
International Journal of Web Information Systems
A semantic integration approach to publish and retrieve ecological data
Ana Maria de Carvalho Moura Fabio Porto Vania Vidal Regis Pires Magalhães Macedo Maia Maira
Poltosi Daniele Palazzi

Article information:
To cite this document:
Ana Maria de Carvalho Moura Fabio Porto Vania Vidal Regis Pires Magalhães Macedo Maia Maira
Poltosi Daniele Palazzi , (2015),"A semantic integration approach to publish and retrieve ecological
data", International Journal of Web Information Systems, Vol. 11 Iss 1 pp. 87 - 119
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-08-2014-0028

Downloaded on: 09 November 2016, At: 02:04 (PT)
References: this document contains references to 41 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 300 times since 2015*

Users who downloaded this article also downloaded:
(2008),"Dragon wine: developments in the Chinese wine industry", International Journal of Wine
Business Research, Vol. 20 Iss 3 pp. 244-259 http://dx.doi.org/10.1108/17511060810901055
(2014),"Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research
in Evolutionary Developmental Biology", Research in the Sociology of Organizations, Vol. 42 pp.
235-265 http://dx.doi.org/10.1108/S0733-558X20140000042008

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-08-2014-0028

A semantic integration approach
to publish and retrieve

ecological data
Ana Maria de Carvalho Moura and Fabio Porto

Extreme Data Laboratory (DEXL),
National Laboratory of Scientific Computing (LNCC), Petrópolis, Brazil

Vania Vidal, Regis Pires Magalhães and Macedo Maia
Department of Computing, Federal University of Ceará,

Fortaleza, Brazil, and

Maira Poltosi and Daniele Palazzi
Extreme Data Laboratory (DEXL),

National Laboratory of Scientific Computing (LNCC), Petrópolis, Brazil

Abstract
Purpose – The purpose of this paper is to present a four-level architecture that aims at integrating,
publishing and retrieving ecological data making use of linked data (LD). It allows scientists to explore
taxonomical, spatial and temporal ecological information, access trophic chain relations between
species and complement this information with other data sets published on the Web of data. The
development of ecological information repositories is a crucial step to organize and catalog natural
reserves. However, they present some challenges regarding their effectiveness to provide a shared and
global view of biodiversity data, such as data heterogeneity, lack of metadata standardization and data
interoperability. LD rose as an interesting technology to solve some of these challenges.
Design/methodology/approach – Ecological data, which is produced and collected from different
media resources, is stored in distinct relational databases and published as RDF triples, using a
relational-Resource Description Format mapping language. An application ontology reflects a global
view of these datasets and share with them the same vocabulary. Scientists specify their data views by
selecting their objects of interest in a friendly way. A data view is internally represented as an algebraic
scientific workflow that applies data transformation operations to integrate data sources.
Findings – Despite of years of investment, data integration continues offering scientists challenges in
obtaining consolidated data views of a large number of heterogeneous scientific data sources. The
semantic integration approach presented in this paper simplifies this process both in terms of mappings
and query answering through data views.
Social implications – This work provides knowledge about the Guanabara Bay ecosystem, as well
as to be a source of answers to the anthropic and climatic impacts on the bay ecosystem. Additionally,
this work will enable evaluating the adequacy of actions that are being taken to clean up Guanabara
Bay, regarding the marine ecology.
Originality/value – Mapping complexity is traded by the process of generating the exported
ontology. The approach reduces the problem of integration to that of mappings between homogeneous
ontologies. As a byproduct, data views are easily rewritten into queries over data sources. The

This work has been partially supported by CNPq through its Institutional Capacity Program
(Proc. 382.489/09-8) and Productivity Research Fellowship (Proc. 309502/2009-8) and FAPERJ
through a research project (E-26/111.147/2011).

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Publish and
retrieve

ecological
data

87

Received 2 August 2014
Revised 12 November 2014

Accepted 20 November 2014

International Journal of Web
Information Systems

Vol. 11 No. 1, 2015
pp. 87-119

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-08-2014-0028

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-08-2014-0028

architecture is general and although applied to the ecological context, it can be extended to other
domains.

Keywords Web semantics architectures, Applications and standards, Metadata and ontologies,
Web data integration

Paper type Research paper

1. Introduction
Organizing and cataloguing the existing ecological (biotic and abiotic) resources became
crucial to enable a more accurate control and efficient management of natural reserves
on the planet.

There are currently a number of initiatives, such as Global Biodiversity Information
Facility (GBIF)[1], associated with the development of ecological information systems in
support of some of these challenges. Some of them provide software artifacts to support
scientists in different tasks such as: powerful interfaces for describing and publishing
ecological metadata, and for defining domain terminology making use of ontologies
(Gruber, 1995), so that they can be shared and used by the scientific community
(Wieczorek et al., 2012; Leinfelder et al., 2010). Ontologies can be defined as a hierarchy
of concepts using subsumption relationships (as in taxonomies) and axioms that are
added to express relationships among concepts and to limit their intentional
interpretations (Guarino, 1998). Additionally, axioms make ontologies more expressive
by allowing the use of inference mechanisms.

Despite of years of research on data integration, interoperability is still considered a
major challenge, as it is essential to support queries providing a consolidated data view
from different heterogeneous repositories. In this context, the use of taxonomies and
conceptual abstractions (hierarchies, aggregations, constraints, etc.) provided by
ontologies, together with a new technology approach, known as linked data (LD), have
helped to overcome this challenge. When used together, ontologies and LD rise as a good
strategy to integrate data. LD has been proposed to enable data sharing and reuse on a
massive scale (Berners-Lee, 2006; Heath and Bizer, 2011). It permits publishing and
interlinking structured data on the Web, by the use of a standard language, the RDF
(Manola and Miller, 2004). Among the many LD forums, this technology has gained
significant uptake in life sciences, as mentioned by Heath and Bizer (2011). It has
enabled the connection of a large number of datasets, in a diverse range of science
domains such as: geography, biology, etc.

Although being generic, this architecture has been applied in the context of ecology
to integrate ecological resources of an important Brazilian project, the Brazilian
Long-Term Ecological Research Program (PELD/Brazil)[2], which is currently in
development. Some of the main goals of this project are: to leverage ecological
knowledge, so that important data can be provided to help and to reinforce government
decision-making; to support research related to the management of natural resources;
and to share this information among different sectors of society. The PELD project
currently includes 29 collection sites, which are distributed along different Brazilian
biomes, including fauna, flora, hydrology, forests, fish species, etc. Its main purpose is to
collect and organize biodiversity resources from many regions in the country, and to
learn about the functioning of ecosystems. Additionally, this initiative aims to provide
researchers and society with an integrated view of the Brazilian ecological position.

IJWIS
11,1

88

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

In the context of the ideas above, we use the Guanabara PELD[3] as a proof of
concept. It aims to provide knowledge about the Guanabara Bay ecosystem, as well
as to be a source of answers to the anthropic and climatic impacts on the bay
ecosystem. Additionally, it will enable the evaluation of the adequacy of actions that
are being taken to clean up Guanabara Bay, regarding the marine ecology.

However, integrating and publishing all the data produced by these groups is
crucial not only to provide a homogeneous view of this data but also to make it
available to other groups working in other PELDs throughout the country. When
analyzing other projects in the literature, such as Daltio and Bauzer (2008), Patton
et al. (2014) and GBIF, we observe different strategies for integrating ecological
data. Even though some of them are specifically oriented to the application domain,
while others have more generic purposes, they all share the same approach: the use
of ontologies and/or metadata standards and domain vocabularies to describe the
data resources since their origins.

This scenario is quite different from what happens in PELD. For example,
Guanabara PELD is developed by a large group of biologists, responsible for
distinct domains (hydrology, plankton, fishes, etc.). Moreover, in this project, data
are produced independently, in different formats, collected according to
domain-specific methodologies, and not applying metadata and/or ontologies
standards for describing them.

The architecture proposed in this work contributes to the linked-data initiative by
providing a data integration framework that inherits from mediator systems
(Wiederhold, 1992). It enables the publication of public and private data sources as LD
endpoints in RDF. Data from multiple sources are integrated as high-level data views,
and may be complemented with additional information published on the Web of data.
Data views allow non-specialist users to specify their views of interest over an
integrated conceptual schema defined as an ontology. Data views are automatically
transformed into queries, which are therein produced and executed as workflows by a
query processor engine.

However, having inter LD on the Web by applying LD technology is not enough to
construct integrated data views. The major challenges are related to the following
factors (Heath and Bizer, 2011):

• the discovery of the relevant LD sources;
• the heterogeneity of the LD sources and their vocabularies;
• the quality of the data, which can be fragmented, incomplete, incorrect or

inconsistent; and
• the use of multiple unique resource identifiers (URIs) to denote the same resource,

which requires URI conflict resolution.

In this work, we solve some of these challenges with respect to the integration of
heterogeneous data sources. We provide a mediated view over these sources by
describing it as an ontology in RDF. Ontologies are adopted as the formalism for
representing exported data and the integrated view, and mappings between ontology
elements on different integration levels solve ambiguities and define rules for
composing integrated concepts.

89

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

The great contribution of this work is focused on:
• fostering linked-data initiative in science by providing an adapted data mediation

architecture based on linked data principles;
• providing a semantic integration approach that simplifies the integration process

both in terms of mappings and query answering through data views; and
• offering scientists (i.e. non-computer science specialists) a tool that enables them

to specify high-level data views that are automatically rewritten as an integrated
workflow for RDF queries.

This architecture has been validated for real applications. Applied as an exploration
mechanism, queries executed over this architecture enabled biologists to discover
interesting facts concerning marine species. Some useful examples of queries involve:

• exploring trophic chain hierarchies within a certain region and under specific
conditions; or

• getting information about species predators in different levels of a hierarchy
within a taxonomy.

This latter query turned into a complex query, which was enriched with additional
information available in DBpedia.

The remainder of this paper is structured as follows. Section 2 presents related work.
Section 3 describes in detail the four-level architecture proposed to integrate data
resources. Section 4 details the process of generating data integration workflows
(DTWs). Section 5 presents some real PELD application scenarios that will be used as
case study for integration. It also shows the PELD ontologies generated at each level of
the architecture. Section 6 describes the environment created for the semantic
integration process through data views, in the context of some real queries applied over
PELD. Additionally, this section presents a set of experiments that compares the query
executor engine (QEF-LD), used to process data views, with other federated query
engines. Finally, Section 7 concludes the paper with suggestions for future work.

2. Related work
Data integration refers to the ability to access and manipulate data transparently
across multiple data sources. This issue has been a hard problem to handle since the
1980s, when database scientists needed to integrate many different database
schema models. In this section, we focus on two main points of data integration:
semantic technologies; and a survey of the domain of biodiversity, from a data
integration perspective.

Basically, two main strategies may be considered for data integration: materialized
and virtual approaches. The materialized approach represents a classic data integration
scenario: it collects, stores and accesses data in a central database, based on a schema
mediation (Wiederhold, 1992), where each data source depends on some code or on some
DTW definition in an extract–transform–load environment. On the other hand, the
virtual approach enables the execution of federated queries over a fixed set of data
sources but it requires query rewriting when a data source schema changes, which may
be time-consuming.

IJWIS
11,1

90

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

Although the latter is the current approach used to integrate data in the Web of data
scenario (Heath and Bizer, 2011), it requires a significant effort, as there is often no
explicit semantic description of the contents published there.

For many years, adding semantics to the data integration process has been a concern
(Wache et al., 2001; Noy, 2004; Cruz and Xiao, 2005; Barret et al., 2005; Goble and Stevens,
2008; Cruz and Xiao, 2009). They all call attention to the need of using ontologies as an
important mechanism to achieve this goal, and a diversified number of tools have been
developed to cope with the complexity of semantic data integration. Dark (Quilitz and
Leser, 2008), SemWIQ (Langegger et al., 2008) and FedX (Schwarte et al., 2011) are some
examples of semantic Web engines for distributed query processing. They make use of
the SPARQL language to execute federated queries (Prud=hommeaux and Seaborne,
2008), providing transparent access to RDF data sources. Dark extends Jena[4] ArQ[5] to
enable federated queries with transparent access to multiple SPARQL endpoints.
SemWIQ[6] is based on a mediator–wrapper architecture, while FedX is a framework
that extends Sesame[7] with a federation layer for transparent access to data sources. In
this federated query scenario, the same strategy is used for accessing data sources: a
SPARQL query is decomposed into subqueries, which are then sent to distributed data
sources for execution. The results of the subqueries are returned from the respective
sources and integrated, before providing the final query results.

Additionally, it is also worth mentioning the LD integration framework (LDIF)
(Schultz et al., 2012). It can be used as a component within LD applications. It gathers LD
from the Web and translates them into a clean local target representation in RDF,
allowing for SPARQL endpoints access. As the data is materialized, the LD crawler may
keep track of these modifications.

Despite the many advantages of all these tools, most of them are not able to execute
queries over a domain ontology, with mappings for specific application ontologies.

In this context, many system architectures have been developed in this direction.
Mastro Studio (Civili et al., 2013) is an ontology-based management system, where
ontologies are specified in description logics (Calvanese et al., 2007). Data sources
are seen as a single relational database (RDB), and mapping assertions are used to
associate the ontologies and the database. A graphical user interface allows users to
navigate through the ontology and to express queries, which are computed through a
query rewriting process to standard structured query language (SQL). Another
important work has been developed by Angele and Gesman (2006). Similar to our work,
they also use a four-level architecture (data sources, source schemas, mediated view –
expressed by an ontology – and views on top level) to integrate data in the business
domain. Mappings between data sources and business ontologies are specified by
F-Logic rules, and views are manually defined queries.

More aligned with life sciences and the Web of data scenarios, which represent the
main focus of our work, it is worth mentioning an advance in bioinformatics. The work
proposed by Knoblock et al. (2012) semi-automatically maps contents of bioinformatics
databases in terms of a given ontology. The source model therein generated is refined
through a graphical tool, and converted into RDF triples.

Additionally, in the biodiversity domain, the literature points out several system
architectures for managing and sharing ecological data. A very important initiative is
the GBIF[1], which aims to make the world’s biodiversity data freely and universally
available via the Internet. As a mega-science initiative, GBIF’s goal is to offer an

91

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

essential global informatics infrastructure for biodiversity research and applications
worldwide. It provides functionalities for publishing, discovering, indexing, integrating,
retrieving and analyzing data. Data and their associated metadata from different
repositories are made available using ecological metadata language) (Fegraus et al.,
2005) and Darwin Core (Wieczorek et al., 2012), which are metadata standards for,
respectively, describing and sharing data about biodiversity.

In Brazil, there exist many initiatives to manage and provide access to valuable
ecological information across the country. They take into account its ecological
diversity, which is considered to be one of the richest on the planet, responsible for 10 per
cent of the whole terrestrial biota (Mittermeier et al. 1997). CRIA[8] is the acronym of a
Reference Center on Environmental Information in Brazil, and it encompasses many
biological repositories, such as the SpeciesLink[9], the INCT-Virtual Herbarium of Flora
and Fungus[10] and SinBiota[11]. More recently, the SiBBr (System for Brazilian
Biodiversity)[12], a very important project in the context of biodiversity is under
development. It represents the Brazilian node of GBIF, and it provides an entry to
integrate data collected and published by Brazilian institutions, such as academic,
research and governmental agencies.

A deep analysis of these systems, from a computer scientist point of view, lead us to
conclude that integration for them means having data available from many different
sources, in a centralized way, using a Web portal. Species are indexed according to well
defined domain taxonomies, but information retrieval in these portals is usually done
through keywords that are compared with metadata descriptors, without taking into
account semantic and/or data constraints provided by the use of ontologies.

However, the literature also mentions some important advances in the biodiversity
domain, where ontologies are used as a very important step to integrate data. Aondê
(Daltio and Bauzer, 2008) and SemantEco (Patton et al., 2014) are initiatives developed in
the context of biodiversity. They both use ontologies as a means to integrate and
interoperate data, making it easier for resource managers to discover new sources of
data to support more complex domain applications. The first work is based on an
ontology Web service. It gives support to manage and store ontologies, besides
providing for service operations over integrated sets of ontologies. Applications can
thus enhance their semantics and interoperate by becoming clients of this service,
thereby exchanging, reusing, integrating and adopting concepts from ontologies
published on the Web.

The second work, the SemantEco, is a semantically enabled environmental
monitoring framework. It integrates various ecological and environmental data (such as
water quality, fish and wildlife species), using a family of domain ontologies.
Interoperability is achieved by mapping SemantEco’s schema with applications
compatible with Extensible Observation Ontology (Madin et al., 2007). By representing
these ontologies in OWL-2 ontology language[13], data querying is provided with
inference, supported by good reasoning capability.

In the context of PELD, data sources are very heterogeneous and captured through
different formats (datasheets, images, text, csv files and relational tables). Differently
from the systems studied so far, and probably due to the schema heterogeneity and lack
of consensus of using standard metadata vocabularies, each PELD coordinator follows
his/her own methodology to collect data. Only very few coordinators do follow any
ontology standard to describe data and metadata. To overcome this situation, we apply

IJWIS
11,1

92

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

a strategy for semantic integration, different from the strategies applied in the works
studied so far. In our architecture, data from distinct data sources are transformed into
an ontological representation based on mappings, and joined into a single-mediated
schema. Thus, the mapping complexity across the architecture layers is traded by the
process of transforming the data sources into an exported ontology in RDF. The
exported ontology is based on the same vocabulary of the architecture upper level,
the application ontology (AO), thus reducing the problem of integration to that of
mappings between homogeneous ontologies.

Once PELD data is published as LD, it is possible to enrich it with new information.
This is captured on the fly from other sources in the Web of data. This would not be
possible, for example, if all data was materialized previously in a data warehouse
because in such systems, data dynamics is not the main goal.

In the architecture proposed in this work, we adopted an hybrid approach, where
data can be materialized (mainly those that do not change so often) or virtually accessed,
according to the situation. Hence, for us, data integration is considered as the result of a
query, expressed as a data view, which is submitted over a mediated schema and
executed over the data sources as LD. A submitted query is processed transparently as
a workflow, whose goal is to apply data transformation operations to integrate data
sources. This represents the main differential of our work.

3. Ontology-based architecture for building data views
In this section, we describe a four-level ontology-based architecture that facilitates the
creation of data views from multiple data sources published as LD. Data interpretation
between these levels is ensured by an ontological representation based on mappings,
according to a mediated approach, extended from (Wiederhold, 1992), LDIF (Schultz
et al., 2012) and Vidal et al. (2011). Each level of the architecture illustrated in Figure 1 is
described as follows:

• Level (4): Each data source Si represents an information resource described by a
schema (Schi) that will be published on the Web according to the LD principle.

• Level (3): Each data source Si may export one or more exported views. Each such
exported view Ei is described by an ontology EOi. The specification of EOi views
is obtained by mapping concepts of Schi to concepts of the upper level, the AO,
using a set of mapping rules �E. The subset of AO mapped to a given Schi
exported view forms the corresponding EOi. Each EOi becomes available as
SPARQL endpoints, i.e. it provides a RDF view of the underlying data source Si,
which ensures its publication as LD. Making use of inter-ontology links (e.g. those
created by owl:sameas, or linked by the EOi namespace), instances of one EOi can
be directly associated with instances of another EOi, or with a Web data set
published as LD. Hence, an Ei can be specified by a quintuple (E, S, Sch, EO and
�E), where: E is the name of the view; S is a data source; Sch is the schema of S; EO
is the exported view ontology; and �E is a set of mapping rules from Sch to EO.

• Level (2): This level represents the mediated view, i.e. an integrated view of EOis.
The mediated schema is described by an ontology named as AO. Given that the
EOis have been constructed according to mappings to the AO, the
correspondences between the AO and EO ontologies are simplified. This means
that the set of mediated mappings that specify how to transform EOi instances

93

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

(triples) into AO instances become trivial. Table I shows an example of these
transformations. A mediated view can be specified as an n-tuple (AO, E1 […], En),
where: AO is the application ontology; and E1 […], En are exported view
specifications with their respective ontologies EO1 […] EOn. Finally, an AO is
correspondently published in RDF.

• Level (1): The user data requirements are specified in this level through data
views. Conceptually, a data view DVi defines the data objects users want to
extract from the data sources, according to the vocabulary V specified in the AO.
Thus, a DVi reflects on some fragment of the AO, expressed as a query. A DVi can
be specified as a n-tuple (Q,AO,C,P and F), where: Q is a query identifier; C is a set

Figure 1.
A four-level
architecture for LD
view integration

Table I.

AO Plankton EO

(a)
a: Plankton_Sample epl: Plankton_Sample
a: has_pl_analysis epl: has_pl_analysis
a: collected_in epl: collected_in
a: weight_pl epl: weight_pl
.

(b)
a: Sample(p)(epl: Sample (pl) U ecf: Sample(cf) U eco: Sample(co)

Notes: (a) Vocabulary matching between the AO and the plankton EO; (b) a sample instance in the AO
is expressed as the union of the EO instances: (pl) for plankton; (cf) for CatFish; and (co) for Comm_fish

IJWIS
11,1

94

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-000.jpg&w=343&h=230

of classes in AO; P is a set of properties in AO; and F is a set of constraints (filters)
applied over the terms of AO. A data view is specified through a friendly interface
that offers the user the ability to select the terms that will compose it. Figure 7
presents the interface provided for data view creation, with a query example
concerning PELD application.

This architecture follows a similar idea of the three-level ANSI-SPARC database
architecture (Elmasri and Navathe, 2010), where a data view corresponds to an external
view in the ANSI-SPARC architecture. It describes the database part a particular group
of users is interested in.

4. Data integration workflows
As presented in Section 3, a data view DV defines a query on an AO. Executing a DV
requires generating a workflow that integrates the corresponding EOis and fulfills the
data requirements in DV. In this section, the process of generating DTWs is detailed.

4.1 DTWs as union and join
A DTW is defined as adequate with respect to the data view, if it is a composition of
union and join operations. Unions are used whenever the same query object, class or
property, appears in more than one EO. Retrieving instances corresponding to such a
query object requires the application of the union operator over the EOis (such as sample
in Figure 6). Joins, in their turn, are used whenever a query object refers to a property in
the AO, whose range and domain are mapped into classes in different EOis.

4.2 DTW generation
The process of generating a DTW transforms the data view over the AO into a workflow
composed of: queries to the participating EOis; joins and unions. Queries select objects
from the data sources according to the constraints in the data view.

Hence, a DTW can be specified as a triple (Cdv,R and F), where: Cdv 205 C is the set of
classes selected in the data view; R are the object properties (relationships) associated
with these classes. Each relationship is associated respectively with a domain and with
a range class; and F is the set of constraints applied over R. The DTW, also known as a
query execution plan, represents the output generated by Algorithm 1, as described next.
This DTW will contain an ordered list of operators Opk, 1� k � n, which can be union
or join.

4.2.1 Query execution plan. Given a data view, a graph corresponding to a query
execution plan (i.e. a DTW) for that data view is generated, according to Algorithm 1.
Initially, this algorithm identifies the relationships that are of type “is-a” (Line 3) and
those that are not (nIsA) (Line 4), and processes-specific functions to group classes
taking part of Unions (Line 5) and Joins (Line 6). These two functions are respectively
executed by Algorithms 2 and 3. Finally, the final DTW is generated by Algorithm 4,
which is presented in Appendix 1.

In Algorithm 2, for each relationship of type “is-a” it groups into a Union list the
classes that have the same range and creates a union list (Lines 2-10). Each union list
corresponds to a different union node, as there may exist classes in the DV taking part
of different unions. This algorithm returns the Union list containing all the unions found
in the DV (Line 11).

95

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

Algorithm 1. Data Transformation Workflow (DTW)

Input: (DV, AO) /* Data View and application ontology */
Output: DTW/* list of operations that will be performed over the classes, as a workflow, by
QEF */

/* Initialization */
1 r¢ getRelevantRelationships (DV,AO) /* r contains all relationships in AO

relevant to DV */
2 c¢ getRelevantClasses (DV, AO) /* c contains all classes in AO relevant to DV */
3 isA ¢ r.getRelationships_type_IsA() /* isA contains all relationships in AO of type

is_A */
4 nIsA¢ r.getRelationships_type_Not_IsA() /* nIsA contains all relationships in AO

of type � is_A */
5 unionList ¢ Create_UnionList (isA) /* Create unions */
6 joinList ¢ Create_Join_list (nIsA,unionList) /* Create joins */
7 end-for
8 buildDTW (JoinList, UnionList) /* Build the DTW output */

Algorithm 2. Create_Union_List (List isA)

/* Create union nodes: group classes in a domain role in “is-a” relationships that share
the same range and adds them as a unionNode */

1 unionList ¢ Ø
2 for each rel in isA
3 unionNode ¢ null
4 obtain classRoot from rel such that classRoot is rel.Range /* get isA range class*/
5 obtain unionNode from unionList such that classRoot � unionNode.root
6 if (unionNode � null)
7 unionNode ¢ createUnion(classRoot)
8 end-dif
9 unionNode.add(rel.Domain);

10 end-for
11 return unionList

Algorithm 3 is responsible for creating Join lists whenever one of the following
situations arises:

• a join occurs between classes that do not take part of the Union list (Lines 1-5). A
join node is then created between these two classes (Line 2-5);

• one of the classes in the join relationship takes part of the Union list as range
class (Lines 7-10) or as domain class (Lines 11-13), after which a join list is
created between the root of the union node and the range (Line 10) or the
domain (Line 12), respectively;

• a join occurs between classes of the same Union list (Lines 17-25). In this case,
both classes are removed from their union nodes (Lines 21-22), their schemas
are merged into a union node and added into a join list (Lines 23-24); and

• when a join occurs between classes from different union lists.

From the domain of one class and the range of the other, the union nodes are obtained
and a join between these two nodes is created (Lines 26-34). Finally, the algorithm
returns the join list concerning the DV (Line 35).

IJWIS
11,1

96

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

Algorithm 3. Create_Join_List (List nIsA, List unionList)
/* Create join nodes: Identify situations where a join can occur */
/* i- Relationships with classes not taking part of any UnionNode */

1 obtain x from nIsA with no domain or range class in Union
2 for each rel_x in x
3 joinNode¢createJoin(rel_x.Domain,rel_x.Range) /* Create join list with classes

not taking part of a Union */
4 JoinList.add(JoinNode)
5 end-for

/* ii- Relationships with a class, domain or range, taking part of a UnionNode */
6 obtain y from nIsA with only one class, domain or range in unionList
7 for each rel_y in y /* Create a join list whose range of a class takes part of the

Union */
8 if (exists c such that c in unionList.classes � rel_y.Domain) /* if c is the

domain */
9 obtain unionNode from unionList such that unionNode contains c /*

unionNode is the Union operator */
10 joinNode¢createJoin(rel_y.Range, unionNode.root) /* a joinNode is created

between the range of this relationship and the union */
11 else /* a joinNode is created between the domain of this relationship and the

union */
12 joinNode¢createJoin(rel_y.Domain, unionNode.root)
13 end-if
14 JoinList.add(JoinNode)
15 end-for

/* iii- Relationships between classes of a same UnionNode */
16 obtain z from nIsA with both classes(domain and range) in a UnionNode
17 for each rel_z in z
18 mergeNode¢createMerge(rel_z.domain, rel_z.range) /*merge into

a single class */
19 c ¢ merge.getOutputClass /*obtain the schema of the merged classes */
20 obtain unionNode from unionList such that unionNode contains rel_z.domain
21 unionNode.remove(rel_z.domain)
22 unionNode.remove(rel_z.range)
23 unionNode.add(c)
24 joinList.add(mergeNode)
25 end-for

/* iv- Relationships with classes in different unionNodes */
26 obtain k from nIsA with classes in different UnionNodes
27 for each rel_k in k
28 obtain c from rel_k.domain
29 obtain d from rel_k.range
30 obtain unionNode from unionList such that unionNode contains c
31 obtain unionNode2 from unionList such that unionNode2 contains d
32 joinNode ¢createJoin(unionNode.root,unionNode2.root)
33 joinList.add(joinNode)
34 end-for
35 return joinList

97

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

4.2.2 Example of DTW. Figure 2 illustrates an example of DTW generated by
Algorithm 1, based on PELD application. It represents a query specified through a data
view. Observe that the DTW representation takes the format of a left deep tree, usually
adopted as the representation of query execution plans (Elmasri and Navathe, 2010). In
this representation, each leaf node of the tree corresponds to a query to be sent to an
endpoint. Intermediate nodes represent data transformation using one of the operators,
Join or Union.

For each EO that is mapped to the AO fragment of interest, a SPARQL query is
internally generated. SPARQL EO queries return the instances of interest from each
source, which are input to the DTW. The set-bindjoin operator (Magalhães et al., 2013)
obtains the set of input values from the EO queries, and computes the node on its
left-hand side (Qplankton 200 Q catfish 200 Q comm_fish) (Figure 2), which will be joined with
the data in the data source represented on its right-hand side (Qregion) in the tree. These
bound values substitute placeholders in an EO query.

The ordering of the workflow operations in a DTW may influence query results.
Ordering Unions has no effect on either the result values or the computation efficiency.
They can be placed in the workflow in any order. The same is not observed between
joins. Thus, during the data view design (which consequently generates a DTW
preserving the processing order of the data view elements), the user may try different
orderings, by running experimental workflows and choosing the most efficient one.
Hence, with these very simple heuristics, users are able to produce a simple and efficient
DTW. Moreover, given that the semantics of the data transformation operations are
very familiar (i.e. as in relational model operation semantics), in the future, an optimizer
may automatically improve the initial user workflow, applying automatic workflow
transformations (Ogasawara et al., 2013). A URI is assigned to each DTW specification.

Figure 2.
A DTW representing
a query

IJWIS
11,1

98

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-001.jpg&w=323&h=212

This will allow the user to reexecute the same workflow or simply alter some of its
parameters, according to his/her application needs.

4.3 DTW execution environment
Executing a data view represents the final step of the semantic integration process: the
result sets obtained from the data sources are processed by a DTW, integrated and
computed by QEF (Porto et al., 2007), an extensible workflow query engine, together
with QEF-LD, an additional component to process LD (Magalhães et al., 2013). The
semantic integration can be expressed as tuple (DTW and RS), where: DTW represents
the ordered list in which the operators will be executed over the classes; and RS is the
result set containing the query results.

Therefore, results obtained after executing a DTW contain the scientist’s integrated
and materialized data, corresponding to his/her data views, as described in Section 3.
QEF-LD is a Web service application that processes SPARQL queries over federated LD
sources, i.e. through their endpoints, making use of a scan operator. It includes LD
algebraic operators (such as Union and set-bind-join) and wrappers that submit a
SPARQL query to a D2R endpoint or to any other LD Web resource. During the query
processing, join ordering between distributed endpoints are defined, while local joins
remain specified in SPARQL subqueries to be run by the endpoints themselves.
Inter-site joins are implemented by the Set-BindJoin operator, whose algorithm
description is described in detail in (Magalhães et al., 2013).

Figure 3 illustrates a generic architecture for processing DTWs. The execution
process depicted in this architecture works as follows: a user data view processing
request is submitted to the system referring to a URI that points to the corresponding

Figure 3.
System architecture

for computing DTWs
in LD

99

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-002.jpg&w=216&h=235

DTW. Then it is processed by QEF, the workflow plan executor. To access EO elements,
the DTW is segmented into distinct SPARQL queries. Section 6 (Item 3) illustrates this
segmentation process in more detail, during a data view execution applied to the PELD
scenario. It is worth observing that this architecture also considers data already stored
in RDF repositories.

5. Application scenarios
This section describes the Guanabara PELD scenarios that will be used for integration,
according to the architecture depicted in Figure 1. The main goal of this integration is to
provide knowledge about the Guanabara Bay ecosystem, as well as to be a source of
answers to the anthropic and climatic impacts on the bay ecosystem. Additionally, it
will enable evaluating the adequacy of actions that are being taken to clean up
Guanabara Bay, regarding the marine ecology.

Guanabara PELD aims to get biotic and abiotic data from samples extracted from the
bay water, from planktonic and benthonic communities and from fishing resources,
from which a few features related to the plankton biomass are studied.

A life science taxonomy classifies organisms according to a hierarchy. The first level
corresponds to the Kingdom, which is decomposed into Phylums and successively into
classes, orders, families, genus and species. Each level has respectively its own
subdivisions. Any level within this classification is called a taxon. There exist
differences in the levels concerning each organism. Some of them have been reclassified,
and in this case, both classifications are kept and a synonymous relationship is
established between them. Furthermore, each taxon scientific name is associated with
its corresponding instance or class name in DBpedia[14].

Some important features deserve some attention in ecological data analysis.
Geographical region information is used for selecting and classifying events according
to their location. On the other hand, trophic relations are fundamental for the ecosystem
study. Finally, the taxonomy enables a hierarchical analysis of the species. The analysis
of these aspects may be explored by the use of inference in an integrated way. The main
characteristics of each scenario are described next.

• Plankton: In the plankton scenario, a sample data takes into account temporal
(data and time) and spatial (latitude, longitude and profundity) information, as
well as methods used for sample collection and preservation, atmospheric and
maritime conditions during each collection. For each analysis performed,
information about its taxonomy classification and the applied method of
collection are registered. Biomass measurements of organisms found in the
samples can be done at species level or at the taxonomy highest level.

• Community fish: Besides temporal and spatial information, this application stores
the fishing method used to catch fish, taking into account two different depths
(initial and final). It is worth observing that fish collections are divided into three
samples, from which the total weight and number of individuals are analyzed for
each taxon found in the collection process.

• Catfish genidens: Differently from the previous scenarios, this application
analyzes each specific species individually, considering not only spatial and
temporal references but also the fishing method used in the collection process, the
specie weight, length and gender (male/female).

IJWIS
11,1

100

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

It is worth observing that each scenario represents the study of a different research
group. Hence, the importance of this work is to create an infrastructure to allow
biologists of different groups to explore all these ecological data by integrating and
filtering them according to specific constraints, to enrich their researches.

Figure 4 applies PELD scenarios to the architecture presented in Section 3, which will
be used as our case study.

5.1 PELD ontologies
Based on the application scenarios described before, this section presents the ontologies
generated at each level of the architecture depicted in Figure 4. These ontologies will be
relevant to describe the semantic integration process that will be presented in Section 6.

5.1.1 PELD exported ontologies. The full potential use of LD depends on how easy it
is to transform data from relational databases (RDBs) into RDF triples. According to
Malhotra (2005), there exist two main ways of exposing data:

(1) translating relational data into RDF and loading them into an RDF store; and
(2) generating a RDB mapping that can be queried using SPARQL, which is then

translated into SQL.

Additionally, we consider a third strategy, also called hybrid, which combines
Strategies 1 and 2. In the hybrid strategy, part of the data is materialized and directly
stored in RDF, whereas another part requires a RDB mapping as in (ii). Considering that
Strategy 1 is harder to maintain consistency as a result of frequent DB update, and that
part of PELD data is stored as materialized data (due to the low update frequency), we
opted for implementing the hybrid strategy, according to the proposed integration
architecture.

Figure 4.
The architecture

applied for PELD
scenarios

101

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-003.jpg&w=343&h=230

Since most of PELD data are stored in RDBs, we decided to use technologies developed
in the context of the RDB2RDF group[15]. Its main goal is to standardize a language for
mapping relational data and schemas into RDF and OWL[13] to enable publishing, and
integrating vast amounts of information stored in RDBs on the Web.

The generation of RDB mappings is the strategy adopted in this work to make our
PELD relational data sources available as endpoints. PELD databases are stored in the
PostgreSQL[16] RDB, and are mapped automatically into a virtual RDF graph with the
help of the D2RQ tool[17], a platform developed in Java that enables executing SPARQL
queries and accessing data in the database as LD. This platform is constituted of the
following components: the D2RQ mapping language, a declarative language that
describes the mappings; the D2R server (Bizer et al., 2006), a HTTP server that provides
a LD view and SPARQL queries; and the D2RQ engine, a plugin that accepts reasoners
such as Jena[5] and Sesame[6].

Hence, an EO describes each respective view schema published in RDF. Figure 5
presents the Plankton, the Community Fish and the Catfish Gen EOs, according to the
application scenarios described before. The first EO is composed of three main classes:
Sample, Plankton_Sample and Pl_analysis; the second contains the Sample,
Catfish_Sample and Cf_analysis classes, while the third EO comprises the Sample,
Comm_Fish_Sample and Comm_analysis classes.

These classes are virtually associated with other ones by specific object properties
such as has_taxon and collected_in. Taxon, Trophic_Chain and Taxonomy classes are
responsible for describing each marine sample (plankton, community fish and catfish) in

Figure 5.
Marine EOs,
materialized EOs,
and a Web data
source (DBpedia
library)

IJWIS
11,1

102

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-004.jpg&w=343&h=258

terms of its taxonomical classification; Region gives the geographical localization where
the sample collection took place; and the DBP class contains the link (url) and the
corresponding taxon in the DBpedia library.

As the classes Region, DBP, Taxon, Taxonomy and Throphic_Chain are shared by
most of PELD views, and their instances do not change very frequently, we decided to
materialize them. This means that their materialized EO instances are stored in RDF,
together with the RDF schema to ensure a better performance during the workflow
execution. In other words, the access to these instances will not be virtually processed
during a workflow execution, as it normally occurs with the other classes, although this
strategy is completely transparent to the final user. It is worth mentioning that the DBP
class, which is instantiated during the EO generation, has been added to the EO as a
means to provide the user with additional information extracted from DBpedia library.

Each id_taxon in the Taxon class is associated with the DBP class by the object
property refers_to, whose goal is to establish a link between a taxon species (through its
scientific_name) and the DBpedia library. DBP instance values (DBPname and url) are
extracted from DBpedia by LIMES (Ngomo and Auer, 2011), a program that discovers
links in metric spaces. This approach uses mathematical characteristics of metric spaces
during the mapping process to filter out those instance pairs that do not meet the
mapping conditions.

The following shows some examples of owl:sameAs instances that link a Taxon
scientific name to its equivalent species in DBpedia library, as shown in Figure 5.

http://localhost:2020/resource/peld_taxon/taxon/111
www.w3.org/2002/07/owl#sameAs http://dbpedia.org/resource/Acartia.

http://localhost:2020/resource/peld_taxon/taxon/60
www.w3.org/2002/07/owl#sameAs http://dbpedia.org/resource/Coscinodiscophycidae

These links are made possible by the url stored in the DBP relation.
EO elements are distinguished through namespace prefixes “epl:”, “ecf:”, “eco:” and

refer to the Plankton, Catfish Geniden and Comm. Fish vocabularies within PELD
ontologies, respectively. For example, the instances of the property epl:collected_in has
Plankton as domain class and Region as range.

5.1.2 Application ontology. Figure 6 shows the AO conceptual model that represents
the mediated view of the three EOs, over which data views will be built. The design
specification from EO to AO is another important step in this architecture, but it will not
be explored in the scope of this paper.

The namespace prefix “a” is used to refer to the vocabulary of the AO. Because most
of the class properties are self-described, we just give a few examples of the class
properties. Sample is the superclass that encompasses all the marine species within
Guanabara PELD. It specializes into Plankton_Sample, Catfish_Sample and
Comm_Fish_Sample classes; a:collect_method property is defined as a datatype
property with domain a:Sample and range string; a:has_predator is an object type
property with domain a:Taxon and range a:Trophic_Chain; and a:has_pl_analysis is
defined as an object property with domain a:Plankton_Sample and range a:Pl_analysis.

The mapping procedure is important to ensure an efficient rewriting process. It is
achieved by using a global-as-view mapping (GAV) (Lenzerini, 2002) between the AO
and EO concepts. The GAV strategy considers that the AO schema is described in terms
of its EO schemas. However, since the AO and EO ontologies share the same vocabulary,
the mediated mappings that define the correspondences between the concepts and

103

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://localhost:2020/resource/peld_taxon/taxon/111
http://www.w3.org/2002/07/owl%23sameAs
http://dbpedia.org/resource/Acartia
http://localhost:2020/resource/peld_taxon/taxon/60
http://www.w3.org/2002/07/owl%23sameAs
http://dbpedia.org/resource/Coscinodiscophycidae

properties of these ontologies become simplified. Furthermore, as the AO is a conceptual
integrated view of the EOs, it is worth observing that in our application, a species in the
Sample class can be seen as the union of the different species of each EO. Table I shows
an excerpt of the vocabulary matching between the AO and EO levels, focused on the
Plankton ontology. The same matching procedure applies to the other EOs.

6. User environment for creating and processing data views
This section aims at describing step by step the integration process performed over
PELD resources, using data views. To exemplify how DTWs are defined and executed
using this architecture, consider an application where a biologist wants to have an
overview of some taxonomy properties of all the species living in the Guanabara Bay,
followed by their geographical localization. This query can be expressed in natural
language as:

Q1: “List the names, rank, region, and DBPedia library kingdom and phylum
properties, considering all samples at their lowest level in the taxonomy hierarchy”.

The term sample here is used to refer to all the three kinds of species included in our
application scenario, represented by the class Sample in the AO (Table I). It is worth
observing that as not all samples are cataloged at their lowest level (species), the query
will retrieve all samples, no matter the taxonomy level they have been cataloged in.

Data integration according to our proposal involves the following steps:
• Defining data views: The user initially identifies the elements of the AO that

represent the expected view of a data source, considered as data views. A

Figure 6.
PELD AO

IJWIS
11,1

104

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-005.jpg&w=343&h=261

hierarchical representation of the AO elements is presented to allow the user to
select his/her objects of interest.
According to the AO vocabulary, for answering Q1, it is necessary to select the
Plankton_Sample, Catfish_Sample and Comm.Fish_Sample classes that compose
the class Sample. Figure 7 presents the interface from which the user interacts
with the system. Data views are composed by the elements shown on the left
window of the interface. The user selects the classes and the properties whose
values the user wants to retrieve, and specifies filters that will be applied (such as
rank� “species”).

• Generating DTW: From the data view created in the previous step, the user can
save it and create a query execution plan to execute this data view. In this case,
existing mappings between AO and EO levels are applied over the data view to
generate a query execution plan (Figure 8), according to Algorithm 1 presented in
Section 4.2.1. This query plan, seen as a workflow (DTW), corresponds to a list of
operations that will be performed over the EOs to extract objects from the data
sources. Furthermore, it is responsible for indicating to the query processor the
order in which EO data sources will be accessed. Observe that the DTW receives
as inputs the results of queries over the mapped EOs endpoints (exposed as RDF

Figure 7.
Creating data views

105

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-006.jpg&w=343&h=295

triples from the source databases, as described in Section 3) and integrates them.
The “Execute plan” button on the right (Figure 8) allows the user to see the query
results, whose execution process is described next.

• Executing data views: As described in Section 4.3, a user data view is processed by
QEF-LD, the workflow plan executor. To access EO elements, the corresponding
DTW of Q1 is segmented into distinct SPARQL queries, as shown in Figure 9.
Observe that each subquery Q’1i represents an access to an EO endpoint. Through
the “collected-in” predicate, a set-bindjoin retrieves the region from the
materialized EO, identifying the place where the samples have been collected.
Next, the following set-bindjoin operator uses the link has_taxon to select in the
materialized Taxon EO, the samples classified in rank “Species”. Finally, the third
set-bindjoin complements the data with information from the DBpedia. The
resulting tuples are fed into the DTW that applies the algebraic operators,
computes the final data view and returns it to the client. Because part of the data
in PELD is materialized and stored as RDF triples, and because they share the
same vocabulary of the AO, a wrapper in this case is not required. Appendix 2
presents the whole DTW XML script submitted to QEF-LD. Finally, Figure 10
shows Q1 final results that can be saved for later use.

Figure 8.
Query execution plan
for Q1

IJWIS
11,1

106

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-007.jpg&w=343&h=295

Other interesting DTWs have been submitted to our architecture to explore trophic
chain hierarchies and temporal space characteristics (Moura et al., 2012). The query Q2:
“Get the sample species found at Paqueta Island in 2004, their synonyms and predators”,
is such an example.

Figure 11 presents the DTW produced for Q2. It shows that the tuples retrieved
from each endpoint by QEF-LD (i.e. the samples collected in 2004) are unified (union
operator), but only those of the “Paqueta” region are of the user’s interest. The
relationship has_predator (Figure 6) is recursively exploited along the trophic chain
hierarchy of each taxon retrieved, together with its synonym through the
relationship (synonymous_ of). Final results are depicted in Figure 12.

6.1 Experiments
Experiments carried out in this work consisted of evaluating our query engine
(QEF-LD) concerning its ability to execute data views expressed as DTW. To
quantitatively evaluate our approach, we performed experiments using QEF-LD
and the most widely used tools to run federated SPARQL queries: Jena, Sesame and
FedX. This section discusses the results obtained from the experiments that have
been carried out. We used efficiency as the metric related to query processing time,
and the memory footprint to evaluate each SPARQL query processor.

To carry out the tests, we used the following datasets available as local SPARQL
endpoints: Plankton_sample, Pl_analysis, Catfish_sample, Comm.Fish_Sample e

Figure 9.
SPARQL sub-queries
expressed in terms of

Eos

107

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-008.jpg&w=343&h=259

Comm_analysis. DBPedia SPARQL endpoint was the only remote dataset used in our
experiments. OpenLink Virtuoso[18] was used to store the RDF data and to provide the
endpoint services to local datasets. The workload comprised two queries Q1 and Q2, as
presented before. The queries evaluate the join, union and project algebraic operators.
Query Q1 makes use of local and remote datasets, while query Q2 uses only local
datasets. To measure efficiency, we submitted ten executions for each one of the two
queries in the workload.

Three nodes comprised the test environment: a local server, a remote server and a
client machine, and a local network connected the client and the local server. The local
server hosted the OpenLink Virtuoso, which stored the RDF data and provided a
SPARQL endpoint service to each local dataset used in the workload. The remote server
hosted the DBPedia dataset. The client machine hosted the evaluated SPARQL query
engines: Jena 2.12.1, Sesame 2.7.1, FedX 3.1 and QEF-LD 1.1. The local server machine
used in the experiments was an Intel Core i7 2.93GHz with 16 GB RAM DDR3 1333 MHz.
The client machine used during the tests was an Intel Core2 Quad 2.40GHz with 8GB
RAM 667 MHz.

To evaluate the efficiency of the SPARQL query engines, we used two metrics:
(1) the query response time; and

Figure 10.
Final query results
for Q1

IJWIS
11,1

108

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-009.jpg&w=343&h=295

(2) the maximum amount of memory used by the Java virtual machine during each
query run.

Figure 13 shows the average query response times obtained for running ten executions
of queries Q1 and Q2. For query Q1 QEF-LD obtained considerably smaller query
response times than the other evaluated SPARQL query engines, although QEF-LD
demanded more time than FedX to run query Q2. FedX and Sesame were substantially
slower than Jena and QEF-LD in query Q1 due to the ordering of query plan operations
defined by them. While Jena, Sesame, and QEF-LD returned 27 results from the
execution of query Q1, FedX returned an incomplete result with only 11 tuples. All
engines achieved complete results (17 tuples) from query Q2. FedX got the smaller query
time for query Q2.

Figure 14 illustrates the average amount of memory consumed in ten executions for
queries Q1 and Q2. QEF-LD consumed slightly more memory than the other engines in
queries Q1 and Q2. It happened due to the multiple threads used by the join and union
operators performed by QEF-LD (Magalhães et al., 2013), which increases memory
consumption. FedX stood out by the highest use of memory in query Q1. FedX makes
some modifications in the execution plan that can substantially improve or even worsen
memory usage and execution time of queries.

Figure 11.
Query execution plan

for Q2

109

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-010.jpg&w=343&h=295

7. Conclusion
Especially in life sciences (Knoblock et al., 2012; Heath and Bizer, 2011), the world-wide
exchange of research data between scientists becomes crucial. The strength and
diversity of the ecosystems that have evolved in these cases demonstrate a previously
unrecognized, and certainly unfulfilled, demand for access to data.

Data integration is, however, a complex endeavor, in part, due to the huge volume of
heterogeneity of autonomous defined data. The lack of standards implies an adapted

Figure 12.
Final integrated
results for Q2

Figure 13.
Execution times for
queries Q1 and Q2

IJWIS
11,1

110

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-011.jpg&w=240&h=267
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-012.jpg&w=343&h=137

solution for each scientific data integration initiative. In this context, LD rises as an
interesting technique to apply the general architecture of the Web to the task of sharing
structured data on a global scale. Publishing data according to the LD best practices
solves part of the integration problem, which is to make data available in a common
format (Auer et al., 2014). Further effort is needed to place data into a common
understandable model. Ontologies come as a rescue ground from which integration
becomes possible, as they provide a common vocabulary to be shared among the
different data sources.

This paper reports on a data integration framework and on its ability to answer
queries expressed as data views over heterogeneous resources, represented as LD.
Queries are processed as workflows by an extensible workflow query engine
(QEF-LD). The major contribution of this work is focused on the semantic
integration approach that simplifies the integration process both in terms of
mappings and query answering through data views. The mapping complexity
across the architecture layers is traded by the process of transforming the data
sources into an exported ontology in RDF, thus reducing the problem of integration
to that of mappings between homogeneous ontologies. A complete data integration
scenario is discussed based on the challenges involved in publishing ecological data
produced by the PELD Guanabara project, in Brazil. to evaluate QEF performance in the
integration process, some queries have been executed using other query engines, with
good results.

The experiment results carried out during this work indicate that the proposed data
integration architecture is promising, and can be adopted as a standard for more
complex ecological database integration scenarios. For future work, we intend to apply
the customized RDB-RDF mappings (Vidal et al., 2013) to generate EOs more efficiently
in our architecture, in a virtual and/or materialized approach, according to the user’s
application needs.

Notes
1. GBIF: Web site for the Global Biodiversity Information Facility (GBIF): www.gbif.org/

(accessed May 2014).

2. PELD Brasil: www.icb.ufmg.br/peld (accessed May 2014).

3. Guanabara PELD: www.lncc.br/peldguanabara/index.php (accessed May 2014).

Figure 14.
Memory usage for
queries Q1 and Q2

111

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.gbif.org/
http://www.icb.ufmg.br/peld
http://www.lncc.br/peldguanabara/index.php
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-08-2014-0028&iName=master.img-013.jpg&w=343&h=133

4. Jena and Sesame are SPARQL query processors.

5. ARQ Jena: http://jena.apache.org/documentation/query/ (accessed April 2014).

6. SemWIQ is no longer maintained and its last update was in 2010.

7. Sesame: www.openrdf.org/ (accessed April 2014).

8. CRIA – Reference Center of Environmental Information (in Portuguese): www.cria.org.br/
(accessed May 2014).

9. SpeciesLink: http://splink.cria.org.br (accessed April 2014).

10. INCT – Virtual herbarium of Flora and Fungus (in Portuguese): inct.florabrasil.net/
herbario-virtual/ (accessed May 23 2014).

11. Sinbiota: sinbiota.biota.org.br/ (accessed May 2014).

12. SiBBr – System for Brazilian Biodiversity: www.sibbr.gov.br/ (accessed May 2014).

13. OWL: Web Ontology Language Overview, 2004, www.w3.org/TR/owl-features/ (accessed
May 2014).

14. DBpedia: dbpedia.org/ (accessed April 2014).

15. RDB2RDF: RDB2RDF Working Group Charter, 2011, www.w3.org/2011/10/
rdb2rdf-charter.html (accessed May 2014).

16. Postgresql: PostgreSQL beta release, www.postgresql.org/ (accessed April 2013).

17. D2RQ: The D2RQ Mapping Language, http://d2rq.org/d2rq-language (accessed May 2014).

18. OpenLink Virtuosohttp://virtuoso.openlinksw.com/

References
Angele, J. and Gesman, M. (2006), “Data integration using semantic technology: a use case”,

Proceedings of the 2nd International Conference on Rules and Rule Markup Languages for
the Semantic Web (RuleML=06), Athens, GA, pp. 58-66.

Auer, S., Bryl, V. and Tramp, S. (Eds) (2014), “Linked open data – creating knowledge out of
interlinked data – results of the LOD2 project”, Lecture Notes on Computer Science (LNCS),
Springer.

Barret, T., Jones, D., Yuan, J. and Uschold, M. (2005), “Applying semantic web technology to the
integration of corporate information”, International Journal of Web Engineering and
Technology, Vol. 2, Nos 2/3.

Berners-Lee, T. (2006), “Linked data - design issues”, available at: www.w3.org/DesignIssues/
LinkedData.html (accessed April 2014).

Bizer, C., Health, T. and Berners-Lee, T. (2006), “D2R Server – publishing relational databases on
the Web as SPARQL endpoints”, Proceedings of the 15th International World Wide Web
Conference, Edinburgh.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. (2007), “Tractable
reasoning and efficient query answering in description logics: the DL-Lite family”, Journal
of Automated Reasoning, Vol. 39 No. 3, pp. 385-429.

Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L., Mancini, R., Poggi, A.,
Rosati, R., Ruzzi, M., Santarelli, V. and Savo, D.F. (2013), “MASTRO STUDIO: managing
ontology-based data access applications”, Proceedings of the VLDB Endowment (PVLDB),
Vol. 6 No. 12, pp. 1314-1317.

Cruz, I.F. and Xiao, H. (2005), “The role of ontologies in data integration”, Journal of Engineering
Intelligent Systems, Vol. 13 No. 4, pp. 245-252.

IJWIS
11,1

112

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://jena.apache.org/documentation/query/
http://www.openrdf.org/
http://www.cria.org.br/
http://splink.cria.org.br
http://inct.florabrasil.net/herbario-virtual/
http://inct.florabrasil.net/herbario-virtual/
http://sinbiota.biota.org.br/
http://www.sibbr.gov.br/
http://www.w3.org/TR/owl-features/
http://dbpedia.org/
http://www.w3.org/2011/10/rdb2rdf-charter.html
http://www.w3.org/2011/10/rdb2rdf-charter.html
http://www.postgresql.org/
http://d2rq.org/d2rq-language
http:////virtuoso.openlinksw.com/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRULEML.2006.9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRULEML.2006.9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10817-007-9078-x&isi=000249120300006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10817-007-9078-x&isi=000249120300006
http://www.emeraldinsight.com/action/showLinks?crossref=10.14778%2F2536274.2536304
http://www.emeraldinsight.com/action/showLinks?isi=000235236600007
http://www.emeraldinsight.com/action/showLinks?isi=000235236600007

Cruz, I.F. and Xiao, H. (2009), “Ontology driven data integration in heterogeneous networks”,
Complex Systems in Knowledge-based Environments: Theory, Models and Applications
Studies in Computational Intelligence, Vol. 168, pp. 75-98.

Daltio, J. and Bauzer, M.C. (2008), “Aondê: an ontology web service for interoperability across
biodiversity applications”, Information Systems, Vol. 33, pp. 724-753.

Elmasri, R. and Navathe, S.B. (2010), Fundamentals of Database Systems, 6th ed., Pearson
Benjamin-Cummings.

Fegraus, E.H., Andelman, S., Jones, M.B. and Schildhauer, M. (2005), “Maximizing the value of
ecological data with structured metadata: an introduction to Ecological Metadata
Language (EML) and principles for metadata creation”, Bulletin of the Ecological Society of
America, Vol. 86 No. 3.

Goble, C. and Stevens, R. (2008), “The state of the nation in data integration”, Journal of Biomedical
Informatics, Vol. 41 No. 5, pp. 687-693.

Gruber, T. (1995), “Towards principles for the design of ontologies used for knowledge sharing”,
International Journal of Human-Computer Studies, Vol. 43 Nos 5/6, pp. 907-928.

Guarino, N. (1998), “Formal ontology and information systems”, Proceedings of Formal Ontology
in Information Systems (FOIS), Trento.

Heath, T. and Bizer, C. (2011), “Linked data: evolving the Web into a global data space”, Synthesis
Lectures on the Semantic Web: Theory and Technology, Vol. 1 No. 1, pp. 1-136.

Knoblock, A., Szekely, C.A., Ambite, P., Goel, J.L., Gupta, A., Lerman, S., Muslea, K., Taheriyan, M.
and Mallick, P. (2012), “ Semi-automatically mapping structured sources into the semantic
web”, The Semantic Web: Research and Applications, Lecture Notes in Computer Science,
Vol. 7295, pp. 375-390.

Langegger, A., Wöß, W. and Blöchl, M. (2008), “ Semantic web middleware for virtual data
integration on the web”, Proceedings of the 5th European Semantic Web Conference
(ESWC), Springer Verlag, pp. 493-507.

Leinfelder, B., Tao, J., Costa, D., Jones, M.B., Servilla, M., O’Brien, M. and Bur, T.C. (2010), “A
metadata-driven approach to loading and querying heterogeneous scientific data”,
Ecological Informatics, Vol. 5, pp. 3-8.

Lenzerini, M. (2002), “Data integration: a theoretical perspective”, Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
pp. 233-246.

Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D. and Villa, F. (2007), “An ontology
for describing and synthesizing ecological observation data”, Ecological Informatics, Vol. 2,
pp. 279-296.

Magalhães, R.P., Monteiro, J.M., Vidal, V.M.P., Macêdo, J.A.F., Maia, M., Porto, F. and
Casanova, M.A. (2013), “QEF-LD – a query engine for distributed query processing on
linked data”, 15th International Conference on Enterprise Information Systems (ICEIS),
Vol. 1, pp. 185-192.

Malhotra, A. (2005), “W3C RDB2RDF incubator group report”, available at: www.w3.org/2005/
Incubator/rdb2rdf/XGR-rdb2rdf-20090126/ (accessed April 2013).

Manola, F. and Miller, E. (2004), “RDF primer”, W3C Recommendation, available at: www.w3.org/
TR/2004/REC-rdf-primer-20040210/ (accessed May 2014).

Mittermeier, R.A., Gil, P.R. and Mittermeier, C.G. (1997), “Megadiversity: earth’s biologically
wealthiest nations”, Cemex, 1st ed., Mexico (in Spanish).

Moura, A.M.C., Porto, F., Poltosi, M., Palazzi, D., Magalhães, R.P. and Vidal, V.M.P. (2012), “Integrating
ecological data using linked data principles”, Proceedings of Joint V Seminar on Ontology

113

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/
http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ecoinf.2009.08.006&isi=000275597300002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1890%2F0012-9623%282005%2986%5B158%3AMTVOED%5D2.0.CO%3B2
http://www.emeraldinsight.com/action/showLinks?crossref=10.1890%2F0012-9623%282005%2986%5B158%3AMTVOED%5D2.0.CO%3B2
http://www.emeraldinsight.com/action/showLinks?crossref=10.2200%2FS00334ED1V01Y201102WBE001
http://www.emeraldinsight.com/action/showLinks?crossref=10.2200%2FS00334ED1V01Y201102WBE001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jbi.2008.01.008&isi=000260137300002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jbi.2008.01.008&isi=000260137300002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-30284-8_32
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-30284-8_32
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ecoinf.2007.05.004&isi=000251363600009
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.is.2008.02.001&isi=000259654800008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1006%2Fijhc.1995.1081&isi=A1995TY52900017
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-68234-9_37
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-68234-9_37

Research in Brazil and VII International Workshop on Metamodels, Ontologies and Semantic
Technologies (ONTOBRAS-MOST), Recife, pp. 156-167.

Ngomo, A.-C. and Auer, S. (2011), “LIMES – a time-efficient approach for large-scale link
discovery on the web of data”, Proceeding of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2312-2317.

Noy, N.F. (2004), “Semantic integration: a survey of ontology-based approaches”, SIGMOD
Record, Vol. 33 No. 4.

Ogasawara, E., Dias, J.S., Chirigati, V., Oliveira, D., Porto, F., Valduriez, P. and Mattoso, M. (2013),
“Chiron: a parallel engine for algebraic scientific workflows”, Concurrency and
Computation: Practice and Experience, Vol. 25 No. 16, pp. 2327-2341.

Patton, E.W., Seyed, P., Wang, P., Fu, L., Dein, F.J., Bristol, R.S. and McGuiness, D.L. (2014),
“SemantEco: a semantically powered modular architecture for integrating distributed
environmental and ecological data”, Future Generation Computing Systems, pp. 36430-36440.

Porto, F., Tajmouati, O., Silva, V.F.V., Schulze, B. and Ayres, F.V.M. (2007), “QEF – supporting
complex query applications”, 7th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid), Brazil, pp. 846-851.

Prud’hommeaux, E. and Seaborne, A. (2008), “Sparql query language for RDF”, W3C
Recommendation, available at: www.w3.org/TR/rdf-sparql-query/ (accessed April 2014).

Quilitz, B. and Leser, U. (2008), “Querying distributed RDF data sources with SPARQL”,
Proceedings of the 5th European Semantic Web Conference (ESWC), Springer Verlag,
pp. 524-538.

Schultz, A., Matteini, A., Isele, R., Mendes, P., Bizer, C. and Becker, C. (2012), “LDIF – a framework
for large-scale linked data integration”, 21st International World Wide Web Conference
WWW2012.

Schwarte, A., Haase, P., Hose, K., Schenkel, R. and Schmidt, M. (2011), “Fedx: optimization
techniques for federated query processing on linked data”, Proceedings of the 10th
International Conference on the Semantic Web – Vol. Part I. ISWC’11, Springer-Verlag,
Berlin, Heidelberg, pp. 601-616.

Vidal, V.M.P., Casanova, M.A. and Neto, L.E. (2013), “Towards automatic generation of R2ML
Mappings”, European Semantic Web Symposium (ESWS), Montpellier.

Vidal, V.M.P., Macedo, J.A.F., Pinheiro, J.C., Casanova, M.A. and Porto, F. (2011), “Query processing in
a mediator based framework for linked data integration”, Intenational Journal of Business Data
Communications and Networking (IJBDCN), Vol. 7 No. 2, pp. 29-47.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H. and Hübner, S.
(2001), “Ontology-based integration of information – a survey of existing approaches”,
International Joint Conferences on Artificial Intelligence (IJCAI) Workshop on Ontologies
and Information Sharing.

Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. and
Vieglais, D. (2012), “Darwin core: an evolving community-developed biodiversity data
standard”, PLoS ONE, Vol. 7 No. 1, p. e29715.

Wiederhold, G. (1992), “Mediators in the architecture of future systems”, Computer, Vol. 25 No. 3,
pp. 38-49.

Further reading
Higgins, D., Berkley, C. and Jones, M.B. (2002), “Managing heterogeneous ecological data using

morpho”, Proceedings of the 14th International Conference on Scientific and Statistical
Database Management (SSDBM’02), IEEE, pp. 69-76.

IJWIS
11,1

114

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.w3.org/TR/rdf-sparql-query/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-25073-6_38
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-25073-6_38
http://www.emeraldinsight.com/action/showLinks?crossref=10.1371%2Fjournal.pone.0029715&isi=000301188800029
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1041410.1041421
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1041410.1041421
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F2.121508&isi=A1992HH04100004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2Fcpe.3032&isi=000326023300008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2Fcpe.3032&isi=000326023300008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-68234-9_39
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjbdcn.2011040103
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjbdcn.2011040103
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSSDM.2002.1029707
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSSDM.2002.1029707

Appendix 1
Based on the Union and Join lists created by Algorithm 1, the goal of this one is to create the query
plan (DTW) for the user’s data view. The strategy adopted in this algorithm is the following:
traverser the join list to mount subexpressions for building the final DTW. It first identifies the
type of each operator (join or merge), and keeps it in a variable “join” (Lines 1-5). The construction
of the query plan is based on the analysis of the left and right operands of the “join” operator node.
The algorithm initially obtains from the Union list the root node that corresponds to the left
branch of the current item (j) in the join list. If it is a Union, a function is executed to get the union
operand from the Union list (Algorithm 5) and to create the corresponding subexpression (Lines
8-10). Otherwise, the current item (j) corresponds to a class, and a function is executed to obtain
this class in the Union list (Algorithm 6). Then a subexpression is created and it is assigned as a
left operand of the join operator node (Line 12). The same procedure is performed to mount
subexpressions for the right join operand (Lines 15-20). From the subexpressions created from the
left and right operands for each item (j) traversed in the join list (Lines 21-24), the algorithm returns
to Algorithm 1 the final DTW (Line 27).

Algorithm 4. BuildDTW (unionList, joinList)

1 for each j in joinList /* traverses the joinList mounting subexpressions of the DTW */
2 if (j.operationType � “join”)
3 join ¢ createJoinOperator(j) /* creates the physical join operator */
4 else
5 join ¢ createMergeOperator(j) /* creates the physical merge operator

(of type join) */
6 end-if
7 unionNode ¢ null
8 obtain unionNode from unionList such that unionNode.root� j.left /* check whether

left operand is union */
9 if (unionNode � null)

10 leftOperand ¢ obtainUnionOperand (j.left, subExpressionList, unionList)
11 else
12 leftOperand ¢ obtainClassOperand (j.left, subExpressionList) /* left operand is a

class */
13 end-if
14 unionNode ¢ null
15 obtain unionNode from unionList such that unionNode.root� j.right /* check whether

right operand is union */
16 if (unionNode � null)
17 rightOperand ¢ obtainUnionOperand (j.right, subExpressionList, unionList)
18 else
19 rightOperand¢ obtainClassOperand (j.right, subExpressionList) /* right operand

is class */
20 end-if
21 join.leftOperator(leftOperand) /*add left operand to join operator */
22 join.rightOperator(rightOperand) /*add right operand to join operator */
23 subExpression ¢ createSubExpression(join) /* create a subExpression with the new

join operator */
24 subExpressionList.add(subExpression) /* add the subExpression to the list */
25 end-for
26 DTW ¢ subExpressionList.pop() /* obtain the final DTW */
27 return DTW

115

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

Algorithm 5. ObtainUnionOperand (Class c, List subExpressionList, List unionList)

/* Build a subexpression where the left operand of the plan is a union node */
1 obtain unionNode from unionList such that unionNode.root� c
2 subExpression¢ verifyUnioninSubExpression(unionNode) /* checks if union is in

expessionList */
3 if (subExpression � null) /* verifies whether unionNode is already in subexpression */
4 union¢createUnionOperator(unionNode) /* if it is not in subexpression add the

unionNode to the join operand */
5 expression ¢ union
6 else
7 expression ¢ subExpression /* associates the subexpression containing union to

the
return expression */

8 subExpressionList.remove(subExpression) /* the previous expression is eliminated */
9 end-if

10 return expression

Algorithm 6. ObtainClassOperand(Class c, list subExpresionList)

/* Build a subexpression where the left branch is a class */
1 obtain subExpresion from subExpressionList such that subExpression contains c;
2 if (subExpression � null) /* checks if the class is in a subexpression */
3 expression ¢ subExpression
4 subExpressionList.remove(subExpression)
5 else
6 expression ¢ c /* if class is not in a subexpression it is returned as an operand */
7 end-if
8 return expression

IJWIS
11,1

116

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

Appendix 2
The code below presents an excerpt of a DTW XML script submitted to QEF-LD according to the
sequence order of operations produced by the algorithm above.

<?xml version="1.0" encoding="UTF-8" ?>
- <!--

The local Initial Query Execution Plan (QEP), ie.no remote operations

**
helpdesk@linea.gov.br

-->
-<QEPTemplatexmlns="http://giga03.lncc.br/DIP/WP4/CoDIMS-D"xmlns:op="http://giga03.lncc.br/DIP/WP4/CoDIMS-

D/Operator"xmlns:qep="http://giga03.lncc.br/DIP/WP4/CoDIMS-D/QEP">
-<qep:QEP type="Initial">
-<op:Operator id="1" prod="2" type="">
<Name>Project</Name>
-<ParameterList>
<Variables>name,reg,rank,kingdom,phylum</Variables>

</ParameterList>
</op:Operator>

-<op:Operator id="2" prod="4,3" type="" parallelizable="true">
<Name>SetBindJoin</Name>
-<ParameterList>
<maxActiveThreads>0</maxActiveThreads>
<blockSize>10</blockSize>

</ParameterList>
</op:Operator>

-<op:Operator id="3" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://dbpedia.org/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
select distinct * where{
?id_dbpediadbpedia-owl:kingdom ?kingdom .
?id_dbpediadbpedia-owl:phylum ?phylum .

}
]]>
</SPARQLQuery>
</ParameterList>
</op:Operator>

-<op:Operator id="4" prod="6,5" type="" parallelizable="true">
<Name>SetBindJoin</Name>
-<ParameterList>
<maxActiveThreads>0</maxActiveThreads>
<blockSize>10</blockSize>

</ParameterList>
</op:Operator>

-<op:Operator id="5" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://localhost:3030/Peld-Taxon/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX reg: <http://localhost:2024/resource/vocab/>
PREFIX owl:<http://www.w3.org/2002/07/owl#>

select distinct * where{
?id_taxonreg:peld_taxon_scientific_name ?name .
?id_taxonreg:peld_taxon_rank ?rank.
?id_taxonowl:sameAs ?id_dbpedia .
}

]]>
</SPARQLQuery>

(continued)

117

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

</ParameterList>
</op:Operator>

-<op:Operator id="6" prod="8,7" type="" parallelizable="true">
<Name>SetBindJoin</Name>
-<ParameterList>
<maxActiveThreads>0</maxActiveThreads>
<blockSize>10</blockSize>

</ParameterList>
</op:Operator>

-<op:Operator id="7" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://localhost:3030/Peld-Region/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX rg: <http://localhost:2023/resource/vocab/>
select distinct * where{
?id_regrg:peld_region_name_reg ?reg .}

]]>
</SPARQLQuery>
</ParameterList>
</op:Operator>

-<op:Operator id="8" prod="9,10,11" type="">
<Name>Union</Name>
-<ParameterList>
<useThreads>true</useThreads>

</ParameterList>
</op:Operator>

-<op:Operator id="9" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://localhost:2020/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX epl: <http://localhost:2020/resource/vocab/>
select distinct ?id_taxon ?id_reg where{
?sepl:peld_analysis_id_taxon ?id_taxon.
?sepl:peld_analysis_id_collect ?id_an.
?id_anepl:peld_collect_local ?id_reg.
FILTER EXISTS { ?id_taxonepl:peld_taxon_rank "Species" } .
}

]]>
</SPARQLQuery>
</ParameterList>
</op:Operator>

-<op:Operator id="10" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://localhost:2021/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX ecf: <http://localhost:2021/resource/vocab/>
select distinct ?id_taxon ?id_reg where {
?secf:peld_id_taxon ?id_taxon.
?secf:peld_collect_local ?id_reg.
FILTER EXISTS { ?id_taxonecf:peld_taxon_rank "Species" } .
}

(continued)

IJWIS
11,1

118

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

]]>
</SPARQLQuery>
</ParameterList>
</op:Operator>

-<op:Operator id="11" prod="0" type="Scan"numberTuples="?">
<Name>Service</Name>
-<ParameterList>
<DataSourceName>SparqlEndpoint</DataSourceName>
<ServiceURI>http://localhost:2022/sparql</ServiceURI>

-<SPARQLQuery>
- <![CDATA[

PREFIX eco: <http://localhost:2022/resource/vocab/>

select distinct ?id_taxon ?id_reg where {
?seco:peld_fish_analysis_id_taxon ?id_taxon.
?seco:peld_analysis_id_collect ?id_an .
?id_aneco:peld_fish_local_collect ?id_reg.

FILTER EXISTS { ?id_taxoneco:peld_taxon_rank "Species" } .
}

]]>
</SPARQLQuery>
</ParameterList>
</op:Operator>
</qep:QEP>
</QEPTemplate>

About the authors
Ana Maria de Carvalho Moura is a Professor at Extreme Data Lab (DEXL), National Laboratory
of Scientific Computing (LNCC). Ana Maria de Carvalho Moura is the corresponding author and
can be contacted at: anamaria.moura@gmail.com

Fabio Porto is a Professor at Extreme Data Lab (DEXL), National Laboratory of Scientific
Computing (LNCC).

Vania Vidal is a Professor at Department of Computing, Federal University of Ceará (UFC).
Regis Pires Magalhães is a Professor and Graduate student at Department of Computing,

Federal University of Ceará (UFC).
Macedo Maia is a graduate student at Department of Computing, Federal University of Ceará

(UFC).
Maira Poltosi is a Researcher at Extreme Data Lab (DEXL), National Laboratory of Scientific

Computing (LNCC).
Daniele Palazzi is a Researcher at Extreme Data Lab (DEXL), National Laboratory of Scientific

Computing (LNCC).

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

119

Publish and
retrieve

ecological
data

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

mailto:anamaria.moura@gmail.com
mailto:permissions@emeraldinsight.com

This article has been cited by:

1. Dhomas Hatta Fudholi, Wenny Rahayu, Eric PardedeOntology-Based Information Extraction for
Knowledge Enrichment and Validation 1116-1123. [CrossRef]

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
2:

04
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1109/AINA.2016.70

