
Information & Computer Security
Security evaluation of the OAuth 2.0 framework
Eugene Ferry John O Raw Kevin Curran

Article information:
To cite this document:
Eugene Ferry John O Raw Kevin Curran , (2015),"Security evaluation of the OAuth 2.0 framework",
Information & Computer Security, Vol. 23 Iss 1 pp. 73 - 101
Permanent link to this document:
http://dx.doi.org/10.1108/ICS-12-2013-0089

Downloaded on: 07 November 2016, At: 21:28 (PT)
References: this document contains references to 47 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 556 times since 2015*

Users who downloaded this article also downloaded:
(2015),"Checking the manipulation checks in information security research", Information and
Computer Security, Vol. 23 Iss 1 pp. 20-30 http://dx.doi.org/10.1108/ICS-12-2013-0087
(2015),"User-visible cryptography in email and web scenarios", Information and Computer Security,
Vol. 23 Iss 1 pp. 58-72 http://dx.doi.org/10.1108/ICS-07-2013-0054

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/ICS-12-2013-0089

Security evaluation of the OAuth
2.0 framework

Eugene Ferry and John O. Raw
Department of Computer Science, Letterkenny Institute of Technology,

Letterkenny, Ireland, and

Kevin Curran
Computer Science Research Institute, University of Ulster, Londonderry, UK

Abstract
Purpose – The interoperability of cloud data between web applications and mobile devices has vastly
improved over recent years. The popularity of social media, smartphones and cloud-based web services
have contributed to the level of integration that can be achieved between applications. This paper
investigates the potential security issues of OAuth, an authorisation framework for granting
third-party applications revocable access to user data. OAuth has rapidly become an interim de facto
standard for protecting access to web API data. Vendors have implemented OAuth before the open
standard was officially published. To evaluate whether the OAuth 2.0 specification is truly ready for
industry application, an entire OAuth client server environment was developed and validated against
the speciation threat model. The research also included the analysis of the security features of several
popular OAuth integrated websites and comparing those to the threat model. High-impacting exploits
leading to account hijacking were identified with a number of major online publications. It is
hypothesised that the OAuth 2.0 specification can be a secure authorisation mechanism when
implemented correctly.
Design/methodology/approach – To analyse the security of OAuth implementations in industry a
list of the 50 most popular websites in Ireland was retrieved from the statistical website Alexa
(Noureddine and Bashroush, 2011). Each site was analysed to identify if it utilised OAuth. Out of the 50
sites, 21 were identified with OAuth support. Each vulnerability in the threat model was then tested
against each OAuth-enabled site. To test the robustness of the OAuth framework, an entire OAuth
environment was required. The proposed solution would compose of three parts: a client application, an
authorisation server and a resource server. The client application needed to consume OAuth-enabled
services. The authorisation server had to manage access to the resource server. The resource server had
to expose data from the database based on the authorisation the user would be given from the
authorisation server. It was decided that the client application would consume emails from Google’s
Gmail API. The authorisation and resource server were modelled around a basic task-tracking web
application. The client application would also consume task data from the developed resource server.
The client application would also support Single Sign On for Google and Facebook, as well as a
developed identity provider “MyTasks”. The authorisation server delegated authorisation to the client
application and stored cryptography information for each access grant. The resource server validated
the supplied access token via public cryptography and returned the requested data.
Findings – Two sites out of the 21 were found to be susceptible to some form of attack, meaning that
10.5 per cent were vulnerable. In total, 18 per cent of the world’s 50 most popular sites were in the list of
21 OAuth-enabled sites. The OAuth 2.0 specification is still very much in its infancy, but when
implemented correctly, it can provide a relatively secure and interoperable authentication delegation
mechanism. The IETF are currently addressing issues and expansions in their working drafts. Once a
strict level of conformity is achieved between vendors and vulnerabilities are mitigated, it is likely that
the framework will change the way we access data on the web and other devices.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2056-4961.htm

OAuth 2.0
framework

73

Received 16 December 2013
Revised 20 May 2014

5 June 2014
Accepted 9 June 2014

Information & Computer Security
Vol. 23 No. 1, 2015

pp. 73-101
© Emerald Group Publishing Limited

2056-4961
DOI 10.1108/ICS-12-2013-0089

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/ICS-12-2013-0089

Originality/value – OAuth is flexible, in that it offers extensions to support varying situations and
existing technologies. A disadvantage of this flexibility is that new extensions typically bring new
security exploits. Members of the IETF OAuth Working Group are constantly refining the draft
specifications and are identifying new threats to the expanding functionality. OAuth provides a flexible
authentication mechanism to protect and delegate access to APIs. It solves the password re-use across
multiple accounts problem and stops the user from having to disclose their credentials to third parties.
Filtering access to information by scope and giving the user the option to revoke access at any point
gives the user control of their data. OAuth does raise security concerns, such as defying phishing
education, but there are always going to be security issues with any authentication technology.
Although several high impacting vulnerabilities were identified in industry, the developed solution
proves the predicted hypothesis that a secure OAuth environment can be built when implemented
correctly. Developers must conform to the defined specification and are responsible for validating their
implementation against the given threat model. OAuth is an evolving authorisation framework. It is still
in its infancy, and much work needs to be done in the specification to achieve stricter validation and
vendor conformity. Vendor implementations need to become better aligned in order to provider a rich
and truly interoperable authorisation mechanism. Once these issues are resolved, OAuth will be on
track for becoming the definitive authentication standard on the web.

Keywords Security, Access control

Paper type Research paper

1. Introduction
Integration between applications has become a commodity in recent years due to the
rising popularity of cloud API services, social media and mobile computing. This
innovation has also brought new security threats. It is difficult to truly verify that
someone is who they claim to be. Authentication is an issue dating thousands of years
and today, authentication is still a challenging problem. Authorising an application
access to user data from another application is no exception. Authentication is the
process of validating that a user is who they claim to be. In contrast, authorisation limits
the data or actions an authenticated user can access. Authentication has always been an
issue in computing. As technology has advanced so too have authentication methods
and ways to exploit them. There have been several notable cases of compromised user
accounts in recent history. Most notably, the attack launched against journalist Mat
Honan where his Google, Twitter and Apple accounts were all compromised as well as
his MacBook (Honan, 2012). Attackers targeted the journalist to get access to his Twitter
account. After gaining access to his Amazon account (method unknown), the attackers
were able to view the last four digits of his credit card number. The attackers were then
able to reset Mat’s Apple account password via Apple technical support using the same
last four digits as verification. From the Apple account, the attackers could then access
his Gmail account and from there his Twitter account. The attackers were able to wipe
contents of the journalist’s iPhone, iPad and MacBook as his Apple account supported
iCloud, Apple’s cloud storage service. Though this attack, like most, was primarily due
to social engineering and lack of universal security policies between organisations, it
shows that although security advancements have been made organisations are still not
implementing authentication properly.

Authentication methods used today include textual passwords, graphical
passwords, three-dimensional passwords, third-party federation and biometrics
(Dinesha and Agrawal, 2012). Each method has its advantages and disadvantages and
compromise between security and usability. Google’s opt-in protection of a two-step

ICS
23,1

74

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

verification greatly mitigates the likelihood of an account being compromised.
Multi-factor authentication adds another layer of security by sending a verification code
to the user’s mobile phone or other device when logging in from an unknown machine
which the user must then input back to Google. Mat Honan stated that if he had
implemented Google’s two-step verification then the whole attack may have been
averted (Honan, 2012). Google reported that almost 250,000 users added two-step
verification to their account within two days of Mat Honan publishing his article (Grosse
and Upadhyay, 2013). The chances of an attacker stealing both a user’s login credentials
and mobile phone are relatively small. One disadvantage of this opt-in protection is that
attackers who have gained access to Google accounts can enable the service with their
own mobile number to impede the user restoring their account. A new method of
authenticating access to cloud data APIs has emerged called OAuth. This authorisation
framework grants third parties access to user data without the user disclosing their
credentials to the third-party service (Hardt, 2012). OAuth has already been widely
adopted by industry players and is on track to becoming a standard for authorisation.
OAuth seeks to resolve the shortcomings of propriety authentication protocols by
creating a universal and interoperable authorisation mechanism between services.
OAuth can also be used to protect user information in Single Sign On (SSO) mechanisms.
SSO lets the user register or login temporarily with a new website using the profile
information already stored on another service. Major online brands, such as Facebook
and Google, federate identification in this manner. SSO provides many benefits for user.
They have fewer passwords to remember. It also stops the use of the same password for
multiple accounts. The user also does not have to complete tedious and repetitive
registration forms. An overall richer user experience is gained with SSO. Disadvantages
include a new platform for phishing attacks and a single point of failure. If the identity
provider account was compromised, an attacker would have access to all the victim’s
linked accounts.

OAuth has rapidly become an interim authentication and identity management
standard for online applications. As social network trends soared, many sites were
quick to adopt OAuth but did not implement the framework to the specification and
security aspects were overlooked. This paper investigates the security of the OAuth
authorisation framework and compares it to current industry implementations to
evaluate if OAuth is truly ready for widespread adoption. Severe security vulnerabilities
were identified, one of which resulted in user account hijacking. An OAuth client and
server were developed to test the robustness of the specification.

2. OAuth
As data have migrated to the cloud, vast interoperability options have been realised by
online services. Access to that data has also become ubiquitous via smartphone and
tablet computing. A universal mechanism was required so that these services and
devices could access these data without compromising security, incurring development
complexity and provide a consistent user experience. This requirement came in the form
of OAuth, an authorisation framework that is soon becoming a de facto standard for
online authentication. OAuth is the authentication method of choice by social sites
Facebook and Twitter to protect their APIs and federate identification across domains
(Leiba, 2012). OAuth moves away from the vulnerable username-password paradigm
and has adopted the use of a bearer token. The Internet Engineering Task Force (IETF)

75

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

administers the open standard and have published the 2.0 version of the specification
(Hardt, 2012). OAuth allows a third-party service to access user data on another service
without disclosing the login credentials for that service. For example, a user can
authorise HP’s online photo-printing service SnapFish to access their images on their
Facebook account without giving SnapFish their Facebook password.

The analogy of a car valet key is often used to describe OAuth. A valet key restricts
the temporary driver to a certain speed limit and maximum distance, the glove box and
boot may also be inaccessible with the valet key. Similarly, OAuth can enforce
restrictions such as access scope and token expiration to limit clients only to certain data
or functions for a specified time (Connolly, 2010). The prevalence of cloud APIs and
online services in recent years and the need to integrate them has demanded a common
protocol for delegating authorisation. Demand has also spread to mobile computing, in
the form of smartphones and tablets, which are soon becoming personal commodities. In
2012, a total of 700 million mobile devices were shipped worldwide (Jannikmeyer, 2013).
The increase in social media usage has also greatly contributed to the popularity of
OAuth. Social network giants such as Facebook and Twitter use OAuth to authenticate
their REST APIs for integration with other applications. In 2012, 67 per cent of
American adult Internet users used social networking accounts (Duggan and Brenner,
2013). These social sites are almost synonymous with the Internet, so much so that they
are now becoming federators of identification.

2.1 The demand for OAuth
OAuth was developed to create a common authorisation mechanism that could be used
across many online services (Campbell et al., 2013, 2012; Campbell and Mortimore, 2012;
OAISIS, 2008). Before OAuth, developers had to build custom implementations for each
service’s proprietary authorisation method, such as Google ClientLogin and Facebook
FBAuth (Sun and Beznosov, 2012). Supplying a username and password to a third-party
service would have many detrimental effects. The user may not be comfortable
disclosing their password to another service and it goes against the efforts that have
been made in phishing awareness. Unfortunately many users still use a common
password across multiple online accounts. If the service was ever compromised, the
attacker could access all the user’s accounts. In total, 58 per cent of users reuse the same
password (Duggan, 2012). Providing a password also gives the third-party service full
access to the user account which could be used maliciously. This method also does not
support any revocation mechanism apart from changing the password which would
also revoke any other third-party services that also accessed that account. A user could
also change their password without realising that they will revoke access from their
third-party services. SAML and OpenID do not use passwords and therefore would not
be compatible with the service. OAuth alleviates all these issues through the notion of a
temporary access token. An access token is supplied to the resource provider instead of
a username and password. The access token is associated with a client, the scope that
the client is limited to and an expiry date.

The OAuth 2.0 specification has defined several profiles for varying scenarios
(SalesForce, 2012). These profiles include a server side flow for authenticating access to
server side applications, a client side flow for JavaScript or other client based
applications and a native flow for desktop or mobile applications. The OAuth 2.0
specification has been extended to allow for the integration of additional authentication

ICS
23,1

76

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

mechanisms. OAuth can be built on top of pre-existing authentication mechanisms such
as an LDAP directory or SAML (Jones et al., 2011).

2.2 OAuth and identity providers
There is a misconception that OAuth can federate identification on its own. OAuth is
merely the authorisation mechanism to an identity provider’s resource server (Sakimura
et al., 2013). OAuth coupled with OpenID allows sites like Facebook and Twitter to
provide identification. OpenID is another open standard which provides identify
information to authenticated clients. OpenID allows users whom are already registered
to a trusted site, such as Facebook, to sign up to other websites without having to create
another set of credentials. Instead of a user entering a name, email, password, username
and so on, they can simply “Sign In with Facebook”. The latest specification is called
OpenID Connect which utilises OAuth for authentication (Sakimura et al., 2013). An
OpenID Connect authorisation follows the usual OAuth sequence. A client application
(relying party) registers with an identity provider service, such as Google. When a user
wishes to sign into the client application for the first time, they will be redirected to
Google for login and consent. Upon user consent, Google will redirect back to the client
application with an authorisation code, which is exchanged for an access tokens. As user
profile information would have been requested in the scope parameter, an ID token will
also be returned with the access token. The ID token represents a base64url encoded
JWT security token. The JWT token has three parts: header, claim set data and digital
signature, delimited by the “.” character.

As per the specification, the client application must validate the received ID token
with the authorisation server’s token information endpoint (Figure 1). This is to mitigate
replay attacks. The whole token, as it was received, is sent to the token info endpoint and
a JSON object is returned containing information about the client the token was issued
for. The client then has to decode the JWT and compare the values to the values returned
from the token info point. The client has to ensure that the audience values match. The
client must also validate timestamps for equality. Upon successful validation, the client

Figure 1.
OAuth server side

process

77

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-000.jpg&w=343&h=183

can query the identity provider’s user info endpoint with the access token to retrieve
further information about the user, such as email address, gender, date of birth and
profile picture. This single sign on mechanism alleviates populating redundant
registration forms and provides a richer user experience. As SSO is becoming more
prevalent, relying party applications are becoming more customizable based on the way
the user has authenticated and the account they used (Obrenovicì and den Haak, 2012)
has identified usage patterns and the challenges in mapping provider account data to
the custom user attributes in the client application. The IETF working group has
outlined several potential security issues with the standard and how they should be
mitigated (Lodderstedt and 2013). The threat model is broken down into sections based
on the different locations in an OAuth environment, parameters and extensions. Most of
the issues are resolved through the use of HTTPS and validating the client at every
request.

2.3 Future of OAuth
The IETF are currently working on a draft specification for dynamic client registration
(Richer et al., 2013) for allowing clients who were not previously registered with an
authorisation server to register on the fly before user authentication. The mechanism
involves the authorisation server providing client registration and configuration
endpoints. In the proposed solution, the client would make a request to the authorisation
server’s client registration endpoint supplying the necessary criteria. The authorisation
server should then return a client ID generated for client and optionally a client secret
depending on the registration data provided. A registration access token will also be
returned which the client application can use to modify information about itself at the
client configuration endpoint URI on the authorisation server which is also returned in
the payload, as well as timestamp data. The draft is scheduled for standardisation
submission for Autumn 2014 (IETF, 2012). OpenID Connect also have a draft
specification for dynamic client registration based on IETF’s draft (Sakimura et al.,
2013). Identity provider Cloud Identity supports a dynamic client registration
implementation (Cloud Identity, 2011).

OAuth 2.0 also has a draft specification for using Message Authentication Code
(MAC) tokens instead of a bearer token (Richer et al., 2013). MAC tokens add another
layer of security by binding the access token to a client and resource server via a
symmetric session key. MAC tokens are protected from replay attacks and accidental
leakage as they can only be used for the intended client and resource server.
Implementing MAC tokens augments the complexity of the OAuth process and
therefore has not been greatly adopted in industry though the specification is still in
draft changes and is subject to change. Several papers have investigated potential
enhancements to OAuth performance and usability. In the study by Noureddine and
Bashroush (2011), two optimisation steps were proposed to reduce the number of
requests in the authorisation sequence. The first involves caching authorisation data in
a table on the authorisation server, resource server and client. The client table contains
the URL to the authorisation endpoint so that it can access it directly instead being
redirected when making a request to the resource server. The second optimisation
introduced an “AppliesTo” parameter, so that access tokens that were applicable to all
users could be saved by the client and reused when other users requested access instead
going to the authorisation server again with a grant request. Although the reduced

ICS
23,1

78

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

number of HTTP requests and mitigated DoS attacks sound promising, the paper fails
to examine the potential security issues with their proposed improvements. Having
more data spread across multiple sites increases the attack entry points to sensitive
information. Stored URLs go against the flexibility of the specification. Although the
“AppliesTo” parameter could potentially save a lot of HTTP requests, this is
outweighed by the huge security vulnerability. If an attacker somehow gained access to
one employee’s access token, he would then be able to act on behalf of all the employees
in the organization.

Shehab and Marouf (2012) proposed an extension to the OAuth framework which
provided finer-grained scope and access recommendations based on previous
authorisations. A browser extension and algorithm was developed to suggest which
permissions the user should select when granting access to their data. They concluded
that users were less likely to select all permissions when recommendations were
suggested. They also acknowledged that the threshold value could be inaccurate if the
same application was repeatedly used or if the underlying system was compromised.
Google’s VP of Security Engineering, Eric Grosse, envisioned a potential improvement
of the OAuth specification involving channel binding (Grosse and Upadhyay, 2013).
Channel binding eliminates man-in-the-middle attacks and session hijacking by
cryptographically binding cookies to a Transport Layer Security channel ID (Alexa,
2013). The Google Chrome browser implements channel binding (Browser Auth, 2013).
Research is currently being carried out to make authentication more interactive with the
user. Google Chrome (2013) has investigated the idea of integrating biometrics with
OAuth so that the user can grant consent based on the prints of ones knuckles. High
accuracy was achieved and only standard hardware, such as a web camera, was
required. Google are also looking towards making authentication more personal. They
are experimenting with USB tokens, a USB device in the user’s machine which acts like
an ignition key to protected resources (Grosse and Upadhyay, 2013). The token
communicates signed assertions to compliant browsers and provides new layers of
security. To alleviate the burden of the user having to remember to carry around a USB
device, Google are looking at ways to combine USB tokens with ubiquitous hardware
such as a smartphones or “smart jewellery”. They are currently researching the use of
wireless technology, Bluetooth and NFC, so that users can authenticate applications and
other devices with their smartphone or a tap from their “smart ring” (Grosse and
Upadhyay, 2013).

The OAuth 2.0 specification is still very much in its infancy, but when implemented
correctly, it can provide a relatively secure and interoperable authentication delegation
mechanism. The IETF are currently addressing issues and expansions in their working
drafts. Once a strict level of conformity is achieved between vendors and vulnerabilities
are mitigated it is likely the framework will change the way we access data on the web
and other devices.

3. Exploiting OAuth
Most of the known OAuth 2.0 exploits have been due to the implementation, not the
framework itself. The IETF have predicted many of the security issues in the threat
model but these have been overlooked by several sites during the recent popularity of
OAuth and social media integration. OAuth 2.0 is vulnerable to CSRF (Cross Site Request
Forgery) attacks when the state parameter is not implemented (Campbell et al., 2013; Google

79

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Chrome, 2013). A CSRF attack is where a user unknowingly makes a request (clicking a link
or downloading an image) of malicious nature to a website that the browser is currently
logged in to. For example, a user may be logged into their online banking in one tab and open
a link in an email. The malicious link navigates to the online banking’s funds transfer
endpoint with the appropriate URL parameters to wire the user’s money to another account.
As the user is logged into the online banking in one tab, the browser cookie has been set and
so it will be sent in the request header of the malicious request. To the online banking server,
the request appears as if it genuinely came from the user.

CRSF attacks can be applied to OAuth in the following manner. Consider a user who
is currently logged into a service like Pinterest which supports SSO with Facebook or
Twitter. An attacker would sign into Pinterest with Facebook to obtain a redirect URL
with a valid authorisation code. The attacker will not navigate to this redirect link,
however, as this would nullify the authorisation code. The attacker could then send an
email to the victim containing a link to a malicious web page. The malicious web page
could contain an image with the source attribute pointing to Pinterest’s OAuth redirect
URL with the valid authorisation code associated with the attacker’s Facebook account.
If the user was logged into Pinterest while opening the email link the browser would
make the “image” request with the corresponding cookie for the session. The user will
have unknowingly granted the attacker access to their Pinterest account. The attacker
would then be able to sign into Pinterest with his Facebook credentials and access the
user’s data. This issue is identified in 4.4.1.8 of the threat model (Lodderstedt et al., 2013)
which recommends utilising the state parameter. This mitigates the threat as the
callback URL must contain the same state parameter value that was sent in the
authorisation request. State parameters are high entropy nonces so they would
be difficult for an attacker to emulate. In the early days of OAuth 2.0, many sites like
Pinterest and TripAdivsor were vulnerable to this attack, although they have now
mitigated the issue via CSRF tokens and the use of the “state” parameter.

A formal analysis model for OAuth 2.0 was devised by Google Chrome (2013)
utilising the automated security protocol evaluation tool ProVerif. Several
vulnerabilities with popular vendors, such as Yahoo and WordPress, were identified.
An exploit was found with Yahoo’s single sign on implementation. If a user who was
logged into Yahoo via Facebook navigated to a malicious site, it could redirect the user
to Facebook’s authorisation endpoint with Yahoo’s client ID and a redirect URI. As the
user is already logged in, authorisation has already been granted and so Facebook
redirects the user to the provided redirect URI with a valid access token. The attacker
could exploit Yahoo’s open redirector mechanism by appending a redirect URL
parameter to the redirect URL, e.g. http://yahoo.com/r/_ylt�A7x9.../**http://evil.com.
Facebook would return to the Yahoo redirect URL which would then redirect to the
malicious site with the access token included. The malicious site could then use the
token on the resource server to act on behalf as the user.

Several vulnerabilities were identified in cloud storage including another open
redirector exploit which could redirect Facebook access tokens (Gomaa et al., 2012).
OAuth can also be exploited by clickjacking, the action of tricking the user into clicking
on a UI element that’s been masqueraded as another (Bansal et al., 2012). A malicious site
could use CSS to overlay and hide an OAuth consent dialog in a frame on top another UI.
The non-visible “OK” button in the consent dialog would be placed directly above
another button, such as “Win a free iPad” or similar. The user of course would have to be

ICS
23,1

80

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://yahoo.com/r/_ylt=A7x9.../**http://evil.com

logged into the service to render the hidden dialog. When the user clicks the “Win a free
iPad” button, they inadvertently authorise the malicious site access to their account
although this exploit is not directly the fault of the OAuth process. Clickjacking is
mentioned in part 4.4.1.9 of the threat model (Lodderstedt et al., 2013). The use of the
X-FRAME-OPTIONS HTTP header is the recommended mitigation. This header allows
servers to specify whether the content can be displayed in a frame. Facebook’s OAuth
consent dialog uses the x-FRAME-OPTIONS value “deny” so that it cannot be placed in
a frame. It should be noted that this HTTP header field is not supported in older
browsers. OAuth supports offline access via refresh tokens though it is not mandatory
(Hardt, 2012). Offline access is convenient for applications and has legitimate purpose,
but it can also be exploited. Social bots which implement offline access can be used to log
in and imitate human social network accounts and automate “friend requests” as a
means of data harvesting (Bansal et al., 2013). When a user accepts a “friend request” or
similar connection, their personal information, such as email address and date of birth,
are available to the social bot. Social bots are also used for mass distribution of spam and
propaganda. Again, this issue is not the fault of the framework as it is being utilised
correctly, although for ill purpose. The OAuth 2.0 specification states that supporting
refresh tokens is optional. They have also researched detecting botnet behaviour in
social networks (Huang et al., 2012).

3.1 Real-world OAuth exploit tests
To analyse the security of OAuth implementations in industry, a list of the 50 most
popular websites in Ireland was retrieved from the statistical website Alexa
(Noureddine and Bashroush, 2011). Each site was analysed to identify if it utilised
OAuth. Out of the 50 sites, 21 were identified with OAuth support. Each vulnerability in
the threat model was then tested against each OAuth-enabled site. Two sites out of the
21 were found to be susceptible to some form of attack, meaning that 10.5 per cent were
vulnerable. In total, 18 per cent of the world’s 50 most popular sites were on the list of 21
OAuth-enabled sites (Table I).

The security evaluation was carried out in a legal and ethical manner and conformed
to current Irish and UK legislation. Tools used included the Firefox browser, extensions
FireBug and NoRedirect, the HTTP request monitoring application Fiddler2 and
command line cURL. The vulnerabilities could only be exposed in the Firefox browser.
This was because extensions for stopping HTTP redirects were not available in other
browsers. The exploits are due to server side code and therefore independent from the
browser. The vulnerabilities should also be demonstrable using command line cURL,
but this would be quite tedious due to the number of necessary HTTP requests and the
size of the each query string or POST body.

3.1.1 Popular online news site 1. The sites identified with vulnerabilities were
coincidently both online publications. The first exploit was found on one of the leading
news sites online who implement social login with Facebook, Google and Twitter. The
evaluation was only performed on online accounts that were created for testing
purposes. No third-party accounts were compromised. Users can register traditionally
or via a social network. Once registered, users can comment on articles, provide profile
information and subscribe to newsletters. The online user accounts can be hijacked via
an OAuth exploit and Cross Site Request Forgery (CSRF) similar to that mentioned in
the Known Exploits section. At the time of writing, this online news site was in the 40

81

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Table I.
OAuth analysis of
Ireland’s 50 most
popular websites

Name OAuth enabled Exploit found

Google.ie ✓ �
Google.com ✓ �
Facebook.com ✓ �
Youtube.com ✓ �
Yahoo.com ✓ �
Wikipedia.com � �
LinkedIn.com ✓ �
Live.com ✓ �
Twitter.com ✓ �
Amazon.co.uk ✓ �
Amazon.com ✓ �
Aib.ie � �
Rte.ie � �
Bbc.co.uk � �
DoneDeal.ie � �
Boards.ie � �
eBay.ie � �
WordPress.com ✓ �
Independent.ie ✓ �
PayPal.com � �
Tumblr.com ✓ �
Pinterest.com ✓ �
Imdb.com ✓ �
Irishtimes.com � �
Daft.ie � �
Dailymail.co.uk ✓ ✓
Google.co.uk ✓ �
Adverts.ie ✓ �
eBay.co.uk � �
365online.com � �
Googleusercontent.com � �
msn.com � �
�omitted� � �
Avg.com � �
Thepiratebay.se � �
Vodafone.ie � �
Microsoft.com � �
Bing.com � �
Flickr.com* ✓ �
Gaurdian.co.uk ✓ ✓
O2online.ie � �
Imgur.com ✓ �
Apple.com � �
eBay.com � �
Travian.co.uk � �
Thejournal.ie � �
Eircom.net � �
Sky.com � �
Ask.com � �
�omitted� � �

Source: Boshmaf et al. 2011

ICS
23,1

82

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

most popular websites in Ireland, top 20 in the UK and 150 globally. These statistics
however did tend to fluctuate.

This is not a man–in-the-middle attack and does not require any knowledge of the
underlying system, just a basic understanding of the OAuth process. An attacker could
attempt to login via Facebook and use a browser extension, such as NoRedirect, to
prevent Facebook from redirecting back to the site with an authorisation code. Aborting
the redirect stops the code from being used and therefore still valid. The attacker could
then put the online redirect URL with the authorisation code in an iframe, image
source tag or other CSRF method in a web page and then send the link to a target victim.
If the target is logged into the news site online when opening the link, they will have
inadvertently linked the attacker’s Facebook account with their news site online account
as the authorisation code in the redirect URL is associated with the attacker’s Facebook
profile.

As there is a valid news site online browser session, when the client browser
downloads the web page, the request to the redirect URL will be executed with the
cookies that have been set for that domain. If the redirect URL is set to an image source
attribute, then the request will be transparent to the victim. The attacker would then be
able to log in using his Facebook credentials and have access to the victims online
account. Sensitive information such as date of birth, email addresses, location details
plus the ability to comment on articles will be exposed to the attacker. The attacker
could also analyse the victim’s newsletter subscriptions to build a more targeted socially
engineered attack. This attack does rely on the victim having an unexpired Online
session when opening the malicious link but due to the popularity of the web site this
attack could potentially have a high success rate. Consider an attacker, Mallet, who
wishes to hijack online accounts. Mallet creates an account with the news site
traditionally. He then attempts to link his Facebook account to his Online account via the
option in the Profile Preferences. Upon signing into Facebook Mallet is then presented
with the access consent dialog below in Figure 2.

Before clicking “Okay”, Mallet disables all redirects in the NoRedirect options
window by unchecking the allow checkbox for a regex pattern (“.*”) which covers all
URLs. Mallet is then shown the redirect URL with an authorisation code which was not
executed as Figure 3 demonstrates (Figure 4).

Mallet then creates a malicious web page with an image tag that has the source
attribute pointing to the redirect URL. The link to this web page is then put in an email

Figure 2.
Popular news site 1

login screen

83

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-001.jpg&w=179&h=116

and styled to lure the using into clicking it, such as “Win a Free iPad” or similar incentive
(Figure 5).

Mallet could send this email to masses with the hope that they are currently logged in
when opening the link or target the email to a specific few via social engineering. If a user
falls for the bait and opens the link they will have unknowingly associated Mallet’s
Facebook account to their online profile. Mallet then periodically logins to the Online
account with his Facebook credentials to verify if his attack has succeeded. Figure 4
shows the sensitive information (though some of it is public) that is exposed to Mallet
upon a successful hijack.

Figure 6 shows the commenting functionality exposed to the attacker (Figure 7).
This attack can be prevented simply by implementing the OAuth state parameter

when requesting access, per the specification. The state parameter, typically a nonce
that is sent to the authorisation server should also be returned on the redirect URL. The
application must verify that the state parameter received is equal to the one that was
sent. This binds the access request to the redirect and stops authorisation codes that
were issued for other grants being used with other redirects. This vulnerability is also
listed in Section 4.4.1.8. of the OAuth 2.0 Threat Model. Figure 8 shows an OAuth
request URL with the state parameter and the corresponding redirect URL with the
same state parameter.

This vulnerability was reported to site but at the time of writing no
acknowledgement had been received.

3.1.2 Popular news site 2. Another leading news site was susceptible to exactly the
same attack, although less impacting. The resulting linkage between the attacker’s
Facebook to the victim’s online account overwrites most of the victim’s personal
information with that of the attacker’s. However, a full address was left exposed, as well
as commenting functionality. The results of this attack were inconclusive, as it was not

Figure 3.
Facebook OAuth
consent dialog

Figure 4.
Stopped redirect with
authorisation code

Figure 5.
Image tag in
Malicious Web page

ICS
23,1

84

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-002.jpg&w=215&h=87

always successful. They were not informed as vulnerability could not be proved. It is
possible that they are working on their implementation and that the issue was resolved
during the evaluation. The varying results could also be due to a missing step or URL
parameter that was not realised when the attack did succeed.

3.1.3 Popular news site 3. Although not in Ireland’s top 50 websites, a leading US
online news site was also found to expose a security vulnerability. After logging into the
AOL-owned site via Facebook, the access token is stored in a browser cookie. This is
essentially the same as saving the user’s Facebook credentials on the machine. The
OAuth 2.0 Bearer Token specification states that access tokens must not be stored in
cookies (Shehab and Marouf, 2012). An attacker could deploy cookie harvesting
techniques (via botnet or physical access to the device) to gain the access token which he
could then use on the Facebook Graph API to retrieve sensitive information about the

Figure 6.
Successful hijacking

of online account

Figure 7.
Attacker has ability

to comment on
articles

Figure 8.
OAuth

implementation with
state parameter

85

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-005.jpg&w=251&h=141
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-006.jpg&w=287&h=129
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-007.jpg&w=343&h=59

user and all the user’s friends. For the access token to remain valid, the user must have
a current Facebook session. The cookie is also not reset upon logging out of the site.

Figure 9 shows the JSON response an attacker could potentially get when querying
the Facebook resource server with the stolen access token. The IDs in the “friends”
object are links to the friends’ personal details that were requested in the URL
(Figure 10).

The site was in the 20 most visited website in the USA and was ranked in top 100
globally at the time of writing (Browser Auth, 2013). This vulnerability can be mitigated
by saving the access token in secure online storage and reducing the lifetime of the
token. The site was informed of this issue and advised that they would evaluate
the matter and take the appropriate actions. Shortly after the vulnerability was resolved,
the access token is no longer stored in a browser cookie.

4. OAuth framework implementation
To test the robustness of the OAuth framework, an entire OAuth environment was
required. The proposed solution would be composed of three parts: a client application,
an authorisation server and a resource server.

The client application needed to consume OAuth-enabled services. The authorisation
server had to manage access to the resource server. The resource server had to expose

Figure 9.
Facebook access
token stored in
cookie

Figure 10.
Facebook graph API
response

ICS
23,1

86

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-008.jpg&w=343&h=159
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-009.jpg&w=287&h=117

data from the database based on the authorisation the user would be given from the
authorisation server. It was decided that the client application would consume emails
from Google’s Gmail API. The authorisation and resource server were modelled around
a basic task-tracking web application. The client application would also consume task
data from the developed resource server. The client application would also support SSO
for Google and Facebook as well as a developed identity provider “MyTasks”. The
authorisation server delegated authorisation to the client application and stored
cryptography information for each access grant. The resource server validated the
supplied access token via public cryptography and returned the requested data.

4.1 Design
The use case diagram demonstrates the actions the user can perform in the client
application based on the requirements in the previous section.

Some of the actions, such as “Login with Facebook”, will invoke the OAuth provider
to authenticate the user and confirm data access consent.

The use case diagram in Figure 11 shows the actions that the user and client
application can perform in the authorisation server. The user will be able to login in and
out of the web application as well as grant and revoke third party applications to their
data. A client application will be able to perform standard OAuth actions. For brevity
the Query API action has been included in the authorisation server though in practise
this is actually happens in the resource server.

Figure 11.
OAuth server side

client use case
diagram

87

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-010.jpg&w=343&h=264

The sequence diagram in Figure 12 illustrates the lifetime of each endpoint in the OAuth
SSO process. The client application is the main component in this sequence. The process
is invoked by the client application when it requests an authorisation code from the
authorisation server. As the client web application is stateless, its lifetime ceases when
the browser redirects to the authorisation server. Upon user consent, the authorisation
server redirects back to the client application. As the authorisation server is a stateless
HTTPS end point, its lifetime ends. The client then makes another request to the
authorisation server to exchange the authorisation code for an access token. This
request is asynchronously, not a browser redirect, hence the lifetime of the client
application has not ended. When the client receives an access token it makes another
asynchronous request to the resource server to fetch user information.

As per the OAuth 2.0 specification, the authorisation server has to persist in the
registered client applications and authorisation grants. The entity relationship model in
Figure 13 shows the tables required to facilitate OAuth and federate user information.
The user table stored user information. Following best database security practices, user
passwords were salted and hashed. The client table stored client application
information which was used for validating authorisation requests. The client
authorisation table stored access grant information. The nonce table was for storing
one-time authorisation codes. An authorisation code has to be a unique random value.

Figure 12.
OAuth authorisation
server use case
diagram

ICS
23,1

88

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-011.jpg&w=263&h=292

This is guaranteed by the nonce table. The CryptoKey table stores the symmetric keys
used to encrypt and sign authorisation codes and refresh tokens.

4.2 Implementation
The OAuth environment was developed in C#. The solution was developed on a
machine running Windows 7, although it was deployed on a production grade server
OS, such as Window Server 2008 or 2012 if deployed. Microsoft SQL Server (Richer et al.,
2013) was the obvious database choice due to the tight integration with .NET languages,
stability and previous experience. The client and servers were deployed to Microsoft’s
IIS (Internet Information Services) server. A third-party DLL called DotNetOpenAuth
(DNOA) was used to implement the OAuth interactions. DNOA is an open-source .NET
library for creating OAuth-enabled APIs which abstracts most of the cryptography and
complexity. DNOA provides skeleton classes and database table structure
specifications for each OAuth entity. Two databases were created, one for the client
application and one which was shared between the authorisation server and the
resource server. This server database consisted of tables and columns that DNOA
required plus some custom tables and attributes to store user and task data.

The first stage of development focussed solely on creating a client application which
consumed a third-party API protected by OAuth. Google’s Gmail API was selected due
to their verbose OAuth authentication documentation. Before any coding, the OAuth
sequence that would be carried out by the client was simulated in the Google OAuth
Playground. This gave a clear overview of each step in the authentication process and
the email data that would be returned. A registration in the Google Code Console was
then made to obtain a client ID and secret key for the client application. A basic

Figure 13.
OAuth SSO sequence

diagram

89

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-012.jpg&w=263&h=240

ASP.NET web application was then developed which supported login via the standard
ASP.NET login control for ASP.NET Membership which is integrated with SQL Server.
An aspx page was created to display a list of Gmail messages. An email object was
created to hold the data returned from the web service. A combination of XDocument
and LINQ was used to parse the XML response, iterate through the nodes and project the
data into an email entity. A string representing a HTML table to display the data was
then built. Figure 14 shows the list of emails returned by Google. Clicking the subject
opened another browser tab displaying the email message in Gmail. Although CSS was
used throughout development, it was not the primary focus (Figure 15).

The next stage in development was to expand the client application to consume a
custom OAuth-enabled API. To do this, an authorisation server and resource server
were created. The authorisation server and resource server were created based on
sample code and guidelines provided by DNOA. The authorisation server was an MVC
web application. The necessary tables were created in the database and then the
skeleton classes were expanded with custom code. The tables were mapped to objects
using .NET’s LINQ to SQL framework. This had many benefits compared to writing
custom SQL queries, classes and transformations including reduced development time,
concise code, built-in filter methods and security. Initially, the client application failed to
get task data from the resource server. DNOA threw an exception as the client was not
running on HTTPS. A self-signed SSL certificate had to be generated in IIS and applied
to the website bindings. The authorisation server and resource server web
configurations were then modified to reflect the new transport settings (Figure 16).

Figure 14.
Authorisation server
database entity
relationship model

ICS
23,1

90

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-013.jpg&w=263&h=263

The My Tasks server did not offer a front-end interface for registering client
applications. Instead values, such as client key, client secret and redirect URL, were
manually inserted in the client database table. Although this was listed in the
requirements, a front end for this functionality was not was a primary focus of
development and was put a side for a later date but was never completed due to time
constraints. Once the token was added to the request and the resource server was able to
extract information from it, the task data for the user was returned. The list of task
entities was then iterated and a HTML string was built to present the data in a list. CSS
was added appropriately to format the list and distinguish between completed and
unfinished tasks (Figure 17).

At this point, a mechanism for offline access had not been implemented. The client
application had no way of remembering authorisations. If a user had granted the client
access to their tasks and then navigated away from the tasks page the next time they
loaded tasks, they would have re-authorise the client application. The authorisation
server did return a refresh token but it was not being used. For differentiation, it was
decided to only implement offline access in the Tasks client. Logic was added to store the
access token and refresh token for an authorisation in the client database. LINQ to SQL
was again used to map the authorisations table to an object and automatically generate
logic for performing CRUD operations. The Tasks client was remodelled to check
whether an authorisation already existed and if it had not expired. A method was added
to the wrapper class which exchanged the refresh token for another access token. The
new access token and refresh token were then updated in the database. The
authorisation server was configured to mint access tokens with a lifetime of 2 minutes.
This could have been increased which would have reduced requests and improved

Figure 15.
OAuth Gmail client

Figure 16.
My tasks login

91

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-014.jpg&w=343&h=97
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-015.jpg&w=343&h=119

performance, but as the access tokens were stored in the database it would was more
secure to give them a short lifetime in case the database was comprised.

The last stage of development was to implement SSO. Initially, adding support to
login with identity providers Google and Facebook was developed first then a
custom identity provider was created. A button to login with Google was added to
the client login page which started the OAuth process using the helper class. As with
the other OAuth interactions on the Gmail and Tasks pages, a request was made for
an access token after the user had given consent and an authorization code is on the
URL query string. Google also returns an id_token attribute in the JSON response
when requesting an access token with scope for user information. This is a JWT
which contains information about the user and the requested authorisation. As per
the OpenID Connect specification (Sakimura et al., 2013), Google states that the
id_token must be validated at the token info endpoint. At the time of development,
there was no method to extract the id_token attribute from the response, as it was
abstracted in DNOA. A mechanism to extract custom attributes from the
authorisation response has been raised as an issue in the library’s GitHub
repository. Instead the access token was validated at the token info endpoint. If the
access token is valid, it is passed to the user info endpoint which returns the user
information that was signed and encrypted in the JWT id_token.

The user information is then parsed and mapped to a ProviderUser object and a new
session is created via the FormsAuthentication.setAuthCookie() method. The email
address of the user is passed into the method as the identity. This is outputted in the
loginview control in the top right corner just as the username would be if the user had
logged in locally. In the default page, logic was added to display some of the user data.
This can be seen in Figure 18. The next step in development was to create an identity
provider that could federate a user’s identity to client applications. The resource server
was expanded to include a user info endpoint to return information about the user. Extra

Figure 17.
My tasks oauth client

Figure 18.
Client displaying
user information
federated by Google

ICS
23,1

92

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-016.jpg&w=343&h=119
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-017.jpg&w=343&h=59

columns were added to the users table in the server database to hold additional user
information such as gender and locale. The user info web service method returned
information about the user in JSON, similar to that of Facebook and Google, as per the
OpenID Connect specification (Sakimura et al., 2013).

The login page in the client was then modified to support logging in with this custom
identity provider which was also branded as “My Tasks”. Logic for logging in with My
Tasks followed a similar pattern as the other identity providers except the web service
reference client was used instead of a standard web request. The access token was added
to the call manually as with the other service calls in the My Tasks client. The user
information was then parsed using the same method as the other providers, as the data
returned were mostly of the same format. This method also instigates a new ASP.NET
user session (Figure 19).

Although the functionality for logging in with My Tasks worked correctly, it did not
follow the OpenID Connect speciation. When user information is requested, the
authorisation server should return a JWT id_token, as well as an access token, as Google
does. This could not be implemented however due to the abstraction that DNOA
provides in the token endpoint of the authorisation server. This is why a token info
endpoint was not developed in the resource server as there was no id token to validate.
Initially, when the My Tasks service was developed, the action URLs for each operation
had a default base address of “http://tempuri.org”. As the operation action was used to
represent scope and was displayed to the user confirming consent, it was decided that
this should be given an appropriate label. This was achieved by adding a namespace
attribute to both the service contract interface and the service class. A binding
namespace attribute was also added to the service endpoint configuration in the
resource server web configuration.

5. Evaluation
We focussed on the OAuth security and correctness. Although some general security
testing was executed protecting the solution from all known web application attacks

Figure 19.
OAuth client login

page with SSO
options

93

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://tempuri.org
http://www.emeraldinsight.com/action/showImage?doi=10.1108/ICS-12-2013-0089&iName=master.img-018.jpg&w=343&h=188

was not a main focus. The solution was secured against SQL injection attacks through
the LINQ to SQL framework as it implements SQL parameters. XSS (Cross Site
Scripting) was not considered as the only inputs throughout the solution are usernames,
passwords and the OAuth parameters which are all validated. Brute force attacks were
also not considered. The developed solution was tested against the threats identified in
the threat model as the evaluated industry sites were. Some of the threats could not be
verified, as they could not be applied to the solution, such as password grant threats and
attacks from internal resources. If the solution was to be used in industry more
preventive measures would have to put in place. A table listing some of the potential
vulnerabilities that were tested against the artefact can be seen in Table II. Tools used
included Firefox extensions FireBug and NoRedirect, the HTTP request monitoring
application Fiddler2 and command line cURL.

The solution proved not to be vulnerable to the majority of the listed threats. As
Table II demonstrates, many of the issues identified in the threat model were mitigated
by deploying end-to-end encryption. The artefact was however not protected from
Threat 22 – Resource Impersonation. This is where a malicious client application
programmatically completes the entire OAuth server side flow via POST requests
without the user’s knowledge. The user must have a valid session with the OAuth
provider to carry out this attack. To secure the solution from this attack, a CAPTCHa
could be added to authorisation server consent dialog. Another option suggested in the
threat model is to notify the user (email or SMS) upon each authorisation grant.
Although trivial to apply, these recommendations were out of the scope of research. The
solution was also vulnerable to Threat 23 – DoS Attacks on the Resource Server, but as
previously mentioned, preventing denial of service attacks were not a main focus,
though an important part of securing web based applications. Several of the threats
listed were not applicable to the developed solution. This was because the issues were
for less mainstream grant extensions, such as the user credentials flow, that were not
supported or they did not apply to the infrastructure.

When testing each threat against the artefact, it was discovered that it was
initially susceptible to Threats 17, 18 and 19. Threat 17 and 18 involve a malicious
application mocking a genuine application to phish for authorisation codes and
access tokens. DNS spoofing would be required for this attack. As per the
recommendation in the threat model, HTTPS was applied to OAuth client. Although
SSL had been applied to the authorisation and resource server, the client application
was still on HTTP as HTTPS was not a requirement for the client. SSL mitigates this
threat as the server certificate contains the correct DNS information. Threat 19 is
where an attacker exploits a legitimate client application by invoking an
authorisation request and injecting a different redirect URL than registered with the
authorisation server to redirect the authorisation code to a malicious client. This
threat was prevented by enabling redirect URL validation in DNOA on the
authorisation server. Only the base of the host address was checked for equality, but
this was adequate for this implementation. Although the OAuth side of the solution
conformed to the specification, the SSO aspect did not adhere to the OpenID Connect
specification. The user information scoped authorisation requests did not return a
JWT ID token. A token info endpoint to validate the JWT was also not developed.
This was due to the lack of OpenID Connect support in the DNOA library and the
abstraction it provided which stopped custom data being added to responses.

ICS
23,1

94

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

Validating the ID token is mandatory to ensure that the authorisation was issued by
and targeted to the correct parties as well as validating timestamps. The chance of
replay attacks were mitigated though as only the server side grant flow was
implemented. At the time of writing, a request to include OpenID Connect support in
DNOA was still unassigned. Facebook’s user information API also does not conform

Table II.
Artefact threat model

partial results

Threat Secured Reason

Clients
Obtaining client secrets ✓ Web configuration isn’t accessible from client

front end
Obtaining refresh tokens ✓ DNOA validates client ID
Obtaining access tokens ✓ Secured in database

Authorisation endpoint
Password phishing by counterfeit AS ✓ Uses HTTPS, educate user about phishing
User unintentionally grants access scope ✓ N/A. Multi-level scope wasn’t supported
Malicious client get existing authorisation ✓ DNOA authorises client before returning auth

code
Open redirector N/A N/A

Token endpoint
Eavesdropping access tokens ✓ Uses HTTPS. Tokens have a short lifetime
Obtaining access tokens AS database ✓ MS SQL is secured by password. Secured

from SQL injection
Disclosure of client credentials ✓ Uses HTTPS
Obtaining client secret from as database ✓ MS SQL is secured by password. Secured

from SQL injection
Obtaining client secret by online guessing ✓ High entropy secrets

Authorisation code
Eavesdropping or leaking authorisation
“codes”

✓ Uses HTTPS, Nonce table ensures one time
use

Obtaining “codes” from AS database ✓ MS SQL is secured by password. Secured
from SQL injection

Online guessing of authorisation “codes” ✓ DNOA validates client and redirect URL
Malicious client obtains authorisation ✓ DNOA validates client and redirect URL
Authorisation “code” phishing ✓ Uses HTTPS
User session impersonation ✓ Uses HTTPS
Autho’n leakage through counterfeit
client

✓ Redirect URL is validated

CSRF attack against redirect-uri ✓ DNOA uses state param to bind requests and
responses

Clickjacking attack against authorisation ✓ AS adds x-frame-options header to the
authorise endpoint

Resource owner impersonation � Would need to deploy multi factor
authentication

DoS attacks that exhaust resources � Would need to add logic to authorisation
server

DoS using manufactured author’n “codes” ✓ DNOA uses state param
Code substitution (OAuth login) ✓ Codes are bound to client IDs

95

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

to the OpenID Connect speciation as it does not provide an id token or token
validation endpoint.

6. Conclusion
Overall, the developed solution performed well. A high level of security was achieved.
The solution conforms to the OAuth 2.0 specification, although there were some
shortcomings when meeting the requirements of the OpenID Connect specification. The
development of the client applications was relatively more straightforward than the
authorisation and resource server. The use of the third-party library DNOA helped
simplify the process. Most major OAuth vendors provide their own client libraries for
consuming their services. Although this was an option for providing SSO with Google
and Facebook, the use of one generic library was better suited to the requirements of the
entire solution. DotNetOpenAuth (DNOA) is a comprehensive library for building a C#
authorisation server. Developing an authorisation server from scratch would have
included complex cryptography and validation. DNOA removed this redundancy.
Though limited in places, DNOA provided a solid infrastructure to build the
authorisation server on. Documentation for DNOA was poor however. Development
relied on assumptions and trial and error. At the time of development, there were few
resources on implementing the library for the 2.0 specification. Ironically, after the
servers were built, Pro ASP.NET Web API Security (Lakshmiraghavan, 2013) was
published, which features a chapter on creating an authorisation server using DNOA.
Though the solution was complete at this stage, the book was used to confirm that the
library had been used correctly. The developed artefact could have been expanded in
many areas, but this was not possible due to the time constraints. Only the mainstream
server side flow grant was implemented. The client side flow and SAML assertion flow
would have been interesting grants to develop, although this would have contributed to
the complexity of the solution. Many large corporations utilise SAML for authenticating
their employees. Extending the solution to support logging in via SAML tokens from
cloud identity providers, such as Ping Identity, would have greatly added to the value of
the artefact.

The environment could have also been improved by adding support for
finer-grained request scope such as breaking down the “UserInfo” scope into
separate fields such as email and birthday. The authorisation and resource servers
contained hard-coded public and private key pairs. This was sufficient for local
testing but a deployed solution would require the key pairs to be derived from X.509
certificates residing on the servers. The authorisation server did not offer a front end
to register client applications. It also did not have a front end to let users revoke
client applications access to their data. These GUIs were not required to test the
OAuth functionality but would be necessary in a deployed environment. Future
work may include contributing to the DNOA open-source project in GitHub. Adding
support for the OpenID Connect specification would benefit the solution and other
DNOA users. When implementing OAuth, developers need to decide which support
library best suits their requirements. Client applications may not need the support of
a library but they do offer built in security and help simply the process. If only one
OAuth vendor, such as Facebook, is going to be consumed by a client application
then it may be best to use Facebook’s own client library rather than a generic library.

ICS
23,1

96

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

This would eliminate the need to cater for Facebook inconsistencies when using a
general library. It also passes the onus of security onto the vendor.

Major vendors, such as Flickr and Twitter, have invested heavily in the OAuth
1.0 specification. It does offer high security through its encrypted and signed
messages but its complexity does make it difficult to integrate with. As more
vendors implement OAuth 2.0, support for 1.0 will likely decrease. To create a rich
set of universally integratable web applications, vendors need to align their OAuth
implementations to ensure all-round compatibility. As we interact with more data
on our smartphones and tablets, in the future, it is likely that an OAuth consent
dialog will be built into mobile devices and become more present. Google’s Android
OS currently offers a native OAuth dialog for confirming access to their own APIs
but a generic OAuth consent UI will likely be developed. It is predicted that Apple’s
iOS will follow suit. As OAuth grants become more ubiquitous on the web, it is likely
that the two-step authentication will be incorporated into grant consent dialogs to
add another layer of security by authenticating users from an unfamiliar location
with SMS codes. As SSO becomes more widespread, it is likely that future internet
users will only have one main account or “presence” in the web. Google, Facebook
and Microsoft are strong contenders in the identity provider race. A disadvantage of
this sole account is that it provides one point of failure for attack. If a user’s Google
account was compromised, then all the linked accounts could also be compromised.
This is why multi-factor authentication will be a necessity in future online account
access.

The Dynamic Client Registration specification will likely improve the whole OAuth
integration process. Giving a client application the ability to register with an OAuth
provider on the fly without any previous configuration or developer intervention will
greatly contribute to the interoperability of web applications.

Throughout the research, Google’s OAuth documentation has been an invaluable
resource. The Google Playground has also been a very useful tool. The Google
Playground web application allows developers to test Google’s OAuth protected
APIs. It helped demystify the abstracted sequence of events that occur in an
authorisation grant. It steps through each request and response and lets the
developer see how each operation is choreographed. An initially complex process
like OAuth is best understood when broken down and demonstrated visually in this
manner. The OAuth framework has many advantages over traditional credential
authentication. It also opens up vast opportunities for integration between
applications. As with any bleeding-edge technology, there are drawbacks and
security concerns that need to be addressed. The developed solution proves that a
reasonably secure OAuth environment can be achieved. The artefact was secured
from almost all the known threats that were applicable. Reaching this level of
protection took time. The OAuth process is complex. The various parameters in the
requests and responses allow for multiple entry points which need secured. Due to
the recent popularity of social media, integrating applications with social networks
has become a sort after commodity. Developers often implement this functionality
without being aware of the security vulnerabilities. As OAuth is complex and
initially daunting, by the time a working authorisation grant has been achieved
security aspects have been overlooked. Even the developed OAuth solution
contained undetected vulnerabilities that were not identified until threat testing.

97

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

This is partly due to the abstraction of events that OAuth provides – “out of sight,
out of mind”. OAuth implementations started to appear while the specification was
still in draft status. The draft was in early stages with recommendations changing
frequently resulting in developers being unsure how to build a secure
implementation whilst wanting to be at the forefront of the movement.

OAuth is flexible, in that it offers extensions to support varying situations and
existing technologies. A disadvantage of this flexibility is that new extensions
typically bring new security exploits. Members of the IETF OAuth Working Group
are constantly refining the draft specifications and are identifying new threats to the
expanding functionality. OAuth provides a flexible authentication mechanism to
protect and delegate access to APIs. It solves the password re-use across multiple
accounts problem and stops the user from having to disclose their credentials to
third parties. Filtering access to information by scope and giving the user the option
to revoke access at any point gives the user control of their data. OAuth does raise
security concerns, such as defying phishing education, but there are always going to
be security issues with any authentication technology. Although several
high-impacting vulnerabilities were identified in industry, the developed solution
proves the predicted hypothesis that a secure OAuth environment can be built when
implemented correctly. Developers must conform to the defined specification and
are responsible for validating their implementation against the given threat model.
OAuth is an evolving authorisation framework. It is still in its infancy and much
work needs done in the specification to achieve stricter validation and vendor
conformity. Vendor implementations need to become better aligned in order to
provider a rich and truly interoperable authorisation mechanism. Once these issues
are resolved, OAuth will be on track for becoming the definitive authentication
standard on the web.

References
Alexa (2013), Top Sites by Category: Regional/Europe/Ireland, available at: www.alexa.com/

topsites/category/Top/Regional/Europe/Ireland (accessed 14 March 2013).

Bansal, C., Bhargavan, K., Delignat-Lavaud, A. and Maffeis, S. (2013), “Keys to the cloud: formal
analysis and concrete attacks on encrypted web storage”, Second International Conference
on Principles of Security and Trust – POST, Rome, Italy, pp. 126-146.

Bansal, C., Bhargavan, K. and Maffies, S. (2012), “Discovering concrete attacks on website
authorization by formal analysis”, IEEE 25th Computer Security Foundations Symposium,
Harvard University, Cambridge, MA, pp. 247-262.

Boshmaf, Y., Muslukhov, I., Beznosov, K. and Ripeanu, M. (2011), “The socialbot network: when
bots socialize for fame and money”, 2011 Annual Computer Security Applications
Conference, Orlando, FL, pp. 93-102.

Browser Auth (2013), Channel-Bound Cookies, available at: www.browserauth.net/channel-
bound-cookies (accessed 4 March 2013).

Campbell, B. and Mortimore, C. (2012), SAML 2.0 Bearer Assertion Profiles for OAuth 2.0,
available at: http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-15 (accessed 20
January 2013).

ICS
23,1

98

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.alexa.com/topsites/category/Top/Regional/Europe/Ireland
http://www.alexa.com/topsites/category/Top/Regional/Europe/Ireland
http://www.browserauth.net/channel-bound-cookies
http://www.browserauth.net/channel-bound-cookies
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-15
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-36830-1_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-36830-1_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCSF.2012.27
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2076732.2076746
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2076732.2076746

Campbell, B., Mortimore, C. and Jones, M. (2012), JSON Web Token (JWT) Bearer Token Profiles
for OAuth 2.0, available at: http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-04
(accessed 20 January 2013).

Campbell, B., Mortimore, C., Jones, M. and Goland, Y. (2013),AssertionFramework forOAuth2.0, available
at: http://tools.ietf.org/html/draft-ietf-oauth-assertions-10 (accessed 20 January 2013).

Cloud Identity (2011), OAuth Dynamic Client Registration, available at: https://dev.cloudidentity.co.uk/
confluence/display/CI/OAuth�Dynamic�Client�Registration (accessed 2 March 2013).

Connolly, P.J. (2010), “OAuth is the ‘hottest thing’ in identity management”, eWeek, Vol. 27 No 9,
pp. 12-14.

Dinesha, A. and Agrawal, K. (2012), “Multi-level authentication technique for accessing cloud
services”, International Conference on Computing, Communication and Applications, 22-24
February, Dindigul, Tamil Nadu.

Duggan, G. (2012), “Rational security: modelling everyday password use”, International Journal of
Human-Computer Studies, Vol. 70 No. 6, pp. 415-431.

Duggan, M. and Brenner, J. (2013), “The demographics of social media users – 2012”, Pew
Research Center, Washington, DC.

Gomaa, I., Salama, G. and Imam, I. (2012), “Biometric OAuth service based on finger-knuckles”,
Computer Engineering & Systems, 27-29 November, Cairo, pp. 170-175.

Google Chrome (2013), “Google Chrome privacy whitepaper”, available at: www.google.com/intl/
en/chrome/browser/privacy/whitepaper.html (accessed 14 April 2013).

Grosse, E. and Upadhyay, M. (2013), “Authentication at scale”, IEEE Security & Privacy, Vol. 11
No. 1, pp. 15-22.

Hardt, E. (2012), The OAuth 2.0 Authorization Framework, available at: http://tools.ietf.org/html/
rfc6749 (accessed 24 November 2012).

Hardt, E. and Jones, M. (2012), The OAuth 2.0 Authorization Framework: Bearer Token Usage,
available at: http://tools.ietf.org/html/rfc6750 (accessed 29 March 2013).

Honan, M. (2012), How Apple and Amazon Security Flaws Led to My Epic Hacking, available at:
www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking (accessed 4 December
2012).

Huang, L., Moshchuk, A., Wang, J., Schechter, S. and Jackson, C. (2012), “Clickjacking: attacks and
defenses”, 21st USENIX Security Symposium, Bellevue, WA, pp. 413-428.

IETF (2012), “Web authorization protocol (OAuth) – Charter”, available at: http://datatracker.ietf.
org/wg/oauth/charter (accessed 2 March 2013).

Jannikmeyer, P. (2013), “Number news”, Engineering & Technology, Vol. 8 No. 2, p. 20.

Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer, J., Sakimura, N. and Tarjan, P. (2011), JSON
Web Token (JWT), available at: http://tools.ietf.org/html/draft-jones-json-web-token-10
(accessed 21 January 2013).

Lakshmiraghavan, B. (2013), Pro ASP.NET Web API Security, 1st ed., Apress, New York, NY.

Leiba, B. (2012), “OAuth web authorization protocol”, IEEE Internet Computing, Vol. 16 No. 1,
pp. 74-77.

Lodderstedt, T., McGloin, M. and Hunt, P. (2013), OAuth 2.0 Threat Model and Security
Considerations, available at: http://tools.ietf.org/html/rfc6819 (accessed 29 March 2013).

99

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-04
http://tools.ietf.org/html/draft-ietf-oauth-assertions-10
https://dev.cloudidentity.co.uk/confluence/display/CI/OAuth+Dynamic+Client+Registration
https://dev.cloudidentity.co.uk/confluence/display/CI/OAuth+Dynamic+Client+Registration
http://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html
http://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking
http://datatracker.ietf.org/wg/oauth/charter
http://datatracker.ietf.org/wg/oauth/charter
http://tools.ietf.org/html/draft-jones-json-web-token-10
http://tools.ietf.org/html/rfc6819
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ijhcs.2012.02.008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ijhcs.2012.02.008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMSP.2012.162
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4302-5783-7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMIC.2012.11
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICCES.2012.6408506
http://www.emeraldinsight.com/action/showLinks?crossref=10.1049%2Fet.2013.0223
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICCCA.2012.6179130
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICCCA.2012.6179130

Noureddine, M. and Bashroush, R. (2011), “A provisioning model towards OAuth 2.0 performance
optimization”, 2011 10th IEEE International Conference on Cybernetic Intelligent Systems,
New York, NY, pp. 76-80.

OAISIS (2008), Security Assertion Markup Language (SAML) V2.0 Technical Overview, available
at: www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-
02.pdf (accessed 21 January 2013).

Obrenovic=, Z. and den Haak, B. (2012), “Integrating user customization and authentication: the
identity crisis”, Security & Privacy, Vol. 10 No. 5, pp. 82-85.

Richer, J., Bradley, J., Jones, M. and Machulak, M. (2013), OAuth Dynamic Client Registration Protocol,
available at: http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-07 (accessed 3 April 2013).

Richer, J., Mills, W. and Tschofenig, H. (2013), OAuth 2.0 Message Authentication Code (MAC)
Tokens, available at: http://tools.ietf.org/pdf/draft-ietf-oauth-v2-http-mac-03.pdf (accessed
23 March 2013).

Sakimura, N., Bradley, J. and Jones, M. (2013), OpenID Connect Dynamic Client Registration 1.0 –
Draft 14, available at: http://openid.net/specs/openid-connect-registration-1_0.html
(accessed 3 April 2013).

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and Mortimore, C. (2013), OpenID Connect
Basic Client Profile 1.0 – Draft 23, available at: http://openid.net/specs/openid-connect-
basic-1_0.html (accessed 24 January 2013).

SalesForce (2012), SAML Assertion Flow, available at: http://help.salesforce.com/help/doc/en/
remoteaccess_oauth_SAML_bearer_flow.htm (accessed 25 February 2013).

Shehab, M. and Marouf, S. (2012), “Recommendation models for open authorization”, IEEE
Transactions on Dependable and Secure Computing, Vol. 9 No. 4, pp. 583-595.

Sun, S. and Beznosov, K. (2012), “An empirical analysis of OAuth SSO systems”, 2012 ACM
Conference on Computer and Communications Security, Raleigh, NC, pp. 378-390.

Twitter (2012), PIN-based Authorization, Available at: https://dev.twitter.com/docs/auth/pin-
based-authorization (accessed 11 February 2013).

Further reading
Alexa (2013), Huffingtonpost.com Site Info, available at: www.alexa.com/siteinfo/huffingtonpost.

com (accessed 16 March 2013).

Boshmaf, Y., Muslukhov, I., Beznosov, K. and Ripeanu, M. (2012), “Key challenges in defending
against malicious socialbots”, 5th USENIX Conference on Large-Scale Exploits and
Emergent Threats – LEET, San Jose, CA.

Boyd, R. (2012), Getting Started with OAuth 2.0., 1st ed., O’Reilly Media, CA.

Facebook (2012), Login for Server-side Apps, available at: https://developers.facebook.com/docs/
howtos/login/server-side-login/ (accessed 22 February 2013).

Ghazizadeh, E., Zamani, M., Manan, J. and Pashang, A. (2012), “A survey on security issues of
federated identity in the cloud computing”, 2012 IEEE 4th International Conference on
Cloud Computing Technology and Science, Taipei, Taiwan, pp. 562-565.

Google (2012), Using OAuth 2.0 to Access Google APIs, available at: https://developers.google.
com/accounts/docs/OAuth2 (accessed 25 February 2013).

GoogleDevelopers (2012), Google I/O 2012 – OAuth 2.0 for Identity and Data Access, available at:
www.youtube.com/watch?v�YLHyeSuBspI (accessed 12 December 2012).

ICS
23,1

100

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-07
http://tools.ietf.org/pdf/draft-ietf-oauth-v2-http-mac-03.pdf
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html
http://help.salesforce.com/help/doc/en/remoteaccess_oauth_SAML_bearer_flow.htm
http://help.salesforce.com/help/doc/en/remoteaccess_oauth_SAML_bearer_flow.htm
https://dev.twitter.com/docs/auth/pin-based-authorization
https://dev.twitter.com/docs/auth/pin-based-authorization
http://www.alexa.com/siteinfo/huffingtonpost.com
http://www.alexa.com/siteinfo/huffingtonpost.com
https://developers.facebook.com/docs/howtos/login/server-side-login/
https://developers.facebook.com/docs/howtos/login/server-side-login/
https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
http://www.youtube.com/watch?v=YLHyeSuBspI
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCloudCom.2012.6427513
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCloudCom.2012.6427513
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCIS.2011.6169138
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTDSC.2012.34
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTDSC.2012.34
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMSP.2012.119

Liu, K. and Xu, K. (2012), “OAuth based authentication and authorization in open telco API”, 2012
International Conference on Computer Science and Electronics Engineering, Hangzhou,
China, pp. 176-179.

Pai, S., Sharma, Y., Kumar, S., Pai, R. and Singh, S. (2011), “Formal verification of OAuth 2.0 using
alloy framework”, IEEE International Conference on Communication Systems and
Network Technologies 2011, Katra, Jammu, pp. 655-659.

Ping Identity (2011), The essential OAuth primer: understanding OAuth for securing cloud APIs,
available at: www.innovation-district.com/wp-content/uploads/2012/04/The-Essentials-of-
OAuth.pdf (accessed 17 December 2012).

Corresponding author
Kevin Curran can be contacted at: kj.curran@ulster.ac.uk

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

101

OAuth 2.0
framework

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://www.innovation-district.com/wp-content/uploads/2012/04/The-Essentials-of-OAuth.pdf
http://www.innovation-district.com/wp-content/uploads/2012/04/The-Essentials-of-OAuth.pdf
mailto:kj.curran@ulster.ac.uk
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICCSEE.2012.275
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICCSEE.2012.275
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCSNT.2011.141
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCSNT.2011.141

This article has been cited by:

1. Cheng-Li Chen, Maiga Chang, Hung-Yi ChangEducational Resource Information
Communication API (ERIC API): The Case of Moodle and Online Tests System Integration
225-229. [CrossRef]

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

28
 0

7
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1007/978-981-10-2419-1_31

	Security evaluation of the OAuth 2.0 framework
	1. Introduction
	2. OAuth
	2.1 The demand for OAuth
	2.2 OAuth and identity providers
	2.3 Future of OAuth

	3. Exploiting OAuth
	3.1 Real-world OAuth exploit tests
	3.1.1 Popular online news site 1
	3.1.2 Popular news site 2
	3.1.3 Popular news site 3

	4. OAuth framework implementation
	4.1 Design
	4.2 Implementation

	5. Evaluation
	6. Conclusion
	References

