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Abstract
Purpose – The purpose of this paper is to introduce the importance-performance map analysis (IPMA)
and explain how to use it in the context of partial least squares structural equation modeling (PLS-
SEM). A case study, drawing on the IPMAmodule implemented in the SmartPLS 3 software, illustrates
the results generation and interpretation.
Design/methodology/approach – The explications first address the principles of the IPMA and
introduce a systematic procedure for its use, followed by a detailed discussion of each step. Finally, a
case study on the use of technology shows how to apply the IPMA in empirical PLS-SEM studies.
Findings – The IPMA gives researchers the opportunity to enrich their PLS-SEM analysis and,
thereby, gain additional results and findings. More specifically, instead of only analyzing the path
coefficients (i.e. the importance dimension), the IPMA also considers the average value of the latent
variables and their indicators (i.e. performance dimension).
Research limitations/implications – An IPMA is tied to certain requirements, which relate to the
measurement scales, variable coding, and indicator weights estimates. Moreover, the IPMA presumes
linear relationships. This research does not address the computation and interpretation of non-linear
dependencies.
Practical implications – The IPMA is particularly useful for generating additional findings and
conclusions by combining the analysis of the importance and performance dimensions in practical
PLS-SEM applications. Thereby, the IPMA allows for prioritizing constructs to improve a certain
target construct. Expanding the analysis to the indicator level facilitates identifying the most
important areas of specific actions. These results are, for example, particularly important in practical
studies identifying the differing impacts that certain construct dimensions have on phenomena such as
technology acceptance, corporate reputation, or customer satisfaction.
Originality/value – This paper is the first to offer researchers a tutorial and annotated example of an
IPMA. Based on a state-of-the-art review of the technique and a detailed explanation of the method, this
paper introduces a systematic procedure for running an IPMA. A case study illustrates the analysis,
using the SmartPLS 3 software.
Keywords Structural equation modeling (SEM), Partial least squares (PLS),
Unified theory of acceptance and use of technology (UTAUT), SmartPLS,
Importance-performance map analysis (IPMA)
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Introduction
Partial least squares structural equation modeling (PLS-SEM; Chin, 1998; Garson, 2014;
Hair et al., 2017; Lohmöller, 1989; Rigdon, 2013; Tenenhaus et al., 2005; Wold, 1982) is a
variance-based method to estimate path models with latent variables. The PLS-SEM
approach is particularly useful when the study’s focus is on the analysis of a certain
target construct’s key sources of explanation. For example, the technology acceptance
model (TAM; Davis, 1989; Davis et al., 1989) and its various extensions, such as the
unified theory of acceptance and use of technology (UTAUT; Venkatesh et al., 2003),
are popular models for PLS-SEM applications in management information systems
research. In the marketing field, the American Customer Satisfaction Index (ACSI)
model (Anderson and Fornell, 2000; Fornell et al., 1996) is another widespread PLS-SEM
application. PLS-SEM enjoys rapidly increasing usage in various business disciplines,
such as accounting (Lee et al., 2011), family business (Sarstedt et al., 2014), international
business (Richter et al., 2015), management information systems (Ringle et al., 2012),
marketing (Hair et al., 2012), operations management (Peng and Lai, 2012), strategic
management (Hair et al., 2012a), and tourism research (do Valle and Assaker, 2015).

The purpose of this paper is to explain and illustrate the use of the
importance-performance map analysis (IPMA; also called importance-performance
matrix, impact-performance map, or priority map analysis), a useful analysis approach
in PLS-SEM that extends the standard results reporting of path coefficient estimates by
adding a dimension that considers the average values of the latent variable scores.
More precisely, the IPMA contrasts the total effects, representing the predecessor
constructs’ importance in shaping a certain target construct, with their average latent
variable scores indicating their performance (Fornell et al., 1996; Martilla and James,
1977; Slack, 1994). The goal is to identify predecessors that have a relatively high
importance for the target construct (i.e. those that have a strong total effect), but also
have a relatively low performance (i.e. low average latent variable scores).

Illustrative example
To illustrate the concept of an IPMA, consider the PLS path model in Figure 1 with four
constructs Y1-Y4. In this PLS path model, Y4 represents the final target variable,
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Figure 1.
IPMA model
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directly predicted by Y1-Y3. Furthermore, Y1 and Y2 have indirect effects on Y4 via Y3.
Adding the predecessor constructs’ direct and indirect effects yields their total effects
on Y4, which represent the importance dimension in the IPMA. In contrast, these
constructs’ average latent variable scores represent their performance, in the sense that
high values indicate a greater performance.

The IPMA combines these two aspects graphically by contrasting the
(unstandardized) total effects on the x-axis with the latent variable scores,
rescaled on a range from 0 to 100, on the y-axis. The result is a chart such as in
Figure 2. For the results interpretation, we focus on constructs in the lower right area
of the importance-performance map. These constructs have a high importance
for the target construct, but show a low performance. Consequently, there is a
particularly high potential to improve the performance of the constructs positioned
in this area.

In Figure 2, Y1 is particularly important to explain the target construct Y4. More
precisely, a one-unit point increase in Y1’s performance increases the performance of Y4
by the value of Y1’s total effect on Y4, which is 0.84 (ceteris paribus). Since the
performance of Y1 is relatively low, there is substantial room for improvement, making
the aspect underlying this construct particularly relevant for managerial actions. While
this introductory example shows an IPMA on the construct level, the analysis can also
be run on the indicator level. In this case, individual data points in the importance-
performance map are derived from indicator mean values and their total effect on a
particular target construct.

The IPMA procedure
PLS-SEM studies that draw on IPMA results offer important insights into the role of
antecedent constructs and their relevance for managerial actions (e.g. Grønholdt et al.,
2015; Höck et al., 2010; Kristensen et al., 2000; Martensen et al., 2007; Martensen and
Grønholdt, 2010). The IPMA also becomes particularly useful when contrasting PLS-
SEM results from a multigroup analysis (Hair et al., 2017; Sarstedt et al., 2011), as
several studies illustrate (Rigdon et al., 2011; Schloderer et al., 2014; Völckner et al.,
2010). However, to date, no comprehensive tutorial highlights the requirements for
using the method, or offers a step-by-step introduction to its use. Against this
background, this paper presents a state-of-the-art review and detailed explanation of
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the IPMA. A case study on the TAM illustrates the analysis, using the SmartPLS 3
(Ringle et al., 2015) software. The paper explains an IPMA by following the five-step
procedure as shown in Figure 3.

When using an IPMA, the first step involves checking if the requirements for
carrying out the analysis have been fulfilled (Step 1). The analysis proceeds with the
computation of the latent variables’ performance values (Step 2) and their importance
values (Step 3). The importance-performance map creation for a selected target
construct is based on these results (Step 4). Finally, the IPMA can be extended on the
indicator level to obtain more specific information on the most effective managerial
actions (Step 5). The following sections explain each step in greater detail.

Step 1: requirements check
IPMA applications have to meet three requirements. First, the rescaling of the latent
variable scores on a range from 0 to 100 requires all indicators in the PLS path model to
use a metric or quasi-metric scale (Sarstedt and Mooi, 2014). Second, all the indicator
coding must have the same scale direction. The minimum value of an indicator must
represent the worst outcome and the maximum value must represent the best outcome of
an indicator. Otherwise, we cannot conclude that higher latent variable scores represent
better performance. If the indicator coding has a different direction compared to the other
indicators in the measurement model (i.e. a high value represents a negative outcome), we
must rescale the indicator. In this case, the indicator coding needs to be changed by
reversing the scale (e.g. on a five-point scale, 5 becomes 1 and 1 becomes 5, 4 becomes 2
and 2 becomes 4, and 3 remains unchanged). Third, regardless of the measurement model
being formatively or reflectively specified, the outer weights estimates must be positive. If
the outer weights are negative, the latent variable scores will not fall within the 0-100
range, but would, for example, be between −5 and 95. Note that there are different reasons
for (unexpected) negative outer weights. If an outer weight is negative and significant, the
researcher should inspect the indicator and its scale. It may have another direction
compared to the other indicators in the measurement model, which requires reversing the
scale. In case of non-significant outer weights (with negative signs), the researcher may
consider removing those indicators. Finally, negative outer weights might be a result of
high indicator collinearity. For example, variance inflation factor values of 5 and higher
indicate a potential collinearity problem (Hair et al., 2017). In this case, the researcher may
also consider removing indicators. However removing indicators from measurement
models involves some additional considerations as explained by Hair et al. (2017;
see Chapter 5) in more detail.

Step 1 Requirements Check

Computation of the Performance Values

Computation of the Importance Values

Importance-Performance Map Creation

Extension of the IPMA on the Indicator Level

Step 2

Step 3

Step 4

Step 5

Figure 3.
Steps of the
importance-
performance map
analysis
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While not being a formal requirement for running an IPMA, researchers should carefully
consider PLS path model set-ups that favor IPMA use on the indicator level. When a latent
variable of high priority for a specific target construct is identified, it is particularly
advantageous to further analyze this predecessor construct’s measurement model on the
indicator level. Such an assessment is particularly useful when the measurement model is
specified as formative – as is the case in our sample model in Figure 1. In this case, the
indicators describe aspects that shape the corresponding construct, while their weights
indicate each aspect’s importance in this respect. Therefore, aspects underlying indicators
with high weights should be given more attention to identify managerial actions aiming to
improve the target construct’s performance – see Höck et al. (2010) for an application. Note
that the IPMA can be applied on any kind of PLS path model, regardless of whether the
researcher specifies latent variables’ measurement models as formative or reflective. The
IPMA builds on the outer weights – as explained in more detail in the subsequent sections –
and PLS-SEM always provides outer weights estimates, also when ameasurement model is
specified as reflective. In this context, it is important to note that the distinction between
reflectively and formatively specified constructs refers to the ways how researchers
develop proxies for conceptual variables and the resulting measurement approaches. While
PLS-SEM readily processes reflectively and formatively specified constructs, it does so by
linearly combining indicators to form composite variables. These composite variables are
treated as proxies of the concepts under investigation (Rigdon, 2012, 2014) and serve as
input for the IPMA in Step 2 (Figure 3). To represent formative measurement models, PLS-
SEM draws on composite indicators – as opposed to causal indicators – which fully form
the latent variable without an error term on the construct level (Bollen and Bauldry, 2011;
Bollen and Diamantopoulos, in press). At the same time, PLS-SEM only approximates
measures in reflective measurement models that draw on a factor model logic (Sarstedt
et al., 2016). While the “bias” that PLS-SEM produces when estimating common factor
models is very small – provided that measurement models meet minimum recommended
standards in terms of the number of indicators and indicator loadings – recent research has
also introduced the consistent PLS approach that handles common factor model-based
measures without limitations (Dijkstra and Henseler, 2015). Acknowledging the proxy
character of the method (Rigdon, 2012; Sarstedt et al., 2016), the following sections refer to
the common denotation of reflective and formative measurement models and their standard
treatment in PLS-SEM analyses.

Step 2: computation of the performance values
The indicator data determines the latent variable scores and, thus, their performance.
Similarly, when conducting an IPMA on the indicator level, the mean value of an
indicator represents its average performance. When computing average values on the
construct or indicator level, it is important to remember that indicators may be
measured on different scales. For examples, some indicators may use a scale with
values from 1 to 5, while others use a scale with values from 1 to 7, or from 1 to 9.
To facilitate the interpretation and comparison of performance levels, the IPMA
rescales indicator scores on a range between 0 and 100, with 0 representing the lowest
and 100 representing the highest performance. Since most researchers are familiar with
interpreting percentage values, this kind of performance scale is easy to understand.
The rescaling of an observation j with respect to indicator i proceeds via:

xrescaledij ¼ E½xij��min½xi�
max½xi��min½xi�

U100; (1)
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where xi is the ith indicator in the PLS path model; E[.] represents indicator i’s
actual score of respondent j, min[.] and max[.] represent the indicator’s minimum
and maximum value. It is important to note that the minimum and maximum
values refer to the potential values on a certain scale (e.g. 1 and 5 on a 1-5 scale) and
not the minimum and maximum values of the actual responses (e.g. 2 and 4 on
a 1-5 scale). Hence, if respondents use lowest actual response is 2 but the scale
has a minimum value of 1, it is mandatory to use the 1 as minimum value
for rescaling. For example, according to this formula, a value of 4 on a
1-5 scale becomes (4−1)/(5−1)·100¼ 75 while a 4 on a 1-7 scale becomes
(4−1)/(7−1)·100¼ 50. All data points used for estimating the PLS path model are
rescaled this way.

Table I shows an excerpt of the original indicator data (n¼ 300) used to
estimate the sample model from Figure 1. All indicators are measured on a scale
from 1 to 5. Table II shows the indicator data from Table I, rescaled on a range from
0 to 100, which serve as input for the computation of the rescaled latent variable
scores. In addition, the mean values of the rescaled indicators represent their
performance values (e.g. 79 for indictor x11 and 77.5 for indicator x12), which are later
used for the IPMA on the indicator level.

The rescaled latent variable scores are a linear combination of the rescaled
indicator data and the rescaled outer weights – regardless whether the measurement
model of a latent variable is reflective (i.e. Y4) or formative (i.e. Y1-Y3). To obtain the
rescaled weights, we must first compute the unstandardized weights by dividing
the standardized weights by the standard deviation of its respective indicator.

Case x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44

1 5 2 1 5 3 3 4 5 5 2 4 3 1 2 4 3
2 4 5 2 3 5 4 5 3 4 1 1 2 3 5 4 3
3 4 1 3 4 5 3 4 5 5 3 5 3 3 5 3 1
4 1 3 2 1 3 2 2 4 1 4 1 3 5 1 4 4
5 3 2 1 3 5 1 2 3 5 2 2 3 1 3 4 5
… … … … … … … … … … … … … … … … …
299 2 4 3 4 4 3 3 4 4 2 2 1 2 5 4 3
300 2 4 3 1 5 2 3 5 1 1 4 3 4 2 1 5
Mean value 4.2 4.1 3.4 2.3 3.6 4.5 3.4 3.1 3.4 4.7 4.4 4.6 3.4 4.2 4.5 4.2

Table I.
Original
indicator data

Case x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44

1 100 25 0 100 100 25 75 50 50 50 75 100 0 25 75 50
2 75 100 25 50 75 0 0 25 100 75 100 50 50 100 75 50
3 75 0 50 75 100 50 100 50 100 50 75 100 50 100 50 0
4 0 50 25 0 0 75 0 50 50 25 25 75 100 0 75 75
5 50 25 0 50 100 25 25 50 100 0 25 50 0 50 75 100
… … … … … … … … … … … … … … … … …
299 25 75 50 75 75 25 25 0 75 50 50 75 25 100 75 50
300 25 75 50 0 0 0 75 50 100 25 50 100 75 25 0 100
Mean
value 79.0 77.5 59.5 33.5 66.0 87.5 59.5 53.0 59.5 91.5 85.5 90.0 59.5 79.0 88.5 79.0

Table II.
Rescaled
indicator data
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While the standardized outer weights originate from the standard PLS path model
estimation, the estimation of each indicator’s standard deviation is based on the
original indicator data. For example, if x11 has a standardized weight of 0.2 and a
standard deviation of 1.619, the resulting unstandardized weight is 0.124. Table III
shows the (standardized and unstandardized) indicator weights along with the
indicators’ standard deviations with regard to our sample model in Figure 1.

Finally, we rescale the unstandardized outer weights so that their sum equals one per
measurement model. For this purpose, we need to divide each indicator’s unstandardized
weight (e.g. 0.124 for indicator x11) by the sum of the unstandardized weights of all the
indicators that belong to the same measurement model. For Y1, the sum of all the
unstandardized indicator weights is 0.124+ 0.168+ 0.191+ 0.406¼ 0.889. Therefore, for
indicator x11, we obtain the unstandardized and rescaled outer weight of 0.139 after
dividing 0.124 by 0.889. The final column in Table III shows the results of the rescaled
outer weights.

In the next step, the IPMA uses the rescaled indicator data (Table II) and the
rescaled outer weights (Table III) to compute the rescaled latent variable scores by
means of simple linear combinations. For example, the first data point in the vector of
Y1’s scores is:

100 � 0:139þ25 � 0:189þ0 � 0:215þ100 � 0:457� 64:3: (2)

Table IV shows the resulting latent variable scores along with their mean values. In
our example, Y1 has a mean value (i.e. performance) of 53.7, Y2 of 85.6, Y3 of 61.8, and
Y4 of 78.1. These results serve as input for the importance-performance map’s
performance dimension.

Step 3: computation of the importance values
A construct’s importance in terms of predicting another directly or indirectly linked
(target) construct in the structural model is derived from the total effect of the
relationship between these two constructs. The total effect is the sum of the direct and

Latent
variable Indicator

Standardized
outer weights

SD of the
indicators

Unstandardized
outer weights

Rescaled
outer weights

Y1 x11 0.2 1.619 0.124 0.139
x12 0.3 1.789 0.168 0.189
x13 0.4 2.099 0.191 0.215
x14 0.5 1.231 0.406 0.457

Y2 x21 0.1 2.099 0.048 0.114
x22 0.1 1.101 0.091 0.218
x23 0.4 3.357 0.119 0.285
x24 0.4 2.504 0.160 0.383

Y3 x31 0.1 1.762 0.057 0.136
x32 0.1 1.744 0.057 0.137
x33 0.4 2.270 0.176 0.422
x34 0.4 2.653 0.151 0.361

Y4 x41 0.3 2.164 0.139 0.186
x42 0.3 1.874 0.160 0.215
x43 0.3 1.413 0.212 0.286
x44 0.3 1.291 0.232 0.313

Table III.
Computation of

unstandardized and
rescaled outer

weights
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all the indirect effects in the structural model (Hair et al., 2017). For example, to
determine the total effect of Y1 on Y4 (Figure 1), we have to consider the direct effect of
the relationship between these two constructs (0.50) and the following three indirect
effects via Y2 and Y3, respectively:

Y 1-Y 2-Y 4 ¼ 0:50U0:50 ¼ 0:25

Y 1-Y 2-Y 3-Y 4 ¼ 0:50U0:25U0:25 ¼ 0:03125

Y 1-Y 3-Y 4 ¼ 0:25U0:25 ¼ 0:0625

Adding up the individual indirect effects yields the total indirect effect of Y1 on Y4,
which is approximately 0.34. The total effect of Y1 on Y4 is 0.84 (¼ 0.50+ 0.34),
which expresses Y1’s importance in predicting the target construct Y4. Since total
effects represent the sum of direct and indirect effects, the IPMA’s importance
dimension supports the interpretation of complex models including meditators or
even multiple mediators.

The IPMA draws on unstandardized effects to facilitate a ceteris paribus interpretation
of predecessor constructs’ impact on the target construct. This interpretation of the
unstandardized effects is analogous to that of unstandardized weights in OLS regression
models (Hair et al., 2010). More precisely, by drawing on unstandardized effects, we can
conclude that an increase in a certain predecessor construct’s performance would increase
the target construct’s performance by the size of its unstandardized total effect.
To determine the significance of the total effects – for example, by means of bias-corrected
and accelerated (BCa) confidence intervals (Hair et al., 2017) – researchers need to run the
bootstrapping routine. While a non-significant effect provides evidence that a total effect is
zero in the population, researchers should retain the corresponding construct in the IPMA
since this outcome may also represent a valuable finding (e.g. a company invests into the
performance of a construct that has no effect), which also can change with different data,
for instance, in alternative contexts of the analysis.

Table V summarizes all the total effects with respect to our target construct Y4. Note
that Y3 does not have an indirect effect on Y4; therefore, its total effect equals the direct
effect of 0.25. At this point, after computing the importance and performance values, all
information required to draw the importance-performance map is available.

Finally, the IPMA also supports path models with moderators. However, if one path
relationship in a total effect is moderated, the interpretation of the total effect changes.
More precisely, the path coefficient estimate of a moderated effect expresses the
strength of the relationship between the two constructs when the moderator variable

Y1 Y2 Y3 Y4

1 64.3 76.3 63.3 42.5
2 57.6 75.4 18.2 67.9
3 55.5 82.0 76.5 45.1
4 14.8 47.0 26.9 63.5
5 34.5 37.7 43.3 63.5
… … … … …
299 62.7 62.4 22.9 63.3
300 28.4 69.4 47.1 50.6
Mean value 53.7 85.6 61.8 78.1

Table IV.
Computation of the
rescaled latent
variable scores
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has the value 0 in case researchers follow standard procedure and standardize the
moderator’s indicators prior to the analysis (for more details see Hair et al., 2017). This
interpretation, however, complicates any comparison of total effects that include
moderating effects with those that lack a moderating effect. With multiple moderators
in a total effect or moderated mediation effect, the interpretation of IPMA’s importance
dimension becomes difficult. Therefore, we generally advise against the inclusion of
moderators in an IPMA.

Step 4: importance-performance map creation
The IPMA focuses on one key target construct of interest in the PLS path model.
Therefore, the first step in creating an importance-performance map requires selecting
the target construct of interest. In our example, Y4 represents such a key target
construct (Figure 1). The importance and performance values of Y4’s predecessor
constructs (i.e. Y1-Y3) allow creating the importance-performance map of Y4. Table VI
summarizes the values of this map’s importance and performance dimensions – as
obtained by the previous IMPA steps.

Scatter plotting the information shown in Table VI allows us to create an importance-
performance map as shown in Figure 2 at the beginning of this paper. The x-axis
represents the importance of Y1-Y3 for explaining the target construct Y4, while the y-axis
depicts the performance of Y1-Y3 in terms of their average rescaled latent variable scores.
For a better orientation, researchers may also draw two additional lines in the importance-
performance map: the mean importance value (i.e. a vertical line) and the mean
performance value (i.e. a horizontal line) of the displayed constructs (Figure 4).With regard
to our example, Y1-Y3 have a mean importance of 0.55 and a mean performance of 67.0
(Table VI). These two additional lines divide the importance-performance map into four
areas with importance and performance values below and above the average. Generally,
when analyzing the importance-performance map, constructs in the lower right area (i.e.
above average importance and below average performance) are of highest interest to
achieve improvement, followed by the higher right, lower left and, finally, the higher left
areas. Thereby, the importance-performance map provides guidance for the prioritization

Predecessor
construct

Direct
effect on Y4

Indirect
effect on Y4

Total
effect on Y4

Are the total effects
on Y4 significant?

Y1 0.50 0.34 0.84 Yes
Y2 0.50 0.06 0.56 Yes
Y3 0.25 – 0.25 Yes
Notes: All effects denote unstandardized effects. Significance testing uses the bootstrapping routine
with 5,000 sample and no sign changes for determining the 95 percent BCa confidence intervals

Table V.
Direct, indirect,
and total effects

in the IPMA

Importance Performance

Y1 0.84 53.7
Y2 0.56 85.6
Y3 0.25 61.8
Mean value 0.55 67.0

Table VI.
Data of the
importance-

performance map for
construct Y4

1873

Importance-
performance
map analysis

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

40
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



of managerial activities of high importance for the aspect underlying the selected target,
but which require performance improvements.

In our example, the importance-performance map (Figure 4) shows that Y1 has a
relatively low performance of 53.7. In comparison with the other constructs, Y1’s
performance is slightly below average. On the other hand, with a total effect of 0.84, this
construct’s importance is particularly high. Therefore, a one-unit increase in Y1’s
performance from 53.7 to 54.7 would increase the performance of Y4 by 0.84 points
from 78.10 to 78.94. Hence, when managers aim at increasing the performance of the
target construct Y4, their first priority should be to improve the performance of aspects
captured by Y1, as this construct has the highest (above average) importance, but a
relatively low (below average) performance. Aspects related to constructs Y2 and Y3
follow as a second and third priority.

Step 5: extension of the IPMA on the indicator level
The IPMA is not limited to the construct level. We can also conduct an IPMA on the
indicator level to identify relevant and even more specific areas of improvement.
More precisely, we can interpret the rescaled outer weights – as reported in formative
measurement models – as an indicator’s relative importance compared to that of the
other indicators in a specific measurement model. Alternatively, the interpretation of
the indicators’ relative contribution can also draw on reflective measurement models
but use the outer weights instead of the outer loadings. While the outer weights play no
role in the assessment of the reflective measurement model’s reliability and validity,
they still represent each indicator’s contribution to forming the composite variable that
represents the construct in the PLS path model.

The importance values are derived from the indicators’ total effects on the target
construct, which is the result of multiplying the rescaled outer weights of a
predecessor construct’s indicators with its unstandardized total effect on the target
construct. For example, with regard to the indicators of Y1, we would multiply the
rescaled outer weights of x11-x14 (i.e. 0.139, 0.189, 0.215, 0.457; Table III)
with the unstandardized total effect of Y1 on Y4 in the structural model (i.e. 0.84).
This analysis yields importance values of x11-x14 of, respectively, 0.117, 0.159, 0.181,
and 0.384. The performance values are derived from the indicators’ mean value of
the rescaled data (i.e. 79, 77.5, 59.5, and 33.5; Table II). With this data for
all indicators of Y1, Y2, and Y3, we can create an importance-performance map as
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Adjusted importance-
performance
map of the target
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shown in Figure 5. In this figure, rectangles represent the indicators of Y1, diamonds
those of Y2, and triangles those of Y3.

Derived from this example, indicator x14 should have the highest priority for
improvement, since it has the highest relative importance, but the lowest performance.
A one-unit point increase in x14’s performance increases the performance of Y4 by x14’s
importance value, which is 0.384 (ceteris paribus). Indicators x24, x13, x23, and x12 follow
with second to fifth priority. The other indicators shown in Figure 5 are less relevant
for improving Y4’s performance.

Empirical example
Investigating the user acceptance and usage of new IT is a perennial theme in
mainstream MIS research. Path models explicating IT user acceptance, such as the
TAM (Davis, 1989) and its extensions, for example, the UTAUT (Venkatesh et al., 2003),
are well known and have been extensively researched. In the light of the method’s
prediction orientation, researchers usually use PLS-SEM to estimate such models.
However, despite PLS-SEM’s popularity in this respect, prior research has not, to our
best knowledge, yet applied the IPMA in this context. Researchers have thus missed an
opportunity to use the available data to gain additional results and findings with which
to enrich their conclusions.

In order to demonstrate the efficacy of the IPMA, we draw on data from a survey
sample by Al-Gahtani et al. (2007) of 722 knowledge workers in Saudi Arabia
voluntarily using desktop computer applications. These data were initially analyzed
within the context of a modified UTAUT model that synthesized model elements from
various other precedent user acceptance models, such as TAM and its extensions
(e.g. TAM 2; Venkatesh and Davis, 2000). UTAUT postulates that four constructs act
as determinants of behavioral intentions (BIs) to use and actual usage behavior:
performance expectancy (PE) (i.e. the degree to which individuals believe that using
the system will help them attain improved job performance), effort expectancy (EE)
(i.e. the degree of ease associated with the use of the system), subjective norm (SN)
(i.e. the degree to which individuals perceive that important others believe they should
use computers), and facilitating conditions (FC) (i.e. the degree to which individuals
believe that an organizational and technical infrastructure supports the use of the
system). Figure 6 shows the model and the PLS-SEM results when using the empirical
data and SmartPLS 3 software[1].
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The evaluation of the measurement models by means of standard evaluation criteria
(e.g. Chin, 1998, 2010; Hair et al., 2011, 2013; Henseler et al., 2012, 2017; Roldán and
Sánchez-Franco, 2012; Tenenhaus et al., 2005) supports the measures’ reliability and
validity. This also holds for discriminant validity assessment using Henseler et al.’s
(2015) recently proposed HTMT criterion, which extends the standard measures used
in Al-Gahtani et al. (2007). The results from bootstrapping with 5,000 samples using the
no sign change option and the 95 percent BCa confidence intervals (Hair et al., 2017)
show that all the path coefficients are statistically significant. More specifically, PE, EE,
and SN each have significant and positive effects on the BI to use the system. Similarly,
the BI and FC each have significant and positive effects on the use behavior (USE).
In addition, the bootstrapping results also substantiate that all total effects on the
target construct USE are significant.

As a point of departure, we check the requirements for carrying out an IPMA
(Step 1). After reviewing the questionnaire, we find that the indicator data are mostly
on an interval scale from 1 to 7, in some cases from 0 to 6, and in others from 0 to 11.
In respect of all the indicators, a higher value represents a better outcome (for the
description of indicators, see Tables III-V in Al-Gahtani et al., 2007). We, therefore, do
not need to reverse the scale of any of the indicators. When double clicking on the data
set in the SmartPLS Project Explorer (Figure 7), the data view opens (Figure 8), which
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Figure 6.
UTAUT model and
PLS-SEM results

Figure 7.
SmartPLS project
explorer
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provides further information on the data set (e.g. the missing value marker) and some
descriptive statistics of the indicators.

Next, we inspect the signs of the outer weights. After running the PLS-SEM
algorithm, SmartPLS opens the Results Report, which also displays the weights of all
the indicators. All the outer weight signs are positive. Therefore, in line with IPMA Step
1, all the requirements for conducting the analysis have been fulfilled and we can
continue the analysis.

We subsequently run the IPMA by clicking on Calculate→Importance-Performance
Map Analysis (IPMA) in the SmartPLS menu bar. Alternatively, you can left-click on the
Calculate wheel symbol in the tool bar, and select the corresponding option in the combo
box that opens. In the dialog box that opens (Figure 9), we need to specify the target
construct and decide whether to include all the predecessor constructs of that target
variable, or only those that have a direct relationship with it. We select USE as the target
construct and choose the All Predecessors of the Selected Target Construct option. Most
importantly, we need to specify each indicator’s minimum and maximum value required
for the rescaling of the data to a 0-100 scale. As shown in Figure 9, SmartPLS automatically
reads these minimum and maximum values from the data. However, if the respondents
have not made use of the full scale (e.g. the actual minimum value is 2 instead of 1),
SmartPLS cannot correctly rescale the data. Consequently, the rescaled latent variable
scores will not be between 0 and 100 but, for instance, between −5 and 95. In such a case,
we need to manually insert the true minimum value of the scale (e.g. 1 instead of 2) by
clicking on the corresponding cell in the Min column. Alternatively, we can simultaneously
specify the minimum and maximum value of all the indicators. To do so, enter the
corresponding values next to Min/Max at the bottom of the dialog box and click on Apply
to All. In our example, all the respondents made use of the full range of the indicator scales
as indicated in the Min and Max columns of the SmartPLS Data View (Figure 8).
We therefore maintain the default settings and proceed by clicking on Start Calculation.

Figure 8.
SmartPLS data view
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SmartPLS now automatically computes the performance and importance values (Step 2
and 3) and creates the importance-performance map (Step 4). After completing the
computations, SmartPLS opens the Results Report. Initially, it shows the results of the
standardized path coefficients. Under Quality Criteria→Importance-Performance Map
(USE) (Constructs), the report includes the importance-performance map as displayed
in Figure 10. Under Final Results →Total Effects, SmartPLS displays the importance
values in a matrix format. The graphical representation of the importance-performance
uses the unstandardized total effects for the importance-dimension (x-axis), which you
can access by clicking on the tabs Constructs, unstandardized and Indicators
unstandardized. Under Final Results→Performance/Index, for the performance-
dimension (y-axis), you can access the rescaled performance values of the latent and
manifest variables (i.e. indicators) by means of the tabs LV Performances and MV
Performances.

Not surprisingly, we find that the two direct predecessors, BI and FC, have a
particularly high importance (Figure 10). Although performing at comparable levels, the
FC construct has a considerably higher importance than the BI construct. Managerial
actions should therefore prioritize improving the performance of the BI, which can be
achieved by focusing on the predecessor construct of BI with the strongest impact on
USE. As can be seen in Figure 10, EE has the strongest total effect on USE.

It is important to note that the graphical representation of IMPA results differs from
the graphical PLS-SEM results illustration in SmartPLS. Instead of displaying the R²
values of the endogenous latent variables in the PLS path model (Figure 6), the IPMA
results show the performance values of each latent variable (Figure 11); instead
of displaying the standardized outer loadings or weights (Figure 6), the IPMA results
show the unstandardized and rescaled outer weights of the measurement models
regardless if they are formative or reflective (Figure 11).

To gain more specific information on how to increase the performance of
constructs, the following analyses focus on the indicator level (Step 5)[2].

Figure 9.
SmartPLS IPMA
dialog
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In the results report, under Quality Criteria→Importance-Performance Map
(USE) (Indicators), SmartPLS shows the indicators’ importance-performance
map as displayed in Figure 12. For example, we find that the indicator EE2
(“It is easy for me to become skillful using computers”) has a relatively high
importance when focusing on the construct EE, while offering some room for
performance improvement. Hence, performance improvements could focus on
offering high-quality computer trainings to provide users with the skills and
knowledge they need. As a direct consequence, the performance of the construct EE
increases, which entails an improvement of the construct BI and the target construct
USE. Similarly, other indicators (e.g. FC1, “I have the resources and the knowledge
and the ability to make use of the computer”) may gain particular attention regarding
improving the USE.

Summary and conclusion
Review studies on the use of PLS-SEM (Hair et al., 2012a, b; Ringle et al., 2012;
Sarstedt et al., 2014) reveal that practically all researchers rely on standard PLS
path model analysis, often ignoring more advances techniques, such as CTA-PLS
(Gudergan et al., 2008), FIMIX-PLS (Hahn et al., 2002; Ringle et al., 2010; Sarstedt et al.,
2011; Sarstedt and Ringle, 2010), PLS-POS (Becker et al., 2015), moderator
(Henseler and Chin, 2010; Henseler and Fassott, 2010), and multigroup analyses
(Sarstedt et al., 2011). The IPMA belongs to this suite of often neglected methods,
but are particularly useful for generating additional findings and conclusions.
By combining the analysis of the importance and performance dimensions, the IPMA
allows for prioritizing constructs to improve a certain target construct. Expanding
the analysis to the indicator level allows for identifying the most important
areas of specific actions. These results are, for example, particularly important in
studies researching the differing impacts that certain construct dimensions have on a
phenomenon such as corporate reputation (e.g. Sarstedt et al., 2013), or customer
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satisfaction (e.g. Ringle et al., 2011). Another extension of the IPMA’s use is in the
context of a multigroup analysis. The IPMA allows for contrasting group results and
for developing specific conclusions in respect of each group (Rigdon et al., 2010, 2011;
Schloderer et al., 2014). However, researchers should refrain from using the IPMA if
the analysis does not meet the requirements mentioned in Step 1 of the IPMA
procedure (Figure 3) such as having only positive outer weights estimates in the
measurement models.

As the IPMA assumes linear relationships, future research could focus on
non-linear IPMA results (Anderson and Mittal, 2000; Eskildsen and Kristensen,
2006; Mittal et al., 1998), making the analysis even more useful. For example, in the
context of the Kano model, an IPMA could consider the differing role of
delighters and basic needs (e.g. Kano et al., 1984). If the performance of a delighter
construct exceeds a certain threshold, further improvement of this construct’s
performance improves the target construct exponentially. Conversely, performance
decreases in this construct generally have a lower effect on the target construct.
The opposite holds for basic needs, where decreases in a corresponding
construct’s performance result in steep decreases in the target construct’s
performance. Exceeding the performance of basic needs above a certain threshold
will, however, only marginally increase the target construct’s performance. In this
context, the penalty-reward contrast analysis of IPMA results (Matzler and
Sauerwein, 2002; Matzler et al., 2003) could be another promising avenue for future
research. Given IPMA’s capabilities and the additional benefit of potential
extensions to non-linear effects, we expect that the much broader use of the method
in future studies will extend the results presentations and allow more elaborate
findings and conclusions.

Notes
1. The original paper also considered a further model set-up with additional moderator

variables (i.e. age, experience, gender, and voluntariness of use). However, in light of the
problems that arise in the interpretation of total effects that include moderators, our analysis
focuses on the first model in Al-Gahtani et al. (2007).

2. Note again that an IPMA on the indicator level is possible regardless of the predecessor
constructs’ measurement model specifications. However, an indicator-related analysis is
particularly useful in formative measurement model settings.
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