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Effective keyword query
structuring using NER for

XML retrieval
Abubakar Roko, Shyamala Doraisamy, Azrul Hazri Jantan and

Azreen Azman
Department of Multimedia, University Putra Malaysia, Serdang, Malaysia

Abstract
Purpose – The purpose of this paper is to propose and evaluate XKQSS, a query structuring method
that relegates the task of generating structured queries from a user to a search engine while retaining
the simple keyword search query interface. A more effective way for searching XML database is to use
structured queries. However, using query languages to express queries prove to be difficult for most
users since this requires learning a query language and knowledge of the underlying data schema. On
the other hand, the success of Web search engines has made many users to be familiar with keyword
search and, therefore, they prefer to use a keyword search query interface to search XML data.
Design/methodology/approach – Existing query structuring approaches require users to provide
structural hints in their input keyword queries even though their interface is keyword base. Other
problems with existing systems include their inability to put keyword query ambiguities into
consideration during query structuring and how to select the best generated structure query that best
represents a given keyword query. To address these problems, this study allows users to submit a
schema independent keyword query, use named entity recognition (NER) to categorize query keywords
to resolve query ambiguities and compute semantic information for a node from its data content.
Algorithms were proposed that find user search intentions and convert the intentions into a set of
ranked structured queries.
Findings – Experiments with Sigmod and IMDB datasets were conducted to evaluate the
effectiveness of the method. The experimental result shows that the XKQSS is about 20 per cent more
effective than XReal in terms of return nodes identification, a state-of-art systems for XML retrieval.
Originality/value – Existing systems do not take keyword query ambiguities into account. XKSS
consists of two guidelines based on NER that help to resolve these ambiguities before converting the
submitted query. It also include a ranking function computes a score for each generated query by using
both semantic information and data statistic, as opposed to data statistic only approach used by the
existing approaches.

Keywords Managing and storing XML data, Indexing and retrieval of XML data,
Metadata and ontologies

Paper type Research paper

1. Introduction
A more effective way to extract information from XML data is to use structured queries.
These queries are formed using a query language such as XPath or XQuery. They
retrieve precise answers because the queries contain specifications of what to return and
where in the document to find it. However, using query languages to express queries
proves to be difficult for most users because this requires learning a query language and
knowledge of the underlying data schema. On the other hand, the success of Web search
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engine has made many users to be familiar with keyword search and, therefore, they
prefer to use a keyword search query interface to search XML data. Using keyword
query a user does not need to learn a query language and/or know the schema of the
underlying documents. At this point, a question arises: Can we relegate the task of
generating structured queries to an IR system while retaining the simple keyword
search query interface?

To answer this question, many systems have been proposed (Li et al., 2009; Petkova
et al., 2009; Li et al., 2010; Hummel et al., 2011). These systems relegate the task of
generating structured queries from a user to themselves. This task is called query
structuring (Li et al., 2009) and such systems are called query structuring systems.
Using knowledge of the XML schema, data statistics and heuristic, these systems
convert a given keyword query to a set of structured queries. The challenges faced by
these systems are how to find the return nodes and the search via nodes (i.e. predicates)
from a keyword query due to keyword query ambiguities. These challenges are
exacerbated by two ambiguities:

(1) a keyword can refer to an element or data value of an element;
(2) a keyword can appear as data value of different elements carrying different

meanings (Bao et al., 2010).

The example in Figure 1 contains the keyword Access, which occurs both in title and
author node. A valid question that shoots is, if a query contains this keyword, is the user
referring to that of the title node or the author node? These ambiguities cause keyword
queries to be less effective and, hence, the need to develop systems that resolve these
ambiguities. Existing systems do not take keyword query ambiguities into account.
Apart from this problem, the other problems are they require users to provide structural
hints in their input keyword queries even though their interface is keyword base and

Figure 1.
A portion of Sigmod
XML document
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how to select the best generated structure query that best represents a given keyword
query.

For example, Li et al. (2009) developed a system called XBridge that can identify the
contexts (i.e. predicates) and types of return nodes from a given keyword query. The
contexts and returns nodes are then use to compute a set of effective structured queries.
Also, the study (Petkova et al., 2009) developed a method for generating structured
queries from a given user keyword query like a search problem. The top k-structured
queries are selected as the best interpretation of the user keyword query. However, the
problem with these systems is that each requires users to include structural hint in the
input keyword query. That is, the systems restrict the way users would pose their
queries and hence not user friendly. Also, the ranking formulae used by Petkova et al.
(2009) to give score to each generated query does not take into consideration the
semantic relationship between the contexts and return nodes that form a structured
query.

In a study, Hummel et al. (2011) proposed a system called StruX, which does not
dictate the way a user would pose his/her queries. Given a keyword query, the system
first breaks the query into a sequence of segments. A segment consists of one or more
keywords. Thereafter, pairs of segments are combined to form what is called “segment
combinations”. The segment combinations are then labelled with elements from the
target database forming a list of a predicates. Predicates are used to restrict the type of
return nodes. Also, based on an inference and document type definition (DTD) of an
underlying XML document (also used in Liu et al., 2007), a list of real-world entities call
entity nodes in the data is generated. These entity nodes serve as return nodes. The list
of return nodes and that of predicates are combined to compute a set of ranked
structured queries. However, StruX requires the DTD of the underlying XML database
to compute the entities in the data. The query processing then requires the presence of
DTD, which is sometimes not available. Another drawback with StruX is that the
formation of segment combination and labelling a combination with any elements in
XML data could lead to unnecessary computation of element/segment statistics. This is
because some segments’ keywords can never be found in data value of some nodes (Zeng
et al., 2013).

To solve aforementioned problems, we propose XKQSS, a query structuring
technique that allows users to submit a schema independent keyword queries and put
keyword query ambiguities into account during query structuring. Specifically, given a
keyword query, XKQSS first use the named entity recognition (NER) system to
categorize the query keywords into different categories of named entities. Because,
according to Guo et al. (2009), about 71 per cent of keyword queries contains named
entities and finding them could help identify user search intention. It then extracts any
consecutive sequence of keywords that describes a person or an organization named
entity and handle that sequence as a single query keyword. Next, XKQSS splits the
tagged query into a set of segments, as done in StruX. Based on this, an algorithm that
uses the segments and our index as input is proposed to compute a list of semantically
relevant element/segment pairs, which we called predicates. This algorithm is derived
by a set of propose guidelines. Another algorithm that exploits our index (and not DTD)
to entity nodes that represent real-world entities in the XML document in question is
also proposed. The lists of predicates and entity nodes computed are combined to
generate a set of structured queries. To find which query best interprets user search
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intention, we also proposed a ranking function that scores each individual query.
Finally, user or a system can select the top 1 structure query and submit it to XML
database system for retrieval. Our experimental result shows that XKQSS can compete
with some state-of-the-art systems in terms of determining user search intention.

The contributions of our work are:
• We propose and implement two algorithms that exploit our indexes to compute

predicates and entity nodes.
• As a query keyword can refer to many sort things an XML data, two guidelines

were proposed to resolve these ambiguities.
• Developed a ranking function that is used to rank individual generated structured

queries.
• Conduct an experiment to compare the effectiveness of the proposed system with

a state-of-the-art system.

The rest of the paper is organized as follows: Section 2 describes related works, while
Section 3 describes the XML data model and some notations used in the paper. Section
4 describes our propose keyword structuring approach, while Section 5 describes the
index for effective query structuring. Experiment is discussed in Section 6, and Section
7 contains the conclusion.

2. Related works
Several systems have been developed to improve the retrieval effectiveness of keyword
queries. One category of such systems is the query structuring systems, which, given a
keyword query, automatically generates a set structured queries. For example, Li et al.
(2009) developed a system called XBridge, which improved the effectiveness of keyword
search. Given a keyword query in which each keyword in the query is expressed as
label:term pair and the XML schema, XBridge first computes the contexts (i.e.
predicates) of the set of labels and types of return nodes from the query. The contexts
and returns nodes are then used to generate a set of effective structured queries, which
are evaluated using a XML search engine. As XBridge requires each keyword in the user
query to be labelled with a tag name, this means user must have knowledge of the
schema of the underlying XML document. This is not possible for most users.

Similar to XBridge, given a keyword query in which a user has provided structural
clues to indicate the type of XML element he/she is interested in and a thesaurus of XML
tags, Petkova et al. (2009) developed a method for transforming a user keyword query
into a set of structured queries. Their method first splits the keyword query into content
and structural terms based on whether a query keyword appears in the thesaurus or not.
As a structured query is made up of different parts, the authors introduced a notation
called “target” that designate a part of a structured query. A structural term is an
unbounded target and content term was used for bound target. For example, consider
the query “book xml retrieval” where “book” is in the tag thesaurus and the remaining
terms are not. Thus, “book” is a structural term, while “xml” and “retrieval” are content
terms. The query is then transformed into a set of targets: //book[�’xml’] and
//book[�’retrieval’] and scored based on the probability that “xml” and “retrieval”
occurs in the text of an element of type “book”. Operators are then used to combine two
targets into a single structured query and their probabilities are multiplied together. For
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example, the above two targets are merged into //book[�’xml retrieval’]. Similar to
XBridge, users have to provide structural hint in the input keyword query. Also, the
XML schema is required in advance to create the thesaurus of XML tags.

However, the system proposed by Li et al. (2010) does not dictate the way a user
would pose his/her queries. They proposed a framework called XML Information Object
Finder (XIOF) that generates structured queries from free formatted keyword query by
analyzing the given keyword query and schema of the XML data sources. A user does
not need to know the XML structure.

In a recent study, Hummel et al. (2011) developed a system which also does not dictate
the way a user poses his/her queries called StruX. Given a keyword query, StruX
generates a sequence of segments based on the keywords in the query, where a segment
consists of one or more query keywords. Thereafter, pairs of relevant segments are
combined to form what is called “segment combinations”. Each segment combination is
labelled with elements from the XML data forming a set of predicates. Appropriate
entities are then computed from the data based on the heuristic by Liu et al. (2007) and
used to label the element–segment combinations. This step generates a set of structured
queries and one of them is selected for execution. The splitting of query keywords into
segments in StruX does not consider the fact that a group of consecutive sequence of
keywords represents a single named entity and, therefore, need to be treated as such.
Splitting that group of keywords could distort the semantic of the query, thus
generating many unnecessary segments. Also, combination of any two pair of segments
to form predicates can lead to the formation of predicates that violate the structure of the
XML data. Their ranking functions assign score to individual structure query based on
statistic of the keyword in the nodes that form the query only.

The second category of systems that improve the effectiveness keyword search is
called lowest common ancestor (LCA)-based systems (Guo et al., 2003, Xu et al., 2005, Li
et al., 2007, Sun et al., 2007). These systems compute the LCA or their variants of XML
elements that contain the input keywords. A LCA is a lowest node in the XML tree that
is the common ancestor of the nodes containing these keywords. The systems then
identify the sub-trees rooted at the LCAs as the answer. Specifically, LCA-based
systems make restrictions on the choice of the root node. This leads to answers that are
either irrelevant to user search intention, or answers that may not be meaningful or
informative enough.

3. Preliminary
3.1 XML data model and notations
We represent XML data as a rooted label and ordered tree. Every internal node in the
tree has a name and each leaf node has a data value. In this paper, we do not consider
XML elements’ attributes as part of our data. However, we use the term attribute to
describe those nodes with data value as their only child node. Also, each node is given a
Dewy label as its unique ID.

3.1.1 Definition 1. A node is a sequence of element names that appear in the path from
the root to a node. A node type is the tag name of the node. For example, “SigmodRecord/
issues/issue/articles/article/authors/author” is a node and it type is “author”.

3.1.2 Definition 2. A deweyId of a node is a unique sequence of digits separated by (.)
that is given to each node to uniquely identify it. For example, in Figure 1, the string
0.0.2.1 represents the deweyId of node “SigmodRecord/issues/issue/volume”. The last
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digit of deweyId indicates that the node is the second child of node 0.0.2, i.e. node
“SigmodRecord/issues/issue”.

3.1.3 Definition 3. A predicate in this paper is a node-value pair. A node represents a
node in the XML data and value is sequence of one or more keywords. For example,
/authors/author � “Victor John” and /article/title � “xml retrieval” are examples of
predicates, where /authors/author and /article/title are called predicate nodes and “Victor
John” and “xml retrieval” are called predicate values. We say, the node /authors/author
contains or labels “Victor John”. A simple predicate is one with just a node and a value,
while complex predicate is a combination of simple predicates connected with an “or” or
“and” operator.

3.2 Exploiting semantic from XML document and user query using NER
This section describes how NER can be used to identify the semantic relationship
between elements in Sigmod XML data (www.cs.washington.edu/research/
xmldatasets) and the user queries. It describes how NER is used to determine the
proportion of named entities in the data value of a leaf node and a query. If the
proportion of a named entity in a node matches that of the query, we say the node/
element and query are semantically related.

XML document nodes contain rich semantics which can be conveniently inferred
from their text or numerical expression. Given a piece of text, a NER (Finkel et al.,
2005) is used to detect a word or sequence of words as a person, an organization or
a location, and so on. Using NER, we can exploit the content of all leaf nodes to
determine proportion of named entities the node usually contains. A named entity is
a word or sequence of words that is used to refer to something of interest in a
particular application, e.g.“something of interest” can be a person’s name, an
organization’s name, a location’s name, and so on (Goh et al., 2013). Consider Table I
obtained by applying NER on the leaf nodes content of Sigmod XML document; the
rows show the leaf nodes in the document and the columns show the three different
categories of named entities considered in this paper. For example, the author node
has above 92 per cent of its text content to be composed of person named entities,
while title node has above 70 per cent other named entity keywords. Note that the
other named entity column refers to other named entities that are neither person nor
organisation. For example, a keyword or a sequence of keywords could describe
other entity like a location or a date or a quantity. These named entities fall under
the other named entity category.

The table indicates that author node is used to label text, which mostly contains
person or organization named entities and we say that the node is semantically related
to a keyword or a sequence of keywords that describes a person/organization. Consider,
for example, the segment “John Victor”. Because each word in the segment is a person

Table I.
Leaf nodes and
proportion of their
named entity
categories

Node Person (%) Organization (%) Other (%)

Title 2 6 70
Author 92 8
Number 0 0
Volume 0 0
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named entity, we say the segment is semantically related to “author” node. While the
segment “xml retrieval” is more related to “title” node than the “author” node.

Similar to a document, a user keyword query can also be analysed using NER system.
Consider for example, the query Q � client server Access Team Microsoft. Using NER,
we found the sequence “Access Team Microsoft” to be an organization named entity.
Therefore, based on Table I, the sequence is semantically related to the author node.
While the remaining sequence client server is categorized as belonging to other named
entity category and so semantically related to title node. Based on these, we can infer
from Q that user is searching for articles whose title contains “client server” written by
“Access Team Microsoft”.

3.2.1 Definition 4. (Confidence value) The confidence value of a node w.r.t, a named
entity category is a numeric value that measures the degree to which a node would
contain a query keyword. This also means the degree to which a node can be used to
label the segment. It is the total number of a certain named entity that appears in a text
value of a node over the total number of all named entities in the text of the node in
question.

Table I shows the confidence values of some leaf nodes of the XML document in
Figure 1 with respect to three categories of named entities: person, organisation and
other. For example, given a segment whose keywords are person named entities, the
Table I shows that we are 92 per cent confident that the segment is related to author
node.

4. Query structuring – XKQSS
This section presents our proposed method for generating structured queries from
keyword query. The method is implemented as a four-step process. First, we compute
the predicates, .i.e. search condition (see Section 4.2); second, we compute the return
nodes by computing the real-world entities in the XML document (see. Section 4.3). Next,
we have query formulation, where the predicates and return nodes are combined, a
collection of ranked structured queries are generated and the highest ranked structured
query is selected (Section 4.4) by the system. The following section gives an overview of
the propose method and then detail each of its steps.

Algorithm 1:
Input: document collection, keyword query qry
Output: top 1 structured query
1. segments � genSegments(qry);
2. predicates � generatePredicates (segments, index);
3. entities � generateReturnNode (predicates, index);
4. strucQueries � formQuery (entities, predicates);
5. query � strucQueries[0];

4.1 Overview
Algorithm 1 describes the general steps for proposed technique. We describe each
step using the example shown in Figure 2. Given a keyword-based query as input,
our system first pre-processes the query using NER and extracted consecutive
sequences of query keywords that represent a person or an organization named
entity. This consecutive sequence of keywords is treated as a single keyword. The
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tagged query is then split into segments as done in StruX. For example, Figure(2a)
shows an example keyword query, and Figure (2b) shows the same query with each
query keyword annotated with its named entity category by the NER system. The
consecutive sequence of tagged keywords “Access Team Microsoft” shown in
Figure (2b) is then identified as an organization and so treated as a single keyword
during segments formation. Figure (2c) shows segments generated by our system.
Note that the underline sequence of keywords is treated as a single keyword and no
segment shall contain more than one named entity category. Only six segments are
obtained from a query of five keywords as against 15 segments obtained by StruX.
We also define a segment as a sequence of one or more keywords in the order in
which the keywords appears in the query.

Secondly, for each node in the underlying XML database, the system computes
relevant segments and labels each relevant segment with the node. Also, for each related
node and segment, a score would be computed which indicates the degree of relevance
between the segment and the node. As a node can have more than one relevant segment,
the most relevant segment would have to be selected for that node based on our
proposed guidelines. This step is discussed in detail in the following section. Its purpose
is to compute predicates. Thirdly, entities are computed using our proposed algorithm.
Finally, given the list of predicates and that of the entities obtained from the above two
steps, these lists are combined meaningfully to form a set of ranked structured queries
and a rank list of structured queries is returned to the user. The user or system then
selects the top 1 structure query. The selected query is then submitted to an XML
database for execution.

4.2 Computing the predicates
This section presents how to generate predicates, which are used to restrict the type of
query result to be returned by an information retrieval system.

Algorithm 2 computes all the predicates given a list of segments and inverted index.
It first retrieves all nodes from our index Line 1 by calling getAllNodeType() function.
Next, for each node, the algorithm finds (in Lines 2-10) relevant segments for that node
out of the given segments and labels each relevant segment with the node. Also for each
node and a relevant segment, a score is computed in Line 7 using equation (1) adopted
from Bao et al. (2010). The score indicates the degree of relevance between the segment
and the node.

client server Access Team Microsoft  

(b)  

client/O server/O Access/ORGANIZATION Team/ORGANIZATION 
Microsoft/ORGANIZATION 

(c)

client 
client server 
client server Access  Team  Microsoft
server 
server Access  Team  Microsoft
Access  Team  Microsoft  

(a)  

Figure 2.
A query and its
segments
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Algorithm 2: generatePredicates
Input: list of segments, i.e. segmentlist
Output: List of predicates, i.e. predList
1. allnodesType � getAllNodeTYPE ();
2. for each NodeType n in allnodesType do
3. segments � null; // list of relevant segments for node n
4. for each segment s in segmentsList do
5. s � label(n, s); // applying Guideline 1 & 2
6. if (s !� null)
7. score � log (1 � � k�s fn, k)
8. if (score � 0) then segments.add(s, score)
9. segment � selectBestSegment (segments)

10. if (segments ! � null) then
11. predList.add(n, segment);
12. predList � genbestPredivates (predList);
13. return predList;

Score(n, s) � loge �1 � �
k �s

fn , k� (1)

where n is a node, s is a segment, k is a keyword from s, and fn, k is the number of nodes
of type n containing the keyword k.

Although equation (1) provides a way to compute the confidence that a node can be
used to label a segment, it alone is not adequate to infer the likelihood of an individual
node to be used to label a given segment, as demonstrated by the following example.

4.2.1 Example 4.1. Consider a query “17 2 Tandem Performance Research Group”
issued on Sigmod data in Figure 1, and most likely it intends to search for an issue whose
volume “17” and number “2” and one of the authors is “Tandem Performance Research
Group”. Using equation (1) alone would return the following four predicates together
with their scores:

(1) /issue/volume � “17” 0.6931471805599453.
(2) /issue/number � “2” 2.995732273553991.
(3) /article/title � “Performance Research Group” 4.709530201312334.
(4) /authors/author � “Tandem Performance Research Group” 1.791759469228055.

The third predicate got the highest score. This is because there are more /article/title
nodes that contain the segment keywords than the /authors/author node. But the user
search intention does not include title. Consequently the third predicate is not required
even though it has the highest. Actually, the keywords in the /article/title node, i.e.
“Performance Research Group”, semantically refers to an organization that wrote an
article and not an article’s title. Therefore, it is safe to assume that the user is referring to
those keywords in the “/authors/author” node and delete those in the “/article/title’ node.
This action left the title node with an empty segment so that predicate is ignored. The
limitation of equation (1) is also observed by XReal and proposed two formulae to
compliment it.

Motivated from the above example, we pre-process the segments using two
guidelines proposed before applying equation (1). The first guideline removes a
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segment’s keyword that matches the tag name of a node from the set of segment’s
keywords, while the second guideline uses the NER system to categorize segment’s
keywords and removes those keywords that are not semantically related with the node
in question. These guidelines would be explained in some detail in the following
sections.

4.2.1.1 Guideline 1. Given a node v and a segment s. We label the keywords in s with
v. If a keyword k�s matches an element name that appears along path from v to the root
node, it means user is referring to a node in the document, not a node value. Such a
keyword would be removed from the segment. This pre-processing guideline helps to
resolve the popular keyword query Ambiguity 1. The following example demonstrates
how to apply Guideline 1 works in Algorithm 2.

4.2.2 Example 4.2. Supposing that on Line 2 of Algorithm 2, we have node
n � “SigmodRecord/issues/issue/articles/article/title” and on Line 4 segment s � “title
xml retrieval”, and as the keyword “title” in s matches the “title” tag found along the path
from “title” node to root, the algorithm removed the “title” keyword from segment s. This
generates a new segment, s � “xml retrieval”, on Line 5. A score for the node and new
segment is then computed on Line 7. If it is not zero, segment s would be added to the list
of relevant segments for the “title” node.

4.2.2.1 Guideline 2. As XML tags are used to label data in the XML documents while
labelling a segment with a node, we try to find out if all the keywords in the segment
match the node semantically. If a keyword is not semantically related to the node in
question, it is removed from the segment. This guideline addresses another popular
keyword query Ambiguity 2. The following example demonstrates how to apply the
guideline.

4.2.3 Example 4.3. It is supposed that there is a list of three segments: s1, s2 and s3,
supplied as input to Algorithm 2, and on Line 2 of the algorithm, we have node
n � “SigmodRecord/issues/issue/articles/article/authors/author”, as shown in Figure 3.
We want to find which of these segments are relevant to the given node n. Notice that n
is a node of type author and based on Table I, author node is used to label text composed
of either a person or an organization entity.

Next, given n and the three segments, Line 4 first considers segment s1, Line 5 of the
algorithm applies Guideline 2 to find if n and s1 are semantically related. Because none
of the keywords in segment s1 represents a person or organization entity, all keywords
in s1 are removed and Line 5 returns s � null. This means n and s1 are not semantically
related. Now because s1 � null, the algorithm skips that segment and iterates back to
Line 4 and takes the next segment s2. As all the keywords in s2 represent a person entity,
this implies that n and s2 are semantically related. Consequently, a score for n and s2 is
computed on Line 7 using the equation (1) and if the score is not zero, s2 is added to the
list of relevant segments for the author node. The algorithm iterates back again and
considers s3. The first keyword in s3 is not a person entity, so it is removed from the
segment on Line 5, given s3 � “John Michael”. Next is to compute a score for n and the
new segment. However, because such a predicate was considered in the second iteration,

SigmodRecord/issues/issue/articles/article/authors/author  

s1: xml retrieval  
s2: John Michael 
s3: retrieval John Michael 

Figure 3.
A node and three
segments
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no score would be computed and the algorithm iterates back again to Line 4. This time,
no segment was found. The author node (and its relevant segments) is then added to the
overall list of nodes in Line 11. If a node has more than one relevant segment, Line 9 of
Algorithm 2 selects the most relevant segment (see Section 4.2.1). After Line 11,
Algorithm 2 iterates back to Line 2 and considers the next node. Here also, for this node
the algorithm tries to find relevant set of segments from the input list of segments and
label the segments with the node as it does in the first iteration. This is done for all the
nodes in the database. Lines 2-8 of the algorithm return a list of node and with each node
having one or more segments.

For example, for the query Q � “xml retrieval model Victor”, Lines 2-8 of the
algorithm return list of nodes and their respective segments, as shown in Figures (4a)
and (4b).

From Figures (4a) and (4b), we can see that there are two nodes, author and title. The
author has just one segment [Figure (4a)], while the title node has several segments
[Figure (4b)]. As the title node has more than one segment, the most relevant segment
must be selected (Line 9). The selection process is based on a guideline discussed in the
section that follows.

4.2.3.1 Selecting best relevant segment. As a node can have more than one relevant
segment with each segment having a score, it is necessary, in such a case, to determine
which segment is more relevant to represent the original user’s query intention. In view
of this, we propose a guideline for selecting the most relevant segment as follows.

4.2.3.2 Guideline 3. Given a node and a list of its relevant segments, the most relevant
segment for that node is the segment with highest score among all other segments. If the
node has more than one segment having same highest score, the segment having the
smallest length is the most relevant and is selected.

4.2.4 Example 4.4. The article“/article/title” node in Figure (4b) has several segments.
One of them must be selected. For that node, segments “xml retrieval model” and “xml
retrieval model Victor” have the same score, which is also the highest score. As the later
segment has the least number of keywords, it is selected on Line 11 as the most relevant
segment with w.r.t. the article node.

The list of predicates for query Q is shown in Figure (4c). The following describes
how to select the best predicates among the list of predicates.

(a)  

SigmodRecord/issues/issue/articles/article/authors/author   
     Victor                                                                       1.6094379124341003 

(b)  

SigmodRecord/issues/issue/articles/article/title   
       xml                                                                       3.8066624897703196 
       xml retrieval                                                         3.8066624897703196 
       xml retrieval model                                              4.736198448394496  
       xml retrieval model  victor                                   4.736198448394496 
        ... etc                                                                           .... etc 

(c) 

SigmodRecord/issues/issue/articles/article/title = xml retrieval model   
SigmodRecord/issues/issue/articles/article/authors/author  = Victor 

Figure 4.
Two nodes and their

segments with two
predicates
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4.2.4.1 Selecting most relevant predicates. Algorithm 2 returns list of predicates.
However, it is possible for two or more distinct predicates to have different nodes that
label same data value. In such a case, we say the nodes label same type of named entity
category. One of these predicates must also be selected. Below is a guideline which helps
to determine the best predicates.

4.2.4.2 Guideline 4. When two or more distinct predicates contain nodes that label
same type of named-entity category as their text value, a predicate whose segment
consists of more numbers of named-entity keywords of the same type would be selected
or if the number of named-entities keywords is the same, we select the predicate whose
node has higher confidence value to label such named-entity. Confidence value can be
obtained from our index. To understand this guideline, let us consider the following
examples.

4.2.5 Example 4.5. Supposing that after Line 10 of Algorithm 2, we have a list of two
predicates, as shown in Figure (3c) and brought here for clarity:

SigmodRecord/issues/issue/articles/article/title � xml retrieval model.
SigmodRecord/issues/issue/articles/article/authors/author � Victor.

Because the two predicates contain nodes that label different types of name-entities, we
do not apply Guideline 4 on these predicates. Meaning that, no predicate would be
removed and so we have a list of two predicates.

However, supposing, for example, that, instead of what we have in Figure (4c), we
have:

SigmodRecord/issues/issue/articles/article/title � Victor.
SigmodRecord/issues/issue/articles/article/authors/author � Victor.

Both nodes, in this example, contained/labelled the same keyword “Victor”, which is
categorized as a person entity. Because both nodes labelled the same Person entity and
each contain same number of keywords, we check our index and retrieve the confidence
value of the two nodes (i.e. title and author nodes) with respect to the Person entity and
remove the predicate with the smallest confidence value. In the above case, we remove
the predicate having the title node because the author node has high confidence value to
label/tag Person name-entity. This gives us only one predicate:

SigmodRecord/issues/issue/articles/article/authors/author � Victor.

Also, in supposition as another example, instead of what we have in Figure (4c), we have:

SigmodRecord/issues/issue/articles/article/title � Victor.
SigmodRecord/issues/issue/articles/article/authors/author � Victor Samuel.

Here, both nodes labelled same type of named-entity, i.e. person entity. We select the
author node since it has two person entity keywords as against one keyword in the title
node:

SigmodRecord/issues/issue/articles/article/authors/author � Victor Samuel.

This guideline helps to reduce the number of predicates and it also helps to resolve
Ambiguity 2 by selecting predicates whose nodes are not only statistically relevant but
also semantically related with the query.
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4.2.6 Merging. The next step called the merge operation used the generated
predicates from above step and generates more complex predicates in addition to the
simple one. The merge operation combines two or more predicates to form a complex
predicate using the “and” operator if their lowest common prefix (LCP) is not null. This
“not null” condition would prevent us from violating the structure of the XML
documents. For example, consider the two predicates in Figure (4c). Using the two
predicate nodes, merging operation would first compute their LCP. Their LCP is
SigmodRecord /issues /issue /articles /article. As LCP is not null, merge combines the two
predicates using the “and” operator and updates the list of predicates to a list of three
predicates, as shown in Figure 5.

Figure 5 shows the three predicates generated by the merging operation. We then
find appropriate set entity nodes that would be used to label the predicates. The
following section describes our proposed algorithm that computes entity nodes from our
indexes. Entity nodes are the result nodes while the predicates obtained in the above
step restrict the type of entity that would be returned as answer to a query.

4.3 Entity generation
When a user issued a query, he/she is looking for an entity or entities in real-world along
with their relationships in the document (Termehchy and Winslett, 2011; Bao et al., 2010;
Liu et al. 2007). In relational database, an entity denotes a “thing” or an “object” in the
real world. While in the concept of XML databases, as these databases have tree
structures, there are many sub-trees in the databases that denote “things” or “objects”
(Lou et al., 2013). The root nodes of these sub-trees are called entity nodes. Also called
return nodes because they are the target document elements the user is interested to
return. This section describes an algorithm (Algorithm 3) that is used to generate entity
nodes in an XML document using our index described in Section 5.

To generate entity nodes, similar to StruX, we use the following inference in the study
by Liu et al. (2007) for entity node identification:

• If a node has siblings of the same name, then this indicates a many-to-one
relationship with its parent node, and is considered to represent an entity.

• If a node does not have siblings of the same name, and it has one child, which is a
value, then it is considered to represent an attribute.

• A node is a connection node if it represents neither an entity nor an attribute.

Algorithm 3: generateEntity
Input: inverted index
output: List of entity nodes
1. enodes � null // list of entity nodes
2. Lnodes � getNodes(index.FrequncyTb);
3. for (int i � 0; i &lt;Lnodes.size(); i��)
4. if ( Lnodes (i) and Lnodes(i�1) are from same document) and

(Lnodes(i) and Lnodes(i�1) are of the same type) and
(Lnodes(i) and Lnodes(i�1) have the same parents))

 /title = 'semantic database' 
/authors/author  = victor 
/title = 'semantic database'    and  /authors/author  = 'Victor' 

Figure 5.
Three generated

predicates
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5. diff � Lnodes(i�1). getDewSuffix() - Lnodes(i).getDewSuffix()
6. if (diff �� 1) // we got an entity node
7. entNode � nodes(i).path();
8. if [! enodes.contains (entNode)]
9. enodes.insert (entNode)

10. return enodes

However, in StruX, entities are computed from DTD based on the above inference. The
problem with using DTD is that query processing relies on the presence of XML
document DTD. However, DTD is not always available. Also, the system can infer
multiple value attributes as entities if DTD is used to compute entities.

To avoid these challenges, we inferred our entities based on the above inference but
using our index, not DTD. Thus, the process of generating entities is guided entirely by
the underlying XML database. Algorithm 3 is a flowchart describing how to model the
above inference using our index to compute the entities. The algorithm works as follows:

On Line 2, Algorithm 3 first retrieves all the rows in the frequencytb table ordered by
document order. As described in Section 5, each row in the table represents the details of
a node with respect to a query keyword. For ease of description, we call each row a node.
The function getNodes() returns a list of nodes, Lnodes(i) denotes node i in the list of
nodes. Each node support the getDewSuffix() method. This method returns the last digit
of the dewey Id of a node. Therefore for a node with dewey Id 0.0.2.3, getDewSuffix()
returns 3.

Line 3 scans the list of nodes. For each iteration, the algorithm takes a pair of nodes
Lnodes(i) and Lnodes(i�1) from the nodes list, and then for each pair, Lines 4-9 find the
entity nodes if all the following conditions are true:

Determines if the two nodes:
(1) have same parent;
(2) are of same node type; and
(3) have Lnode(i�1).getDewSuffix() � Lnode(i).getDewSuffix() � 1.

On Line 10, the algorithm returns a list of nodes (enodes) that satisfy the above three
conditions. These nodes represent the real-word entities in XML document which users
might be interested in. However, only one of them is valid for a user query (Lou et al.,
2012). Therefore, it is necessary to find a valid entity node from the returned list of entity
nodes (enodes). In this paper, the selection is done during query formulation discussed in
the following section where a proposed ranking formula is used to fish out the valid
entity node.

4.4 Query formulation
This section describes how to generate a set of structured queries given a list of
predicates and that of entity nodes, as shown in Figure 6. The Figure shows a list of three
predicates and a list of four candidate entity nodes computed by our system. We label
each predicate with each entity node from the entity nodes list. We call each pair entity –
predicate. Each entity – predicate pair is a candidate structured query. Equation (2) is
proposed as a ranking formula to compute score for each entity – predicate pair. The
scores are used to rank the queries. Our ranking formula is better than the existing
systems ranking formulae because existing systems did not take into account the
semantic relationship between an entity node and that of predicate node(s):
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Score(q) � ��
1

distance
� � �

i�1

k

score(ni, s)� (2)

Where q is a structure query, k is the number of nodes in a predicate, score(ni, s) is as
explained in equation (1), distance is the difference between a predicate’s node path
length and an entity node path length. If the predicate contains more than one node we
take the minimum distance.

The factor is 1/distance in the equation to measure the semantic relationship between
the entity node and the predicate node. The closer they are, the more semantically
related they appear. The second factor �score(ni, s) is based on intuition 1 of XReal (Bao
et al., 2010). The constants � and � indicate the importance of each factor. We use � �
� � 0.5 to indicate that both semantic relationship and statistic of keyword have same
importance.

Algorithm 4 represents a flowchart for our query formulation. It first takes a
predicate p from the list of predicate Pr. On Line 2, it takes an entity node e from the
list entity nodes E. As a predicate p can have more than one predicate nodes, it then
call its getAllPredNodes()method to return all its predicates nodes on Line 3. This
means on this line, we have an entity node e and set of predicate nodes. The
algorithm then compute the most related predicates node w.r.t node e as follows (see
Line 4-11): Each node supports getPathLength() method that compute its path
length. So path lengths for pn and e are computed and the absolute difference
between their path lengths on Lines 7-11 if e is an ancestor of pn is also computed.
We called this “distance” which is used in equation (2). Lines 4-12 generates a list of
nodes with their corresponding “distance” w.r.t an entity node e. After this, function
getNodeWithSmallDistance() returns the node with smallest distance on Line 13.
This predicate node with smallest distance is then store in list of predicate nodes.
The algorithm iterates back to Line 2 and consider another entity node, also Lines
4-12 compute another predicate w.r.t the previous entity node. The process is
repeated until all entity nodes are considers. The entity and set of predicate nodes
are used to form a structured query using xquery syntax. After this, the algorithm
iterates back to Line 1 and considers another predicate. Same process as describe
before is repeated until no more predicate. Equation (2) is used to compute the score
for each generate structured query. This score is used to find the query that best
describe the user query intention. Finally a list of structured queries is returned.

Algorithm 4: formQuery
Input: list of predicates Pr, List of entity nodes E
Output: List of structured queries
1. for each predicate p in Pr

                           /title = 'semantic database' 
predicates          /authors/author = 'Victor' 
                          /title = 'semantic database' and  /authors/author = 'Victor' 

Entities             SigmodRecord/issues/issue 
                         SigmodRecord/issues/issue/articles/article 
                         SigmodRecord/issues/issue/articles/article/authors 
                        SigmodRecord/issues/issue/articles/article/authors/author 

Figure 6.
Predicates and entity

nodes example
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2. for each entity e in E
3. Let nodes � getAllPredNodes(p)
4. for each node pn in nodes
5. if (is_ancestor(e, pn))
7. plength1 � pn.getPathLength()
8. plength2 � e.getPathLength()
9. distance � plength1 - plength2

10. else
11. distance � 0
12. nodeList.add(pn, distance)
13. smallNode � getNodeWithSmallDistance(nodeList)
14. distance � smallNode.getDistance();
15. if (distance � 0)
16. query � XqueryBuilder()
17. pscore � 0
18. for each node n in nodes
19. pscore � pscore � n.getSegScore();
20. score � 0.5(1/distance � pscore)
21. QueryList.add(query, score)
22. Return QueryList

Figure 7 shows the overall query structuring steps by XKQSS. It first shows the
keyword query, next the query tagged with their respective named entities, the next line
contains the best generated XQuery query, fourth line contains the score of the newly
generated and finally the result obtained when the generated query is executed against
Sigmod XML database.

5. Index construction
This section describes our index structure used for effective keyword query conversion.
To construct our index, we created a four database tables to store the indexes using
MySQL database, as shown in Figure 8.

Keyword query: semantic  Victor Viannu
Tagged query: semantic/O   Victor/Person  Viannu/Person
XQuery query: for $entity in collection('SigmodData.dbxml')//article 
                          where contains ($entity/title, "semantic") and 
                          contains ($entity/authors/author, "Victor Viannu")  return $entity
Query Score: 7.2930176
Result:  <article> 
              <title articleCode="162050">Mapping a semantic database model to the relational 
model</title> 
              <authors> 
                 <author AuthorPosition="01">Peter Lyngbaek</author>   
                <author AuthorPosition="02">Victor Viannu</author>   
            </authors> 
            </article>

Figure 7.
Overall query
structuring steps

Figure 8.
Structure of the
index
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We traverse the XML document tree in pre-order and collect the following information
for each document D and for each node n in D visited:

• Store the document ID and name in docTb in Figure 8.
• Assign a Dewey label dewId to n.
• Store the prefix path prefixPath of n as its node type in a database table in

elmTypeTb in Figure 8. Each row in the table consists of the a node’s name (epath),
nodes’ number of children (noOfchilds) and node Id (NId). NId is used to identify
the node.

• In case n is a leaf node, we compute the number of occurrences of each term x in n
and store a record for each term in frequencyTb in Figure 8. The table is similar to
posting list. Each row in the table stores the detail of a node w.r.t. a particular
keyword in the node. It consists of node Id (NId), the keyword trm and the number
of times trm appears in the node (frqc). Also, in the row, we have the document Id
(docId) and the nodes’ dewey Id (dewId). This table is used to compute both the
predicates and as well as the return nodes.

• Also for each leaf node (NId) and for each of the three named entity categories
namedEntity considered, we compute the proportion of each named entity
category in the text of NId (confValue).

6. Experiment
This section discusses the experimental setup to evaluate our proposed system. The
effectiveness of the system was evaluated by measuring search quality using precision
and recall evaluation metrics.

6.1 Experimental setup
We used Intel (R) Core (TM) 3.20-GHZ with 8 GB memory running Windows 7
Professional. The propose system was implemented in Java and we created our index for
effective query structuring and stored it in a MySQL database. Berkeley DB for XML
was used to store and query the XML documents.

6.1.1 Dataset. This study would be conducted using two datasets. The first dataset,
called “Sigmod” is obtained from Washington XML data repository (www.cs.
washington.edu/research/xmldatasets). Sigmod XML dataset is a computer science
bibliography dataset widely used for XML IR evaluation. It has a simple structure and
the content information is riched (Guo et al., 2003). It is a single file XML document with
ten distinct elements, 4 of them were leaf elements. The second dataset called IMDB is
obtained from INEX. The IMDB dataset contains information about various entities like
movies, actors, directors and soon. The dataset consists of over 800 XML files and only
215 files were considered for the experiment. It consists of 50 distinct elements, of which
30 are leaf elements. For both datasets, stopwords were removed and no stemming.

Recall that our system returns an entity node from data being searched. In the IMDB
datasets, every document root, such as �movie� is intuitively an entity node. Similar to
StruX, our system considers a root element as not suitable to be an entity node.
Consequently, to return a �movie� as an entity node, we automatically create a dummy
root node �movies� to contain all the �movie� elements. Also, entity node consists of
a set of related leaf nodes, called predicate nodes. With respect to IMDB dataset, ten
predicate nodes were selected out of the 30 leaf elements from a survey involving 20 PhD
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candidates. Each candidate was given a list of the 30 leaf elements and was asked to
select the ones he often uses to describe a movie. The need to select the most frequent use
leaf element out 30 is born out of the following observations:

• The smaller the number of predicates in an entity node the closer they are and the
more meaningful (Cohen et al., 2003).

• The basic requirement for an XML search system is to return an entity node that
is not overwhelming to contain too much irrelevant information (Bao et al., 2010,
Keyaki et al., 2011).

These leaf elements were used for predicate computation in Section 4.2.
6.1.2 Query set. To demonstrate the performance of our method, similar to XIOF

and XReal, nine queries were randomly selected for each dataset. Queries QS1-QS9
are evaluated on Sigmod data, while queries MS1-MS2 for IMDB data. Table II
shows the query evaluation result on Sigmod dataset, and Table III shows the query
evaluation result on IMDB dataset. Notice that for IMDB the search intention is
always a movie as it the only meaningful XML fragment because all other fragments
are not informative enough. These queries contain explicit and implicit structural
hints. As in Bao et al. (2010), Guo et al. (2003) Liu et al., 2007, Xu et al., 2005), this
paper also assumes that a query keyword has at least one occurrence in the XML
data being searched.

6.1.3 Judgement. Each keyword query is manually changed to its corresponding
XQuery expression and the new query is used to retrieve relevant XML fragments.
These relevant XML fragments are the accurate answers.

Table II.
Query evaluation
result on Sigmod
dataset

Query Id Query Search intention XKQSS XReal

QS1 Semantic database Victor Vianu Article Article Article
QS2 Georges Gardarin Article Authors Articles
QS3 Multimedia object manager Article Article Title/articles
QS4 Two client server Issue Issue Article
QS5 Fox Development Team Microsoft Article Authors Article
QS6 17 2 Tandem Performance Group Issue Issue Issue
QS7 24 2 Georges Gardarin Issue Issue Issue
QS8 Performance evaluation Article Article Issue
QS9 Server Article Article Title

Table III.
Query evaluation
result on IMDB
dataset

Query Id Query Search intention XKQSS XReal

MS1 Knots Reckell Peter Movie Movie Movie
MS2 Murder McGill Bruce Movie Movie Movie
MS3 Midnight Special 1973 Movie Movie Title
MS4 Countdown Lewinsky Monica Movie Movie Movie
MS5 Garafano Michelle director Movie Movie Movie
MS6 Organised crime Jo Hang Movie Movie Movie
MS7 Morris Haviland actor Movie Movie Movie
MS8 Zion Brother accident Movie Movie Movie
MS9 Proud family Movie Movie Title

IJWIS
11,1
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6.1.4 Search quality. The output of our system is a ranked list of structured queries. To
evaluate the search quality of our system, we compare the performance of the
highest-scoring structured query with that of manually created XQuery queries and
XReal. We evaluate effectiveness of the system by the metrics of precision and recall.
Precision refers to the percentage of relevant results among all the returned results while
recall refers to the percentage of returned relevant results among all the relevant results
existing in an XML dataset. Formally, these two metric are defined as follows:

Precision �
�Rr � Rs�

Rr
and Recall �

�Rr � Rs�
Rs

where Rr is the result of our highest-scoring structured query or the result return by
XReal and Rs is the result of the manually created structured query (i.e. in XQuery
format).

6.1.5 Discussion. All the queries in Table II were evaluated. The third column
represents user search intention obtained by manually constructed queries; fourth
column represents the nodes returned by the proposed technique, while the last column
represents the set of nodes returned by XReal. Figure 9 illustrates the experimental
results comparing the performance of XReal and XKQSS in terms of identifying the
return node. We observe that our technique achieves better search performance than the
method XReal. Figure (9a) shows that the XKQSS is able to infer about 70 per cent of
the true return nodes while XReal only 40 per cent on Sigmod dataset, while 9b shows
the XKQSS infers about 100 per cent of the return nodes and XReal about 80 per cent on
IMDB dataset.

XKQSS perform better than XReal because with XReal, there are two factors to
consider for a node to be a returned node. These factor are 1 � �k�q fk

T and � depth(T ) where
fk

T is the number of T_type nodes containing k and � is the reduction factor in the
interval (0, 1]. We use � � 0.8. Using query MS9 i.e. “ proud family ”, let’s analyse why
XReal infer “title” node as the return node and not “movie”. With respect to “movie” and
“title” node, the second factor 0.8depth(movie ) � 0.8 and 0.8depth(title ) � 0.64 respectively.
However, for the first factors; ( 1 � f�proud, family�

title ) is greater than ( 1 � f�proud, family�
movie ) so much

that multiplying the first and second factors will not change the inequality. Therefore,

Figure 9.
Precision comparison
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because ( 1 � f�proud family�
title )* 0.8depth(title ) greater, XReal selects the “title” node instead of

“movie” node.

7. Conclusion
In this paper, a query structuring technique called XKQSS that automatically converts
a keyword query to a set of structured queries is presented. Given a keyword query as
input, the technique used named entity tagger to categorize query keywords and
exploits statistics derived from the document to infer search predicates. Further, the
approach used a proposed algorithm to find entity nodes, which represent real-world
entities in documents based on dataset instead of DTD. It considers these entity nodes as
users search for nodes. Then, it combines the predicates and entity nodes according to
the underlying structure of the XML document to construct candidate structured
queries. Using a ranking scheme we proposed, our technique returns the structured
queries in a ranked order. We compare the performance of the highest-scoring
structured queries with XReal. The results demonstrate our technique that includes
NER to resolve keyword queries ambiguities is feasible and that it is quite effective.

As future work, we plan to enhance query structuring technique. Specifically, the
technique would be improved to handle very large datasets. The algorithm for
computing entity nodes from XML data would also be enhanced by other heuristics for
determining entities from XML dataset.
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