
International Journal of Web Information Systems
From e-Gov Web SPL to e-Gov Mobile SPL
Camilo Carromeu Debora Barroso Paiva Maria Istela Cagnin

Article information:
To cite this document:
Camilo Carromeu Debora Barroso Paiva Maria Istela Cagnin , (2016),"From e-Gov Web SPL to e-
Gov Mobile SPL", International Journal of Web Information Systems, Vol. 12 Iss 1 pp. 39 - 61
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-10-2015-0036

Downloaded on: 09 November 2016, At: 02:02 (PT)
References: this document contains references to 34 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 111 times since 2016*

Users who downloaded this article also downloaded:
(2016),"A case study of development of a mobile application from an existing web information
system", International Journal of Web Information Systems, Vol. 12 Iss 1 pp. 18-38 http://
dx.doi.org/10.1108/IJWIS-10-2015-0034
(2016),"Energy efficient and latency optimized media resource allocation", International Journal of
Web Information Systems, Vol. 12 Iss 1 pp. 2-17 http://dx.doi.org/10.1108/IJWIS-10-2015-0031

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-10-2015-0036


From e-Gov Web SPL to e-Gov
Mobile SPL

Camilo Carromeu
Embrapa Beef Cattle, Brazilian Agricultural Research Corporation,

Campo Grande, Brazil, and

Debora Barroso Paiva and Maria Istela Cagnin
College of Computing, Federal University of Mato Grosso do Sul,

Campo Grande, Brazil

Abstract
Purpose – This paper aims to discuss the motivation and present the evolution from a Software
Product Line (SPL) in the e-Gov Web (e-Gov Web SPL) domain to a SPL in the mobile domain (e-Gov
Mobile SPL).
Design/methodology/approach – The evolution was supported by the Product Line UML-Based
Software Engineering approach and the feature model.
Findings – The authors were able to observe that it is feasible to evolve from a SPL for the Web
platform to a SPL for the mobile platform, with the intent to port existing Web applications to mobile
platforms such that users can have access to the main information and are able to interact with the most
important functionalities of Web applications in a mobile device.
Research limitations/implications – As for the main limitations, the authors can point out the
small number of instantiations performed until the moment with the support of the e-Gov Mobile SPL,
what prevented the conduction of an empirical study.
Practical implications – Using e-Gov Mobile SPL, it is possible to reduce development time and
cost.
Originality/value – The existing SPLs do not worry about supporting the development of mobile
applications corresponding to existing Web applications, as it is desirable to have access to the
information and main features of these applications in mobile devices. We obtained some e-Gov Mobile
SPL instantiations corresponding to e-Gov Web SPL instantiations to attend the demands of the
Brazilian Agricultural Research Corporation Unit situated at Campo Grande, MS, Brazil.

Keywords Mobile, Web, Evolution, Software product line, E-Gov

Paper type Research paper

1. Introduction
Many studies had been done in the past years about Software Product Lines (SPLs) and
its applications on different platforms (such as Web and mobile devices) and domains
(such as education and games). These studies generally present evolutions and

This work is supported by FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino,
Ciência e Tecnologia do Estado de Mato Grosso do Sul – Brazil). This work is an enhanced version
of the publication “The Evolution from a Web SPL of the E-Gov Domain to the Mobile Paradigm”
by C. Carromeu, D.M.B. Paiva, and M.I. Cagnin, in Lecture Notes in Computer Science, Volume
9155, 2015, pp. 217-231 from The 15th International Conference on Computational Science and Its
Application (ICCSA’ 2015).

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

From e-Gov
Web SPL to

e-Gov Mobile
SPL

39

Received 22 October 2015
Accepted 5 November 2015

International Journal of Web
Information Systems

Vol. 12 No. 1, 2016
pp. 39-61

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-10-2015-0036

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-10-2015-0036


adaptations to the original concepts of the SPL to fit specific situations. It can be
mentioned as an example the demand to develop mobile applications with
functionalities that match Web applications with intent to allow the creation of
applications that are executed in different environments and platforms. Thus, the
portability non-functional requirement that was defined in international standards (ISO/
IEC 9126:2001, 2001; ISO/IEC 25010:2011, 2011) and which refers to a set of
sub-characteristics, such as adaptability and replaceability, can be satisfied.

In 2010, an SPL was developed for the e-Gov Web (e-Gov Web SPL) domain
(Carromeu et al., 2010) aiming to obtain a flexible architecture that could reuse
components developed from several previous experiences from the research group
LEDES (Laboratory of Software Development from UFMS) and the PLEASE Lab
(Laboratory for Precision Livestock, Environment and Software Engineering from
Embrapa). This architecture made possible the development of several e-Gov Web
applications which were used in different real-life situations such as the Pandora
(Brazilian National Institute of Industrial Property number: 012120000833), a Web
application which makes available to the user information and services from the
information and management systems from the Embrapa Beef Cattle.

With the availability of mobile devices, such as cellular devices and tablets, we
observed that the applications developed based on the mentioned architecture needed to
progress and adapt themselves to new platforms, operational systems and mobile
technologies. Thereby, mobile applications were developed corresponding to the Web
applications, but without the e-Gov Web SPL support. From these mobile applications,
we observed that a common set of services was implemented in their majority. Then, the
e-Gov Web SPL could evolve to a SPL for the mobile platform. To accomplish that, the
common services in the developed mobile applications were abstracted as features (that
are end-user visible characteristics of a system) (Kang et al., 1990) and originated the
e-Gov Mobile SPL (Carromeu et al., 2015), which is an evolution of the e-Gov Web SPL.
The features were represented in a feature model (Kang et al., 1990) which, according to
Sayyad et al. (2013), allows visualization, reasoning and configuration of SPLs. It can
consist of hundreds (even thousands) of features with complex dependencies and
constraints that govern which features can or cannot live and interact with other
features.

This paper aims to describe the evolutions which were made in the e-Gov Web SPL to
obtain the e-Gov Mobile SPL having in mind the need to attend a new market demand
which is to make available Web applications in mobile environments, as there is a lack
of works that contemplate this demand (Nascimento et al., 2008; Quinton et al., 2011;
Marinho et al., 2013; Mizouni et al., 2014; Falvo Junior et al., 2014; Pascual et al., 2015).
The results of an instantiation and a number of case studies of the e-Gov Mobile SPL are
also presented aiming to show the application generation capacity for both Web
platform and mobile platform.

This paper is organized as follows. Section 2 presents the related works. Section 3
describes the background to ease the understanding of concepts treated in the paper.
Section 4 presents a brief description of the e-Gov Web SPL. Section 5 presents the
evolution of the e-Gov Web SPL for the conception of the e-Gov Mobile SPL, as well as
one resulting instance. Section 6 shows some instances of the e-Gov SPL Mobile,
resulting from case studies. Section 7 debates contributions, limitations and suggestions
for future works.

IJWIS
12,1

40

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



2. Related work
There are some works about mobile SPLs in the literature and all of them use the feature
model for the variability modeling. As the goal of the studied works is to develop an
application in the mobile platform with the help of a SPL, all of them treated the
variability of the business domain (also called vertical domain) and the variability of
mobile domain (which can be considered a horizontal domain for it can be present in
different vertical domains as in the case of context awareness, location, battery level,
security, communication, etc.).

Nascimento et al. (2008) present an approach to implement core assets in a SPL
applied to the mobile game domain combining good practices of a process. They also
present a case study performed with the application of the approach based on three
different adventure mobile games. Results have shown that the approach can be suitable
for the domain.

Quinton et al. (2011) propose a SPL approach based on Model Driven Engineering,
whose objective is to elaborate variability modeling with the support of the feature
models of both system’s business domain and the mobile devices domain to derive a
software product taking into consideration both models. For this, the authors present a
derivation process supported by a framework that performs the combination of both
models (model merging) and the code generation. Additionally, the derivation process
automatically analyzes restrictions for each derived product in relation to the available
mobile devices.

Marinho et al. (2013) present the SPL MobiLine, which supports the development of
tour guide context-aware mobile applications, that is, the software must be capable of
adapting itself, during runtime, according to changes in its context (for example, user
location and network conditions). The authors used the features model to document both
tour guide domain-related features and context-aware mobility-related features. In
another study, Marinho et al. (2011) propose a mechanism to formalize and verify the
correctness and consistency of feature models for mobile and context-aware SPLs.

Mizouni et al. (2014) propose a framework to build adaptive context aware and mobile
applications, considering that context information can be related to the environment,
users or device status. This framework is based on both variability modeling, with the
support of the feature model and SPL. The adaptability modeling is done during the
design phase, and the adaptability and context awareness are supported in execution
time.

In another context, Falvo Junior et al. (2014) discussed the establishment of
M-SPLearning, a SPL to the mobile learning applications domain. It has been developed
throughout a proactive adoption model, according to the basis of Service-Oriented
Architecture. Results suggest the practical feasibility of adopting M-SPLearning in the
development of mobile learning applications.

Pascual et al. (2015) consider the Dynamic Software Product Lines (DSPL) for mobile
devices. According to authors, it is a well-accepted approach to manage runtime
variability, by means of late binding the variation points at runtime. In this study,
evolutionary algorithms were used to generate at runtime optimum configurations of
the DSPL according to different criteria. The optimization problem is formalized in
terms of a feature model.

However, none of the studied SPLs considers the portability of the developed
software system, as is the goal of the SPL approached in this work, that concerns about

41

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



the development of a mobile application corresponding to a Web application and with
the communication between them as well. That makes possible for the user to have
access to the main information and to interact with the most important functionalities of
the Web application in a mobile device.

3. Background
SPL is one of the existing software reuse techniques and is of interest for this work
because it provides the reuse of software products in the domain of e-Gov Mobile
applications corresponding to e-Gov Web applications. The SPL was conceived from the
adaptation of concepts of the Product Line Engineering, which is commonly applied in
the engineering to reach mass customization with economy of efforts through the
collective production (instead of individual) of multiple similar instances, but from
distinct design and prototypes (Weiss and Lai, 1999).

According to Clements and Northrop (2002), an SPL is an set of intensive software
systems that shares a set of managed and common features that meets the specific needs
of a market segment in particular (domain) or company mission and is developed from
a core set of assets in a pre-established way.

In a specific business domain, there are the mandatory characteristics
(commonalities) and those that can be customized (variabilities). Both can be
represented in variability models such as the feature model. According to Pohl et al.
(2005), a variability is composed by a variation point and its variants. A variation point
is the place where the variation may occur (payment methods, for example) and the
variants are the existing possible solutions for a variation point (for example, money,
credit card or banking billet). Thus, the management of variabilities aims to organize
commonalities and variabilities in a way to generate products with higher quality,
reducing the use of organizational resources.

Still according to Pohl et al. (2005), a SPL is built and instantiated from two processes
named, respectively, Domain Engineering and Application Engineering. Basically, the
Domain Engineering focuses on the variability management of all software artifacts
from the SPL and Application Engineering is responsible for creating the final product
from the SPL. In this work, the software artifacts from the presented e-Gov Mobile SPL
are implemented with the support of application frameworks (Foote and Johnson, 1988;
Sommerville, 2010) and application generators (Cleaveland, 1988), whose definitions are
presented as follows. These mechanisms together provide the instantiation of the e-Gov
Mobile SPL without spending much effort by the application engineer.

The application frameworks are considered as semi-complete and reusable
applications that, when specialized, produce personalized applications within a specific
domain (Foote and Johnson, 1988). They are composed by a collection of abstract and
concrete classes, and interfaces between them, representing the frozen spots and hot
spots of the project of a subsystem (Sommerville, 2010).

Application generators are software systems that transform the specifications into
an application. The specifications describe the problem or the task that the application
has to perform, such that the generator can generate the source code. These
specifications can be modeled in a graphic way, written in some intermediate language
or even be created interactively, where the user selects desired features through the
choices in a sequence of forms or menus (Cleaveland, 1988).

IJWIS
12,1

42

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



4. SPL for e-Gov system development
With the objective of reuse in different levels of abstraction, software patterns appeared
in the 90s (Buschmann et al., 1996; Coplien, 1998, Gamma et al., 1995) to try to capture
acquired experience in the software development and synthesize it in the form of
problem and solution. Besides providing the reuse of the solutions, patterns help to
improve the communication among developers, which can conduct the discussions
based on the usage of these patterns (Gamma et al., 1995).

In this context, several experiences in the LEDES and in the PLEASE Lab in
development of Web applications in the e-Gov domain resulted in the abstraction of
analysis, architecture and codification patterns. Aiming to consolidate an agile
development process for this domain, we decided to create a SPL, named e-Gov Web
SPL.

Considering the abstracted patterns from different members of the SPL from e-Gov
domain, the e-Gov feature model was created and the initial architecture of the e-Gov
Web SPL was established, whose development was based in the Product Line
UML-Based Software Engineering (PLUS) approach (Gomma, 2005). This approach is
composed of two processes: Software Product Line Engineering and Application
Engineering.

In the Software Product Line Engineering, the commonalities and variabilities shown
in the SPL feature model were mapped for the Titan Framework through classes,
specifying the frozen-spots and the hot-spots, respectively, aiming to ease the
instantiation of the line during the Application Engineering Process. The e-Gov Web
SPL is automatized by the Titan Framework and the application generator Titan
Architect, as detailed by Carromeu et al. (2010).

The use of the Titan Architect eliminates the need for programming, although the
parametrization of variabilities is limited. The Titan Framework allows the
configuration of business rules and parameters of the new application by modifying
the markup language input and, in case it is not enough, it allows the programming of
new software artifacts.

The Titan Framework architecture, illustrated in Figure 1, is formed by a core and by
the repository of components. The core is the implementation of all SPL similarities and,
hence, it is unchangeable in the line instances. It is responsible for receiving as input the
instance configuration files (XML and SQL) and generating an application in runtime.
This framework is a gray box, therefore, flexible and extensible.

The main features of the e-Gov Web SPL are the navigation sections and navigation
actions which are related, respectively, to the components and engines. The role-based
access control, the audit log record, the search engine, the file system, the notification
system, the manual generator and the backup system on demand are other features
inherent to its architecture.

5. Evolution of SPL for the mobile computing paradigm
Since the creation of the e-Gov Web SPL, dozens of new Web applications were
developed and others are in development at the moment. At the same time, the
increasing use of mobile devices and the wide dissemination of wireless networks are
increasingly stimulating the development of softwares in the mobile and ubiquitous
computing paradigms. In this context, the e-Gov domain is one of the main application

43

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



areas, once governments have been pushed to present higher efficiency when providing
information and services to the society in a transparent and democratic way.

This way, it was identified a strong demand for mobile applications integrated with
the developed Web systems, enabling the user access to the main information and
functionalities of the system. For example, Suplementa Certo (Brazilian National
Institute of Industrial Property number: 5120130013755), a calculator that helps with
decision-making about feeding supplementation for beef cattle; and the Pandora Phone,
that enables the access, by mobile devices, to some of the functionalities of the Pandora
Web application, such as notifications, technology and knowledge bases, information
about projects budgets (balance and statements) and the staff (employees and
collaborators).

The experience with the development of several applications in the mobile platform,
such as the mentioned above, enabled to initially identify codification patterns. For
example, the code structure, in native Java, obeyed a recurring logic organization and
demanded the same set of auxiliary classes (helpers).

Similarly, the implementation of the developed mobile applications required
alterations in the Web applications (e-Gov Web SPL instances) with which they would
have to synchronize data. To do that, it was necessary to implement exclusive service
buses, related to communication and security and decoupled from the repository
components from the SPL as discussed below.

5.1 Discussion of bus services implemented in the mobile applications
One of the main services implemented was the communication, which is fundamental to
keep the mobile application data consistent with the Web application. Furthermore, a
mobile device is more exposed to risks than a personal computer, and the data
synchronization with a remote server is one way to prevent eventual losses. This
communication has to be made through Web services, being also necessary to worry
about security, performance and data integrity between the server and several clients.

Figure 1.
Titan framework
architecture

IJWIS
12,1

44

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-000.jpg&w=280&h=191


Aiming to mitigate risks associated with security through authentication in the
communication between client (mobile application) and server (Web application), it was
specified a global scheme of authentication which can be used on any service available
under the HTTP protocol, named Embrapa-Auth. It is a protocol that defines a scheme
sufficiently secure, flexible, standardized and stateless to authenticate HTTP requests.
The protocol uses headers and status codes from the HTTP protocol, favoring its usage
in Representational State Transfer (REST) approaches. The protocol was developed to
support an architecture where there are several users making HTTP requests to a Web
service through applications running in several devices and platforms. The protocol is
adaptable to the context, allowing up to three levels of authentication:

• Application authentication: An authorized application is any program that has an
identifier/token pair that authorizes it to make requests to the service. The
credentials of the application have to, preferably, be embedded to the source code
of the program and should not be editable by an ordinary user. This level of
security allows to restrict that only some specific programs are able to make
requests to the service.

• Client authentication: A client is a device that has a private identifier/key pair
which authorizes it to make requests to a service. The authentication of a client
allows to restrict the use of Web services by determined devices or specific
systems. This security level allows implementations of quota policies; restriction
of functionalities; sharing of keys by company, unity, department, team, etc.;
authorization of third-party softwares; auditing; change of private key in case
equipment loss or theft; cancellation of credentials at the end of contracts; and user
identification by a personal device, etc.

• User authentication: A user is somebody who owns an access credential (login/
password pair).

Another implemented service refers to the user registration and authentication of user by
social network. In the case of mobile devices with the Android operating system, it is
possible to state that the application user has, necessarily, a Google account. This fact
enables the user to use the account that is registered in the mobile device to make his/her
registration in the mobile application. The biggest advantage of this approach is to offer
the user a simplified and quick way to register without the requirement of filling out
forms.

Another implemented service was to guarantee the local data integrity of mobile
application in relation to the Web application.

It is easy to guarantee the data integrity when there is no creation of tuples in the
mobile application database, as in the case of metadata entities (federative unit, country,
marital status, etc.). In those cases, the mobile application assumes an architecture
“provider-consumer”, where the Web application will be the data provider and the
mobile application will just “consume them”. This way, the data synchronization
controller shall be responsible for consulting the Web application and obtain new and
updated tuples, so the data are synchronized from the Web application and cannot be
locally modified by the mobile application.

However, often the mobile application must be responsible for the creation and
modification of data, which will, at some point, be synchronized with the Web

45

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



application data. In this case, it is necessary to worry about the fact that the same data
can be modified in different devices and, when synchronizing with the Web application,
it is necessary to handle conflicts. The adopted policy in this case is to always keep the
most recent data.

The disambiguation service was implemented to solve the problem when tuples of
entities created in mobile applications are sent to the Web application and synchronized
in the mobile applications installed in other devices. In this case, there is no way to
guarantee that it will be possible to consult the Web application to obtain a unique key,
as, in many cases, the mobile application will be able to work without internet access. It
is difficult, in this case, to guarantee that the sequential key be correctly interpreted by
the mobile application, as there will be other mobile devices creating tuples in the same
entity.

Through the disambiguation service, the Web application provides a unique key to
the mobile application once it is installed, where it is stored locally on the device. This
key is always concatenated with the entity key when the latter is a sequential key.

The notification service was also implemented to allow notifications launched by the
Web application to be reflected in the mobile application. For this, services were created
in the service bus that interact with the notification API from the Titan Framework and
allow:

• to access the message list and related data (date, category and link);
• to mark a notification as “read”; and
• to delete a notification.

Moreover, the notifications API from Titan Framework were integrated with the
notifications API from Android, named Google Cloud Messaging. This way, alerts
issued on the Web application are received by mobile application users in a passive way,
that is, without the need of the mobile application to be running in that moment.

Finally, the image-processing service was also considered because mobile
applications that try to make the processing of big images locally are very susceptible to
errors related to the lack of memory. Through this service, images loaded from the Web
application are remotely processed and simply put in cache in the mobile application.

5.2 E-Gov Mobile SPL conception
The implementation of the services presented in the previous section motivated the
e-Gov Web SPL evolution to become an e-Gov Mobile SPL, being this evolution the focus
of this work.

The e-Gov SPL Mobile features were identified from the services presented in Section
5.1 and are represented in the feature model illustrated in Figure 2. Next, for the
incorporation of the raised features in the e-Gov Mobile SPL, there were used four
evolution cycles of the Software Products Line Engineering process from the PLUS
approach. This approach was used in the evolution of the e-Gov Web SPL to an e-Gov
Mobile SPL, as, beyond having being used in the creation of the e-Gov Web SPL,
demonstrated to be effective during the held evolution.

Consequently, the execution of the evolution cycles are in compliance with the
execution description of the PLUS approach commented in Section 4, that is, the features
presented in Figure 2 were mapped to the Titan Framework as frozen-spots or hot-spots;

IJWIS
12,1

46

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



and existing components in its repository were refactored to be able to interact with the
incorporated services, as illustrated in Figure 3.

The first evolution cycle of the e-Gov Web SPL started with the modification of its
fixed core, that is, the artifacts which materialize communalities from the members of
the family of products. In this core, there was added the service bus with the basic
services represented by the feature AuthenticationLayer. This parameterizable
implementation of the Embrapa-Auth protocol guarantees that any SPL instance can
count on any combination of the authentication levels of this protocol represented in the
feature model from Figure 2.

The feature ProviderConsumer was implemented to guarantee that all instances
from the e-Gov SPL Mobile will have entities that will be treated in a provider– consumer
architecture. A problem that was observed during the implementation of this feature
was the overhead of the initial synchronization, that is, when the mobile application is
installed. This can become a problem when there are millions of tuples that must be

Figure 2.
Feature model of the

evolution from an
e-Gov Web SPL to an

e-Gov Mobile SPL

Figure 3.
Evolved Titan

Framework
Architecture for the

development of
mobile applications

47

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-001.jpg&w=343&h=130
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-002.jpg&w=239&h=205


synchronized. To optimize the initial synchronization, this feature was implemented
taking into consideration the sending of a binary database with all the metadata stored,
that is, when the mobile application is installed in the mobile device, the installer already
has a binary database with metadata tables.

Additionally, in this first evolution cycle, the Titan Framework has acquired its
service bus, but lacks the corresponding maturity. The repository components were
adapted to interact with the new layer of communication (Communication feature). For
example, the classes that implement data types from the Titan Framework acquired the
capacity to represent and understand values in the JavaScript Object Notation (JSON)
format, which is a format more compact than XML and thus chosen for the transmission
of data between client and server.

It was also implemented, in this first cycle, the authentication layer (represented
by the feature AuthenticationLayer) and its levels, represented by the features
ApplicationAuthentication, ClientAuthentication and UserAuthentication. In the
end, the service bus from Titan Framework was also capable to synchronize data in
architectures provider– consumer and client–server and to treat inherent conflicts.

After the above-mentioned adaptations, it became evident the need for new
improvements in the synchronization process, because of the already discussed
problem, about the creation of tuples in entities without natural primary keys. Then,
in the second evolution cycle, it implemented the Disambiguation feature. This
evolution required refactoring of classes from the Titan Framework that implement
the model and control layers of the Web application, aiming to add to the artifacts of
these layers, the capacity to deal with the disambiguation code. Another
implemented feature in this cycle was the ImageProcessing, that is, the services were
made available in the service bus to allow the mobile application to request the
server for already processed images.

In the third evolution cycle, it was made the integration of the Titan Framework with
the Google’s APIs for Android. This integration allowed the user registration to be made
in a simple and transparent way, using personal information already available in the
device (BySocialNetwork feature). It was also added the previously discussed integration
of the notification API from Titan Framework with the Google Cloud Messaging
(Section 5.1).

Together with the implementation of all raised features corresponding to the service
bus (Section 5.1), with the support of the PLUS approach, all the new e-Gov SPL
instances are apt to use them, in other words, in each of them, the application engineer
can activate the service bus with different combinations of features, according to the
rules and restrictions detailed in the feature model presented in Figure 2.

To facilitate the e-Gov SPL Mobile instantiation, it was created a code generator in
the fourth and last evolution cycle, named Titan Architect Mobile, which allows the
application engineer to generate the mobile application code. For this, this generator
scans the files in markup language (XML) from the Web application, responsible for the
parametrization of the Titan Framework components, generating a Java code that
composes the mobile application project. The basis of this project is also fixed and
consists of a structure of directories according to the Android pattern and a collection of
auxiliary classes, named helpers, which implement functionalities common to all
members of the product line.

IJWIS
12,1

48

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



Based on the files that parameterize the Web application, the Titan Architect Mobile
generates the following classes for each mobile application entity, corresponding to the
Web application entities explicitly mapped (in a proper XML file) for the mobile
platform:

• Contracts: Classes responsible for the definition of the entity tables in the
relational database of the mobile application. These classes also “know” how
to create these tables charts when the application is installed.

• Models: Classes that define the data model of the entity. When the code is
generated, a transcription of the instance’s XMLs is done (these XML files
containing each entity attribute and its respective data type) for the creation of
these classes in the mobile application.

• Data access objects (DAOs): Classes that implement the persistence layer,
making the interaction with the database.

• Adapters: Classes with methods to convert values from the entities attributes.
They are essential in the representation of classes objects as JSONobjects and
for the conversion of values for the data record and recovery in the mobile
application database.

• Tasks: Classes whose instances are called asynchronously by the mobile
application and are responsible by the synchronization of the entity data with
the Web application.

• Web services: They are classes that convert and send entities to the Web
application and recover their information. They know the REST
communication protocol and know how to treat errors when needed.

Moreover, the Titan Architect Mobile generates artifacts for the visualization layer
(which includes classes called Views in the Android and XML files) in a visual pattern
that can be easily altered by the application engineer. Optionally, a binary database is
created (corresponding to the MetadataImport feature) and it is loaded when the mobile
application is installed, as previously mentioned.

The code generated by the Titan Architect Mobile interacts, by means of message
exchange, with a set of artifacts that implement parts of the application corresponding
to the frozen spots from the Titan Framework. These artifacts are classes whose code is
not modified from one instance to another. Make part of this static code diverse libraries,
such as the ActionBarSherlock (2012) and the SlidingMenu (2014), and also common use
classes made available in a package named “util”. Examples of entities from
this package include the classes CryptHelper, Database, DrawableHelper,
EmbrapaAuthCredential, LogHelper, NetWorkVerifyer and ScreenHelper, whose
names are self-explanatory.

Interventions in the source code obtained can be made by the application engineer to
finish it and customize it, but not to optimize its performance. We highlight that the
source code generated by Titan Architect Mobile will likely be more efficient than
the source code manually implemented by a Java developer, who ignores or disregards
the best practices of Android (2015) development. We can say this because the
implementation of the generator involved detailed study of these “best practices”. Thus,
as the source code generation of Titan Architect Mobile considers these assumptions,
then we can infer that the generated source code will be efficient.

49

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



5.3 Instantiating the e-Gov Mobile SPL
As shown in Figure 4, the instantiation of the e-Gov Mobile SPL happens from a Web
instance of the Titan Framework. An instance from the Titan is formed by components
of the e-Gov Web SPL that were parameterized to generate, at runtime, the
functionalities of the Web application allocated in the business layer. Business rules and
data models specified, respectively, in the Model Layer Specification and in the
Persistence Layer (illustrated on Figure 4) for the instantiation of the e-Gov Web SPL are
reused in the e-Gov Mobile SPL for the code generation of the mobile application.

The application engineer can choose which functionalities from the Web application
will be present in the corresponding mobile application. For this, he or she must specify
the functionalities in a XML markup file that has a similar syntax to the shown in
Figure 5. It is necessary to specify in this file, the name of the mobile application
(“Travel”, in the example) and the entities from the Web applications that will be present
in the mobile application (“Embassy”, in the example).

Based on the aforementioned specification, the Titan Architect Mobile traverses, in
the Web application, the artifacts that compose the mapped functionalities. In this case,
for each functionality, the definition files from the models that compose its entities and
the business rules contained in the component reused from the Titan Framework are
considered to obtain the desired functionality. This way, the parametrization of the
component that was instantiated to obtain the section in the Web application (in the
example, section � “embassy”) is reused for the generation of the mobile application.
The remaining attributes from the XML specification (Figure 5) complete the
information needed for the generation of the code for the mobile application, such as the

Figure 4.
Overview of the
instantiation of the
e-Gov Mobile SPL

IJWIS
12,1

50

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-003.jpg&w=343&h=246


name that entity will have in the mobile application (in the example, model �
“Embassy”).

Therefrom, as illustrated on Figure 4, many artifacts (Contracts, Models, DAOs,
Adapters, Tasks, Webservices and Views) from the mobile application are generated
based on the parameterization of functionalities from the Web application. If the
application engineer also opts for the generation of the pre-loaded binary database for
the mobile app, the Titan Architect Mobile extracts the data from the Web application
(in PostgreSQL) converting it to make it available in the app (in SQLite). Finally, the
classes from the Mobile Core Package, correspondents to features from mobile feature
model, are copied into the mobile application’s code, finalizing the instantiation process.

To present the results of the conducted evolution, a Web application (Embrapa,
2014a) (shown in Figure 6) was developed with the support of the e-Gov Web SPL and
then corresponding mobile application was developed (Embrapa, 2014b) (illustrated in
Figure 7) with the support of the e-Gov Mobile SPL, whose purpose is to provide a list of
Brazilian embassies for overseas travelers. The development of both applications was
carried out following the mentioned instantiation process and in accordance to the
Application Engineering Process of the PLUS approach.

Thereby, first, an e-Gov Web SPL was instantiated. For this, it followed a Titan
Framework step-by-step creation guide for Web applications (Carromeu, 2014), which
involves the instantiation of the base code (the default code that all applications have,
but can be modified by the application engineer) present in the framework’s public
repository and its configuration. Next, the list of Brazilian embassies was obtained in the
Brazilian’s Ministry of External Relations (commonly called Itamaraty) public website
(Brasil, 2014), and imported into the Web application’s database, in a table with columns
corresponding to the quantity and types of the extracted data. It was created a new
CRUD (create, read, update and delete) section in the Web application to enable the
representation and manipulation of data from the table. Once the section was created, it
was just necessary to enable its integration to the service bus through the
parametrization of the corresponding component and available in the Titan Framework
repository. Finally, it was activated in the Web instance the integration with the Google
Plus API, allowing users to register and have access to the system using their Google
accounts.

The second step was the creation of the mobile application, following the
instantiation steps described in the beginning of this section for the e-Gov Mobile SPL.
For this, the application engineer indicated functionalities from the Web application that

Figure 5.
Specification of

functionalities of the
mobile application

51

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-004.jpg&w=215&h=118


Figure 6.
Web application of
Brazilian embassies
for overseas travelers

IJWIS
12,1

52

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-005.jpg&w=256&h=479


should be present in the mobile application by means of a specification in XML (as
illustrated in Figure 5). In the sequence, the Titan Architect Mobile was executed,
generating the Contract, Model, DAO, Adapter, Task, Web services classes, XMLs and
classes for the visualization layer as well, corresponding to the CRUD section of
representation and manipulation for the list of embassies. The classes were generated in
the packages and folders of the base code, including in it the functionality of
synchronizing the embassies list in the mobile device. Finally, graphic alterations were
made in the already functional mobile application (Figure 7) so that it became
correspondent to the web application visual identity (Figure 6).

It is noted that a single application engineer developed both applications (Web and
Mobile) and spent about 16 hours, being half of that time used in the creation of graphic
elements. The optimization of development time was possible because of automatic code
generation, which also helped to guarantee the final quality of the developed product.

6. Case studies
Several real-world solutions, cited below, were obtained based on the same instantiation
process mentioned in Section 5 and are therefore members of the e-Gov Mobile SPL:

• Livestock management platform: This software platform is composed by a Web
application (Titan instance) and a mobile application, whose code was generated
from the instantiation of the e-Gov Mobile SPL. This solution allows beef cattle
producers to manage the herd on their rural properties. The mobile application
makes integral use of the services mentioned in Section 5.1, once it adopts a policy
of asynchronous synchronization, where the user can interact with the mobile
application while offline, creating tuples, identified making use of the
disambiguation technique, that will be synced afterwards with the Web
application using the service bus authenticated in application and client levels,
provided in the Embrapa-Auth protocol.

Figure 7.
Mobile application of

Brazilian embassies
for overseas travelers

53

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-006.jpg&w=343&h=201


• Sanitary calendar: The objective of this application is to notify the beef cattle
producer about sanitary managements and vaccinations that the producer will
have to apply in the herd. For this, the mobile application makes use of the
Android notification system, named Google Cloud Messaging, which allows
alerts to be launched to the mobile device. With that, from the record of business
rules in the Web application, such as the correct age to apply specific vaccines in
the animals and the registration of animal lots by the producer, the mobile
application emits notices that allow the user to schedule coming managements
and vaccinations that should be done.

• Summary of bulls from the Geneplus program: The Geneplus program (http://
geneplus.cnpgc.embrapa.br/) is specialized service for animal genetic
improvement available for the cattle breeder. One of the results of this program is
a catalog that is annually updated with certified bulls (reproducers). This way, the
developed mobile application aims to replace the catalog’s distribution format
that, until then, was printed. Then, this application’s database was populated with
about 70,000 animals, which compose the catalog. This mobile application
remains synchronized with the corresponding Web application, providing the
user with up-to-date information from the catalog, as well as other information
like a search engine for bulls with specific characteristics.

• Serviço de atendimento ao cidadão (SAC) Gado de Corte (Souza et al., 2012): In
English, Customer Services Center for Beef Cattle, in English, is a mobile
application with 1,700 questions and answers about the Brazilian chain of beef
production.

Among the mobile applications developed from the instantiation of the e-Gov Mobile
SPL, it is highlighted the mobile application SAC Gado de Corte that is available for
free in the Google Play Store (Embrapa, 2012) since October of 2012, being available
for any person with an smartphone or tablet with the Android operating system. It
is noteworthy that until the moment, the application has more than 6,700
downloads.

The demand for the development of the mobile application SAC Gado de Corte has
historical roots. The Brazilian Agricultural Research Corporation (Embrapa), since the
1970s, made use of medias for the knowledge transfer from its researchers to the rural
producers community. In this period, doubts were sent by rural producers and answered
by the Embrapa’s researchers via letters. Over the years, this process kept evolving,
following the technology, and today digital medias are used. Aiming to facilitate the
communication with its public, the access and organization of this information, the SAC
(Citizen’s Service) was developed in many decentralized Embrapa units. In the Embrapa
Beef Cattle, a Web application named SAC (Embrapa, 2013) was developed with support
of the e-Gov Web SPL, as in the main screen illustrated on Figure 8. This Web
application has a database with about 1,700 doubts, in the form of questions and their
respective answers about the Brazilian livestock. In this context, aiming the high
availability of this information to the producers, it led to the creation of a mobile
application that enables the consultation of the database of the SAC Web application by
smartphones and tablets.

Initially, the mobile application SAC Gado de Corte, previously installed in a mobile
device [Figure 9(a),] synchronizes with the Web application SAC’s database, storing the data

IJWIS
12,1

54

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



in the mobile device [Figure 9(b)]. The local database is updated every time the user restarts
the mobile application (as long as there is a Internet connection available). After the
synchronization, the user can search the whole local database. To do this, the user must
interact with the mobile application accessing the questions of his/hers interest, which are
organized by category, as illustrated on Figure 9(c).

When a category is selected (“Pastagem”, for example), only questions of that category
are shown. When a question is selected, a new window is opened, where the user can view the
answer to that question, as illustrated on Figure 10(a and b) shows information about the
development of the SAC Gado de Corte (laboratory, institution, license and authors).

Besides that, the user can filter the list of questions to find more easily what he/she is
looking for. The mobile application SAC Gado de Corte has three ways to search a question:

(1) Typed question: In this type of search, the user is presented with a virtual
keyboard, by which he/she can type one or more words related to the subject that
he/she is searching, as shown on Figure 11(a).

(2) Gestural search: In this type of search, the user can draw characters on the screen
related to the subject he/she aims to find, filtering the list of questions and
answers, as illustrated on Figure 11(b).

Figure 8.
SAC Web application

55

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-007.jpg&w=227&h=307


Figure 9.
Starting screens of
the mobile
application SAC
Gado de Corte

Figure 10.
Screen of the answer
to a question related
to the “Pastagem”
category

IJWIS
12,1

56

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-008.jpg&w=343&h=205
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-009.jpg&w=276&h=246


(3) Voice search: In this type of search, the mobile application allows the user to do
a voice search, that is, the user speaks the subjects to be searched and the
application recognizes and filters the list of questions and answers, as presented
on Figure 11(c).

As shown on Figures 9-11, the instance of the e-Gov Mobile SPL has an interface with
high usability focused on satisfactorily serving all of the Embrapa’s target audience
(researchers, students, rural producers, agriculture technicians, etc.).

Since its release, in the October of 2012, the mobile application SAC Gado de Corte has
been used by diverse actors in the beef cattle production chain, as illustrated in
Figure 12, once that its content is of interest of both agricultural technicians and rural
producers. As it can be observed in the figure, there is an increase of 150 per cent on the
number of users of the mobile application from 2014 to 2015, showing its visibility and
utility for the agriculture and livestock on Brazil. It is noticed that besides Brazil, there
is interest for the mobile application from users from others countries, as shown in
Figure 13.

Based on the aforementioned data, it is possible to observe that the mobile
application SAC Gado de Corte, a result from the instantiation of the e-Gov Mobile SPL,
is equivalent in technical quality to other softwares for mobile devices that were
developed completely in the manual way or generated by other tools.

7. Conclusion
This paper presented the changes made in the e-Gov SPL to obtain an e-Gov Mobile SPL.
In particular, a service bus that contemplates the communication between Web
applications and their corresponding mobile applications was implemented in the Titan
Framework (some of the existing components in its repository were refactored to be able
to interact with the incorporated services) and a code generator to create mobile

Figure 11.
Search types

available in the
mobile application

SAC Gado de Corte

57

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-010.jpg&w=343&h=207


applications (Titan Architect Mobile) was implemented. The main motivation on
conducting this work was the need to migrate several web systems, previously
developed with the support of the e-Gov Web SPL, to a mobile platform, besides
allowing the communication between the applications in both platforms (that is, Web
and mobile).

From this work, it is possible to reduce time and effort during the development of
Android applications and their integration with a web application that acts as a
centralized database, and to ensure the adoption of best practices following Google’s
performance guidelines by mobile applications developed with Titan Architect Mobile.
Some software products resulting from the e-Gov Mobile SPL were obtained up to the
moment, highlighting the mobile application SAC Gado de Corte that had a significant
increase in number of users, from different countries, in the past two years according to
the data collected in the Google Play Developer Console.

As the main restrictions for this work, we can point out the small number of
instantiations performed until the moment with the support of the e-Gov Mobile SPL,
what prevented the conduction of an empirical study. However, the results obtained so
far indicate considerable reduction in development time of mobile applications

Figure 12.
Number of unique
users over time

Figure 13.
Number of unique
users by country

IJWIS
12,1

58

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-011.jpg&w=343&h=134
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-10-2015-0036&iName=master.img-012.jpg&w=343&h=154


corresponding to Web applications obtained through the e-Gov Web SPL and,
consequently, cost reductions and increased productivity for application engineers.
Moreover, the generated source code specifically works with the patterns adopted by
Titan, that is, it must necessarily use the Embrapa-Auth, for example.

Main future works arising from this paper may include release of other services in the
e-Gov SPL Mobile which will be identified with the usage of product line; addition of
support to the code generation for iOS and Windows Phone in the Titan Architect
Mobile; the development of an expressive number of mobile applications through the
instantiation of the SPL treated in this paper, aiming to obtain statistically significant
results and the conduction of controlled experiments that would allow to verify the
effectiveness of the e-Gov SPL Mobile.

References
Actionbarsherlock (2012), available at: http://actionbarsherlock.com/ (accessed September 2015).

Android (2015), “Best practices”, available at: http://developer.android.com/guide/practices/
index.html (accessed September 2015).

Brasil (2014), “Ministry of foreign relations”, available at: www.itamaraty.gov.br/ (accessed June
2014).

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P. and Stal, M. (1996), Pattern-oriented
Software Architecture – A System of Patterns, Wiley & Sons, New Jersey.

Carromeu, C. (2014), “Titan framework cookbook”, available at: http://cloud.cnpgc.embrapa.br/
titan/documentacao/ (accessed September 2015).

Carromeu, C., Paiva, D.M.B. and Cagnin, M.I.C. (2015), “The evolution from a web SPL of the
E-Gov domain to the mobile paradigm”, Proceedings of the 15th International Conference
on Computational Science and Its Application, 2015, Lecture Notes in Computer Science,
London, Vol. 9155, pp. 217-231.

Carromeu, C., Paiva, D.M.B., Cagnin, M.I.C., Rubinsztjn, H.K.S., Breitman, K. and Turine, M.A.S.
(2010), “Component-based architecture for e-Gov web systems development”, Proceedings
of the 17th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems in Oxford, 2010, IEEE, New York, pp. 379-385.

Cleaveland, J.C. (1988), “Building application generators”, IEEE Software, Vol. 5 No. 4, pp. 25-33.

Clements, P. and Northrop, L. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA.

Coplien, J.O. (1998), “Software design patterns: common questions and answers”, in Rising, L.
(Ed.), The Patterns Handbook: Techniques, Strategies, and Applications, Cambridge
University Press, New York, NY.

Embrapa (2012), “SAC Gado de Corte”, available at: https://play.google.com/store/apps/details?
id�br.embrapa.cnpgc.sac&hl�pt_BR (accessed September 2015).

Embrapa (2013), “SAC web application”, available at: http://cloud.cnpgc.embrapa.br/sac/
(accessed September 2015).

Embrapa (2014a), “Embassy web application created from e-Gov Web SPL”, available at: http://
titan.cnpgc.embrapa.br/sample/travel/ (accessed September 2015).

Embrapa (2014b), “Embassy mobile application created from e-Gov Mobile SPL”, available at: https://
play.google.com/store/apps/details?id�com.carromeu.titan.sample.travel (accessed September
2015).

59

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

http://actionbarsherlock.com/
http://developer.android.com/guide/practices/index.html
http://developer.android.com/guide/practices/index.html
http://www.itamaraty.gov.br/
http://cloud.cnpgc.embrapa.br/titan/documentacao/
http://cloud.cnpgc.embrapa.br/titan/documentacao/
https://play.google.com/store/apps/details?id=br.embrapa.cnpgc.sac&hl=pt_BR
https://play.google.com/store/apps/details?id=br.embrapa.cnpgc.sac&hl=pt_BR
http://cloud.cnpgc.embrapa.br/sac/
http://titan.cnpgc.embrapa.br/sample/travel/
http://titan.cnpgc.embrapa.br/sample/travel/
https://play.google.com/store/apps/details?id=com.carromeu.titan.sample.travel
https://play.google.com/store/apps/details?id=com.carromeu.titan.sample.travel
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-21404-7_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-21404-7_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F52.17799&isi=A1988P101000006


Falvo Junior, V., Duarte Filho, N.F., Oliveira Junior, E. and Barbosa, E.F. (2014), “A contribution to
the adoption of software product lines in the development of mobile learning applications”,
Proceedings of the IEEE Frontiers in Education Conference in Madrid, Spain, 2014, IEEE,
New York, pp. 1-8.

Foote, B. and Johnson, R.E. (1988), “Designing reusable classes”, Journal of Object Oriented
Programming, Vol. 1 No. 2, pp. 22-35.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns – Elements of Reusable
Object-oriented Software, Addison-Wesley, Boston, MA.

Gomma, H. (2005), Designing Software Product Lines with UML, Addison-Wesley, Boston, MA.
Google (2015), “Google play developer console”, available at: https://play.google.com/apps/

publish/signup/ (accessed September 2015).
ISO/IEC 9126:2001 (2001), “Software engineering – product quality – Part 1: quality model”, June.
ISO/IEC 25010:2011 (2011), “Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – system and software quality
models”, March.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. and Peterson, A.S. (1990), “Feature-Oriented
Domain Analysis (FODA): feasibility study”, Technical Report, Software Engineering
Institute, Carnegie Mellon University, CMU/SEI-90-TR-21, November.

Marinho, F.G., Andrade, R.M.C. and Werner, C.A. (2011), “Verification mechanism of feature
models for mobile and context-aware software product lines”, Proceedings of the 5th
Brazilian Symposium on Software Components, Architectures and Reuse in São Paulo, SP,
Brazil, 2011, IEEE, New York, pp. 1-10.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S., Teixeira, E.,
Filho, J.B.F., Dantas, V.L.L., Lima, F. and Aguiar, S. (2013), “MobiLine: a nested software
product line for the domain of mobile and context-aware applications”, Science of Computer
Programming, Vol. 78 No. 12, pp. 2381-2398.

Mizouni, R., Matarb, M.A., Mahmoudb, Z.A., Alzahmib, S. and Salahc, A. (2014), “A framework for
context-aware self-adaptive mobile applications SPL”, Expert Systems with Applications,
Vol. 41 No. 16, pp. 7549-7564.

Nascimento, L.M., Almeida, E.S. and Meira, S.R.L. (2008), “A case study in software product
lines - the case of the mobile game domain”, Proceedings of the 34th Eurocmicro
Conference Software Engineering and Advanced Applications in Parma, Italy, 2008,
IEEE, New York, pp. 43-50.

Pascual, G.C., Herrejon, R.E.L., Pinto, M. and Fuentes, L. (2015), “Applying multiobjective
evolutionary algorithms to dynamic software product lines for reconfiguring mobile
applications”, The Journal of Systems and Software, Vol. 103, pp. 392-411.

Pohl, K., Bockle, G. and Linden, F.J.V. (2005), Software Product Line Engineering: Foundations,
Principles and Techniques, Springer-Verlag, London.

Quinton, C., Mosser, S., Parra, C. and Duchien, L. (2011), “Using multiple feature models to design
applications for mobile phones”, Proceedings of the 15th International Software Product
Line Conference, Munich, Germany, 2011, ACM, Los Angeles, Vol. 2, pp. 1-8.

Sayyad, A.S., Menzies, T. and Ammar, H. (2013), “On the value of user preferences in
search-based software engineering: a case study in software product lines”,
Proceedings of the 35th International Conference on Software Engineering in San
Francisco, CA, IEEE, pp. 492-501.

SlidingMenu (2014), avaliable at: https://github.com/jfeinstein10/SlidingMenu (accessed
September 2015).

IJWIS
12,1

60

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://github.com/jfeinstein10/SlidingMenu
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-28901-1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-28901-1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSEW.2005.5
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSBCARS.2011.9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSBCARS.2011.9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2014.05.049&isi=000340689700049
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSE.2013.6606595
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSE.2013.6606595
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jss.2014.12.041&isi=000351971500026
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2019136.2019162
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2019136.2019162
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.scico.2012.04.009&isi=000325664500007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.scico.2012.04.009&isi=000325664500007
http://www.emeraldinsight.com/action/showLinks?isi=A1988Q223800003
http://www.emeraldinsight.com/action/showLinks?isi=A1988Q223800003


Sommerville, I. (2010), Software Engineering, Addison-Wesley, Boston, MA.
Souza, D.C.G., Righes, B., Rodrigues Filho, J.R., Queiroz, H.P. and Carromeu, C. (2012), “Mobile

service for citizen: SAC mobile”, Proceedings of the 8th Scientific Meeting of the Embrapa
Beef Cattle, Campo Grande, MS, Brazil, pp. 120-121.

Weiss, D.M. and Lai, C.T.R. (1999), Software Product-Line Engineering: A Family-based Software
Development Process, Addison-Wesley Professional, Boston, MA.

About the authors
Camilo Carromeu received the BS degree in Computer Science from the Federal University of Mato
Grosso do Sul in 2003, the MS degree in Computer Science from the Federal University of Mato
Grosso do Sul in 2007. He is currently an Information Technology Analyst at Brazilian
Agricultural Research Corporation – Embrapa Beef Cattle. His research interests include Software
Engineering, Precision Agriculture and Livestock, Web Engineering, Geographic Information
System and Reuse Techniques (Framework, Software Product Line and Application Generator).

Débora Maria Barroso Paiva received the BS degree in Computer Science from the Federal
University of Ouro Preto in 1998, the MS degree in Computer Science and Computational
Mathematics from the University of São Paulo in 2001 and the PhD degree in 2008 in Computer
Science and Computational Mathematics from the University of São Paulo. She is currently an
Associate Professor at the Federal University of Mato Grosso do Sul. Her research interests
include Software Engineering and Hypermedia.

Maria Istela Cagnin received de BS degree in Data Processing Technology from Fundação
Paulista de Tecnologia e Educação in 1995, the M.S. degree in Computer Science from the Federal
University of São Carlos in 1999 and the PhD degree in Computer Science and Computational
Mathematics from the University of São Paulo in 2005. She is currently an Associate Professor at
the Federal University of Mato Grosso do Sul. Her research interests include Software
Engineering Processes, Reengineering, Reuse Techniques (Frameworks, Software Patterns and
Software Product Line) and Business Model Reuse. Maria Istela Cagnin is the corresponding
author and can be contacted at: istela@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

61

From e-Gov
Web SPL to

e-Gov Mobile
SPL

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
2:

02
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:istela@gmail.com
mailto:permissions@emeraldinsight.com

	From e-Gov Web SPL to e-Gov Mobile SPL
	1. Introduction
	2. Related work
	3. Background
	4. SPL for e-Gov system development
	5. Evolution of SPL for the mobile computing paradigm
	6. Case studies
	7. Conclusion
	References


