

Journal of Systems and Information Technology

The analysis of near and far field pattern through mode analysis and FFT in a finite periodic dielectric gratings Tae-Bong Lee Min-Nyeon Kim

Article information:

To cite this document: Tae-Bong Lee Min-Nyeon Kim , (2015),"The analysis of near and far field pattern through mode analysis and FFT in a finite periodic dielectric gratings", Journal of Systems and Information Technology, Vol. 17 Iss 1 pp. 82 - 90 Permanent link to this document: <http://dx.doi.org/10.1108/JSIT-11-2013-0056>

Downloaded on: 14 November 2016, At: 21:29 (PT) References: this document contains references to 14 other documents. To copy this document: permissions@emeraldinsight.com The fulltext of this document has been downloaded 46 times since 2015*

Users who downloaded this article also downloaded:

(2015),"Biometric verification based on facial profile images for mobile security", Journal of Systems and Information Technology, Vol. 17 Iss 1 pp. 91-100 http://dx.doi.org/10.1108/JSIT-03-2014-0020

(2015),"CRM in the digital age: implementation of CRM in three contemporary B2B firms", Journal of Systems and Information Technology, Vol. 17 Iss 1 pp. 2-19 http://dx.doi.org/10.1108/ JSIT-06-2014-0044

Access to this document was granted through an Emerald subscription provided by emeraldsrm:563821 []

For Authors

If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.

The current issue and full text archive of this journal is available on Emerald Insight at: **www.emeraldinsight.com/1328-7265.htm**

ISIT 17,1

82

Received 7 November 2013 Revised 17 March 2014 Accepted 19 March 2014

The analysis of near and far field pattern through mode analysis and FFT in a finite periodic dielectric gratings

Tae-Bong Lee

Department of Electronics and Communication, Gachon University, Sungnam, Republic of Korea, and

Min-Nyeon Kim *Division of Information and Communication Engineering, Baeseok University, Cheonan, Korea*

Abstract

Purpose – The purpose of this paper is to analyze far and near field emitted field patterns through more exact calculation of the modes formed in finite periodic dielectric gratings.

Design/methodology/approach – For the mode calculation, equations are newly defined by applying vertical boundary condition on the assumption that transverse electric modes are generated in the structure. After finding modes, near field patterns are calculated using the wave number and coefficient of the mode.

Findings – Additionally, the results from these calculations are compared with that of the rigorous-coupled method. Finally, far field patterns are derived by applying fast Fourier transform to near field patterns and also compared with the results of rigorous-coupled method.

Research limitations/implications – For convenience of coordinate, we use rectangular coordinate, though the shape of radome is a hemisphere.

Practical implications – In this paper, the authors derive more exact near field patterns without the assumption of infiniteness so that these results can be used practically for a making real frequency-selective structure.

Originality/value – Conventional periodic finite dielectric gratings analysis has been done using Floquet–Bloch wave theory, coupled-mode, rigorous-coupled method which is based on the assumption of infiniteness of the structure.

Keywords Far field pattern, Finite periodic dielectric gratings, Frequency-selective structure, Near field pattern

Paper type Research paper

1. Introduction

Periodic dielectric gratings which have many characteristics including frequency-selective property are evaluated to be useful for various applications [\(Bertoni](#page-8-0) *et al.*[, 1989;](#page-8-0) [Parker](#page-9-0) *et al.*, 2008; [Hook and Ward, 2004;](#page-9-1) [Vardaxoglou, 1997;](#page-9-2) [Munk, 2000;](#page-9-3) [Parker and Hamdy, 1981;](#page-9-4) Wu *et al.*[, 1992;](#page-9-5) [Edenhofer and Alpaslan, 2005\)](#page-9-6). Specifically, it can be applied for surface-emitted antenna and coupler.

Conventional periodic infinite dielectric gratings analysis has been done using Floquet-Bloch's coupled-mode or rigorous-coupled method which is based on the

Journal of Systems and Information Technology Vol. 17 No. 1, 2015 pp. 82-90 © Emerald Group Publishing Limited 1328-7265 DOI [10.1108/JSIT-11-2013-0056](http://dx.doi.org/10.1108/JSIT-11-2013-0056)

assumption of infiniteness of the structure [\(Moharam and Gaylord, 1981;](#page-9-7) [Kogelnik and](#page-9-8) [Shank, 1972;](#page-9-8) [Moaveni, 1989;](#page-9-9) [Hill and Meltz, 1997;](#page-9-10) [Kong, 1985\)](#page-9-11). However, in this paper, boundary conditions are simply used to derive more exact near field patterns without the assumption of infiniteness.

More specifically, in Section 2, the equation for modes formed inside the finite periodic dielectric gratings are defined and in Section 3, the modes and their far field patterns are calculated through computer simulation and the results are compared with the results of rigorous-coupled method as assumption of infinite grating structure.

In this work, frequency selective structure (FSS) is developed for the purpose of transmission filter of radar radome using 3GHz frequency. For convenience of coordinate, we use rectangular coordinate, though the shape of radome is a hemisphere [\(Altintas](#page-8-1) *et al.*, 1999).

2. Modes analysis

[Figure 1](#page-2-0) shows finite periodic dielectric gratings which are formed alternatively with two different dielectric values. On the assumption of incident transverse electric mode wave, the modes formed inside the gratings structure will be calculated.

In [Figure 1,](#page-2-0) ε_0 is 8.854 \times 10⁻¹² F/m as a permittivity of free space and ε_1 is a value of ε_0 multiplied by ε_r which is relative permittivity of 2.44.

In this paper, we classify two cases of finite and infinite grating structures. In the first case of the finite structure, it is different with infinite structure because of a lack of periodic characteristic and [Figure 2](#page-2-1) shows the near field pattern that was calculated using boundary condition. Also, in second case of infinite structure, we calculate near field pattern using the rigorous-coupled theory for purpose of comparing the difference of operating modes between finite and infinite gratings structure and [Figure 3](#page-3-0) shows near field pattern.

Figure 1. Incidental and reflective wave of dielectric gratings

Figure 2. Near field patterns $(f = 3GHz, \varepsilon_r = 2.44,$ $N = 4$ finite grating structure)

83

Analysis of near and far field pattern

84

In [Figures 2](#page-2-1) and [3,](#page-3-0) we can see the difference of field distribution between finite grating and infinite grating structure. Inside the finite structure, the E-field distribution which satisfied boundary condition is formed. To calculate the field distribution at each boundary layer, the following wave equation must be solved:

$$
\nabla^2 \overline{E}(x, y, z) - k^2 \overline{E}(x, y, z) = 0 \tag{1}
$$

where E is a electric field density and k is a propagation constant of $\omega\sqrt{\mu_0\varepsilon}$, ω is angular frequency and μ_0 is a value of $4\pi\times 10^{-7}$. Incident wave can be defined by the following equation [\(1\)](#page-3-1) (see [Figure 1\)](#page-2-0), and equation [\(2\)](#page-3-2) is a solution of:

$$
\overline{E}(x, y, z) = E_y e^{-j(k_x x - k_z z)}
$$
\n(2)

Then, the field in each layer can be described as:

$$
\overline{E}(x, z) = E_{y_0} e^{-j(k_x x - k_z z)} + R E_{y_0} e^{j(k_x x + k_z z)}, z \ge h
$$
\n(3.1)

$$
\overline{E}(x, z) = E_{y_0} e^{-j(k_z z - k_{x_0(x - t_1)})}, \qquad x \le t_1, 0 \le x \le t_1
$$
\n(3.2)

$$
\overline{E}(x, z) = (A_n \cos(k_{x_n}(x - t_{n-1})) + B_n \sin(k_{x_n}(x - t_{n-1}))), \quad n = 1 ... N,
$$

$$
t_1 < x \le t_N, 0 \le z \le h
$$
 (3.3)

$$
\overline{E}(x, z) = E_{y_0} e^{i(k_x x + k_z z)}, \ z \le 0
$$
\n(3.4)

where, $k_{x_{n}} = \omega \sqrt{\mu_0 \epsilon_0} \epsilon_{r}$, $k_{x_0} = \omega \sqrt{\mu_0 \epsilon_0}$, R is reflectivity and ϵ_{r} is n-th permittivity.

To avoid the difficulties of a conventional method which includes very complex integral equations, in this work, first, every mode which forms horizontal fields is

calculated by applying boundary conditions to the vertical boundary layer, $t_1, t_2, t_3, \ldots t_N$. Second, the near fields of every mode are computed and finally, far field patterns are derived through fast Fourier transform (FFT).

At this time, very small *h* is assumed and the following equations, (4.1)–[\(4.6\)](#page-4-0) for horizontal fields are obtained by applying boundary condition to the equations, (3.1) – (3.4):

$$
E_0 e^{-jk_{t_1}t_1} = A_1 \cos(k_{t_1}t_1) + B_1 \sin(k_{t_1}t_1)
$$
\n(4.1)

$$
-jk_0E_0e^{-jk_{t_1}t_1} = -k_{t_1}A_1\sin(k_{t_1}t_1) + k_{t_1}B_1\cos(k_{t_1}t_1)
$$
\n(4.2)

$$
A_n \cos(k_{t_n} t_n) + B_n \sin(k_{t_n} t_n) = A_{n+1} \cos(k_{t_{n+1}} t_{n+1}) + B_{n+1} \sin(k_{t_{n+1}} t_{n+1}) \qquad (4.3)
$$

$$
\begin{array}{l} -k_{t_{n}}A_{n}\textrm{sin}\left(k_{t_{n}}t_{n}\right)+\ k_{t_{n}}B_{n}\textrm{cos}\left(k_{t_{n}}t_{n}\right)=-k_{t_{n+1}}A_{n+1}\textrm{sin}\left(k_{t_{n+1}}t_{n+1}\right)+\ k_{t_{n+1}}B_{n+1}\textrm{cos}\left(k_{t_{n+1}}t_{n+1}\right)\\ n=1,...,N-1\end{array}
$$

(4.4)

$$
A_n \cos(k_{t_n} t_n) + B_n \sin(k_{t_n} t_n) = E_0 e^{-jk_0 t_N}
$$
\n(4.5)

$$
-jk_{t_{N}}A_{n}\sin(k_{t_{n}}t_{n}) + k_{t_{N}}B_{n}\cos(k_{t_{n}}t_{n}) = -jk_{0}E_{0}e^{-jk_{0}t_{N}}
$$
\n(4.6)

To find wave number and coefficient through computer simulation, following equations are defined from [\(4.5\)](#page-4-1) and [\(4.6\)](#page-4-0):

$$
\Delta_1 = A_n \cos \left(k_{t_n} t_n \right) + B_n \sin \left(k_{t_n} t_n \right) - E_0 e^{-jk_0 t_N}
$$
\n(5.1)

$$
\Delta_2 = -j k_{t_N} A_n \sin (k_{t_n} t_n) + k_{t_N} B_n \cos (k_{t_n} t_n) + j k_0 E_0 e^{-jk_0 t_N}
$$
(5.2)

Here, the Δ_1 of equation [\(5.1\)](#page-4-2) must be equal to Δ_2 of equation [\(5.2\)](#page-4-3). Aberration is defined as a difference between Δ_1 and Δ_2 in equation [\(5.3\)](#page-4-4):

$$
Aberration \equiv \Delta = |\Delta_1 - \Delta_2| \tag{5.3}
$$

Modes exist at $\Delta = 0$ and near field patterns can be derived using the wave number of k and coefficient of $A_N B_N$ at $\Delta = 0$.

In case of infinite structure, we apply the rigorous-coupled theory. It is well known that rigorous-coupled theory is formed in an infinite periodic dielectric structure. According to the rigorous-coupled theory, propagation constant is dependent on the structure parameters such as period, shape, index, etc. of the dielectric structure. Infinitely, many numbers of modes can be generated with the period of integer multiples of a half period of the dielectric structure. [Figure 3](#page-3-0) shows the E-field pattern inside gratings as the result of applying rigorous coupled wave theory [\(Moharam and Gaylord,](#page-9-7) [1981\)](#page-9-7).

Generally, far field patterns are derived by applying fast Fourier transform to near field patterns. In this paper, after calculating the near field patterns, FFT for calculating

Analysis of near and far field pattern

85

Fourier transform is applied to them to get far field radiation patterns which are dependent on the number of dielectric in the structure.

3. Simulation and analysis

In [Figures 4-](#page-5-0)[6,](#page-5-1) x-axis is normalized wave number that is multiplication of propagation constant and length of a dielectric in the structure and y-axis is aberration. Modes exist

Figure 4. Mode distribution $(f = 3GHz, \varepsilon_r = 2.44,$ $N = 4$ finite grating structure)

JSIT 17,1

86

Figure 5. Mode distribution $(f = 3GHz, \varepsilon_r = 2.44,$ $N = 6$ finite grating structure)

around where aberration is approaching to zero. [Figure 4](#page-5-0) shows the mode distribution for incidental wave frequency, $f = 3GHz$, $\varepsilon_r = 2.44$, permittivity, $\varepsilon_r = 2.44$, dielectric $\text{number}, N=4$ and dielectric length is 3 cm. The *x*-axis is normalized wave numbers as

Analysis of near and far field pattern

a value of about 2.73 at first mode, 3.06 at second mode and 4.42 at third mode as the results of calculation.

[Figure 5](#page-5-2) is for the case of $N = 6$ and $N = 10$ for [Figure 6](#page-5-1) with other values as the same. The figures show that the number of modes proportionally increase to the number of

JSIT $17,1$

Figure 12. Far field patterns $(f = 3GHz, \varepsilon_r = 2.44,$ $N = 12$ finite grating structure)

Analysis of near and far field pattern

89

Figure 13. Near field patterns $(f = 3GHz, \varepsilon_r = 2.44,$ infinite grating structure)

dielectric gratings (*N*). The periodic structure will have an infinite number of modes if its have infinitive. But will have a finite number of modes because the finite structure.

Following [Figures 7](#page-6-0)[-12](#page-7-0) show the near and far field patterns for different numbers of *N*. Only one mode in each case is analyzed in the figures.

[Figures 7-](#page-6-0)[11](#page-7-1) are near field patterns and [Figures 8,](#page-6-1) [10](#page-7-2) and [12](#page-7-0) are far field patterns derived through FFT for each value of *N*.

The far field figures for $N = 4$ and $N = 6$ show that main robe of the first mode has good directivity but the others are split. But [Figure 9](#page-6-2) shows that all robes for $N = 8$ are split. It is because the lowest mode location is moved to the right with increasing N. Up to now, we analyzed far and near field distributions for finite structure. However, in order to have a more reliable results in this paper, the results of these are compared from infinite structure that made this of using rigorous-coupled equation method in [Figure 13.](#page-8-2)

4. Conclusion

In this work, the near and far fields patterns of finite dielectric gratings are analyzed. Unlike conventional methods, modes at specific frequency are calculated without the assumption of infiniteness of the dielectric structure. Far field patterns are calculated from near field patterns using FFT. The result shows that the first mode of small N has single robe characteristic. But with the increasing N, all the robes are divided like conventional methods. The fact implies that infiniteness assumption is not suitable for small N in a finite structure.

This conclusion can be applied for accurate analysis for surface-emitted antenna and directional tracer. In future, we plan to simulate close to the actual circumstances by modeling a shape of hemisphere radome.

References

- Altintas, A., Ouardani, S. and Yurchenko, V.B. (1999), "Complex source radiation in a cylindrical radome of metal-dielectric grating", *[IEEE Transactions Antennas and Propagation](http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F8.791946&isi=000082831500010)*, Vol. 47 No. 8, pp. 1293-1300.
- Bertoni, H.L., Cheo, L.S. and Tamir, T. (1989), "Frequency-selective reflection and transmission by periodic dielectric layer", *[IEEE Transactions](http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F8.192167&isi=A1989T273300010)*, Vol. 37 No. 1.

Kogelnik, H. and Shank, C.V. (1972), "Coupled-wave theory of distributed-feedback lasers", *[Journal of Applied Physics](http://www.emeraldinsight.com/action/showLinks?crossref=10.1063%2F1.1661499&isi=A1972M420500051)*, Vol. 43 No. 1, pp. 2327-2335.

Kong, J.A. (1985), *Electromagnetic-Wave Theory*, McGraw-Hill, New York, NY.

- Moaveni, M.K. (1989), "Plane wave diffraction by dielectric gratings, finite-difference formulation", *IEEE Transactions Antennas and Propagations*, Vol. AP-37 No. 8, pp. 1026-1031.
- Moharam, M.G. and Gaylord, T.K. (1981), "Rigorous coupled-wave analysis of planar-grating diffraction", *[Journal of the Optical Society of America](http://www.emeraldinsight.com/action/showLinks?crossref=10.1364%2FJOSA.71.000811&isi=A1981LW40900002)*, Vol. 71 No. 7, pp. 811-818.
- Munk, B.A. (2000), *[Frequency Selective Surfaces: Theory and Design](http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2F0471723770)*, Wiley, New York, NY, pp. 26-62.
- Parker, E.A. and Hamdy, S.M.A. (1981), "Rings as elements for frequency selective surfaces", *[Electronics Letters](http://www.emeraldinsight.com/action/showLinks?crossref=10.1049%2Fel%3A19810430&isi=A1981ME01400022)*, Vol. 17 No. 17, pp. 612-614.
- Parker, T., Batchelor, J., Robertson, J.B., Sanz-Izquierdo, B. and Ekpo, I. (2008), "Frequency selective surfaces for long wavelength use in buildings", *[Proceedings IET Seminar on](http://www.emeraldinsight.com/action/showLinks?crossref=10.1049%2Fic.2008.0732) [Electromagnetic Propagation in Structures and Buildings, 4 December](http://www.emeraldinsight.com/action/showLinks?crossref=10.1049%2Fic.2008.0732)*, pp. 1-22.
- Vardaxoglou, J.C. (1997), *Frequency Selective Surfaces: Analysis and Design*, Research Studies Press, Taunton.
- Wu,T.K., Woo, K. and Lee, S.W. (1992), "Multi-ring element FSS for multiband applications", *Proceedings Antennas and Propagation Society International Symposium Digest: Held in Conjunction With URSI Radio Science Meeting and Nuclear EMP Meeting*, IEEE, *18-25 July*, pp. 1775-1778.

About the authors

Tae-Bong Lee received the BS, MS and PhD degrees in Electronics Engineering from Hongik University, Seoul, Korea in 1986, 1989 and 1994, respectively. Currently, he is a Professor in the Department of Electronics, Gachon University, Korea. His research interest includes robust systems and control theory and electronic systems.

Min-Nyeon Kim received the BS, MS and PhD degrees in Electronics Engineering from Hongik University, Seoul, Korea in 1993, 1995 and 2003, respectively. Currently, he is a Professor in the Division of Information and Communication, Baeseok University, Korea. His research interest includes optical wave scattering and dielectric periodic structure analysis and radar systems. Min-Nyeon Kim is the corresponding author and can be contacted at: $m\nu$ ki ω bu.ac.kr

For instructions on how to order reprints of this article, please visit our website: **www.emeraldgrouppublishing.com/licensing/reprints.htm** Or contact us for further details: **permissions@emeraldinsight.com**

90