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Fuzzy time series forecasting
for supply chain disruptions
Felix T.S. Chan, Avinash Samvedi and S.H. Chung

Department of Industrial and Systems Engineering,
The Hong Kong Polytechnic University, Hong Kong, China

Abstract
Purpose – The purpose of this paper is to test the effectiveness of fuzzy time series (FTS) forecasting
system in a supply chain experiencing disruptions and also to examine the changes in performance as
the authors move across different tiers.
Design/methodology/approach – A discrete event simulation based on the popular beer game
model is used for these tests. A popular ordering management system is used to emulate the behavior
of the system when the game is played with human players.
Findings – FTS is tested against some other well-known forecasting systems and it proves to be the
best of the lot. It is also shown that it is better to go for higher order FTS for higher tiers, to match auto
regressive integrated moving average.
Research limitations/implications – This study fills an important research gap by proving that
FTS forecasting system is the best for a supply chain during disruption scenarios. This is important
because the forecasting performance deteriorates significantly and the effect is more pronounced in the
upstream tiers because of bullwhip effect.
Practical implications – Having a system which works best in all scenarios and also across the tiers
in a chain simplifies things for the practitioners. The costs related to acquiring and training comes
down significantly.
Originality/value – This study contributes by suggesting a forecasting system which works best for
all the tiers and also for every scenario tested and simultaneously significantly improves on the
previous studies available in this area.
Keywords Simulation, Forecasting, Supply chain risk management, Fuzzy time series forecasting
Paper type Research paper

1. Introduction
Supply chains are becoming more and more complex and prone to disruptions because
of the globalization. Business Continuity Institute (2011) performed a survey of 559
companies represented by 62 countries and 14 industry sectors and found out that
“85 percent of companies reported at least one supply chain disruption in the last
12 months.” Such disruptions are unexpected and large deviations from the normal
operations of the supply chain, resulting from a plethora of external and internal
factors. Supply chain managers are aware that the company’s reputation, consistency
in earning and ability to increase shareholder returns are increasingly dependent on
their capabilities for managing supply chain disruptions (Hendricks and Singhal, 2005).
Adopting proactive approaches in dealing with changing supply chain risks and
vulnerabilities can secure supply chain systems (Asbjørnslett, 2009). But to be effective
in being proactive needs a better forecast of the future. Uncertainty about future can
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lead to risky event outcomes (Wieczorek, 2012). In such uncertain times the goal of
firm’s management efforts should not necessarily be to eliminate risks, but to become
more risk informed. Keeping the performance at an acceptable level during disruptions
is one of the top most concerns for the managers in a supply chain today. Also, because
a supply chain is only as secure as its weakest link, all the tiers in the chain should be
given their due importance and should be proactively guarded against any disruptions.
This pro activeness is only possible with the help of timely and accurate forecasts.

An accurate forecasting system can prove to be an invaluable asset to a supply
chain. The performance of supply chains is greatly affected by the forecasting
accuracy, as forecasts help managers to make operational, tactical as well as strategic
decisions. A number of studies in the past have studied different forecasting systems
on a supply chain but there are very few studies which test the performance of the
forecasting systems in disruption settings in a supply chain. Samvedi and Jain (2013) is
one such study, which tests gray prediction system under disruptions scenario. The
study shows that this system is good in some scenarios and also only for particular
tiers. But what is proven again by them is the fact that it is useful to use techniques
such as gray and fuzzy which are better in dealing with uncertain situations and
disruption scenarios is full of such uncertainty. Fuzzy time series (FTS) is another such
forecasting technique which breaks down the entire range of numbers in a time series
into many fuzzy sets. This causes losing some information but retaining the most
important part of it, its position in the entire range. This information is enough to
make a rough forecast quickly and speed is desperately needed in such scenarios.
Also the forecast itself is a range of numbers and it can be left to the manager’s
discretion on which number to choose from that range. FTS has been successfully
used to deal with various problems such as enrollment prediction (Song and Chissom,
1993a), stock index forecasting (Yu, 2005), temperature forecasting (Wang and Chen,
2009), hydrometeorology forecasting (Wang et al., 2012), etc. This study tests its
performance in a supply chain experiencing disruptions. This study tries to fill this
gap in literature by testing a very promising forecasting system in such scenario. This
is done by running simulation tests on a popular linear supply chain game known
as beer game.

In supply chain management, the beer distribution game developed at MIT about
50 years ago is still one of the most popular tools to simulate a linear supply chain.
It helps students and practitioners both to get a grasp on the workings of a supply
chain and also help them understand important aspects such as the bullwhip effect,
effects of information sharing, effects of using a particular system in the chain, etc.
(Lee et al., 2004; Geary et al., 2006). It also helps managers to understand the intricate
workings of their supply chain and also the effect of some policy decisions on the long
run. Through a system simulation, managers can gain insight into the dynamics of the
entire system and not just the individual parts. It helps them to make predictions about
the future and also provides them with sufficient information to confidently take their
decisions. The general purpose of these games is threefold: to create awareness and
insight from experiencing the interplay of different sections and functions; to teach by
creating understanding and knowledge on the basis of try-outs of different planning
principles; and to train by providing practical know-how from planning a handling
job (Morecroft and Sterman, 2000).

This paper is further organized as follows. Section 2 discusses the relevant literature
on supply chain risk management (SCRM), FTS forecasting and on use of beer game
as well. The procedure for the methodology used is detailed out in the Section 3. Section
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4 discusses the experimental setup. Evaluation of the performance of FTS methodology
against other well-known forecasting systems is discussed in detail in Section 5. Section
6 concludes with managerial implications of this research followed by the scope of
future work.

2. Literature review
As global supply chains expand to more and more countries, their supply lines become
longer, the issues affecting the supply chain gets bigger and its management gets
trickier. This leads to the increased importance of SCRM and this increase happens
almost at the same rate as the globalization happens. This also led to the increased
activity in this research field and led to a sudden eruption of large number of quality
articles in this area. Therefore, disruption risks, lying in different processes of the
supply chain as well as in the external environment, began to receive increased
attention. Jüttner et al. (2003) outlined a research agenda for SCRM research, for which
they presented a literature review and also an empirical study. Kleindorfer and Saad
(2005) showed how traditional operational risks are joined with disruption risks arising
from natural hazard, terrorism and political instability. Tang (2006) developed a unified
framework for classifying SCRM articles and, by highlighting the gap between theory
and practice, identified directions for future research. Craighead et al. (2007) relate the
design characteristics of the supply chain, including the complexity, to supply chain
disruptions. By conducting an empirical research, the authors prove the hypothesis
that supply chain disruption is a result of complexity. Wagner and Bode (2008)
explored practices and tools for risk identification, assessment and mitigation. Sodhi
and Tang (2009) and Samvedi et al. (2013) developed quantitative models to manage the
risks of modern supply chains. Marsden and Docherty (2013), present an analysis on
how disruptive events can be seen as an opportunity to construct and accelerate policy
changes which are commonly slow and incremental over long periods of times. Sodhi et
al. (2012) argue most global companies lack a formal process to estimate the probability
of catastrophic events and also the capability to accurately forecast them. In fact not
being able to forecast accurately the future business scenarios is the first reason why it
is difficult to deal with the disruptions in a supply chain.

Fueled by an increasingly dynamic business environment and growing
availability of advanced software and tools, demand forecasting has gained an
elevated importance among practitioners in recent years (Hsu and Wang, 2007).
Today, companies spend billions of dollars annually on software, personnel and
consulting fees to achieve accurate demand forecasts (Aiyer and Ledesma, 2004). It is a
well-known fact that a chain can only be as strong as its weakest link. Hence what is
required is not a good forecast at one level but at all the tiers of the chain. Most of the
traditional methods work well for one scenario or the other. But what is required
is to have a system which consistently performs better than others in every scenario.
Also the requirement to work with very little data is a constraint for most of the
traditional methods. Samvedi and Jain (2013) tested the performance of gray prediction
method (GPM) in such situation and concluded that although this method has the
ability to work with very little data, it works well only for few scenarios. This study
was an effort in the right direction but presented only a partial solution. The current
study builds on that and goes one step further by testing and proving that FTS
forecasting system works best for all tiers and in all scenarios. FTS forecasting
system also performs better than gray prediction in the scenarios where it performed
better than other methods.

421

FTS
forecasting for
supply chain
disruptions

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

3 
N

ov
em

be
r 

20
16

 (
PT

)



The FTS method has strengths in analyzing a short time series with limited past
observations (Wu and Chau, 2010; Fu, 2011). The method was first defined by Song and
Chissom (1993a). They proposed the definitions of FTS and methods to model fuzzy
relationships among observations. The method deals with those time series where the
entries are linguistic expressions and not numbers. The research was expanded and
they went ahead to develop time-invariant and time-variant models (Song and Chissom,
1993b; Tsaur et al., 2005; Singh and Borah, 2013). Besides the above researchers, Chen
(1996) proposed another method to apply simplified arithmetic operations in
forecasting algorithm rather than the complicated max-min composition operations
presented in Song and Chissom (1993a). However, in time series model, when
unexpected conditions happen, the historical data cannot respond to the fluctuations
immediately. This would probably results in terrible inaccurate forecast. To deal with
the problem, a group decision-making method was employed to integrate the subjective
forecast values of all decision makers. Fuzzy weighted method was then combined
with subjective forecast values to produce the aggregated forecast value. Besides,
Huarng (2001) pointed out that the length of intervals affects forecast accuracy in FTS and
proposed a method with distribution-based length and average-based length to reconcile
this issue. This method applied two different lengths of intervals to Chen’s model and the
conclusions showed that distribution-based and average-based lengths could improve
the accuracy of forecast. Although the forecasting performance of Huarng’s method is
excellent, it creates too many linguistic values to be identified by analysts. It becomes
apparent that the major drawback of these methods is the lack of consideration in
determining a reasonable universe of discourse and the length of intervals.

FTS has been used for supply chain forecasting in the earlier studies also (Tozan
and Vayvay, 2008; Tozan and Vayvay, 2009). But none of those studies compared the
performance with other established methods. Also important was to check the
performance in disruptions scenario at all tiers of the chain. The performance of FTS is
compared with GPM and auto regressive integrated moving average (ARIMA)
forecasting methods. GPM is a technique in the gray theory that uses approximate
differential equations to forecast in a time series. The main advantage of this method
is its capability to be used in circumstances with as few as four observations (Chen and
Chang, 1998). Its performance has been successfully demonstrated in many applications
such as electricity demand forecasts (Huang et al., 2007), stock market prediction
(Wang, 2002) and supply chain disruptions (Samvedi and Jain, 2013). ARIMA on the other
hand is the method of choice for a large number of supply chain researchers
(Bandyopadhyay and Bhattacharya, 2013; Duc et al., 2008). ARIMA ( p,d,q) model was
given by Box Jenkins in 1970, and hence is also sometimes known as Box Jenkins model.
The model has three parts to it namely auto regression (AR), integration (I) and moving
average (MA). The three values p, d and q denote the orders of each of these parts,
respectively. The complete algorithm consists of five steps namely identification,
estimation, diagnostic check, model construction and forecasting (Box et al., 1994).

3. FTS
In this section, we briefly review the concept of FTS. The content of this section is
common knowledge among researchers in this field and is part of almost every other
published research study. The authors have consulted Song and Chissom (1993a, b),
Huarng (2001) and Wang et al. (2012). The main difference of FTS and traditional time
series is that the values of FTS are represented by fuzzy sets rather than real values.
All the fuzzy sets considered in this study have triangular membership functions.
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3.1 FTS basics
Let U be the universe of discourse, where U¼ {u1, u2, u3,…, un}, where ui’s are the
crisp values in the time series. A fuzzy set defined in the universe of discourse U can be
represented as:

A ¼ mA u1ð Þ=u1þmA u2ð Þ=u2þmA u3ð Þ=u3þ :::þmA unð Þ=un (1)

The “+” sign in the above notation is not a mathematical operator but shows that how
many different crisp numbers of the time series fall in the considered fuzzy set “A.” Also
μA denotes the membership function of fuzzy set A, μA: U→[0, 1] and μA(ui) denotes the
degree of membership of ui belonging to the fuzzy set A, and μA(ui)∈ [0, 1], and 1⩽ i⩽n.

Definition 1: FTS
Let Y(t) (t¼…, 0, 1, 2, 3,…), a subset of real numbers is the universe of discourse on
which fuzzy sets fi(t) (i¼ 1, 2, 3,…) are defined. If F(t) is a collection of fi(t)
(i¼ 1, 2, 3,…), then F(t) is called a FTS on Y(t) (t¼…, 0, 1, 2, 3,…). The variable t
denotes time.

Definition 2: first order fuzzy relation
If there exists a fuzzy relationship R(t−1, t), such that F(t)¼F(t−1)×R(t−1, t)
where×represents an operator, then F(t) is said to be caused by F(t−1): The relationship
between F(t) and F(t−1) is denoted by F(t−1)→F(t).

If F(t−1)¼Ai and F(t)¼Aj, the logical relationship between F(t) and F(t−1) is
denoted by Ai→Aj, where Ai is called the left hand side and Aj the right hand side of the
fuzzy relation. Note the right hand side of the fuzzy relation represents the future fuzzy
set (forecast). Its crisp counterpart is denoted as Y(t):

Definition 3: N-order fuzzy relations
Let F(t) be a FTS. If F(t) is caused by F(t−1), F(t−2),…, F(t−n), then this fuzzy
relationship is represented by F(t−n),…. F(t−2), F(t−1)→F(t) and is called an n-order
FTS. N-order-based FTS models are referred to as high-order models.

Definition 4: time-invariant FTS
Suppose F(t) is caused by F(t−1) only and is denoted by F(t−1)→F(t), then there is a
fuzzy relationship between F(t) and F(t−1) which is expressed as the equation:

F tð Þ ¼ F t�1ð Þ � R t�1; tð Þ (2)

The relation R is referred to as a first order model of F(t). If R(t−1, t) is independent of
time t, that is, for all times t1 and t2, R(t1−1, t1)¼R(t2−1, t2), then F(t) is called a time-
invariant FTS. Otherwise it is called a time-variant FTS.

Definition 5: fuzzy relationship group
Relationships with the same fuzzy set on the left hand side can be further grouped into
a relationship group. Suppose there are relationships such that:

Ai-Aj1;

Ai-Aj2;

:::;

Ai-Ajn;
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then they can be grouped into a relationship group as follows:

Ai-Aj1;Aj2; . . .;Ajn

The same fuzzy set cannot appear more than once on the right hand side or the
relationship group.

3.2 Forecasting with time-invariant FTS
Stepwise procedure is described as below:
Step 1: define the universe of discourse U for the historical data. First, we find the
minimum data Dmin and the maximum data Dmax individually in the historical time
series data, and then we define the universal discourse U as U¼ [Dmin−D1, Dmax+D2],
where D1 and D2 are two proper positive numbers.

Step 2: partition the universe of discourse into intervals of equal length u1, u2,…. The
number of intervals will be in accordance with the number of fuzzy sets A1, A2,…,An
to be considered.

Step 3: define the fuzzy sets Ai on universe of discourse U in Step 2. If there are fuzzy
sets A1, A2,…,An, then the fuzzy sets Ai, ∀i¼ 1, 2, 3,…, n can be described as:

Ai ¼ mAi
u1ð Þ=u1þmAi

u2ð Þ=u2þmAi
u3ð Þ=u3þ :::þmAi

unð Þ=un (3)

For example, the linguistic variable can be described as fuzzy sets A1¼ (not many),
A2¼ (not too many), A3¼ (many), A4¼ (many many), A5¼ (very many), A6¼ (too
many), A7¼ (too many many). Thus, all the fuzzy sets are expressed as follows:

A1 ¼ 1=u1þ0:5=u2þ0=u3þ0=u4þ0=u5þ0=u6þ0=u7

A2 ¼ 0:5=u1þ1=u2þ0:5=u3þ0=u4þ0=u5þ0=u6þ0=u7

A3 ¼ 0=u1þ0:5=u2þ1=u3þ0:5=u4þ0=u5þ0=u6þ0=u7

A4 ¼ 0=u1þ0=u2þ0:5=u3þ1=u4þ0:5=u5þ0=u6þ0=u7

A5 ¼ 0=u1þ0=u2þ0=u3þ0:5=u4þ1=u5þ0:5=u6þ0=u7

A6 ¼ 0=u1þ0=u2þ0=u3þ0=u4þ0:5=u5þ1=u6þ0:5=u7

A7 ¼ 0=u1þ0=u2þ0=u3þ0=u4þ0=u5þ0:5=u6þ1=u7

Step 4: fuzzification is the process of identifying associations between the historical
values in the dataset and the fuzzy sets defined in the previous step. Each historical
value is fuzzified according to its highest degree of membership. If the highest degree of
belongingness of a certain historical time variable, say F(t−1), occurs at fuzzy set Ak,
then F(t−1) is fuzzified as Ak.
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Step 5: determine fuzzy logical relationships, which are required for forecasting
using FTS. Establishing the fuzzy logical relations of various orders as given as
follows:

(1) for first order models, if for year n–1 and n the fuzzified arrivals are Ai and Aj,
then the first order fuzzy logical relationship is represented as Ai→Aj;

(2) for second order models, if for year n–2, n–1 and n, the fuzzified arrivals are Ai1,
Ai and Aj, respectively, then the second order fuzzy logical relation is
represented as Ai1, Ai→Aj; and

(3) for third order models, if for year n–3, n–2, n–1 and n, the fuzzified arrivals are
Ai2, Ai1, Ai and Aj, respectively, then the third order fuzzy logical relation is
represented as Ai2, Ai1, Ai→Aj.

In a similar way we can find the fourth, fifth, sixth, seventh, eighth and other higher
order fuzzy logical relations.

Step 6 (defuzzification): based on the fuzzy logical relationships, which are formed
in Step 5, the forecasts are made by extrapolating the FTS, using the following
principle:

• If the jth order fuzzified historical arrivals for year i are Aij, Ai(j−1),…, and Ai1,
where j⩾2, and if there are the following fuzzy logical relationship in which the
current state is Aij, Ai(j−1),…,Ai1, shown as follows:

Aij;Ai j�1ð Þ; :::;Ai1-Aj1

Aij;Ai j�1ð Þ; :::;Ai1-Aj2

Aij;Ai j�1ð Þ; :::;Ai1-Ajp

where Aij, Ai( j−1),…,Ai1, Aj1, Aj2, Ajp are fuzzy sets, the maximum membership
values of Aj1, Aj2,…, and Ajp occur at intervals u1, u2,…, and up, respectively,
and the midpoints of the interval u1, u2,…, and up are m1, m2,…, and mp,
respectively, then the forecasted arrivals the ith year is m1þm2þ :::þmp

� �
= pð Þ.

This completes the process of FTS forecasting system. The next section details out the
experimental setup which is used for testing the performance of this system against
few other well-established forecasting systems.

4. Experimental setup
Experiments are useful for investigating behavior in supply chains for a number of
reasons. Experiments allow us to gauge the extent to which behavioral factors cause
empirical regularities. In an experiment, we can control the environment each firm
faces. The beer distribution game provides such an environment (Croson and
Donohue, 2002). This game is a role-playing simulation of an industrial production
and distribution system. In use for nearly six decades, the game has been played all
over the world by thousands of people ranging from high school students to chief
executive officers and government officials (Croson and Donohue, 2002, 2006).
The four-stage problem of the beer game is a single-product supply chain that
includes a retailer, a wholesaler, a distributor and a manufacturer. The system is

425

FTS
forecasting for
supply chain
disruptions

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

18
 0

3 
N

ov
em

be
r 

20
16

 (
PT

)



depicted in the Figure 1. The customer places his demand at the retailer who in turn
places its demand at the wholesaler and thus it proceeds to the end of the chain.
Similarly the supply line comes from upstream to downstream and ends at the
retailer which handles the customer. Demand disruptions are realized at the retailer
end because this is the point where customer demands come. These disruptions can
be of two types namely increase or decrease in customer orders. If the orders decrease
then the chain has an oversupply and thus has more stock than desired at every point
of the chain. On the other hand the increase in customer orders causes shortage in
the chain and the shortages usually carry more cost than the oversupply, as also
is the case in the cost structure of the beer game. The other type of disruptions come
from the supply side, but is not the subject of this study.

What makes such studies with beer game so interesting and appealing is the fact
that the data generated from these games is considered to be equivalent to the real time
data. This has been proven time and again by many researchers. Croson and Donohue
(2006) found that there were not many differences in the performance among
undergraduate, MBA, or PhD students, and senior executives. Through the use of an
internet version of the beer distribution game, Machuca and Barajas (2004) found there
were not significant differences in results between students and executive in the
decision-making processes of these groups. Such studies opened up the possibility of
using the data from such games for research studies. Therefore many such behavioral
laboratory studies, using beer game, are conducted at universities and several of these
studies attempt to include elements of real-life situations through the creative use of
software simulation applications (Scandura and Williams, 2000).

The Sterman (1989) model, which automates the entire process using few
mathematical equations is a popular method (Laugesen and Mosekilde 2006; Hwarng
and Xie, 2008). Such an automated method is mainly required in conditions where the
quantity of data required is huge, i.e. for a longer period. In such situations it is mostly
not possible to have live beer game sessions with human players and thus require
an automated process. This in turn requires having algorithms which can take ordering
decisions. Sterman (1989) model is one such popular model and is given below.

The amount ordered in period t (Ot) is non-negative:

Ot ¼ max 0; IOtð Þ (4)

IOt ¼ Lt
}þas St

n�St
� �þasl SLt

n�SLt
� �

(5)

Ltþ 1
} ¼ yLtþ 1�yð ÞLt

} (6)

where IOt is the indicated order rate; Lt, the goods shipped; Lt
}, the expected shipment;

St, the actual stock on hand; St
n, the desired stock; SLt, the actual outstanding orders;

SLt
n the desired outstanding orders; αs, the stock parameter; αsl, the outstanding orders

parameter; and θ, the exponential smoothing factor.
The simulation is run five times, each with duration of 1,000 periods, and we report

averaged forecasting errors. The supply lead time has been taken as two weeks and

R W D M

Source: Samvedi and Jain (2012)

Figure 1.
A four-level
single product
supply chain
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order processing time also as two weeks. In each set of simulation runs, the standard
values have been used for the parameters in the above model. We used:

Sn ¼ 50; SLn ¼ 150; S0 ¼ 40; SL0 ¼ 120; L0 ¼ 40; y ¼ 0:25;

as ¼ 0:4; asl ¼ 0:136

These standard values have been picked up from the literature and some have been
suitably modified for the current scenario. These small modifications were required
because the demand stream at the retailer level is not the same as the basic beer game
(where the game starts with a demand of four units and after few periods’ moves on to
eight units). There are in total three test scenarios here. The demand at the retailer level
in normal scenario is uniformly distributed in the range [40, 60]. To get disruptions
effect, the demand interval is raised five times to [200, 300]. This can be done in two
different ways, each important from the analysis viewpoint. The first way is to
suddenly switch the retailer demand to the disruptions mode (sudden disruptions)
and the other way is to have a gradual increase (smoothened disruptions). Both of these
scenarios exist in real life and hence were necessary to check the performance under
both scenarios. The smoothening effect is obtained by raising the demand gradually
in five periods.

5. Results and analysis
This section details out the results achieved, of performance of competing forecasting
systems, for different operating scenarios. The mean absolute percentage error (MAPE)
is used as the forecasting performance criterion. The FTS system is compared with two
other systems namely GPM and ARIMA. These methods have been chosen because of
their widespread use by practitioners and researchers alike. Many studies claim them
to be the best of the lot and hence they provide a solid benchmark values to compare
with. In this study GPM uses the same setup that of Samvedi and Jain (2013). ARIMA
method on the other hand has different orders at different levels and hence been
referred only as ARIMA, rather than with their orders. The results clearly show that
the FTS forecasting system is far superior to all other systems compared. This is true
for all the tiers in the supply chain as well as for any environment, i.e. normal scenario,
sudden disruption scenario and also smoothened disruption scenario. This shows how
the system adapts successfully to the situation in hand and is able to give better
forecasts. This is important because most of the systems work best in one scenario or
the other. Having a system which is best for all the scenarios simplifies things.

Starting with the normal scenario, Table I shows the forecasting performance in
terms of MAPE values. It clearly shows how the FTS system outperforms the other
systems at all tiers. Another observation from Table I is that the second order FTS
performs better than the first order FTS. GPM method is the least desirable in all as it

Mean absolute percentage error (MAPE)
Forecasting type Retailer Wholesaler Distributor Manufacturer

GPM 6.5044 7.1827 10.5378 18.6195
ARIMA 5.8259 6.5082 8.8582 12.1347
FTS 5.2363 5.9385 9.4777 14.5032
FTS2 (order 2) 4.9513 5.4981 7.5261 10.3230

Table I.
Forecast errors for
different forecast
types in normal

operations
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fails at every tier against the other two. On the other hand it can be seen that the
performance of ARIMA starts matching that of FTS as we move upstream. But this can
be easily countered by increasing the order of FTS.

These values can be better understood by looking at Figures 2 and 3. Figure 2 shows
a part of the simulation run for the retailer level. It can be easily seen that the FTS1, i.e.
first order FTS runs quite close to the mean demand line. On the other hand other
systems show a little more variance. Out of all GPM is the one which has the highest
variance because of its tendency to try to match out every demand value. Although it
succeeds in following the demand trail, more closely than others, it also ends up with
the least forecast accuracy. ARIMA and FTS2 can be seen to be less vigorous than
GPM in following the demand trail but also are a little more active than the FTS1. But
in the end FTS2 ends up scoring the best performance.

Figure 3 also provides a similar insight to the simulation runs but at the distributor
level. ARIMA model beats FTS1 at this level and can also be seen from the figure to be
running close to FTS2. A hint of bullwhip effect can also be seen from it. FTS1 still is
far better than GPMwhich again succeeds in following the demand trail better but with
a huge time lag. This affects its performance and even FTS1, which silently follows the
demand trail without trying to accurately match it, beats it.
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Figure 2.
Forecasting
performance
at retailer for
normal scenario
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The real test of the system comes when disruptions are pictured in. The next test is
conducted for sudden disruption scenario when the mean demand is suddenly
increased five times, few times in the total run duration. As this happens, the
forecasting systems try to keep up with the new demand pattern. What is required of
the systems here is the flexibility to immediately change over to this new demand
pattern. As can be seen in Table II, the MAPE values are far more than what we had in
Table I. This is because of the disruption scenario. As the demand values have
increased, so has the errors in its estimate. Also contributing is the fact that this change
in demand levels is done suddenly, leaving very less time for the systems to react. The
insight to sudden disruptions is provided by Figure 4, which is for the retailer level.

The next test is performed for the smoothened disruption scenario. This is
important because in practice most of the times the disruptions come in a gradual
manner rather than in sudden nature. This helps the forecasting systems by
giving them time to adapt to the new scenario. The results from the test runs are
provided in Table III.

Mean absolute percentage error (MAPE)
Forecasting type Retailer Wholesaler Distributor Manufacturer

GPM 12.5159 23.1550 47.8125 94.8960
ARIMA 9.9525 20.8830 39.6468 72.4170
FTS 8.7359 18.5283 40.8899 77.8681
FTS2 8.2598 15.9456 37.0420 71.3116

Table II.
Forecast errors for
different forecast

types, under sudden
disruptions scenario
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Figure 4.
Forecasting

performance at
retailer for sudden
disruption scenario

Mean absolute percentage error (MAPE)
Forecasting type Retailer Wholesaler Distributor Manufacturer

GPM 10.1670 22.6241 45.4840 94.4564
ARIMA 9.2573 20.3276 36.9024 70.3276
FTS 8.7445 18.1204 36.6927 76.9977
FTS2 7.9825 16.2576 33.7111 70.2986

Table III.
Forecast errors for
different forecast

types, under
smoothened

disruptions scenario
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The values in Table III almost match up with the values in Table II. This is contrary to
what is expected because smoothening helps forecasting systems to adapt and hence
the performance should have been better. This can be explained by the fact that the
gradual steps added are responsible for this. These steps have more than normal
demand and hence have bigger errors. The details of this are provided by Figure 5,
which shows the gradual climb up.

Table IV clearly shows how the accuracy of the FTS system is improved when we
increase the number of fuzzy intervals. These tests are done for smoothened
disruptions. This is on the expected lines because by increasing the number of fuzzy
intervals we shorten their range and consequently increase the accuracy of the
representation of a demand value by its interval. Also to be observed is the fact that
incremental improvement for every increase falls to negligible levels as the number of
intervals reach higher values.

One aspect which has to be kept in mind here is that increasing number of intervals
increases the time of running the program and also the memory required is huge. Thus
although the accuracy get better with increasing intervals, we need to draw the line
somewhere because of memory storage and speed constraints. It depends on which tier
you are, to decide on minimum number of intervals required. It is advised to go with a
bigger number if it is possible. Similar results are produced when this test is performed
on higher order FTS. The results are given in Table V.
The results and discussion here show beyond any doubt that FTS is actually the best
forecasting method for all scenarios and also for all the tiers in the chain. The accuracy
which can be achieved though depends on the number of intervals used and which
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Figure 5.
Forecasting
performance at
retailer for
smoothened
disruption
scenario

Mean absolute percentage error (MAPE)
Forecasting type Retailer Wholesaler Distributor Manufacturer

FTS5 12.6571 17.1270 68.8395 149.6424
FTS10 8.1674 14.9675 37.7153 74.0414
FTS20 7.4448 9.9172 22.1089 42.1753
FTS50 5.4809 7.8560 17.1355 26.9537
FTS100 5.2476 7.4803 16.3175 25.8041

Table IV.
Effects on forecast
errors with
increasing number of
intervals
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order FTS is used and hence indirectly depends on the computing power available. But
even for small interval numbers and an order as less as 5, a decent forecasting accuracy
can be achieved and hence FTS system of forecasting should be readily deployed
as the forecasting system of choice. The computing times for different FTS order are
shown in Figure 6.

It can be clearly observed, from Figure 6, that the time increases with increasing
number of intervals and also with increasing FTS order. This increase is more
pronounced for number of intervals and the difference in time between different FTS
order decreases to almost negligible at higher number of intervals. This shows that
it is better to improve the forecast accuracy by increasing the FTS order or number
of intervals.

6. Conclusion
Risk management has become an integral part of a holistic SCM ideology. Terrorism, local
politics, uncertain weather conditions, natural disasters and various other issues effect the
supply chain from outside. On the other hand there are many other issues such as trade
union strikes, quality problems, maintenance issues and supplier problems, which
affect the chain internally. In today’s growing supply chains, this has become a fact
of life. The mad rush to make the supply chains better, faster and cheaper is making
the chain increasingly complex, interdependent and risky. Companies are also
responding to these challenges by undergoing major changes and are implementing
new operations strategies and technologies. The larger a supply chain, the more
difficult it is to cope with uncertainty, both upstream and downstream, and protect
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Figure 6.
Computing time

for different orders
of FTS

Mean absolute percentage error (MAPE)
Forecasting type Retailer Wholesaler Distributor Manufacturer

FTS 9.2162 16.1613 38.0940 78.1193
FTS2 8.5160 14.2408 35.0765 72.0801
FTS3 7.7148 13.2245 34.6315 70.4973
FTS5 5.7445 12.4983 33.3549 69.8205
FTS7 5.3859 12.0592 33.3163 69.6565
FTS10 5.3623 11.7043 33.1923 69.5623

Table V.
Effect of increasing

FTS order
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every link. There is overall an understanding among the researchers that it is better
to be prepared to some extent than to wait for the disruptions to happen and then
react. Although it is agreed by all that it is almost impossible to predict the
disruptions with certainty, the importance of better forecasts is universally recognized.
This study is an effort in that direction and successfully tests the better performance of
FTS system when compared to others. The results clearly prove the superiority of FTS
forecasting system to the others.
There are huge managerial implications of this study in the sense that armed with
better forecasts of the future the managers can make better decisions for their supply
chain. As we have seen, the study holds good for all the tiers in the chain and thus
avoids confusion of checking the tier at which you operate and then choose the
forecasting system. Also the study shows that FTS is the best system even in no
disruption scenario and this makes things simpler for the managers because now they
do not need to change the forecasting system on the change of business environment.
This makes things simpler for the managers and also gives them time to take better
decisions. Also important from the research viewpoint is the fact that a fuzzy technique
has performed so well against other established technique ARIMA. This should
certainly increase the interest in less traditional fuzzy techniques. As the results
suggested, depending on the computing power available the firm can choose to be more
and more accurate with FTS. The same can be done by using other modifications of
FTS, which have been proven in the literature to work in other fields. The same
can be tested for the supply chains forecasting. This holds a good scope for the future
research in this topic.
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