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Decentralization and
heterogeneity in complex

adaptive systems
Diego Gonzalez-Rodriguez and Jose Rodolfo Hernandez-Carrion
Group of Economics and Complexity, University of Valencia, Valencia, Spain

Abstract
Purpose – Following a bacterial-based modeling approach, the authors want to model and analyze
the impact of both decentralization and heterogeneity on group behavior and collective learning.
The paper aims to discuss these issues.
Design/methodology/approach – Inspired by bacterial conjugation, the authors have defined an
artificial society in which agents’ strategies adapt to changes in resources location, allowing migration,
and survival in a dynamic sugarscape-like scenario. To study the impact of these variables the authors
have simulated a scenario in which resources are limited and localized. The authors also have defined
three constraints in genetic information processing (inhibition of plasmid conjugation, inhibition of
plasmid reproduction and inhibition of plasmid mutation).
Findings – The results affirmed the hypothesis that efficiency of group adaptation to dynamic
environments is better when societies are varied and distributed than when they are homogeneous and
centralized.
Originality/value –The authors have demonstrated that in a model based on free interactions among
autonomous agents, optimal results emerge by incrementing heterogeneity levels and decentralization
of communication structures, leading to a global adaptation of the system. This organic approach to
model peer-to-peer dynamics in complex adaptive systems (CAS) is what the authors have named
“bacterial-based algorithms” because agents exchange strategic information in the same way that
bacteria use conjugation and share genome.
Keywords Information theory, Adaptation, Emergence, Autopoiesis, Social systems,
Intelligent agents
Paper type Research paper

1. Introduction
In this paper we shall introduce an agent-based approach inspired by bacterial
conjugation to model resilience in artificial societies. Even though similar approaches
have been previously reported, such as OBBC (Muller et al., 2002) or BEA (Nemiche
et al., 2013), we have developed a proof-of-concept inspired by bacterial conjugation
that allows us to show how, in artificial societies based on interactions between agents
with bounded rationality, better results emerge by incrementing heterogeneity levels
and decentralization of communication structures (Heylighen, 1999). We consider
bounded rationality in the sense of Simon (1991), i.e., the rationality of social agents,
as a solution-search-oriented process, is limited by information in a cognitive sense.
Therefore, decisions are constraint by information access and information processing.
The paper also builds on the concept of bacterial-based algorithms as it was developed
by Gonzalez-Rodriguez and Hernandez-Carrion (2014).

Bacterial conjugation is a distributed communication system used by bacteria to
exchange strategies of survival implemented on genetic code (Thomas and Nielsen, 2005;
Davison, 1999). It matches the kind of dynamics we want to model because of several
reasons. First of all, we conceive both natural and artificial societies as CAS (Lansing, 2003)
which evolution depends on the interactions of autonomous agents. Second, we sustain that
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collective adaptation is related to decentralized communications (Baran, 1964; Givigi and
Schwartz, 2014), with information exchanges by using peer-to-peer (P2P) networks to
share codified blocks of information. Third, because even though communication and
P2P dynamics play an important role, also heterogeneity in population, and variation of
strategies are factors of evolution. These issues can be considered to develop new technical
approaches, not only in bio-inspired mobile robotics (Nurzaman et al., 2012) but also in
systems oriented to swarm intelligence (Pini et al., 2013).

In this paper we show how decentralization and heterogeneity play an important
role on group adaptation, above all in dynamic environments with unpredictable
changes. We have modeled an artificial society by using our bacterial-based approach
in order to study how agents’ strategies adapt to changes in resource location, allowing
migration, and survival in dynamic “sugarscape-like” scenarios (Duffy et al., 1998).

2. Description of the model
2.1 Agents
Following a bacterial-based modeling approach, we want to simulate and analyze the
impact of both decentralization and heterogeneity on group adaptation. Our approach is
inspired by bacterial conjugation and may be classified under the methodological
paradigm of agent-based modeling. In agent-based modeling (Izquierdo et al., 2008),
agents with bounded rationality interact in a common environment, guided by local rules,
leading to CAS that are named “artificial societies” (Duffy et al., 1998; Nemiche et al.,
2013). These virtual representations of biological communities grow from the bottom up
in computational environments and can be used as laboratories to test some hypotheses.

In this model, we have a set A with N agents (ai). Each agent owns a genome
(Mitchell, 1998) with a specific strategy (si) that determines its motor behavior. We
conceive homeostasis as Cannon (1940) as the self-regulation of a system in order to
keep the stability of its internal variables. In our model, homeostasis is related with
agent behavior and metabolism. Agents try to survive by keeping their level of energy
higher than Emin by following their own genetic rules in order to find resources
(Figure 1). We have fixed the value of Emin at 1.89 k (energy units) and the initial energy
of each agent at 197.5 k to normalize the behavior of the agents and track the evolution
of the system with a single processor machine.

Agents with more successful genome will keep higher energy levels and will
dominate the “cultural life” of society because the information of their genes will be
propagated. Energy levels impact on:

(1) Vertical propagation of genetic information by reproduction.

Any iteration of simulation (t), agents consume energy as a consequence of their
metabolism; the rate of energy consumption can be modified but we have fixed its value
at 20 k/t for most of the simulations. Agents whose energy levels decrease, becoming
lower than Emin will eventually die. Agents with more energy than Emax (215.48 k) are
able to reproduce, yielding a new agent with similar genes that preserve successful
strategies. Reproduction implies an energy cost (Rcost) initially fixed to 17.5 k according
to our model normalization:

(2) Horizontal propagation of genetic information by conjugation.

The success of genes will be evaluated in relation to the success of motor behavior in
location of resources, i.e., agent skills to find resources and keep high energy levels.
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Then genome will affect agents’ position in social structure. At each interaction (t),
agents move randomly in the discrete space, following an Euclidean neighborhood
model, i.e., with a probability space of four possible positions. In this shared medium,
when two agents (aa, ab) have the same coordinates (x, y) they compare their energy
levels. The agent with more energy (ab) is allowed by default to propagate its genome
horizontally by using conjugation. Otherwise, if conjugative machinery to send
plasmids is inhibited in ab, it does not share any genomic information and aa does not
“learn” any new strategy. In this case we will say that ab configuration inhibits plasmid
conjugation.

Even when the owner of a successful strategy (ab) allows an agent with lower energy
(aa) to get a copy of that genome and then improve its strategy, ab also can impose two
restriction policies to that copy:

(1) Inhibit plasmid reproduction: the receiver of a plasmid (aa) is allowed to use the
strategy that is contained in the copy but this copy cannot be sent to others once
it is received. In this case the owner of the original plasmid (ab) is the only one
that can share his strategy.

(2) Inhibit plasmid mutation: the receiver (aa) can use the strategy but he cannot
modify it. Genome only can be used as a unit of privative software or as a
behavioral dogma, following the exact strategy proposed by the first owner (ab).
Otherwise, if mutation is not inhibited, strategies may be modified or mixed
with other ones by the receiver (aa) depending of two parameters: mutation rate
(Rm) and recombination rate (RR).

2.2 Agent genome
Agent genome is a data structure with 13 information blocks: three inhibitor genes with
Boolean values (IGP, IGR, IGO) and ten strategic genes (SGA, SGB, SGC, SGD, SGE,
SGF, SGG, SGH, SGI, SGJ) with real values between 0 and 360.

In our model, each agent (ai) of the set A has its own strategy (si) coded as a part
of its genome. This strategy is produced by the conjunction of strategic genes and

Notes: Agents’ colors depend on  energy levels. Red means that agent’s energy is lower than
107.74 k (50 percent of Emax), green implies more than 150.84 k (70 percent of Emax) and
blue represents energy levels between both values. Black squares mean that at that location
there are not resources. Gray squares vary their white component depending on resources
available; the darker it is, the lower energy it offers. On the right, two agents with the same
coordinates exchange a plasmid with genetic information

Figure 1.
Heterogeneous
community of agents
struggling for
survival
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motor actuators. Considering a set “Str” containing several strategies (si), its cardinality
|Str| (number of different strategies in the population) will be equal or bigger than unity
and equal or smaller than cardinality of A. We will denote it as:

8aiAA ( siAStr (1)

1p Strj jp Aj j
If by default the value of |Str| is one we will be starting our simulation in a completely
homogeneous society. If this value is near to |A| we will be analyzing a heterogeneous
society. We will take the second option by default in our experiments.

Each agent has a genome with a segment containing one coded strategy (SGAi,
SGBi, SGCi, SGDi, SGEi, SGFi, SGGi, SGHi, SGIi, SGJi) of the set “Str.” But genome also
contains three Boolean variables (IGP, IGR, IGO) whose positive activation will produce
the expression of three inhibitors (P, R, O). These inhibitors are related with the three
constraints explained above:

(1) inhibit original plasmid conjugation (P);

(2) inhibit plasmid copy reproduction (R); and

(3) inhibit plasmid code mutation (O).

If there is P then the genome will not be released by conjugation, that is, that strategy
will be private. So only the absence of P enables the first owner of the genome to act as
a donor; that is, to send a copy of genome as a plasmid to another agent by using
conjugation. If the possibility of P is high, then society will follow a centralized
paradigm; that is, just some nodes will be able to send information. P implies that
original genome will never be copied and sent to anybody else. Then, strategies of
nodes without P and a successful strategy coded on S will dominate the culture.

If there is R this means that the receivers of a copy of a genome are not allowed to
resend the replicated plasmid to another agent. It avoids decentralized propagation of
strategies, considering that the original owners of a genome are the only ones that can
distribute copies. High possibility of R implies a constraint to diffusion of received
strategies, because the receiver will be able to use the successful strategy but will not be
allowed to share that genetic information with others.

Decentralization is inversely related with these two parameters. High P and R rates
imply centralized societies without P2P communication and without plasmid
reproduction rights. Oppositely, low P and R rates lead to P2P exchanges of information
without limits of copies.

During a conjugation process, when one agent sends a plasmid to another, the
si sequence (which contains a copy of the strategy of the donor) could be modified.
This means that mutation of any strategy is allowed by default. But mutation can
be inhibited if O is present in the genome. O sequence implies that a plasmid cannot be
modified. So only low levels of O presence lead to an open society in which variation of
bad strategies in short time is guarantee. However, high presence of O in the population
genome implies that strategies are closed and invariant. So once an agent follows a
specific strategy he cannot change it until he receives another genome from a more
successful agent. Differentiation of strategies is another important variable in this
model. Cardinality of “Str” is related with the number of different strategies by default,
so if |Str| is near to |A| and there is a low presence of O segments in population genome
then it implies more heterogeneity.
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2.3 Resources
In order to study the impact of these three constraints (inhibition of plasmid
conjugation, plasmid reproduction and plasmid mutation) in group adaptation to
dynamic environments, we have designed a community of agents with |Str|¼ |A|.

We have supposed a scenario in which resources are limited and localized. Then,
there are spatial locations where life is easier and places where survival is impossible
without migration. Even though resources can be produced again after they have been
eaten, the environment sustainability depends of the number of agents that consume
them. That is, if there is a place rich in resources then agents with access to it will
increase their energy, will reproduce and will produce a consumption overload
(Figure 2). But once a threshold is achieved, some of them will die because there would
be more consumption than production. That is, the chaotic dynamics will fall in an
attractor that will define the state of balance of the ecosystem.

During the evolution of the system, agents with a close location to resources will
appear, producing sedentary communities. There will also be communities of nomads
(nomadic groups), that is, groups of agents that will move only periodically to areas
with resources in order to increase their energy before exploring other regions.

If the environment is static we can infer that being sedentary will be a good strategy
once an agent arrives to an area with enough resources. We can think then that nomad
behavior is useless, or even dangerous. In general, nomads have lower energy levels
than sedentary agents because they spend more time distant than close to resources.
In this sense, even though if one nomad eventually met a sedentary agent when it was
visiting the rich area, the sedentary one will never copy its strategy after comparing
both energy levels. If the environment is dynamic, however, nomad strategies are very
useful for the species. If the location of resources changes drastically, only nomads will
be able to achieve new resources, increasing their energy levels while sedentary levels
decrease. In that case, some old sedentary communities will copy nomads’ genomic
strategies moving through new rich areas. Some of them will adapt to sedentary
strategies again but in the new place (Figure 3).

3. Experimental results
Every initial configuration leads to a state of balance at one point of the simulation.
However, the fitness of the system is greater if we remove some constraints, leading to
a state of balance with a bigger population in the ecosystem. In that sense, we have
studied how different configurations lead to different scenarios, and how in dynamic
environments, fitness is improved with heterogeneous and decentralized societies.
Furthermore, we have observed how intelligent behavior may emerge from social
exchanges even when individual cognition is bounded.

The focus of this study is to determine how probabilistic distribution of Boolean genes
(P, R, O) affects social adaptation to dynamic environments with changes in resources
location. We have fixed |Str| ~ |A| and the recombination to 0.5, when mutation occurs.
For any of those |Z|3 setup configurations, we have executed our model for 5× 103

iterations. Repeating each one of these experiments with random configurations and 103

agents as an initial population, we have observed common patterns that are related with
P, R and O presence in population genome. We have tested the emergence of different
global configurations and states of balance, concluding that both heterogeneity and
decentralization are important to group adaptation and development. We have realized
also that heterogeneity (Figures 4 and 5) has a small impact on global performance
compared to decentralization (Figures 6 and 7). If we compare global results of
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homogeneous societies (average: 384, max: 1,130, min: 190) with heterogeneous ones
(average: 407, max: 1,161, min: 244), the latter are fitter for survival. Maximum differences
are depreciable because they are achieved during the consumption overload phase, but
difference in minimum is something to consider, because it can lead to population
extinction as it happened in one experiment with a homogeneous society. If we compare
centralized societies (average: 296, max: 1,055, min: 164) and decentralized ones (average:
495, max: 1,261, min: 223) the difference is notable. P and R absence in population genome
implies a huge improvement in the fitness of population, showing the impact of
decentralization on group adaptation to dynamic environments. We have used Netlogo
5.0.4 (Lytinen and Railsback, 2012; Netlogo, 2009; Robertson, 2005) the Raytracing
extension (Stonedahl and Duan, 2011) to implement and visualize our model.
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4. Conclusions
The bacterial-based approach described in this paper extends agent-based modeling in
order to study of complex social dynamics in artificial societies. Inspired by microbial
adaptation and conjugation of DNA plasmids, the computational model we have
designed simulates how CAS may adapt to dynamic environments.

We have codified motor behavior in strategic genomes that can be shared by owners,
reproduced by receivers, mutated and mixed. Finally, we have seen how constraints like
centralization or homogeneity reduce global fitness. Based on our results, we can infer
that O, R and P absence benefits collective adaptation to dynamic environments. Thus,
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we can conclude that in a basic model with scarcity of information, a CAS could achieve
its best configuration by increasing decentralization and heterogeneity while keeping the
minimum degree of similarity between nodes and the minimum presence of hubs
(Barabási and Oltvai, 2004). Therefore, if we focus on adaptability, the increase of these
two variables is positive for the system, at least if their context is dynamic or modified by
regular changes (i.e. variability of resource location).

We have come to the conclusion that even though both variables impact group
adaptation, decentralization has greater influence. In considering social systems as a
subset of CAS, even when a society is homogeneous, creative solutions can evolve and
improve collective intelligence. However, this development and its impact on group
adaptation and global development can only be achieved by means of P2P dynamics
without central control. That is, decentralization is the key in systemic adaptation.
According to Sawyer (2005), Mitchell (2009) or Heylighen (2004), there is not an
analytical framework more convenient than the CAS paradigm to study social systems.
The need of a systemic perspective with a focus on the complexity of social systems
was already proposed by Hernández-Carrión (2000), appealing to a context of growing
globalization.

These simulations of artificial societies are helpful to justify P2P social dynamics as
a positive configuration for social development, as presented by Bauwens (2005),
or more recently by Gonzalez-Rodriguez and Kostakis (2015). In conclusion,
decentralization and heterogeneity can serve as key elements in understanding an
upcoming P2P society, a paradigm in which agent adaptation to dynamic
environments shall require the aforementioned properties rather than centralization,
closeness and homogeneity. In the future, societies with high degrees of
decentralization and heterogeneity will be better able to successfully deal with
new challenges.
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