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Resource scheduling in a private cloud 

environment: An efficiency priority 

perspective 

1.Introduction 

Cloud computing (Rosenthal et al., 2010; Rodero-Merino et al., 2013; Taylor et 

al., 2010; Brumec and Vrček, 2013) is emerging as a new kind of network application 

mode which aims to provide reliable, customized, and quality of service 

(QoS)-guaranteed computational environments for cloud users (Ke et al., 2013). 

Recent studies have shown that a large proportion of companies worldwide use a 

cloud computing service to achieve new business goals and to provide more efficient 

services for their customers (Van Do and Rotter, 2012). However, many cloud users 

are worrying about issues such as data safety, reliability, and nonsupport of legacy 

tools in the cloud computing environment. As an important branch of cloud 

computing, the private cloud can successfully avoid the potential safety hazard of 

transferring data and business to a third-party data center, which makes it favorable 

for enterprises. Private cloud computing platforms generally run inside of the 

enterprises, and processing large data tasks is one of their main features. After the 

private cloud users submit a task to the private cloud computing platform, the 

resource scheduling center of the platform needs to dispatch the required resources 

using the resource nodes to complete this task. The resource nodes are virtual 

machines (VMs) constructed on physical computing resources (computational servers) 

using virtualization technology (Bourguiba et al., 2012). To achieve the goals of 

completing the corresponding task with the high quality and ensuring the physical 

resource nodes on the private cloud platform are utilized efficiently, an efficient 

resource scheduling approach is needed. Therefore, the resource scheduling problem 

in private cloud environments has become a hot research topic. 
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In recent studies, many scholars have used heuristic methods for resource 

scheduling in private cloud environments. For example, the ant colony algorithm was 

incorporated into the resource scheduling approach in the cloud computing 

environment by Yuan et al. (2012), Huang et al. (2013), and Zhu et al. (2012). These 

studies attempted to develop an optimal resource scheduling scheme utilizing the 

positive feedback and distributed-cooperation operating mechanisms of this intelligent 

search algorithm. An improved differential evolution algorithm (IDEA) was proposed 

by Tsai et al. (2013) to optimize resource scheduling and task allocation in a cloud 

computing environment. This algorithm combined the Taguchi method
 
(Taguchi et al., 

2000) and the differential evolution algorithm
 
(Ho et al., 2010). The objective function 

in it was built mainly on the basis of the consideration of time and money required to 

complete the tasks. The resource scheduling approach in Gu et al. (2012) incorporated 

an genetic algorithm (GA) which can automatically obtain and accumulate 

information of the resource nodes before finding the optimal resource scheduling 

scheme. Although GA has good searching and optimizing capabilities, the 

phenomenon of premature partial optimal solution easily appears (Elbeltagi et al., 2005), 

which will affect the optimality of the resource scheduling schemes. Laili et al. (2013) 

presented the idea of combining service composition optimal selection and optimal 

allocation of the computing resources. They proposed a new ranking chaos algorithm 

to address the large-scale dual scheduling of a cloud service. Also, they incorporated 

dynamic heuristics and ranking selection to control chaos evolution. The particle 

swarm optimization algorithm was introduced into the resource scheduling approach 

by Gorbenko and Popov (2012). Information of the resource nodes is exchanged 

between the particles during their process of obtaining the optimal solution. This 

algorithm also introduced a mechanism involving chaos to prevent the premature 

emergence phenomenon. Krishna (2013) presented a honey bee behavior inspired 

load balancing (HBB-LB) algorithm to do resource scheduling in cloud computing 

environments. The algorithm was used to achieve a well-balanced load across virtual 

machines for maximizing the throughput. In addition, it was also claimed to have the 

ability of improving the efficiency of resource utilization and maximizing the 
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computing resource production capacity.  

In the consideration of the fitness of the objective functions of the resource 

scheduling approaches, most of the studies mentioned above focused only on the 

money required for operating the resource nodes and the time needed to complete the 

corresponding tasks, which gives no consideration to the various calculative indexes 

in each computational resource node. Therefore, the main shortcomings of the present 

resource scheduling approaches in the cloud computing environment lie in two 

aspects. Firstly, the objective of the traditional resource scheduling approaches 

considers only money and time required when completing the tasks. More indexes of 

the resource nodes, such as the CPU performance, hard drive capacity, and so on, 

should be taken into consideration. Secondly, money and time required for completing 

the tasks are not available in the previous methods; they can only be estimated from 

the historical data in the database. The estimated time and money will make the 

resource scheduling results inaccurate. 

To avoid these shortcomings, we propose a resource scheduling approach from 

an efficiency priority perspective, which aims to accomplish the tasks with resource 

scheduling schemes that have the highest total computational efficiency scores. Our 

main work and contributions are as follows. Firstly, we incorporate DEA into the 

resource scheduling problem in the private cloud environment and propose a suitable 

DEA model to evaluate the efficiencies of resource node decision making units 

(RN-DMUs). Secondly, based on the efficiency scores we get for the RN-DMUs, we 

introduce a 0-1 programming technique and build a simple resource scheduling model 

which can be used to obtain optimal resource scheduling schemes, i.e. schemes that 

have the highest total computational efficiencies for the calculation tasks. In addition, 

based on the proposed models, the workflow of resource scheduling using our 

approach is presented to ensure its practical application in the private cloud 

environment. Finally, the proposed approach is applied in an experiment of resource 

scheduling in a private cloud environment. 

The rest of this paper is organized as follows. Section 2 provides a formal 

description of the resource scheduling problem in the private cloud environment. 
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Section 3 gives a suitable DEA model for measuring computational efficiencies of the 

RN-DMUs. Section 4 discusses the DEA-based resource scheduling model and the 

workflow of the resource scheduling in the private cloud environment. An experiment 

is done and its results are discussed in Section 5. Finally, conclusions and further 

research directions are given in Section 6. 

2. Formal description of the resource scheduling problem 

In the private cloud environment, the calculation task submitted by a user is a 

task class. A task class is defined as a set of tasks that have the same task type and can 

be executed concurrently. We assume that each task class has t tasks, every task 

should be executed on only one resource node, and each resource node can run only 

one task at a time. We also assume that the resource quantity demanded by each task 

and the resource quantity that can be provided by each resource node are known in 

advance. The resource scheduling problem is how to select suitable resource nodes to 

fulfill the resource requirements of the tasks. Here we denote the resource scheduling 

problem as the following nine tuple,  

DRSM = <R, P, Y, θ, A, B, F, Z, S>                       (1) 

We let R be the resource requirement set of the tasks, which represents the 

resource demands of tasks. R is defined as { | 1,2,..., }lR R l h= = . lR  denotes the 

resource requirement set of task l, and it can be defined as

{ | 1,2,..., ; 1,2,..., }l ilR r i m l h= = = , where ilr  denotes the quantity of the i
th

 

computing resource required by the l
th 

task. 

We let P be the set of resource nodes, which can be defined as

{ | 1,2,..., }jP P j n= = , where jP  denotes the set of quantities of resources that can 

be provided by RN-DMUj which can be defined as

{ | 1,2,..., ; 1,2,..., }j ijP p i m j n= = = . ijp  denotes the quantity of the i
th

 computing 

resource that can be provided by RN-DMUj.  

We let Y denote the set of QoS indexes of RN-DMUs, defined as 
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{ | 1,2,..., }jY Y j n= = . jY  denotes the QoS indexes set of RN-DMUj and can be 

defined as { | 1,2,..., }j kjY y k s= = , where kjy  denotes the quantity of the k
th

 QoS 

index that can be provided by RN-DMUj.  

We let E  be the efficiency score set, defined as { | 1,2,..., }jE E j n= = . jE  

denotes the computational efficiency of RN-DMUj, and this score is obtained from the 

DEA model. 

We let A be the set of maximum resource use rates of the RN-DMUs, defined as 

{ | 1,2,..., }jA A j n= = . jA  denotes the set of the maximum use rates of the resources 

in RN-DMUj  and can be defined as { | 1,2,..., }j ijA a i m= =  where ija  denotes the 

maximum use rate of the i
th

 resource in RN-DMUj. 

We let B be the set of the occupied resource rates of RN-DMUs. It is similar to A 

and can be defined as { | 1,2,..., }jB B j n= =  with { | 1,2,... }j ijB b k m= =  where ijb  

denotes the occupied rate of the i
th

 resource in RN-DMUj. 

We let Z be the decision variable set, defined as

{ | 1,2,..., ; 1,2,..., }ljZ z l h j n= = = , in which ljz  reflects whether RN-DMUj is 

selected as the resource node to complete task l. 

We let F be the fitness function. It is used for calculating the total efficiency of 

the various resource scheduling schemes.  

S, the testing software, is installed on the resource nodes to get the parameters of 

the RN-DMUs. P, Y, A, and B of the RN-DMUs can be obtained by running this 

software on the corresponding resource nodes. Thus, this testing software can obtain 

the data required for the models. 

3. Methodology for measuring efficiencies of the RN-DMUs 

In this section, firstly, we select suitable input and output indicators for the 

RN-DMUs. Then, the production possibility set is analyzed and a suitable model is 

given for computational efficiency evaluation of the RN-DMUs. 
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3.1. Input and output selection for RN-DMUs 

The first problem faced in this research is how to make the RN-DMUs available 

for evaluation by the DEA models. It is obvious that the resource nodes are 

homogeneous. Therefore, if we can establish the input and output vectors for the 

RN-DMUs, we can then evaluate them using the DEA models. 

The inputs of the resource nodes should have the ability of reflecting their 

computational capacities. Wu et al. (2016) proposed to use the CPU frequency, 

number of CPUs, memory capacity, and hard drive capacity as the indicators for 

measuring the computational capability of the computational servers when they 

studied a technology selection problem. Here, similar to Wu et al.’s (2016) study, we 

regard the available resources that can be provided by a RN-DMU as its inputs. 

Therefore, we define the input vector of RN-DMUj in formula (2). 
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     (2) 

The considered input indicators (resources) of each RN-DMUj can be presented 

as follows. 

jx1 : CPU frequency (unit: million instructions per second, MIPS) (abbreviation: 

CPU) 

jx2 : Internal memory capacity (unit: gigabytes, Gb) (IMC) 

jx3 : Hard drive capacity (unit: gigabytes, Gb) (HDC) 

jx4 : Bandwidth (unit: megabytes per second, Mb/s) (BW) 

In this paper, the computational efficiencies of the resource nodes are considered. 

Therefore, the quality of service indexes of the resource nodes should be regarded as 

the outputs. In real computational situations, the calculation time for a given 

computational task is the indicator of most concern. Therefore, in this paper, we select 

the calculation time of the test program as the output of the RN-DMUs. The output of 
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a RN-DMUj is denoted as follows. 

jy1 : Time required (unit: seconds, s) (TR) 

As mentioned above, the inputs and output of the RN-DMUs can be 

automatically obtained by the software in a private cloud computing platform. 

Therefore, the resource scheduling problem on the private cloud platform transforms 

into the problem of efficiency evaluation and optimal selection of the RN-DMUs. The 

number of RN-DMUs is n, and each RN-DMU has five inputs and one output. 

3.2. The production possibility set 

Data envelopment analysis (DEA) is a non-parametric method that has been used 

widely for measuring the relative efficiencies of a given set of operating entities 

commonly called decision making units (DMUs) in which similar resources are 

consumed to create similar products or services (Parkan et al., 2012; Wu et al., 2009). 

Assume that there are n DMUs to be evaluated, and each DMUj (j=1,2,…,n) has m 

input(s) and s output(s), which are denoted ),...,2,1( mixij =  and ),...,2,1( sryrj = , 

respectively. Then, the original production possibility set proposed by Charnes, 

Cooper, and Rhodes (CCR) (Charnes et al., 1978) under the constant returns to scale 

assumption can be shown as the following 0T . 

0

1̀ 1̀

{( , ) | , , 0, }
n n

j j j j j

j j

T X Y X X Y Y jα α α
= =

= ≤ ≤ ≥ ∀∑ ∑                (3) 

However, this traditional production possibility set cannot be used when 

evaluating the efficiency of the RN-DMUs in a private cloud environment, since it 

cannot handle the nondiscretionary inputs (CPU performance and internal memory 

capacity) and undesirable output (time required) of the RN-DMUs. To surmount this 

problem, firstly, we distinguish the inputs of a DMU into discretionary inputs and 

nondiscretionary inputs as in (4). 












=

N

D

X

X
X                                (4) 

In (4), DX  represents the discretionary inputs and NX denotes the 
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nondiscretionary inputs. When dealing with non-discretionary inputs in DEA, there 

are generally three kinds of approaches. Banker and Morey (1986) given the first 

DEA model that considered the non-discretionary inputs. In their model, both the 

discretionary and non-discretionary inputs are assumed to have the property of 

convexity. However, the non-discretionary inputs are handled differently by not 

allowing them to be radially reduced. The second approach is an extension of Banker 

and Morey’s (1986) approach. Ruggiero (1996) removed the convexity constraints 

with respect to non-discretionary inputs. Instead, the non-discretionary inputs were 

used to form restrictions to remove DMUs with higher levels of non-discretionary 

inputs from the reference set. The third approach is a two-stage approach proposed by 

Ray (1991). In the first stage the non-discretionary inputs are removed in the 

evaluation. Then, in the second stage, regressions are used to control the 

non-discretionary inputs to allow adjustment of technical efficiency. Further 

extensions of Ray’s (1991) approach can be seen in Ruggiero (1998), Yu (1998), and 

Ruggiero (2001). Later, Ruggiero (2004) pointed out that the above approaches 

ignored the possibility that technical efficiencies of the DMUs may be correlated with 

their non-discretionary inputs. He further extended Ruggiero’s (1996) model by 

relaxing the constraints and allowing DMUs with higher levels of non-discretionary 

input into the reference set as long as the exceeded level is not greater than a given 

value. Ruggiero’s (2004) approach is the most up-to date and comprehensively 

considered one, and therefore, in this study we adopt their approach for handling the 

non-discretionary inputs. After considering the non-discretionary inputs, the 

production possibility set can be reformulated as the following 1T  

1

1

1

{(  , ) |

                                  

                                  ( ( )) ,

                                  (1 ),

                         

n
D N D D

j j

j

n

j j

j

N N N

j j

j j

T X X Y X X

Y Y

X X X Mb j

M b j

α

α

δ

α

=

=

= ≤

≥

− + ≤ ∀

≤ − ∀

∑

∑

，

         {0,1}, 0, }j jb jα∈ ≥ ∀

             (5) 
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In (5), ( )NXδ is the given maximum exceeded level vector in non-discretionary 

inputs for DMUs in the reference set when evaluating the DMU (  , )D NX X Y， . As can 

be seen from the third and fourth constraint groups in (5), the jλ  is forced to be zero 

if ( )N N N

jX X Xδ> + , which guarantees that only the DMUs with non-discretionary 

inputs that are no larger than ( )
N N

X Xδ+  can be included in the reference set. In this 

study, we set ( )=0.15
N N

X Xδ × . 

Further, we distinguish the outputs of a DMU into desirable outputs and 

undesirable outputs as in (6). 












=

B

G

Y

Y
Y                                (6) 

In (6), GY  represents the desirable outputs and BY denotes the undesirable 

outputs. When dealing with the undesirable outputs in DEA, four kinds of approaches 

are generally considered. The first category is to ignore the undesirable outputs (Hua 

and Bian, 2007). This kind of treatment is not appropriate because undesirable and 

desirable outputs are produced simultaneously during production. The second kind of 

approach is to take the undesirable outputs of the DMUs as inputs when evaluating 

them (Dyckhoff and Allen, 2001), but this method fails to reflect the real production 

process (You and Yan, 2011). The third kind of approach transforms the undesirable 

output data first, then the DMUs are evaluated by traditional DEA models using the 

transformed data (Golany and Roll, 1989; Seiford and Zhu, 2002). The problems here 

are that the effects of transforming the data on the production set are not clear (Färe 

and Grosskopf), and the data transformation approach in Seiford and Zhu (2002) can 

be only used for the BCC and additive DEA models because the CCR model is not 

translation invariant (Cooper et al., 2007). Another approach for handling undesirable 

outputs in DEA was proposed in Färe et al. (1989). They incorporated the weak and 

strong disposability assumptions of production technology into the DEA model. And 

the weakly disposable factors (undesirable outputs) are treated differently by using 

strict equal constraints on them. Further discussions of handling weak disposability 
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factors in DEA can be seen in Hailu and Veeman (2001), Färe and Grosskopf (2003), 

Hailu (2003), and Kousmanen (2005). Among the above four approaches, many 

high-quality studies (for instance, Chen et al., 2015; Liu et al., 2015; Zanella et al., 

2015) used the last of the four mentioned above when undesirable outputs appear. In 

this paper, we also adopt the strong and weak disposability assumptions for outputs. 

Since Kuosmanen and Podinovski (2009) proved that the approach of Kuosmanen 

(2005) is the best for handling weak disposability factors, we incorporate 

Kuosmanen’s (2005) approach for handling the undesirable outputs in this paper. 

With the above analysis, the production possibility set can be shown as the 

following 2T  after considering the undesirable outputs. 

2

1

1

1

{(  , , ) |

                                        

                                        =

                                        ( ( ))

n
D N G B D D

j j

j

n
G G

j j j

j

n
B B

j j j

j

N N N

j

T X X Y Y X X

Y Y

Y Y

X X X M

α

φ α

φ α

δ

=

=

=

= ≤

≥

− + ≤ ×

∑

∑

∑

， ，

,

                                        (1 ),

                                        {0,1}, 0,0 1, }

j

j j

j j j

b j

M b j

b j

α

α φ

∀

≤ × − ∀

∈ ≥ ≤ ≤ ∀

              (7) 

As can be seen in formulation (7), it contains non-linear constraints. To 

transform it into a linear formulation, let =j j jα λ µ+  where =j j jλ φ α  and

=(1 )j j jµ φ α− . Then the production possibility set 2T  can be transformed into the 

following 3T . 

3

1

1

1

{(  , , ) | ( )

                                        

                                        =

                                        ( ( ))

n
D N G B D D

j j j

j

n
G G

j j

j

n
B B

j j

j

N N N

j

T X X Y Y X X

Y Y

Y Y

X X X M

λ µ

λ

λ

δ

=

=

=

= + ≤

≥

− + ≤

∑

∑

∑

， ，

,

                                        (1 ),

                                        {0,1}, , 0, }

j

j j j

j j j

b j

M b j

b j

λ µ

λ µ

× ∀

+ ≤ × − ∀

∈ ≥ ∀

              (8) 
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It can be seen in formulation (8) that all the constraints in it are linear. In addition, 

we can identify that in (8), the variables jµ  become redundant, specifically, all the 

feasible output vectors can be obtained when setting =0jµ  for all j. Therefore, the 

above formulation (8) is equivalent to the following (9). 

4

1

1

1

{(  , , ) |

                                        

                                        =

                                        ( ( )) ,

n
D N G B D D

j j

j

n
G G

j j

j

n
B B

j j

j

N N N

j j

T X X Y Y X X

Y Y

Y Y

X X X M b

λ

λ

λ

δ

=

=

=

= ≤

≥

− + ≤ × ∀

∑

∑

∑

， ，

                                        (1 ),

                                        {0,1}, , 0, }

j j

j j j

j

M b j

b j

λ

λ µ

≤ × − ∀

∈ ≥ ∀

              (9) 

It is easy to identify that null-jointness is also imposed in 4T , which means that 

if no undesirable output is produced, there will also be no desirable output produced. 

3.3. The model  

Assume that each DMUd has m discretionary inputs, k non-discretionary inputs, s 

desirable outputs, and t undesirable outputs. Based on the production possibility set 

4T , the model considering discretionary inputs, non-discretionary inputs, desirable 

outputs and undesirable outputs can be expressed as the following model (10). 

1

1

1
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                 (10) 
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Model (10) can successfully handle the non-discretionary inputs and undesirable 

output of the DMUs. Therefore, it can be directly used to measure the efficiencies of 

the RN-DMUs. Assuming that the optimal solution of model (10) for a DMUd is

* * * * * *{ , , , , , , , , }d j j i p rb s s s i r p jθ λ − − + ∀ , we give the following definitions. 

Definition 1.  DMUd is said to be DEA efficient if (1) 
* 1dθ = , and (2) 

* * 0, ,i rs s i r− += = ∀ . 

Definition 2.  DMUd is said to be weakly DEA efficient if (1) 
* 1dθ = , and (2)  

* 0is
− ≠  and/or 

* 0rs
+ ≠ for some i or r. 

In this paper, we aim to do resource scheduling in a private cloud platform using 

the efficiency scores of the RN-DMUs. This goal requires that the efficiency scores 

for the RN-DMUs discriminate all the RN-DMUs, i.e. produce no ties in the ranking. 

But the efficiency scores generated from model (10) can only distinguish the DMUs 

which are neither DEA efficient nor weakly DEA efficient. This method cannot make 

any further distinction among the DEA efficient and weakly DEA efficient DMUs 

because the generated efficiency sores for them are all equal to 1. To further 

discriminate the DEA efficient and weakly DEA efficient DMUs, we incorporate the 

super-efficiency technique, which was proposed by Andersen and Petersen (1993), 

into model (10) and propose the following model (11).  

, 1

, 1

, 1
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, ,i p r

                  (11) 

Model (11) excludes the column vector corresponding to DMUd from the 
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coefficients matrix compared with model (10). This model can be used for 

distinguishing the DEA efficient and weakly DEA efficient DMUs because the 

efficiency scores generated from model (11) for the DEA efficient DMUs can be 

greater than 1. However, the discriminating power of model (11) is still not strong 

enough since the efficiency scores obtained from model (11) for the weakly DEA 

efficient DMUs are still all equal to 1. In other words, model (11) still cannot 

distinguish between the weakly DEA efficient DMUs. To solve this problem, we 

finally propose the following non-radial model (12) for efficiency evaluation of the 

DMUs. 

1

, 1

, 1

, 1

1
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, 0 , ,rand s i p r+ ≥ ∀

                  (12) 

In model (12), the parameters are the same as those in model (10). Assume that

* * * * * *{ , , , , , , , , , }id j j i p rb s s s i r j s pθ λ − − + ∀，  is an optimal solution of model (12) when 

evaluating a DMUd. It is easy to verify that is i ∀=− ,0
*

. Then, 

*

1

1 m

d id

i

E
m

θ
=

= ∑                                   (13) 

is denoted as the final efficiency score of DMUd. 

Theorem 1. Assume that the efficiency score of a DMUd from models (11) and (12) 

are 
*

dθ  and dE , respectively. Then, we have
*

d dE θ≤ . 

Proof. This Theorem can be proved by reference to the proof of Theorem 1 in Wu et 

al. (2016). We omit the proof here.  
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Theorem 1 shows that model (12) generally generates for DMUd an efficiency 

score that is no larger than that generated from model (11). This is because the 

non-radial property of model (12) eliminates the slacks of the DMUs which are not 

DEA efficient, by reducing their efficiency scores in the objective function. Therefore, 

the efficiency scores for the weakly DEA efficient DMUs will not always be 1 and 

they can be further distinguished when the slacks to the discretionary inputs are 

eliminated. 

Consider the constraints of model (12). Firstly, it can handle the nondiscretionary 

inputs in the DMUs. Secondly, it gives special treatment to the undesirable outputs. 

Thirdly, it can discriminate and rank all the DMUs. Therefore, model (12) is a suitable 

model for efficiency evaluation of the RN-DMUs in a private cloud environment. 

4.The resource scheduling model and the work flow 

In this section, the resource scheduling model is given first, then the work flow 

of the approach is proposed and the process of resource scheduling in private cloud 

environment is shown. 

4.1. The resource scheduling model based on DEA 

By using the proposed DEA model (12), we can calculate the relative 

computational efficiencies of the RN-DMUs. These scores can reflect the 

computational abilities of the RN-DMUs in the private cloud environment. Therefore, 

by combining the resource requirements of the calculation tasks, the available 

quantity of the resources in the RN-DMUs, and the efficiency scores of RN-DMUs, 

we can simplify the resource scheduling problem on a private cloud platform into the 

following decision-making problem. When the efficiency score of each RN-DMU is 

known, we need to discover a way to select the suitable RN-DMUs to construct the 

corresponding resource scheduling scheme that not only can fulfill the resource 

demands of the computational tasks but also has the highest total computational 

efficiency. Therefore, 0-1 programming can be introduced to solve this problem. 
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Firstly, we make the following assumption. 

1, ;

0, .

j

lj

j

RN DMU is selected to execute task l
Z

RN DMU is not selected to execute task l

−
= 

−
          (14) 

On the basis of this assumption and by combining the efficiency scores of the 

RN-DMUs obtained from model (12), we have an objective function with an 

efficiency priority point of view. The objective function can be used for representing 

the total computational efficiencies of the resource scheduling schemes. The objective 

function is shown as the following (15). 

          
1 1

z
h n

lj j

l j

F z E
= =

=∑∑（ ）                              (15) 

Because the DEA model used in this paper is input-oriented, the larger jE  is, 

the more efficient the DMUj is. With the goal to maximize the fitness function, the 

efficiency-based resource scheduling model is proposed as the following model (16). 
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=

=

=
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∑

∑

（ ）

              (16) 

In model (16), the first and second constraint groups ensure that each RN-DMU 

is assigned at most one task in an allocation procedure. The third constraint group 

guarantees that the resource requirements of each task can be fulfilled by its assigned 

RN-DMU. Additionally, we can see that the model not only considers various 

important indicators in the objective function in the resource scheduling procedure 

(through the use of computational efficiencies of the RN-DMUs as multipliers), but 

also it has the ability to obtain an optimal resource scheduling result that has the 

largest total computational efficiency. Finally, it can be seen that unlike the traditional 

resource scheduling approaches, there is no need to estimate any data when doing 
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resource scheduling using this approach. All the data used in this model can be 

obtained before the resource scheduling procedure. 

Generally, there need to be some other limits in the constraints of model (16). 

This kind of constraint can be added based on the practical requirements of each 

submitted task class. For instance, the time should not exceed the time consumed 

when half of the resource nodes have completed the testing software. Here we omit 

this kind of constraint, because model (16) is enough to illustrate the idea of resource 

scheduling from an efficiency priority perspective. 

4.2. The workflow of resource scheduling approach 

Based on the proposed models (12) and (16), we give the workflow for resource 

scheduling in a private cloud environment. The detailed workflow can be shown as 

the following Figure 1.  
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Figure 1. Work flow of the scheduling program 

The workflow of this scheduling program can be easily understood through 

Figure 1, but some further explanation is warranted. Firstly, how do we check whether 

the scheduling has succeeded? If the tasks are successfully allocated to the resource 

nodes, the platform then will achieve a successful scheduling. But sometimes the 

resources of the resource nodes are insufficient to cover the resource requirements of 

the tasks. In this case, there will be no solution to model (16), which will lead to 

failure of the scheduling method. Secondly, what will happen if the scheduling fails? 

In the resource scheduling program, the time is slotted with a slot size equal to t∆ . 

Each scheduling can only start at the beginning of the slot. This means that if the 

scheduling attempt failed, the algorithm needs to wait until the next slot to restart the 

scheduling. This process will be repeated until either the scheduling succeeds or its 

Start 

Submit task class 

Determine R 

Obtain input & output vectors 

Get by DEA model (12) 

Obtain resource scheduling 

scheme by model (16) 

Scheduling succeed? 

Execute the tasks 

Release the resources 

Wait until the next slot 

N 

Y 

Time expires? 

N 

Scheduling failed 

Y 
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time window expires. 

5. Experiment 

To test and illustrate the proposed resource scheduling approach, we constructed 

a private cloud platform with 30 resource nodes (DMUs). In addition, we assumed 

that 10 task classes, each containing 6 tasks, are submitted to the platform and need to 

be executed. Firstly, we give descriptive statistical analyses for the data of the DMUs 

and the 60 tasks. The results are listed in Tables 1 and 2. The detailed data is not 

provided here but is available from the authors. 

Table 1. 

Descriptive analysis of the DMUs 

Variables 
Inputs(N)  Input(D) 

 
Output (B) 

CPU IMC  HDC BW  TR 

Max 19.75 5 
 

1934 19 
 

4.395 

Min 5.58 2 
 

385 5 
 

2.127 

Mean 13.18 3.83 
 
1109.47 12.33 

 
3.40 

Std.dev 4.49 0.95  516.73 4.25  0.76 

Table 2. 

Descriptive analysis of the Tasks. 

Characteristics 
Task requirements  

CPU IMC HDC BW 

Max 15.98  4.00  1491.51  14.94  

Min 2.39  1.10  210.60  2.25  

Mean 8.76  2.41  733.39  8.08  

Std.dev 3.17  0.74  349.54  3.10  

From Tables 1 and 2, we can see that generally the DMUs can fulfill the task 

requirements of the computational tasks. According to the workflow of the resource 

scheduling program, we firstly evaluate the DMUs using the proposed model (12) and 

generate the efficiency scores and ranking positions. Along with these, we also show 

the evaluation results of model (10) and model (11). The details are listed in Table 3. 

Table 3.  

Evaluating and ranking results of the DMUs 
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DMUs 
Model (10)  Model (11)  Model (12) 

Scores Rank  Scores Rank  Scores Rank 

1 0.6150  25  0.6150  25  0.5589  25 

2 1.0000  1  1.4421  5  1.3926  2 

3 0.5869  28  0.5869  28  0.4950  29 

4 0.5205  30  0.5205  30  0.4688  30 

5 1.0000  1  1.5234  3  1.3869  3 

6 1.0000  1  2.8136  1  1.7443  1 

7 1.0000  1  1.4815  4  0.9184  10 

8 1.0000  1  1.6363  2  1.0028  7 

9 0.7727  20  0.7727  20  0.7368  16 

10 0.6789  23  0.6789  23  0.6106  24 

11 0.5675  29  0.5675  29  0.5151  28 

12 0.6123  26  0.6123  26  0.5533  26 

13 0.7661  21  0.7661  21  0.6559  21 

14 0.8066  19  0.8066  19  0.7328  18 

15 1.0000  1  1.0464  8  1.0263  6 

16 1.0000  1  1.0335  9  0.8873  11 

17 0.8858  15  0.8858  15  0.8049  13 

18 0.6620  24  0.6620  24  0.6146  23 

19 1.0000  1  1.0000  10  0.9750  8 

20 1.0000  1  1.0000  10  0.9597  9 

21 0.9808  12  0.9808  12  0.7736  14 

22 0.9713  14  0.9713  14  0.7645  15 

23 0.9799  13  0.9799  13  0.7117  19 

24 1.0000  1  1.3068  6  1.1912  4 

25 0.5991  27  0.5991  27  0.5428  27 

26 0.6847  22  0.6847  22  0.6484  22 

27 0.8154  17  0.8154  17  0.7337  17 

28 0.8106  18  0.8106  18  0.6896  20 

29 1.0000  1  1.2113  7  1.1691  5 

30 0.8447  16  0.8447  16  0.8252  12 

Several conclusions can be drawn from the results. Firstly, all these models can 

effectively evaluate the DMUs and generate efficiency scores. Secondly, model (10) 

evaluates many DMUs (11 of the 30 DMUs) as DEA efficient or weakly DEA 

efficient. It cannot make any further distinction among these DMUs because their 

efficiency scores obtained from model (10) are all equal to 1. Thirdly, compared with 

model (10), model (11) has better discriminating power and it discriminates almost all 
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the DMUs. For the DEA efficient DMUs, model (11) generates efficiency scores that 

greater than 1, which ensures the discrimination of the DEA efficient DMUs. Take 

DMU2 as an example; its efficiency score from model (10) is 1 but that of model (11) 

is 1.4421, and its ranking position has changed from 1 to 5. In contrast, for the other 

DMUs, model (11) generates the same efficiency scores as those generated by model 

(10). This characteristic has a bad effect on the discrimination of the weakly DEA 

efficient DMUs. For instance, the efficiency scores of the weakly DEA efficient 

DMU19 and DMU20 generated from model (11) are both 1 and their ranking positions 

are both 10. Thus, model (11) cannot further distinguish them. Fourthly, for all DMUs, 

the efficiency scores generated from model (12) are no larger than those generated 

from model (11), which is consistent with the conclusion that was presented in 

Theorem 1. Finally, we see the evaluation results of model (12): it generates different 

efficiency scores for all the DMUs and therefore ranks all the DMUs in different 

positions. Therefore, the proposed model (12) has the best discriminating power 

among these models and it is a suitable model for the efficiency evaluation of the 

DMUs in the private cloud environment. 

Based on the efficiency evaluation results of the proposed model (11), we then 

do resource scheduling for the tasks using the proposed resource scheduling model 

(15). The resource scheduling results are shown in Table 4. 

Table 4.  

The resource scheduling results 

Task class 

Resource scheduling scheme (DMUs) 
Total 

efficiency 
task1 task2 task3 task4 task5 task6 

1 16 21 13 8 5 26 5.3549  

2 5 27 4 22 21 2 5.5201  

3 24 30 5 8 2 17 6.6036  

4 14 27 5 8 24 16 5.9347  

5 5 26 13 17 9 8 5.2357  

6 5 4 21 22 2 16 5.6737  

7 5 30 19 6 24 2 7.5152  

8 7 2 16 5 24 30 6.6016  
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9 9 5 30 16 21 8 5.6126  

10 8 9 30 21 16 5 5.6126  

As can be seen from Table 4, the proposed approach can get each task class the 

optimal resource scheme which can not only fulfill the resource requirements of the 

tasks in the task class but also with the highest total efficiency. Taking task class 1 as 

an example, the proposed resource scheduling approach lets DMU16, DMU21, DMU13, 

DMU8, DMU5, and DMU26 run its tasks 1-6 respectively and the total efficiency for 

this resource scheduling scheme is 5.3549. Any higher efficiency score for a resource 

scheduling scheme means that the tasks can be completed with relatively less input 

and with better output. In other words, less resources are consumed while completing 

the tasks in a relatively shorter time. Therefore, the proposed resource scheduling 

approach can be used for resource scheduling in the private cloud computing 

environment, which provides a new scope and makes a meaningful contribution to the 

study of resource scheduling in private cloud environments. 

6. Conclusion  

A resource scheduling approach with an efficiency priority point of view was 

proposed in this paper for application in a private cloud environment. We established 

the input and output vectors for the DMUs in a private cloud environment, making 

choices which ensure that the DEA model can be used for evaluating the DMUs. Then, 

a suitable DEA model was proposed which can handle nondiscretionary inputs and 

undesirable output in the DMUs. This model can also effectively measure and 

completely rank all the DMUs. Based on the efficiency scores obtained from the 

proposed DEA model for the DMUs, a simple resource scheduling model was 

proposed to solve the resource scheduling problem in the private cloud environment. 

The experiment discussed in Section 5 illustrated that the proposed DEA model is 

suitable for evaluating the DMUs and the resource scheduling model can effectively 

obtain an optimal resource scheduling scheme for the task classes. Using an efficiency 

priority point of view, the proposed resource scheduling approach provides a new 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

31
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



scope and makes meaningful contributions to resource scheduling in the private cloud 

environment. 

At least two future research directions can be drawn from this research. Firstly, 

in this paper the DEA method was introduced into the resource scheduling problem 

for the private cloud environment. Further research efforts may consider whether this 

effective method can be used in the study of resource scheduling in the environments 

of public clouds and hybrid clouds. Secondly, we verified the applicability of the 

proposed approach using simulated data. Further studies may apply the proposed 

approach to applications where real-world data is available, and compare it with a 

variety of other resource scheduling approaches. We believe these comparisons will 

provide some more interesting insights.  
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