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REGULAR PAPER

Social information landscapes
Automated mapping of large multimodal,

longitudinal social networks
Eugene Ch’ng

School of Computer Science,
University of Nottingham Ningbo China, Ningbo, China

Abstract
Purpose – The purpose of this paper is to present a Big Data solution as a methodological approach to
the automated collection, cleaning, collation, and mapping of multimodal, longitudinal data sets from
social media. The paper constructs social information landscapes (SIL).
Design/methodology/approach – The research presented here adopts a Big Data methodological
approach for mapping user-generated contents in social media. The methodology and algorithms
presented are generic, and can be applied to diverse types of social media or user-generated contents
involving user interactions, such as within blogs, comments in product pages, and other forms of
media, so long as a formal data structure proposed here can be constructed.
Findings – The limited presentation of the sequential nature of content listings within social media
and Web 2.0 pages, as viewed on web browsers or on mobile devices, do not necessarily reveal nor
make obvious an unknown nature of the medium; that every participant, from content producers, to
consumers, to followers and subscribers, including the contents they produce or subscribed to, are
intrinsically connected in a hidden but massive network. Such networks when mapped, could be
quantitatively analysed using social network analysis (e.g. centralities), and the semantics and
sentiments could equally reveal valuable information with appropriate analytics. Yet that which is
difficult is the traditional approach of collecting, cleaning, collating, and mapping such data sets into a
sufficiently large sample of data that could yield important insights into the community structure and
the directional, and polarity of interaction on diverse topics. This research solves this particular strand
of problem.
Research limitations/implications – The automated mapping of extremely large networks
involving hundreds of thousands to millions of nodes, encapsulating high resolution and contextual
information, over a long period of time could possibly assist in the proving or even disproving of
theories. The goal of this paper is to demonstrate the feasibility of using automated approaches for
acquiring massive, connected data sets for academic inquiry in the social sciences.
Practical implications – The methods presented in this paper, together with the Big Data
architecture can assist individuals and institutions with a limited budget, with practical approaches in
constructing SIL. The software-hardware integrated architecture uses open source software,
furthermore, the SIL mapping algorithms are easy to implement.
Originality/value – The majority of research in the literature uses traditional approaches for
collecting social networks data. Traditional approaches can be slow and tedious; they do not yield
adequate sample size to be of significant value for research. Whilst traditional approaches collect only
a small percentage of data, the original methods presented here are able to collect and collate entire
data sets in social media due to the automated and scalable mapping techniques.
Keywords Online communities, Big Data, Longitudinal network, Multimodal network,
Social network analysis, Social information landscapes
Paper type Research paper
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1. Introduction
What is social information landscapes (SIL) and how will it be useful for studying social
networks? Here, SIL can be defined as “the automated mapping of large topological
networks from instantaneous contents, sentiments and users reconstructed from social
media channels, events and user generated contents within blogs and websites,
presented virtually as a graph that encompasses, within a timescale, contextual
information, all connections between followers, active users, comments and
conversations within a social rather than a physical space”. The key phrase
“automated mapping” is essential here as the mapping of very large networks is
essential as network behaviour may differ in massive networks in relation to their
emergent behaviour and the way they tend to self-organise. Larger networks are also
ideal as subjects for studying geodesic distance, centrality, and density. SIL was first
mentioned in an article dealing with a Big Data funnelling approach (Ch’ng, 2014), and
subsequently in corresponding articles on the study of online community formation
and decline when research results were published (Ch’ng, 2015b, c). In comparison to
traditional networks, SILs carry much more information. SILs encapsulate activities,
which complements the traditional follower-followee network format, which contains
only human nodes as opposed to activity nodes that are multimodal, e.g., contents and
context. As the mapping is novel, so therefore the “landscapes” created will be new in
the context that they contain a higher resolution of, and broader context of information.

The onset of the internet age has made our world smaller. As offline communities
connect to virtual communities, and become virtual communities, space and time are, in
a sense compressed to within the social medium that facilitates community interaction.
Insights into the behaviour of virtual communities in the age of social media requires a
Big Data approach in mapping the interactions as social networks, for the interaction of
online communities for a single topic can occur over large geographical distances and
may span many months involving thousands to millions of participants from highly
diverse demographics. Such interactions may also be multimodal, involving not only
the users, but also the content of the interactions linked between multiple parties. As
such, the traditional approach of manually mapping such networks can be tedious and
would not necessarily yield a large enough sample for social network analysis. This is
due to the fact that the collection, collation, and pre-processing of data sets are
frequently too large to manage with manual data processing. This paper presents a Big
Data solution as a methodological approach to the automated collection, cleaning,
collation, and mapping of multimodal, longitudinal data sets from social media. The
methods and algorithms presented here are generic, and can be applied to diverse types
of social media or user-generated contents involving user interactions, such as within
blogs, comments in product pages and other forms of media, so long as a formal data
structure can be constructed.

The mapping of extremely large networks involving hundreds of thousands to
millions of nodes could possibly prove or disprove theories in the social sciences. The
goal of this paper is to demonstrate the feasibility of using automated approaches for
acquiring massive, connected data sets for academic inquiry in the social sciences.

The paper begins with a background of the research. It continues with the
methodology for mapping social networks, covering the need for a Big Data
architecture, and identifying suitable asynchronous and distributable open source
technologies that are scalable in terms of volume of data and velocity of incoming data
streams. The latter section of the methodology presents the focus of this paper – the
mapping of SIL. The section describes the data structures and algorithms for mapping,
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reconfiguration and storage of dynamic and static networks. Section 4 demonstrates
the feasibility of the methods by presenting real-world data sets. The paper concludes
with a discussion and future work.

2. Background
The limited presentation of the sequential nature of content listings within social
media, as viewed on Web browsers or on mobile devices, do not necessarily reveal nor
make obvious an unknown nature of the medium; that every participant, from content
producers, to consumers, to followers and subscribers, including the contents they
produce or subscribed to, and the context they are in, are intrinsically connected in a
hidden but massive network. Such networks when mapped, could be quantitatively
analysed using methods in social network analysis (e.g. centralities), and the semantics
and sentiments could equally reveal valuable information with appropriate analytics.
Yet that which is difficult is the tediousness of collecting, cleaning, collating, and
mapping such data sets into a data structure that could yield important insights into
the community structure and the directional, and polarity of interaction on diverse
topics. It seems that the majority of research that investigate social networks have not
looked beyond the traditional approach of manually collecting and mapping such
networks, to a Big Data approach where mapping processes are automated. The
research community that invariably focused their attention on social networks should
genuinely consider the fact that any online activity is a sample of a population, and that
manual data collection, due to its tediousness, will perhaps harvest a tiny sample and,
as a consequence, yield a minor percentage of the full online content – a sample of a
sample of a population. Unfortunately, such data sets will invariably be biased. A Big
Data approach using scalable technologies is a viable approach in the era of Big Data,
using machines to collect machine-collated contents.

Massive quantities of information generated by people are being tapped by diverse
groups within the domains of computer science, physics, mathematics, social sciences,
business, and economics with the hope that it will answer questions in their disciplines.
In the physics domain, for example, the Large Hadron Collider at CERN churns out vast
quantities of information. Within computer science and the engineering disciplines,
the development of connected devices defined as the Internet of Things generate
massive information on human activities, systems and environments from sensors and
video surveillance. Computational social science on the other hand offers “the capacity
to collect and analyse data with an unprecedented breadth and depth and scale”
(Lazer et al., 2009). Regardless of which disciplines, the fact is that “these massive
amount of information can be tracked and measured with unprecedented fidelity”
(Anderson, 2008). Anderson continues, “This is a world where massive amounts of data
and applied mathematics replace every other tool that might be brought to bear. Out
with every theory of human behaviour, from linguistics to sociology. Forget taxonomy,
ontology, and psychology. Who knows why people do what they do? The point is they
do it, and we can track and measure it with unprecedented fidelity. With enough data,
the numbers speak for themselves”. Whilst Anderson’s statement appeared to be
controversial to many, there is truth in the fact that taking a Big Data approach could
have significant contribution to a new instrument for the vehicle of knowledge –
“change the instrument, and you will change the entire social theory that goes with
them” (Latour, 2010, p. 9).

Data can be static, recorded in memory or on a physical medium and remain
unchanged. Data can also be dynamic and continuous, with incoming streams from
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various sources. Data can grow linearly, or exponentially, particularly with the viral
nature of social media with volumes and velocity that will render a conventional
computer useless. The nature of such data is in the realm of Big Data. Certain types of
data can also “grow”, and evolve in a way that structural changes become different in
short spans of time. These types of data are driven by biological or human activities
and perhaps, machine-generated data, and are essentially complex adaptive systems.
SILs belong to the type that grows exponentially and evolve over time.

Data can also be “Big” in a number of ways, and is observed by Manovich (2011) as
data sets that are sufficiently large to require supercomputers. It is loosely defined by
Jacobs as “data whose size forces us to look beyond the tried-and-true methods that are
prevalent at that time” (Jacobs, 2009). However, Big Data is not only characterised by
its size, but by its relationality with other data (Boyd and Crawford, 2011) – “Big Data is
fundamentally networked”. Big Data can be characterised by three Vs – Volume,
Variety, and Velocity. These Vs, together with four others are briefly cover here,
and how they are related to the context of this paper – relationality and the networked
nature of data.

Volume refers to the enormity of data that have been created from the past to the
future in ever increasing rate. Velocity refers to the speed of data that is being created,
stored and analysed. Variety refers to the number of types of raw data that is scattered,
unstructured and complex. The “Big” in the term “Big Data” describes the three Vs,
for all can potentially be “Big” to an extent that the data sets will render a standard
computer insufficient for storing, processing and visualising incoming data in real-time
(or near real-time), without which data becomes meaningless as the big picture will not
be known. Four recent Vs have been proposed as part of the goal to define the
properties of Big Data. The first is Veracity, which refers to the credibility, or accuracy
of the data that a research may acquire or process, such as false information that are
spread widely online via social media costing huge loss of resources (Bontcheva,
2014a, b). Variability refers to the meaning in which a piece of information may be
associated with, and how that meaning may differ in different context or at different
times. The third is Visualisation, which extracts patterns in data in a human-
consumable format to extract meanings and inform data consumers. The previous Vs
may eventually add Value to institutions and organisations within the digital economy
when raw data is transformed via the Big Data process into information that facilitates
decision making. The permutations of a set of research problems associated with Big
Data’s Volume, Variety, Velocity, Veracity, Variability, Visualisation, and Value are
manifold, and the mapping of SIL is one such area. Mapping SILs potentially faces
challenging issues related to all these terms, especially during the process of analysis
and interpretation. The present paper focuses on the two largest issues in Big Data –
volume and velocity, this paves the way for resolving the other terms.

SIL of a similar nature may be obtained, but they are perhaps a limited subset of the
definition. For example, Java et al. (2007) investigated a very small community network
based on key terms within a gaming circle who also shared daily experiences with each
other. Jansen et al. (2009) examine Starbucks’ customer networks with Starbucks as a
central node based on the frequency of tweets in “word of mouth” communication.
Huberman et al. (2008) reveals a hidden network of actual friends within a subset
network via the removal of followers who were not part of an actual friendship. Sakaki
et al. (2010) compared information diffusion in three Twitter network types:
earthquake, typhoon, and new Nintendo game news. A larger study by Kwak et al.
(2010) constructs retweets trees of “Air France Flights” and examined their temporal
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and spatial characteristics for retweets pattern, depth, and speed. The mapping and
analysis of large scale SIL may indeed provide deeper and broader context of
information on a social network than conventional statistical analysis may allow. It
may also reveal greater information as compared to previous studies related to
traditional networks.

Social media research has attracted considerable attention in the academia, and has
become highly important on the business sectors (Ngai et al., 2015). The hidden social
information within channels of social media is important for revealing insights on the
spatial organisation of the social network. This requires the mapping of the “social
space”. Bourdieu (1985) states that the social world, a “social topology”, can be
represented as a space with several dimensions constructed on the basis of principles of
differentiation or distribution constituted by the set of properties active within the
social universe capable of conferring strength and power within the sphere of that
universe. Agents and groups, according to Bourdieu, are defined by their relative
positions within space as a set of objective power relations, i.e., field of forces as
economic, cultural, social capital, or symbolic capital (prestige, reputation, etc.) that
affect other agents who enter that space. Social networks are similar in nature. Whilst
one may suggest that physical interactions are irreplaceable, the benefits that
computer-based social networking sites have provided to society cannot be ignored.
Social networks increase our range of human connectedness beyond the boundary of a
participant’s geographical location. With regards to the time of interaction,
communications sent now may be retrieved and responded to, much later by other
participants. This invariably opens up a broad range of opportunities as space and
time, in the eye of a user are “compressed” to within a digital display, allowing diverse
communications from large demographics groups. In this context, the study of SIL is
an important aspect of social science inquiries.

3. Methods for mapping SIL
Two basic types of social network analysis exist. The first is the ego network analysis,
the second is complete network analysis. Ego network analysis is conducted via
surveys where the “ego” responds to questions asked about the ego’s immediate
network. Each ego is sampled from a large population in order to assess the person’s
network size, diversity, etc. The second type of analysis views the complete networks,
such as all existing relationships between a set of nodes. The research here is posited in
the latter type, although data from large-scale surveys used for collecting ego networks
can also be automatically mapped.

There are two types of social networks which can be mapped:

(1) Follower – followee or “Content Provider” – “Content Consumer” network. This
network consists mainly of inactive nodes with more or less permanent
connections between them. Followers such as within Twitter, LinkedIn, or
subscribers, and in YouTube and Instagram, for example, are posited within
this type of network. The growth of these types of network is slower. Such
networks have a larger temporal distance between followers and followees.

(2) Activity networks consist of active participant interactions, which have a
shorter temporal distance between each link. The growth of the network size
can be rapid, particularly with viral contents. Examples of activity networks are
active conversations within Twitter, Facebook, under the comments section of
YouTube, Google+, and product pages or blogs.
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Both network types are possible with the method described here. Section 3.1 begins the
methodology by suggesting appropriate technology for such work that makes it
possible to deal with the volume and velocity of data in the Big Data context.

3.1 Accessible big data software-hardware integrated architecture
This section introduces and suggests accessible technologies for Big Data scaling
issues but do not delve into the details of their implementation. Implementation details
are available within the technical manuals of the technologies and a summary guide in
the same context is available (Ch’ng, 2014). For reasons of practicality, it is necessary to
set two prerequisites prior to mapping social networks. The first of which is that such a
system must be accessible to a wide range of individuals and institutions with low-
budget constraints. The second requirement must ensure that all technologies used are
scalable in terms of volume and velocity. When volume and velocity can be managed,
data integrity, and completeness can be assured.

Fortunately, both requirements are achievable for individuals and institutions. Open
source scalable technologies, packaged as application programming interfaces (API) and
software libraries are available for the development and deployment on inexpensive
hardware, i.e., commodity machines, simple server setup, etc. Alternately they may be
deployed on Cloud services. Figure 1 is a summary diagram of the software architecture
deployed on the author’s Linux platform (and works with Windows and Mac OSes). In
first, unstructured data enters through the server “edge nodes” via Node.js. Here, various
algorithms work together to clean and structure data into schemas of key-value pairs.

Notes: (1) A Bid Data architecture integrating various open source
scalable technologies; (2) structured data used for research. In the
context of this paper, social network analysis, and data (graph)
mining

Figure 1.
A summary diagram
illustrating the Big

Data software-
hardware integrated

architecture

1729

Social
information
landscapes

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

29
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IMDS-02-2015-0055&iName=master.img-000.jpg&w=237&h=225


Data either enters through Redis (if real-time in-memory processing is needed), or directly
into MongoDB, distributed across MongoDB Shards. The asynchronous nature of the
“edge nodes” using Node.js ensures that data streams that scale in volume or velocity
(viral contents) are all received. The software integration is similar across developmental
servers, Cloud services, or within in-house servers or commodity machines. Commodity
machines (low-budget clusters of PCs) are the single most inexpensive way for deploying
such a system – each Node.js application uses only a single CPU core, thus the suitability
of using recycled hardware. In second, data sets are queried through either Redis, or
directly from MongoDB, via conventional algorithms that do not need high-efficiency
algorithms as the velocity of data streams can now be controlled. Mapping algorithms
can be programmed in either Node.js, or using any other languages that support
connections with MongoDB or Redis.

Secondary data types are important to SILs. The availability of secondary data
types is dependent on the social media API and the target web page. These statistical
data attributes are usually available (friends count, number of subscribers, number of
followers, number of posts, etc.) and could be used to compare with the growth and
evolution of a network over time. Geo-location, time zones, language, gender, and
textual contents provide other means of informing the status of each node in relation to
the SILs. The research questions asked and the hypotheses tested within each research
are different, and therefore, the collection of secondary data types is dependent on the
project at hand.

3.1.1 Accessing social media data and web crawling. The volume and velocity of
incoming data associated with mapping SILs may involve accessing social media API
such as Twitter, Facebook, Weibo, QQ, YouTube or Youku, and online stores such as
Amazon, JD.com or Taobao.com, for example. It is expected that some APIs may limit
the availability of their repositories due to internal financial motive of the company at
stake. Data after all is the new oil and has great value to business profitability. Where
APIs limit data access, web-crawling and scraping algorithms can be used to extract
data from JavaScript’s Document Object Model from web sites, which any graduate
programmer from a reputable institution would have learned. This paper will not cover
the details of accessing social media data via API, nor will it cover Web-scraping
technologies as the topics are beyond the scope of this paper.

It is imperative that we use social media data for testing the methods presented here.
The choice of social media should generate sufficiently large volumes of data with
potentially high velocity. One of these types of social media is Twitter. Twitter
generates around 500 million tweets per day. In any topical viral hash tags, the tweets
in Twitter could easily reach tens of thousands of posts in a very short span of time.
This meets the first two categorical Vs of Big Data – Volume and Velocity. As such,
Twitter data will be used for testing the methods covered in this paper, using the
streaming API, which captures more complete data sets than the limited REST API for
polling endpoints.

3.1.2 Asynchronous I/O. The volume of data is expected to be in the orders of
magnitude, the velocity will have a higher rate, considering that hundreds of millions
of contents are generated every second. Such volume of data multiplied by the velocity
of incoming streams from the Web will definitely crash conventional server-side
applications. A scalable network layer that is event driven, with a non-blocking I/O
model that is capable of data-intensive application with the ability to push and pull
data from multiple platforms is needed. Node.js built on Google’s V8 JavaScript

1730

IMDS
115,9

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

29
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



runtime, an open source JavaScript engine developed for Google Chrome’s Web
browser is used. V8 compiles to native code prior to execution, optimised and
re-optimised dynamically at runtime and is built for browser-based and stand-alone
high-performance applications. Node.js supports clustering but a PC with a single core
is generally sufficient for supporting large input streams. Node.js is purely a server-side
application and therefore, integration algorithms will need to be written for various API
and Web Services. A suite of basic libraries and modules accompany Node.js (HTTP,
Sockets.io, etc., amongst which are modules that connects to social media). The
asynchronous nature of Node.js algorithms makes it capable of pulling large volumes
of data in increasingly high velocity on a server side application (Ch’ng, 2014).

3.1.3 Scalable data storage. The big truth about Big Data is that it is easier to get the
data in than out ( Jacobs, 2009, p. 4) from relational database management systems. The
storage of Big Data in the Terabytes require a format that can be stored, but accessed
quickly and processed on the fly in real-time or near real-time. Raw data from web sites
and social media will be inconsistent and unstructured. As such, indexing may be
difficult. As noted by Jacobs, “To achieve acceptable performance for highly order-
dependent queries on truly large data, one must be willing to consider abandoning the
purely relational database model”.

A NoSQL (key-value pairs) with non-relational features that scales massively and
horizontally with a number of solutions that makes it easy to shard across distributed
systems is the key to storing structured social media data. There are benefits in using
NoSQL databases of scientific data storage. One of the most important aspects of
statistical correlation is the storage of as much data as a project can possible obtain.
Storing all data for filtering later is a better approach than not having the full amount of
data, for data lost means opportunity lost forever. This is important as web sites conduct
routine archive and removal of old data. Social media and social network API limit access
to past data (e.g. Twitter restricts access to stored data and only releases 10 per cent of
their API search). Streaming real-time data from API however is unrestricted and
therefore is mandatory, which means that all incoming data streams have to be stored.

MongoDB, a cross-platform open source freeform document database that stores
document in dynamic schemas as JavaScript Object Notation ( JSON) (MongoDB terms
it BSON). JSON is a lightweight format that can be used for structuring transmitting
data between a server and Web application and is convenient as a data format for
Node.js’ JavaScript. In this project, the replication of MongoDB is used for increasing
the distributed storage and throughput of data. All incoming data are parsed,
categorised, and stored in MongoDB shards via Node.js.

Redis is another open source, networked, in-memory, advanced key-value store data
structure server for fast access of structured data. This is possible as Redis holds the
whole data set in memory with configuration to allow semi-persistence of data via
snapshotting. Redis can be positioned as an intermediary between MongoDB and other
necessary services (e.g. Hadoop) within the Big Data architecture, such as the
processing of data sets, data mining, data and social networks, mapping, and
visualisation. Both MongoDB and Redis are scalable and supports clustering.

3.2 Mapping social networks
Social media contains hidden networks and can be constructed as SILs. The components of
an SIL consist of users, contents, and links that made up the landscape. The subsequent
sub-section covers the methods and algorithms for mapping, reconfiguring, and storing SIL.
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3.2.1 Mapping concepts. Figure 2 presents three models of extremely small
multimodal networks, which can be used to compare the differences between various
node communication scenarios. The Twitter social network is used as an example here
for reasons stated earlier, and for a clearer understanding of the data to be presented in
Section 4, but any multimodal network can be mapped in a similar fashion. Visualisation
uses the Gephi graph visualisation package, but any network visualisation application
can be used. Gephi’s layout feature (ForceAtlas and ForceAtlas 2) and ranking for setting
up the colour scheme. The average degree and average path length is used for calculating
the statistics of the network, these are degree and betweenness centralities.

In Figure 2, on the left is a larger node with many retweets in-degrees (directional
edges) pointing towards node “TwitterC”. On the left of TwitterC are four protruding
nodes, which were deliberately “pulled out” of the cluster for visual clarity. They are
Twitter users who retweeted TwitterC’s tweet. There is a thick arrow coming out of each
of the Twitter user node, with another arrow pointing towards the retweet node (the post)
from it, which points back towards TwitterC. All retweets have a similar pattern. This
records both the Twitter user and the retweets as a multimodal connection.

At the bottom right of the figure is a small cluster consisting of five interactions,
with TwitterE tweeting to TwitterF, G, and H. TwitterG tweets a post to TwitterF,
TwitterH, and TwitterG.

The cluster of nodes with two larger nodes TwitterA and TwitterB at the top right of
the figure is a conversational network, typical of an online activity network. Such a
configuration may reveal a community of some sort (Ch’ng, 2015c). At the bottom of the
community cluster is a group of nodes with directed edges from TwitterB showing
conversations “talks to @TwitterA with text” directed towards TwitterA (directed edges
from the nodes), these group of nodes are responsible for the thick arrow pointing towards
TwitterA. At the top right of the cluster, TwitterA tweeted a node with a double
directional edge with the dummy text “A text not targeting anybody”. This is a tweet (or a
comment) without a target. The amount of the interaction defines the weight of the
directed edge. The edge between TwitterB and TwitterD is not as thick but is thicker than
the other edges, showing more interactions between the two nodes. Other edges and nodes
show the direction of conversation, which gives it a distinct visual pattern as compared to
the retweets. The unique arrangements of the nodes give rise to distinct features within a
large network, as we shall see in Section 4. Activity nodes such as the clusters show here
may allow us to identify and isolate communities from small and large-scale networks.

3.2.2 Data structures for dynamic and static graphs. A standard data format Graph
Exchange XML Format (GEXF) can be used for representing social networks. GEXF is
a language for describing complex network structure and their associated data and
dynamics. Whilst data can be output to any of the network-based formats (GraphML,
XGMML, SVG, GDF), GEXF preceded the other formats as it is relatively mature,
robust, flexible, and includes time as one of the dynamics feature. The GEXF format
provides a way to visualise time-based networks that other formats do not. The
algorithms within the mapping system should consist of nodes representing users and
posts (tweets, comments, posts, etc.), edges representing links between users, and
between users and their posts. In multimodal networks, posts are included as nodes so
that the expression of the landscape has distinctive features when visualised using a
combination of pre-set algorithms in some visualisation software (e.g. Gephi). All
informational entities should be recorded with a timestamp so that the evolution of
occurrence and growth of the network can be reconstructed in a dynamical way.
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A representation of a
small section of three

Social Information
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The data structure of a typical GEXF file is in the listings below, with a graphical
representation in Figure 5(f). In the figure, N refers to a node (a person) with its
corresponding number whilst P refers to a post (a tweet, a comment, etc.).

Listing 1 shows the head and tail of the data structure of a typical GEXF file, with a
graphical representation of the network. Between the onodesWo/nodesW
and oedgesWo/edgesW tags are all the nodes and edges of the graph,
shown in Figures 3 and 4.

Listing 1: the top and tail of the data structure of a typical GEXF file, with a
graphical representation of the network. Between the onodesWo/nodesW
and oedgesWo/edgesW tags are all the nodes and edges of the graph,
shown in Figures 3 and 4:

o?xml version¼ '1.0' encoding¼ 'UTF-8'?W

ogexf xmlns¼ 'http://www.gexf.net/1.2draft' xmlns:viz¼ 'http://www.gexf.net/
1.2draft/viz' version¼ '1.2'W

ometa lastmodifieddate¼ '113-6-4'W

ocreatorWEugene Chngo /creatorW

odescriptionWTwitter Mapo /descriptionW

o /metaW

ograph defaultedgetype¼ 'directed' idtype¼ 'string' mode¼ 'dynamic' timeformat
¼ 'dateTime' start¼ '2013-05-18T05:00:58.975+0100' end¼ '2013-05-18T06:
58:25.584+0100'W

oattributes class¼ 'node' mode¼ 'dynamic'W
oattribute id¼ 'description' title¼ 'Description' type¼ 'string'/W

o /attributesW
oattributes class¼ 'edge' mode¼ 'dynamic'W

oattribute id¼ 'weight' title¼ 'Weight' type¼ 'float'/W
o /attributesW

onodes count¼ '12'W
... // all nodes here

o /nodesW

oedges count¼ '16'W

o /edgesW
... // all edges here

o /graphW
o /gexfW

Particular attention should be paid to a few lines of code and the attributes of the tags
in Listing 1 and Figures 3 and 4. Specifically, due to the nature of the dynamic graph,
the element of time (start and end attributes) is important. In the ographW tag
(bold), the start and end attributes shows the entire timespan of the network. The other
tags are the onodesW and oedgesW tags, which shows the size of the nodes
(Figure 3) and edges (Figure 4) in the network.
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Figure 3.
Nodes of the

graph in Figure 5,
inserted within
theonodesW

o/nodesW tags
in Listing 1
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Figure 4.
Edge nodes of the
graph in Figure 5,
inserted within
theoedgesW
o/edgesW tags
in Listing 1
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Figure 3 shows a listing of all the nodes of the network. The most important attributes
in the onodeW tag are the id and the label. The id sets the uniqueness of the id for
graph processing software and the label is displayed visually as a label on the nodes
(see Figure 5).

Figure 4 shows a listing of all the edges of the network. Three most important
attributes are the id, the source and the target, which describes the connection between
the source and the target node in Figure 3. The id “N4-N1” of an edge has two
oattvalueW tags showing a value of 2:

oattvalue for¼ “weight” value¼ “2” /W
This is read by graph visualisation software (i.e. Gephi) as the weight of the connection.
N4’s connection to N1 in Figure 5 has a thicker line because there were two interactions:

N4→P4→N1
N4→P5→N1

The only disadvantage of the GEXF file format is perhaps the size attributed to the
XML tags used for enclosing and describing the contents. In extremely large data set,
an alternative can be used, by removing the time element if they are not important to
the research inquiry. For static maps which are much smaller in file size, a GDF file
can be generated (see Section 3.2.6 for algorithm) as an output. Listing 2 is a GDF
version of the GEXF graph file. The file is self-explanatory. The first section
beginning with nodedefW followed by a list of attributes describing each line of
node properties are the nodes. The second section beginning with edgedefW
followed by the connection and the weight are edges.

Listing 2: the listing shows the static graph version of the GEXF file format. The file
format is GDF:
nodedefWname VARCHAR,timeStamp VARCHAR,label VARCHAR,
N0,2013-05-18T05:01:10.901+0100,N0,

P3

N4

P2

N3

P1

P4

P0

P2

P1

P4

N0

P0
N3

P4

P1

P2
P3

N5

P5
N0

P0
N3

N0N2

N1

N4

N1

N2

N4

N1

N5
N2

(d) (e) (f)

2013-05-18T06:51:25.684+0100 2013-05-18T06:52:25.584+0100 2013-05-18T06:58:15.584+0100

2013-05-18T05:00:58.975+0100 to 2013-05-18T05:07:25.684+0100 2013-05-18T06:01:25.684+0100

N2

N1

N0

P1
P0

N3
N0

P0
P1

N0

P0

N2

N1

N2

N1

(a) (b) (c)

2013-05-18T06:41:25.684+0100

Notes: The graph is described in the GEXF data structure in Figure 3. The numbering shows
the sequence. The dates are in the order of when new nodes and edges appear and connect to
the network

Figure 5.
A sequence diagram
showing time-based
dynamic graph, with

nodes and edges
appearing according

to the timestamps
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N1,2013-05-18T05:01:10.901+0100,N1,
P0,2013-05-18T05:01:10.901+0100,P0,
N2,2013-05-18T05:01:25.684+0100,N2,
P1,2013-05-18T06:01:25.684+0100,P1,
N3,2013-05-18T06:41:25.684+0100,N3,
P2,2013-05-18T06:51:25.684+0100,P2,
N4,2013-05-18T06:51:25.684+0100,N4,
P4,2013-05-18T06:51:25.684+0100,P4,
N5,2013-05-18T06:52:25.584+0100,N5,
P3,2013-05-18T06:52:25.584+0100,P3,
P5,2013-05-18T06:58:15.584+0100,P5,
edgedefWnode1 VARCHAR,node2 VARCHAR,weight INT,
N0,N1,2,
N0,P0,0,
P0,N1,1,
N4,N1,2,
N4,P4,0,
P4,N1,1,
N2,N3,2,
N2,P1,0,
P1,N3,1,
N2,N4,2,
N2,P2,0,
P1,N4,1,
N5,P3,0,
N4,N1,2,
N4,P5,0,
P5,N1,1,

3.2.3 Mapping algorithm. The mapping algorithm maps social media activities into an
SIL. There are three components in such a network – the user, the post, and a collection
of users mentioned in the post. A user v participates in social media on a topic (collected
with a hash tag, or keywords, within a product page or a media channel). The total
collection of users within the topic is V. Each user may comment, tweet, or post a
statement p, which may contain mentions of a user m. Within a post p, there may be a
collection of mentions of other users M. e is an edge between two nodes and E is the
collection of all the edges. The summary of the sets is:

v: a user object, also containing all the attributes associated with the user
(timestamp, post, etc.)

V: a collection of all the users and their attributes
n: a node representing a user, containing all the information in v
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N: all nodes in the network
p: a post by a user
m: a user mentioned within the post
M: all users mentioned within the post
e: a single edge between two nodes
E: a collection of edges.

At the start of the algorithm, each user with the associated information is queried from
the database and stored V←{{v}: v∈V}. For each user, first assign the post p← the
post of v. Get all the mentions from the postM← {{m}: m∈M}. Check if the user exists
in the node collection N, if not, add the user to the node collection Add(v) to N. If no
users m are mentioned in the post p, add the post as a node AddNode(p). If users are
mentioned in the post, and if any user is not in the collection N, add the user to the
collect AddNode(m). The procedure CheckMentions(M) is as follows: For all mentions,
add an edge between the user and the post AddEdge(n,p), add an edge from the post to
the user mentioned AddEdge(p,m), finally, increase the weight of the edge by 1 between
n and m Increment(w, 1) of n and m. If the user exists in the collection of nodes call
the procedure CheckMentions(M). Finally, the data is output as a GEXF file.
The mapping algorithm:

V ← {{v} : v ∈ V }
FOR all v ∈ V DO
p ← the post of v
M ← {{m} : m ∈ M } in mentions m of the post p of v
IF v ∉ N THEN Add(v) to N, DO

AddNode(p)
IF count(M) o 1 DO

AddEdge(n,p)
ELSE

proc CheckMentions(n);
FOR all m ∈ M

IF m ∉ N THEN AddNode(m) to N
AddEdge(n,p), AddEdge(p,m), AddEdge(n,m)

Increment(w, 1) of n and m
END-IF

END-FOR
end-proc

END-IF
ELSE

CheckMentions(n)
END-IF

END-FOR
Output(GEXF)
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3.2.4 Reconfiguration algorithm. The SIL mapped with the algorithm in Section 3.2.3
has this configuration:

n→p→m, n→m
The network can be reconfigured to n-p-m with the algorithm below, this simply
“unwraps” the complete connection by severing n and m’s edge. The reconfiguration
algorithm: “unwrapping” the network:

N ← {{n} : n ∈ N } from GEXF file
FOR all n ∈ N DO

RemoveEdge(n,m)
END-FOR

Output(GEXF)

The network can also be reconfigured to remove all post, containing users onlyn-m, with
the algorithm below. The reconfiguration algorithm: retaining users and removing posts:

N ← {{n} : n ∈ N } from GEXF file
FOR all n ∈ N DO

RemoveEdge(n, p), RemoveEdge(p, m), RemoveNodes(p)
END-FOR

Output(GEXF)

3.2.5 Dynamic graph output. The GEXF dynamic graph output (Section 3.2.2) has a simple
procedure Output (GEXF). The header is written first by streaming a text output and inserting
information where needed into the header, such as the start and end timestamps of the first
appearance of, and the last appearance of the final node, and subsequently the opening and
closing tagswith the node and edge counts that encloses the individual node and edge tags. For
each node, write the node tag WriteNode(n) with associated information such as the start and
end timestamps. For each edge, write the edge tag WriteEdge(e) with associated source and
target attributes, and add the weight attributes for visualisation purposes. GEXF file output:

proc Output(GEXF);

WriteHeader(N)

WriteNodesTag(Count(N))

FOR all n ∈ N DO
WriteNode(n)

END-FOR
CloseNodesTag()
WriteEdgesTag(Count(E))

FOR all e ∈ E in N, DO
WriteEdge(e)

END-FOR
CloseNodesTag()
WriteFooter()

end-proc
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3.2.6 Static graph output. The GDF format (Section 3.2.2, Listing 2) is a static format
that has the same expression as the dynamic version, apart from the removal of the
time element. The output and algorithm is straightforward. For the nodes and edges,
respectively, the labels are being written first before the corresponding node and edge
lists are appended. GDF file output algorithm:

proc Output(GDF);
writeNodeLabels(N);
FOR all n ∈ N DO

WriteNode(n)
END-FOR
writeEdgeLabels(N);
FOR all e ∈ E in N, DO

WriteEdge(e)
END-FOR

end-proc

4. Visualizing mapped SIL
This section demonstrates the feasibility of the Big Data architecture and the
algorithms used for mapping SIL. The first subsection looks at the capability of the
methods in managing the volume and velocity of topical data sets, followed by samples
expressions of SIL retrieved from the topical data sets. The final subsections inspect
the details of some of the graphs.

4.1 Volume and velocity
Figure 6 are graphs of viral outbursts of trending data captured from Twitter with
the Big Data architecture. Each point within the graphs is a five hourly recording of
Twitter activities as a SIL with the associated hash tags (caption at the top), mapped
as an SIL using the GEXF file format. The #MH370 data set has over 21 data points,
for example, whilst the #RoyalBaby data set has 91 data points. The volume and
velocity of each trending topic can be observed, particularly at the spikes of the data
point at particular events released by news channels. #MH370 has one of the largest
data point at around 500 Megabytes on the 24 March 2014, all the data points in total
amounted to over 14 Gigabytes. The graphs show different signatures. These
signatures are by-products of the mapping algorithms and are potentially a useful
source of information. For example, the spikes in the #FreeJahar data set are news
releases in associated Twitter accounts of news channels, out of which the majority of
the data are retweets. However, in the case of the #FreeJahar, communities were
identified within those data sets (see Ch’ng, 2015c), and community activities were
heightened in the spiked data points. The #PRU13 is a Malaysian political election
data set, it is easy to see that 5th May of 2013 has the highest activity as it was the
day of the election. There is another spiked data point a little later, which is related to
news of swapped ballot boxes during a supposedly deliberate electrical black out.
The hills and valleys of data points for other data sets may just be the heightened
activities during the day and the easing off of tweets during the night (e.g. the
#McCann data set).
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4.2 Expressions of SIL
In Figure 7 are six SILs sampled from the topical data sets in Figure 6. Here, the value
of the methods for mapping SIL is demonstrated. Each SIL (a data point) is a recording
of five hourly activities in Twitter. Each SIL shows a different landscape expression.
The degree centrality (number of in-degrees and out-degrees) is used for measuring
each node, resulting in the more important nodes (larger in size) with a higher degree
centrality within the multimodal activity networks. The number of nodes in each SIL is
shown at the bottom of each graph. The graphs described with the GEXF format is
visualised with the Gephi graph visualisation package.

The largest graph in Figure 7 has over 200,000 nodes (#MH370), the number of
nodes and edges in the graph is a challenging problem as it may be difficult for certain
graph visualisation packages to process. However, many of the nodes may not be
important to social network analysis. The unimportant nodes are usually unconnected,
or the nodes may be individuals who posted only a single tweet. Unless semantic or
sentiment analysis is conducted on the full set, these nodes can be safely removed from
the graph. Figure 8 is a set of graphs with nodes which have a limited number of edges
removed from the graphs in Figure 7, the caption on the top right corner of each inset
shows the reduced node and edge size, the parenthesis (e.g. o3) is the filter used for
reducing nodes with edges less than a number, in the case of #PRU is nodes with edges
o3. The smaller graphs are useful for efficient graph processing using graph
visualisation software whilst maintaining the quality and meaning of the SIL.

The different signatures in each of the SIL are obvious here. The signature of each
SIL is due to the nature of the activities, the background of the topic, and the intentions
of the social media users. It can be observed that users who interacted more are closer
together in that they form natural clusters. The #FreeJahar data set which has very
interesting phenomenon has been analysed in detail (Ch’ng, 2015c).

The other data sets are also of considerable interests to academics in the social
sciences. Here, a brief description of the social network expression is sufficient until
further results from the analysis are published.

In the #PRU graph, two large political parties contended during the Malaysian
general election bridged by activists, the opposition leader @AnwarIbrahim is flanked
by media channels and have large degree and betweenness centralities, an indication of
heightened activities which greatly strengthened the opposition party’s stand. In the
controversial #NSA news, within the graph, a Guardian correspondent is highly active,
with clusters of activities directly below in the SIL. Note that #KatyPerry is above in a
separate but linked community. The glamorous birth of the #RoyalBaby were
mentioned by celebrities (e.g. @selenagomez, etc.) with pockets of discussions. The
reawakening of the Madeleine #McCann kidnapping case due to new evidence led to

Notes: Each SIL (a data point) is a recording of five hours of activities in Twitter. They
show different expressions. The important nodes (larger in size) are nodes with a higher
degree centrality within the multimodal activity networks

Figure 7.
Each SIL here is a
data point sampled

from the topical
graphs in Figure 6
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separate clusters of varying degree of intense conversations. A single MH370 SIL
datapoint contains two separate clusters of important posts by activists.

The brief analysis and visualisation of the above data sets raise some interesting
questions. For example, why are there many more distinct clusters of activities within the
#McCann SIL as compared to the other data sets? Is this an indication that there were
many kidnapping-related experiences in the separate clusters of social media users?Whilst
the answers to these questions are interesting, they are beyond the scope of this paper.

4.3 Network structures and centralities
In this section, three data sets captured from social media are shown. The data sets
demonstrate the details of the algorithms in mapping SIL.

Figure 9 is a capture and mapping of a SIL 15 July 2013 for 9 days on the press
release related to the publication of the discovery of “World’s Oldest Calendar”

(a)

(c)

(b)

Notes: (a) The complete dataset composed of 9 days of activities since 15 July 2013 using the
mapping algorithm (7187 nodes, 10322 edges); (b) an unwrapped version of the SIL using the
reconfiguration algorithm in 3.2.4. Isolated nodes have been removed, leaving only connected
nodes in the network (2060 nodes, 2203 edges); (c) a closer view of an isolated cluster within
the SIL, showing the detailed connections between different types of nodes (users and posts)

Figure 9.
Trending tweets of

press releases related
to the publication of

discovery of the
“World’s Oldest

Calendar”
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(Gaffney et al., 2013). There were 44 data sets (5 hourly each data point), which have
been combined into a single map in Figure 9. There were 5,973 nodes (users and their
tweets) and 6,100 edges (connecting users and tweets). The relative importance of the
nodes within the SIL in diffusing information uses the in- and out-degree centrality
(shown as larger, redder nodes).

Figure 9(a) shows the complete data set composed of nine days of activities since 15
July 2013 using the mapping algorithm (7,187 nodes, 10,322 edges). Figure 9(b) shows
an unwrapped version of the SIL using the reconfiguration algorithm in 3.2.4. The
isolated nodes have been removed, leaving only connected nodes in the network (2,060
nodes, 2,203 edges). Figure 9(c) shows a closer view of an isolated cluster within the SIL,
illustrating the detailed connections between different types of nodes (users and posts).
Figure 10 is a visualisation of an SIL sampled from one of the MH370 data points.
Posts have been removed, leaving only user nodes within the network of activities,
which forms a small world network (Ch’ng, 2015b). The important nodes have
higher degree centralities (larger and redder nodes). The nodes are news
correspondence of major news channels. The main activities here are retweets from

Notes: Posts have been removed, leaving only user nodes within the network. The main
activities here are retweets of news events

Figure 10.
An SIL sampled
from one of the
MH370 data points
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users of news events. Note that unlike the #FreeJahar SIL in Figure 11, there are no
conversational clusters.

Figure 11 is a visualisation of the largest five-hourly #FreeJahar SIL.
The expression of the SIL is typical of a network with heightened conversational
activities, the persistence of the cluster indicates that a community has formed.
The SIL is mapped with the algorithm in 3.2.3 and has not been reconfigured.
The nodes are colour coded – black nodes are retweets, blue nodes are conversational
posts, the shades of red are Twitter users. The reddest nodes are ones with higher
measure of betweenness centrality, a sign that they are the “gate keepers” of information.
An analysis of the #FreeJahar data set collected and mapped with the methods
described here is available (Ch’ng, 2015c). The paper investigates the formation,
development, and decline of the #FreeJahar community and elaborates the phenomenon
discovered here.

5. Discussion
Social media certainly increases our range of communicable activities. Social media also,
collectively in the global sense, extends the human connectedness beyond the boundary of
a participant’s geographical location. The time of interaction between participants and

Notes: The expression of the SIL is typical of a network with heightened conversational
activities. Black nodes are retweets, blue nodes are conversational posts, the shades of red
are Twitter users. The reddest nodes are ones with higher measure of betweenness centrality

Figure 11.
Visualisation of the

#FreeJahar SIL
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communications sent now may be retrieved and responded to, much later by other
participants due to Information Technology infrastructures. Thus, the distance between
time and space has been greatly shortened in the age of social media. This invariably opens
up a broad range of opportunities as space and time, in the eye of a user are “compressed”
to within a digital display, allowing diverse communications from extremely large
demographics groups. Participants interact without thinking much about the information
networks that they are helping to build, and users reading social media are oblivious to the
fact that hidden networks exist. This is due to the fact that the limited presentation of the
sequential nature of content listings within social media, as viewed on web browsers or on
mobile devices do not necessarily reveal nor make obvious an unknown nature of the
medium; that every participant, from content producers, to consumers, to followers and
subscribers, including the contents they produce or subscribed to, are intrinsically
connected in a hidden but potentially massive contextual network. These hidden networks
are a valuable source of information for scientific inquiry. Such networks when mapped
and analysed using appropriate methods could reveal valuable information. These
multimodal networks, together with information about the nodes, direction of edges, the
polarity of interactions, the structure of the graph and secondary data captured
longitudinally form a SIL. SIL have become an important aspect of contemporary scientific
inquiry, and the importance will only increase in the future when all things both men and
machines are digitally connected.

In this paper, the definition of SIL is set, together with a detail of the methods for
mapping such landscapes. The mapping of SILs undoubtedly requires a Big Data
approach, for the temporal range may be great if meaningful longitudinal data sets are
to be acquired. Volume and velocity have been a major challenge in acquiring social
media data sets, this may mean that manual approaches in collecting and mapping
networks will no longer be feasible. To address the issue of volume and velocity, a Big
Data architecture integrated with scalable open source libraries and API is provided as
a solution. The solution uses server-side asynchronous I/O software developed for
connecting to and streaming data from social media and the web. The system is
designed so that incoming data is immediately stored in scalable and distributed
NoSQL databases, and when the data collection is complete, separate algorithms are
used for streaming structured data in stable, evenly spaced chunks for mapping SIL. A
set of algorithms were presented in Section 3 for mapping, reconfiguring and storing
SIL, together with patterns for dynamic and static data formats that could be used with
graph visualisation packages. Section 4 demonstrates the feasibility of the Big Data
architecture and the usefulness of mapping large multimodal and longitudinal data by
presenting real-world social media data sets as examples.

The methodology presented here has laid a foundation for mapping multimodal and
longitudinal networks. However, much work is required for the future, especially with
regards to issues of Big Data. One of such issues is the (1) processing of extremely large
graphs with hundreds of thousands of nodes and edges. In the data sets given within
this paper, the largest graph reaches 200k nodes in a single data point, in actual fact
however, a SIL is a combination of all the data points as the activities are continuous
through time. This will bring the size of nodes to over one million with edges doubling
the size of the nodes. On a Dell PowerEdge C6,100 with 2x Intel Xeon X5,660 Processor
(2.80 GHz, 12 M Cache, 6.40 GT/s QPI, Turbo, HT), 1,333 MHz Max Memory, 48 GB
Memory (6× 8 GB Dual Rank RDIMMs), 200k nodes is manageable. In larger social
media involving months to years of data collection, the size could easily reach tens of
millions. Extremely large graph processing is therefore an issue and needed parallel
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and distributed processing. The second issue is (2) real-time mapping of networks.
Unlike the data management covered in this paper, which stores all data sets prior to
processing them in a stable stream, real-time processing may need to discard unwanted
or redundant raw data as they may be too big for storage, keeping only data which has
been structured. This invariably requires real-time mapping and configuration of
graphs, implying that parallel and distributed processing is required. The final issue is
(3) large SIL visualisation, which involves (1) and (2) will require distributed and
parallel processing, particularly with GPGPUs. A single GPGPU with thousands of
processing cores within a single computer is a suitable platform for developing
algorithms that manage all three issues discussed above. The Big Data and Visual
Analytics Lab (Ch’ng, 2015a) is at present working with Nvidia in various research
projects in developing algorithms in all three issues as part of our future work. One of
the proposition for visualisation is described in Sun et al.’s (2015) article.

The methodology presented in this paper has practical implications not only in the
academia, but also in marketing, business applications, and security. The mapped SILs
can be used for tracking the outreach and impact of topical marketing activities on
social networks, via keywords and hash tags for example. Influencing factors such as
profile attributes of social media users in marketing strategies can be analysed together
with marketing impacts in order to see if the factors correlate with profits in the longer
term, if company contents are diffused via social networks using different media types
(text, audio, video, and image contents). SILs do have important implications on
mapping contextual networks for monitoring terrorist activities, outreach, connections,
and context for security purposes (e.g. ISIS has online presence), including terrorist
attacks and their psychological effects on civilians and the wider society. Coupled with
machine learning techniques, SILs could be a powerful tool that can be used for
classification and prediction purposes.

Data relationality is an important issue, and this paper has tackled a very important
aspect of the broader issues in Big Data research.
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