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of an attack graph analysis tool

Teodor Sommestad
Department of Information Security and IT Architecture,

Swedish Defence Research Agency (FOI), Linköping, Sweden, and

Fredrik Sandström
Department of Computer Science, Umeå University, Umeå, Sweden

Abstract
Purpose – The purpose of this paper is to test the practical utility of attack graph analysis. Attack
graphs have been proposed as a viable solution to many problems in computer network security
management. After individual vulnerabilities are identified with a vulnerability scanner, an attack
graph can relate the individual vulnerabilities to the possibility of an attack and subsequently analyze
and predict which privileges attackers could obtain through multi-step attacks (in which multiple
vulnerabilities are exploited in sequence).
Design/methodology/approach – The attack graph tool, MulVAL, was fed information from the
vulnerability scanner Nexpose and network topology information from 8 fictitious organizations
containing 199 machines. Two teams of attackers attempted to infiltrate these networks over the course
of two days and reported which machines they compromised and which attack paths they attempted to
use. Their reports are compared to the predictions of the attack graph analysis.
Findings – The prediction accuracy of the attack graph analysis was poor. Attackers were more than
three times likely to compromise a host predicted as impossible to compromise compared to a host that
was predicted as possible to compromise. Furthermore, 29 per cent of the hosts predicted as impossible
to compromise were compromised during the two days. The inaccuracy of the vulnerability scanner and
MulVAL’s interpretation of vulnerability information are primary reasons for the poor prediction
accuracy.
Originality/value – Although considerable research contributions have been made to the
development of attack graphs, and several analysis methods have been proposed using attack graphs,
the extant literature does not describe any tests of their accuracy under realistic conditions.

Keywords Assessments, Security, Computer security, Computer networks, Attack graphs

Paper type Research paper

1. Introduction
Securing computer networks is a complicated and difficult task. Computer networks in
today’s enterprises often consist of many hosts. These hosts run many different
operating systems and software applications of different versions and configurations.
Experience suggests that in a typical enterprise, a considerable portion of these hosts
will contain publicly known vulnerabilities that may be exploited to obtain user and
host privileges in the organization. However, not all vulnerabilities are equally
important to remediate. Some can be used to provide the attacker with all of the
privileges of a host (e.g. root access on a Linux machine) and some can only be used to
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provide or impact a subset of them (e.g. reading certain parts of the memory in a
machine). Furthermore, vulnerabilities may require certain preconditions to be met to be
exploitable. For example, it might be required that the attacker be able to interact with
the machine physically or that the attacker already possess the credentials of some user
in the network. As a result of factors such as these, some vulnerabilities may be difficult
for an outsider to exploit on public networks and some may be easily exploited.
Additionally, the successful exploitation of some vulnerabilities may provide access
that makes it possible to exploit other vulnerabilities that are not directly exploitable
from public networks. Because of these contingencies, analyzing how to prioritize
remediation options or determine the present risks can become overwhelmingly
complex.

Attack graphs have been designed to assist decision-makers in this analysis.
According to Heberlein et al. (2004), “one of the primary focuses of the attack graph
efforts is to identify how an adversary can chain together vulnerability exploitation to
increase his capability”. An attack graph aims to answer questions such as the following:

Q1. To which hosts can an attacker on the Internet gain access?

Q2. In which ways can attackers gain root access to host X, Y or Z?

Q3. Which attacks will become impossible if the firewall is set to block port 80?

Q4. Which attacks will become impossible if all instances of CVE-2014-0497 are
removed?

Clearly, a tool that is able to answer questions of this sort will support a decision-maker
who is considering different remediation options or performing a risk analysis. In
addition, this type of tool can also be used in conjunction with other techniques, such as
intrusion detection systems (Roschke et al., 2010) or forensics tools (Liu et al., 2012), to
improve their analysis capabilities. Many research papers have been produced on attack
graphs, and several software tools have been developed. However, the practical utility
and validity of these tools in a realistic setting is unclear, and there are reasons to doubt
that attack graphs yield accurate results. For example, the utility of the attack graph
approach is dependent on the availability of information about the analyzed computer
network and the vulnerabilities associated with it. The designers of tools aiming to
support decision-makers propose that such information should be gathered with the
help of vulnerability and network scanners (Ou et al., 2005; Jajodia, 2007; Artz, 2002).
However, it is known that vulnerability scanners are limited in their accuracy and can
only detect approximately half of the vulnerabilities in a network (Holm et al., 2011).
Because of such potential issues, this paper attempts to answer the research question:

RQ. How well do attack graphs predict the success or failure of attacks under
realistic conditions?

This paper presents a test of MulVAL (Ou et al., 2005), one of the more commonly cited
and more mature attack graph tools. In this test, MulVAL is fed network configuration
data and vulnerability data collected using the Nexpose vulnerability scanner (from
Rapid7) and is used to analyze eight computer networks of different size and complexity.
The output of this analysis is compared to observations of successful attacks performed
during an offensive cyber security exercise. The accuracy of MulVAL’s predictions is
reported in terms of how well the predictions correspond to the observations made by
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attackers on successful and unsuccessful attacks. To our knowledge, this is the first
empirical test of an attack graph tool against observed attack attempts. Based on these
empirical results, suggestions are made as to how predictions can be improved.

The outline of this paper is as follows. Section 2 gives an overview of attack graphs,
with a particular emphasis on the variant used in MulVAL. Section 3 describes the
methods used in the test. Section 4 presents the results, which are subsequently
discussed in Section 5.

2. Attack graphs
Multiple articles provide reviews and overviews of different attack graph approaches.
Lippmann and Ingols (2005) reviewed existing approaches in 2005 and classified them
based on how they viewed the goals of the attackers, how they were generated and how
well they scaled. Problems were identified with respect to scalability, obtaining attack
(or vulnerability) details and identifying what attackers could connect to from different
locations in the network. Multiple methods of representing attack graphs have evolved
(Alhomidi and Reed, 2012). Heberlein et al. (2012) offers a canonical representation of
attack graphs, illustrated in Figure 1.

In this representation, the nodes of the graph represent the state of the entire
computer network at a given time. Here, a state characterizes both the state of the
computer network itself (including hosts, software, configurations, authorized users and
vulnerabilities) and the identities that the attacker owns (i.e. user accounts under the
attacker’s control). With this state space as a starting point, an attack graph shows how
the attacker can move from one state to another using the vulnerabilities and controlled
identities present in the network. An attacker can thus either change the state of the
network itself (e.g. by reconfiguring a firewall) or obtain a new identify (e.g. by stealing
a user’s password or session).

Heberlein et al. (2004) also describe some features of the analyses used in attack graph
approaches. These features can be summarized as follows:

• Monotonic or non-monotonic exploits: To simplify the analysis and offer
scalability, it is commonly assumed that exploits are monotonic. This assumption
means that is once the attacker has obtained some identity, that identity is never
lost. MulVAL assumes that exploits are monotonic.

• Single path or all paths: For simplicity, the analysis is sometimes limited to
generating a single attack path, that is the analysis stops as soon as one possible
path to the specified state is found. MulVAL finds all paths.

Network state 1=Yes
Network state 2=No
Network state 3=No

...

Identity1=Yes
Identity2=No
Identity3=No

...

Network state 1=Yes
Network state 2=No
Network state 3=No

...
Identity1=Yes
Identity2=Yes
Identity3=No

...

Network state 1=Yes
Network state 2=No
Network state 3=Yes

...
Identity1=Yes
Identity2=No
Identity3=Yes

...

Source: Adapted from Heberlein et al. (2012)

Figure 1.
A canonical
representation of
attack graphs, with
transitions between
states in the network
and identities
controlled by the
attacker
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• Forward or backward chaining: In a forward chaining technique, the analysis
starts with an assumption of the current state and assesses which states are
reachable. In a backward chaining technique, an end-state of interest is defined,
and the analysis assesses which states may lead to that end-state. MulVAL uses
backward chaining.

The mature attack graph tools from academia, namely, MulVAL (Ou et al., 2005; Homer
and Ou, 2009), the TVA tool (Jajodia, 2007; Noel et al., 2009; Jajodia and Noel, 2010) and
NetSPA (Artz, 2002; Lippmann, 2002; Chu et al., 2010; Ingols et al., 2009), share the same
features, except that the TVA tool uses forward chaining. There are, however, other
differences between these tools. For example, MulVAL uses Datalog rules to specify its
input to Prolog, whereas the TVA tool uses more loosely defined input formats and
operates on matrices representing the attack steps. On a conceptual level, it can be
argued that the tools share the same problems and weaknesses, and the accuracy of one
of these tools ought to reflect the accuracy of the other tools. Thus, while MulVAL is
used in this test, the results ought to be generalizable to similar attack graph
approaches.

Theoretically, there is little reason to question the validity of the inferences produced
by any of the attack graph tools. If the tools’ algorithms are provided correct input data,
then they will most likely produce correct output data and yield accurate results.
Unfortunately, fully correct input data are rarely available to the decision-makers in
enterprises, leading to the question of how accurate results will be under realistic
conditions. No reports detailing tests of the accuracy under the conditions proposed in
research papers, in which the analyses describe attack paths based on input from
vulnerability scanners, can be found for any of these tools. The paper that comes the
closest to providing a test of accuracy is the test performed by Zhang et al. (2011). In this
test, seven servers were assessed using MulVAL on several occasions. The different
results produced by the tool on these different occasions were correlated with, and
explained by, changes in the state of the computers (e.g. new vulnerabilities).
Consequently, the test assessed the internal validity of the tool but did not assess its
validity in practice or how well it predicted the success of real attacks.

3. Methods and materials
This section describes the methods and materials used in the test. Section 3.1 describes
the criteria used to assess the accuracy and utility of the predictions and the analysis
method. Section 3.2 describes the computer networks on which the predictions were
made. Section 3.3 describes the attackers in the test, the scenario by which they were
guided and the actual attacks they performed. Section 3.4 describes the tool
configuration and how the output of the tool was codified.

3.1 Assessment criteria
This test aimed to evaluate the accuracy of the results produced by an attack graph tool.
There are different ways to view the output of such tools, with implications for the
assessment criteria they ought to be evaluated against. These issues are discussed
below.

First, the inclusion or exclusion of the paths in a graph may be performed differently.
It might be expected that the attack graph will:
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• show all paths that can definitely be used;
• only exclude paths that definitely cannot be used; or
• aim to assign all possible attack attempts to the class that fits best.

In this test, we assume that the attack graphs adhere to the third option and identify both
attacks that are possible and attacks that are impossible. This criterion is well in line
with the common view of attack graphs. For example, Alhomidi and Reed (2012) state
that attack graphs “show all ways of how an attacker violates a security policy”.

Second, the output can be interpreted in a possibilistic or probabilistic fashion. When
the output is interpreted possibilistically, all attacks with a likelihood of success above
zero are included in the attack graph, even if the likelihood that they can be exploited in
practice is infinitely small. In a probabilistic interpretation, it is expected that attempts
to perform the attack steps in the graph are likely to succeed, for example, because they
are more likely than some threshold value. In any of these interpretations, it should be
expected that the inclusion of an attack path and the possibility of compromising a
machine correspond to a higher success rate than the excluded paths and those
machines for which there is no possibility of compromise and that all successful attacks
are included in the attack graph. Put differently, a possibilistic method should at least
be able to predict when an attacker will fail any attempted attack and include all
successful attacks. There should therefore be an agreement between the attack graph’s
predictions and the observed success rates.

Third, one may require correctness at different levels of abstraction. These levels of
abstraction may vary from the lowest level, of individual exploits and ports, to higher
levels, such as when the output (e.g. the number of paths) is considered to provide only
indications or examples of how vulnerable a network is. This assessment focuses on the
ability to predict which machines attackers can execute code on and the abstraction level
of hosts and their attack paths. This is the attack type and the abstraction level used in
the vast majority of all proposals related to attack graphs. The tool is assessed by
comparing the attack paths produced by the tool with the attackers’ observations and by
producing a confusion matrix for the predictions (i.e. the possible and impossible attack
paths) and the (successful and failed) attacks against designated target machines.

3.2 Attacked computer networks
In this test, over a thousand virtual machines were deployed, together forming computer
networks of various sizes and complexity to represent a synthetic threat environment.
Of these machines, 199 machines in 8 fictitious organizations of different types were
monitored and assigned as targets. The 199 machines used 88 different virtual machine
templates and were all configured differently in some regard, for example with respect
to users. Some organizations’ networks consisted of only a few computers, representing
a small organization or personal network; other organizations’ networks consisted of
several VLANs with firewalls limiting the access possibilities between them. Figure 2
illustrates one of the monitored computer networks.

Multiple operating systems and applications were instantiated in these networks.
Different patch levels and versions of Windows (including Windows 2000, XP and 7 and
Windows Server 2003 and 2008) and several versions of Linux-based distributions
(including Gentoo, Debian and Ubuntu) were utilized. These ran multiple desktop and
server applications. Among others, the client-side applications included different
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versions of Adobe Reader, software development tools, such as Visual Studio, Internet
Explorer and Firefox, and applications of the Microsoft Office suite or Open Office.
Server-side applications included different versions of Wordpress, phpMyAdmin, IIS,
domain controllers, network infrastructure services (e.g. DNS and DHCP) and FTP
servers. The aim was that the deployed applications should be representative of the
standard software found in most enterprises’ computer networks. However, to enable a
meaningful exercise for the attacking teams and to produce enough data for the test,
these applications were more vulnerable than the ones found in the typical enterprise
(i.e. they had not been updated and patched recently). Another difference between this
environment and the computer networks typical of organizations is the lack of
custom-built applications (e.g. interconnected spreadsheet applications) and larger
enterprise systems (e.g. ERP systems).

To allow interaction with the users on the machines, scripts implemented in Auto IT
(Jonathan Bennett AutoIt Consulting Ltd, 2013) emulated user actions. These scripts
used the applications to send emails to each other, surf Web sites in the environment,
open emails and attachments and access files on local machines. To produce a realistic
behavioral pattern, the emulated behaviors were performed according to a predefined
instruction list created based on the actions of real users in an office environment. The
instruction list was produced by collecting the historic usage of Web browsers and
desktop applications and the outgoing emails of 17 users in 3 organizations (2 research
organizations and 1 game developer). To generate a variety of user behavior, the historic
records (covering months to years of computer usage) were split into one-week

Figure 2.
Example of an

organization
monitored and

targeted in the test.
Circular nodes are

network interfaces,
and rectangular

nodes are machines.
The globe is the link

to the “Internet” of
the test environment
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instruction sets, which allowed thousands of instruction lists (i.e. “users”) to be created.
The activities performed by the scripted user agents, thus, followed the same sequence
and had the same intensity as real users during a typical workweek. However, the
agents were dumb in the sense that they did not engage in dialogs. Their responses to
the emails sent to them were to click all links and open all attachments. Thus, they were
always cooperative as seen from the attackers’ point of view. Furthermore, they only
performed standard user behaviors; more sporadic tasks, such as the installation of
custom software applications or administrative tasks, were not performed in this test.

3.3 Attackers, scenario and attacks
Two independent teams attacked the computer networks to find secret keys hidden
within them. One team consisted of security researchers from the Swedish Defence
Research Agency and the other team consisted of security specialists from the Swedish
Armed Forces Network and Telecommunications Unit. Both teams restricted
themselves to using only publicly available tools and publicly known exploits, for
example the tools and exploits packed with the Backtrack 5 operating system.

The attacks started at noon on a Tuesday in November of 2012 and continued until
noon on Thursday of the same week, with no scheduled interruptions or pauses. The
attackers had no prior knowledge of which machines had secret keys hidden in them but
were told that they were in some of the eight computer networks. Their mission was to
compromise machines and extracts the keys. As a result, a mix of reconnaissance and
penetration activities was conducted. The 2 teams logged 134 penetration attempts and
31 network scans aimed at the networks monitored in this test. Additionally, over 100
other types of reconnaissance activities were undertaken, for example ARP scans. These
penetration attempts led to 40 successfully compromised machines. In all of these,
privileges were obtained to execute code as root, system administrator or similar.

The reconnaissance activities and attacks, together with their successes, were
recorded by each attacker in a log. The accuracy of these logs was assessed by
comparing them to recordings made by screen capture software installed on the
machines used by some of the attackers. These comparisons showed very high
agreement between what was done and what was logged. The deviations identified
concerned reconnaissance activities, for example network scans.

3.4 Tool configuration and input data
The MulVAL project is open source and available for download (Ou et al. (2013)).
MulVAL requires information on vulnerabilities, subnets, users and host access control
lists as input. For each vulnerability, the following fields are specified: the hostname,
common vulnerabilities enumeration ID, program (target service or application), range
list (if it is remotely or locally exploitable), type of loss (textual), severity (high/medium/
low), access control requirement (high/medium/low), service and port. Subnets are
described by the hosts they include, and the host access control lists are described by
which protocol and on which port entities (i.e. hosts or subnets) they are allowed to
communicate. MulVAL also makes it possible to include users and their accounts in the
analysis. These users can be labeled as incompetent, meaning they are susceptible to
social engineering attacks. In this test, machines with active user agents were labeled as
incompetent to reflect that the users opened all email attachments and clicked links
indiscriminately.
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Descriptions of the systems used in this test were provided to MulVAL by extracting
data from a) the system configuration files used to instantiate the computer networks in
the cyber range and b) vulnerability scans of the targeted hosts, produced by Nexpose.
The system configuration files were validated to provide a reliable source of information
and were used for all information except the vulnerabilities and host access control lists.
Vulnerability scans were used to collect information about the vulnerabilities in the
hosts. These scans were performed repeatedly on the individual vulnerabilities on each
of the deployed hosts (88 different variants on 199 machines) in a controlled
environment to ensure a reliable output. The host access control lists were created based
on the IP table files in the deployed firewalls and the settings in the host firewalls.

To perform these steps and support the analysis, a Web-based tool was created that
imported the system configuration files and vulnerability scans and performed
the analysis of interest. MulVAL was set to analyze all the ways an attacker located on
the Internet (i.e. outside the computer networks) and could execute code on the hosts
in the targeted computer networks using different privilege levels. MulVAL operates on
the root, user and less precise someUser privileges. Backward chaining was then used to
determine all of the ways in which the machines could be reached. Individual attack
paths and attack steps in the resulting attack graph were identified through a
breadth-first search on a digraph produced based on the XML file generated by
MulVAL. The networks used in this test generated a considerable number of possible
paths. With a search depth of 60 steps, 495,360 existing attack paths were found for the
8 networks and 199 machines. These steps were compared to the steps attackers used
when evaluating the prediction accuracy.

4. Results
The prediction accuracy of MulVAL is presented in Section 4.1. As will be shown, the
accuracy of MulVAL’s prediction poorly fits the attackers’ successes and failures.
Section 4.2 goes a step further and investigates the reasons for MulVAL’s incorrect
predictions.

4.1 Prediction accuracy
All attacks performed by the attackers in this test led to the ability to execute code at the
highest privilege level (viz. root, system administrator or similar) on the targeted
machines. Table I summarizes the results and the relationships between attackers’
successes in compromising machines and the tool’s predictions of the ability to execute
code on machines at the highest privilege level (called root in MulVAL). In other words,
Table I describes the relationship between the attackers’ ability to obtain root privileges
on machines and the tools predictions for obtaining root privileges on the machines.

As Table I shows, the attackers successfully compromised 40 hosts in the computer
networks as root. Only 6 (15 per cent) of these hosts were compromised using an attack

Table I.
Confusion matrix of

MulVAL’s
predictions for code
execution privileges

as root and attackers
success at obtaining

such privileges

Code execution by attackers as root
Yes No

Prediction for code execution as root
Possible 6 74
Impossible 34 85
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path included in MulVAL’s output. The attackers failed to compromise 159 of the hosts
they probed, with 85 (53 per cent) of these predicted to be impossible by MulVAL. The
attacker could only execute code as root on 6 (8 per cent) of the 80 machines that
MulVAL predicted could be compromised to give root-level code execution privileges.
Thus, 74 (93 per cent) of the machines that MulVAL predicted were possible to obtain
root access on were not compromised. Of the 119 machines MulVAL predicted as
impossible to compromise, 34 (29 per cent) were successfully compromised as root. In 3
of these 34 cases, MulVAL reported the machine as reachable but failed to describe a
path that included the exploited vulnerability.

4.2 Reasons for incorrect predictions
The successful attacks missed by MulVAL can be explained by a combination of
inaccurate vulnerability scans and inaccurate interpretations of vulnerability
information. This section provides further details on this.

MulVAL requires information about the vulnerabilities in the computer network.
This information is typically, as in this case, collected using a network vulnerability
scanner. As could be expected, the imperfect information provided by the vulnerability
scanner influences the results negatively. All 34 hosts reported as false negatives in
Table I were compromised using a vulnerability Nexpose did not report. However, this
is only a part of the explanation. If these exploited vulnerabilities that Nexpose missed
are manually added to the scan results, then only 7 of the 34 become true positives. The
remaining 27 machines are still assessed as impossible to execute code on with root
privileges, but all are possible to execute code on with lower privileges. The reason for
this is the way MulVAL interprets and processes vulnerability information.

All the vulnerabilities missed by the scanner (CVE-1999-0504, CVE2003-0352,
CVE-2006-3439, CVE-2007-3039, CVE-2007-1748, CVE-2008-4250 and CVE-2010-0478)
are known to be able to yield root/administrator/system privileges without subsequent
attacks that yield escalate privileges. An indication of this is that all but one
(CVE-1999-0504) are marked as having full impact on confidentiality, integrity and
availability in the US National Vulnerability Database. However, MulVAL labels these,
and all other remote exploits, as yielding the access level of someUser. Only local
exploits are labeled as giving root privileges. In fact, further inspection of the data shows
that none of the 13 true positives obtained with the corrected vulnerability scans were
predicted entirely correct. All these attacks involved a privilege escalation attack that
increased the someUser privileges to root privileges or reused root-level accounts
reached elsewhere in the attack graph.

If vulnerabilities are added manually and MulVAL’s interpretation is overridden so
that they yield root-level privileges, then all 40 successful attacks are predicted. All 40
are also predicted as possible to compromise if it is judged as sufficient that MulVAL
identifies that code can be executed with some privileges (i.e. root-level privileges are not
required); however, under such conditions, the vast majority of machines not
compromised are also predicted as possible to compromise. Thus, in summary, a
combination of missing vulnerability information and poor processing of vulnerability
information explains the false negatives.

The 74 false positives are more problematic to find the reason for in this test.
When attackers fail to compromise a machine, this provides a clear indication that
the machine is more difficult to compromise than the other machines that were
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compromised. However, their failure does not mean that attacks are impossible to
accomplish. Because of this, it is unclear how many of the 74 false positives for
root-level access would have been true positives in another test. The 74 false
positives include predictions of attacks that were attempted and failed, but it also
includes cases where the attackers scanned the host but failed to find an attack
worth trying. Furthermore, typical attacks performed against the 74 machines are
password-guessing attacks against SSH logins, malware attached to email and
exploitation of Web application vulnerabilities. Thus, while attackers tried to
compromise the machines, they sometimes did not find a path at all, and they rarely
tried a stable exploit included in MulVAL’s attack paths.

5. Discussion and future work
Attack graph tools such as MulVAL are easy to use. Provided that host access control
lists can be produced (e.g. from firewall rules) and vulnerability information can be
collected (using a vulnerability scanner), the tools can perform their analysis. The
output of the analysis contains both a list of the privileges each attack leads to (e.g. on
which machines the attack can execute code) and a full graph of the attacks providing
those privileges (e.g. the software vulnerabilities exploited). A decision-maker may try
to work with this information directly or add an analysis technique on top of the attack
graph tool’s output. For example, critical paths can be identified to produce a prioritized
list of mitigation options using ranking algorithms, as described in Sawilla and Ou
(2008). Given the sheer number of paths that are produced (almost 500,000 in this test),
such post-analysis methods are likely to be needed to make the analysis results
comprehensible.

This test did not investigate techniques that could build on attack graphs or how
the techniques could influence the analysis results. Instead, the test directly investigated
the accuracy of MulVAL when used in combination with a vulnerability scanner. The
accuracy of such an analysis would serve as the foundation for analysis methods based
on attack graphs. Unfortunately, the results show that MulVAL failed to predict which
attacks red teams could accomplish during a two-day exercise:

• The red teams were three times as likely to accomplish what MulVAL predicted
as impossible (29 per cent success rate) as to accomplish attacks along paths
MulVAL predicted as possible (8 per cent).

• Only 6 (8 per cent) of the 80 machines MulVAL predicted as possible to obtain root
level privileges on were comprised during the 48 hours.

This test was performed to answer the research question:

RQ. How well do attack graphs predict the success or failure of attacks under
realistic conditions?

Given the results of this test, the answer to that question is very poorly. The primary
reasons for the false negatives are reliance on vulnerability scanners and inaccurate
interpretation of vulnerabilities provided by them. Further discussions of the results
and conditions that may have skewed the results are discussed in Section 5.1 below. In
Section 5.2, recommendations to researchers are given.
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5.1 Possible explanations for poor accuracy
There are several possible explanations for the poor performance of the attack graph
tool in the test in addition to the issues with vulnerability information and privilege
levels described above. Some of these can be seen as excuses for why this particular test
produced an unsatisfying result; others are related to the test criteria and the general
properties of attack graphs. In the paragraphs below, some presumed objections to the
results are stated (in italics) together with a response to the objection.

5.1.1 The attackers in this test were unrepresentative of the threat scenario in which
attack graphs are supposed to be used. It is true that the attackers are of a certain type,
and they are not representative of the attackers threatening enterprises in general. For
example, there were no malware writers, botnet herds or security-illiterate disgruntled
employees involved in this test. However, the type of threat for which MulVAL produces
predictions has not been defined, requiring interpretations of its scope. Based on the
reasoning provided in articles on MulVAL and similar tools, it is reasonable to assume
that attack graphs (and MulVAL) should work when there is a match between the
attacks and vulnerabilities modeled and the attacks and vulnerabilities the threat is
capable of finding, that is when the vulnerabilities fed into MulVAL are those that the
attackers might exploit. In this test, in which the attackers were limited to publicly
available tools and MulVAL was fed the output of a vulnerability scan, the definitions of
the vulnerabilities were clearly matched. Furthermore, even if there was a mismatch and
another type of attacker was imagined for the attack graphs, it is reasonable to expect
that the predictions would also be indicative for this type of attacker. In other words,
even with the wrong type of attackers, it should still be expected that an accurate
prediction would correlate with the observations made for the other attackers.

5.1.2 The attack efforts were not independent and randomly distributed. This claim is
true. In this test, the same attack may have been attempted multiple times, and the
attacks were selected by human agents who (presumably) reasoned about the best
course of action before their attempts. They may have spent hours on some machines
and dismissed others as impossible to compromise in seconds. It is reasonable to expect
that these humans thought in a similar manner to MulVAL and considered the
exploitation of existing vulnerabilities within their reach. If this is the case, then they
should have been more likely to test the attacks that MulVAL predicted as possible and
less likely to test the attacks that MulVAL predicted as impossible. Therefore, it may be
the case that a randomized sample of attacks would produce a higher proportion of
practically unlikely attacks that would be easy to predict as impossible. However, this is
a poor explanation for the low prediction accuracy for successful attacks or for attacks
predicted as possible: the attackers were more likely to succeed if MulVAL said that the
attack was impossible than if MulVAL said it was possible. Additionally, it can be
argued that a test with randomly selected attack paths would lack the ecological validity
needed to say whether MulVAL works in an operational context, in which attacks are
not random.

5.1.3 The attackers’ logs may have been erroneous and introduced biased
measurement errors. Half of the attackers had their screens recorded. No issues were
found with the logs’ accuracy, except for some cases in which the attacker did not report
a failed attempt, typically when the attacker tried multiple ways to compromise a
machine. The omission of failed attempts does not influence the results in this test, in
which all of the probed machines were considered interesting targets for the attackers.
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The logs produced by the attackers probably contained some flaws and missed other
additional information. However, based on the comparisons with the screen recordings,
it is safe to say that no errors were of a sufficient magnitude to threaten the overall
conclusions.

5.1.4 Unrealistically vulnerable networks were used, and this influenced the results.
The computer networks used in this test were certainly more vulnerable than the
average enterprise’s computer network, with some of the machines not having been
updated in a decade. The high number of exploitable vulnerabilities led to an unusually
large number of possible attack paths through the computer network. Although this is
unrealistic, it is difficult to see why this would cause the poor accuracy of the attack
graph tool. On the contrary, the use of well-known vulnerabilities implies that the tool
had accurate information and, therefore, should have produced accurate results.

5.1.5 This was really a test of the vulnerability scanner providing vulnerability
information to MulVAL. To some extent, this is a valid objection to the results. The
analysis was not made under the premise that perfect information was available.
Incomplete scan results contributed to a large portion of false negatives. For example,
the scans did not report the CVE-2008-4250 vulnerability in Windows machines, a
vulnerability used by attackers in 38 attack paths to compromise 24 machines in this
test. However, the result would have been poor even if these vulnerabilities had been
reported by the scanner. When the scan results were complemented with all
vulnerabilities used by the attackers, MulVAL still missed 27 of 40 successful root-level
code execution attacks. In fact, closer inspection shows that because of problems
associated with interpreting the effect of vulnerabilities, none of the predicted attacks
correspond perfectly to the attacks performed by the attacker. To predict all successful
attacks, it is not sufficient to complement the vulnerability scan with missed
vulnerabilities; it is also required that an analyst interpret the results and manually set
the privileges that can be obtained if the vulnerability is exploited. Such manual
adjustments may be possible to do before an analysis, and MulVAL can be improved to
guess privilege levels better. However, even if the problem with the analysis had been
the input from the vulnerability scanner, it has been repeatedly argued that attack
graphs are practically useful because they can be fed input from such vulnerability
scans and then make predictions in an automated fashion. Thus, although the
vulnerability scanner is important to the results, it makes sense to see it as part of the
solution. As a side note, the makers of MulVAL advocate the use of Nessus, another
vulnerability scanner, by providing scripts for parsing its output files. In this test, these
files were adapted to use Nexpose’s output instead. According to the test performed in
2011 by Holm et al. (2011), no significant difference should be expected in accuracy if
Nessus were used instead.

5.1.6 Attack graphs are possibilistic, and treating the output as a probabilistic
indicator is unfair. As noted above, it is unclear how the results of attack graphs such as
MulVAL are supposed to be interpreted. In this test, it was expected that MulVAL’s
classification could be used as an indicator of the attackers’ capabilities. If a truly
possibilistic interpretation were to be used instead, then an attack would be labeled as
possible even if it were highly unlikely that it could be accomplished and impossible
only if it were affirmed that it was impossible under the conditions given. In the
confusion matrix in Table I, this would mean that failed attacks could not be used to
evaluate the tool because they could be the result of, for example, bad luck or an
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incompetent attacker. It would also imply that the probability of success of an attack
could be any value, including extremely low values such as one per cent. First, not even
an extreme possibilistic interpretation can explain why 34 of the 119 machines that were
considered impossible to compromise as root were actually compromised. To come to a
possibilistic result, the input from the vulnerability scanner is corrected and MulVAL’s
interpretation of it is manually overridden or improved. Second, the designers of
MulVAL do not seem to have implemented a possibilistic (worst case) solution. Because
it is, of course, possible that a remote exploit yields root-level access, a possibilistic
solution ought to have indicated that this is possible rather than indicating that the
privileges of some user are obtained.

5.2 Recommendations to researchers
Given these results, four recommendations are provided to researchers interested in
attack graphs:

(1) We recommend that researchers interpret the results of this study with caution
and a positive spirit. Although the results suggest that attack graphs, when used
together with a normal vulnerability scanner, fail to predict what a security
professional can accomplish, there are several nuisance variables that may have
distorted the results. These nuisance variables include the attackers themselves,
the attack graph tool used, the vulnerabilities in the computer networks and the
vulnerability scanner used. Although it may be hard to see how any realistic
configuration of these variables would result in accurate predictions, further
tests should be performed. Furthermore, the labeling of privilege levels in
MulVAL could be improved to produce better predictions of privilege levels, for
example by guessing based on the impact vector in the Common Vulnerability
Scoring System (CVSS) (Mell et al., 2007), using complementary vulnerability
information from other sources or making a possibilistic (worst-case scenario)
guess.

(2) There may be techniques and algorithms that could improve the accuracy of
attack graphs that should be tested empirically. MulVAL produced
approximately 500,000 unprioritized attack paths for the 8 networks included in
this test. A visual graph would be impossible for the human eye to comprehend,
and it is unclear how it would support decision-making. If attack graphs were
prioritized and ranked relative to each other, the output of the analysis might
become more accurate and more useful. Several suggestions have been made in
this direction, including assessments of critical assets in the graph (Sawilla and
Ou, 2008) and probabilistic rankings of the paths (Homer et al., 2010) (Singhal
and Ou, 2009). Alternatively, conditions not related to individual vulnerabilities
could be used to improve the accuracy, for example, by using quantitative
estimates of remote code execution attacks, such as those provided in studies
such as in the study conducted by Sommestad et al., 2012. These alternatives
ought to be considered after techniques for interpreting the privilege levels
attained by exploitations of vulnerabilities are improved.

(3) The accuracy of vulnerability scanners is a serious practical obstacle for attack
graphs today. Provided that vulnerability information is interpreted correctly,
significant improvements in their accuracy would lead to significant
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improvements in the accuracy of attack graphs. Research could be directed
toward improving vulnerability information and vulnerability scanners to
accelerate their progress. Additionally, improvements in the accuracy of attack
graphs could be gained through improvements in threat intelligence, for
example, by improving the understanding of the modus operandi of presumed
threat agents or which vulnerabilities they are capable of exploiting. With such
information, it would be possible to provide the attack graph tools with better
data and increase their accuracy, for example, through combination with
probabilistic approaches or other means of ranking attack steps and paths to
support decision-making.

(4) A fourth recommendation is to lower the expectations for attack graphs as a
practically useful vulnerability prediction or analysis tool. Although no direct
claims have been made about the accuracy of attack graph tools in general, or
MulVAL in particular, it is easy to get the impression that a vulnerability scan
and attack graph analysis will serve as an effective vulnerability prediction and
analysis method for decision-makers. For example, Ou et al. (2006) start their
abstract with “[a]ttack graphs are important tools for analyzing security
vulnerabilities in enterprise networks”. Roschke et al. (2009) start their abstract
with “[a]ttack graph is used as an effective method to model, analyze, and
evaluate the security of complicated computer systems or networks”. Williams
(2008) starts with the declaration “[a]ttack graphs are valuable tools in the
assessment of network security, revealing potential attack paths an adversary
could use to gain control of network assets”. Jajodia (2007) concludes that the
TVA tool is “a powerful approach to global network vulnerability analysis”. Such
statements are clearly questionable in light of the results of this test, where
attacks are more likely to succeed if they are not predicted by the tool. But, as
noted above, attack graphs may become practically useful in the future.
Furthermore, despite the difficulty in providing accurate input data, attack
graphs could function as a framework on which security theories could be
attached, related to each other and synthesized.

6. Conclusions
This test determines that the attack graph tool MulVAL predicts human attackers’
successes poorly when used together with the vulnerability scanner Nexpose. Only 8 per
cent of the machines predicted as possible to compromise were compromised; 29 per cent
of the machines predicted as impossible to compromise were compromised. This
inaccuracy is due to the combination of inaccurate vulnerability scans and improper
interpretation of the privileges that vulnerabilities grant. If vulnerabilities are manually
added and manually corrected to provide the right privilege level, then all but one
compromised machine are predicted as possible to compromise.
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