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Abstract
Purpose – The triangular intuitionistic fuzzy number (TIFN) is very useful for expressing ill-known
quantity. The purpose of this paper is to develop a new method for multi-attribute group
decision-making (MAGDM) problems, in which the attribute values are the TIFNs, the attribute
weights are completely unknown and the weights of decision makers are given by linguistic variables.
Design/methodology/approach – A new method is given to rank TIFNs based on the weighted
possibility mean and standard deviation of TIFNs. The weighted Minkowski distance of TIFNs is
defined by using the weighted lower and upper possibility means of TIFNs. The weights of experts are
determined in terms of the voting model of intuitionistic fuzzy set (IFS). The weights of attributes can
be objectively determined through utilizing the information entropy defined by weighted Minkowski
distance of TIFNs. Through integrating the attribute weights and expert weights, the collective
comprehensive ranking values of alternatives are obtained and used to rank the alternatives.
Findings – The stock selection example and comparison analysis show the validity and applicability
of the method proposed in this paper.
Originality/value – The paper presents a new ranking method of TIFNs and defines the weighted
Minkowski distance of TIFNs. The weights of experts are determined in terms of the voting model of
IFS. The weights of attributes can be objectively determined through utilizing the information entropy.
The proposed method can greatly enhance the flexibility and agility of decision-making process.
Keywords Decision making, Triangular intuitionistic fuzzy number,
Weighted Minkowski distance, Weighted possibility mean, Weighted possibility standard deviation
Paper type Research paper

1. Introduction
In many real-life decision-making problems, decision maker (DM, expert) does not
know exactly the attribute values of alternative, the fuzzy sets (FSs) (Zadeh, 1965)
can be used to represent the evaluation results. Thus, the fuzzy decision-making
analysis appears. However, the decision-making problems often involve many
incomplete information and relate to many complex factors, such as economy,
politics, psychological behavior, ideology and so on. Therefore, the judgments of DM
often exist some hesitation degrees (Atanassov, 1986, 1999; Atanassov and Gargov,
1989; Atanassov et al., 2005; Liao et al., 2014; Gao and Liu, 2015; Xu and Chen, 2008;
Xu et al., 2014; Yu et al., 2013; Zeng et al., 2014). For example, in stock investment
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selection, because of the incompleteness and uncertainty of information in the
evaluation of the listed company's solvency indicator, the evaluation value can be
expressed by triangular intuitionistic fuzzy number (TIFN) (Li, 2008; Shu et al., 2006;
Li, 2010; Li et al., 2010; Nan et al., 2010; Wan et al., 2013a, b; Wan and Li, 2013;
Wan and Dong, 2014; Wang et al., 2013) ((4, 5, 6); 0.6, 0.3), which means that the
minimum value of solvency is 4, the maximum value is 6 and the most possible value
is 5. Meanwhile, the maximum membership degree for the most possible value 5 is
60 percent, the minimum non-membership degree for the most possible value 5
is 30 percent and the indeterminacy is 10 percent. That is to say, the DM has some
hesitation degree for the estimation on this judgment, this hesitation influences the
decision making on the stock selection.

The intuitionistic fuzzy set (IFS) (Atanassov, 1986) and interval-valued intuitionistic
fuzzy set (IVIFS) (Atanassov and Gargov, 1989) are just the strong tools to represent
the uncertain information with hesitation degrees. At present, both IFS and IVIFS have
been widely applied to the fields of multi-attribute decision making (MADM) and
multi-attribute group decision making (MAGDM). At the same time, the researches on
the intuitionistic fuzzy numbers (IFNs) also receive a little attention. Fuzzy numbers are
a special case of FSs. As a generalization of fuzzy numbers (Dubois and Prade, 1980),
IFN is a special IFS defined on the real number set, which seems to suitably describe an
ill-known quantity (Li, 2008). Currently, there are three kinds of typical IFNs: TIFN
(Li, 2008; Shu et al., 2006; Li, 2010; Li et al., 2010; Nan et al., 2010; Wan et al., 2013a, b;
Wan and Li, 2013; Wan and Dong, 2014; Wang et al., 2013), trapezoidal IFN (TrIFN)
(Wang, 2008; Wang and Zhang, 2009; Wei, 2010; Du and Liu, 2011; Wu and Cao, 2013;
Wan and Dong, 2010; Wan, 2013; Zhang et al., 2013) and interval-valued trapezoidal
IFN (IVTrIFN) (Wan, 2011, 2012).

In a similar way to the fuzzy number (Dubois and Prade, 1980), Shu et al. (2006)
defined the concept of a TIFN and applied to intuitionistic fuzzy fault tree analysis.
Li (2008) pointed out and corrected some errors in the definition of the four arithmetic
operations over the TIFNs in Shu et al. (2006). On the basis of the ratio of the
value index to the ambiguity index, Li (2010) developed a ranking method for TIFNs
and applied to MADM problems in which the ratings of alternatives on attributes are
expressed using TIFNs. Li et al. (2010) developed a value- and ambiguity-based method
to rank TIFNs and proposed a new method for MADM with TIFNs. Nan et al. (2010)
defined the ranking-order relations of TIFNs, which are applied to matrix games with
payoffs of TIFNs. Wan et al. (2013a) defined the weighted possibility mean, variance
and covariance of TIFNs. Wan and Li (2013) developed the possibility mean and
variance-based method for MADM with TIFNs. Based on the possibility mean
and variance defined in (Wan and Li, 2013), Wan and Dong (2014) proposed two new
ranking indices to compare TIFNs and then presented a new method for solving
MAGDM with TIFNs. Wan et al. (2013b) extended the classical VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method for solving MAGDM with
TIFNs. Wang et al. (2013) proposed new arithmetic operations and logic operators for
TIFNs and applied them to fault analysis of a printed circuit board assembly system.

As the extensions of the TIFNs, Wang (2008) defined the TrIFN and IVTrIFN. Wang
and Zhang (2009) investigated the weighted arithmetic averaging operator and
weighted geometric averaging operator on TrIFNs and their applications to MADM
problems. Wei (2010) investigated some arithmetic aggregation operators with TrIFNs
and their applications to MAGDM problems. Du and Liu (2011) extended fuzzy VIKOR
method to solve MADM with TrIFNs. Wu and Cao (2013) developed some families of
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geometric aggregation operators for TrIFNs and applied to MAGDM problems. Wan
and Dong (2010) defined the expectation and expectant score of TrIFNs, and defined
the ordered weighted aggregation operator and hybrid aggregation operator for
TrIFNs and employed to MAGDM. Wan (2013) developed some power average
operators of TrIFNs and proposed a new method of MAGDM with TrIFNs. Zhang et al.
(2013) proposed a gray relational projection method for MAGDM based on TrIFNs.
Wan (2011) first defined some operational laws of IVTrIFNs and developed the
IVTrIFN weighted arithmetical average operator and weighted geometrical average
operator. An approach to ranking IVTrIFNs is presented based on the score function
and accurate function. The MAGDM method using IVTrIFNs is then proposed.
Wan (2012) defined the Hamming and Euclidean distances for IVTrIFNs and
proposed the fractional programming method for the MADM problems using IVTrIFNs.

The above researches about IFNs mainly focus on the operational laws (Li, 2008;
Shu et al., 2006; Wan, 2013; Zhang et al., 2013), aggregation operators (Wang and
Zhang, 2009; Wu and Cao, 2013; Wan and Dong, 2010; Wan, 2013), ranking methods
(Li et al., 2010; Nan et al., 2010; Wan and Li, 2013; Wan and Dong, 2014; Wang, 2008;
Wan, 2011), extension of classical decision-making methods (Du and Liu, 2011;
Zhang et al., 2013) and new decision-making methods (Wan, 2012). It is worthwhile to
mention that the domains of the IFS and IVIFS are discrete sets, which are also the
same as FSs. TIFNs, TrIFNs and IVTrIFNs extend the domain of IFSs from the discrete
set to the continuous set. They are the extensions of fuzzy numbers (Wang and
Zhang, 2009). Compared with the IFSs, TIFNs are defined by using triangular fuzzy
numbers expressing their membership and non-membership functions. Hence, TIFNs
may better reflect the information of decision problems than IFSs. However, there is
less investigation for the MAGDM problems in which the attribute values are in the
form of TIFNs. The existing methods about IFNs, IFSs and IVIFSs can not be
applied to MAGDM with TIFNs. With the increasing complexity of modern society,
continued expansion of the scale and the diversification of business, many large and
important management decision optimization problems require many experts to
participate in making decisions together (Merigó and Gil-Lafuente, 2011). Therefore, the
MAGDM problems with TIFNs are of a great importance for scientific researches and
real applications.

The possibility theory of FSs was proposed by Zadeh (1978), its academic meaning
is in building a theoretical framework of real applications for FSs (Carlsson and Fullér,
2001; Fullér and Majlender, 2003). Inspired by Carlsson and Fullér (2001) and Fullér and
Majlender (2003), Wan et al. (2013a) introduced the concepts of weighted possibility
mean, variance and covariance of TIFNs. To our best knowledge, however, there is no
investigation on the applications of the weighted possibility mean and variance of
TIFNs to the MAGDM problems with TIFNs. Hence, the aim of this paper is to develop
a new method for ranking TIFNs based on the weighted possibility mean and standard
deviation and then propose a new method for the MAGDM problems, in which the
attribute values are TIFNs, the attribute weights are completely unknown and the
weights of DMs are given by linguistic variables. The main differences and features of
this paper over the existing literature are summarized as follows:

(1) Under the triangular intuitionistic fuzzy environments, this paper first consider
the MAGDM problems in which the attribute weights are completely unknown
and the weights of DMs are given by linguistic variables, whereas Wan and
Dong (2014) studied the MAGDM problems in which the attribute weights are
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incompletely known and the weights of DMs are given in the format of real
numbers a priori. Thus, the group decision problems researched in Wan and
Dong (2014) and this paper are significantly different.

(2) The ranking indexes in (Wan and Dong, 2014) is based on the possibility mean
and variance, while the ranking indexes developed in this paper are based on the
weighted possibility mean and variance. Since the weighted possibility mean and
variance sufficiently consider the weighting functions, DMs can choose different
weighting functions according to their subjective preferences, which can greatly
enhance the flexibility and agility of decision-making process.

(3) This paper determines the weights of experts in terms of the voting model of
IFSs. The weights of attributes are objectively determined through utilizing the
information entropy defined by weighted Minkowski distance of TIFNs.
However, the weights of experts in (Wan and Dong, 2014) are artificially given
in advance, which cannot avoid the subjective randomness. Wan and Dong
(2014) obtained the weights of attributes through constructing bi-objective
programming model. Wan et al. (2013b) calculated the weights of attributes by
applying Shannon entropy measure and derived the weights of DMs combining
the evidence theory with Bayes approximation. Therefore, the principles and
methods for determining the weights of attributes and experts among these
three papers are remarkably diverse.

(4) Li (2010), Li et al. (2010), Wan and Li (2013) investigated the MADM problems,
while this paper studies the MAGDM problem.

The rest of this paper is structured as follows. In Section 2, we present some concepts
about TIFNs. Thereby, a new ranking method of TIFNs is developed and Minkowski
distance of TIFNs is defined. A new decision method for the MAGDM problems
using TIFNs is then proposed in Section 3. A stock selection example is illustrated in
Section 4. The comparison analysis is also conducted in this section. Short conclusions
are made in Section 5.

2. Preliminaries and ranking method for TIFNs
This section first introduces the definition, operation laws, weighted possibility mean,
variance and standard deviation. Thereby, a new ranking method of TIFNs is
developed and the weighted Minkowski distance of TIFNs is defined.

2.1 The definition and operation laws of TIFNs

Definition 1. (Shu et al., 2006; Li, 2010). A TIFN ~a ¼ a; a; a
� �

;o ~a ; u ~a
� �

is a special IFS
on a real number set R, whose membership function and non-membership
function are defined as follows:

m ~a xð Þ ¼

x�a
a�ao ~a ; if apxoa

o ~a ; if x ¼ a
a�x
a�ao ~a ; if aoxpa

0; if xoa or x4a

8>>>>><
>>>>>:
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and

n ~a xð Þ ¼

a�xþðx�aÞu ~a

a�a ; if apxoa

u ~a ; if x ¼ a
x�aþða�xÞu ~a

a�a ; if aoxpa

1; if xoa or x4a

8>>>>><
>>>>>:

respectively, depicted as in Figure 1. The values o ~a and u ~a represent the maximum
degree of membership and the minimum degree of non-membership, respectively,
such that they satisfy the conditions: 0po ~ap1, 0pu ~ap1 and o ~aþu ~ap1.
Let p ~a xð Þ ¼ 1�m ~a xð Þ�n ~a xð Þ, which is called an intuitionistic fuzzy index of an element
x in ~a.

If aX0 and one of the three values a, a and a is not equal to 0, then the TIFN
~a ¼ a; a; a

� �
;o ~a ; u ~a

� �
is called a positive TIFN, denoted by ~a40 (Li, 2010).

The TIFNs discussed in this paper are all positive TIFNs:

Definition 2. (Li, 2008; Li, 2010). Let ~ai ¼ ai; ai; ai
h i

;o ~ai ; u ~ai

� �
(i¼ 1, 2) be two

TIFNs and λ⩾ 0. Then the operational laws for TIFNs are defined
as follows:

(1) ~a1þ ~a2 ¼ a1þa2; a1þa2; a1þa2
� �

;o ~a14o ~a2 ; u ~a13u ~a2

� �
; and

(2) l ~a1 ¼ la1; la1; la1
� �

;o ~a1 ; u ~a1

� �
;

where the symbols “∧” and “∨” mean min and max operators, respectively.

2.2 The weighted possibility mean, variance and standard deviation of TIFN

Definition 3. (Atanassov, 1999; Li, 2010). For TIFN ~a ¼ ðða; a; aÞ;o ~a ; u ~a Þ, the α-cut
set is defined as:

~aa ¼ x m ~a xð ÞXa
�� � ¼ ala; a

u
a

� 	 ¼ aþ a�a
� �

a
o ~a

; a � a�að Þa
o ~a


 �
;

�
(1)

a x

1

a

�a∼

�

�

ua∼

∼�a(x)

�a (x )∼

al
� al

� au
� au

�
a

Figure 1.
α-cut set of
membership function
and β-cut set of
non-membership
function
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the β-cut set is defined as:

~ab ¼ x u ~a xð Þpb
�� � ¼ alb; a

u
b

h i
¼ 1�bð Þaþ b�u ~að Þa

1�u ~a
;
1�bð Þaþ b�u ~að Þa

1�u ~a


 �
;

�
(2)

where 0papo ~a , u ~apbp1 and 0⩽ α+ β⩽ 1.
Wan et al. (2013a) introduced the definitions of the weighted possibility means of

TIFNs as follows:

Definition 4. (Wan et al., 2013a). Let ~aa ¼ ala; a
u
a

� 	
be the α-cut set of a TIFN

~a ¼ a; a; a
� �

;o ~a ; u ~a
� �

with 0papo ~a . A function f : 0;o ~a½ �-R is
said to be a weighting function if f is a non-negative, monotone
increasing and satisfies the conditions:

Ro ~a

0 f að Þda ¼ o ~a and f(0)¼ 0.

The f weighted lower and upper possibility means of membership function for the
TIFN ~a ¼ a; a; a

� �
;o ~a ; u ~a

� �
are, respectively, defined as follows:

mm
~að Þ ¼

Z o ~a

0
f Pos ~apala

� 	� �
alada; (3)

mm ~að Þ ¼
Z o ~a

0
f Pos ~aXaua

� 	� �
auada; (4)

where Pos means the possibility (Carlsson and Fullér, 2001; Fullér and Majlender,
2003) and:

Pos ~apala
� 	 ¼ sup

xp ~ala

m ~a xð Þ ¼ a; (5)

Pos ~aXaua
� 	 ¼ sup

xX ~aua

m ~a xð Þ ¼ a: (6)

The f weighted possibility mean of membership function for the TIFN
~a ¼ a; a; a

� �
;o ~a ; u ~a

� �
is defined as follows:

mm ~að Þ ¼ 1
2 mm

~að Þþmm ~að Þ
h i

: (7)

Definition 5. (Wan et al., 2013a). Let ~ab ¼ ½alb; aub� be the β-cut set of a TIFN
~a ¼ a; a; a

� �
;o ~a ; u ~a

� �
with u ~apbp1. A function g : u ~a ; 1½ �-R is

said to be a weighting function if g is a non-negative, monotone
decreasing and satisfies the conditions:

R 1
u ~a
g bð Þdb ¼ 1�u ~a and g(1)¼ 1.

The g weighted lower and upper possibility means of non-membership function for the
TIFN ~a ¼ a; a; a

� �
;o ~a ; u ~a

� �
are, respectively, defined as follows:

mn
~að Þ ¼

Z 1

u ~a

g Pos ~apalb
h i� �

albdb; (8)

mn ~að Þ ¼
Z 1

u ~a

g Pos ~aXaub
h i� �

aubdb; (9)
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where:

Pos ~apalb
h i

¼ sup
xp alb

n ~a xð Þ ¼ b; (10)

Pos ~aXaub
h i

¼ sup
xX aub

n ~a xð Þ ¼ b: (11)

The g weighted possibility mean of non-membership function for the TIFN
~a ¼ ðða; a; aÞ;o ~a ; u ~a Þ is defined as follows:

mn ~að Þ ¼ 1
2 mn

~að Þþmn ~að Þ
h i

: (12)

Definition 6. (Wan et al., 2013a). For a TIFN ~a ¼ a; a; a
� �

;o ~a ; u ~a
� �

, the f weighted
possibility variance and standard deviation of membership function are
respectively defined as follows:

Vm ~að Þ ¼
Z o ~a

0

aua�ala
2

 �2

f að Þda; (13)

Dm ~að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Vm ~að Þ

p
: (14)

The g weighted possibility variance and standard deviation of non-membership
function are respectively as follows:

V n ~að Þ ¼ 1
2

Z 1

u ~a

aub�alb
2

 !2

g bð Þdb; (15)

Dn ~að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V n ~að Þ

p
: (16)

Example 1. If f and g are chosen as follows:

f að Þ ¼ 2a=o ~a aA 0;o ~a½ �ð Þ (17)

and:

g bð Þ ¼ 2 1�bð Þ= 1�u ~að Þ bA u ~a ; 1½ �ð Þ; (18)

respectively, then, according to Equations (7) and (12), we have:

mm ~að Þ ¼ 1
6 aþ4aþa
� �

o ~a ; (19)

mn ~að Þ ¼ 1
6 aþ4aþa
� �

1�u ~að Þ: (20)

According to Equations (13)-(16), we have:

Vm ~að Þ ¼ 1
24 a�a
� �2o ~a ; (21)

Dm ~að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V a ~að Þ

p
¼ a�a
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

w ~a=24
p

; (22)
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V n ~að Þ ¼ 1
24 a�a
� �2 1�u ~að Þ; (23)

Dn ~að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V n ~að Þ

p
¼ a�a
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u ~að Þ=24
p

: (24)

Remark 1. The weighting functions f and g can be chosen as several forms, e.g.:

f að Þ ¼ nþ1ð Þan= o ~að Þn aA 0;o ~a½ �ð Þ;
g bð Þ ¼ nþ1ð Þ 1�bð Þn= 1�u ~að Þn bA u ~a ; 1½ �ð Þ:

In real-life application, the weighting functions f and g can be selected according to the
need of real decision problem and the preferences of DMs. For computation
convenience, the weighting functions f and g are respectively chosen as Equations (17)
and (18) in the following.

2.3 A new ranking method of TIFNs
The possibility mean and standard deviation of fuzzy number are similar to the mean
and standard deviation of random variable. They can be used to quantitatively
characterize the values of fuzzy number as well as the inherent uncertainty. Obviously,
the greater the possibility mean, the bigger the corresponding fuzzy number; the
greater the possibility standard deviation, the larger the degree of vagueness and
uncertainty of the fuzzy number.

Let mm ~aið Þ, mn ~aið Þ, Dm ~aið Þ, Dn ~aið Þ be the possibility means and standard deviations
of the membership and non-membership functions for TIFNs ~ai ¼ ððai; ai; aiÞ;o ~ai ; u ~ai Þ
(i¼ 1, 2), respectively. The ranking indices of the membership and non-membership
functions for TIFN ~ai are defined as:

Rm ~aið Þ ¼ mm ~aið Þ�lDm ~aið Þ; (25)

Rn ~aið Þ ¼ mn ~aið Þ�lDn ~aið Þ; (26)

respectively, where λ∈ [0, 1] is the risk preference parameter of DM. Different DMs have
different preferences for the membership and non-membership functions. λ∈ [0, 0.5)
implies that DM prefers uncertainty, i.e., DM is optimistic; λ∈ (0.5, 1] shows that DM
prefers certainty, i.e., DM is pessimistic; λ¼ 0.5 indicates DM is indifference between
uncertainty and certainty, i.e., DM is risk neutral.

Thereby, a new ranking method between two TIFNs ~a1 and ~a2 can be summarized
as follows:

(1) if Rm ~a1ð ÞoRm ~a2ð Þ, then ~a1 is smaller than ~a2, denoted by ~a1o ~a2;

(2) if Rm ~a1ð Þ4Rm ~a2ð Þ, then ~a1 is bigger than ~a2, denoted by ~a14 ~a2; and

(3) if Rm ~a1ð Þ ¼ Rm ~a2ð Þ, then:
• if Rn ~a1ð ÞoRn ~a2ð Þ, then ~a14 ~a2;
• if Rn ~a1ð Þ4Rn ~a2ð Þ, then ~a1o ~a2; and
• if Rn ~a1ð Þ ¼ Rn ~a2ð Þ, then ~a1 and ~a2 represent the same information, denoted

by ~a1 ¼ ~a2.
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The above ranking method sufficiently considers the risk preference of DM. In fact, due
to the uncertainty of objective things and vagueness of human thinking, it is very
necessary and natural to incorporate the risk preference of DM into the ranking
process. By Equations (19), (20), (22) and (24), we get the ranking indices of the
membership and non-membership functions for TIFN ~a as follows:

Rm ~að Þ ¼ 1
6 aþ4aþa
� �

o ~a�l a�a
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

w ~a=24
p

; (27)

Rn ~að Þ ¼ 1
6 aþ4aþa
� �

1�u ~að Þ�l a�a
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u ~að Þ=24
p

: (28)

The following linear properties hold:

Theorem 1. Let k1 and k2 be two any positive real numbers. For TIFNs
~ai ¼ ððai; ai; aiÞ;o ~ai ; u ~ai Þ (i¼ 1, 2) with o ~a1 ¼ o ~a2 ¼ o ~a and
u ~a1 ¼ u ~a2 ¼ u ~a , the following equations valid:

Rm k1 ~a1þk2 ~a2ð Þ ¼ k1Rm ~a1ð Þþk2Rm ~a2ð Þ;

Rv k1 ~a1þk2 ~a2ð Þ ¼ k1Rv ~a1ð Þþk2Rv ~a2ð Þ:

Proof: Using Definition 2, we obtain, k1 ~a1þk2 ~a2 ¼ ððk1a1þk2a2Þ; 4ðk1a1þk2a2Þ;
ðk1a1þk2a2Þ;o ~a ; u ~a Þ. By Equations (27) and (28), it yields that:

Rm k1 ~a1þk2 ~a2ð Þ ¼ 1
6

k1a1þk2a2

� �
þ4 k1a1þk2a2ð Þþ k1a1þk2a2ð Þ

h i
o ~a

�l k1a1þk2a2ð Þ� k1a1þk2a2

� �h i ffiffiffiffiffiffiffiffiffiffiffiffiffi
w ~a=24

p
¼ k1

1
6

a1þ4a1þa1
� �

o ~a�l a1�a1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
w ~a=24

p
 �

þk2
1
6

a2þ4a2þa2
� �

o ~a�l a2�a2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
w ~a=24

p
 �
¼ k1Rm ~a1ð Þþk2Rm ~a2ð Þ;

Rv k1 ~a1þk2 ~a2ð Þ ¼ 1
6

k1a1þk2a2

� �
þ4 k1a1þk2a2ð Þþ k1a1þk2a2ð Þ

h i
1�u ~að Þ

�l k1a1þk2a2ð Þ� k1a1þk2a2

� �h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u ~að Þ=24

p
¼ k1

1
6

a1þ4a1þa1
� �

o ~a�l a1�a1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u ~að Þ=24

p
 �

þk2
1
6

a2þ4a2þa2
� �

o ~a�l a2�a2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u ~að Þ=24

p
 �
¼ k1Rv ~a1ð Þþk2Rv ~a2ð Þ:

This completes the proof of Theorem 1. ■
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2.4 The weighted Minkowski distance of TIFNs based on the weighted upper and
lower possibility means
The weighted upper and lower possibility means of membership and non-membership
functions can quantitatively characterize the values of TIFNs. In particular, for a TIFN
~a ¼ ðða; a; aÞ;o ~a ; u ~a Þ, the weighted upper and lower possibility means just formulate
two intervals ½m mð ~aÞ;mmð ~aÞ� and ½m nð ~aÞ;mnð ~aÞ�. Therefore, motivated by Merigó and
Casanovas (2011a, b), Zeng (2013) and Merigó (2013), we define the weighted Minkowski
distance of TIFNs based on the weighted upper and lower possibility means:

Definition 7. Let ~ai ¼ ððai; ai; aiÞ;o ~ai ; u ~ai Þ (i¼ 1, 2) be two TIFNs. The weighted
Minkowski distance between ~a1 and ~a2 is defined as follows:

dq ~a1; ~a2ð Þ ¼ w1 mm
~a1ð Þ�mm

~a2ð Þ
��� ���qþw2 mm ~a1ð Þ�mm ~a2ð Þ

�� ��qh

þw3 mn
~a1ð Þ�mn

~a2ð Þ
�� ��qþw4 mn ~a1ð Þ�mn ~a2ð Þ

�� ��qi1=q; (29)

where qW0 is a parameter of distance, whose value can be selected appropriately
according to actual need, w1, w2, w3, w4 respectively represent the importance of
the weighted upper and lower possibility means of the membership and
non-membership functions.

When q¼ 1, dq ~a1; ~a2ð Þ is reduced to the weighted Hamming distance of TIFNs as follows:

d1 ~a1; ~a2ð Þ ¼ w1 mm
~a1ð Þ�mm

~a2ð Þ
��� ���þw2 mm ~a1ð Þ�mm ~a2ð Þ

�� ���

þw3 mn
~a1ð Þ�mn

~a2ð Þ
�� ��þw4 mn ~a1ð Þ�mn ~a2ð Þ

�� ���; (30)

when q¼ 2, dq ~a1; ~a2ð Þ is reduced to the weighted Euclidean distance of TIFNs as follows:

d2 ~a1; ~a2ð Þ

¼

w1 mm

~a1ð Þ�mm
~a2ð Þ

��� ���2þw2 mm ~a1ð Þ�mm ~a2ð Þ
�� ��2þw3 mn

~a1ð Þ�mn
~a2ð Þ

�� ��2þw4 mn ~a1ð Þ�mn ~a2ð Þ
�� ��2r

;

(31)

when q→+∞, dq ~a1; ~a2ð Þ is reduced to the weighted Chebyshev distance of TIFNs
as follows:

d1 ~a1; ~a2ð Þ ¼ max w1 mm
~a1ð Þ�mm

~a2ð Þ
��� ���;w2 mm ~a1ð Þ

��n

�mm ~a2ð Þ
��;w3 mn

~a1ð Þ�mn
~a2ð Þ

�� ��;w4 mn ~a1ð Þ�mn ~a2ð Þ
�� ��g: (32)

It is easy to prove that the distance dq ~a1; ~a2ð Þ has the following properties:

(1) (non-negativity)dq ~a1; ~a2ð ÞX0;

(2) (symmetry) dq ~a1; ~a2ð Þ ¼ dq ~a2; ~a1ð Þ; and
(3) (triangular inequality) if ~a3 is any TIFN, then dq ~a1; ~a3ð Þpdq ~a1; ~a2ð Þþdq ~a2; ~a3ð Þ.
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3. MAGDM model and method using TIFNs
In this section, we first describe the MAGDM problem using TIFNs and then propose a
new method for solving the MAGDM problem with TIFNs.

3.1 Description of MAGDM problem using TIFNs
For some MAGDM problems, denote an alternative set by A¼ {A1, A2,…,Am} and an
attribute set by C¼ {C1, C2,…, Cn}. Assume that there are p DMs participating in
decision making, denote the set of DMs by E¼ {e1, e2,…, ep}. The weight vector of
attributes given by DM ek is wk ¼ ðwk

1;w
k
2; . . .; wk

nÞT (k¼ 1, 2,…, p), satisfying
that 0pwk

j p1 ( j¼ 1, 2,…, n) and
Pn

j¼1 w
k
j ¼ 1. The weight vector of DMs is

V¼ (v1, v2,…, vp)
T, satisfying that 0⩽ vk⩽ 1 (k¼ 1, 2,…, p) and

Pp
k¼1 vk ¼ 1. Both

wk and V are unknown to be determined. Suppose that the rating of an alternative Ai

on an attribute Cj given by the DM ek is a TIFN ~akij ¼ ððakij; akij; akijÞ;o ~akij
; u ~akij

Þ,
where o ~akij

and u ~akij
denote respectively the maximum membership degree and

the minimum non-membership degree of alternative Ai on attribute Cj given by the DM
ek, satisfying 0po ~akij

p1, 0pu ~akij
p1 and 0po ~akij

þu ~akij
p1.

Hence, a MAGDM problem can be concisely expressed in matrix format as
~A
k ¼ ð ~akijÞm�n (k¼ 1, 2,…, p), which are referred to as TIFN decision matrices usually

used to represent the MAGDM problem.
To eliminate the impact of different dimensions on the decision results,

the matrix ~A
k ¼ ð ~akijÞm�n needs to be normalized into ~R

k ¼ ð~rkijÞm�n, where
~rij

k ¼ ððrkij; rkij; rkijÞ;o~rkij
; u~r kij

Þ, o~rkij
¼ o ~akij

and u~rkij
¼ u ~akij

. Inspired by Hwang and Yoon
(1981), in this paper the normalization method is chosen for convenience as follows.

For benefit attributes:

~rij
k ¼

akij�ak�j
akþj �ak�j

;
akij�ak�j
akþj � ak�j

;
akij�ak�j
akþj � ak�j

 !
;o~rkij

; u~rkij

 !
; (33)

For cost attributes:

~rij
k ¼ akþj �akij

akþj � ak�j
;
akþj �akij
akþj � ak�j

;
akþj �akij
akþj � ak�j

 !
;o~r kij

; u~rkij

 !
; (34)

where akþj ¼ max akij9i ¼ 1; 2; . . .; m
n o

and ak�j ¼ min akij9i ¼ 1; 2; . . .; m
n o

( j¼ 1, 2,…, n).

3.2 Determining the DMs’ weights on the basis of IFS voting model

Definition 8. (Atanassov, 1986, 1999). Let Z¼ {z1, z2, …, zm} be a finite universe of
discourse. An IFS A in Z is an object having the following form:
A¼ {ozj, μA(zj), υA(zj)W |zj∈Z}, where the functions mA : Z/½0; 1�
and nA : Z/½0; 1� are respectively the degree of membership and degree
of non-membership of an element zj∈Z to the set A⊆Z so that they
satisfy the condition: 0⩽μA(zj)+ νA(zj)⩽ 1. Let πA(zj)¼ 1−μA(zj)− υA(zj)
which is called the intuitionistic index of an element zj in the set A.
If the IFS A contains only one element, we call the triple (μA, υA, πA)
an intuitionistic fuzzy value.
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In real-life decision problems, it is often that the importance of DMs are usually
expressed by linguistic variables, such as “important,” “medium,” “not important” and
so on. Assume that the linguistic variables can be transformed into intuitionistic fuzzy
values. The corresponding relationship between the linguistic variables and
intuitionistic fuzzy values used in this paper is listed in Table I.

Denote the intuitionistic fuzzy value of the importance for DM ek by δk¼ ( μk, υk, πk).
According to the voting model of IFSs, μk, υk and πk can be interpreted as proportions of
the affirmative, dissent and abstention in a vote, respectively. Considering the
possibility that in abstention group some people tend to cast affirmative votes, others
are dissenters and still others tend to abstain from voting. So we can divide the
abstention proportion πk into three parts: μkπk, υkπk and πkπk, which express the
proportions of the affirmative, dissent and abstention in original part of abstention.
Thus, the score function of intuitionistic fuzzy value δk¼ ( μk, υk, πk) is defined as
sk¼ μk+ μkπk¼ μk(1+ πk)¼ μk(2− μk− υk). It is easy to see that the score function sk is
the sum of the original affirmative proportion μk and the affirmative proportion μkπk
allocated by abstention group. Thus, sk may be viewed as all the possible affirmative
proportions in a vote, which can effectively measure the score function of intuitionistic
fuzzy value δk¼ ( μk, υk, πk). Normalized the score functions sk (k¼ 1, 2,…, p), the
weight of DM ek can be generated as follows:

vk ¼
mk 2�mk�uk
� �

Pp
k¼1 mk 2�mk�uk

� �� 	 k ¼ 1; 2; . . .; pð Þ: (35)

3.3 Determining the attribute weights based on the entropy of weighted
Minkowski distance
The attribute weights can only be determined through the information of decision
matrix when the attribute weights are completely unknown. For an attribute, if there
exist small deviations among the attribute values of all alternatives, then this attribute
plays an unimportant role in ranking the alternatives, thus it should be assigned a
small weight; Conversely, if there exist big deviations among the attribute values of all
alternatives, then this attribute plays an important role in ranking the alternatives, thus
it should be assigned a big weight. In particular, if there is no difference among the
attribute values of all alternatives, then we can make its weight as zero because this
attribute has no effect on alternatives.

Entropy can be used to measure the amount of information implied in attributes.
The bigger the entropy, the less the amount of information; the smaller the entropy, the
bigger the amount of information. Hence, this paper utilizes entropy to determine
attribute weights through the weighted Minkowski distance matrix.

Linguistic variables Intuitionistic fuzzy values

Very important (0.90, 0.10, 0.0)
Important (0.80, 0.10, 0.1)
Medium (0.60, 0.30, 0.1)
Not important (0.30, 0.60, 0.1)
Very unimportant (0.10, 0.90, 0.0)

Table I.
The relationship

between linguistic
variables and

intuitionistic fuzzy
values for rating the

importance of experts
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First, for the normalized decision matrix ~R
k ¼ ð~rkijÞm�n, the weighted Minkowski

distance matrix is constructed as follows:

Dk ¼ dkij
� �

m�n
(36)

where dkij ¼ dpð~rkij; ~rknj Þ is the weighted Minkowski distance in Definition 7, and
~rknj ¼ ðð max

1p ipm
frkijg; max

1p ipm
frkijg; max

1p ipm
frkijgÞ; max

1p ipm
fok

~r ij
g; min

1p ipm
fuk~r ijgÞ is the ideal

value of attribute Cj for DM ek.
It is noticed from Definition 7 that, the greater the deviation of attribute values in

the matrix ~R
k
, the greater the deviation of attribute values in the distance matrix Dk;

the smaller the deviation of attribute values in the matrix ~R
k
, the smaller the deviation

of attribute values in the distance matrix Dk. Hence, we can calculate the entropy to
determine the attribute weights according to the distance matrix Dk.

Then, the entropy of attribute Cj for the distance matrix Dk ¼ ðdkijÞm�n is defined
as follows:

hkj ¼ � 1
lnm

Xm
i¼1

dkij ln d
k
ij j ¼ 1; 2; . . .; nð Þ; (37)

The deviation of Cj is defined as bkj ¼ 1�hkj , thus the attribute weight vector
wk ¼ wk

1;w
k
2; . . .; wk

n

� �T
given by DM ek can be calculated as follows:

wk
j ¼ bkj

,Xn
j¼1

bkj j ¼ 1; 2; . . .; nð Þ: (38)

3.4 Method of MAGDM using TIFNs
In sum, an algorithm and process of the MAGDM problems with TIFNs may be
summarized as follows:

• Step 1: normalize the decision matrix ~A
k
into ~R

k
(k¼ 1, 2,…, p) according to

Equations (33) and (34);
• Step 2: determine the DMs’ weight vector V¼ (v1, v2,…, vp)

T according to
Equations (35);

• Step 3: compute the attribute weight vectorwk ¼ wk
1;w

k
2; . . .; wk

n

� �T
(k¼ 1,2,…, p)

given by DM ek using the entropy method of Equations (36)-(38);
• Step 4: construct the ranking matrix of membership function Rk

m ¼ ðRk
ijmÞm�n for

DM ek, where:

Rk
ijm ¼ mm ~rkij

� �
�lkDm ~rkij

� �
(39)

and λk is the parameter of risk preference of DM ek.

• Step 5: combined the attribute weight vector wk ¼ wk
1;w

k
2; . . .; wk

n

� �T
, the

individual ranking value of membership function for alternative Ai given by DM
ek can be obtained as follows:

Zk
im ¼

Xn
j¼1

wk
j R

k
ijm: (40)
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• Step 6: combined the weights of experts V¼ (v1, v2,…, vp)
T, the collective

comprehensive ranking value of membership function for alternative Ai is
calculated as follows:

Sim ¼
Xp
k¼1

vkZ
k
im i ¼ 1; 2; . . .; mð Þ: (41)

• Step 7: if all Siμ (i¼ 1, 2,…,m) are not equal, then the ranking order of all
alternatives are obtained according to the descending order of Siμ; if some of
Siμ (i¼ 1, 2,…,m) are equal, then turn to Step 8.

• Step 8: construct the ranking matrix of non-membership function
Rk

n ¼ ðRk
ijnÞm�n for DM ek, where:

Rk
ijn ¼ mn ~rkij

� �
�lkDn ~rkij

� �
: (42)

• Step 9: combined the attribute weight vector wk ¼ wk
1;w

k
2; . . .; wk

n

� �T
, the

individual ranking value of non-membership function for alternative Ai given by
DM ek can be obtained as follows:

Zk
in ¼

Xn
j¼1

wk
j R

k
ijn: (43)

• Step 10: combined the DMs’ weight vector V¼ (v1, v2,…, vp)
T, the collective

comprehensive ranking value of non-membership function for alternative Ai is
calculated as follows:

Sin ¼
Xp
k¼1

vkZ
k
in i ¼ 1; 2; . . .; mð Þ: (44)

• Step 11: rank the alternatives with equal collective comprehensive ranking values
of membership function in terms of the descending order of Siν (i¼ 1, 2,…,m)
and then get the ranking order of all alternatives combining the ranking order
obtained in Step 8.

The flowchart for the above algorithm and process is depicted as in Figure 2.

4. An application to a stock selection problem and comparison analysis
In this section, a stock selection problem is analyzed and the comparison
analysis is also conducted to interpret the superiority of the proposed method of
this paper.

4.1 A stock selection problem and the analysis process
Assume that an investor desires to invest some stocks in Shanghai stock exchange.
He employed three experts (i.e. DMs) e1, e2 and e3 to help him to select the best
stock from the four stocks {A1, A2, A3, A4}. The three experts assess the four
stocks on the basis of five attributes, including profit ability C1, debt paying
ability C2, growth ability C3, market performance C4 and investment income C5.
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The evaluations of importance of experts e1, e2 and e3 are given in the form of
linguistic variables as “very important,” “important” and “medium,” respectively.
The relationship between linguistic variables and intuitionistic fuzzy values is
listed in Table I. After statistical processing, the assessment information of
each stock on attributes given by experts can be expressed as TIFNs shown in
Tables II-IV, respectively. For example, in the fourth row and the second column of
Table II, the TIFN (5, 6, 7); 0.6, 0.3) indicates that DM e1 believes that the profit
ability of stock A3 is between 5 and 7, the most possible value is 6. Meanwhile,
the maximum degree of membership for the most possible value 6 is 0.6, the minimum
degree of non-membership is 0.3, and the hesitancy degree is 0.1:

• Step 1: by using Equations (33) and (34), the fuzzy decision matrices of Tables II,
III and IV can be respectively normalized into the normalized decision matrixes
(omitted).

• Step 2: combined Table I and Equations (35), the weight vector of experts is
obtained as V¼ (0.3688, 0.3607, 0.2705)T.

Step 1: Normalize the decision 
matrix

Step 2: Determine the DMs’ weight
vector V Step 11: Rank the alternatives with

equal collective comprehensive
ranking values of membership
function in terms of Si�
(i =1, 2, ..., m) and then get the
ranking order of all alternatives
combining the ranking order
obtained in Step 8

Step 10: Calculate the collective
comprehensive ranking value of
non-membership function for
alternative Si� (i =1, 2, ..., m)

Step 9: Compute the individual
ranking value of non-membership
function for alternative Z k

i�

Step 8: Construct the ranking
matrix of non-membership function

No

Yes

Step 3: Compute the attribute weight
vector w k (k = 1, 2, ..., p)

Step 4: Construct the ranking matrix
of membership function R k

�
(k = 1, 2, ..., p)

Step 5: Obtain the individual ranking
value of membership function for
alternative Z k

i�

Step 6: Calculate the collective
comprehensive ranking value of
membership function for alternative
Si� (i =1, 2, ..., m)

Are all the
Si� (i =1, 2, ..., m) equal?

Step 7: Rank all alternatives according to the
descending order of Si� (i =1, 2, ..., m)

Figure 2.
Flowchart of
decision process
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• Step 3: taken w1¼w2¼w3¼w4¼ 0.25 in Equation (30) and adopted the entropy
method of Equations (36)-(38), the attribute weight vectors given by all experts
are respectively computed as follows:

w1 ¼ 0:191; 0:235; 0:247; 0:145; 0:182ð ÞT;

w2 ¼ 0:206; 0:13; 0:321; 0:165; 0:178ð ÞT

w3 ¼ 0:254; 0:113; 0:317; 0:165; 0:151ð ÞT:

• Step 4: the ranking matrix of membership function for each expert with different
preference parameters can be calculated according to Equation (39).

• Step 5: combined the attribute weight vector wk (k¼ 1, 2, 3), the corresponding
individual ranking values of all alternatives for each expert are obtained by
Equation (40), listed in Table V-VII, respectively.

• Step 6: combined the expert weight vector V¼ (0.3688, 0.3607, 0.2705)T, the
collective comprehensive ranking values of membership function for alternatives
are calculated by Equation (41). Some of them are listed in Table VIII, where λ is
risk preference parameter of expert group, defined as l ¼Pp

i¼1 vil.

Stocks C1 C2 C3 C4 C5

A1 ((5,5,6);0.8,0.2) ((1,2,2);0.6,0.2) ((5,7,8);0.7,0.1) ((5,5,6);0.8,0.1) ((0.5,0.7,0.9);0.6,0.2)
A2 ((8,8,9);0.6,0.1) ((4,5,6);0.6,0.4) ((5,6,7);0.6,0.3) ((4,5,5);0.7,0.2) ((4,5,5);0.7,0.2)
A3 ((5,6,7);0.6,0.3) ((2,2,3);0.7,0.2) ((6,6,7);0.6,0.2) ((6,6,7);0.6,0.3) ((0.5,0.5,0.6);0.4,0.5)
A4 ((8,9,9);0.7,0.2) ((3,4,5);0.6,0.2) ((3,4,4);0.8,0.1) ((7,8,8);0.7,0.2) ((6,8,9);0.6,0.3)

Table II.
The TIFN decision

matrix of DM e1

Stocks C1 C2 C3 C4 C5

A1 ((5,6,6);0.6,0.2) ((1,1,2);0.5,0.2) ((6,7,8);0.7,0.2) ((4,5,5);0.8,0.1) ((0.6,0.8,0.9);0.7,0.2)
A2 ((9,9,10);0.7,0.2) ((5,5,6);0.6,0.4) ((5,6,7);0.6,0.3) ((4,4,5);0.6,0.2) ((5,5,6);0.6,0.3)
A3 ((6,6,7);0.8,0.1) ((1,2,2);0.6,0.3) ((5,6,6);0.5,0.2) ((6,6,7);0.7,0.1) ((0.5,0.5,0.6);0.5,0.3)
A4 ((8,9,9);0.6,0.2) ((3,4,5);0.8,0.1) ((3,4,4);0.6,0.1) ((7,8,9);0.7,0.2) ((7,8,9);0.6,0.2)

Table III.
The TIFN decision

matrix of DM e2

Stocks C1 C2 C3 C4 C5

A1 ((5,5,6);0.7,0.2) ((1,2,2);0.6,0.2) ((5,7,9);0.8,0.1) ((4,4,5);0.7,0.2) ((0.4,0.6,0.9);0.6,0.2)
A2 ((8,9,10);0.5,0.3) ((4,6,7);0.6,0.4) ((5,6,7);0.6,0.3) ((4,5,5);0.7,0.2) ((4,5,6);0.7,0.2)
A3 ((5,6,7);0.6,0.2) ((2,2,3);0.5,0.4) ((6,6,7);0.6,0.2) ((6,6,7);0.6,0.3) ((0.4,0.4,0.5);0.6,0.3)
A4 ((8,9,10);0.7,0.3) ((3,4,5);0.8,0.1) ((6,7,8);0.7,0.1) ((7,8,9);0.6,0.2) ((6,8,9);0.6,0.3)

Table IV.
The TIFN decision

matrix of DM e3
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It is easily seen from Tables V-VII that the ranking order of alternatives may be
changed when the preference of DM changes. Table VIII shows when the group risk
preference parameter λo0.6335, the ranking order for the group is A4≻A2≻A1≻A3
(where the symbol “≻” means “prefer to”); when the group risk preference parameter
λ⩾ 0.6335, the ranking order for the group is A4≻A2≻A3≻A1. To ensure λ⩾ 0.6335, the
three experts must preference certainty at the same time, or two experts extremely
abhor risk, i.e., their risk preference parameters are very large and close to 1.

4.2 Comparison analysis with the method (14)
Wan and Dong (2014) proposed the MAGDM method with known weights of experts.
Employing the method (Wan and Dong, 2014) to solve the above stock selection
example, we can obtain the computation results listed in Table IX.

It is easily seen from Table IX that the ranking orders of alternatives obtained by
the method (Wan and Dong, 2014) are diverse for different weights of experts, which
shows that artificially given the weights of experts cannot effectively avoid the
subjective randomness. Moreover, these ranking orders obtained by the method
(Wan and Dong, 2014) are also different from that obtained by this paper.
The comparisons of ranking orders between both methods are depicted in Figure 3.
This paper calculates the weights of experts on the basis of the voting model of IFSs,
which not only has intuition explanation but also incorporates the linguistic
information on the importance of DMs.

Stocks λ1¼ 0 λ1¼ 0.1 λ1¼ 0.2 λ1¼ 0.3 λ1¼ 0.4 λ1¼ 0.5 λ1¼ 0.6 λ1¼ 0.7 λ1¼ 0.8 λ1¼ 0.9 λ1¼ 1

A1 0.199 0.194 0.189 0.184 0.179 0.174 0.169 0.164 0.159 0.154 0.149
A2 0.378 0.374 0.369 0.364 0.359 0.355 0.35 0.345 0.34 0.335 0.331
A3 0.208 0.204 0.201 0.197 0.193 0.19 0.186 0.182 0.179 0.175 0.171
A4 0.437 0.433 0.428 0.423 0.418 0.413 0.408 0.404 0.399 0.394 0.389

Table V.
The individual
ranking value of
membership function
given by DM e1 with
different preference
parameters

Stocks λ2¼ 0 λ2¼ 0.1 λ2¼ 0.2 λ2¼ 0.3 λ2¼ 0.4 λ2¼ 0.5 λ2¼ 0.6 λ2¼ 0.7 λ2¼ 0.8 λ2¼ 0.9 λ2¼ 1

A1 0.229 0.225 0.221 0.217 0.213 0.209 0.205 0.201 0.197 0.193 0.189
A2 0.363 0.359 0.355 0.351 0.347 0.343 0.339 0.335 0.331 0.327 0.323
A3 0.193 0.19 0.187 0.185 0.182 0.179 0.177 0.174 0.171 0.168 0.166
A4 0.376 0.371 0.367 0.363 0.358 0.354 0.349 0.345 0.341 0.336 0.332

Table VI.
The individual
ranking value of
membership function
given by DM e2 with
different preference
parameters

Stocks λ3¼ 0 λ3¼ 0.1 λ3¼ 0.2 λ3¼ 0.3 λ3¼ 0.4 λ3¼ 0.5 λ3¼ 0.6 λ3¼ 0.7 λ3¼ 0.8 λ3¼ 0.9 λ3¼ 1

A1 0.148 0.141 0.133 0.125 0.118 0.11 0.102 0.095 0.087 0.079 0.072
A2 0.28 0.274 0.268 0.262 0.256 0.249 0.243 0.237 0.231 0.225 0.219
A3 0.14 0.136 0.133 0.129 0.125 0.122 0.118 0.114 0.111 0.107 0.103
A4 0.456 0.449 0.442 0.435 0.428 0.421 0.414 0.407 0.4 0.393 0.386

Table VII.
The individual
ranking value of
membership function
given by DM e3 with
different preference
parameters
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4.3 Comparison analysis with the triangular fuzzy number MAGDM
For the TIFNs in Tables II-IV, suppose that all maximum membership degrees and
minimum non-membership degrees are equal to 1 and 0, respectively, then all TIFNs
are degenerated into triangular fuzzy number. Thus, the above stock selection problem
is degenerated to the MAGDM problem with triangular fuzzy numbers.

λ1 λ2 λ3 S1μ S2μ S3μ S4μ λ Ranking order

0 0 0 0.1958 0.3461 0.1841 0.4202 0 A4≻A2≻A1≻A3
0.1 0.2 0.2 0.1870 0.3382 0.1788 0.4115 0.16335 A4≻A2≻A1≻A3
0 0 1 0.1751 0.3298 0.1741 0.4013 0.2715 A4≻A2≻A1≻A3
0.3 0.3 0.4 0.1778 0.3299 0.1731 0.4025 0.32715 A4≻A2≻A1≻A3
0.3 0.4 0.5 0.1743 0.3268 0.1712 0.3991 0.3905 A4≻A2≻A1≻A3
0.4 0.4 0.5 0.1725 0.3251 0.1698 0.3973 0.42715 A4≻A2≻A1≻A3
0.5 0.9 0 0.135 0.25 0.132 0.275 0.47295 A4≻A2≻A1≻A3
0.5 0.5 0.5 0.1693 0.3219 0.1675 0.3939 0.5 A4≻A2≻A1≻A3
0.5 0.5 0.6 0.1672 0.3202 0.1665 0.3920 0.52715 A4≻A2≻A1≻A3
0.5 0.6 0.6 0.1658 0.3188 0.1655 0.3904 0.56335 A4≻A2≻A1≻A3
0 1 1 0.1589 0.3137 0.1625 0.3844 0.6335 A4≻A2≻A3≻A1
0.6 0.7 0.8 0.1584 0.3123 0.1612 0.3833 0.6905 A4≻A2≻A3≻A1
0.5 1 1 0.1518 0.3065 0.1577 0.3765 0.81675 A4≻A2≻A3≻A1
0.9 0.9 1 0.1460 0.3009 0.1532 0.3709 0.92715 A4≻A2≻A3≻A1
1 1 1 0.1427 0.2977 0.1508 0.3676 1 A4≻A2≻A3≻A1

Table VIII.
The collective
comprehensive

values of
membership function

of all alternatives
with different

preference
parameters

Expert
weight vector Ranking indices Ranking orders

V ¼ 1
3;

1
3;

1
3

� �T Rm ~a1ð Þ ¼ 0:0321;Rm ~a2ð Þ ¼ 0:1872;Rm ~a3ð Þ ¼ 0:2673;Rm ~a4ð Þ ¼ 0:1108 A3≻A4≻A2≻A1

V ¼ 1
4;

2
4;

1
4

� �T Rm ~a1ð Þ ¼ 0:5389;Rm ~a2ð Þ ¼ 0:2221;Rm ~a3ð Þ ¼ 0:0917;Rm ~a4ð Þ ¼ 0:1176 A1≻A2≻A4≻A3

V ¼ 2
5;

1
5;

2
5

� �T Rm ~a1ð Þ ¼ 0:3347;Rm ~a2ð Þ ¼ 0:1443;Rm ~a3ð Þ ¼ 0:2456;Rm ~a4ð Þ ¼ 0:0661 A1≻A3≻A2≻A4

Source: Wan and Dong (2014)

Table IX.
The computation
results using the

method for different
weights of experts

Order
positions

1

2

3

4

Alternatives

This paper’s method with �=1

This paper’s method with �= 0 or 0.5

a1 a3 a4a2

The method (14) with V= 
3 3 3( 1,1,1)T

The method (14) with V= )T
4 4 4( 1,2,1

The method (14) with V= )T
5 5 5( 2,1,2

Figure 3.
Comparisons of
ranking orders

between the
method (14) and this

paper’s method
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Now we use the method (Vahdani et al., 2011) to solve this problem. Assume that each
expert gave the attribute weights in the form of linguistic variables, shown in Table X,
where VH, H , MH and M correspond to “very high,” “high,” “medium high,” and
“medium,” respectively. According to the corresponding relation between linguistic
variable and triangular fuzzy number in the method (Vahdani et al., 2011), the attribute
weight vector can be computed as w¼ (0.811, 0.5, 0.744, 0.633, 0.8667)T. Using the
method (Vahdani et al., 2011), the collective comprehensive attribute values
CIi (i¼ 1, 2, 3, 4) of stocks are obtained as in Table XI.

Therefore, the ranking order of stocks obtained by the method (Vahdani et al., 2011)
is A4≻A2≻A3≻A1, which is only accordance with that obtained by this paper when the
expert group are relatively pessimistic (λ⩾ 0.6335). This indicates that the maximum
membership degrees and minimum non-membership degrees in TIFNs play a very
important role in decision-making process indeed (Shu et al., 2006; Li, 2010; Li et al.,
2010; Nan et al., 2010; Wan et al., 2013a, b; Wan and Li, 2013; Wan and Dong, 2014;
Wang et al., 2013). TIFN has stronger ability to express uncertainty than triangular
fuzzy number, and can exquisitely depict the hesitation degree inherent in the
judgment of DMs. Compared with the method (Vahdani et al., 2011), the method of this
paper has the following advantages:

(1) This paper sufficiently considers the different risk preference of different DMs,
which makes the decision results more consistent with the actual situation,
while the method (Vahdani et al., 2011) did not consider the DM’s risk preference
(namely it assumes that all DMs are risk neutral).

(2) This paper proposes the method to determine the weights of experts on the
basis of IFS voting model, whereas the method (Vahdani et al., 2011) just
adapted simple arithmetic average to integrate the individual overall attribute
values of alternatives. That is to say, the method (Vahdani et al., 2011) assumed
that different experts have equal weights.

(3) According to the decision matrix information, this paper determines the
attribute weights by the entropy of distance matrix, while the method (Vahdani
et al., 2011) utilized the corresponding relation between linguistic variable and
triangular fuzzy number to give the attribute weights. Hence, the method of this
paper is relatively more objective than the method (Vahdani et al., 2011).

Attributes C1 C2 C3 C4 C5

e1 VH MH MH H VH
e2 H H VH H VH
e3 VH M VH MH VH

Table X.
The linguistic
variables for the
attribute weights

Stocks ħi ℑi CI i ¼ ħiþℑi Ranking

A1 64.92477 6.582111 71.50688 4
A2 1.351702 2.744491 4.096193 2
A3 7.018011 4.081676 11.09969 3
A4 1.369119 2.580865 3.949984 1

Table XI.
Collective
comprehensive
attribute values
of stocks
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4.4 Comparison analysis with the TIFN MADM
When the decision group merely contains one DM, the MAGDM problems studied in
this paper degenerate to MADM problems with TIFNs. Nevertheless, the proposed
method of this paper can also be used to solve MADM problems studied in (Li, 2010;
Li et al., 2010). Li (2010) proposed the ratio ranking method to solve the MADM problems
with TIFNs. In this Subsection, we use the proposed method of this paper to solve the
personnel selection problem of Li (2010). The ranking values of membership function of
alternatives are obtained respectively as: S1μ¼ 0.356− 0.09λ, S2μ¼ 0.499− 0.064λ,
S3μ¼ 0.442− 0.11λ.

Thus, the ranking order of the three candidates obtained by this paper is generated
as A2≻A3≻A1 for λ∈ [0, 1].

Li (2010) obtained the ratios of the value index to the ambiguity index for the
alternatives as: Rð ~S 1; lÞ ¼ 0.4321, Rð ~S 2; lÞ ¼ ð0:3588þ0:0897lÞ=ð1:0385�0:0077lÞ,
Rð ~S 3; lÞ ¼ ð0:417þ0:2502lÞ=ð1:0808�0:0303lÞ. The ranking order of the three
candidates obtained by Li (2010) is generated as follows: A1≻A3≻A2 if λ∈ (0.1899, 1);
A3≻A1≻A2 if λ∈ (0.1899, 0.9667), and A3≻A2≻A1 if λ∈ (0.9667, 1).

Obviously, the ranking orders of the three candidates obtained by Li (2010) and this
paper are remarkably different. The main reason is that this paper objectively
determines the attribute weights by the entropy of distance matrix, while Li (2010)
artificially gave the attribute weights in advance and did not consider the determining
method of the attribute weights. Giving different attribute weights maybe result in
different ranking orders. Hence, the method of this paper is more objective than the
method (Li, 2010).

Moreover, the ratio for alternative A1, Rð ~S 1; lÞ ¼ 0.4321, is a constant and not
influenced by the attitude parameter λ, which is not consistent with the motivation of
introducing the attitude parameter λ by Li (2010). In addition, Li (2010) gave the
ranking order according to the single index, i.e., the ratio of the value index to the
ambiguity index, whereas this paper gives the ranking order according to two indexes,
i.e., the ranking values of membership and non-membership functions. Therefore, the
distinguishing power of this paper is stronger than that of Li (2010). For example,
if λ¼ 0.9668, then Rð ~S 1; lÞ ¼ Rð ~S 2; lÞ, the method Li (2010) can not further distinguish
between the alternatives A1 and A2. Whereas, if S1μ¼ S2μ, then we can further rank the
alternatives A1 and A2 according to S1ν and S2ν.

5. Conclusion
This paper developed a new method to rank the TIFNs on the basis of the weighted
possibility mean and standard deviation, and defined the weighted Minkowski distance
for TIFNs by using the weighted lower and upper possibility means of TIFNs. A new
decision method was then proposed for solving the MAGDM problems with TIFNs.
In this method, the expert weights were given in the form of linguistic variables, which
were determined through the IFS voting model, and the attribute weights were
objectively derived according to the information entropy of the weighted Minkowski
distance matrix. The ranking order of alternatives is generated by the collective
comprehensive ranking values of membership and non-membership functions. The
notable characteristic of the proposed MAGDM method is to sufficiently consider the
different risk preferences of different DMs, which can make the decision results more
reasonable and consistent with the reality.

Although the developed method in this paper was illustrated with a stock selection
problem, it is expected to be applicable to the group decision-making problems in many
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areas, such as the supplier management, water environment assessment, threat
evaluation and missile weapon system selection, and warship combat plan evaluation.
The possibility covariance and correlation coefficient are also the important
mathematical characteristics of TIFNs, which will be employed to MAGDM with
TIFNs in the near future. Additionally, inspired by literature (Merigó and Casanovas,
2011a, b; Zeng, 2013; Merigó, 2013), the Minkowski OWA distance, the induced
Minkowski OWA distance, the Hamming OWA distance and the induced Hamming
OWA distance of TIFNs will be investigated for future research.
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