
International Journal of Web Information Systems
Path-based keyword search over XML streams
Savong Bou Toshiyuki Amagasa Hiroyuki Kitagawa

Article information:
To cite this document:
Savong Bou Toshiyuki Amagasa Hiroyuki Kitagawa , (2015),"Path-based keyword search over XML
streams", International Journal of Web Information Systems, Vol. 11 Iss 3 pp. 347 - 369
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2015-0013

Downloaded on: 09 November 2016, At: 01:54 (PT)
References: this document contains references to 30 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 60 times since 2015*

Users who downloaded this article also downloaded:
(2015),"Facet-value extraction scheme from textual contents in XML data", International Journal of
Web Information Systems, Vol. 11 Iss 3 pp. 270-290 http://dx.doi.org/10.1108/IJWIS-04-2015-0012
(2015),"Raising resilience of web service dependent repository systems", International Journal of
Web Information Systems, Vol. 11 Iss 3 pp. 327-346 http://dx.doi.org/10.1108/IJWIS-04-2015-0011

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0013

Path-based keyword search over
XML streams

Savong Bou
Graduate School of Systems and Information Engineering,

University of Tsukuba, Tsukuba, Japan, and

Toshiyuki Amagasa and Hiroyuki Kitagawa
Faculty of Engineering, Information and Systems, University of Tsukuba,

Tsukuba, Japan

Abstract
Purpose – In purpose of this paper is to propose a novel scheme to process XPath-based keyword
search over Extensible Markup Language (XML) streams, where one can specify query keywords and
XPath-based filtering conditions at the same time. Experimental results prove that our proposed
scheme can efficiently and practically process XPath-based keyword search over XML streams.
Design/methodology/approach – To allow XPath-based keyword search over XML streams, it was
attempted to integrate YFilter (Diao et al., 2003) with CKStream (Hummel et al., 2011). More precisely,
the nondeterministic finite automation (NFA) of YFilter is extended so that keyword matching at text
nodes is supported. Next, the stack data structure is modified by integrating set of NFA states in YFilter
with bitmaps generated from set of keyword queries in CKStream.
Findings – Extensive experiments were conducted using both synthetic and real data set to show the
effectiveness of the proposed method. The experimental results showed that the accuracy of the
proposed method was better than the baseline method (CKStream), while it consumed less memory.
Moreover, the proposed scheme showed good scalability with respect to the number of queries.
Originality/value – Due to the rapid diffusion of XML streams, the demand for querying such
information is also growing. In such a situation, the ability to query by combining XPath and keyword
search is important, because it is easy to use, but powerful means to query XML streams. However, none
of existing works has addressed this issue. This work is to cope with this problem by combining an
existing XPath-based YFilter and a keyword-search-based CKStream for XML streams to enable
XPath-based keyword search.

Keywords Web search and information extraction, Applications of web mining and searching,
Indexing and retrieval of XML data

Paper type Research paper

1. Introduction
Extensible Markup Language (XML) (Bray et al., 2008) is a popular and standardized
markup language for semi-structured data, and has been widely used in many
applications due to its simplicity and versatility. Hence the amount of data being
exchanged in the form of XML has been growing.

This research was partly supported by the Grant-in-Aid for Scientific Research (B) (#26280037)
and the program Research and Development on Real World Big Data Integration and Analysis of
the Ministry of Education, Culture, Sports, Science and Technology, Japan.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Path-based
keyword

search

347

Received 6 April 2015
Revised 17 April 2015

Accepted 18 April 2015

International Journal of Web
Information Systems

Vol. 11 No. 3, 2015
pp. 347-369

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-04-2015-0013

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0013

Due to the rapid growth of XML data, there are growing demands to exchange XML
data as streams of data in real-time. Such type of XML data is called XML streams
(Gupta et al., 2004). Typical examples of XML streams are Web services, sensor
networks, etc., and, in many applications, XPath is used to filter out unnecessary parts
(Gupta et al., 2004).

In real applications, one needs to deal with different XML streams generated from
different information sources. Such data are often dissimilar in structure. When
querying or filtering such data, traditional XPath is not always useful, because users
need to know the schemas of XML streams being processed (Gupta et al., 2004).
Moreover, to formulate queries appropriately, users need to be familiar with the syntax
of one or more query languages, such as XPath and XQuery, which is often a barrier
particularly for novice users.

To such a problem, keyword search (Cohen et al., 2003; Gawinecki et al., 2008;
Hristidis et al., 2006; Hummel et al., 2011; Shao et al., 2003; Vagena et al., 2008; Xu et al.,
2005), where only keywords are used to formulate queries, offers a simple, but effective
mean. For example, in the sample XML data in Figure 1, let us assume that one wishes
to retrieve information related to books about “Star Wars”. In this case, he only needs to
put three keywords, “book”, “Star” and “Wars” as the query. Then the system returns
fragments of XML data that are related to the query keywords as the result. Processing
keyword search over static XML data has been extensively studied (Cohen et al., 2003;
Shao et al., 2003; Sun et al., 2007; Hristidis et al., 2006; Liu et al., 2007; Li et al., 2013), but
few research works addressed keyword search over XML streams (Vagena et al., 2008;
Hummel et al.; 2011; Gawinecki et al., 2008).

Notice here that, in many applications, users are interested in limited fragments in
XML data rather than entire data. For example, in the above example, one may only be
interested in bibliographic information, such as title and author, but not in the contents
of the books. In such cases, querying entire data does not make much sense. However,
when using pure keyword search, we do not have such a control, that is, XML fragments
that match with the query keywords will be included in the result even though they are
in the part of XML data in which the user is not interested. For this reason, it is desirable
if it is possible for us to be able to process keyword search for some restricted data.

Combining XPath with keyword search can solve the above problem. In fact,
XQuery/XPath Full Text (Petkovic et al., 2012) offers a solution. More precisely, XPath
is used to specify the scope of keyword search in XML data, and query keywords are
used to specify users’ search demands. Combining these two query paradigms is
beneficial to the users, because they can make use of the advantages from both query

Figure 1.
An example of XML
data

IJWIS
11,3

348

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-000.jpg&w=229&h=103

styles, that is, users do not need to fully understand the structure of the XML data being
queried, while they can specify the area of interest in XML data in terms of XPath. For
example, let us assume we are interested in book chapter that mention “Porter book”.
Such query can be represented as “//chapter[Porter book]”. Such a combination can
ensure that keywords “Porter” and “book” will be matched only in the subtrees rooted
at element “chapter”. Such XPath-based keyword search functionality has been
successfully implemented in many systems that deal with static XML data; however, to
the best of our knowledge, it has not been addressed in the context of XML streams,
where XML data are continuously transmitted, although the popularity of XML streams
has been growing rapidly.

To address this problem, we propose a scheme to process XPath-based keyword
search over XML streams. More precisely, we try to extend nondeterministic finite
automation (NFA)-based XPath filtering scheme for XML streams in such a way that it
can deal with keyword-based filtering conditions. As for the NFA-based XML filtering
engine, we exploit YFilter (Diao et al., 2003), and we extend it by reference to CKStream
(Hummel et al., 2011), which is a pure keyword search algorithm for XML streams. In
addition, as for the query result computation, we are based on meaningful lowest
common ancestor (MLCA) semantics (Vagena et al., 2007), whereas smallest lowest
common ancestor (SLCA) semantics is used in CKStream, because MLCA returns more
compact and meaningful query results than SLCA. We evaluate the proposed scheme by
some experiments using both synthetic and real data sets. The experimental results
show that our proposed method works well with acceptable throughputs, less memory
usage, good efficiency and utility.

The rest of this paper is organized as follows. We review some preliminaries in
Section 2 and some existing works in Section 3. We present the proposed algorithm and
experimental evaluation in Sections 4 and 5, respectively. Finally, some related works
are reviewed in Section 6, and Section 7 concludes this paper.

2. Preliminaries
First, we introduce some preliminaries.

2.1 XML path language (XPath)
XPath (Clark et al., 1999) is a language that is used to search for XML fragments in a
given XML data. We consider linear XPath expressions (Gupta et al., 2004), P, given in
(Gupta et al., 2004) by the following grammar:

P:: � /N�//N�PP
N:: � E�A�tex()�text(S)�*

Here, E, A and S are an element label, an attribute label and a string constant,
respectively, and * is the wild card. The function text(S) matches a text node whose
value is the string S.

2.2 XML keyword search
XML Keyword Search is an XML search technique, where only keywords are used to
formulate a query. The output is a set of ranked XML fragments matching the query

349

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

specification. The syntax of keyword search (Vagena et al., 2008; Hummel et al., 2011;
Gawinecki et al., 2008) is shown as follows.

2.2.1 Definition 1. An XML keyword search Q is a set of query keywords (t1 […], tm).
Each query term is of the form: l::k, l::, ::k or k, where l is a node label and k is a keyword.
A node ni satisfies a query term of the form:

• l::k if ni’s label equals l and the tokenized text content of ni contains the word k.
• l:: if ni’s label equals label l.
• ::k if the tokenized text content of ni contains the word k.
• k if either ni’s label is k or the tokenized text content of ni contains the word k.

To better illustrate the concept of keyword search, we present an example with a
fragment of bibliography data source shown in Figure 1. From this data source, if a user
wants to retrieve information on any publication which is written by author “Porter”
and has type “Novel”, he may issue a keyword search, q1, with two keywords as
“author::Porter type::Novel”. Similarly, the user may issue a query, q2, “author::Porter
War” if he wants to know any publication which is about “War” and written by author
“Porter”. Note that, in these data, we observe that the word “book” appears in both XML
element name and text value. Therefore, if the user issues keyword search, q3, “book
author::Hiroki”, the keyword “book” matches with both XML element “book” whose ID
is 2 and text value of XML element “title” whose ID is 8.

2.3 Node relatedness heuristics
In XML keyword search, given a set of query keywords, how to find XML fragments
that are most eligible as the query results are quite important. Therefore, extensive
studies have been done on these node relatedness heuristics (Cohen et al., 2003;
Gawinecki et al., 2008; Hristidis et al., 2006; Hummel et al., 2011; Shao et al., 2003; Vagena
et al., 2008; Xu et al., 2005). Based on the fundamental method, lowest common ancestor
(LCA), where the smallest XML fragments that subsume all keywords in the given
keyword search are chosen as queries’ results, many variants have been subsequently
proposed. SLCA is one of the most popular one, which is defined as follows.

2.3.1 Definition 2. SLCA (Vagena et al., 2007): two nodes n1 and n2 that belong to the
same XML data di are meaningfully related if there are no nodes n3 � di and n4 � di such
that LCA(n3, n4) is a descendant of LCA(n1, n2). If node v � di, such that v � LCA(n1, n2),
then we say that v is SLCA of n1 and n2, or v � SLCA(n1, n2).

However, SLCA semantics has a drawback that the results are too compact, and some
correct search results tend to be discarded. For example, let us assume a keyword search
“author::Porter title::”, which is used to search for the title of any publication written by
author “Porter”. Based on SLCA semantics, the subtree rooted at node chapter ID 6 is
returned; however, the subtree rooted at node book ID 2 is not returned as an answer,
even though it is also the correct result of this query. MLCA semantics (Vagena et al.,
2007) has been proposed to address the above drawback. In this approach, the search
result is selected in such a way that every two nodes are meaningfully related. MLCA is
defined as follows.

2.3.2 Definition 3. MLCA (Vagena et al., 2007): Let the set of nodes in an XML data be
N. Two nodes are of the same type if and only if they have the same tag name. Given A,

IJWIS
11,3

350

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

B � N, where A is composed of nodes of type �, and B is composed of nodes of type �,
the MLCA set C � N of A and B satisfies the following conditions:

• @ck � C,?ai � A, bj � B, such that ck � LCA(ai, bj). ck is denoted as MLCA(ai, bj).
• @ai � A, bj � B, if dij � LCA(ai, bj) and dij �� C, then ?ck � C, ck is descendant of

dij.
• Then set C is denoted as MLCASET(A, B).

According to MLCA, the answers of the above query are sets of all matched nodes in
subtrees rooted at node Chapter ID 6 and book ID 2.

3. Existing works: YFilter and CKStream
3.1 YFilter
YFilter (Diao et al., 2003) is a filtering system that processes XPath against XML
streams. It provides real-time and fast matching of large numbers of XPath queries. The
key innovation in YFilter is that it exploits prefix-sharing among all XPaths and
generates a compact NFA. Therefore, the number of machine states in YFilter is small
that can help speed up structure matching during the entire processing.

Figure 2 shows the NFA fragments of basic location steps. The state is represented
by circle, and transition is represented by directed edge connecting two or more states.
The symbol on an edge represents the incoming XML element that triggers the
transition. The special symbol “*” matches any element. The symbol “�” is used to
denote an epsilon-transition. Figure 3 shows an example of such NFA corresponding to
five XPath queries. A circle denotes a state. Circles with double lines denote accepting
states, marked by the IDs of accepted queries.

YFilter relies on a SAX parser (Gorman et al., 2004), which reads XML constructs,
such as startElement and endElement, text content, etc. When startElement is received,

Figure 2.
Basic NFA location

step

Figure 3.
XPath queries and a
corresponding NFA

351

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-001.jpg&w=119&h=110
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-002.jpg&w=179&h=79

it triggers a state transition in the Finite State Machines (FSM), and must backtrack to
previous states when endElement event is received. A run-time stack is used to track the
active and previously processed states.

Given an XML data in Figure 1 and a set of queries in Figure 3, Figure 4 illustrates the
run-time stack in the processing. When startElement event is invoked, an entry
containing set of active states’ IDs is pushed into the stack by following all matching
transitions from the currently active states. First, if a transition marked by the incoming
element name exists, the next state is added to the set of new active states. A transition
marked by the “*” symbol is checked in the same way. Then, the state itself is added to
the set. Finally, if an “�”-transition exists, the state after the “�”-transition is processed
immediately according to these same rules.

3.2 CKStream
CKStream (Hummel et al., 2011) is an algorithm to process multiple keyword queries
over XML streams. It also relies on a SAX parser (Gorman et al., 2004), parsing stacks
and query indexes specially designed to allow the simultaneous matching of terms from
different queries.

3.2.1 Parsing stack. Whenever XML constructs, such as startElement and
endElement and text-content, are invoked, an entry is pushed into a stack, and that entry
handles the following information: the label of the element; a bitmap, CAN_BE_SLCA,
which contains one bit for each query; a set of used queries, which contains the IDs of the
queries whose terms contain keywords; and keywords. Each entry is popped from the
stack when the corresponding endElement event is invoked.

3.2.2 Query index. CKStream uses query index to deal with large number of queries
efficiently. One unique query keyword is represented by an index entry, which also
contains IDs of queries in which corresponding term occurs. Label and text value of
query keywords are differentiated in query index. Figure 5 shows the query index of
queries q1, q2 and q3 above. Keywords on index 1, 2 and 4 are in the form l::k, whereas
keywords on index 3 and 5 are in the form k. During processing, only one query index is
used.

Figure 4.
An example of query
processing in YFilter

Figure 5.
A sample query
index

IJWIS
11,3

352

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-003.jpg&w=143&h=93
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-004.jpg&w=179&h=55

3.2.3 Query bitmap. Each bit in query bitmap corresponds to one unique query keyword
of its query’s ID. One entry of the stacks is associated with one query bitmap
representing all input keyword queries. Moreover, query bitmap is used to check and
evaluate if the processed queries match or not. The information stored in query bitmap
is similar to that of query index, but is used differently. There is only one query index in
the filtering system, which is used to check if keywords are matched or not when
processing the incoming SAX events. On the other hand, query bitmaps are more than
one in the filtering system. The number of query bitmaps is the same as the number of
entries pushed into the stack. Moreover, query bitmap is used to store information of the
matched keywords, and is used to check and evaluate if the processed queries match or
not. A query bitmap of queries q1, q2 and q3 above is shown in Figure 6.

We explain how CKStream works as follows. When a startElement event is detected,
it searches in the query index for the current node’s label. If such node label exists in the
query index, the position and query ID associated with such label will be obtained. Then
the corresponding bit of the obtained position is set to true, and the query ID is inserted
into the set of used queries. The CAN_BE_SLCA is set to true to all bits. Then the entry
(label name, query bitmap, set of used query, CAN_BE_SLCA) is pushed into the stack.
Similarly, when character() event is detected, the text value is split into words. For each
single word and the combination of the label of its parent node with each word, it
searches in the query index. If it exists in the query index, it sets the corresponding bits
of the query bitmap and inserts the query ID to the set of used query of the entry in the
stack of its parent node. Notice that terms of the form l::k are handled in the same way.
Finally, when an endElement event is detected, it looks for complete queries. It first
checks the set of used query to get all query IDs being processed. Then, for each
processing query ID, it checks all the bits of the corresponding query ID in the query
bitmap. If all bits of the corresponding query ID are not true, there is no query matched.
Then it will update the entry of its parent node with its entry to be popped. Query bitmap
will be concatenated, CAN_BE_SLCA will be combined using “AND” operator and set
of used query will be combined together. Then the entry of the currently processed node
will be popped out from the stack. If all bits of the corresponding query IDs are true,
those specified queries are matched, and then the bit corresponding to the matched
query is set to false in the query bitmap, and the matched query IDs will be removed
from the set of used query. Then it will update the entry of its parent node with its entry
as described above. The results will be returned to users or application, and the entry of
the currently processed node will be popped out from the stack.

Figure 6.
A sample query

bitmap

353

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-005.jpg&w=179&h=88

4. Proposed method
4.1 Proposal overview
To make XPath-based keyword search possible, we attempt to integrate the method of
NFA-based YFilter (Diao et al., 2003) with CKStream [12] which is a state-of-the-art
approach for keyword-based filtering over XML streams. To this end, we first extend
the NFA-based finite state machine in YFilter so that all the four types of keywords are
represented in term of NFA states. Next, we propose a method to generate the stack
entry, which resulted from the integration of set of NFA states of YFilter with a set of
used queries and query bitmap of CKStream, thereby combining the keyword-search
capability of CKStream and the path-based filtering of YFilter. In addition, we use
MLCA heuristic to generate query results, whereas SLCA is used in CKStream, because
it gives more related and compact results than other heuristics (Vagena et al., 2007).
MLCA returns a set of nodes that match queries.

4.2 Proposed algorithm
4.2.1 Query syntax. To allow XPath-based keyword search, we use keywords to specify
a query predicate in an XPath expression. In fact, XQuery and XPath Full Text 1.0
(Petkovic et al., 2012) is a W3C standard for that purpose, but its full syntax is too
complicated. For this reason, we borrow the core syntax from it. The resulted syntax is
as follows:

/XPath[ftcontains(keyword � search query)]

where XPath is an XPath expression and ftcontains is a dedicated function to specify a
keyword search according to (Vagena et al., 2008; Hummel et al., 2011; Gawinecki et al.,
2008). Note that the XPath and keyword search are connected by a descendant axis. Note
also that one might argue that writing XPath still requires users to know well about the
structure of the XML stream being queried. In fact, we leave the freedom for users to
specify any XPath expressions, that is, an extreme case is to use simple expressions of
the form “//element” if one only knows the element name of interest, while more
complicated XPath can be used if one understands the detailed structure of the XML
stream.

For example, if a user would like to search for “chapter” which contains the words
“Porter” and “book”, he can easily combine an XPath “//chapter” with keywords
“Porter” and “book”, which results in “//chapter[ftcontains(Porter book)]”. Such
combination can ensure that keywords “Porter” and “book” will be searched only inside
the subtrees rooted at element “chapter”.

4.2.2 Extension of NFA in YFilter. In the next, we extend NFA in YFilter so that we
can encode user-specified query keywords in terms of states in NFA, thereby making it
possible to process keyword search over XML streams using NFA-based Finite State
Machine. More precisely, in the original NFA model, a state transition happens only
when an XML element is parsed. We modify the NFA model as follows:

• As mentioned earlier, there are four types of query keywords, namely, l::k, l::, ::k or
k. We introduce new state transitions corresponding to these types of query
keywords where the transitions start with epsilon-transition (�) and *-transition
in this order (Figure 7);

IJWIS
11,3

354

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

• To deal with text contents, we introduce new state transition denoted by “text()”,
which is to make transition when a text content event is detected; and

• Each accepting state in the extended NFA contains the position of bit inside the
query bitmap and the matched query IDs. To check if a query is matched, we
check all corresponding bits in the query bitmap.

4.2.3 Details of algorithm. Having extended the NFA model according to the four types
of query keywords, we can now represent an XPath-based keyword query in terms of an
NFA. Next, given such a query, we explain how it is processed against an XML stream.
Specifically, we elaborate how to operate a running stack during the process.

Each entry in the stack contains three pieces of information: the set of NFA states, the
set of used queries and the query_bitmap. The entry is pushed or popped from the stack
when detecting startElement or endElement event, respectively. Each used query from
the set used_query is evaluated by checking if all corresponding bits in query bitmap are
true.

The details of our proposed algorithm are shown in Algorithm 1. There are three
main functions: Callback Function Start of Element, Callback Function Text and
Callback Function End of Element.

(1) Callback function start of element: This function is invoked when the start
Element is called. An empty set of used queries and a query bitmap, initialized to
false by default, are created. Then, starting from the initial or current states, state
transitions are processed according to startElement. For those states that are
newly visited, the query IDs and the positions of bits will be obtained, and they
are put in the set of used queries and corresponding bits are set to true in the
query bitmap, if any of those states are accepting states. If no accepting state
exists, all bits in the query bitmap remain false and the set of used queries is
empty. Finally, the set of active states, query bitmap and set of used queries are
inserted into an stack entry, and are pushed into the stack.

(2) Callback function text: When the character() event that corresponds to text
content is called, the text is split into tokens, and each token is processed by
NFA. Following the same procedure as mentioned in Callback Function Start of
Element, the information that is obtained from the accepting states is used to
update the entry at the top of the stack (the entry of parent nodes in the stack). In

Figure 7.
Basic extended-NFA

location step

355

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-006.jpg&w=143&h=127

Callback Function Text, neither new query bitmap nor new set of used queries is
created. As a consequence, no entry is pushed into the stack.

(3) Callback function end of element: When an endElement event is called, the top
entry is popped out from the stack. Then all query IDs in the set of used queries
in the popped entry are checked. For each query ID being processed, all bits in
the query bitmap of the corresponding query are checked if they are all true. If so,
the corresponding query is matched, and the results are returned; otherwise, if all
bits of the corresponding query are true, then those corresponding query IDs are
added to the set of used queries in the top entry of the stack, and all bits in the
query bitmap of the popped entry are used to update the query bitmap in the top
entry by applying bit-wise OR operation.

Algorithm 1 The Proposed Method Callback Functions
Callback Function Start of Element
Input: Parsing stack S, the XML node e being processed
1: Initialization
2: Push(sn) {create new stack entry}
3: Process e against extended-NFA
4: Add the newly active states to the stack
5: N :� number of distinct terms in all queries being processed
6: sn.query_bitmap [0, …, N-1]: � false
7: while each newly active state do
8: if sn.state is accepting state then
9: p :� get position of query bitmap

10: q :� get query ID of keyword matched
11: Add q to sn.used_queries
12: sn.query_bitmap[p]: � true
13: end if
14: end while
Callback Function Text
Input: Parsing stack S, the XML node e being processed
1: initialization
2: sn :� *top(S) {sn points to the top entry in the stack}
3: K :� set of tokens in node e
4: while all k � K do
5: Process k against extended-NFA
6: Add the newly active states to the stack
7: while each newly active state do
8: if sn.state is accepting state then
9: p :� get position of query bitmap of term l::k

10: q :� get query ID of keyword matched
11: Add q to sn.used_queries
12: sn.query_bitmap[p]: � true
13: end if
14: end while
15: end while
Callback Function End of Element
Input: Parsing stack S, the XML node e being processed
1: Initialization
2: sn :� pop(S) {pops the top entry in the stack to sn}

IJWIS
11,3

356

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

3: tn :� *top(S) tn points to the top entry in the stack
4: while q � sn.used_queries do
5: let j1 …, jN be the positions of the bits corresponding to terms from query q in

query_bitmap
6: COMPLETE :� sn.query_bitmap [j1] and … and sn.query_bitmap [jN]
7: if sn.state is accepting state then
8: q.results :� q.results � sn
9: else

10: Add sn.used_queries to tn.used_queries
11: tn.query_bitmap :� sn.query_bitmap or tn.query_bitmap
12: end if
13: end while

We show how our proposed method works using an example with two keyword queries
as follows. They are also illustrated in Figures 8 and 9:

• Q1: //book[ftcontains(author::Porter type::Novel)]
• Q2: /bib/book/chapter[ftcontains(author::Porter War)]

As shown in Figure 9, the initial state is initialized when new XML data, startDocument,
is detected. When receiving an event startElement or character event, the system pushes
an entry into the stack. When receiving an event endElement, the system checks for
matched queries. If no query matches, all bitmaps of the query_bitmap are sent and
combined with the entry at the stack top using bit-wise OR operation. The set
used_query of the popped entry is added up to that of the top entry. Then, the entry is
popped out of the stack.

Figure 8.
A single

extended-NFA

Figure 9.
A running example

of the proposed
method

357

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-007.jpg&w=215&h=95
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-008.jpg&w=263&h=94

5. Experimental evaluation
5.1 Experimental overview
Our experiments are done as described below. Experimental setup is explained in
Section 5.1. We compare the performance of our proposed method by using XPath-based
keyword search with that of CKStream by using keyword search on queries with same
search intentions in Section 5.2.1. In Section 5.2.2, we explain how well our proposed
method can deal with the increase of number of queries and keywords by using
XPath-based keyword search. Finally, we compare the throughputs of our proposed
method with that of YFilter by using XPath queries in Section 5.2.3.

5.2 Experimental setup
We implemented our proposed method in Java based on the existing YFilter (Diao et al.,
2003) and the SAX API from Xerces Java Parser (Gorman et al., 2004). All data
structures, query bitmaps and sets of used queries are stored as in-memory data
structures. All experiments are performed in an Intel Core 2.33 GHz PC with 2 GB
memory running Windows XP Service Pack 2.

We use two types of data sets: synthetic and real data. The synthetic data are
generated by the xmlgen of XMark (Busse et al., 2013). The real data are DBLP
bibliography (CSE et al., 2013a) and Mondial (CSE et al., 2013b) world geographic
database. The details of the data sets are presented in Table I.

5.3 Experimental results
5.3.1 Performance comparison on queries with same search intentions. First experiment
is to evaluate the accuracy of our proposed method. Specifically, we compare the
proposed scheme with CKStream (Hummel et al., 2011), because it is based on SLCA
semantics (Vagena et al., 2007), whereas our scheme is based on MLCA semantics. The
queries used are listed in Tables II and III. They are chosen randomly from the XML
data generated by XMark. The relevant matches of the search intentions in Table II are
the subtrees rooted at “auction”, “shipping”, “category”, “people” and “regions” that
contain the query keywords. Note that, for experimental purpose, we modify XML data
set by adding several keywords into randomly chosen text nodes. The translated

Table I.
All data sets used in
the experiment

Data set Maximum depth Average depth Size (MB)

XMark (Busse et al., 2013) 5 3 11.7
DBLP (CSE et al., 2013a) 6 2.90 15.7
Mondial (CSE et al., 2013b) 5 3.59 1.8

Table II.
Search intentions and
all translated
keyword searches

No. Search intentions Keyword search

1 Find the “auction” that is related with “milk” and “toothpaste” Auction milk toothpaste
2 Find the “shipping” with “fixed” “pays” Shipping fixed pays
3 Find the “category” that is related with “grape” and “roses” Category grape roses
4 Find the “people” who belongs to “Democratic” and “Republic” People democratic republic
5 Find the “regions” that “payment” is done by “cash” Regions payment cash

IJWIS
11,3

358

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

keyword searches in Table II are processed in CKStream, and the translated XPath-
based keyword searches in Table III are processed in our proposed method.

5.3.1.1 Accuracy. Next, we evaluate the effectiveness of our proposed method against
CKStream based on precision, recall and F-measure. F-measure is the weighted
harmonic mean of precision and recall. As shown in Figure 10(a), CKStream has low
precision on all queries, because it returns many unrelated results (any subtrees that
contain all keywords), whereas our proposed method has high precision (100 per cent),
because it only returns relevant matches. This suggests the effectiveness of the
XPath-based filtering in keyword search, which can help users to filter out unnecessary
parts from the results. Regarding recall, both methods have high recall (100 per cent) as
shown in Figure 10(b). In addition, we calculated the average F-measure as shown in
Table IV of the queries shown in Tables II and III. We can observe that our proposed

Table III.
The translated

XPath-based
keyword searches

from the search
intentions shown in

Table II

No. XPath-based keyword search

1 //auction[ftcontains(milk toothpaste)]
2 //shipping[ftcontains(fixed pays)]
3 //category[ftcontains(grape roses)]
4 //people[ftcontains(Democratic Republic)]
5 //regions[ftcontains(payment cash)]

Figure 10.
Precision and recall

359

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-009.jpg&w=179&h=263

method achieves much higher F-measure than CKStream, because CKStream returns
many undesired results as explained earlier.

5.3.1.2 Throughputs and memory usages. Next, we evaluate the performance of our
proposed method and CKStream based on their throughputs and memory usage when
querying for the search intentions in Table II. As shown in Figures 11(a and b), our
proposed method produces higher throughputs and consumes less memory than
CKStream because, in our proposed method, the respective keywords shown in Table III
are searched only inside the subtrees rooted at elements “auction”, “shipping”,
“category”, “people” and “regions”, whereas CKStream tries to search for all keywords
shown in Table II in the entire XML data. Such unnecessary searching causes the
querying performance worse. As a result, our proposed method enjoys producing higher
throughputs and using less memory consumption.

5.3.2 Scalability. Next experiment is to measure the scalability of our proposed
method when the number of XPath-based keyword search is increased. We measure the
throughputs for processing all XML data in Table I. Similarly, we measured the average
memory usage and number of extended-NFA states while processing each XML data.

Table IV.
Comparison on
F-Measure

F-Measure CKStream Proposed scheme

XMark 0.126 1

Figure 11.
Proposed system vs.
CKStream on queries
with the same search
intentions

IJWIS
11,3

360

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-010.jpg&w=179&h=265

We generate XPath-based keyword search from the above data sets. Since there is a
performance impact when searching for different kinds of keywords in our system, we
separately generate sets of queries which contain only keywords in the forms of l::, l, l::k,
::k and mixture of the four forms. For example, we could generate: //regions[ftcontains(::
begin ::caius)], whose keywords are in the form of ::k from XMark data set. Moreover,
since the same keywords can appear in different queries, we divide our sets of queries
into two categories, sets of queries in which the same keywords can appear in different
queries and sets of queries in which the same keywords cannot appear in different
queries. For the XPath-part, the depth is 2.

5.3.2.1 Varying the number of queries. We investigate the impact on the performance
of the algorithm when the number of queries increases. We vary the number of queries
from 1, 10, 100, 200, 400, 600, 800 and 1,000. We observe that as the number of queries
increases, the memory usage increases, and the number of NFA states also increases
while the throughputs constantly decrease as shown in Figures 12-23. This is because,
the system needs to process each single query and output the result of each queries.

5.3.2.2 Varying the number of query keywords. We investigate the impact on the
performance of our algorithm when we increase the number of keywords from two, four
and six. With the sets of queries whose same keywords can appear in more than one
query, we observed that though the number of keywords increase, the memory usage,
number of extended-NFA states and throughputs do not change much between two,
four and six keywords. These cause by the more frequency that same keywords appear
at different queries as shown in Figures 12-14.

Figure 12.
DBLP: varying the
number of queries

and keywords of
type l::

Figure 13.
Mondial: varying the

number of queries
and keywords of

type l::

361

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-011.jpg&w=343&h=121
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-012.jpg&w=343&h=119

Next we investigate the impact that the increase in unique keywords in the same set of
queries has on the performance of the algorithm. As expected, as the number of unique
keywords increases, the number of NFA states also increases. As a result, the memory
usage increases and the throughputs decrease significantly as shown in Figures 15-23.
Though memory usage and throughputs of the algorithm have some degradation when
the number of queries and the number of keywords increase, the algorithm scales well
with such increase.

5.3.3 Performance comparison on pure keyword search and XPath. Next, we
investigate the overheads that our proposed work can deal with pure XPath and pure
keyword search. Instead of using the queries shown in Tables II and III. We generate

Figure 14.
XMark: varying the
number of queries
and keywords of
type l::

Figure 15.
DBLP: varying the
number of queries
and keywords of
type ::k

Figure 16.
Mondial: varying the
number of queries
and keywords of
type ::k

IJWIS
11,3

362

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-013.jpg&w=343&h=119
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-014.jpg&w=343&h=119
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-015.jpg&w=343&h=121

pure XPath and pure keyword search from the synthetic data set XMark (Busse et al.,
2013). For XPath, the minimum depth is 3 and maximum depth is 5. There is no “*” and
“//” axis in the XPath. For keyword search, we used the set of queries with two, four and
six keywords, and the types of keywords were randomly generated in the form of “l::”,
“k”, “l::k” and “::k”. We then calculated the average throughputs of the set of queries with
two, four and six keywords.

First, we compare the performance of CKStream (Hummel et al., 2011) with our
proposed work by investigating on their throughputs. As shown in Figure 24, our
proposed work performs worse than CKStream (Hummel et al., 2011) when processing

Figure 17.
XMark: varying the

number of queries
and keywords of

type ::k

Figure 18.
DBLP: varying the
number of queries

and keywords of
type k

Figure 19.
Mondial: varying the

number of queries
and keywords of

type k

363

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-016.jpg&w=343&h=123
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-017.jpg&w=343&h=122
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-018.jpg&w=343&h=121

pure keyword search. This is caused by the size of our NFA. As explained earlier, when
the keyword type is in the form of “k”, which is matched to either XML element name or
text content, the number of NFA states are two. As a consequence, the size of NFA is
bigger than the size of query index of CKStream. This causes the time to do the index
look up in the query index less than the time to traverse from states to states in NFA of
our proposed method. Though, CKStream performs better than our proposed method
when processing pure keyword search at only around 7.41 per cent.

Figure 20.
XMark: varying the
number of queries
and keywords of
type k

Figure 21.
DBLP: varying the
number of queries
and keywords of
mixed types l::, ::k, l::k
and k

Figure 22.
Mondial: varying the
number of queries
and keywords of
mixed types, l::, ::k,
l::k and k

IJWIS
11,3

364

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-019.jpg&w=343&h=121
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-020.jpg&w=343&h=131
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-021.jpg&w=343&h=125

Next, we compare the throughputs of YFilter (Diao et al., 2003) with our proposed work
as shown in Figure 25. As expected, YFilter performs much better. This is caused by the
fact that the entry of the stack in YFilter is associated with only the set of NFA states,
whereas in our proposed work, additional running time is needed to create and update
the query bitmap and the set of used query. Moreover, in YFilter, when the accepting
states are reached, the processed queries are evaluated to be matched and return the
query results at the mean time; however, in our proposed work, in addition to checking
for accepting states in the entry, we need to get information from the accepting states
and update the query bitmap and the set of used queries. These tasks cause much
overhead to our proposed work. Though our proposed work is able to provide less
throughputs than the existing works, CKStream and YFilter, when processing pure
keyword search and XPath, it is more flexible and able to deal with more varieties of
query types. YFilter can only process XPath, and CKStream can only handle keyword

Figure 23.
XMark: varying the

number of queries
and keywords of

mixed types, l::, ::k,
l::k and k

Figure 24.
Throughputs of

proposed system and
CKStream

Figure 25.
Throughputs of

proposed system and
YFilter

365

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-022.jpg&w=343&h=242
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-022.jpg&w=343&h=242
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0013&iName=master.img-024.jpg&w=167&h=103

search; however, our proposed work can handle those two types of queries plus the more
innovative query type, XPath-based keyword search. This makes our proposed work
more realistic in real world scenario.

6. Related works
In this section, we explain some related works that made significant contributions to
keyword search and XPath over XML and XML streams.

6.1 Keyword-based search
Using keywords to query XML databases has been extensively studied. XSEarch
(Cohen et al., 2003) adopts an intuitive concept of meaningfully related sets of nodes
based on the relationship of the nodes with its ancestors (on the graph). Its query
language is simple and suitable for a naive user. Moreover, XSEarch deals efficiently
with large documents because it adopted index structures and evaluation algorithms
(Cohen et al., 2003).

XRANK (Shao et al., 2003) presents an adaptation of Google’s PageRank to XML data
for computing ranking scores for the answer trees. It computes the rank of XML
elements, which takes into account both hyperlinks and containment edges. For
containment edges, it considers a two-dimensional proximity metric involving both the
keyword distance and ancestor distance.

The works in (Vagena et al., 2008; Hummel et al., 2011; Gawinecki et al., 2008) took the
first step towards processing keyword search over XML streams. In (Vagena et al.,
2008), they introduced sophisticated query processing algorithms that can answer
keyword search over streaming XML data. This work is more novel than the previous
works, which mainly worked on static XML data; however, this work only supports
single keyword search over XML streams. To fulfill this incompleteness, the work in
(Hummel et al., 2011) proposed multiple keyword searches over XML streams. They
proposed two new algorithms, KStream and CKStream, for simultaneously processing
several keyword searches over XML streams.

6.2 XPath-based search
Recent research on XML streams (dissemination, filtering and routing) (Campillo et al.,
2003; Han et al., 2005; Onizuka et al., 2003; Lu et al., 2006; Zhou et al., 2006; Yu et al., 2004)
aims at building large-scale, distributed systems (Gupta et al., 2004; Diao et al., 2003;
Jaehoon et al., 2007; Candan et al., 2006). In (Diao et al., 2003), they developed YFilter, an
XML filtering system aiming at providing efficient filtering for large numbers of XPath
queries. The commonality among XPath queries are well-studied and they found out
that, by merging the common prefixes of the XPaths, the machine states become very
compact. To deal with multiple XML schemas, two approaches are very common: to
apply query rewriting (Yu et al., 2004) and to use global schemas (Li et al., 2004). Gupta
et al. (2004) proposed a lazy deterministic finite automation (DFA)-based filtering
system, which is superior to the NFA-based filtering system in terms of processing
performance; however, there are several drawbacks of the DFA-based filtering system,
one of which is its excessive consumption of memory caused by a large number of DFA
states, and thus, the system can run out of the memory.

PosFilter was proposed in (Jaehoon et al., 2007) to address the problem of XML
filterings that exploit the prefix commonalities among path expressions. Such
prefix-path-sharing systems suffer from the explosion of NFA states when XPath

IJWIS
11,3

366

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

expressions contain ancestor-descendant axis (“//”). If XPath expressions that begin
with ancestor-descendant axis (“//”) are used often, such queries are most likely to have
the postfix sharing. Such NFA state explosion can be solved by exploiting postfix
sharing among XPath expressions.

AFilter (Candan et al., 2006) was proposed to take advantage of both prefix and
postfix sharing to reduce the overall filtering time and increase throughputs. Different
from previous works, AFilter makes use of the capability of both prefix and postfix
commonalities among XPath expressions. AFilter provides balance between memory
usage and performance speed up.

7. Conclusion
In this paper, we have developed a filtering system that supports XPath, keyword
search and XPath-based keyword search over XML streams. The NFA model is
extended so that it supports XPath-based keyword search query. We have also
integrated the method used in YFilter with that of CKStream by using the above
extended-NFA so that it supports the above query types.

We evaluate them by some experiments on both synthetic and real data sets. The
experimental results show that our proposed method works well with acceptable
throughputs, less memory usage and good efficiency and utility.

For our future work, we are going to apply our proposed method to more complex
topics such as multimedia keyword filtering and to multiple XML streams, and useful
information can be obtained when information from different sources is combined at
real-time.

References
Bray, T., Paoli, J., Sperberge-McQueen, C.M., Maler, E. and Yergeau, F. (2008), “Extensible markup

language (XML) 1.0 (fifth edition) – world wide web consortium proposed
recommendation”, available at: www.w3.org/TR/xml

Busse, R., Carey, M., Florescu, D., Kersten, M., Manolescu, I., Schimdt, A. and Wass, F. (2013),
“XMark: an XML benchmark project”, available at: www.xml-benchmark.org/

Campillo, I., Green, T., Suciu, A. and Onizuka, M. (2003), XMLTK: An XML Toolkit for Scalable
XML Stream Processing, University of Washington, Seattle, WA.

Candan, K.S., Hsiung, W., Chen, S., Tatemura, J. and Agrawal, D. (2006), “A filter: adaptable XML
filtering with prefix-caching and suffix clustering”, Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, pp. 559-570.

Clark, J. and DeRose, S. (1999), “XML path language (XPath) version 1.0 – world wide web
consortium recommendation”, available at: www.w3.org/TR/xpath

Cohen, S., Mamou, J., Kanza, Y. and Sagiv, Y. (2003), “XSEarch: a semantic search engine for
XML”, Proceedings of the 29th International Conference on Very Large Data Bases, Berlin,
pp. 45-56.

CSE, U., Database, U. and Suciu, D. (2013a), “Dblp dataset: computer science bibliography”,
available at: www/repository.html/dblp

CSE, U., Database, U. and Suciu, D. (2013b), “Mondial dataset: world geographic database”,
available at: www/repository.html/mondial

Diao, Y. and Franklin, M.J. (2003), “High-performance XML filtering: an overview of YFilter”,
IEEE Data Engineering Bulletin, Vol. 26 No. 1, pp. 41-48.

367

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://www.w3.org/TR/xml
http://www.xml-benchmark.org/
http://www.w3.org/TR/xpath
http://www/repository.html/dblp
http://www/repository.html/mondial
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FB978-012722442-8%2F50013-6

Gawinecki, M., Mandreoli, F. and Cabri, G. (2008), Keyword Search Over XML Streams:
Addressing Timestamping and Understanding Results, University of Modena, Modena,
pp. 371-382.

Gorman, E. (2004), “Generic XML stream parser API: an easier way to use SAX and Xerces”,
available at: http://xml.apache.org/xerces-j/index.html

Gupta, A., Green, J. and Onozuka, M. (2004), “Processing XML stream with deterministic automata
and stream indexes”, ACM Transactions on Database Systems (TODS), Vol. 29 No. 4,
pp. 752-788.

Han, J., Chen, Y., Dong, G., Pei, J., Wah, B., Wang, J. and Cai, Y. (2005), “Stream cube: an
architecture for multidimentional analysis of data streams”, Distributed and Parallel
Databases, Vol. 18 No. 2, pp. 173-197.

Hristidis, V., Koudas, N., Papakonstantinou, Y. and Srivastava, D. (2006), “Keyword proximity
search in XML trees”, IEEE Transactions on Knowledge and Data Engineering, Vol. 18
No. 4, pp. 525-539.

Hummel, C., da Silva, S., Moro, M. and Laender, H.F. (2011), “Multiple keyword-based queries over
XML streams”, Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, New York, NY, pp. 1577-1582.

Jaehoon, K., Youngsoo, K. and Seog, P. (2007), “PosFilter: an efficient filtering technique of XML
documents based on postfix sharing”, 24th British National Conference on Databases,
Glasgow, pp. 70-81.

Li, J., Wang, J. and Huang, M. (2013), “Exploiting the relationship between keywords for efficient
XML keyword search”, Advances in Databases and Information Systems-17th East
European Conference, ADBIS 2013 , Genoa, 1-4 September, pp. 232-245.

Li, Y., Yu, C. and Jagadish, H.V. (2004), “Schema-free XQuery”, Proceedings of the 13th
International Conference on Very Large Databases, San Francisco, CA, pp. 72-83.

Liu, Z. and Chen, Y. (2007), “Identifying meaningful return information for XML keyword search”,
Proceeding of the 2007 ACM SIGMOD International Conference on Management Data,
Beijing, pp. 329-340.

Lu, W., Chiu, K. and Pan, Y. (2006), “A parallel approach to XML parsing”, Proceeding of the 7th
IEEE/ACM International Conference on Grid Computing, Barcelona, 28-29 September
2006, pp. 223-230.

Onizuka, M. (2003), “Light-weight XPath processing of XML stream with deterministic
automata”, Proceeding of the 12th International Conference on Information and Knowledge
Management, Los Angeles, CA, pp. 342-349.

Petkovic, D. (2012), “XPath and XQuery full text standard and its support in RDBMSs”, available
at: www.w3.org/TR/xpath-full-text-10/

Shao, F., Guo, L., Botev, C. and Shanmugasundaram, J. (2003), “XRANK: ranked keyword search
over XML documents”, Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, New York, NY, pp. 16-27.

Sun, C., Chan, C. and Goenka, A. (2007), “Multiway SLCA-based keyword search in XML data”,
Proceedings of the 16th International Conference on World Wide Web, Alberta,
pp. 1043-1052.

Vagena, Z., Colby, L.S., Ozcan, F., Balmin, A. and Li, Q. (2007), “On the effectiveness of flexible
querying heuristics for XML data”, Proceedings of 5th International XML Database
Symposium, Vienna, pp. 77-91.

IJWIS
11,3

368

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

http://xml.apache.org/xerces-j/index.html
http://www.w3.org/TR/xpath-full-text-10/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FB978-012088469-8.50010-3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FB978-012088469-8.50010-3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10619-005-3296-1&isi=000233245100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10619-005-3296-1&isi=000233245100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-75288-2_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-75288-2_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2063576.2063804
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2063576.2063804
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICGRID.2006.311019
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICGRID.2006.311019
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1042046.1042051&isi=000226204900005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1247480.1247518
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1242572.1242713
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTKDE.2006.1599390&isi=000235371800008

Vagena, Z. and Moro, M. (2008), “Semantic search over XML document streams”, Proceedings of
3rd International Workshop on Database Technologies for Handling XML Information on
the Web, Nantes.

Xu, Y. and Papakonstantinou, Y. (2005), “Efficient keyword search for smallest LCAs in XML
databases”, Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, New York, NY, pp. 527-538.

Yu, C. and Popa, L. (2004), “Constraint-based XML query rewriting for data integration”,
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data,
New York, NY, pp. 371-382.

Zhou, X., Thakkar, H. and Zaniolo, C. (2006), “Unifying the processing of XML streams and
relational data streams”, Proceeding of the 22nd International Conference on Data
Engineering, Los Angeles, CA, p. 50.

Further reading:
Bou, S., Amagasa, T. and Kitagawa, H. (2014), “Filtering XML streams by XPath and keywords”,

Proceeding of the 16th International Conference on Information Integration and Web-
Based Applications & Services, Hanoi, pp. 410-419.

About the authors
Savong Bou received B.E. degree in Computer Science from Norton University in 2009. In 2014, he
received his M.E. degree from the Department of Computer Science, University of Tsukuba. He is
currently a Ph.D. student at the Graduate School of Systems and Information Engineering,
University of Tsukuba. His research interests include databases, data mining, stream processing
and information retrieval. Savong Bou is the corresponding author and can be contacted at:
savong.bou@kde.cs.tsukuba.ac.jp

Toshiyuki Amagasa is an associate professor at Faculty of Engineering, Information and
Systems, University of Tsukuba. His research interests include data engineering, web information
management, scientific information management and data mining. He is a senior member of
IEICE and IEEE, and a member of DBSJ, IPSJ and ACM.

Hiroyuki Kitagawa received the B.Sc. degree in physics and the M.Sc. and Dr.Sc. degrees in
computer science, all from the University of Tokyo, in 1978, 1980 and 1987, respectively. He is
currently a full professor at Faculty of Engineering, Information and Systems and at Center for
Computational Sciences, University of Tsukuba. He serves as President of the Database Society of
Japan. His research interests include data integration, databases, data mining and information
retrieval. He is an IEICE Fellow, an IPSJ Fellow, a member of ACM and IEEE and an Associate
Member of the Science Council of Japan.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

369

Path-based
keyword

search

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 0
1:

54
 0

9
N

ov
em

be
r

20
16

 (
PT

)

mailto:savong.bou@kde.cs.tsukuba.ac.jp
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1007568.1007611
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684309
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684309
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1066157.1066217
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1066157.1066217

	Path-based keyword search over XML streams
	1. Introduction
	2. Preliminaries
	2.1 XML path language (XPath)
	2.2 XML keyword search
	2.2.1 Definition 1

	2.3 Node relatedness heuristics
	2.3.1 Definition 2
	2.3.2 Definition 3

	3. Existing works: YFilter and CKStream
	3.1 YFilter
	3.2 CKStream
	3.2.1 Parsing stack
	3.2.2 Query index
	3.2.3 Query bitmap

	4. Proposed method
	4.1 Proposal overview
	4.2 Proposed algorithm
	4.2.1 Query syntax
	4.2.2 Extension of NFA in YFilter
	4.2.3 Details of algorithm

	5. Experimental evaluation
	5.1 Experimental overview
	5.2 Experimental setup
	5.3 Experimental results
	5.3.1 Performance comparison on queries with same search intentions
	5.3.1.1 Accuracy
	5.3.1.2 Throughputs and memory usages

	5.3.2 Scalability
	5.3.2.1 Varying the number of queries
	5.3.2.2 Varying the number of query keywords

	5.3.3 Performance comparison on pure keyword search and XPath

	6. Related works
	6.1 Keyword-based search
	6.2 XPath-based search

	7. Conclusion
	References

