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The multiple markets
competitive location problem
Tammy Drezner, Zvi Drezner and Pawel J. Kalczynski

Department of Information Systems and Decision Sciences,
California State University, Fullerton, California, USA

Abstract
Purpose – The purpose of this paper is to investigate a competitive location problem to
determine how to allocate a budget to expand company’s chain by either adding new facilities,
expanding existing facilities, or a combination of both actions. Solving large problems may exceed the
computational resources currently available. The authors treat a special case when the market can be
divided into mutually exclusive sub-markets. These can be markets in cities around the globe or
markets far enough from each other so that it can be assumed that customers in one market do not
patronize retail facilities in another market, or that cross-patronizing is negligible. The company has a
given budget to invest in these markets. Three objectives are considered: maximizing
profit, maximizing return on investment (ROI), and maximizing profit subject to a minimum ROI.
An illustrative example problem of 20 sub-markets with a total of 400 facilities, 4,800 potential
locations for new facilities, and 5,000 demand points is optimally solved in less than two hours of
computing time.
Design/methodology/approach – Since the market can be partitioned into disjoint sub-markets,
the profit at each market by investing any budget in this sub-market can be calculated. The best
allocation of the budget among the sub-markets can be done by either solving an integer linear
program or by dynamic programming. This way, intractabole large competitive location problems can
be optimally solved.
Findings – An illustrative example problem of 20 sub-markets with a total of 400 facilities,
4,800 potential locations for new facilities, and 5,000 demand points is optimally solved in less than two
hours of computing time. Such a problem cannot be optimally solved by existing methods.
Originality/value – This model is new and was not done in previous papers.
Keywords Optimization techniques, Mathematical modelling, Operational research
Paper type Research paper

1. Introduction
Consider a competitive location model with a very large number of demand points
and facilities. Applying existing solution methods may at best provide a good
heuristic solution.

The basic problem the company faces is how to invest an available budget in order
to expand chain facilities either by improving the attractiveness of some existing ones,
by building new facilities or a combination of both actions. Such basic problems cannot
be optimally solved for large instances with currently available computational
resources. We investigate a special case for which optimal solutions may be
obtained for large problems, and illustrate this approach by optimally solving a
problem that is based on 5,000 demand points and 400 existing facilities (200 chain
facilities and 200 competing facilities).

It is quite common for large problems that a large market area consists of a union
of mutually exclusive sub-markets. A multinational company (e.g. McDonald’s) has
facilities in many markets that are mutually exclusive, i.e., customers in one market
area do not patronize outlets in other markets or cross-patronizing between markets is
negligible. This may well be the case even on a smaller scale when the market can be
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partitioned to “almost” mutually exclusive sub-markets when a large distance exists
between clusters of demand points. For example, urban areas in Texas such as Dallas,
Houston, San-Antonio, Austin, etc. are mutually exclusive. Consumers residing in
Dallas will rarely patronize a McDonald’s outlet in San-Antonio.

1.1 Literature review
There is a rich body of literature dealing with competitive location models.
Early papers are by Hotelling (1929), Huff (1964, 1966), Hakimi (1981, 1983, 1986, 1990),
and Drezner (1982, 1995). Such models are applicable to the location of competing
facilities, such as retail stores, shopping centers, restaurants, and many others. These
competing facilities may be chain facilities or franchises. Facilities that offer similar
products exist in the market area and compete for customers’ patronage. Some of the
facilities belong to one’s own chain while others are considered “competition.”
A manager considers either constructing new facilities or improving existing chain
facilities, or a combination of both actions. The objective is to maximize the increase in
the chain’s profit following the investment.

Customers patronize the facilities according to some well-defined customer behavior
rule. Several customer behavior rules were suggested. Hotelling (1929) suggested that
each customer patronizes the closest facility. This rule assumes that all competing
facilities are equally attractive. The proximity rule was generalized to a utility function
or random utility rule by Drezner (1994), Drezner and Drezner (1996), and Leonardi and
Tadei (1984). Huff (1964, 1966) suggested that customers distribute their patronage
according to the gravity model suggested by Reilly (1931) according to which
customers patronize a facility proportionally to its area (or more generally its
attractiveness) and a given distance decay function.

In the models discussed above the number of facilities and their design (captured by
facility attractiveness) are not decision variables. Drezner (1998), Plastria and Carrizosa
(2004), Aboolian et al. (2007a), Fernandez et al. (2007), and Toth et al. (2009) recently
investigated models that consider both facilities’ locations and their design as decision
variables. Drezner (1998) assumed that facilities’ attractiveness levels are variables.
A budget is available for locating new facilities and determining their attractiveness
levels. The problem is solved by a projected gradient search. Plastria and
Vanhaverbeke (2008) combined the limited budget model with the leader-follower
model. Aboolian et al. (2007a) studied the problem of simultaneously finding the
number of facilities, their location, and their design.

In early papers, the basic assumption was that one’s own chain and the competitors
divide the entire buying power among them and there is no lost demand. This may
not be true for non-essential products or when there are substitutable products.
The issue of lost demand is addressed in Aboolian et al. (2007b), and Drezner and
Drezner (2008, 2012).

In Drezner et al. (2011, 2012) competitive facility location models based on cover are
presented. Lost demand and design are incorporated in the model. The following cover-
based customer behavior rule was suggested: Each facility has a “sphere of influence” for
patronage defined by a distance termed “radius of influence.” Customers patronize a
facility if they are within its radius of influence. More attractive facilities have a larger
radius of influence, thus they attract customers from greater distances. If a demand point
is attracted to several facilities, its buying power is equally divided among the attracting
facilities. If a demand point is attracted by no facility, its buying power is lost.

For a review of competitive location models the reader is referred to Berman et al. (2009).
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1.2 The contribution of this paper
The contribution of this paper consists of two new ideas: dealing with multiple mutually
exclusive sub-markets, and discretizing the budget so that its allocation to each sub-
market is not a continuous variable. To the best of our knowledge these two ideas have
not been suggested before for the solution of large competitive location models.

Suppose that the market can be partitioned into m mutually exclusive
sub-markets. If we know the budget allocated to each sub-market, we may be able to
find the optimal solution (where to locate new facilities and which existing facilities to
expand) for each sub-market separately. This simplifies the formulation. However, the
resulting problem is intractable as well because m variables representing the budget
allocated to each sub-market are added to the formulation (in addition to the decision
variables in each sub-market). In addition, a constraint that the sum of these individual
budgets is equal to the available budget is added. A Lagrangian approach (adding a
Lagrange multiplier for the constraint on the total budget and finding its value) is not
applicable to this particular problem. The formula for the profit obtained in a sub-market
as a function of the budget allocated to that sub-market is not an explicit expression.

Three objectives are investigated: maximizing firm’s profit, maximizing firm’s
return on investment (ROI), and maximizing profit subject to a minimum threshold
ROI. The last objective is similar in many ways to the threshold concept where the
objective is to minimize the probability of falling short of a profit threshold or a cost
overrun (Drezner et al., 2002; Drezner and Drezner, 2011). The first paper to introduce
the threshold concept was Kataoka (1963) in the context of transportation problems.
Frank (1966, 1967) considered a model of minimizing the probability that the cost
function in the Weber or minimax problems (Love et al., 1988) on a network exceeds a
given threshold. The threshold concept has been employed in financial circles as a form
of insurance on a portfolio, either to protect the portfolio or to protect firm’s minimum
profit ( Jacobs and Levy, 1996).

This paper is organized as follows: In Section 2, our solution approach is detailed. In
Section 3, we illustrate the general approach and introduce an example of 5,000 demand
points, 4,800 potential locations and 400 existing facilities in 20 mutually exclusive markets
and discuss the results obtained. We conclude the paper with a discussion in Section 4.

2. Solution approach
There are m mutually exclusive sub-markets, each with given data about chain
facilities, competitors, and demand points. A budget B is available for an investment in
all m sub-markets. In order to diversify the investment, we can impose a maximum
budget of B0 in each of the sub-markets. The maximum budget can be different
for different sub-markets. Suppose that the budget B is divided into K units, each unit
is B=K dollars. For example, we can use K¼ 1,000 so that each unit is 0.1 percent
of the total budget. Since all m sub-markets are mutually exclusive we can find the
maximum profit for each individual sub-market by investing in sub-market j¼ 1,…,m
a budget of bj ¼ i B=K

� �
for some 0⩽ i⩽K. If the amount to be invested in a particular

sub-market cannot exceed B0 dollars, then i=K
� �

BpB0 leading to
0p ipK B0=B

� � ¼ imax. We assume that the maximum profit for a given
investment in a given sub-market can be found by an optimal algorithm or, if
necessary, by a good heuristic algorithm. The result is a matrix P of imax rows and
m columns. The element pij for 1⩽ i⩽ imax and 1⩽ j⩽m in the matrix is the maximum
profit obtained by investing i B=K

� �
in sub-market j. For i¼ 0 the profit is 0.

The problem is solved in two phases.
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2.1 Phase 1: calculating the maximum profit of a sub-market for all possible budgets
Since each sub-market is independent of the other sub-markets, the maximum profit
obtained in a sub-market for a given budget can be found by any existing competitive
location solution method. There are also heuristic approaches proposed for such
problems when a sub-market leads to a large problem. A problem consisting of 5,000
demand points is too big for most published approaches. However, as we illustrate
below, if such a problem can be divided to 20 sub-markets consisting between 100
and 400 demand points each, it is tractable for most solution approaches.
The following are examples of competitive models and solution approaches that can
be applied to find the maximum profit for a sub-market for a given budget allocated
to that sub-market:

• Aboolian et al. (2007a) solved the multiple facility location problem with a limited
budget in discrete space within a given α percent of optimality.

• Plastria and Vanhaverbeke (2008) solved the problem defined by Aboolian
et al. (2007a) in a leader-follower modification. The leader-follower model is
also termed the Stackelberg equilibrium model (Sáiz et al., 2009;
Stackelberg, 1934).

• Fernandez et al. (2007) and Toth et al. (2009) solved the same problem as Aboolian
et al. (2007a) in a planar environment.

• Drezner and Drezner (2004) solved optimally the single facility problem based on
the gravity formulation for a given budget (attractiveness).

• Drezner et al. (2012) solved optimally the multiple facilities problem with a limited
budget in discrete space. New facilities can be constructed and existing facilities
improved.

• Drezner et al. (2015) solved the leader-follower version of the formulation in
Drezner et al. (2012). The competitor (follower) is expected to improve his facilities
or build new ones in response to the leader’s action. The objective is to maximize
the leader’s market share following the follower’s action.

For K¼ 1,000 (a parameter), a matrix P of up to 1,001 rows corresponding to the
possible investments, and m columns corresponding to the m sub-markets can be
calculated by solving 1,000m sub-problems. Of course, an investment of 0 yields 0
profit and need not be solved.

2.2 Phase 2: calculating the total profit for all markets combined
Once the matrix P is available, the distribution of B among the m sub-markets can be
found in two ways. One way is solving a binary linear program and the other way is by
dynamic programming.

2.2.1 Binary linear programming formulation. Let xij for 1⩽ i⩽K and 1⩽ j⩽m be
a binary variable that is equal to 1 if a budget of i B=K

� �
is invested in sub-market

j and 0 otherwise. The total profit is
Pimax

i¼1

Pm
j¼1 pijxij. The total investment is

B=K
� �Pimax

i¼1

Pm
j¼1 ixij:

max
Ximax

i¼1

Xm
j¼1

pijxij

( )
(1)
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Subject to:

Ximax

i¼1

xijp1 for j¼ 1; . . .; m (2)

Ximax

i¼1

Xm
j¼1

ixijpK (3)

xijA 0; 1f g (4)

which is binary linear program with imax×m variables and m+ 1 constraints. The
constraint (2) guarantees that only one budget value is selected for each sub-market
and if all xij¼ 0 for sub-market j, then no budget is allocated to sub-market j.

2.2.2 Dynamic programming. Row 0 is added to matrix P with 0 values. The stages
in the dynamic programming are the maximum profit for a budget i B=K

� �
by

investing only in the first j sub-markets. Let the matrix Q¼ [qij] be the maximum profit
obtained by investing a budget of i B=K

� �
in the first j sub-markets. By definition

qi1 ¼ pi1. For 2p jpm the following recursive relationship holds:

qij ¼ max
0p rp i

qr; j�1þpi�r; j

� �
:

The values qim are the maximum possible profit for spending a total budget i B=K
� �

in all
sub-markets. Some sub-markets may be assigned no investment. One advantage of
dynamic programming over the binary linear programming approach is that the maximum
profit is obtained for each partial budget in one application of the dynamic programming
whileK solutions of the binary linear programming are required. In addition, the maximum
ROI is obtained for any partial budget by one application of dynamic programming.

2.3 Maximizing profit subject to a minimum ROI
Finding the maximum profit subject to a minimum ROI can be done using the results
obtained for maximizing the profit for a given budget. The ROI is the ratio between the
profit and the investment (budget). It can be calculated for each investment value yielding a
vector of ROI values. The maximum profit for a ROI greater than a certain value is found
by calculating the maximum profit for all investments whose ROI exceeds the given value.

It can also be done by solving binary linear programs similar to the formulation
presented in Section 2.2.1. Only one additional constraint is added to the binary linear
programming formulation (1)-(4). By definition, the ROI is the ratio between the profit
and the investment. Therefore:

ROI ¼
Pimax

i¼1

Pm
j¼1 pijxij

B
K

Pimax
i¼1

Pm
j¼1 ixij

:

Suppose that a minimum ROI of α is required. ROI⩾ α is equivalent to:

Ximax

i¼1

Xm
j¼1

pij�ia
B
K

� �
xijX0: (5)
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Constraint (5), which is linear, is added to the formulation (1)-(4) leading to a binary
linear program with imax×m variables and m+ 2 constraints.

3. An illustrative example
Once the maximum profit for a given investment in an individual sub-market is found,
our general framework can be implemented. All the formulations and solution
procedures described in Section 2.1 can be used for this purpose. We opted to apply the
optimal branch and bound algorithm proposed in Drezner et al. (2012) for finding the
maximum profit by investing a given budget in a single sub-market. The model in
Drezner et al. (2012) is a cover-based model. Each facility attracts demand within a
“radius of influence.” Both constructing new facilities and improving the attractiveness
of existing facilities are considered. The cost function of constructing a facility of a
given radius is known. The cost of building a new facility consists of a set-up cost plus
a cost function of its radius of influence. The cost of expanding an existing facility is
the difference between the cost function of the radius of influence following the
expansion minus that cost at the existing radius of influence. A finite set of possible
locations for new facilities is given. This leads to a finite number of radii for expansion
of existing facilities and constructing new ones. These are the nodes of the search tree
used for branching. The bound on the potential extra profit of assigning the remaining
budget is obtained by dynamic programming. For complete details the reader is
referred to Drezner et al. (2012).

The networks selected for our sub-markets are the first 20 Beasley (1990)
networks designed for the evaluation of algorithms for solving p-median problems.
Beasley (1990) did not consider competitive models. Demand points, existing
facilities, and potential locations for new facilities are located at the nodes of
the network. Distances along links are measured in tenths of miles. These networks
are easily available for testing other models as well. They can be used for
future comparisons:

• In total, 5,000 demand points are located in 20 sub-markets. Each sub-market
consists of between 100 and 400 demand points.

• In total, 200 chain facilities and 200 competing facilities presently operate in these
sub-markets.

• Each demand point has an available buying power to be spent at one’s facilities
or the competitors’ facilities.

• For simplicity of presentation, each sub-market has a total buying power of $150
million for a total of $3 billion.

• A budget of up to $100 million is available for improvements of existing facilities
and construction of new ones. No more than $30 million can be allocated to each
sub-market.

• Existing facilities can be expanded and new facilities can be constructed at any
node of the network.

• Each facility has a “circle of influence” defined by a radius of influence inside
which they attract customers.

• For simplicity of presentation we assume that each existing facility has a radius
of influence of two miles.
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• The cost of expanding a facility is proportional to the increase in the area of its
circle of influence. Expanding a facility from the existing radius of influence of
two miles to a radius of influence of r miles costs r2−4 million.

• Building a new facility with radius of influence r entails a $5 million set-up cost
plus a cost of r2 million.

• The question is: which, if any, of the 200 existing facilities should be expanded
and at which of the 4,800 potential locations should new facilities be constructed
to maximize profit. Maximizing the ROI is also considered, as well as maximizing
profit subject to a minimum ROI value. The radii of the expanded and new
facilities are variables, for a total of 5,000 variables.

3.1 Solving the illustrative example
The branch and bound optimal algorithm (Drezner et al., 2012) and the dynamic
programming procedure were programmed in Fortran using double precision
arithmetic. The programs were compiled by the Intel 11.1 Fortran Compiler and run,
with no parallel processing, on a desktop with the Intel 870/i7 2.93 GHz CPU
Quad processor and 8 GB memory. Only one thread was used.

The matrix P contains 6,020 values (301 rows for a budget of 0 and between $0.1 and
$30 million, and 20 columns, one for each sub-market), each being the maximum profit
for a given budget invested in a given sub-market. Note that an investment of $0 yields
a profit of $0. All 6,020 optimal solutions that are needed for the construction of matrix
P were obtained in about 103 minutes of computing time.

Once the matrix P is found, obtaining the maximum profit for all partial
budgets by solving binary linear programs using CPLEX 12.A took about three
seconds for solving each of the 300 problems. The 300 results using dynamic
programming were obtained in less than one second. Finding the maximum profit
subject to a minimum ROI requirement by solving the binary linear program required
about 1.6 seconds. Once the 300 results found by dynamic programming are
available, the solution to the maximum profit for a minimum ROI is found by
constructing a simple excel file.

3.2 The illustrative example results
In Table I, we summarize the maximum possible profit along with the maximum
ROI and the corresponding investments leading to these profits and ROIs. In five of the
20 sub-markets no profit is possible and no investment should be made. If unlimited
budget is available and the best investment strategy is selected for each sub-market,
then the total investment is $298.5 million leading to a profit of $198.4 millions and
ROI of 0.665.

Sub-market no. 20 was selected for depiction of the profit and the ROI as a function
of the investment in that sub-market. In Figure 1, these graphs are depicted.
As reported in Table I, the maximum profit of $26.884 million is obtained for an
investment of $24.1 million and a maximum ROI of 1.51 is achieved for an investment
of $14.5 million.

In Figure 2, we depict the profit and ROI for the total investment in all 20 sub-
markets. These values were obtained using dynamic programming. The profit
increases as a function of total investment. However, ROI is quite erratic. ROI reaches
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the maximum when $5.7 million are invested in sub-market no. 17 and no investment
made in other sub-markets.

In Figure 3, the maximum profit for a minimum ROI value is plotted for an
investment of up to $100 million. As expected, when higher minimum ROI is required
the maximum profit declines.

4. Conclusions
Existing computing resources limit the size of competitive facility location
problems that can be solved optimally. When the market in a large competitive
model can be partitioned into mutually exclusive sub-markets, we show a way to
optimally solve such problems. Large companies operating globally or in multiple
markets face this specific situation. Such companies need to determine how
to best allocate an available budget across all sub-markets. Competitors are present
in each sub-market and thus the decision can be quite complicated. In addition
to dividing the market into mutually exclusive sub-markets we also propose to
divide the available budget into small units (e.g. each unit is 0.1 percent of the total
budget). The allocation of the budget to each sub-market is an integer number of
units. These two new ideas enable us to optimally solve some large competitive
location models.

Since the sub-markets are mutually exclusive, the maximum profit achieved
in a particular sub-market for a particular investment strategy is independent of
the strategies utilized in other sub-markets. This framework can be implemented
by other models once the profit for a given investment in a given sub-market

Maximizing profit Maximizing ROI
Sub-market Demand points Million $ to invest Profit in million $ Million $ to invest Max ROI

1 100 0 0 0 0
2 100 0 0 0 0
3 100 0 0 0 0
4 100 0 0 0 0
5 100 0.5 0.056 0.5 0.112
6 200 0 0 0 0
7 200 24.1 1.741 0.5 0.237
8 200 0.9 0.210 0.9 0.233
9 200 1.7 0.541 1.3 0.397
10 200 29.7 3.561 25.3 0.140
11 300 22.5 18.558 13.7 0.961
12 300 26.3 12.131 2.8 0.781
13 300 24.1 20.592 17.2 1.161
14 300 29.5 6.762 1.3 0.430
15 300 28.5 18.956 19.1 0.844
16 400 24.4 22.230 11.3 1.517
17 400 22.1 22.499 5.7 1.582
18 400 22.1 25.716 14.5 1.476
19 400 18.0 18.010 9.7 1.228
20 400 24.1 26.884 14.5 1.510

Table I.
Individual

sub-markets results
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can be calculated. We demonstrate the approach by using the cover-based
competitive model. One may wish to apply a gravity-based model as long as the
optimal (or good heuristic) solution can be obtained for each sub-market.
If a company anticipates competitors’ reaction (the leader-follower model
sometimes called the Stackelberg equilibrium) (Drezner et al., 2015; Stackelberg, 1934;
Drezner, 1982; Drezner and Drezner, 1998; Plastria and Vanhaverbeke, 2008;
Toth et al., 2009), the optimal profit for a given sub-market needs to be individually
calculated and the framework proposed in this paper can be applied to the resulting
profit matrix. For example, the procedure proposed in Drezner et al. (2015) can be
applied for implementing the procedure with the leader-follower model in each sub-
market. Furthermore, sub-markets may have unique situations, so a different model
can be used in each sub-market. For example, if a reaction by the competitor is
anticipated in one sub-market, the leader-follower model should be used, while in
another sub-market no reaction by the competitor is anticipated and thus the
basic model (Aboolian et al., 2007a; Drezner et al., 2012; Fernandez et al., 2007;
Toth et al., 2009) is appropriate.

10

15

20

25

30

0

5

0 10 15 20 25 305

Profit

ROI

Investment

0.5

0.75

1

1.25

1.5

0

0.25

0 5 10 15 20 25 30

Figure 1.
Profit and ROI
as a function of
the investment in
sub-market no. 20

862

K
45,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

43
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



60

80

100

120

140

0

20

40

0

Profit

20 40 60 80 100

1.3

1.2

1.4

1.5

1.6

1

1.1

ROI

Investment

0 20 40 60 80 100

Figure 2.
Profit and ROI as
a function of the
total investment

130
120
110
100

M
ax

im
um

 P
ro

fit 90
80
70
60
50
40
30
20
10

1.3 1.35 1.4 1.45

Minimum ROI

1.5 1.55 1.6
0

Figure 3.
Maximum

profit subject to
minimum ROI

863

Multiple markets
competitive

location problem

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

43
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



References
Aboolian, R., Berman, O. and Krass, D. (2007a), “Competitive facility location and design

problem”, European Journal of Operations Research, Vol. 182 No. 1, pp. 40-62.

Aboolian, R., Berman, O. and Krass, D. (2007b), “Competitive facility location model with concave
demand”, European Journal of Operations Research, Vol. 181 No. 2, pp. 598-619.

Beasley, J.E. (1990), “OR-library – distributing test problems by electronic mail”, Journal of the
Operational Research Society, Vol. 41 No. 11, pp. 1069-1072, available at: http://people.
brunel.ac.uk/mastjjb/jeb/orlib/pmedinfo.html

Berman, O., Drezner, T., Drezner, Z. and Krass, D. (2009), “Modeling competitive facility location
problems: new approaches and results”, in Oskoorouchi, M. (Ed.), Tutorials in Operations
Research, INFORMS, San Diego, CA, pp. 156-181.

Drezner, T. (1994), “Optimal continuous location of a retail facility, facility attractiveness, and
market share: an interactive model”, Journal of Retailing, Vol. 70 No. 1, pp. 49-64.

Drezner, T. (1995), “Competitive facility location in the plane”, in Drezner, Z. (Ed.), Facility
Location: A Survey of Applications and Methods, Springer, New York, NY, pp. 285-300.

Drezner, T. (1998), “Location of multiple retail facilities with limited budget constraints – in
continuous space”, Journal of Retailing and Consumer Sevices, Vol. 5 No. 3, pp. 173-184.

Drezner, T. and Drezner, Z. (1996), “Competitive facilities: market share and location with random
utility”, Journal of Regional Science, Vol. 36 No. 1, pp. 1-15.

Drezner, T. and Drezner, Z. (1998), “Facility location in anticipation of future competition”,
Location Science, Vol. 6 Nos 1-4, pp. 155-173.

Drezner, T. and Drezner, Z. (2004), “Finding the optimal solution to the Huff competitive location
model”, Computational Management Science, Vol. 1 No. 2, pp. 193-208.

Drezner, T. and Drezner, Z. (2008), “Lost demand in a competitive environment”, Journal of the
Operational Research Society, Vol. 59 No. 3, pp. 362-371.

Drezner, T. and Drezner, Z. (2011), “The Weber location problem: the threshold objective”,
INFOR: Information Systems and Operational Research, Vol. 49 No. 3, pp. 212-220.

Drezner, T. and Drezner, Z. (2012), “Modelling lost demand in competitive facility location”,
Journal of the Operational Research Society, Vol. 63 No. 2, pp. 201-206.

Drezner, T., Drezner, Z. and Kalczynski, P. (2011), “A cover-based competitive location model”,
Journal of the Operational Research Society, Vol. 62 No. 1, pp. 100-113.

Drezner, T., Drezner, Z. and Kalczynski, P. (2012), “Strategic competitive location: improving
existing and establishing new facilities”, Journal of the Operational Research Society,
Vol. 63 No. 12, pp. 1720-1730.

Drezner, T., Drezner, Z. and Kalczynski, P. (2015), “A leader-follower model for discrete
competitive facility location”, Computers & Operations Research, Vol. 64, pp. 51-59.

Drezner, T., Drezner, Z. and Shiode, S. (2002), “A threshold satisfying competitive location model”,
Journal of Regional Science, Vol. 42, pp. 287-299.

Drezner, Z. (1982), “Competitive location strategies for two facilities”, Regional Science and Urban
Economics, Vol. 12 No. 4, pp. 485-493.

Fernandez, J., Pelegrin, B., Plastria, F. and Toth, B. (2007), “Solving a Huff-like competitive
location and design model for profit maximization in the plane”, European Journal of
Operational Research, Vol. 179 No. 3, pp. 1274-1287.

Frank, H. (1966), “Optimum location on a graph with probabilistic demands”, Operations
Research, Vol. 14 No. 3, pp. 409-421.

Frank, H. (1967), “Optimum location on a graph with correlated normal demands”, Operations
Research, Vol. 15 No. 3, pp. 552-557.

864

K
45,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

43
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)

http://people.brunel.ac.uk/mastjjb/jeb/orlib/pmedinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/pmedinfo.html
http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Fopre.15.3.552&isi=A19679526500017
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FS0969-6989%2898%2980009-X
http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Fopre.15.3.552&isi=A19679526500017
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jors.2602330&isi=000254299100010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jors.2602330&isi=000254299100010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2005.10.075&isi=000245754200006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0166-0462%2882%2990003-5&isi=A1982PU10100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0166-0462%2882%2990003-5&isi=A1982PU10100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FS0966-8349%2898%2900054-0
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjors.2011.10&isi=000299213400006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Feduc.1090.0062
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjors.2012.16&isi=000310791800007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Fopre.14.3.409&isi=A19667872800006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4612-5355-6_14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10287-004-0009-6
http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Fopre.14.3.409&isi=A19667872800006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4612-5355-6_14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2006.07.021&isi=000246406000004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1111%2F1467-9787.00259&isi=000175857100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1111%2Fj.1467-9787.1996.tb01098.x&isi=A1996TX39400001
http://www.emeraldinsight.com/action/showLinks?crossref=10.3138%2Finfor.49.3.212
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjors.1990.166&isi=A1990EX74200009
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjors.1990.166&isi=A1990EX74200009
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2006.02.005&isi=000243794700047
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ejor.2006.02.005&isi=000243794700047
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjors.2009.153&isi=000285048700012
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0022-4359%2894%2990028-0&isi=A1994PP18400003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.cor.2015.04.012&isi=000360513300005


Hakimi, S.L. (1981), “On locating new facilities in a competitive environment”, ISOLDE II
Conference, Skodsborg, June 15-18.

Hakimi, S.L. (1983), “On locating new facilities in a competitive environment”, European Journal
of Operational Research, Vol. 12 No. 1, pp. 29-35.

Hakimi, S.L. (1986), “p-Median theorems for competitive location”, Annals of Operations Research,
Vol. 6 No. 4, pp. 77-98.

Hakimi, S.L. (1990), “Locations with spatial interactions: competitive locations and games”,
in Mirchandani, P.B. and Francis, R.L. (Eds), Discrete Location Theory, Wiley-Interscience,
New York, NY, pp. 439-478.

Hotelling, H. (1929), “Stability in competition”, Economic Journal, Vol. 39, pp. 41-57.
Huff, D.L. (1964), “Defining and estimating a trade area”, Journal of Marketing, Vol. 28 No. 3,

pp. 34-38.
Huff, D.L. (1966), “A programmed solution for approximating an optimum retail location”,

Land Economics, Vol. 42 No. 3, pp. 293-303.
Jacobs, B.I. and Levy, K.N. (1996), “Residual risk: how much is too much?”, Journal of Portfolio

Management, Vol. 22 No. 3, pp. 10-16.
Kataoka, S. (1963), “A stochastic programming model”, Econometrica, Vol. 31 Nos 1/2,

pp. 181-196.
Leonardi, G. and Tadei, R. (1984), “Random utility demand models and service location”,

Regional Science and Urban Economics, Vol. 14 No. 3, pp. 399-431.
Love, R.F., Morris, J.G. and Wesolowsky, G.O. (1988), Facilities Location: Models & Methods,

North Holland, New York, NY.
Plastria, F. and Carrizosa, E. (2004), “Optimal location and design of a competitive facility”,

Mathematical Programming, Vol. 100 No. 2, pp. 247-265.
Plastria, F. and Vanhaverbeke, L. (2008), “Discrete models for competitive location with

foresight”, Computers and Operations Research, Vol. 35 No. 3, pp. 683-700.
Reilly, W.J. (1931), The Law of Retail Gravitation, Knickerbocker Press, New York, NY.
Sáiz, M.E., Hendrix, E.M., Fernández, J. and Pelegrn, B. (2009), “On a branch-and-bound approach

for a Huff-like stackelberg location problem”, OR Spectrum, Vol. 31 No. 3, pp. 679-705.
Stackelberg, H.V. (1934), Marktform und Gleichgewicht, Julius Springer, Vienne.
Toth, B., Fernandez, J., Pelegrin, B. and Plastria, F. (2009), “Sequential versus simultaneous

approach in the location and design of two new facilities using planar Huff-like models”,
Computers and Operations Research, Vol. 36 No. 5, pp. 1393-1405.

Corresponding author
Zvi Drezner can be contacted at: zdrezner@fullerton.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

865

Multiple markets
competitive

location problem

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

43
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:zdrezner@fullerton.edu
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.cor.2008.02.006&isi=000262882500005
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F3145346&isi=A1966ZA91200005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10107-003-0468-5&isi=000221594200001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0377-2217%2883%2990180-7&isi=A1983PV69900003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0377-2217%2883%2990180-7&isi=A1983PV69900003
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F1910956&isi=A1963CFJ8500008
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F1249154&isi=A1964CGB6500007
http://www.emeraldinsight.com/action/showLinks?crossref=10.3905%2Fjpm.1996.10&isi=A1996VB46700003
http://www.emeraldinsight.com/action/showLinks?crossref=10.3905%2Fjpm.1996.10&isi=A1996VB46700003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.cor.2006.05.006&isi=000250256100004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2FBF02032873
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00291-008-0133-8&isi=000265651000011
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F2224214
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0166-0462%2884%2990009-7&isi=A1984TV29800009

