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Incremental kernel fuzzy
c-means with optimizing cluster
center initialization and delivery

Runhai Jiao, Shaolong Liu, Wu Wen and Biying Lin
School of Control and Computer Engineering,

North China Electric Power University, Beijing, China

Abstract
Purpose – The large volume of big data makes it impractical for traditional clustering algorithms
which are usually designed for entire data set. The purpose of this paper is to focus on incremental
clustering which divides data into series of data chunks and only a small amount of data need to be
clustered at each time. Few researches on incremental clustering algorithm address the problem
of optimizing cluster center initialization for each data chunk and selecting multiple passing points
for each cluster.
Design/methodology/approach – Through optimizing initial cluster centers, quality of clustering
results is improved for each data chunk and then quality of final clustering results is enhanced.
Moreover, through selecting multiple passing points, more accurate information is passed down to
improve the final clustering results. The method has been proposed to solve those two problems and is
applied in the proposed algorithm based on streaming kernel fuzzy c-means (stKFCM) algorithm.
Findings – Experimental results show that the proposed algorithm demonstrates more accuracy and
better performance than streaming kernel stKFCM algorithm.
Originality/value – This paper addresses the problem of improving the performance of increment
clustering through optimizing cluster center initialization and selecting multiple passing points.
The paper analyzed the performance of the proposed scheme and proved its effectiveness.
Keywords Big data, Incremental clustering, Initial cluster center, Multiple passing points
Paper type Research paper

1. Introduction
Clustering is an important method for data mining and unsupervised learning.
It divides data into different clusters such that data points within the same cluster are
more similar to each other than data points in other clusters. Many algorithms for
clustering analysis have been developed, such as k-means (MacQueen, 1967), FCM
(Rezaee et al., 1998) and so on. They are capable of dealing with small amount of
data effectively. However, traditional algorithms have been challenged by big data
(Wu et al., 2014). Generally, volume of big data is too large to fit processor’s memory.
Traditional algorithms often need to work on entire data set in each step, thus it will
cost lots of time overhead on exchanging data between memory and external memory.
This fact would have made traditional algorithms incapable of processing big data.
Hence, algorithms which are fit to handle big data need to be studied.

Some strategies have been designed to address big data clustering in the literature.
They can be divided into three different types including sampling clustering,
distributed clustering and incremental clustering. In sampling clustering (Provost et al.,
1999; Kaufman and Rousseeuw, 2005; Havens et al., 2012), only a small data set
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sampled from the entire data set needs to be clustered, and then the cluster results are
extended to the entire data set without iteration. Distributed clustering divides the
large scale data set into small chunks, each data chunk is clustered all alone and then
results on each chunk are aggregated at a final run. For example, the online FCM
aggregates the results by performing weighted FCM (wFCM) on the cluster centers
form each chunk (Hore et al., 2008).

Recently, some researchers have focused on incremental clustering. Literature
review shows that incremental clustering is an effective method and has a good
performance on big data. Algorithms in this category sequentially divide large scale
data into small chunks, cluster each chunk together with points from the previous data
chunk in a single pass and finally partition all the data points by results of last data
chunk. Single pass FCM (Hore et al., 2007) is a classical incremental clustering
algorithm which is based on wFCM. It passes cluster centers from the previous chunk
to the next chunk, and then clusters a union set consisting of current data and cluster
centers passed from the previous step. Havens et al. think that it is not appropriate to
pass cluster centers directly between adjacent data chunks (Zhang and Havens, 2013).
The cluster centers of the previous chunk are projected into current data chunk as
meta-vectors which are linear combinations of data points belonging to the current
chunk. Then data chunk at current step is clustered together with meta-vectors.
The algorithm might be the latest typical incremental algorithm which greatly
improves performance and accuracy. Efforts are also done on learning an effective
kernel function to improve clustering results (Baili and Frigui, 2011). Moreover,
some researches show that multistage clustering can accelerate convergence
and improve clustering quality. Dynamic incremental clustering is also studied
(Aaron et al., 2014a, b).

A fact should be noticed that the aim of these algorithms is to improve the quality of
the passed cluster information from previous data chunks. Although they achieve this
objective to some extent, these researches do not address two problems including
optimizing initial cluster center and the number of passing points for each cluster. For
the first problem, experiments show that clustering algorithm is sensitive to initial
cluster center. Usually, improper initial cluster centers will lead to bad clustering
results. For incremental algorithm, the bad clustering information from the previous
chunk will be accumulated to the final chunk which may lead to worse results. Many
literatures have studied the problem for non-incremental clustering (Katsavounidis
et al., 1994; Khan and Ahmad, 2004; Redmond and Heneghan, 2007), but little for
incremental clustering. For the second problem, in most incremental clustering, only
one passing point for each cluster is selected. However, one passing point may not be
sufficient enough to capture the underlying structure of a cluster, which may lead to
cluster information loss. Thus multiple passing points should be selected. Yangtao
Wang and Lihui Chen propose a new algorithm to solve this problem (Wang et al.,
2014). They select multiple medoids for each cluster in a data chunk and establish a
mechanism to make use of relationship among those identified medoids as side
information to help the final data clustering process. But the algorithm is based on
fuzzy clustering, not suitable kernel methods.

To address above two problems, an incremental kernel FCM method with
optimizing cluster center initialization and delivery is proposed in this paper. Two
strategies are included in the method. The first one is to select appropriate initial cluster
centers for each data chunk. We design a simple method based on distance and the
characteristic of incremental clustering to optimizing initial cluster center. The second
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one is to choose multiple passing points for each cluster at a step to avoid cluster
information from being missed. Experiments conducts on synthetic and real-world data
sets demonstrate the effectiveness of the proposed method.

The rests of this paper are organized as follows. Section 2 briefly describes some
related clustering algorithms, including wFCM, weighted Kernel FCM (wKFCM) and
the incremental KFCM. The detail strategy and the procedure of the proposed method
are described in Section 3. In order to evaluate the performance of the proposed method,
experiments are conducted on several common used data sets, and the results and
analysis are presented in Section 4. Finally, Section 5 concludes the paper.

2. Background
2.1 The wFCM algorithm
FCM is one of the most promising fuzzy clustering algorithms (Tamir and Kandel, 2010),
which in most cases is more flexible than the hard clustering algorithm, like k-means
algorithm. wFCM is an algorithm based on FCM and considers the influence of each data
point on clustering results. Given a data set X¼ {x1,x2,…, xn}, where xi∈Rd and d is the
dimension of data points. We assume that wi represents the weight of data point xi.
The wFCM partitions X into C clusters by mining the following objective function:

J U;Vð Þ ¼
XC
j¼1

Xn
i¼1

wiumji d
2
ji (1)

where C is the number of clusters, n the number of data points, uji∈U( j¼ 1,…, C, i¼ 1,
…, n) is a fuzzy partition satisfying

Pn
i¼1 uji ¼ 1 j ¼ 1; . . .; Cð Þ and uji∈ [0,1],m denotes

the fuzzy exponent, vj∈V represents the cluster center, d2ji is the distance between data
point xi and cluster center vj and generally denotes Euclidean distance :xi�vj:

2.
In fact, the object of wFCM is seeking the best fuzzy partition matrixUwhich makes

the Equation (1) minimum. And we can get the best solution in theory when:

uji ¼
XC
l¼1

d2ji
d2li

 !� 1
m�1

(2)

and:

vj ¼
Pn

i¼1 wiumji xiPn
i¼1 wiumji

(3)

Generally, we make use of the iterative method to get U and V. First of all, we initial C
cluster centers randomly. And then we update U and V at each step until one of the
following three conditions is satisfied:

(1) all elements of U change no longer;

(2) all elements of V change no longer; and

(3) |Jk+1(U,V )−Jk(U,V )|oε, where ε is the given accuracy, k is the iterative step.

2.2 The wkFCM algorithm
When dealing with the linearly non separable data set, wFCM often has a bad
performance and low accuracy. The kernel method is used to handle those linearly non
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separable data sets. Given a data set X¼ {x1,x2,…, xn} and a project function ϕ, data
points in X can be projected into a high-dimensional space called Hilbert space.

Then the kernel function is defined as in the following equation:

k xi; xj
� � ¼ f xið Þf xj

� �
(4)

Thus the distance between xi and xj in Hilbert space is:

:f xið Þ�f xið Þ:2 ¼ kiiþkjj�2kij (5)

where kij¼ k(xi, xj).
In general, two kinds of kernel function are often used in the kernel method,

including popular radial basic function and Gaussian kernel function.
Similar to wFCM, wKFCM can be described as the following optimization problem:

Min JKFCM ¼
XC
j¼1

Xn
i¼1

wiumji :f xið Þ�f vj
� �

:2

s.t.:

Xn
i¼1

uji ¼ 1; j ¼ 1; 2; . . .; C

ujiX0; i ¼ 1; 2; . . .; n j ¼ 1; 2; . . .; C (6)

where uji∈U is a fuzzy partition, C is the number of clusters, m denotes the fuzzy
exponent, wi is the weight of the data point xi.

Again we can solve the above optimization problem by updating fuzzy partition
matrixU and cluster centersV in iteration. The initial cluster centers should be given at
first. The termination of iteration is same to FCM:

uji ¼
XC
l¼1

:f xið Þ�f vj
� �

:

:f xið Þ�f vlð Þ:

 !� 2
m�1

(7)

Ø vj
� � ¼

Pn
i¼1 wiumji f xið ÞPn

i¼1 wiuiji
(8)

2.3 The incremental KFCM algorithm
The incremental KFCM algorithm is designed for big data clustering (Havens et al.,
2012; Zhang and Havens, 2013). It partitions the entire data set X into N subsets, and
each time it only needs to cluster a small data set consisting of current data chunk Xt
and points passed from previous data chunk Xt−1 by wKFCM. Hence the information
from all previous data chunks is passed down through passing points. Let At ¼
fat1; . . .; atCg represent the set of points passed from the previous chunk Xt−1. Thus, the
incremental KFCM can be seen as a process of wKFCM on Xt and At repeatedly for
every t¼ 1,…,N.
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For a specific t, the weights of data points in Xt are different from the weights of data
points inAt. Usually, the weight of each data point in Xt can be set 1. Let w

t;að Þ
j represent

the weight of the point atj , and it can be calculated as given in the following equation:

w t;að Þ
j ¼

Xnt
i¼1

utjiw
t
iþ
XC
k¼1

uajkw
t�1;að Þ
k (9)

where utjiAUt andU t is the fuzzy partition matrix for data chunk Xt, wt
i is the weight of

data point xti in Xt and wt
i ¼ 1 generally, nt is the number of data points in Xt, uajkAUa

and Ua is the fuzzy partition matrix for At.
In incremental clustering, the key step is to select the set of passing points At.

A simple method is selecting cluster centers directly as passing points. However, it is
not appropriate to pass cluster centers directly between adjacent data chunks (Chitta
et al., 2011). Zhang and Havens propose the streaming kernel FCM (stKFCM) algorithm
through using a set of meta-vectors to approximate cluster centers of previous data
chunk as passing points (Zhang and Havens, 2013). Let atj ¼

Pnt
i¼1 a

t
jif xti
� �

, then it can
be computed by the optimization:

min:f vt�1
j

� �
�atj: (10)

where fðvt�1
j Þ is the cluster center for data chunk Xt−1.

In the kernel clustering algorithm, cluster centers are usually expressed as linear
combinations of feature vectors.

Let:

f vtj
� �

¼
Xnt
l¼1

qtilf xtl
� �

(11)

where:

qtil ¼
wt
l util
� �mþPq

k¼1 a
t
klw

t;að Þ
k uaik
� �mPnt

s¼1 wt
sU utis
� �mþPq

k¼1 w
t;að Þ
k U uaik

� �m (12)

Thus the solution of the optimization (10) is given in the following equation:

ati ¼ Kt� ��1
K t;t�1ð Þqti (13)

where Kt¼ k(xi
t,xj

t ), i, j¼ 1,…, nt, K
(t,t−1)¼ k(xi

t,xk
t−1), i¼ 1,…, nt, k¼ 1,…, nt−1 and qtj is

a column vector.
So the Euclidean distance between the feature vector fðxti Þ and the cluster center

fðvtjÞ is calculated as given in in the following equation:

:f xti
� ��f vtj

� �
:2 ¼ Kt� �

iiþ qtj
� �T

Ktqtj�2 Ktqtj
� �

i
(14)

And the Euclidean distance between atk and the cluster center fðvtjÞ is calculated using
the following equation:

:atk�f vtj
� �

:2 ¼ atk
� �T

Ktatkþ qtj
� �T

Ktqtj�2 atk
� �T

Ktqtj (15)
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The steps of the incremental KFCM are described as follows:

• Step 1: cluster the first data chunk X1 by wKFCM.

• Step 2: calculate the set of passing points A2 and their weights w(2,a).

• Step 3: cluster data chunk X1 and A2 by wKFCM.

• Step 4: repeat Steps 2 and 3 until the final data chunk.

• Step 5: finally, the partition of entire data set X can be computed in one single pass.

3. The proposed method
As mentioned in Section 1, in the incremental kernel clustering algorithm, little research
has been focused on optimizing initial cluster center of each data chunk and the number
of passing points. Generally, when a data chunk is clustered, the initial cluster center is
selected randomly or from the cluster center of previous data chunk. Since clustering
algorithm is sensitive to initial cluster centers, it is inappropriate to select initial cluster
center randomly for the algorithm might converge at a local solution. Besides, it is also
inappropriate to directly use cluster center of previous data chunk as the initial cluster
center of current data chunk if the structure of the two adjacent data chunks differs
largely. If we get bad clustering results when a data chunk is clustered, the bad
information will be passed down to the next data chunk and accumulated to the final
results, which worsen the final results. Moreover, good initial cluster center can also
accelerate the iteration process of clustering. Thus, it is necessary to select optimal
cluster center for each data chunk.

Inspired by the idea, we optimize the initial cluster center of each data chunk in our
algorithm. Methods are proposed in many literatures to optimize initial cluster centers
for non-incremental clustering, basing on density method, distance method (Gotoh,
1982) or optimization method. They can provide a reference for optimizing initial
cluster center in incremental kernel clustering. The details of our method are presented
in the next subsections.

The passing point plays an important role in the incremental clustering algorithm.
It represents all the information of data points in the previous cluster to be passed
down. In most incremental clustering algorithm, only one passing point is selected for
each cluster. However, when different types of data points are clustered into one
cluster, the passing point of this cluster may pass error information to next data chunk
and is hard to be reclaimed. Besides, one passing point of each cluster may not be
sufficient enough to capture the underlying structure of a cluster especially when data
set is large. Thus, to pass more accurate clustering information from previous data
chunk, multiple passing points for each cluster are selected in our algorithm.

3.1 Optimized initial cluster centers
The proposed method is based on two assumptions (Cao et al., 2014): (1) the points in
the same cluster have more similarity; and (2) the nearby points are likely to have the
same label. In incremental clustering, cluster centers of the previous data chunk are
usually used as initial cluster centers of current data chunk. It is improper when
the structure of new data points differs from the previous data chunks. Thus, to contain
the structure of new data points, we update the cluster centers of the previous data
chunk by the new data points. Based on assumption (2), data points nearby the cluster
centers will be assigned to update their nearest cluster centers. Data points away from
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cluster centers will be merged into other clusters. Then all the cluster centers will be
merged into k cluster centers based on distance.

Given a data chunk Xt ¼ fxt1; . . .; xtnt g and a set of cluster centers Vt�1 ¼
vt�1
1 ; . . .; vt�1

C

� �
from previous data chunk. Let Dv denote the distance between

cluster centers in Vt−1 and Gmax¼max(Dv) represent the maximum distance between
clusters. Dxv ¼ ðdxvij Þnt�C is a distance matrix whose elements represent the distance
between data points in Xt and cluster centers in Vt−1. Let dmini denote the minimum
distance between the data point xti and cluster centers and we can get:

dmini ¼ min dxvij j ¼ 1; 2; . . .;Cj
n o

(16)

Here in our method a data point xti is considered to be nearby the cluster centers if
dminioGmax. Let XNt be the set of data points nearby the cluster centers and XAt be
the set of data points away from the cluster centers. So we can get:

XNt ¼ xti x
t
iAXt and dminioGmax; i ¼ 1; 2; . . .; nt

��� �
(17)

XAt ¼ xti x
t
iAXt and dminiXGmax; i ¼ 1; 2; . . .; nt

��� �
(18)

Then the new initial cluster centers would be calculated based on XNt, XAt and Vt−1.
Our method can be divided into three stages. In the first stage, data points in XNt will
be assigned to their nearest cluster center in Vt−1. Let f iðVt�1; xtjÞ be the nearest center
in Vt−1 to xtj where x

t
jAXNt . Thus the cluster centers in this stage can be updated by

the following equation:

vt�1
i ’

wifi Vt�1; xtj
� �

þxtj
wiþ1

(19)

wi’wiþ1 (20)

where wi is the weight of center fi ðVt�1; xtjÞ.
Then all the data points in XNt are assigned by formula (19) and we can get

a new set of cluster centers VNt ¼ vnti9i ¼ 1; 2; . . .;C
� �

where vnti ¼ vt�1
i and wi

is its weight.
In the second stage, data points in XAt are processed to find out new structure of

data. A simple method based on distance is used in this stage. First of all, we randomly
select a data point xti from XAt and find out all the points nearby xti whose distance to x

t
i

within Gmax. Let XNAt
1 represent the set of data points nearby x

t
i . Then we calculate the

center of data points in XNAt
1 and remark the center as vat1. The weight of center va

t
1 is

equal to the number of data points in XNAt
1. Let VAt ¼ VAt�XNAt

1 and repeat
previous process to get new centers in VNt until there is no point left in VNt. Assuming
that VAt ¼ vati9i ¼ 1; 2; . . .; h

� �
is the set of centers which we get in this stage which

represents the structure of data set XAt.
In the third stage, centers calculated in the first two stages will be merged based on

distance. Let Vt¼VNt∪VAt. Based on assumption (2), the two closest centers in Vt are
merged into a center and repeat it until the number of centers is reduced to k.

Let V 0ð Þ
t be the initial cluster centers of data chunk Xt with the passing points At.

The steps of calculating the initial cluster centers V 0ð Þ
t are presented in Algorithm 1.
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Then the initial fuzzy partition matrix can be calculated by the following equations:

u 0;tð Þ
ji ¼

XC
l¼1

:f xti
� ��v 0;tð Þ

j :

:f xti
� ��v 0;tð Þ

l :

 ! 2
m�1

2
4

3
5
�1

(21)

u 0;að Þ
jk ¼

XC
l¼1

:atk�v 0;tð Þ
j :

:atk�v 0;tð Þ
j :

 ! 2
m�1

2
4

3
5
�1

(22)

where v 0;tð Þ
j AV 0ð Þ

t and atkAAt .

Algorithm 1. The method of initialing cluster centers.

Input: data chunk Xt, cluster centers Vt−1, the weight of cluster centers w
Output: the initial cluster centers V 0ð Þ

t
1: calculate the distance matrix Dv and Gmax¼max(Dv)
2: calculate the distance matrix Dxv and dmin by (16)
3: get the set of data points XNt by (17) and the set XAt by (18)
4: for xtjAXNt do

find out the nearest center f iðVt�1; xtjÞ ¼ vt�1
i

update the ith cluster center vt�1
i by (19)

update its weight wi by (20)
end for
Let vnti ¼ vt�1

i , and VNt ¼ vnti9i ¼ 1; 2; . . .; k
� �

5: initialize h¼ 1
6: while XAt is not empty do

Pick a data point x from XAt randomly
Get the set XNAt

h ¼ {points in XAt nearby x}
Calculate the center of data points in XNAt

h as vath and its weight
wath ¼ 9XNAt

h9
h¼ h+1
VAt ¼ VAt�XNAt

1
end while

7: let Vt¼VNt∪VAt
8: while |Vt|Wk do

Merge the two closest centers in Vt
end while

9: let V 0ð Þ
t ¼ Vt

3.2 Multiple passing points
For each data chunk Xt and a set of passing points At, assuming that X jð Þ

t ( j¼ 1,…, C )
represents the set of data points in the same cluster in Xt and A jð Þ

t ( j¼ 1,…, C )
represents the set of passing points for cluster j in At. Since a data point is assigned
to a cluster by a fuzzy partition in fuzzy clustering, the data point in X jð Þ

t and A jð Þ
t

can be expressed, respectively, by the following equations:

x j;tð Þ
i ¼ utjix

t
i (23)

a j;tð Þ
l ¼ uajla

t
l (24)

where utjiAUt is the fuzzy partition of Xt, uajlAU a is the fuzzy partition of At.
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To select multiple passing points for each cluster, a data set consisting of X jð Þ
t and

A jð Þ
t is clustered again by wKFCM. Let V jð Þ

t ¼ fv j;tð Þ
1 ; . . .; v j;tð Þ

p g be the set of cluster
centers where p is the number of passing points for each cluster, U( j,t) is the fuzzy
partition matrix of X ð jÞ

t , U( j,t) is the fuzzy partition matrix of Að jÞ
t . And then V ð jÞ

t is
projected into data chunk Xt+1 as passing points.

Let:

v j;tð Þ
i ¼

Xnt
l¼1

~q j;tð Þ
il f xtl

� �
(25)

where:

~q j;tð Þ
il ¼

wt
l u j;tð Þ

il

� �m
utjlþ

Pq
k¼1 a

t
klw

ðt;aÞ
k u j;tð Þ

ik

� �m
uajkPnt

s¼1 wt
sU u j;tð Þ

is

� �m
þPq

k¼1 w
t;að Þ
k U uaik

� �m (26)

The passing points can be calculated as the following optimization:

min :v j;tð Þ
i �a j;tþ 1ð Þ

i : (27)

where a j;tþ 1ð Þ
i ¼Pnt þ 1

l¼1 a j;tþ 1ð Þ
li fðxðtþ 1Þ

l Þ and xðtþ 1Þ
l AXtþ 1.

The solution of problem (27) is:

a j;tþ 1ð Þ
i ¼ Kt� �y

K t;tþ 1ð Þ ~q j;tð Þ
i (28)

where K(t,t+1)¼ kðxtþ 1
i ; xtkÞ; k ¼ 1; . . .; nt ; i ¼ 1; . . .; ntþ1:

Thus the passing points are:

Atþ 1 ¼ a j;tþ 1ð Þ
i i ¼ 1; � � � ; p; j ¼ 1; � � � ;Cj

n o
(29)

And coefficient matrix of At+1 is:

atþ 1 ¼ a 1;tþ1ð Þ
1 ; . . .; a 1;tþ1ð Þ

p ; . . .; a C;tþ 1ð Þ
1 ; a C;tþ 1ð Þ

p

� �
(30)

here að j;tþ 1Þ
i is a column vector.

In our algorithm, passing points are reselected for each cluster, thus the weights of
passing points should be recalculated.

The weight for each passing point a j;tþ 1ð Þ
i is calculated as given in the following

equation:

w j;að Þ
i ¼

Xnt
l¼1

u j;tð Þ
il wtþ

Xp
l¼1

u j;að Þ
il w t;að Þ (31)

3.3 The procedure of proposed algorithm
In this section, a new algorithm about the application of the above two strategies is
proposed to improve the performance of stKFCM. The steps of our algorithm are fully
described in Algorithm 1:

Algorithm 2
Input: number of clusters – C; fuzzy exponent – m;

X¼ {X0, X1,…, XN−1};kernel function – k;
Total number of passing points – r,
number of passing points for each cluster – p
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1: compute K0¼ k(X0, X0)
U 0¼KFCM(C, m, K0)
for j¼ 1 to C do
K j;0ð Þ ¼ kðu0j X 0; u0j X 0Þ
U( j,0)¼KFCM(C, m, K0)
~q j;0ð Þ
j ¼ u j;0ð Þ

j =9u j;0ð Þ
j 9

Compute a j;1ð Þ
i i ¼ 1; . . .; pð Þ by (28)

Compute w j;að Þ
i i ¼ 1; . . .; pð Þ by (31)

2: collect all að j;1Þi as element of α1

3: collect all wð j;aÞ
i as element of w(1,α)

4: for t¼ 1 to N−1 do
Kt¼ k(Xt, Xt), K

(t,t−1)¼ k(Xt, Xt−1)
Optimizing initial cluster center V 0ð Þ

t by Algorithm 1
Compute u 0;að Þ

ji by (22)
Compute u 0;tð Þ

ji by (21)
Set uaji ¼ u 0;að Þ

ji ; utji ¼ u 0;tð Þ
ji

while any uaji or u
t
ji changes do

Compute qtj with (12)
for i¼ 1,…, nt, j¼ 1,…, C do

utji ¼
PC

l¼1
:| xtið Þ�|ðvtj Þ:

2

:| xtið Þ�| vtlð Þ:2
	 
� 1

m�1

where :|ðxti Þ�|ðvtjÞ:
2 is computed by (14)

end for
for i¼ 1,…, r, j¼ 1,…, C do

uaji ¼
PC

l¼1
:ati�|ðvtj Þ:
:ati�| vtlð Þ:
	 
 2

m�1

" #�1

where :ati�|ðvtjÞ:
2
is computed by (15)

end for
for j¼ 1 to C do

K j;tð Þ ¼ kðutjX 0; utjX 0Þ
U( j,t)¼KFCM(C, m, K( j, t))
~qð j;tÞj ¼ uð j;tÞj =9uð j;tÞj 9

Compute að j;tþ 1Þ
i ði ¼ 1; . . .; pÞ by (28)

Compute wð j;aÞ
i ði ¼ 1; . . .; pÞ by (31)

end for
Collect all að j;tþ 1Þ

i as element of αt+1

Collect all wð j;aÞ
i as element of w(t+1,α)

end while
Compute qtj with (12)

5: the fuzzy partition of the entire data set X is computed by the following steps:
for i¼ 1,…, n, j¼ 1,…, C do

Compute uji with (7)
end for

4. Experiments
In this section, experimental studies of the proposed methods are conducted on four
typical data sets 2D15, 2D50, MNIST and Forest. The algorithm is implemented in
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Matlab, and the experiments were run on a PC with four cores of Intel i7 and 8G of
memory. Experiments are conducted, respectively, for the method of optimizing initial
cluster centers and the method of selecting multiple passing points. To simplify the
experiments, the size of each data chunk is the same and the value of fuzzy exponentm
is fixed at 1.7 which is recommended by Zhang and Havens. The accuracy is evaluated
by three popular criterions including purity, F-measure and run time.

4.1 Data sets

(1) 2D15: this is a synthetic data set which is composed of 5,000 two-dimensional
points with 15 classes. The distribution of the points is showed in Figure 1. We
use a Gaussian kernel function with width of 1 on this data set. And two passing
points are selected for a cluster in each data chunk. The feature vectors are
normalized the feature vectors by subtracting the minimum and then dividing by
the subsequent maximum so that value of each dimension is between 0 and 1.

(2) 2D50: this is also a synthetic data set which is composed of 7,500
two-dimensional feature vectors with 50 classes. A Gaussian kernel function
with width 1 is used on this data set. The feature vectors are normalized with
the same way to 2D15. The number of passing points is two.

(3) MNIST: this data set is composed of 70,000 784-dimensional feature vectors with ten
classes. It is collected from handwriting digits from 0 to 9 by the National Institute
of Standards and Technology (NIST). A Gaussian kernel function with width 1.5 is
used on this data set. Two passing points is selected when the data chunk size is
small and four passing points is selected when the data chunk size is large.

(4) Forest: this data set is from US Geological Survey and US Forest Service (USFS).
It is composed of 581,012 objects and has seven classes. Each object is
represented as a 54 dimensional feature vector consisting of ten quantitative

1

0.9
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0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.
Distribution of 2D15
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variables and 44 binary variables. These features are collected from meter cells
of forest by the USFS. A Gaussian kernel function with width of 1 is used on this
data set. Two passing points is selected when the data chunk size is small and
five passing points is selected when the data chunk size is large.

4.2 Data partition
For incremental clustering algorithm, a big data set is usually partitioned into a series
of smaller data chunks that are manageable and thus one data chunk is handled at a
time. Generally, there are three data partitioning methods, including sequential non-
overlapping partitioning method, round robin partitioning method and sampling
without replacement method (Farrash and Wang, 2013).

In our experiments, we use the sampling without replacement method to partition
the data sets. The size of each data chunk is same. For data set 2D15 and 2D50, we
chose 10, 20, 25 and 50 percent of the entire data set size, respectively, as each data
chunk size. For data set MNIST, we chose 0.75, 1, 2, 2.5, 4, 5 and 10 percent of the entire
data set size, respectively, as each data chunk size. For data set Forest, we chose 0.1, 0.2,
0.5, 1 and 2 percent of the entire data set size, respectively, as each data chunk size.

4.3 Data preprocessing
When processing image data sets, we hope that the label of image is the same even
when the image is rotated. In our experiment, the MNIST is an image data set of
handwriting digits. We find that the distance between objects of the same label may be
larger than the distance between objects of different labels. For example, if you were to
take a digit in MNIST and rotate it at a certain angle, the distance could be very large.
That is to say, objects in the same label have less similarity because of the rotation of
the digit and it will make the clustering algorithm based on distance invalid. Thus, a
method of the feature extraction is used to extract rotation-invariant features for
MNIST. The method of preprocessing used in our experiment is Sparse Auto Encoder
and 100 features are extracted to be used in clustering.

4.4 Evaluation criterion
Three popular external evaluation criterions, Purity (Mei and Chen, 2012), F-measure
(Larsen and Aone, 1999) and Run time are used to evaluate the clustering results in our
experiments.

4.4.1 Purity. Purity, also called clustering accuracy, is a measure to evaluate
the quality of clustering results. If we refer class as the ground truth and cluster
as the results of the clustering algorithm, purity reflects the degree of a cluster only
consisting of data points in one class. The value of purity for a cluster is given by the
ratio between the amount of right assignments in this cluster and the size of
this cluster. The value of purity for each cluster can be calculated as given in the
following equation:

Purity Dj
� � ¼ max Prj cið Þ� �

; i ¼ 1; 2; . . .;C (32)

where C is the number of clusters or classes, Dj is the set of data points in cluster j, ci is
the class label i, Prj(ci) is the ratio between the number of data points belonging to ci and
number of data set Dj. Prj(ci) is calculated after obtaining one-to-one match between
cluster and class.
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Thus the total purity of whole clustering results is calculated using the following
equation:

Puritytotal Dð Þ ¼
XC
j¼1

Dj
�� ��
Dj jPurity Dj

� �
(33)

where D is the entire data set, |D| represents cardinal number of data set D and |Dj|
denotes cardinal number of data set Dj.

From Equations (32) and (33), we can know that the value of purity is a real number
between 0 and 1. The higher value the purity, the better the clustering results.

4.4.2 F-measure. F-measure, also called F-score, is based on precision and recall in
information retrieval which is calculated using the following equation:

F �measure ¼ 2UprecisionUrecall= precisionþrecallð Þ (34)

For each cluster j and each class ci:

precision ci; jð Þ ¼ nci ;j=nj (35)

recall ci; jð Þ ¼ nci ;j=nci (36)

Thus the total F-measure of the whole clustering results is:

F �measuretotal ¼
XC
i¼1

nci
n
max F �measure ci; jð Þð Þ (37)

where F-measure(ci, j) can be calculated by (34), nj is the number of objects in cluster j,
nci is the number of objects in class ci, and nci ; j is the number of common objects in
cluster j and in class ci.

4.4.3 Run time. Run time is an important criterion especially for big data clustering.
The time of complexity of our algorithm is not only compared with stKFCM but also
with KFCM on the entire data set.

4.5 Results and analysis
4.5.1 Results of purity and F-measure and analysis. First of all, we compare our method
with stKFCM using the four data sets 2D15, 2D50, MNIST and Forest through the two
evaluation criterion purity and F-measure. Results of purity and F-measure are shown
in Tables I-IV, respectively. Because the accuracy of clustering algorithm is affected by
the initialization, it is difficult to guarantee the quality of an algorithm just through a
single time experiment. Therefore, the mean, variance, minimum and maximum of
purity and F-measure are calculated over 20 trials. The mean value reflects the average
performance of the clustering algorithm and the standard deviation value reflects the
robustness of the clustering algorithms. Table I describes the purity results on
data set 2D15 with different data chunk sizes and Table I is the F-measure results.
Table II describes the results of purity and F-measure on data set 2D50.

From Tables I and II, we can see that our algorithm always performs better
than stKFCM with different data chunk sizes. In Table I, for data set 2D15, it shows
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that, though stKFCM has gained very high accuracy on 2D15, our algorithm
still obtains over 1 percent improvement for most kinds of data chunk sizes.
From Table II, for data set 2D50, we can see that the improvements of purity are over
9 percent for different data chunk sizes, even up to 15 percent, which demonstrates

Algorithm
Our algorithm stKFCM

Mean Var. Mean Var.
Chunk size Min. Max. Min. Max.

(a) Purity on 2D15
10% 0.9926 0.0004 0.9793 0.0009

0.9288 0.9999 0.9270 0.9999
20% 0.9750 0.0015 0.9726 0.0019

0.8951 0.9998 0.7924 0.9996
25% 0.9787 0.0013 0.9637 0.0018

0.8934 0.9998 0.8382 0.9996
50% 0.9796 0.0013 0.9612 0.0019

0.8656 0.9995 0.8504 0.9990

(b) F-measure on 2D15
10% 0.9929 0.0003 0.9813 0.0007

0.9290 0.9999 0.9246 0.9999
20% 0.9900 0.0005 0.9658 0.0009

0.9286 0.9998 0.9218 0.9994
25% 0.9785 0.0011 0.9616 0.0014

0.8743 0.9996 0.8688 0.9996
50% 0.9715 0.0011 0.9681 0.0011

0.9156 0.9994 0.8806 0.9992

Table I.
Purity and
F-measure on 2D15

Algorithm
Our algorithm stKFCM

Mean Var. Mean Var.
Chunk size Min. Max. Min. Max.

(a) Purity on 2D50
10% 0.9593 0.0003 0.7876 0.0011

0.9227 0.9832 0.7168 0.8413
20% 0.9446 0.0001 0.8113 0.0007

0.9231 0.9632 0.7656 0.8665
25% 0.9410 0.0004 0.8016 0.0005

0.9021 0.9793 0.7637 0.8416
50% 0.9231 0.0005 0.8311 0.0006

0.8705 0.9715 0.7755 0.8747

(b) F-measure on 2D50
10% 0.9577 0.0003 0.8002 0.0008

0.9234 0.9832 0.7399 0.8449
20% 0.9393 0.0001 0.8178 0.0006

0.9202 0.9629 0.7752 0.8568
25% 0.9363 0.0004 0.8087 0.0005

0.9012 0.9794 0.7734 0.8483
50% 0.9198 0.0005 0.8303 0.0007

0.8658 0.9714 0.7717 0.8714

Table II.
Purity and
F-measure on 2D50
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good performance of our algorithm. Also, variance values are smaller than
stKFCM which indicates that our algorithm has better robustness to different data
partition. The results of F-measure given in Tables I and II show the similar
pattern as purity.

Table III describes the results of purity and F-measure on data set MNIST. In Table III,
results show that both our algorithm and stKFCM do not match well to the ground
truth for the data set MNIST. From Table III, for the mean value, we can see that
our algorithm outperforms stKFCM and the average improvement is only about
1.5 percent in terms of purity. In Table III, we can see that our algorithm has obvious
improvement over the stKFCM, especially when the data chunk is 4 percent.
The maximum improvement can be reached at 10 percent. For the variance value, we can
see that there is almost no difference between our algorithm and the stKFCM both for the
purity and F-measure.

The results of purity and F-measure on data set Forest are shown in Table IV. In
Table IV, although the improvements are small, the purity of our algorithm is better

Algorithm
Our algorithm stKFCM

Mean Var. Mean Var.
Chunk size Min. Max. Min. Max.

(a) Purity on MNIST
0.75% 0.1943 0.0001 0.1882 0.0001

0.1808 0.2219 0.1662 0.2083
1% 0.2346 0.0001 0.2202 0.0002

0.2113 0.2628 0.2086 0.2385
2% 0.2469 0.0002 0.2386 0.0002

0.2299 0.2836 0.2173 0.2652
2.5% 0.2610 0.0003 0.2514 0.0004

0.2368 0.2960 0.2208 0.2771
4% 0.2711 0.0001 0.2530 0.0001

0.2438 0.2974 0.2372 0.2772
5% 0.2787 0.0003 0.2609 0.0003

0.2480 0.3154 0.2408 0.2993
10% 0.2836 0.0002 0.2614 0.0003

0.2512 0.3107 0.2223 0.2876

(b) F-measure on MNIST
0.75% 0.3528 0.0003 0.2750 0.0007

0.3270 0.3918 0.2411 0.3123
1% 0.2665 0.0001 0.2269 0.0001

0.2486 0.2814 0.2163 0.2384
2% 0.3386 0.0001 0.2503 0.0002

0.3062 0.3546 0.2362 0.2763
2.5% 0.3348 0.0003 0.2518 0.0001

0.3004 0.3701 0.2296 0.2684
4% 0.3697 0.0007 0.2604 0.0008

0.3501 0.4334 0.2403 0.2853
5% 0.2901 0.0004 0.2533 0.0001

0.2372 0.3349 0.2344 0.2677
10% 0.2751 0.0005 0.2492 0.0002

0.2293 0.3411 0.2378 0.2959

Table III.
Purity and F-measure

on MNIST
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than the stKFCM under average meaning for different chunk sizes. In Table IV, we can
see that the average F-measure of our algorithm is larger than the stKFCM and the
average improvements of our algorithm are about 4 percent. Also, our algorithm
outperforms stKFCM in terms of robustness.

In general, these results show that our algorithm performs well. The performance of
our algorithm is always better than stKFCM on both synthetic data sets and real-world
data sets. Moreover, our algorithm has a better robustness than stKFCM. In a word, the
results demonstrate the effectivity of our algorithm.

4.5.2 Run time analysis. The run time of our algorithm and the stKFCM on the four
data sets is shown in Figure 2. Figure 2 shows that more time is spent in our algorithm
because of the time consumption of selecting multiple passing points. For 2D15 and
2D50, though the difference of our algorithm and stKFCM is obvious, the value of
running time is very small. When the volume of the data is small, most of the time was
spent on calculating the kernel matrix. Our algorithm adds some steps of calculating
the kernel matrix in the process of selecting multiple passing points in the cost of more
time. However, we should notice that the difference is not obvious between our
algorithm and the stKFCM algorithm on the time for MNIST and Forest. That is
because when the volume of the data is large, most of the time spent on computing the
inverse matrix Kt both for the two kinds of algorithm. The time of computing the
inverse matrix Kt is the same in our algorithm and the stKFCM algorithm. Thus it is
reasonable to believe that the time difference between these two algorithms will be
negligible when the data volume is big.

Algorithm
Our algorithm stKFCM

Mean Var. Mean Var.
Chunk size Min. Max. Min. Max.

(a) Purity on forest
0.1% 0.5142 0.0003 0.4985 0.0002

0.5107 0.5227 0.4975 0.5005
0.2% 0.4909 0.0001 0.4801 0.0005

0.4867 0.5207 0.4786 0.5101
0.5% 0.4878 0.00001 0.4808 0.00001

0.4860 0.4913 0.4800 0.4895
1% 0.4907 0.0001 0.4894 0.0001

0.4874 0.5143 0.4874 0.5011
2% 0.4886 0.00003 0.4806 0.00006

0.4879 0.4926 0.4790 0.4898

(b) F-measure on forest
0.1% 0.3959 0.0005 0.3496 0.0025

0.3622 0.4234 0.2802 0.4116
0.2% 0.3724 0.0012 0.3638 0.0015

0.2768 0.3969 0.2965 0.3820
0.5% 0.3844 0.0002 0.3663 0.0006

0.3533 0.4113 0.3047 0.3921
1% 0.3825 0.0008 0.2958 0.0009

0.3595 0.4255 0.2596 0.3395
2% 0.3908 0.0001 0.3554 0.0018

0.3794 0.4098 0.2886 0.3905

Table IV.
Purity and F-measure
on forest
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5. Conclusion
The incremental clustering algorithm is effective for big data. In this paper, we propose
two strategies to improve the performance of the incremental kernel clustering. First,
a simple method is used to optimize initial cluster center for each data chunk. Then,
multiple passing points are selected to pass more accurate clustering information to
subsequent data chunk. The two strategies are used to improve the performance of the
stKFCM algorithm and experimental results demonstrate its good performance and
robustness by comparing with stKFCM on some data sets.

As a scope for future research, we may improve the method of optimizing initial
cluster centers. We also notice that the number of multiple passing points for each
cluster is the same and fixed in this paper. In the future, an adaptive method for
selecting multiple passing points for each cluster may be studied. Also, larger data sets
should be collected and tested to study those problems.
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