed framework is not only
a systematic representation of a maintenance management business process but also
the basis for the development of a DSS for CBM that gathers and analyses real-time
sensor data, provides diagnostic and prognostic information and automates proactive
decisions by providing recommendations about maintenance in a proactive manner.
Real-time data are gathered in a high frequency, so several challenges regarding
Big Data need to be addressed by applying innovative technologies. EDA can
significantly enable the processing of Big Data, so that predictions are provided when
an anomaly detection event is received and recommendations are generated when
an undesired event (e.g. breakdown) is predicted. As the decision space of the proposed
framework has been structured according to the types of recommendations that can be
provided, a DSS that is built upon it will be able to support proactive decision making
for CBM in various application domains and for a wide range of functional and non-
functional application requirements. Provision of reactive recommendations should
be also made available because the probability that the DSS fails to predict an
undesired event cannot be completely eliminated; in that case immediate actions to
handle the undesired event should be recommended.

The focus of the literature search and the whole analysis was on proactive decision
making rather than reactive and consequently, on data-driven prognosis and proactive
recommendations. For this reason, the literature for methods dealing with the three
sub-steps of Diagnosis has not been examined in detail.

7. Conclusions and future work
Our literature review of CBMmethods indicates that there are combinations of machine
learning and decision making methods used in order to provide recommendations
based on predictions. These predictions are derived from the analysis and processing
of real-time sensor data. For each paper examined, the methods as well as their inputs
and outputs were identified. Based on previous research works regarding modeling
CBM concept and on the literature review of methods and techniques that are used for
prognosis and decision making, a framework for maintenance decision making is
proposed. This framework enriches others existing in literature by structuring the
information and the decision space and by focussing on the latter. Moreover,
the proposed framework embeds the concepts of proactivity and e-maintenance to CBM
in order to enable the provision of timely and reliable recommendations. Finally,
reactive actions for immediate implementation based on diagnostic information are
recommended when an undesired event that has not been predicted occurs.

Although there are many research works dealing with predictions, e.g. about RUL,
only few propose methods to utilize this real-time prediction accompanied with expert
knowledge to provide maintenance recommendations. More combinations of methods
can be developed by using machine learning methods that have been used in literature
for prediction of RUL with various decision methods so that they are extended in
the Decision Space of the framework proposed. Furthermore, decision methods in
existing literature do not exploit all the possibilities for proactive decision making,
for example by providing the most appropriate maintenance action and the optimal
time for applying it, while, they are not usually considered as part of a wider
framework for decision making in CBM.
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Based on the proposed framework, we plan to develop a DSS which will provide
proactive maintenance recommendations according to user requirements. Then, we will
examine the possibility of using context-awareness so that data are enriched and
recommendations take into account the various conditions that may affect them.
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