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Posture labeling based gesture
classification for Turkish sign
language using depth values
Ediz Saykol, Halit Talha Türe, Ahmet Mert Sirvanci and

Mert Turan
Department of Computer Engineering, Beykent University, Istanbul, Turkey

Abstract
Purpose – The purpose of this paper to classify a set of Turkish sign language (TSL) gestures by
posture labeling based finite-state automata (FSA) that utilize depth values in location-based features.
Gesture classification/recognition is crucial not only in communicating visually impaired people but
also for educational purposes. The paper also demonstrates the practical use of the techniques for TSL.
Design/methodology/approach – Gesture classification is based on the sequence of posture labels
that are assigned by location-based features, which are invariant under rotation and scale. Grid-based
signing space clustering scheme is proposed to guide the feature extraction step. Gestures are then
recognized by FSA that process temporally ordered posture labels.
Findings – Gesture classification accuracies and posture labeling performance are compared to
k-nearest neighbor to show that the technique provides a reasonable framework for recognition of TSL
gestures. A challenging set of gestures is tested, however the technique is extendible, and extending
the training set will increase the performance.
Practical implications – The outcomes can be utilized as a system for educational purposes
especially for visually impaired children. Besides, a communication system would be designed based
on this framework.
Originality/value – The posture labeling scheme, which is inspired from keyframe labeling concept of
video processing, is the original part of the proposed gesture classification framework. The search space
is reduced to single dimension instead of 3D signing space, which also facilitates design of recognition
schemes. Grid-based clustering scheme and location-based features are also new and depth values are
received from Kinect. The paper is of interest for researchers in pattern recognition and computer vision.
Keywords Classification, Image processing, Automata theory, Kinect sensor
Paper type Research paper

1. Introduction
A gesture is defined as a form of visual communication in which the actions and relative
positions of body parts correspond to particular messages possibly in a temporal
sequence of postures. Due to the possibility of detecting visual communication primitives,
gesture recognition has become one of the trendy topics in the recent years. The output of
automated gesture recognition/classification can be used in training the persons having
hearing disabilities as well as it helps them communicate with persons unfamiliar to sign
languages. Since the video data has become ubiquitous, many systems have been
proposed to automate gesture recognition process.

Most of the existing techniques utilize low-level features of the human body to train
machine learning algorithms, and later use this trained set for classification and
recognition purposes. For example, a recognition scheme for Chinese sign language based
on Hidden Markov Models (HMM) is presented in Gao et al. (2004). In Shanableh et al.
(2007), the authors present a gesture recognition technique that uses spatio-temporal
features for Arabic sign language. There are also techniques to recognize American
sign language via utilizing the low-level features that are obtained from sensory gloves
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(Öz and Leu, 2011). A gesture can also be modeled as a temporally ordered set of states
representing spatial information in the scene. In Davis and Shah (1999), a finite state
machine is used to model 4 distinct phases of a generic human-hand gesture. There are
also similar techniques using finite state machines for gesture recognition purposes
(e.g. Bobick and Wilson, 1997; Hong et al., 2000a, b; Yeasin and Chaudhuri, 2000).
A method with the lack of sensory gloves for tracking hand movements is also presented
in Davis and Shah (1994) utilizing a set of 3D cylindrical models. An extensive survey can
be found in Mitra and Acharya (2007), which also mention that the significant challenge
remaining is to alleviate certain restrictions on lighting conditions and design of a
specialized hardware. Moreover, gesture segmentation also remained as an open problem
with multiple approaches in action recognition research (Weinland et al., 2011).

Along with the increase in the accessibility of 3D sensors, this topic has become more
interesting via utilizing the depth values to contribute the gesture recognition process.
As argued in Khoshelham and Elberink (2012), Kinect provides a platform for action
recognition problems with high accuracy rates. In Agarwal and Thakur (2013), the feature
matrix based on depth values is trained using a multi-class Support Vector Machine (SVM)
classifier to demonstrate a typical use of these ideas. There are also various techniques
aiming at different sign languages to alleviate most of the limitations of 2D. In Chai et al.
(2013), a system to recognize Chinese sign language is presented to demonstrate the
possibility of sign-language recognition with low-cost 3D sensors using the body tracking
features of Kinect. Recognition of American sign language with Kinect is presented in
Zafrulla et al. (2011), Keskin et al. (2011) using 3D hand model representing the hand with
21 parts. In Akram et al. (2012), authors present a method using Kinect for recognition of
isolated Swedish sign language signs. Discriminative Exemplar Coding (DEC) approach is
proposed in Sun et al. (2013) to model various signs by utilizing Kinect. In a very recent
study (Lee et al., 2016), a Kinect-based system is proposed for Taiwanese sign language
using HMM on trajectory of the hand movement, and a trained SVM to recognize the hand
shapes. There is also a Turkish sign language (TSL) recognition system that uses spatio-
temporal features with Kinect (Memiş and Albayrak, 2013). A recent study reviews the
literature for automatic recognition of Arabic sign language (Mohandes et al., 2014).
Techniques based on pure images, and techniques utilizing various sensors are discussed
in this survey, along with the presentation of the remaining challanges.

Based on the above observations, we focus on TSL and employ a set of Kinect-based
features. A grid-based signing space clustering scheme is employed during the
extraction of cluster numbers as features. A posture labeling algorithm is proposed
to recognize a predefined set of gestures in TSL using finite-state automata (FSA).
The labels given to the postures are used to classify the gestures with respect to a
known vocabulary. The overall gesture classification process is given in Figure 1. The
phonologic properties and linguistic nature of TSL is investigated (e.g. Arik, 2012), and
a set of challenging gestures is chosen to evaluate our technique. It is quite obvious that
our techniques can be tailored to other sign languages by providing an appropriate
posture analysis and FSA design for each gesture. Our scheme can also be extended by
adding a new gesture to the known vocabulary in a similar fashion.
The contributions of our posture labeling based gesture classification scheme can be
summarized as follows:

• Posture labeling technique is proposed to represent the gestures as a spatio-temporal
sequence of distinct poses. Once the posture detection algorithm is executed
at a frame, a similarity-based metric is used to assign a label for the posture.
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Temporal quantization is employed to be robust under sudden changes and
variations. Then, this temporal sequence of posture labels is used by FSA to
recognize the known gestures of TSL. Separate FSA is designed for each gesture in
the known vocabulary. The posture labeling scheme is inspired from (Şaykol et al.,
2010), where a similar technique is shown to be effective in classifying a set of
predefined video surveillance events.

• The 3D signing space is partitioned by the proposed grid-based signing space
clustering scheme, where the body parts of the signer is divided into sub-parts by a
ratio, which is computed by the shoulder and hip joint locations. In addition to that,
the line segment connecting the left and right shoulder locations is used as the major
axis of the torso, and the features are extracted after major axis orientation step. This
way of signing space clustering and feature extraction provides rotation, position
and scale invariance, and increases the robustness of the classification scheme.

Kinect depth stream

Feature
Extraction for

Postures

Temporal Quantization

Grid-Based Signing
Space Clustering

Major Axis Orientation

Posture
Labeling

FSA-based
Gesture

Recognition

Gesture class label

etek0 etek1

K

M

S2

L

S0 S1
etek0 etek1

Notes: The input Kinect depth stream is passed through feature extraction step. Features
based on grid-based signing space clustering scheme are used to assign a label for a frame
that includes a posture. Then, finite state machine based recognition schemes are used to
classify the gesture with respect to the known vocabulary

Figure 1.
The flow of
execution in the
posture labeling
based gesture
classification process
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• The overall classification scheme deals only with the posture labels instead of
low-level features and spatio-temporal predicates. Hence, the search space and
processing times are significantly reduced by lowering the total amount of data
throughout the gesture classification process.

The remaining of the paper is organized as follows: Section 2 briefly summarizes the
related studies on gesture recognition for various sign languages. Our posture labeling
based gesture classification scheme is presented in Section 3 along with the major
contributions of feature extraction, posture labeling, and FSA design for each gesture.
The performance experiments and the explanations on the data set is given in Section 4
with the specialized tools devised for posture visualization, analysis, and gesture
classification evaluations. Finally, Section 5 concludes the paper and states future work.

2. Related work
Gesture recognition systems for various sign languages have been proposed in the
literature. An extensive survey on gesture recognition is presented in Mitra and
Acharya (2007). Along with the accessibility of the depth sensors (e.g. Kinect), utilizing
depth information to recognize/classify gestures has become popular. Here, a related
literature review is to be provided to summarize various techniques using 2D/3D data
in recognizing gestures.

Recognition of isolated Arabic sign language gestures is proposed in Shanableh et al.
(2007) that uses spatio-temporal features in a serial execution. First, the temporal features
of a video-based gesture are extracted through forward, backward, and bidirectional
predictions. Then these predictions are accumulated into a single image. The
experiments show that using nearest-neighbor metric yields comparable results to the
classical HMM-based scheme, since the recognition rates range from 97 to 100 percent.

Linguistic sub-units are utilized to recognize sign language gestures in Cooper et al.
(2012). Appearance data gathered from 2D/3D tracking is used in learning phase of three
types of sub-units, which are then combined to classify sign gestures using Markov
models. Experimentally, the approach is found to be robust to noise, and it performs well
in signer independent tests with improved recognition rates to 76 from 54 percent.

A method utilizing a single depth image to predict 3D locations of skeletal joints is
given in (Shotton et al., 2011). A pixel-based body-parts model is used to classify human
poses without temporal data. A large training data set is formed and the experiments
show that the pixel-level classification scheme is invariant under body-parts, and the
3D joint predictions are accurate and stable.

A gesture segmentation technique based on Kinect depth data is mentioned in
Bhattacharya et al. (2012). The technique has three steps; first, gesture classification is
carried out from a known vocabulary based on the choice of SVM or linear kernel. Then,
the technique is extended to detect and classify a gesture. Last, a rule-based filtering
mechanism is used to eliminate the movements that were not intentional gestures. A set
of aircraft marshaling gestures (e.g. liftoff, land) are used during the experiments.

A recognition technique for Swedish sign language is presented in Akram et al.
(2012) for training the children with language disorders. The hands and face of the
signer is captured via Kinect based on skin color and depth information. The 3D motion
of the hands relative to the torso are used to train HMMs for classification. Performance
tests show that 94 challenging words can be detected with a precision of up to
94 percent, and this percentage reduces to 47 percent when the features are utilized
to be signer independent.

607

Posture
labeling based

gesture
classification

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

46
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



A TSL recognition system using spatio-temporal features is presented in Memiş and
Albayrak (2013). The system uses video sequences and Kinect depth maps, and utilizes
cumulative motion images that are generated based on motion variances. These motion
images represent the temporal characteristics of dynamic signs and the whole motions
of signers. Spatial features are obtained by 2D discrete cosine transform (DCT), which
is applied to video data and depth data separately, and the feature vectors are formed
by combining a certain amount of DCT coefficients with higher energy via zig-zag
scanning. The recognition process employs k-nearest neighbor (kNN) with Manhattan
distance, yielding a recognition rate about 90 percent on a sign database containing
1,002 signs that belong to 111 words in three different categories.

In Jaemin et al. (2013) and Takimoto et al. (2013), the authors propose a gesture
recognition system using Kinect depth data. The system involves an extraction of hand
shape features based on gradient value instead of conventional 2D shape features, and
arm movement features based on angles between each skeletal joints. The depth data
and 3D coordinates of six joints are utilized for recognition, where the hand joint
position is used to extract hand shape features. Arm movements and hand gestures are
recognized by utilizing a HMM. Evaluations are performed by using Japanese sign
language gestures to validate the effectiveness of the technique.

A Kinect-based system for sign language recognition and verification for educational
games for deaf children is presented in Zafrulla et al. (2011). The main motivation is to
improve interactivity, user comfort, system robustness, system sustainability, and ease
of deployment. The experiments are carried out on 1,000 American sign language
phrases, and the Kinect-based system yields 51.5 and 76.12 percent sentence verification
rates when the users were seated and standing, respectively.

Hand is smaller when compared to the entire human body, and more complex
articulations are possible. Hence, hand gesture research is very challenging. An
informative description of the hand poses can be used for gesture recognition, and the
problem becomes more interesting with depth data (Ren et al., 2011, 2013; Phadtare
et al., 2012; Nguyen et al., 2013; Dominio et al., 2013). In a typical model, the Kinect depth
data is analyzed to fit the plane of hand point region, and the normal to this plane is
defined as the orientation of the palm. Then, the 3D shape context is used to determine
the hand shape by comparing it to the shapes in the database, and found to be correct
in varying poses.

Due to the hardness of designing multi-dimensional features for traditional neural
networks, convolutional neural networks (CNNs) are used in the literature. In Pigou
et al. (2015), instead of constructing complex handcrafted features, CNNs are utilized to
automate the process of feature construction for gesture recognition. The authors
report that 20 gestures from the Italian sign language is successfully recognized with
CNNs. In Huang et al. (2015), a novel 3D CNN is proposed to extract discriminative
spatial-temporal features without any prior feature design. Color, depth, and body
joints suggested by Kinect are used to recognize the gestures via integrating color,
depth and trajectory information.

3. Posture labeling based gesture classification
Posture labeling is the process of determining the label of posture performed by a
signer in a frame. These frames are then labeled with the corresponding postures,
hence a temporally ordered event sequence representation is used to recognize the
gestures in TSL. To this end, we design FSA schemes to classify gestures with respect
to the known vocabulary. Having given a brief information on the basics of Kinect

608

K
45,4

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

46
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



depth data, we first focus on the extraction of the rotation, position, and scale invariant
features for posture detection in a frame. Then, the posture labeling algorithm is
explained along with the grid-based signing space clustering scheme. FSA based
gesture classification is presented last, which uses the temporal posture label sequence
representation to recognize a known gesture.

3.1 Feature extraction for postures
The Kinect sensor is capable of providing depth values, which are in fact distance
measurements from Kinect to the salient object. Kinect can also provide human
skeletal data, which is identified through positions of 20 skeletal body joints,
computed by the depth data at a rate of 30 fps. The resolution of the color image is
640× 480, whereas that of the depth image is 320× 240. The viewing volume is
specified by 43° horizontally, and 57° vertically where the typical distance of the
signer is 1-3 meters.

The posture detection scheme basically relies on hand and elbow location values of
the signer. Location is known to be one of the four phonological features of sign
languages (Arik, 2012). Although using only the location feature for posture detection
might not be adequate, a fair amount of postures, which do not overlap in location
values, are recognized here. Hand positions are generally aligned with several reference
areas on the body of the signer. Therefore, the signing space is clustered into small
coordinate regions to facilitate feature extraction based on mainly locations of the
hands and elbows. The remaining signing space is clustered with a range that is
determined by the signer body. The feature vector has 12 features that correspond to
the cluster numbers of the right hand, the left hand, the right elbow, and the left elbow
skeletal joints, respectively. This is because of the fact that most of the gestures in sign
languages contains actions in the upper part of the human body.

First, we perform a temporal quantization operation to increase the robustness of
the extracted features under sudden variances. A temporal quantization of 0.2 seconds
(six frames under 30 fps) is used to compute the moving average of the locations of the
selected skeletal joints. The next step is the grid-based signing space clustering scheme,
as outlined in Figure 2. First, the origin of the coordinates on the human body is set as
the left shoulder joint for the rest of the computations. As shown in Figure 2(a),
clustering on the x-y plane starts with dividing the x-axis between x0 and x1 into four
equal parts. The y-axis between y0 and y5 is partitioned into five regions such that y0y1
is equal to y1y2 , and the distance between y2 and y5 is divided into three equal parts.
Hence, the chest of the signer is divided into two equal regions, whereas the abdominal
area is divided into three equal parts. The remaining parts of the grid are divided into
sub-parts by the cluster range r, as shown in Figure 2(b). This type of clustering with
the predefined parameters help the extracted features be robust, since the locations of
the hands and elbows are relatively small.

This way of clustering the signing space implicitly provides a simpler and
reasonable level of scale invariance, since a data normalization with d is perforemd, as
recommended in Bhattacharya et al. (2012). Position invariance is also preserved since
clusters are originated from the upper left part of body, and cluster numbers are used
features instead of locations. Rotation invariance is satisfied by rotating the locations of
the skeletal joints such that the x-axis becomes parallel to the major axis of the signer.
The major axis of the signer is defined as the line segment connecting the left shoulder
joint location and the right shoulder joint location. This re-orientation preserves the
rotation invariance.
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Shoulder center
joint

Hip center
joint

d

depth_range=d/3
r=d/4

O

Y0

Y1

Y2

Y3

Y4

Y5

Y-axis r

r

X0 X1 X-axis
(a)

(b)

Notes: (a) Clustering on the x-y plane: clustering for x
values between x0 and x1 is done by dividing the distance
between x0 and x1 into four equal parts. Clustering for y
values between y0 and y5 is to divide the chest of the signer
into two and the abdominal area into three equal parts. The
remaining parts are divided by the cluster range r; and (b)
calculation of r for x and y dimensions, and the depth_range
for z dimension with d, as the distance between the shoulder
center joint and the hip center joint of the signer

Figure 2.
Grid-based signing
space clustering
scheme
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3.2 Posture labeling
The posture labeling algorithm assigns a label for the processed posture based on the
gestures in the known vocabulary. The selected subset of gestures, as the known
vocabulary, from TSL includes six gestures, namely, anne, bardak, bere, etek,masa, and
neskafe. These are Turkish words and their English meanings are mother, glass (as in
“a glass of water”), hat, skirt, table, and nescafe, respectively. Only bere has one posture
whereas the other five gestures have two consecutive postures. The postures for
gesture etek is given in Figure 3 as an example.

The pseudo-code of the posture labeling algorithm is given in Figure 4. The
algorithm checks the features for the current frame f with that of the existing postures
to assign a label of the posture in f. This operation is not an exact match with the stored
values, instead a distance-based similarity value is computed to find the label.
If a match is not found, “not-a-known-posture” is returned as the posture label.
The extracted features for a frame f in extractFeatures( f ) function are the cluster
numbers of the left hand, the right hand, the left elbow and the right elbow (line 2 in
Figure 4). The details are explained in the previous subsection.

The cluster numbers of the left hand, the right hand, the left elbow, and the right elbow
joints are stored for a later lookup to assign a label to a posture (lines 4-7 in Figure 4).
These values are stored for each posture, and the entries correspond to previous
observation from the training data. Table I shows a sample snapshot for the stored feature
values of the postures, which are to be used in the similarity-based lookup operation.

Depending on the depth values of the posture, feature comparison operation has two
alternatives. If the depth values of a posture can be compared against an interval, z-axis
values are compared as a range (lines 14-19 in Figure 4). Otherwise, z-axis values are
considered as points, similar to x-axis and y-axis values (lines 21-24 in Figure 4). This is
decided by the observed values of the posture during training, and this decision will be
elaborated on in the experimental evaluations section.

The time complexity of the posture labeling algorithm is as follows: The
extractFeatures(f) function requires two-dimensional processing on the number of
skeletal joints, say n, which can be written asO(n2). Then, for each posture in posture−set,
a location check is performed in three-dimensions, which leads to O(n3×|posture−set|).
Since the last term dominates, the overall algorithmic complexity is O(n3×|posture−set|).

(a) (b)

Notes: The posture named as (a) etek0; and (b) etek1 in FSA
design

Figure 3.
The postures that

are labeled
to recognize the

gesture etek
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Inputs: f, a video frame;
postureset, the set of the known postures;

Output: label, the label of the posture;

1. function ComputePostureLabel (f, postureset)
2. fv = extractFeatures (f);
3. for each posture p in postureset
4. if (p.lefthandLocationset.Contains (fv.lefthandLocation) and
5. p.righthandLocationset.Contains (fv.righthandLocation) and
6. p.leftelbowLocationset.Contains (fv.leftelbowLocation) and
7. p.rightelbowLocationset.Contains (fv.rightelbowLocation)) then
8. return p.name as the label
9. else
10. return ‘not-a-known-posture’ as the label
11. end if
12. end for
13. end function

14. function LocationSet.Contains (LocationOI)
15. if posture allows for ranged z values then
16. if (LocationOI.Z    LocationSet-of-JOI-of-Posture. Zranges) &
17. LocationOI.XY    LocationSet-of-JOI-of-Posture.XYValues) then
18. return true
19. end if
20. return false
21. else
22. if (LocationOI.XYZ    LocationSet-of-JOI-of-Posture.XYZ) then
23. return true
24. end if
25. return false
26. end if
27. end function

Notes: A label is assigned depending on the comparison against the feature values;
and “not-a-known-posture” is assigned otherwise

Figure 4.
The pseudo-code of
the posture labeling
algorithm at a frame
f with the known
vocabulary postures
in postureset

L-Hand R-Hand L-Elbow R-Elbow P-Label

−1,6,2 2,1,1 −1,3,0 4,3,0 anne0
−1,6,0 1,0,1 −1,3,0 5,2,0 anne1
−1,5,1 4,0,2 −1,3,0 4,2,1 bardak0
−1,5,1 4,−2,1 −1,2,0 4,0,1 bardak1
0,−3,1 3,−4,2 −3,0,1 6,−1,1 bere0
−1,4,0 4,4,0 −2,2,0 5,2,0 etek0
−3,4,0 6,3,0 −2,2,0 5,2,0 etek1
3,1,3 4,1,3 −1,2,1 5,1,1 masa0

−1,6,0 3,0,1 −1,3,0 5,0,1 neskafe0
−2,5,1 4,0,1 −1,3,0 5,2,1 neskafe1
Notes: A single line of features for each posture is listed. Based on the training step, several instances
are stored for the postures

Table I.
The sample set of
features based on
the cluster numbers
of four joints for
each posture that
are computed by
the grid-based
signing space
clustering scheme
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3.3 FSA for gestures classification
A gesture can be modeled as a temporally ordered sequence of states representing
separable postures in the scene. There are techniques using finite state machines for
gesture recognition purposes in the literature (e.g. Bobick and Wilson, 1997; Davis and
Shah, 1999; Hong et al., 2000b). Here, we propose a recognition scheme using FSA to
classify the gestures against the known vocabulary.

A deterministic finite state automaton (dFSA) is denoted as a quintuple (Σ, S, S0, δ,
F), where Σ is the input alphabet (a finite, non-empty set of symbols); S is a finite,
non-empty set of states; S0 is an initial state where S0∈S; δ is the state transition
function such that δ: S×Σ→S; and F is the set of final states, where F⊂S.

We selected a set of six gestures, one of which has one posture, and the remaining five
has two consecutive postures. The labels of these distinct postures are the symbols in the
input alphabet, where S¼ {anne0, anne1, bardak0, bardak1, bere0, etek0, etek1, masa0,
masa1, neskafe0, neskafe1, nes1an0, not-a-known-posture}. The selected gesture set is
challenging, for example the gestures anne and neskafe have very a similar posture. Hence,
a new posture, namely nes1an0, is introduced to improve the recognition rate of the FSA.

In each FSA, the execution starts with state S0, and each posture label (symbol) is
processed in order through the intermediate states. If the desired temporal order is
achieved, then the gesture is recognized (accepted) via reaching the final state F.

This scheme is also extensible such that if a new gesture is to be added to the known
vocabulary, an appropriate FSA can be augmented based on the postures of the new
gesture. Below, the FSA models of each gesture in the known vocabulary is explained.
Capital letters are used as a subset of Σ in the FSA drawings not to make them complex.

3.3.1 FSA for neskafe. FSA to recognize neskafe is given in Figure 5. Formally:

dFSA1 ¼ S; S0; S1; S2; S3; S4f g; S0; d1; S4f gð Þ; (1)

d1: S0; S1; S2; S3; S4f g � S- S0; S1; S2; S3; S4f g: (2)

The details of δ1 is only explained graphically in Figure 5 to clarify the explanations.
As given in Equation (1), five states are used, where S0 is the initial state, S4 is the
accepting state.

3.3.2 FSA for anne. FSA to recognize anne is given in Figure 6. Formally:

dFSA2 ¼ S; S0; S1; S2f g; S0; d2; S2f gð Þ; (3)

d2: S0; S1; S2f g � S- S0; S1; S2f g: (4)

A

S0 S1 S2 S3
S4

Z
B

C

neskafe0

anne0
neskafe0

anne0
nes1an0
neskafe1

nes1an0
neskafe1

neskafe0

neskafe0
nes1an0
neskafe1

bardak0

Notes: S0 is the initial state, S4 is the accepting state. A=∑−{neskafe0};
B=∑−{anne0, bardak0, neskafe0, neskafe1, nes1an0}; C=∑−{neskafe0,
neskafe1, nes1an0}; and Z=∑−{anne0, neskafe0, neskafe1, nes1an0}

Figure 5.
Finite state

automaton for
neskafe
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The details of δ2 is only explained graphically in Figure 6 to clarify the explanations.
As given in Equation (3), three states are used, where S0 is the initial state, S2 is the
accepting state.

3.3.3 FSA for bardak. FSA to recognize bardak is given in Figure 7. Formally:

dFSA3 ¼ S; S0; S1; S2f g; S0; d3; S2f gð Þ; (5)

d3: S0; S1; S2f g � S- S0; S1; S2f g: (6)

The details of δ3 is only explained graphically in Figure 7 to clarify the explanations.
As given in Equations (5), three states are used, where S0 is the initial state, S2 is the
accepting state.

3.3.4 FSA for bere. FSA to recognize bere is given in Figure 8. Formally:

dFSA4 ¼ S; S0; S1; S2f g; S0; d4; S2f gð Þ; (7)

d4: S0; S1; S2f g � S- S0; S1; S2f g: (8)

The details of δ4 is only explained graphically in Figure 8 to clarify the explanations.
As given in Equation (7), three states are used, where S0 is the initial state, S2 is the
accepting state.

3.3.5 FSA for etek. FSA to recognize etek is given in Figure 9. Formally:

dFSA5 ¼ S; S0; S1; S2f g; S0; d5; S2f gð Þ; (9)

d5: S0; S1; S2f g � S- S0; S1; S2f g: (10)

D

E

S0

nes1an0
anne0

nes1an0
anne0

anne1
S1 S2

Notes: S0 is the initial state, S2 is the accepting state.
D=∑−{anne0, nes1an0}; and E=∑−{anne0, anne1,
nes1an0}

Figure 6.
Finite state
automaton for anne

S0 S1 S2

G

F

bardak0

neskafe1

bardak1

Notes: S0 is the initial state, S2 is the accepting state.
F=∑−{bardak0}, and G=∑−{bardak1, neskafe1}

Figure 7.
Finite state
automaton for
bardak
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The details of δ5 is only explained graphically in Figure 9 to clarify the explanations.
As given in Equation (9), three states are used, where S0 is the initial state, S2 is the
accepting state.

3.3.6 FSA for masa. FSA to recognize masa is given in Figure 10. Formally:

dFSA6 ¼ S; S0; S1; S2f g; S0; d6; S2f gð Þ; (11)

d6: S0; S1; S2f g � S- S0; S1; S2f g: (12)

The details of δ6 is only explained graphically in Figure 10 to clarify the explanations.
As given in Equation (11), three states are used, where S0 is the initial state, S2 is the
accepting state.

S0 S1 S2

H J

I

masa0 bere0

bere0

Notes: S0 is the initial state, S2 is the accepting state.
H=∑−{bere0, masa0}, I={not-a-known-posture};
and J=∑−I−{bere0}

Figure 8.
Finite state

automaton for bere

S0 S1 S2

K L

etek0 etek1

M

Notes: S0 is the initial state, S2 is the accepting state.
K=∑−{etek0}, M={not-a-known-posture}; and
L=∑−M−{etek1}

Figure 9.
Finite state

automaton for etek

N O

P

S0 S1 S2
masa0 masa1

Notes: S0 is the initial state, S2 is the accepting state.
N=∑−{masa0}, P={not-a-known-posture}, and
O=∑−P−{masa1}

Figure 10.
Finite state

automaton for masa
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4. Performance experiments
The phonologic properties and linguistic nature of TSL is investigated and a set of
challenging gestures is chosen based on the analysis of posture expression to evaluate
our posture labeling and gesture classification schemes. Since most gestures have a
single posture in TSL, these techniques can be easily tailored to recognize more gestures.

The data set that we experiment on has 129 gestures (20 anne, 20 bere, 20 etek,
20 bardak, 20 masa, 29 neskafe), and 1,355 corresponding postures. We have devised a
separate tool for visualization and analysis of the postures in the data set. The main
screen of this tool is shown in Figure 11. In the bottom part, right under the grid-based
region, there is a separate line displaying depth information of the postures. As
discussed earlier in similarity-based lookup to assign a posture label, if the depth range
for a joint has a consecutive set of clusters, then we say that this joint supports
comparison against an interval (lines 14-19 in Figure 4).

The performance experiments are two-fold: One is the evaluation of posture labeling
algorithm, hence the grid-based signing space clustering scheme is also evaluated.
Since a distance-based similarity metric is used for the lookup of cluster locations in
posture labeling, we select a distance-based classifier, kNN. Euclidean distance is used
for computing distances, and the Weka implementation is used for kNN. The other set
of experiments is to evaluate the gesture classification performance.

4.1 Performance of posture labeling
Table II shows the recognition rates of the posture labeling algorithm, and a
comparison of our technique and kNN with spherical coordinates is provided. The
experiments show that our posture labeling scheme has a considerable level of
classification rate when compared to that of a distance-based classifier kNN. Hence,
assigning a correct label to a posture can be considered as classification of postures.
The temporal quantization is performed with τ¼ 6. The overall classification
performance for our technique is 97.7 percent, whereas it is 90.3 percent for kNN

Notes: The circles in the grid denote the locations observed for a
posture. The depth locations are shown as a line right under the
grid-based display

Figure 11.
The main screen of
the application
developed for
posture visualization
and analysis
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classifier, on the average. Among the 226 instances, kNN classifies 204 of them
correctly. Table III gives the confusion matrix for kNN.

An interesting observation in Table II is the classification rate of kNN for the
posture neskafe1. As discussed earlier, neskafe1 and anne0 postures are very similar
and we intentionally select these postures to make the data set challenging. Hence, kNN
has 0 correct classifications for neskafe1, and this case can be seen in the confusion
matrix as well (see Table III). As expected, kNN classified these instances as anne0.
However, in the FSA design, we create a new posture nes1ann0 to alleviate this issue.
This is the main reason behind the huge difference in the classification rates of
neskafe1.

4.2 Performance of gesture classification
The gesture recognition performance is given in Table IV. Although the accuracy is
more than 97 percent in posture labeling scheme, it lowers to 93 percent on the
average in gesture classification. Since a gesture is modeled as a sequence of postures
and utilized FSA for recognition, the expected classification rate for a gesture is
the minimum rate of its postures. This holds for every gesture except anne, where the

Posture Label Posture labeling (%) kNN (%)

anne0 100 100
anne1 100 100
bardak0 100 92.3
bardak1 90 100
etek0 100 100
etek1 95 84.6
neskafe0 100 96.4
neskafe1 95 0
masa0 95 91.6
masa1 100 100
bere0 100 100
Average 97.7 90.3
Note: Euclidean distance with respect to spherical coordinates is employed for kNN

Table II.
The recognition rate

of our posture
labeling technique
based on the data

set used in
performance
experiments

a b c d e f g h i j k

12 0 0 0 0 0 0 0 0 0 0 a
0 10 0 0 0 0 0 0 0 0 0 b
0 0 12 0 0 0 0 1 0 0 0 c
0 0 0 17 0 0 0 0 0 0 0 d
0 0 0 0 14 0 0 0 0 0 0 e
0 0 0 0 2 11 0 0 0 0 0 f
0 0 0 0 0 1 27 0 0 0 0 g
17 0 0 0 0 0 0 0 0 0 0 h
0 1 0 0 0 0 0 0 11 0 0 i
0 0 0 0 0 0 0 0 0 12 0 j
0 0 0 0 0 0 0 0 0 0 78 k
Notes: a, anne0; b, anne1; c, bardak0; d, bardak1; e¼ etek0; f, etek1; g, neskafe0; h, neskafe1;
I, masa0; j; masa1; k, bere0

Table III.
The confusion

matrix of kNN for
posture classification
based on the Weka

implementation
of kNN
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postures anne0 and anne1 are detected at 100 percent, but the gesture classification
rate is 90 percent. That is the main cause of the reduction in gesture classification and
the main reason behind this is the fact that the training samples that we used for anne
is not adequate enough to design a FSA to have an accuracy higher than 90 percent.
Extending the training set with more samples is likely to solve the issue with
this gesture.

There exist various types of techniques in the literature working on different sign
language gestures. Each technique evaluates its performance with a specialized data
set, which hardens to evaluate the performance in terms of classification accuracies.
Here, we would like to provide an evaluation based on the underlying techniques
between our scheme and the state of the art. The existing studies can be broadly
classified into neural network based and hidden markow model based techniques. Due
to the hardness of designing multi-dimensional features for traditional neural
networks, CNNs are used in the literature (e.g. Pigou et al., 2015; Huang et al., 2015).
These CNNs are more suitable for hand-based features and has limitations on the
registration of the locational variances of the same postures performed by same or
different signers. The existing techniques based on HMMs require many samples for
training purposes to overcome the limitations of NNs and CNNs. However, the major
limitation on these HMM-based techniques is the temporal registration of the
consecutive postures of the gesture, due to the temporal variances among same or
different signers.

Our posture labeling based gesture classification technique utilizes grid-based
signing space clustering scheme to overcome the locational variances of the signers,
which is a limitation for CNNs. Moreover, we provide a representation of grid labels
relative to the signer’s torso, which improves the locational invariance of our technique.
This grid-based scheme is used to label the corresponding postures, and then the
recognition is performed on the sequence of posture labels. This type of temporal
processing helps us overcome the temporal variances, which is a limitation for HMM-
based techniques. Hence, we can utilize FSA to recognize a set of predefined gestures
continuously via processing the posture labels in temporal order. Another advantage of
our scheme is its extensibility since designing FSAs is rather simple when compared to
the existing approaches.

5. Conclusion
We propose a posture labeling based gesture classification technique for TSL
recognition using Kinect to acquire skeletal features and depth data. A grid-based
signing space clustering scheme is proposed, and the cluster numbers are used as
features for a set of joints. A posture labeling algorithm is proposed to recognize a
predefined set of gestures in TSL. The labels given to the postures are used to classify

Gesture name Total Correctly classified Recognition rate (%)

anne 20 18 90
bardak 20 19 90
etek 20 18 95
neskafe 29 26 90
masa 20 19 95
bere 20 20 100

Table IV.
The peformance of
gesture classification
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the gestures with respect to a known vocabulary using FSA. A set of challenging
gestures is chosen to evaluate our technique; however, our scheme is also extensible for
a new gesture by simply providing an appropriate FSA based on its postures. The
overall classification scheme deals only with the posture labels instead of low-level and
spatio-temporal features, which reduces the space and time requirements.

Two sets of experimental evaluations show that both the posture labeling scheme
has a considerable level of classification rate when compared to that of kNN and the
gesture recognition performance is around 93 percent on the average. Even though
extending the training set with more samples is likely to improve the gesture
recognition accuracy, the achievements are very reasonable for TSL gestures.

As a future work, we plan to design an extension scheme based on the devised tools
for experimental purposes. As a consequence, more gestures will be added to the
vocabulary. Another future study is to enhance the location-based feature extraction by
augmenting palm orientation. This study will also improve the classification rates since
palm orientation is an important clue for sign language gestures.
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