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Abstract
Purpose – The purpose of this paper is to analyze far and near field emitted field patterns through
more exact calculation of the modes formed in finite periodic dielectric gratings.
Design/methodology/approach – For the mode calculation, equations are newly defined by
applying vertical boundary condition on the assumption that transverse electric modes are generated in
the structure. After finding modes, near field patterns are calculated using the wave number and
coefficient of the mode.
Findings – Additionally, the results from these calculations are compared with that of the
rigorous-coupled method. Finally, far field patterns are derived by applying fast Fourier transform to
near field patterns and also compared with the results of rigorous-coupled method.
Research limitations/implications – For convenience of coordinate, we use rectangular
coordinate, though the shape of radome is a hemisphere.
Practical implications – In this paper, the authors derive more exact near field patterns without the
assumption of infiniteness so that these results can be used practically for a making real
frequency-selective structure.
Originality/value – Conventional periodic finite dielectric gratings analysis has been done using
Floquet–Bloch wave theory, coupled-mode, rigorous-coupled method which is based on the assumption
of infiniteness of the structure.

Keywords Far field pattern, Finite periodic dielectric gratings, Frequency-selective structure,
Near field pattern

Paper type Research paper

1. Introduction
Periodic dielectric gratings which have many characteristics including
frequency-selective property are evaluated to be useful for various applications (Bertoni
et al., 1989; Parker et al., 2008; Hook and Ward, 2004; Vardaxoglou, 1997; Munk, 2000;
Parker and Hamdy, 1981; Wu et al., 1992; Edenhofer and Alpaslan, 2005). Specifically, it
can be applied for surface-emitted antenna and coupler.

Conventional periodic infinite dielectric gratings analysis has been done using
Floquet-Bloch’s coupled-mode or rigorous-coupled method which is based on the
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assumption of infiniteness of the structure (Moharam and Gaylord, 1981; Kogelnik and
Shank, 1972; Moaveni, 1989; Hill and Meltz, 1997; Kong, 1985). However, in this paper,
boundary conditions are simply used to derive more exact near field patterns without
the assumption of infiniteness.

More specifically, in Section 2, the equation for modes formed inside the finite
periodic dielectric gratings are defined and in Section 3, the modes and their far field
patterns are calculated through computer simulation and the results are compared with
the results of rigorous-coupled method as assumption of infinite grating structure.

In this work, frequency selective structure (FSS) is developed for the purpose of
transmission filter of radar radome using 3GHz frequency. For convenience of
coordinate, we use rectangular coordinate, though the shape of radome is a hemisphere
(Altintas et al., 1999).

2. Modes analysis
Figure 1 shows finite periodic dielectric gratings which are formed alternatively with
two different dielectric values. On the assumption of incident transverse electric mode
wave, the modes formed inside the gratings structure will be calculated.

In Figure 1, �0 is 8.854 � 10�12 F/m as a permittivity of free space and �1 is a value of
�0 multiplied by �r which is relative permittivity of 2.44.

In this paper, we classify two cases of finite and infinite grating structures. In the first
case of the finite structure, it is different with infinite structure because of a lack of
periodic characteristic and Figure 2 shows the near field pattern that was calculated
using boundary condition. Also, in second case of infinite structure, we calculate near
field pattern using the rigorous-coupled theory for purpose of comparing the difference
of operating modes between finite and infinite gratings structure and Figure 3 shows
near field pattern.

Figure 1.
Incidental and

reflective wave of
dielectric gratings
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Figure 2.
Near field patterns

(f � 3GHz, �r � 2.44,
N � 4 finite grating

structure)
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In Figures 2 and 3, we can see the difference of field distribution between finite grating
and infinite grating structure. Inside the finite structure, the E-field distribution which
satisfied boundary condition is formed. To calculate the field distribution at each
boundary layer, the following wave equation must be solved:

�2E
�

(x, y, z) � k2E
�

(x, y, z) � 0 (1)

where E is a electric field density and k is a propagation constant of ���0�, � is angular
frequency and �0 is a value of 4	 � 10�7. Incident wave can be defined by the following
equation (1) (see Figure 1), and equation (2) is a solution of:

E
�

(x, y, z) � Eye�j(kxx � kzz) (2)

Then, the field in each layer can be described as:

E
�

(x, z) � Ey0
e�j(kxx� kzz) 
 REy0

ej(kxx
 kzz), z � h (3.1)

E
�

(x, z) � Ey0
e�j(kzz� kx0(x� t1)), x � t1, 0 � x � t1 (3.2)

E
�

(x, z) � (Ancos (kxn
(x � tn�1)) 
 Bnsin(kxn

(x � tn�1))), n � 1 … N,

t1 
 x � tN, 0 � z � h (3.3)

E
�

(x, z) � Ey0
ej(kxx
 kzz), z � 0 (3.4)

where, kxn
� ���0�0�rn

, kx0
� ���0�0, R is reflectivity and �rn

is n-th permittivity.
To avoid the difficulties of a conventional method which includes very complex

integral equations, in this work, first, every mode which forms horizontal fields is
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Figure 3.
Near field patterns
(f � 3GHz, �r � 2.44,
infinite grating
structure)
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calculated by applying boundary conditions to the vertical boundary layer, t1, t2, t3,…tN.
Second, the near fields of every mode are computed and finally, far field patterns are
derived through fast Fourier transform (FFT).

At this time, very small h is assumed and the following equations, (4.1)–(4.6) for
horizontal fields are obtained by applying boundary condition to the equations, (3.1)–
(3.4):

E0e�jkt1
t1 � A1cos (kt1

t1) 
 B1sin (kt1
t1) (4.1)

�jk0E0e�jkt1
t1 � �kt1

A1sin (kt1
t1) 
 kt1

B1cos (kt1
t1) (4.2)

Ancos (ktn
tn) 
 Bnsin (ktn

tn) � An
1cos (ktn
1
tn
1) 
 Bn
1sin (ktn
1

tn
1) (4.3)

�ktn
Ansin (ktn

tn) 
 ktn
Bncos (ktn

tn) � �ktn
1
An
1sin (ktn
1

tn
1) 
 ktn
1
Bn
1cos (ktn
1

tn
1)
n � 1, …, N � 1

(4.4)

Ancos (ktn
tn) 
 Bnsin (ktn

tn) � E0e�jk0tN (4.5)

�jktN
Ansin (ktn

tn) 
 ktN
Bncos (ktn

tn) � �jk0E0e�jk0tN (4.6)

To find wave number and coefficient through computer simulation, following equations
are defined from (4.5) and (4.6):

�1 � Ancos (ktn
tn) 
 Bnsin (ktn

tn) � E0e�jk0tN (5.1)

�2 � �jktN
Ansin (ktn

tn) 
 ktN
Bncos (ktn

tn) 
 jk0E0e�jk0tN (5.2)

Here, the �1 of equation (5.1) must be equal to �2 of equation (5.2). Aberration is defined
as a difference between �1 and �2 in equation (5.3):

Aberration � � � ��1 � �2� (5.3)

Modes exist at � � 0 and near field patterns can be derived using the wave number of
k and coefficient of AN, BN at � � 0.

In case of infinite structure, we apply the rigorous-coupled theory. It is well known
that rigorous-coupled theory is formed in an infinite periodic dielectric structure.
According to the rigorous-coupled theory, propagation constant is dependent on the
structure parameters such as period, shape, index, etc. of the dielectric structure.
Infinitely, many numbers of modes can be generated with the period of integer multiples
of a half period of the dielectric structure. Figure 3 shows the E-field pattern inside
gratings as the result of applying rigorous coupled wave theory (Moharam and Gaylord,
1981).

Generally, far field patterns are derived by applying fast Fourier transform to near
field patterns. In this paper, after calculating the near field patterns, FFT for calculating
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Fourier transform is applied to them to get far field radiation patterns which are
dependent on the number of dielectric in the structure.

3. Simulation and analysis
In Figures 4-6, x-axis is normalized wave number that is multiplication of propagation
constant and length of a dielectric in the structure and y-axis is aberration. Modes exist
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Figure 4.
Mode distribution
(f � 3GHz, �r � 2.44,
N � 4 finite grating
structure)
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Figure 5.
Mode distribution
(f � 3GHz, �r � 2.44,
N � 6 finite grating
structure)
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Figure 6.
Mode distribution
(f � 3GHz, �r � 2.44,
N � 10 finite grating
structure)
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around where aberration is approaching to zero. Figure 4 shows the mode distribution
for incidental wave frequency, f � 3GHz, �r � 2.44, permittivity, �r � 2.44, dielectric
number, N � 4 and dielectric length is 3 cm. The x-axis is normalized wave numbers as
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Figure 7.
Near field patterns

(f � 3GHz, �r � 2.44,
N � 4 finite grating

structure)
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Figure 8.
Far field patterns

(f � 3GHz, �r � 2.44,
N � 4 finite grating

structure)

−0.05 0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

Length [m]

F
ie

ld
 In

te
ns

ity
 [a

.u
.]

 

 

1st mode
2nd mode
3rd mode

Figure 9.
Near field patterns

(f � 3GHz, �r � 2.44,
N � 6 finite grating

structure)
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a value of about 2.73 at first mode, 3.06 at second mode and 4.42 at third mode as the
results of calculation.

Figure 5 is for the case of N � 6 and N � 10 for Figure 6 with other values as the same.
The figures show that the number of modes proportionally increase to the number of
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Figure 10.
Far field patterns
(f � 3GHz, �r � 2.44,
N � 6 finite grating
structure)
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Figure 11.
Near field patterns
(f � 3GHz, �r � 2.44,
N � 12 finite grating
structure)
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Figure 12.
Far field patterns
(f � 3GHz, �r � 2.44,
N � 12 finite grating
structure)
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dielectric gratings (N). The periodic structure will have an infinite number of modes if its
have infinitive. But will have a finite number of modes because the finite structure.

Following Figures 7-12 show the near and far field patterns for different numbers of
N. Only one mode in each case is analyzed in the figures.
Figures 7-11 are near field patterns and Figures 8, 10 and 12 are far field patterns derived
through FFT for each value of N.

The far field figures for N � 4 and N � 6 show that main robe of the first mode has
good directivity but the others are split. But Figure 9 shows that all robes for N � 8 are
split. It is because the lowest mode location is moved to the right with increasing N. Up
to now, we analyzed far and near field distributions for finite structure. However, in
order to have a more reliable results in this paper, the results of these are compared from
infinite structure that made this of using rigorous-coupled equation method in Figure 13.

4. Conclusion
In this work, the near and far fields patterns of finite dielectric gratings are analyzed.
Unlike conventional methods, modes at specific frequency are calculated without the
assumption of infiniteness of the dielectric structure. Far field patterns are calculated
from near field patterns using FFT. The result shows that the first mode of small N has
single robe characteristic. But with the increasing N, all the robes are divided like
conventional methods. The fact implies that infiniteness assumption is not suitable for
small N in a finite structure.

This conclusion can be applied for accurate analysis for surface-emitted antenna and
directional tracer. In future, we plan to simulate close to the actual circumstances by
modeling a shape of hemisphere radome.
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