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CUSTOMER CREDIT SCORING USING A HYBRID DATA MINING APPROACH 
 

1 Introduction 

In the financial literature, in any loan or credit providing process, the customer’s credit risk refers to 

the probability that the applicant (borrower) will default on repaying his/her debts, causing the bank 

or credit provider organisation to incur a loss. Customer credit scoring is a two-way classification 

problem; it seeks to classify good and bad applicants into the appropriate class. Applicants with good 

credit are more likely to meet their  financial obligations; applicants with bad credit have possibility 

greater likelihood of defaulting (Ghodselahi, 2011). In the past, a customer’s credit risk was assessed 

according to the personal intuition and insight of managers, but financial services are becoming 

increasingly complex, making the task more difficult. Moreover, there is a huge amount of data 

available for financial organisations. Therefore, data mining and statistical techniques could be used 

to access these data and support and corroborate financial managers in their credit risk decisions. Not 

only will credit scoring tools assist banks, credit card companies and other credit provider 

organisations, but they also will be beneficial for different companies and people that are interested in 

assessing themselves for any reason or for the companies that advice their customers on their financial 

affairs. Furthermore, based on the “Financial Inquiry Commission” report on 2011, the global 

financial crisis during 2008-2009 is considered as a huge crisis that could have been avoidable and 

caused by some reasons such as failures in financial supervision, failures of corporate governance and 

risk management at many systemically important financial institutions, and combination of excessive 

borrowing. There are also some local cases like (Lin, 2009) that indicate the results of lacking 

powerful credit scoring aids which can alleviate the associated risks. 

There has been a consistent growth of different data mining and statistical techniques over recent 

decades for classification problems  (Abdou, 2009), and (Lessmann, Baesens, Seow, & Thomas, 

2015). However, in recent publications on credit scoring, there is a tendency to use ensemble and 

hybrid approaches for classification problems. Because they increase the advantages of the intelligent 

techniques while simultaneously reducing their disadvantages (de Andres, Lorca, Sanchez-Lasheras, 

& Javier De Cos-Juez, 2012), and thus more efficient and effective results are achieved. (de Andres et 

al., 2012) investigated these models and categorised four types of hybrid systems in credit scoring 

problems; i.e. (1) hybrid algorithms, (2) ensemble classifiers, (3) feature selectors, (4) clustering and 

classificatory devices. As a study of ensembles (Wang, Hao, Ma, & Jiang, 2011) used three popular 

ensemble approaches, i.e. bagging, boosting and stacking, on four base classifiers: LR, DT, ANN and  

SVM. They reported bagging performs better than boosting across all explored credit datasets, while 

stacking and bagging DT have the best performance in average accuracy, type I error and type II 

error. For their part, (Wang, Ma, Huang, & Xu, 2012) proposed two dual ensemble models, RS-

Bagging DT and Bagging-RS DT, by combining Random Subspace (RS) and bagging approaches and 

used DT to overcome the weakness of individual decision tress. Inspired by bagging method, (Yu, 

Wang, & Lai, 2008) proposed a six stage ensemble model. They trained different neural networks on 

subsets created by the bagging method and then used a de-correlation maximisation algorithm to 

select the appropriate ensemble members; after a reliability transformation, they fused the classifiers. 

In a similar study by (Tsai & Hung, 2014), neural network ensembles and hybrid neural networks 

were compared and it was concluded that hybrid neural networks and neural network ensembles 

outperform the single neural network. Another notable study is done by (Ala'raj & Abbod, 2016), they 

proposed a new combination approach based on classifier consensus to combine multiple classifier 

systems (MCS) of different classification algorithms. Studies such as (Zhou, Lai, & Yu, 2010) and 

(Marqués Marzal, García Jiménez, & Sánchez Garreta, 2012) falls in this category as well. 
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Considering hybrid approaches, (Zhang, Gao, & Shi, 2014) proposed a multi-criteria optimisation 

classifier based on SVM, and reduced model sensitivity to noisy and anomaly data using fuzzification. 

Some noteworthy studies such as (Akkoç, 2012) and (Ping & Yongheng, 2011) fall into the hybrid 

algorithm category.  There also some notable studies around the use of feature selectors like (Lin, 

2009) and (Wu & Hsu, 2012) and clustering algorithms in the classification approach like (Hsieh & 

Hung, 2010) and (Xiao, Xiao, & Wang, 2016). 

This article surveys the effect of the proposed hybrid approach on the performance of credit scoring in 

accuracy and errors. It also assesses the effect of the ensemble approaches on single classifiers for a 

selected credit scoring problem. The suggested model incorporates different ensemble methods 

throughout a simple partitioning method that inspired by bagging method and this enables the 

approach to be more accurate and generalised in prediction. It prepares a pool of diverse classifiers 

under four different situations including base classifiers and three ensembles of those base classifiers. 

Afterward, it introduces a new two-level voting (under two different schemes) to make the final 

classification. The main goal of the article is to apply the ensemble learning concept to the modified 

model of traditional simple majority voting and increase the model’s generalisability. Finally, it 

investigates the effect of the proposed voting approach.  

The rest of this paper is constructed as follows. The model architecture is presented in section 2. 

Section 3 demonstrates the results and shows the model’s effectiveness compared to other learning 

methods. Finally, a brief conclusion is provided in section 4. 

2 Research Design and Methodology  

An important factor in ensemble and hybrid data mining models is the generation of diverse classifiers 

to make a generalised model. There are various ways to generate different and diverse classifiers. The 

architecture of the proposed model takes advantage of different approaches to create diversity and 

could fall into the first and second reviewed categories. The model consists of four stages as depicted 

in detail in Figure 1. Inspired by the bagging ensemble method, in the first stage, 21 training subsets 

are generated from the original dataset to support diversity via different training data. In the second 

stage, five base classifiers are selected throughout the model to support diversity. These five base 

classifiers are tuned over 21 training subsets. These 5 tuned classifiers are used as base classifiers in 

an ensemble learning (Meta-learning) algorithm in the third stage. This means 105=21×5 trained 

ensemble classifiers will be available. The third stage is repeated for three different ensemble 

algorithms, AdaBoost, Random Subspace and Rotation Forest. In the fourth stage, two-level majority 

voting with two different schemes is presented; these two schemes are compared with traditional 

majority voting (fusing all 105 trained classifiers). The results for the last stage are prepared for the 

three ensemble algorithms. The voting stage is also performed for the trained base classifiers from the 

second stage to investigate the effect of the third stage.  

Figure 1- architecture of the proposed model 

 

2.1 Generating Training Subsets 

In the first stage of the proposed model, training subsets are generated. The bagging (Breiman, 1996) 

approach generates training sets by making make diverse classifiers. At this point, the bagging 

concept is adopted and the dataset is divided into two disjoint parts (7/10 and 3/10 portions), i.e. 

training and testing sets, with 700 and 300 instances respectively. Then 21 training subsets are 

generated from the training set using the following steps: 
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1. Training sets are divided in 7 disjoint subparts of equal size. 

2. Twenty one subsets of size 5 are generated that could be selected from these 7 subparts, 

i.e. all possible combinations for 5 of 7 donated by �(5,7), that equals to 21.  

Figure 2- Diagram of the generation of training subsets 

 

2.2 Tuning Training Parameters of Base Classifiers  

The third stage of the proposed considers more diversity by training various classifiers on 21 

generated training subsets. From all subsets in the first stage, the five most popular and successful 

classification tools, i.e. multilayer perceptron (MLP) networks (Hornik, Stinchcombe, & White, 

1989), radial basis function (RBF) networks (Park & Sandberg, 1991), support vector machines 

(SVM) (Cortes & Vapnik, 1995), C4.5 algorithm for decision tree (C4.5 DT) (Quinlan, 1993) and 

logistic regression (LR) (Allison, 1999), will be trained as base classifiers. To demonstrate this stage 

more concisely, the training process of base classifiers takes an ensemble approach. In fact, the model 

is conducted three times through three different ensemble strategies, AdaBoost (Freund & Schapire, 

1997), random subspace (RS) (Ho, 1998), and rotation forest (RF) (Rodriguez, Kuncheva, & Alonso, 

2006), as Meta classifiers. Then these ensemble approaches are compared. 

Before proceeding to ensemble learning in the third stage, it is important to have base classifiers 

suitably adjusted to get the most possible accuracy from each one. The algorithms of the classifiers 

consist of parameters that noticeably affect accuracy and precision. For example, the cost parameter in 

SVM has a great effect on accuracy of prediction (classification). Therefore, for each training subset, 

five adjusted base classifiers are trained and used in ensemble learning. Table 1 lists the parameters 

that could be adjusted to better train algorithms for each base classifier. 

Table 1- Tuning parameters for each base classifier 

2.3 Ensemble Learning 

Since there are 21 training subsets, all five base classifiers are trained for each; thus, there will be five 

trained clarifiers in each dataset. But as shown in Figure 1, this training process uses a Meta classifier 

algorithm in the third stage.  

2.4 Voting (Fusing Trained Classifiers) 

Voting (fusing trained classifiers) is the final stage of the proposed model. In the literature the three 

most popular voting strategies are majority voting, ranking and weighted averaging (Yu et al., 2008). 

In this stage of the model, a two-level majority voting strategy is proposed. As the name implies, there 

are two levels, majority voting through two levels, and two schemes to conduct this voting strategy: 

• First voting scheme (I): Performing majority voting among trained base classifiers in each 

training subset in the first level and performing majority voting among the result of the subsets in 

the second level.  

• Second voting scheme (II): Gathering and segregating same classifiers from training subsets into 

distinct groups, i.e. segregate 21 trained SVMs from training subsets in a group and name it 

“SVM group”, and similarly obtain “MLP group”, “RBF group”, “LR group” and “DT group”. 

Then perform majority voting among members of each group in the first and second levels; 

finally, perform majority voting among the result of the groups.  

The first and second strategies are illustrated in Figure 3 and Figure 4 respectively. The fourth stage is 

performed for three different ensemble algorithms separately and the results compared. The fourth 
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stage is also performed for the base trained classifiers from the second stage in order to judge the 

effect of the third stage (effect of selected ensemble learning algorithms).   

Figure 3- Two-level voting scheme I 

 

Figure 4 - Diagram for voting scheme II 

 

3 Results and Discussion  

3.1 Evaluation Criteria for Classification  

In a two-class classification case with good and bad classes, a prediction has four possible outcomes.  

• True Positive: Classifies an instance as good when it is actually good (TP) 

• True Negative: Classifies an instance as bad when it is actually bad (TN) 

• False Positive: Classifies an instance as good when it is actually bad (FP) 

• False Negative: Classifies an instance as bad when it is actually good (FN) 

The following criteria can be calculated to evaluate a classification model. 

��	
	�	
� =
��

�� + ��
 (1) 

��	
	��	
� = 	
��

�� + ��
 (2) 

��
��
	������� = 	
�� + ��

�� + �� + �� + ��
 (3) 

 

Average accuracy is typically considered the main criterion for comparisons. But to make a judgment 

about error type I and II, these two criteria should not be considered separately. We want to select 

those combinations that are simultaneously small and balanced. For example (error type I=35%, error 

type II=40%) is preferred to (error type I=70%, error type II=2%), because the second combination 

shows a more biased classifier. In fact, the second classifier tends to make predictions in favour of the 

“bad” class and is highly biased. In this study a simple criterion, whereby the type I and II error 

criterion is defined as equation (4) to evaluate the performance of different classifiers for error type I 

and error type II.  

��	
�	�	&	��	
�	���
��� =
(��	
	�	 − ��	
	��	) + (��	
	�	 + ��	
	��	) 

2
	 (4) 

 

3.2 Dataset Description  

The study uses the German Credit dataset from the “UCI Machine Learning Repository: Data Sets” to 

evaluate the proposed model. This dataset contains 1000 instances, with 20 features for each, as well 

as a class feature, .i.e. good/bad applicant. The dataset has 700 instances of good applicants and 300 

instances of bad applicants. Every instance has 13 categorical, 4 set/binary and 3 continuous features.  
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3.3 Experimental Results 

WEKA data mining toolkit Version 3.7.11 is applied to implement data mining algorithms.  

3.3.1 Stage 1: Generating Training Subsets 

The described method of generating training subsets from the German dataset requires a test set of 

size 300 and 21 training subsets of size 500. These 21 training subsets are used to develop the model; 

the test set is left out for testing and comparative purposes. 

3.3.2 Stage 2: Tuning Training Parameters of Base Classifiers 

This stage requires a lot of work, because parameter tuning is done for 21 generated training subsets 

and five base classifiers. To tune the C-Support Vector classifier, data are normalised and a grid 

search is conducted for (C, Gamma) for all 21 subsets using 5-fold cross validation, with average 

accuracy used as the evaluation criterion. For all training subsets, the search areas for C and Gamma 

are {1 to 20} and {10$%& to	10%&} respectively.  A grid search is also used to tune the ridge value in 

the LR algorithm. The search area for the ridge value is {10$%& to	10%&} for all training subsets. For 

the MLP neural net, 0.15, 0.2, 0.25, 0.3 values are examined to determine the validation set 

percentage and the coordinated accuracy of MLP. The portion with the highest accuracy is selected 

for each training subset. To tune the RBF neural network, it is desirable to find a suitable value for a 

number of clusters; therefore, for each training subset, RBF accuracy is compared for 1, 2, 3 and 4 

clusters and the best option selected. Finally, in this stage, a grid search is used to find a suitable 

option for the confidence factor and the minimum number of instances in each leaf to create a tuned 

DT. {0.05 to 0.5} values are selected as the search area for the confidence factor and {2 to 50} as the 

search area for the minimum number of instances. All parameter tuning is done via 5-fold or 10-fold 

cross validation; the results for selected values of all described parameters and coordinated accuracies 

are presented in Table 2. Based on the results from Table 2, it is obvious that different configurations 

are proposed for each base classifier in the different training subsets. This happened since the training 

subsets have different members and these tuned classifiers will contribute to the model 

generalisability.  

Table 2- Selected values for parameters of base classifier algorithms in tuning stage 

3.3.3 Stage 3: Ensemble learning 

In the second stage, 105=5×21 tuned base classifiers are derived and used in an ensemble approach. 

For example, for the RS algorithm, 21 RS-SVM models, 21 RS-MLP models, 21 RS-RBF models, 21 

RS-logistic regression and 21 RS-decision tree models are trained. As mentioned in the previous 

section this is performed for AdaBoost and RF algorithms for purposes of comparison. For the three 

ensemble approaches, ensemble learning is performed using 10-fold cross validation. Each single 

classifier and ensemble model is re-evaluated on the test dataset.  

 

The effects of ensemble approaches on them are examined in Table 3 for average accuracy and the 

error type I and II criterion. 

Table 3 - Ranking and comparison of base and ensemble classifiers for accuracy and error type I and II criterion 

As Table 3 indicates, LR and the RS-DT show the best and worst accuracies among all trained 

classifiers respectively (75.81% and 70.10%). Furthermore, among all ensemble approaches, the RS 

approach always decreases the accuracy of base classifiers for the dataset. Comparing base classifiers 

shows ensemble approaches only make improvements for DTs and MLPNNs on this dataset. 

Moreover, RS approach obviously can’t deal with this unbalanced dataset and tends to make 
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predictions in favour of the larger class (good applicant). Therefore, it has a high type II error and low 

type I error compared to other ensemble approaches. According to this criterion (equation (4)), single 

LR shows the best performance for the error type I and II criterion. Adaboost-LR shows results 

similar to LR but makes no improvement over single LR.  

In order to evaluate the significance of the results from Table 3, one-way ANOVA - Dunnett's method 

- is used and the effect of each ensemble method on the base classifier as the control group is 

examined in term of accuracy in Table 4. 

 

Table 4- Effect of ensemble approaches on each base classifier in the stage3 

As shown in Table 4, ensemble methods significantly decrease the performance of the base classifiers, 

except RF for DT where we see a significant positive improvement. Observed improvements for 

MLP_Adaboost, MLP_RF, LR_Adaboost and DT_Adaboost are not significant.  

Comparative information about base classifier performances and the effect of ensemble approaches 

are in contrast to the expectations, in this stage. Ensemble methods mostly decreased the performance 

of the base classifiers, except for RF which makes an improvement in the DT for this dataset. 

3.3.4 Stage 4: Voting (Fusing Trained Classifiers) 

In this stage, the two-level voting strategy is performed in two different schemes, as mentioned in 

section 3. Traditional majority voting is also conducted among all 105 trained classifiers. This process 

is repeated four times for four investigated approaches; i.e. single classifier, AdaBoost, RS and RF 

approaches. Finally, to evaluate the model - given the original training and test subsets - some 

powerful classifiers, including bagging MLP, bagging LR, RF-LR, SVM and MLP, are trained, and 

the results are compared in accuracy, error type I and II. 

Table 5- Final results of the proposed model for different ensemble approaches 

According to the final results of the proposed model shown in Table 5, the two-level voting strategy 

scheme II leads to the best accuracy. For single classifiers, it shows the best performance in terms of 

accuracy (78.33%). Traditional majority voting for a single classifier and RF (76.67%) show the next 

best performances in accuracy. Comparing error type I and type II in Table 5, we see the two-level 

voting scheme for the AdaBoost approach (12.08%, 49.46% respectively), traditional majority voting 

for the AdaBoost approach (12.56%, 50.54% respectively) and two-level voting scheme II for a single 

classifier approach (8.21%, 51.61% respectively) show the best combinations of type I and II error. 

This result is validated by the error type I and II criterion (25.92%, 27.12%, 27.31%, scheme I, 

traditional majority voting, scheme II, respectively). Generally speaking, the results show the 

proposed voting model leads to more accuracy and fewer errors when voting among base classifiers.   

Comparing the two schemes for two-level voting strategy, the two-level voting scheme II for single 

learning and RF ensemble learning are more accurate and show best values in terms of accuracy. 

Scheme II leads to a better combination of error type I and II for single learning and RF ensemble 

learning. These results suggest that two-level voting leads to more accurate results in traditional 

majority voting. Furthermore, the best results of two-level majority voting are obtained when voting 

among single classifiers – that was predictable from the results of third stage- for the German credit 

dataset. Performing the proposed two-level voting with the ensemble method makes no improvements 

in accuracy but the Adaboost ensemble method  leads to less error type I and II. 

Table 6 – Comparing algorithms with proposed model 
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Comparisons of the proposed model and other powerful models in Table 6 indicate the suggested 

model outperforms traditional single classifiers such as SVM or MLP and also popular ensembles 

methods such as bagging LR, bagging MLPs, and rotation forest LR in terms of accuracy and error 

type I as well.. Considering error type I and error type II as evaluation criteria, the proposed model 

displays better performance in comparison to single classifiers such as MLP.  However, compared to 

typical ensemble approaches, the proposed model fails to outperform some in term of error type II, for 

example, bagging-MLP. Although the proposed approach fails to outperform some of base classifiers 

and ensembles methods in term of error type II criterion, but the proposed approach leads to more 

reliable results, especially in terms of accuracy, and error type I. Therefore single approaches could be 

replaced by the proposed model, especially for the circumstances that more accuracy is needed and 

there are more costs associated to the error type I.  

4 Conclusion 

There is a wide range of methods and tools to assist the fiscal managers in credit scoring decisions. 

Among these tools there is a growing trend in favour of ensemble and hybrid methods in the literature 

that try to decrease weakness of single classifiers and boost their strength. Therefore, this study 

proposes a four stage hybrid data mining approach that takes advantage of the bagging ensemble 

concept in the first stage. It makes a pool of diverse classifiers – through the first and second stages- 

and takes advantage of the novel two-level majority voting to produce the final classification. The 

results indicate that the proposed approach outperforms traditional single classifiers and popular 

ensemble classifiers in term of accuracy. In spite of the fact that the approach fails to outperform 

some base classifiers in term error type II, it is a reliable approach since it makes a decision based on 

the two-level voting. 

Throughout the third stage some comparison is made among different ensemble methods for the 

selected credit scoring dataset and effect of the ensemble methods over the single base classifiers were 

analysed. Although the considered ensemble methods do not improve the performances of the base 

classifiers in the third stage, but the ensemble concept used by the approach yields more accurate 

overall results than single and ensemble classifiers throughout the all stages. This is because of fusing 

diverse and different tuned base classifiers and due to the two-level majority voting as well. 

Moreover, the second suggested voting scheme - two-level majority voting II- leads to more accurate 

results and it is recommended for this case. Exploring different types and different numbers of base 

classifiers is a suggestion for future work. Moreover, the proposed model can be performed using 

other ensemble approaches like DECORATE.  

References  

Abdou, H. A. (2009). An evaluation of alternative scoring models in private banking. Journal of Risk 

Finance, The, 10(1), 38-53.  
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three 

stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring 

analysis: The case of Turkish credit card data. European Journal of Operational Research, 
222(1), 168-178.  

Ala'raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. 

Knowledge-Based Systems, 104, 89-105.  
Allison, P. (1999). Logistic regression using SAS®: theory and application: SAS Publishing. 

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.  

Commission, F. I. (2011). Final report of the National Commission on the Causes of the Financial and 

Economic Crisis in the United States. 27th January, Washington DC.  

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.  

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2FBF00994018
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2012.04.009&isi=000305862500017
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F15265940910924481
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F15265940910924481
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.knosys.2016.04.013&isi=000377733400008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2FBF00058655


 

 

de Andres, J., Lorca, P., Sanchez-Lasheras, F., & Javier De Cos-Juez, F. (2012). Bankruptcy 

prediction and credit scoring: a review of recent developments based on hybrid systems and 

some related patents. Recent Patents on Computer Science, 5(1), 11-20.  

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an 

application to boosting. Journal of computer and system sciences, 55(1), 119-139.  
Ghodselahi, A. (2011). A Hybrid Support Vector Machine Ensemble Model for Credit Scoring. 

International Journal of Computer Applications, 17.  

Ho, T. K. (1998). The random subspace method for constructing decision forests. Pattern Analysis 
and Machine Intelligence, IEEE Transactions on, 20(8), 832-844.  

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal 

approximators. Neural networks, 2(5), 359-366.  

Hsieh, N.-C., & Hung, L.-P. (2010). A data driven ensemble classifier for credit scoring analysis. 

Expert Systems with Applications, 37(1), 534-545.  

Lessmann, S., Baesens, B., Seow, H., & Thomas, L. (2015). Benchmarking state-of-the-art 

classification algorithms for credit scoring: A ten-year update. European Journal of 

Operational Research.  

Lin, S. L. (2009). A new two-stage hybrid approach of credit risk in banking industry. Expert Systems 

with Applications, 36(4), 8333-8341.  
Marqués Marzal, A. I., García Jiménez, V., & Sánchez Garreta, J. S. (2012). Exploring the behaviour 

of base classifiers in credit scoring ensembles.  

Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. 

Neural computation, 3(2), 246-257.  

Ping, Y., & Yongheng, L. (2011). Neighborhood rough set and SVM based hybrid credit scoring 

classifier. Expert Systems with Applications, 38(9), 11300-11304.  

Quinlan, J. R. (1993). C4. 5: programs for machine learning (Vol. 1): Morgan kaufmann. 

Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier ensemble 

method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(10), 1619-
1630.  

Tsai, C.-F., & Hung, C. (2014). Modeling credit scoring using neural network ensembles. Kybernetes, 

43(7), 1114-1123.  
Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for 

credit scoring. Expert Systems with Applications, 38(1), 223-230.  

Wang, G., Ma, J., Huang, L., & Xu, K. (2012). Two credit scoring models based on dual strategy 
ensemble trees. Knowledge-Based Systems, 26, 61-68.  

Wu, T.-C., & Hsu, M.-F. (2012). Credit risk assessment and decision making by a fusion approach. 

Knowledge-Based Systems, 35, 102-110.  

Xiao, H., Xiao, Z., & Wang, Y. (2016). Ensemble classification based on supervised clustering for 

credit scoring. Applied Soft Computing, 43, 73-86.  

Yu, L., Wang, S., & Lai, K. K. (2008). Credit risk assessment with a multistage neural network 

ensemble learning approach. Expert Systems with Applications, 34(2), 1434-1444.  

Zhang, Z., Gao, G., & Shi, Y. (2014). Credit risk evaluation using multi-criteria optimization 

classifier with kernel, fuzzification and penalty factors. European Journal of Operational 
Research, 237(1), 335-348.  

Zhou, L., Lai, K. K., & Yu, L. (2010). Least squares support vector machines ensemble models for 

credit scoring. Expert Systems with Applications, 37(1), 127-133.  

 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?system=10.1108%2FK-01-2014-0016&isi=000341938400011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2009.05.024&isi=000271571000014
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2011.02.179&isi=000291118500063
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.knosys.2011.06.020&isi=000299979400007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1006%2Fjcss.1997.1504&isi=A1997XT05700011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2009.05.059&isi=000271571000060
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.asoc.2016.02.022&isi=000375042300006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2008.10.015&isi=000264528600115
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2008.10.015&isi=000264528600115
http://www.emeraldinsight.com/action/showLinks?crossref=10.5120%2F2220-2829
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2014.01.044&isi=000335626200029
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2014.01.044&isi=000335626200029
http://www.emeraldinsight.com/action/showLinks?crossref=10.1162%2Fneco.1991.3.2.246
http://www.emeraldinsight.com/action/showLinks?crossref=10.2174%2F2213275911205010011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2010.06.048&isi=000282607800028
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0893-6080%2889%2990020-8
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.knosys.2012.04.025&isi=000311016400011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2007.01.009&isi=000253238900064


Start Finish 

Trained 
Ensemble 
Classifiers 

Credit 
Data Set 

21 
Training 
subsets  

Tuned 
Base 
classifiers 

Final 
Hybrid 
Model 

 
 
 

Generating 
training 
Subsets 

 

Stage 1  
 

Tuning Training 
Parameters of 

Base Classifiers  

Stage 2  
 

Ensemble 
learning via 

Meta Classifier  

Stage 3 
 

Two-Level 
majority Voting 

Stage 4 

F1 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Data Set Shuffle 
Data Order 

Training Set 

Testing Set 

21 
training 
Subsets 

F2 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



* Trained SVM (1) 
* Trained MPL (1) 
* Trained RBF (1) 
* Trained LR (1) 
* Trained DT (1)  

* Trained SVM (2) 
* Trained MPL (2) 
* Trained RBF (2) 
* Trained LR (2) 
* Trained DT (2)  

* Trained SVM (21) 
* Trained MPL (21) 
* Trained RBF (21) 
* Trained LR (21) 
* Trained DT (21)  

… 

Training Subset 1 Training Subset 2 Training Subset 21 … 
M

ajo
rity V

o
tin

g 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

First Level V
o

tin
g 

21 Votes from First Level 

M
ajo

rity V
o

tin
g 

Final Vote in Second Level 

Seco
n

d
 Level V

o
tin

g 

F3 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



* Trained SVM (1) 
* Trained MPL (1) 
* Trained RBF (1) 
* Trained LR (1) 
* Trained DT (1)  

* Trained SVM (2) 
* Trained MPL (2) 
* Trained RBF (2) 
* Trained LR (2) 
* Trained DT (2)  

* Trained SVM (21) 
* Trained MPL (21) 
* Trained RBF (21) 
* Trained LR (21) 
* Trained DT (21)  

… 

Training Subset 1 Training Subset 2 Training Subset 21 … 

First Level V
o

tin
g 

Gathering and segregating same 

classifiers into distinct groups 

SVM (1), 

SVM (2), …, 

SVM (21) 

LR (1), LR (2), 

…, LR (21) 

RBF(1), RBF 

(2), …, RBF 

(21) 

MPL(1), MLP 

(2), …, MLP 

(21) 

DT(1), DT(2), 

…, DT(21) 

SVM Group MLP Group RBF Group LR Group DT Group 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

M
ajo

rity V
o

tin
g 

5 Votes from First Level 

M
ajo

rity V
o

tin
g 

Final Vote in Second Level 

Seco
n

d
 Level V

o
tin

g 

F4 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



Base classifier Parameters to be tuned 

C-Support Vector Classification formulation for 

Support Vector Machines  

1. Gamma Parameter in radial base function 

2. Regularisation parameter 

Multilayer Perceptron Neural Network (MLP)  1. Validation Set Percentage 

Radial Basis Function (RBF) Neural Networks 1. Number of clusters through k-means clustering 

Logistic Regression (LR)  1. Ridge parameter 

C4.5 Decision Tree (DT)  1. Minimum number of instances per leaf 

2. Confidence interval 

Table 1- Tuning parameters for each base classifier 
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Training 

Subset No. 

SVM MLP NN RBF NN LR DT - C4.5 

Cost 

(C) 
Gamma 

Validation Set 

Percentage 

Number of 

Clusters 

Ridge 

Value 

Confidence 

Factor 

Minimum Number 

of instances 

No. 1 3 0.1 20% 2 0.1 0.30 22 

accuracy 76.6% 74.2% 74.6% 75.6% 70.0% 

No. 2 13 0.01 35% 1 10 0.50 34 

accuracy 75.6% 73.8% 74.2% 75.4% 73.0% 

No. 3 1 0.1 20% 1 10 0.25 13 

accuracy 71.0% 74.0% 75.0% 76.8% 73.8% 

No. 4 3 0.1 15% 1 10 0.50 11 

accuracy 73.4% 72.8% 75.8% 74.6% 72.6% 

No. 5 9 0.01 15% 1 10 0.40 42 

accuracy 73.0% 72.4% 71.2% 73.4% 70.0% 

No. 6 18 0.01 15% 4 10 0.25 14 

accuracy 71.2% 70.2% 72.0% 70.6% 71.0% 

No. 7 15 0.01 15% 2 10 0.25 6 

accuracy 76.8% 74.4% 73.8% 76.2% 70.4% 

No. 8 13 0.01 20% 4 10 0.35 45 

accuracy 74.4% 72.8% 72.8% 73.0% 72.2% 

No. 9 7 0.01 20% 3 0.1 0.10 11 

accuracy 73.8% 69.8% 72.0% 73.8% 70.4% 

No. 10 20 0.01 20% 1 10 0.20 34 

accuracy 74.0% 71.8% 71.0% 73.6% 70.4% 

No. 11 1 0.1 20% 1 10 0.30 15 

accuracy 76.2% 72.6% 76.8% 77.4% 74.2% 

No. 12 18 0.1 25% 1 10 0.15 19 

accuracy 75.2% 73.2% 72.6% 76.4% 74.2% 

No. 13 10 0.01 15% 4 10 0.25 33 

accuracy 75.4% 74.0% 71.6% 76.8% 71.6% 

No. 14 14 0.01 25% 1 1 0.15 26 

accuracy 75.2% 73.2% 73.0% 74.8% 70.0% 

No. 15 2 0.1 25% 1 1 0.25 33 

accuracy 71.4% 73.0% 73.8% 73.4% 71.6% 

No. 16 6 0.1 25% 1 1 0.15 26 

accuracy 71.4% 71.2% 73.2% 72.0% 70.0% 

No. 17 10 0.1 15% 4 10 0.30 22 

accuracy 71.2% 71.6% 70.6% 72.0% 70.4% 

No. 18 11 0.01 15% 1 10 0.15 21 

accuracy 71.6% 71.0% 72.4% 69.8% 70.6% 

No. 19 2 0.1 30% 3 10 0.40 25 

accuracy 70.8% 71.2% 70.8% 72.0% 69.8% 

No. 20 3 0.1 20% 1 1E-10 0.15 26 

accuracy 72.0% 70.0% 68.4% 71.0% 67.4% 

No. 21 20 0.01 25% 1 10 0.30 22 

accuracy 73.2% 70.4% 70.2% 73.8% 71.2% 

Table 2- Selected values for parameters of base classifier algorithms in tuning stage 
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Base Classifier SVM MLP NN RBF NN LR DT C4.5 SVM 
MLP 

NN 

RBF 

NN 
LR 

DT 

C4.5 

Criterion Accuracy Error type I & II criterion 

Single Classifier 75.08% 72.95% 74.24% 75.81% 71.59% 29.20% 48.97% 32.56% 25.23% 39.89% 

RANK 4 14 7 1 17 6 15 8 1 9 

AdaBoost 73.73% 73.10% 73.76% 75.81% 72.37% 26.27% 39.92% 26.46% 25.23% 31.11% 

RANK 9 13 8 1 15 4 10 5 1 7 

Random Subspace 71.35% 71.08% 73.44% 73.73% 70.10% 72.84% 80.81% 53.08% 52.42% 87.46% 

RANK 18 19 11 9 20 18 19 17 16 20 

Rotation Forest 74.67% 74.40% 72.37% 75.78% 73.40% 43.58% 42.75% 46.42% 26.17% 43.94% 

RANK 5 6 15 3 12 12 11 14 3 13 

Table 3 - Ranking and comparison of base and ensemble classifiers for accuracy and error type I and 

II criterion 
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Base Classifier Difference of Levels Difference of Means P-Value Interpretation 

SVM 

(SVM_Adaboost)-(SVM_Single) -0.01349 0.058 * 

(SVM_RS)-(SVM_Single) -0.03730 0.000 sig. difference 

(SVM_RF)-(SVM_Single) -0.00413 0.816 * 

MLP 

(MLP_Adaboost)-(MLP_Single) 0.00143 0.993 * 

(MLP_RS)-(MLP_Single) -0.01873 0.019 sig. difference 

(MLP_RF)-(MLP_Single) 0.01444 0.090 * 

RBF 

(RBF_Adaboost)-(RBF_Single) -0.00476 0.743 * 

(RBF_RS)-(RBF_Single) -0.00794 0.375 * 
(RBF_RF)-(RBF_Single) -0.01873 0.005 sig. difference 

LR 

(LR_Adaboost)-(LR_Single) 0.00000 1 * 

(LR_RS)-(LR_Single) -0.02079 0.001 sig. difference 

(LR_RF)-(LR_Single) -0.00032 1 * 

DT 

(DT_Adaboost)-(DT_Single) 0.00778 0.382 * 

(DT_RS)-(DT_Single) -0.01492 0.027 sig. difference 

(DT_RF)-(DT_Single) 0.01810 0.006 sig. difference 

Table 4 – Effect of ensemble approaches on each base classifier 
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Evaluati

of 

criteria 

Traditional Majority Voting Two-Level Voting scheme I Two-Level Voting scheme II 

Singl

e 

AdaBoo

st 
RS RF 

Singl

e 

AdaBoo

st 
RS RF 

Singl

e 

AdaBoo

st 
RS RF 

Accurac

y 

76.67

% 
75.67% 

71.00

% 

76.67

% 

76.33

% 
76.33% 

72.00

% 

76.00

% 

78.33

% 
75.67% 

71.67

% 

76.33

% 

error 

type I 
9.18% 12.56% 2.42% 6.76% 9.66% 12.08% 1.93% 7.73% 8.21% 12.08% 2.42% 7.25% 

error 

type II 

54.84

% 
50.54% 

88.17

% 

60.22

% 

54.84

% 
49.46% 

86.02

% 

60.22

% 

51.61

% 
51.61% 

86.02

% 

60.22

% 

error 

type I & 

II c. 

30.92

% 
27.12% 

77.80

% 

36.72

% 

31.01

% 
25.92% 

74.03

% 

36.86

% 

27.31

% 
28.10% 

74.05

% 

36.79

% 

 

Table 5- Final results of the proposed model for different ensemble approaches 
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Algorithm Accuracy error type I error type II error type I & II c. 

Bagging_LR 75.33% 14% 48% 25% 

MLP 76.00% 6% 63% 40% 

Rotation Forest_LR 75.67% 16% 35% 15% 

Bagging_MLP 77.33% 14% 34% 14% 

SVM 76.00% 14% 36% 15% 

Traditional Majority Voting-Single 76.67% 9% 55% 31% 

Traditional Majority Voting-AdaBoost 75.67% 13% 51% 28% 

Traditional Majority Voting-RF 76.67% 7% 60% 36% 

Two-Level Voting scheme I-AdaBoost 76.33% 12% 49% 25% 

Two-Level Voting scheme II-Single 78.33% 8% 52% 28% 

Table 6 – Comparing algorithms with proposed model 
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