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Pattern classification using grey
tolerance rough sets

Yi-Chung Hu
Department of Business Administration, Chung Yuan Christian University,

Taoyuan, Taiwan

Abstract
Purpose – The purpose of this paper is to propose that the grey tolerance rough set (GTRS) and
construct the GTRS-based classifiers.
Design/methodology/approach – The authors use grey relational analysis to implement a
relationship-based similarity measure for tolerance rough sets.
Findings – The proposed classification method has been tested on several real-world data sets.
Its classification performance is comparable to that of other rough-set-based methods.
Originality/value – The authors design a variant of a similarity measure which can be used to
estimate the relationship between any two patterns, such that the closer the relationship, the greater
the similarity will be.
Keywords Decision making, Classification, Genetic algorithm
Paper type Research paper

1. Introduction
Undoubtedly, rough set theory, which was introduced by Pawlak (1982, 1991), is very
useful for analyzing vague concepts in the field of multiple attributes decision making
(Bazan and Szczuka, 2001, 2005; Bazan et al., 2002; Pawlak and Skowron, 2007;
Pokowski, 2002; Walczak and Massart, 1999; Zhang et al., 2015; Shu and Shen, 2014).
Because traditional rough-set-based methods require that all quantitative attributes
must be discrete (Parthaláin and Shen, 2009; Jiang and Sui, 2015), discretization is
usually performed in advance. Although many discretization methods have been
proposed (Bazan et al., 2000; Chmielewski and Grzymala-Busse, 1996; Grzymala-Busse
and Stefanowski, 2001), these methods can result in information loss. Furthermore,
there is no optimal discretization method for all decision problems (Grzymala-Busse
and Stefanowski, 2001). For this reason, the tolerance rough set (TRS) was further
developed to handle numerical attributes effectively ( Jensen and Shen, 2007; Parthaláin
and Shen, 2009; Stepaniuk, 2008). In the traditional TRS, the tolerance classes are
commonly determined using a simple distance measure (Skowron and Stepaniuk, 1996)
along with a pre-specified similarity threshold to estimate the similarity between any
two patterns distributed in feature space. The traditional TRS plays an important role
in pattern classification. Indeed, it has been widely used for this purpose (e.g. Jensen
and Shen, 2007; Kim and Bang, 2000; Kim, 2001; Ma and Hasi, 2005; Nguyen and
Skowron, 1997; Parthaláin and Shen, 2009; Stepaniuk, 2008; Yun and Ma, 2006) by
treating each class in a classification problem as a concept in a given decision table.

The concern with traditional TRS is that the simple distance measure oversimplifies
the criterion aggregation because it does not consider attribute weights. Furthermore,
the simple distance measure is not the only way to express the similarity between any
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two patterns. In other words, the simple distance measure for estimating proximity
may not be an appropriate choice for measuring similarity for TRS. For a given pattern
classification problem, because certain relationships exist between any two patterns
(Hu, 2008; Hu et al., 2012), it is reasonable to design a variant of a similarity measure
which can be used to estimate the relationship between any two patterns, such that the
closer the relationship, the greater will be the similarity.

Indeed, relationships exist between any two data sequences in the real world
(Deng, 1982; Liu and Lin, 2006), althoughwe do not know exactly what these relationships
are. Unlike statistical correlation analysis, which measures the relationship between any
two random variables, grey relational analysis (GRA) can find the relationships between a
given reference sequence and several comparative sequences (Deng, 1982) by viewing the
reference sequence as the desired goal (Hu et al., 2002). This provides the motivation for
implementing a relationship-based similarity measure for TRS using GRA.

This paper contributes to propose a novel grey tolerance rough set (GTRS) using
GRA and applies it to pattern classification. For the GTRS, when the grey relational
grade (GRG) of one pattern to another one falls above a pre-specified similarity
threshold, the former can be included within the tolerance class for the latter. After grey
tolerance classes for all patterns have been determined, a classification procedure can
be used to assign each pattern to a class. To construct a classifier with high
classification performance, because genetic algorithms are a powerful search and
optimization method (Goldberg, 1989; Man et al., 1999; Rooij et al., 1996), a genetic-
algorithm-based method has been developed here that automatically determines the
relative weight of each attribute and a similarity threshold that yields high
classification performance.

The rest of the paper is organized as follows. Section 2 briefly introduces rough sets
and TRS with a traditional similarity measure. Using GRA, Section 3 presents the
proposed GTRS, which is introduced by defining a new relationship-based similarity
measure. Section 4 describes a GA-based learning algorithm for constructing the
proposed GTRS-based classifier (GTRSC). Section 5 reports the experimental results of
applying the proposed method to real-world data sets. Several rough-set-based
classification methods are taken into account. The results show that the proposed
GTRSC with subset and concept approximations performs well. Section 6 presents
a discussion and conclusions.

2. TRSs
In this section, subsection 2.1 briefly introduces the rough set. TRS with a traditional
similarity measure and variants of approximations of TRS are described in subsections
2.2 and 2.3, respectively. A classification procedure of the TRS-based classifier (TRSC)
is described in subsection 2.4.

2.1 Rough set theory
Rough set theory can deal with vagueness and uncertainty in decision making.
Let S¼ (U, A∪D) be a decision table, where U is a non-empty set of finite elements, A is
a non-empty set of finite attributes, and D is a non-empty set of finite decision classes.
Each attribute a∈A defines an information function fa: U→Va, where Va is the set of
values of a. For any P⊆A, an indiscernibility relation Ind(P) can be defined as follows:

Ind Pð Þ ¼ xi;xj
� �

AU 29f i að Þ ¼ f j að Þ;8aAP
n o

(1)
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where xi and xj are indiscernible when (xi, xj) ∈ Ind(P). Some equivalence classes or
elementary sets are generated by Ind(P). The elementary set of a pattern x is
represented by [x]P. Any finite union of elementary sets is called a P-definable set
(Grzymala-Busse and Siddhaye, 2004). For pattern classification, a concept X consists
of elements that have the same class label, so that X∈U/D.

Sometimes, X⊆U is not P-definable. In other words, there exists elements in the same
elementary set which have different class labels, so that X is a vague concept. In this
case, X can be approximated by a pair of precise concepts (Pawlak, 1982; Walczak and
Massart, 1999) using the P-upper approximation, PX, and the P-lower approximation,
PX, as follows:

PX ¼ x9xAU ; x½ �P \ Xaf
� �

(2)

PX ¼ x9xAU ; x½ �PDX
� �

(3)

where PX⊆PX and PX consists of elements that certainly belong to X, whereas PX
consists of elements that possibly belong to X. The tuple 〈PX, PX〉 composed of the
lower and upper approximations is called a rough set. PX and PX are so-called
traditional singleton approximations. When PX¼PX, X is precise with respect to P
(i.e. X is definable); when PX≠PX, X is rough with respect to P (i.e. X is undefinable). A
vague concept has the boundary region BNDP(X), consisting of elements that cannot be
categorized into the concept with certainty, where BNDP(X) is defined as:

BNDP Xð Þ ¼ PX�PX (4)

The degree of inclusion of x within X with respect to P can be defined by a rough
membership function as:

mPX xð Þ ¼ x½ �P \ X
�� ��

x½ �P
�� �� (5)

where mPX ðxÞ∈[0, 1] and |[x]P| denotes the cardinality of [x]P. Undoubtedly, the value
of the rough membership function of each pattern in PX is 1, that of patterns in PX lies
in the interval (0, 1), and that of patterns in BNDP(X) lies in the interval (0, 1).

Because rough set theory is unable to deal with real-valued data, a discretization
procedure is usually performed first. Discretization is the process of converting
continuous attributes into discrete attributes. As mentioned above, discretization
cannot avoid information loss. Attention has also been focussed on TRS because a TRS
can handle real-valued attributes by defining a suitable similarity relation for each
attribute.

2.2 Traditional similarity measure
Let xi Ra xj denote that xi and xj are similar with respect to attribute a, where Ra is a
tolerance relation with respect to attribute a. A standard similarity measure Sa(xi, xj)
with respect to Ra can be defined by a simple distance function as in Skowron and
Stepaniuk (1996):

Sa xi;xj
� � ¼ 1� a xið Þ�a xj

� ��� ��
maxa�mina

(6)
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where a(xi) and a(xj) are attribute values of xi and xj, respectively, in Va, and maxa and
mina denote the maximum and minimum values respectively of the domain interval of
attribute a. Of course, the same definition can be used for all attributes (Parthaláin and
Shen, 2009). The relation between Ra and Sa(xi, xj) is as follows:

xi Raxj3Sa xi;xj
� �

Xta (7)

where τa∈[0, 1] is the similarity threshold of attribute a. For A, an overall similarity
measure SA(xi, xj) can be defined as:

SA xi;xj
� � ¼

P
aAA

Sa xi;xj
� �
Aj j (8)

The global tolerance relation RA is related to SA(xi, xj) as:

xi RAxj3SA xi;xj
� �

Xt (9)

where τ∈[0, 1] is a global similarity threshold based on all attributes. Unlike Ind(P),
which is an equivalence relation, a tolerance relation has the reflexive and symmetric
properties but not the transitivity property.

A tolerance class TC (xi) of xi can be generated for a certain τ by considering the
patterns that have a tolerance relation with xi as:

TC xið Þ ¼ xjAU9xi RAxj
� �

(10)

X can be approximated by the lower approximation AtX and the upper approximation
AtX. As in the traditional rough set, AτX and AtX can be defined by singletons as
follows:

AtX ¼ x9xAU ;TC xð ÞDX
� �

(11)

AtX ¼ x9xAU ;TC xð Þ \ Xaf
� �

(12)

The tuple 〈AtX , AtX〉 is known as a TRS.

2.3 Variants of approximations
In addition to singletons AtX and AtX , Hu (2015) further incorporated subset and
concept approximations, introduced by Grzymala-Busse and Siddhaye (2004) for the
traditional rough, set into TRS. The reason for this was that the type of approximations
may have an impact on classification performance of TRSC. The subset and concept
approximations for TRS can be referred to Hu (2015).

2.4 TRS-based classifier
In this subsection, the classification procedure of the TRSC as presented in Kim and
Bang (2000) and Kim (2001) for a pattern x is described as follows:

• Step 1. Determine 〈AτTC(x), AtTCðxÞ〉.
The reason for usingTC(x) is that,AtTC(x) consists of patterns that are certainly

similar to x, whereas AtTCðxÞ consists of patterns that are possibly similar to x.
Classification information with respect to x can be further derived from AtTC(x)
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andAtTCðxÞ. As mentioned above, for the subset and concept approximations, it is
certain that AtTC(x) is the same (i.e. TC(x)), but AtTCðxÞ is not.

• Step 2. Compute the relative frequency of each decision class for AtTC(x).
IfAtTC(x) consists of at least two patterns, then the relative frequency of each

decision class can be determined by AtTC(x)−{x}. Then x can be assigned
to the class with the largest relative frequency. The procedure can be terminated
if the largest relative frequency is unique; otherwise, the class label of x can be
determined by the boundary region BNDA(TC(x)) of x (i.e. AtTCðxÞ−AtTC(x)).

• Step 3. Determine the class label by the boundary region.
Because the patterns in AtTC(x) have been considered in the previous step,

only the patterns in BNDA(TC(x)) contribute to the classification in this step.
Let Xi denote a set consisting of patterns belonging to decision class Ci. For a
pattern y in BNDA(TC(x))≠ϕ, the rough membership function mCi

ðyÞ for TRS
with respect to A can be defined as follows:

mCi
yð Þ ¼ TC yð Þ \ Xi

�� ��
TC yð Þ
�� �� (13)

where mCi
ðyÞ∈[0, 1] and |TC(y)| denotes the cardinality of TC(y). Then the

average rough membership function of x with respect to Ci can be computed as:

mCi
xð Þ ¼ 1

m

X
yABNDA TC xð Þð Þ

mCi
yð Þ (14)

wherem is the number of patterns in BNDA(TC(x)). x can then be assigned to the
class that has the largest average rough membership function. The class cannot
be determined when BNDA(TC(x))¼ϕ.

3. GTRSs
3.1 GRA
GRA is a useful technique that can find the relationships between one major sequence
and the other sequences in a given system. Let m and n denote the numbers of
patterns and attributes, respectively. Given a reference pattern xi¼ (xi1, xi2,…, xin)
(1⩽ i⩽m) and a set of comparative sequences. Let xj¼ (xj1, xj2,…, xjn) (1⩽ j⩽m) be a
comparative sequence, the relationship between xi and xj on attribute k (1⩽ k⩽ n) can
be obtained by computing the grey relational coefficient (GRC), denoted by ξk(xi, xj),
as follows (Liu and Lin, 2006):

xk xi;xj
� � ¼ DminþrDmax

DjikþrDmax
(15)

where:

Dmin ¼ min
s

min
l

xil–xslj j; 1pspm; 1p lpn (16)

Dmax ¼ max
s

max
l

xil–xslj j; 1pspm; 1p lpn (17)

Djik ¼ xik–xjk
�� �� (18)
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where |·| denotes the absolute value and ρ is the discriminative coefficient (0⩽ ρ⩽ 1).
ρ is usually specified as 0.5 (Deng, 1982), but apparently this is not an optimal setting.
ξk(xi, xj) lies in [0, 1].

The overall relationship between xi and xj can be obtained by further computing the
grey GRG, denoted by ϒ(xi, xj), as follows:

U xi;xj
� � ¼ Xn

k¼1

wkxk xi;xj
� �

(19)

where ϒ(xi, xj) ranges from 0 to 1, and wk is the relative importance of attribute k.
In addition, w1, w2,…, wn satisfy: Xn

j¼1

wj ¼ 1 (20)

An interesting axiom comprising four properties of the GRG can be stated as follows
(Deng, 1982; Liu and Lin, 2006):

(1) Norm interval: 0⩽ϒ(xi, xj)⩽ 1. This condition emphasizes that certain
relationships exist between any two data sequences.

(2) Dual symmetry: ϒ(xi, xj)¼ϒ(xj, xi) holds when m¼ 2.

(3) Wholeness: ϒ(xi, xj)≠ϒ(xj, xi) usually holds when m⩾ 3. In other words, the
Dual symmetry condition is not guaranteed when m⩾ 3.

(4) Approachability: ξk(xi, xj) approaches one if Δjik approaches Δmin.

3.2 Grey tolerance relation
Let xiR

G
k xj denote that xi and xj are similar with respect to attribute k, where RG

k is a
partial grey tolerance relation with respect to attribute k. A relationship-based
similarity measure Gf

k(xi, xj) with respect to RG
k can be defined as follows:

Gf
k xi;xj
� � ¼ wkxk xi;xj

� �
(21)

The same definition can be used for all attributes. RG
k is related to Sf

A(xi, xj) as follows:

xiR
G
k xj3Gf

k xi;xj
� �

XtGk (22)

where tGk ∈ [0, 1] is a partial similarity threshold for attribute k. As for A, an overall
relationship-based similarity measure Sf

A(xi, xj) can be formulated as follows:

SG
A xi;xj
� � ¼ U xi;xj

� �
(23)

The global grey tolerance relation RG
A is related to SG

A(xi, xj) as follows:

xiR
G
Axj3SG

A xi;xj
� �

XtGA (24)

where tGA∈[0, 1] is a cutoff point and a global threshold based on all attributes.
A grey tolerance class GTC(xi) of xi can then be generated by considering those

patterns that have a grey tolerance relation with xi as follows:

GTC xið Þ ¼ xjAU9xiR
G
Axj

n o
(25)
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Obviously, the larger ϒ(xi, xj) becomes, the more possible it is that xj can be included
within GTC(xi). The lower and upper approximations of X, denoted by AtG X and AtG X
respectively, can be determined by various approximations as described in the
previous section by replacing At , At , and TC(x) with AtG , AtG , and GTC(x)
respectively. The tuple 〈AtG X, AtG X〉 is called a GTRS.

For a certain tGA, the fact that xiR
G
Axj holds does not imply that xjR

G
Axi holds because

of the wholeness property. Moreover, the fact that both xiR
G
Axj and xjR

G
Axz (1⩽ z⩽m)

hold do not imply that xiR
G
Axz holds. In other words, unlike TRS with a traditional

similarity measure, a grey tolerance relation has the reflexive property, but not the
symmetric property when there are at least three patterns, and not the transitivity
property. A novel GTRSC can be further constructed by combining the proposed GTRS
with the TRSC classification procedure introduced in the previous section.

3.3 Illustrative example
To illustrate the operation of GTRS using a relationship-based similarity measure
instead of the traditional similarity measure, a small decision table with two classes
(C1 and C2) is shown in Table I, consisting of four real-valued conditional attributes and
a single decision attribute. Let ρ be 1, tGA be 0.60, and let the attributes have equal
weight (wk¼ 1/4, 1⩽ k⩽ n). When x1 is taken as the reference pattern, Δmax and Δmin
are equal to 28.3 and zero, respectively. ϒ(x1, x1) is equal to one without a
doubt. As for ϒ(x1, x2), one should pay attention to ξ1(x1, x2), ξ2(x1, x2), ξ3(x1, x2), and
ξ4(x1, x2). ξ1(x1, x2) can be computed as follows:

x1 x1;x2ð Þ ¼ 0þ0:5� 28:3
1:9þ0:5� 28:3

¼ 0:882 (26)

ξ2(x1, x2), ξ3(x1, x2), and ξ4(x1, x2) can be further computed as 0.887, 0.934, and 1
respectively. Therefore, ϒ(x1, x2) can be computed as follows:

U x1;x2ð Þ ¼ ð1=4Þ 0:882þ0:887þ0:934þ1ð Þ ¼ 0:926 (27)

In a similar manner as shown in Table II, ϒ(x1, x3),ϒ(x1, x4), ϒ(x1, x5), and ϒ(x1, x6) can be
obtained as 0.906, 0.616, 0.557, and 0.570, respectively. Hence, GTC(x1)¼ {x1, x2, x3, x4}.
GTC(x2)¼ {x1, x2, x3}, GTC(x3)¼ {x1, x2, x3, x4}, GTC(x4)¼ {x1, x3, x4, x5, x6}, GTC
(x5)¼ {x4, x5, x6}, and GTC(x6)¼ {x4, x5, x6} can be determined easily using x2, x3,
x4, x5, and x6 as reference patterns, respectively. It can be seen that R

G
A conforms to the

symmetric property, but does not conform to the transitivity property for tGA ¼ 0.60. For
instance, both x1R

G
Ax4 and x4R

G
Ax6 hold, but x1R

G
Ax6 does not. The singleton

Conditional attribute
Pattern 1 2 3 4 Decision attribute

x1 51.1 35.2 14.0 2.0 1
x2 53.0 37.0 15.0 2.0 1
x3 50.0 32.1 12.0 2.0 1
x4 52.0 27.0 39.0 14.6 2
x5 59.0 30.0 42.3 15.0 2
x6 56.7 25.4 39.0 11.0 2

Table I.
An example
decision table
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approximations for each grey tolerance class are summarized in Table III. For instance,
because only GTC(x2)⊆GTC(x2), singleton AtG GTC(x2) is equal to {x2}. Undoubtedly,
singleton AtG GTC(x3)¼ {x1, x2, x3, x4, x5, x6} because every flow-based tolerance
class has an intersection with GTC(x3).

The class labels of x1, x3, x4, x5, and x6 can be determined directly, because the
largest relative frequencies between C1 and C2 for x1, x3, x4, x5, and x6 in AtG FTC(x1)
− {x1}, AtG FTC(x3) − {x3}, AtG FTC(x4) − {x4}, AtG FTC(x5) − {x5}, and AtG FTC(x6)
− {x6} respectively are unique. Besides, the class labels of x2 can be further determined
by AtG FTC(x2) − Aτ

GFTC(x2) because the largest relative frequencies between C1 and
C2 for x2 in AtG FTC(x2) − {x2} is not unique. Because the boundary region of x2 is {x1,
x3, x4}, x2 can be correctly assigned to C1 by comparing (1/3) (mC1

ðx1Þ+mC1
ðx3Þ

+mC1
ðx4Þ)¼ 0.633 with (1/3) (mC2

ðx1Þ+mC2
ðx3Þ+mC2

ðx4Þ)¼ 0.367.
It is interesting to note that RG

A can violate the symmetric and transitivity properties
for a certain tGA. For instance, for t

G
A ¼ 0.62, GTC(x1)¼ {x1, x2, x3}, GTC(x3)¼ {x1, x2,

x3, x4}, and GTC(x4)¼ {x4, x5, x6}. The symmetric property is violated because
x3R

G
Ax4 holds, but x4R

G
Ax3 does not. Moreover, the transitivity property is violated

because both x1R
G
Ax3 and x3R

G
Ax4 hold but x1R

G
Ax4 does not.

4. Genetic-algorithm-based learning algorithm
The construction of the proposed GTRSC does not involve any complex mechanisms for
tuning its parameter specifications. Its construction involves basic genetic operations
including selection, crossover, and mutation. To construct a GTRSC with high classification
power, a real-valued GA was used to determine the relative weights of the respective
attributes (i.e. w1, w2,…, wn), the discriminative coefficient (i.e. ρ) and a global similarity
threshold (i.e. tGA). In other words, n+2 parameters can be determined by the GA. These
parameter specifications cannot be easily determined in advance by decision-makers.

Singleton approximation
Pattern Lower Upper

x1 {x1, x2, x3} {x1, x2, x3, x4, x5, x6}
x2 {x2} {x1, x2, x3, x4}
x3 {x1, x3} {x1, x2, x3, x4, x5, x6}
x4 {x4, x5, x6} {x1, x2, x3, x4, x5, x6}
x5 {x5, x6} {x1, x3, x4, x5, x6}
x6 {x5, x6} {x1, x3, x4, x5, x6}

Table III.
Singleton

approximations
for each grey

tolerance class.

GRC
Pattern ξ1(x1, xj) ξ2(x1, xj) ξ3(x1, xj) ξ4(x1, xj) GRG

x1 1.0 1.0 1.0 1.0 1.000
x2 0.882 0.887 0.934 1.0 0.926
x3 0.928 0.820 0.876 1.0 0.906
x4 0.940 0.633 0.361 0.529 0.616
x5 0.642 0.731 0.333 0.521 0.557
x6 0.716 0.591 0.361 0.611 0.570

Table II.
GRG calculation

using x1 as a
reference pattern

( j¼ 1,…, m)
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Algorithm: construction of the proposed GTRSC
Input:A set of training patterns, Population size (nsize); Total number of generations

(nmax); Number of elite chromosomes (ndel, where 0⩽ ndel⩽ nsize); Crossover
probability (Prc); Mutation operation with probability (Prm).

Output: 1. Optimal values of criterion weights, the discriminative coefficient, and a
global flow-based similarity threshold;

2. A GTRSC with a high classification accuracy rate.
Step 1. Population initialization

Generate an initial population of nsize chromosomes. nsize chromosomes
make up a population, and n+2 real-valued parameters constitute a
chromosome. Randomly assign a real value ranging from zero to one to
each parameter in a chromosome.

Step 2. Chromosome evaluation
Each chromosome corresponds to a GTRSC. The number of correctly classified
training patterns is used as the fitness function. To evaluate a chromosome,
the procedure for obtaining its classification accuracy rate is as follows:
(1) Compute the overall relationship-based similarity measure between any

two patterns using GRA;
(2) Determine a grey tolerance class for each pattern;
(3) Generate lower and upper approximations for each grey tolerance class;
(4) Output the number of correctly classified training patterns.

Step 3. New chromosome generation
Let Pk denote the population generated in generation k (1⩽ k⩽ nmax).
Chromosome i (1⩽ k⩽ nsize) in Pk is represented by wk

i1w
k
i2…wk

inr
k
i t

k
i .

Generate new chromosomes in the next generation (i.e. Pk+1) by selection,
crossover, and mutation (Goldberg, 1989; Man et al., 1999; Rooij et al., 1996).
(1) Selection: Using a binary tournament, two chromosomes are randomly

drawn from the current population, and the one with the higher fitness
is placed in a mating pool.

(2) Crossover: For randomly selected chromosomes i, wk
i1w

k
i2…wk

inr
k
i t

k
i , and j,

wk
j1w

k
j2…wk

jnr
k
j t

k
j , where 1⩽i, j⩽nsize, the probability Prc determines

whether or not the crossover operation will be performed on any two
real-valued parameters in selected parents. Two new chromosomes are
generated to replace their parent strings by inserting these two new
chromosomes into Pk+1. The operation is performed as follows: For
chromosomes i and j, two new chromosomes wk

i1′w
k
i2′…wk

in′r
k
i ′t

k
i ′ and

wk
j1′w

k
j2′…wk

jn′r
k
j ′t

k
j ′ can be generated, where wk

iw′¼ awwk
iw+(1–aw)w

k
jw,

wk
jw′¼ (1–aw)wk

iw+aww
k
jw (1⩽w⩽n), rki ′¼ brki+(1–b)r

k
j , r

k
j ′¼ (1–b)rki+br

k
j ,

tki ′¼ ctki+(1–c)t
k
j , t

k
j ′¼ (1–c)tki+ct

k
j . aw, b, and c are all random numbers

selected from the interval [0, 1].
(3) Mutation: The mutation operation with probability Prm is performed for

each real-valued parameter of the newly generated chromosomes
generated by the crossover operation. If a mutation occurs, the affected
gene will be changed by adding a number randomly selected using Prm
from a specified interval (e.g. [−0.01, 0.01]) to individual parameters.

Step 4. Elitist strategy
Randomly remove ndel (0⩽ndel⩽nsize) newly generated chromosomes from
the newly generated population. Insert ndel chromosomes with the
maximum fitness from the previous generation.

274

K
45,2

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

08
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



Step 5. Termination test
Terminate the algorithm when nmax generations have been created;
otherwise, return to Step 2.

When the stopping condition has been satisfied, the algorithm is terminated, and the
best chromosome with maximum fitness value among all successive generations serves
as the desired solution to examine the generalization ability of the proposed GTRSC.
One advantage of the proposed GTRSC is that it is simple enough to implement as a
computer program without any statistical assumptions.

5. Computer simulations
Through computational experiments on several real-world data sets summarized in
Table IV, the generalization ability of the proposed GTRSC was examined for three
types of approximations. The data sets used in the computer simulations are available
from the UCI machine learning repository at www.ics.uci.edu/~mlearn/MLRepository.
html. The computer programs were coded in Delphi 7.0 on a personal computer with a
Pentium dual CPU, Microsoft Windows XP, 2 GB RAM, and a clock rate of 3 GHz.

This section is organized as follows. Section 5.1 presents the parameter
specifications used by the genetic-algorithm-based learning algorithm. Section 5.2
reports the performance of different classification methods on real-world data sets.

5.1 GA parameter specifications
A number of factors can influence GA performance, including population size and the
probability of applying the genetic operators. Unfortunately, there is no optimal set of
parameter specifications. Based on the principles introduced by Osyczka (2002) and
Ishibuchi et al. (2004), the parameter specifications used in each experiment were
determined as follows:

(1) nsize¼ 50: the most common population size is between 50 and 500 individuals.
Hence, 50 individuals is an acceptable minimum size.

(2) nmax¼ 500: the stopping condition is specified according to the available
computing time.

(3) ndel¼ 2: to generate less perturbation in the next generation, only a small
number of elite chromosomes are used.

Data set Number of patterns Number of attributes Number of classes

Australian credit approval 690 14 2
Glass 214 9 6
Hepatitis 155 19 2
Iris 150 4 3
Pima Indian diabetes 768 8 2
Sonar 208 60 2
Statlog Heart 270 13 2
Tic-Tac-Toe Endgame 958 9 2
Vote 435 16 2
Wine 178 13 3

Table IV.
Data sets used

in computer
simulations
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(4) Prc¼ 1.0, Prm¼ 0.01: because a larger Prc enables wide exploration of the
solution space, a larger Prc is usually specified. However, to avoid generating
excessive perturbation, a smaller Prm should be specified.

Although these parameter specifications are somewhat subjective, experimental results
show that they are acceptable.

5.2 Classification performance evaluation
To examine the performance of the proposed method, five-fold cross-validation (5-CV) is
performed ten times independently for each data set. In practice, 5-CV divides all patterns
into five equally sized and disjoint subsets. For a classification method, four subsets serve
as training patterns, and the single remaining subset serves as test data. This procedure
is repeated until each of the five subsets has been tested. In particular, the distribution-
balanced stratified CV (DBSCV) (Zeng and Martinez, 2000) can be used to estimate the
generalization accuracy of a classifier. The main difference between stratified CV (SCV)
and DBSCV is that, for the former, each class is uniformly distributed among the fivefolds
such that the class distribution in each fold is similar to that in the original data set; the
latter further considers the distribution in feature space for each class. The main reason
for using DBSCV is that it has been showed that DBSCV outperforms SCV for estimating
the generalization accuracy of a classifier (Zeng and Martinez, 2000).

The classification performance of the proposed GTRSC was compared with that of
several representative rough-set-based classification methods, including a hierarchical
version of the LM (HLM) (Wang et al., 2004) using the CaseExtract algorithm, a rule-
based method with shortening optimization (RSES-O) using the Rough Set Exploration
System (RSES) (Bazan and Szczuka, 2001, 2005; Bazan et al., 2002), a hierarchical
version of RSES-O (RSES-H) (Skowron et al., 2005), and a classification algorithm called
RIONA which is implemented in RSES (Bazan et al., 2004). The classification
performance of these methods on the ten data sets was reported by Skowron et al.
(2006), and is summarized in Table V.

It is also interesting to compare the classification performance of TRSC and its
variants using various approximations, including TRSC with singleton approximations
(TRSC-SI), TRSC-SU, TRSC with concept approximations (TRSC-CO), GTRSC with
singleton approximations (GTRSC-SI), GTRSC with subset approximations (GTRSC-SU),
and GTRSC with concept approximations (GTRSC-CO). Flow-based TRSC (FTRSC) with

Classification methods
Data set HLM RSES-H RSES-O RIONA TRSC-SI TRSC-SU TRSC-CO

Australian 92.0 87.0 86.4 85.7 87.7 85.9 87.1
Glass 71.3 63.4 61.2 66.1 64.0 65.7 68.1
Hepatitis 78.7 81.9 82.6 82.0 83.3 83.9 83.5
Iris 94.1 95.5 94.9 94.4 94.3 95.7 95.2
Diabetes 72.6 73.8 73.8 75.4 67.8 74.1 73.6
Sonar 73.7 75.3 74.3 86.1 75.2 74.3 75.0
Statlog Heart 79.0 84.0 83.8 82.3 79.0 82.9 83.3
TTT 95.0 99.1 99.0 93.6 68.7 82.3 82.3
Vote 95.4 96.5 96.4 95.3 90.8 93.4 94.0
Wine 92.6 91.2 90.7 95.4 91.8 93.0 95.3
Average rank 9.15 7.90 8.80 8.00 10.90 9.15 8.45

Table V.
Classification
accuracy rates (%)
of different
classification
methods
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singleton (FTRSC-SI), subset (FTRSC-SU), and concept approximations (FTRSC-CO) as
proposed in Hu (2015) are also examined. The test results from TRSC and its variants are
summarized in Tables V and VI. It can be seen that GTRSC-CO is superior to FTRSC-CO
except with the Statlog Heart data. Both GTRSC-CO and GTRSC-SU are superior to
TRSC-SI, TRSC-SU, and TRSC-CO.

5.3 Statistical analysis
The non-parametric Friedman test (Friedman, 1940) with the post-hoc test is used to
perform statistical analysis of the classification methods described above over the ten
data sets. The Friedman test ranks the classification methods for each data set
separately, with the best-performing method obtaining the rank of 1, the second-best 2,
and so on. In case of ties, average ranks can be assigned. Let rj, k1, and k2 denote
respectively the average rank of classification method j, the number of classification
methods, and the number of data sets used. Let classification methods 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, and 13 correspond to TRSC-SI, TRSC-SU, TRSC-CO, FTRSC-SI, FTRSC-
SU, FTRSC-CO, GTRSC-SI, GTRSC-SU, GTRSC-CO, HLM, RSES-H, RSES-O, and
RIONA, respectively. In Table V, for instance, r1¼ 10.90 for TRSC-SI, r2¼ 9.15 for
TRSC-SU, and r3¼ 8.45 for TRSC-CO.

Under the null hypothesis that the average ranks of the classification methods are
equal, the FF statistic distributed as the F distribution with k1−1 and (k1−1)(k2−1)
degrees of freedom can be formulated using the Friedman statistic w2F (Iman and
Davenport, 1980):

FF ¼ k2�1ð Þw2F
k2 k1�1ð Þ�w2F

(28)

where w2F is defined as:

w2F ¼ 12k2
k1 k1þ1ð Þ

Xk1
j¼1

r2j�
k1 k1þ1ð Þ2

4

" #
(29)

Because k1¼ 13 and k2¼ 10, w2F ¼ 51.47. These parameters lead to FF¼ 6.759. Because
FF is greater than the critical value F(9, 108) (i.e. 1.968) at the 5 percent level, the null
hypothesis is rejected.

Classification methods
Data set FTRSC-SI FTRSC-SU FTRSC-CO GTRSC-SI GTRSC-SU GTRSC-CO

Australian 87.7 88.0 87.7 87.7 89.3 89.1
Glass 64.4 69.1 69.4 65.3 70.1 69.9
Hepatitis 84.3 85.6 84.3 87.5 86.0 87.0
Iris 96.2 95.7 96.2 97.3 96.1 96.3
Diabetes 74.7 75.7 75.9 73.9 76.5 76.0
Sonar 77.1 78.8 79.5 80.4 83.0 82.8
Statlog Heart 81.2 83.9 84.1 81.0 84.4 84.0
TTT 96.9 97.3 97.8 87.1 98.5 98.5
Vote 95.9 96.6 96.3 95.6 96.0 96.2
Wine 89.3 93.2 95.1 95.9 97.4 97.9
Average rank 7.55 4.85 4.45 6.15 2.75 2.80

Table VI.
Classification

accuracy rates (%)
of TRSC variants
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Subsequently, a post hoc test, the Nemenyi test (Nemenyi, 1963), is used to detect any
significant differences among the classification methods. The classification
performance of two classification methods is significantly different if the difference
in their average ranks is not less than the critical difference CD at the α level:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 k1þ1ð Þ

6k2

s
(30)

CD is equal to 5.36 because q0.10¼ 3.08 (i.e. α¼ 0.10) with respect to 13 classification
methods. Therefore, the results can be summarized as follows:

(1) GTRSC-CO is significantly superior to TRSC-CO (8.45−2.80¼ 5.65), TRSC-SU
(9.15−2.80¼ 6.35), TRSC-SI (10.90−2.80¼ 8.10), RSES-O (8.80−2.80¼ 6.00), and
HLM (9.15−2.80¼ 6.35).

(2) Although GTRSC-CO was not shown to be significantly superior to RSES-H and
RIONA, the differences between GTRSC-CO and RSES-H and between GTRSC-
CO and RIONA are slightly less than CD (7.90−2.80¼ 5.10 and 8.00
−2.80¼ 5.20), respectively. It can therefore be concluded that GTRSC-CO
seems to outperform RSES-H and RIONA.

(3) As for GTRSC-SU, it is significantly superior to TRSC-CO (8.45−2.75¼ 5.70),
TRSC-SU (9.15−2.75¼ 6.40), TRSC-SI (10.90−2.75¼ 8.15), RSES-O (8.80
−2.75¼ 6.05), and HLM (9.15−2.75¼ 6.40).

(4) The differences between GTRSC-CO and RSES-H is slightly less than CD (7.90
−2.75¼ 5.15). Moreover, the difference between GTRSC-CO and RIONA is just
below CD, but close to it (8.00−2.75¼ 5.25). It can therefore be concluded that
GTRSC-SU seems to outperform RSES-H and RIONA.

(5) There is no significant difference among GTRSC-CO, GTRSC-SU, and GTRSC-
SI. Both GTRSC-CO and GTRSC-SU performs better than FTRSC-SU and
FTRSC-SI on eight out of ten data sets.

(6) There is no significant difference between GTRSC and FTRSC for the various
approximations. Even so, both GTRSC-CO and GTRSC-SU performs better than
FTRSC-CO, FTRSC-SU, and FTRSC-SI on seven out of ten data sets.

6. Discussion and conclusions
From the viewpoint of certain relationships indeed existing between any two patterns,
unlike the TRS, which uses a simple distance measure to evaluate the proximity of any
two patterns, this paper has incorporated relationships between any two patterns into a
similarity measure for TRS. This paper contributes to present a novel GTRS in which
the GRG is used to implement a relationship-based similarity measure which generates
a tolerance class for each pattern. In addition, a classifier using the GTRS (i.e. GTRSC)
with various approximations has been used for pattern classification. A GA-based
learning algorithm is used to determine optimal parameter specifications that are not
easily determined by users, including criterion weights, the discriminative coefficient,
and the global similarity threshold.

Experimental results on several real-world data sets are encouraging in terms of the
classification performance obtained by GTRSC. It seems that GTRSC-CO and GTRSC-
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SU give satisfactory performance compared to the other representative rough-set-based
classification methods considered. Especially, GTRSC-CO and GTRSC-SU have shown
their superiority in classification performance on pattern classification problems in
comparison with TRSC. Besides, GTRSC and FTRSC have their own characteristics,
and the classification performance of GTRSC is comparable to that of FTRSC. For TRS,
both FTRSC and RSRC with pairwise-comparison-based tables (Hu, 2013) have
demonstrated the potential of improving classification performance by the strict
preference relation, whereas GTRSC is capable of improving classification performance
by using GRA to implement the relationship-based similarity measure. However, it is
not possible to conclude which classification method is best because there is no such
thing as the “best” classifier (Kuncheva, 2000). Experimental results also highlights
that GTRSC can be applied to bankruptcy prediction, which is a financial decision-
making problem with two classes (non-bankrupt and bankrupt firms).

In this paper, GTRS is used to construct a classifier using supervised learning.
Nevertheless, it would be interesting to extend GTRSC to unsupervised clustering
problems. It is obvious that the GRG is defined by an additive set function μ on all
singletons {xj} with μ({xj})¼wj. In other words, like the weighted average method or
the Lebesgue integral, the traditional GRG is an additive integral in which
noninteraction among the attributes involved is assumed. Nevertheless, an assumption
of additivity may not be realistic in many applications (Wang et al., 1998) because the
variables are not always independent. It would be very interesting to implement a
nonadditive similarity measure using the nonadditive version of GRG proposed in
Hu (2008). Whether nonadditive GRG can have any impact on classification
performance when incorporated into GTRSC remains to be studied in future work.
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