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 1

FORMALISM FOR DISCRETE MULTIDIMENSIONAL 

DYNAMIC SYSTEMS

 

 

1. Introduction 

Some real-life situations are difficult to be modelled using continuous formalisms; they are essentially 

discrete. On the other hand, some space-time systems need to consider other dimensions. In this paper we 

introduce a new formalism named as Discrete Multidimensional Dynamic System (DMDS). 

 

The DMDS is useful to model discrete multidimensional systems, i.e., those systems whose state varia-

bles depend on a set of independent variables that can include time, space variables, or other determined 

ones. For instance, if we study the human population pyramid of a country, the state variable will be the 

country population and the independent variables will be time (evolution) and age (pyramid). In this case, 

“multidimensional” means “time and age”. Another example could be the study of the different species 

population dynamics of an ecosystem.  In this case, the state variables are the different species popula-

tions and the independent variables are time (evolution), longitude, latitude and height (space variables). 

In this case, “multidimensional” means “time, longitude, latitude and height”. In addition, the DMDS also 

states the rigorous definition of state variables and their relationships with the other variables that arise in 

the formalism, i.e., auxiliary variables and input variables. 

 

The roots of the DMDS must be sought  in the formalism provided  by Caselles (1994) as a General Sys-

tem Theory. This formalism defines rigorously the state, auxiliary and input variables concepts, as well as 

their general relationships. Based on Caselles’ formalism, the Space-Time Dynamic System (STDS), 

proposed by Micó and Caselles (1998), is a first attempt to construct models with discrete space-time 

variation. In fact, a continuous version of the STDS, given for a set of integro-differential equations, was 

provided by Micó et al. (2008). The DMDS generalises both formalisms, the STDS and its cited continu-

ous version, based on the system formalism stated by Caselles (1994). 
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 2

The DMDS allows the user to describe the space variation of the state-variables at the same level as time 

variation and any other possible change-variable and it provides a way to construct concrete models, 

suitable to solve problems involving time evolution and space distribution of state-variables. For instance, 

space distribution of population per cohorts (understood “cohort” as “age interval”) in a city and its time 

evolution, or time evolution and space distribution of species belonging to an ecological system.  

 

There are two classical kinds of formal models that introduce the space distribution of the state-variables 

to describe the dynamics of a system: the reaction-diffusion model  (Nicolis and Prigogine, 1977), that is 

typical for open chemical systems, and the cellular-automata model (Wolfram, 1994) that tries to repre-

sent the states of a system that is distributed inside a set of cells which have a dependence on the neigh-

bour ones. These two models will be explained with more details in Section 3 and compared (formally) 

with the DMDS. Such comparison demonstrates its compatibility and produces an increase in generality 

in the DMDS with respect to the other two models, widening the scope of application. Note that the 

DMDS is a hypothetic-deductive approach. Inductive approaches are based on Statistics and Probability 

theories and are out of the scope of this work (see for instance Higdon (2002), De Cesare et al. (2001 and 

2002) and De Iaco et al. (2002)). 

 

We will apply the DMDS to study the evolution of the population density of an urban system distributed 

per cohorts and districts. Therefore, there are some problems to deal with: to set up the initial conditions, 

to validate the model and to present the forecasts provided by the model. Some possible solutions to these 

problems are detailed in the context of a real case related to the city of Valencia (an important city located 

in the east of Spain, with approximately 850000 inhabitants). Concretely, the DMDS model has been 

obtained and validated using data from this city. The evolution of its population density per cohorts and 

districts under three possible scenarios is forecast with the DMDS model. 

 

The rest of the paper is organized as follows. In order to make the paper self-contained, Section 2 gives 

some previous definitions, resumes the principal steps needed for the STDS applied in Micó and Caselles 

(1998), and ends with the definition of the DMDS. Section 3 describes two known approaches for space-

time dynamic systems, the reaction-diffusion model (RD) and the cellular automata model (AC), as well 

as their respective rewriting in terms of DMDS. Section 4 presents the steps needed to build a DMDS. 
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 3

Section 5 shows an application case by simulating an urban system. Finally, Section 6 is devoted to dis-

cussion and presentation of possible future work. 

 

2. Previous definitions and Space-Time Dynamical Systems 

For a better understanding of our proposal in relation to previous approaches, some definitions are 

provided (see Caselles 1993 and 1995 for more formalism details): 

• Input-variable: variable that influences other variables and no other variable influences it. 

• Output-variable: variable receiving influences of other variables. 

• Memory-variable: variable storing a past value of another variable. 

• State-variable: variable that needs a past value of itself to be calculated. 

 

Definition 1. Change-variables, change-vector and change-space (Micó et al, 2008). 

A variable is a change-variable if the state-variables depend on it. We will denote a change variable by

.,,2,1,0, mix i K= Then )( iii xRgXx =∈ where )( ixRg  is the range of ix  that, generally, is a subset 

of the real-number set. This concept is equivalent to the concept of “support” used by Klir (1985). 

As a consequence, a change-vector is: 
1

10 ),...,,( +⊆∈= m
m RDxxxr

r
, where mXXXD ×××= L10 is 

the change-space.  

 

Definition 2. Accessibility domain for change-vectors (Micó et al, 2008). 

Given a STDS, the change space D and a vector Dr ∈
r

, we define the accessibility domain of r
r

 as the 

subset of vectors Dr ∈′
r

 such that there exists at least a state-variable 
0i

V with )(
0
rV i
r  depending on r ′

r
 

explicitly or implicitly through state or input-variables. The accessibility domain for r
r

 will be denoted 

as )(rAD
r

. 

 

Given Dr ∈
r

 and mix i ,,1,0, K= a component of r
r

, the accessibility domain for this compo-

nent is defined in a similar way, as )}(},...,,{:{)( 10 rADxxxrxrxAD mii

rrr
∈′′′=′′= . 
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 4

Observe that if a value of the time variable, tx0 = is considered, its accessibility domain must be in-

cluded, by definition, in the set }:{ 0 ttXTt ≤′=∈′  because dependencies between variables cannot 

exist in later time instants than those being calculated.  

 

Next, we resume the principal steps needed for the Space Time Dynamical Systems (STDS) applied in 

(Micó and Caselles, 1998): 

 

Step 1.   Assume that the system has a space support with volume V. Such space support is divided into M 

cubes or cells, which represent important space parts in the system, for instance, districts in cities, re-

gions in countries, etc. These cubes can be distributed in three dimensions such as longitude, latitude 

and height. These cells or space parts of the system are numbered with a set of three integer indexes: 

),,( rqp  where { }Pp ,,2,1 K∈ ; { }Qq ,,2,1 K∈ ; { }Rr ,,2,1 K∈ ;and RQPM ⋅⋅= . Thus, the state-variables 

are characterised by four coordinates, ),,;( rqpnVi  , where  ,,2,1,0 K=n  is the considered time in-

stant. 

 

Step 2.  State that time evolution of each variable in each cube is due to the following causes: 

i.  Relationships between variables in each cube, which represent the internal dynamics in each 

one of them. That is,  

)),,;(),,,;((),,;(),,;1(
1

rqpnXrqpnVFrqpnVrqpnV
nn

iii

rr+→+=+  

depends on a function  )),,;(),,,;((
1

rqpnXrqpnVF
nn

i

rr
+→

 that represents the time change 

between nt = and 1+= nt of state-variables in each cell ),,( rqp . Functions Fi depend on a 

vector of state-variables ),,;( rqpnV
r

, and on a vector of input-variables ),,;( rqpnX
r

From 

now on functions Fi will be named as time-rates. 

 

ii.  Relationships between variables in different cells, or diffusions between cells. That is, time 

change of state-variables in a cell ),,( rqp can be due to entrance of state-variables (input 

diffusion) coming from other cells (for instance, population immigration to a district of a city 

coming from other districts), and exit of state-variables (output diffusion) towards other cells 

(for instance, population emigration from a district of a city going to other districts).  
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 5

 

Following this idea, consider two different cells, ),,(),,( rqprqp ′′′≠ . Then, the input diffusion (ID) of  

state-variable iV   to ),,( rqp coming from ),,( rqp ′′′  between time instants nt =  and 1+= nt  will be 

represented by  )),,(),,((
1

rqprqpID
nn

i ′′′←+→
, and the output diffusion (OD) of  state-variable Vi  from 

),,( rqp towards ),,( rqp ′′′  between time instants nt = and 1+= nt will be represented by  

)),,(),,((1 rqprqpOD nn
i ′′′→+→

. 

 

Both, input and output diffusions represent the dynamics between different cells in the system. Conse-

quently: 

∑

∑

≠′

+→

≠′

+→

+→

′→−

−′←+

++

+=+

mm

nn
i

mm

nn
i

nn
i

ii

mmOD

mmID

mnXmnVF

mnVmnV

)(

)(

);(),;((

);();1(

1

1

1

rr

rr

rrrr

rr

(Eq.2.1) 

 

where  all possibilities of input and output diffusions are added and, to simplify, vectors ),,( rqpm =r
  and 

),,( rqpm ′′′=′r  are defined. 

Let ),(
1

mmBD
nn

i ′+→ rr
be the balance diffusion (BD) rates, defined for hi ,,2,1 K= , as: 

)()(),(
111

mmODmmIDmmBD
nn

i
nn

i
nn

i ′→−′←=′ +→+→+→ rrrrrr
 

Then, Eq.2.1 can be finally rewritten as:  

∑
≠′

+→

+→

′+

++

+=+

mm

nn
i

nn
i

ii

mmBD

mnXmnVF

mnVmnV

),(

));(),;((

);();1(

1

1

rr

rrrr

rr

(Eq.2.2) 

A necessary remark must be done when output diffusion from ),,( rqpm =
r

 to ),,( rqpm ′′′=′
r

 is the same 

than the input diffusion to ),,( rqpm ′′′=′
r

from ),,( rqpm =
r

,  then  only input diffusion rates are needed to 

be evaluated. In this case: 

)()(),(
111

mmIDmmIDmmBD
nn

i
nn

i
nn

i

rrrrrr
←′−′←=′ +→+→+→
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 6

Note that both balance diffusion rates between two different cells depend on state-variables and input-

variables, that is: 

 

himnXmnXmnVmnVGmmBD nn
i

nn
i ,,2,1)),',(),,(),',(),,((),( 11

K
vrvrvrvrrr

==′ +→+→
(Eq.2.3) 

 

In order to find out the form of these dependencies we formulate the hypothesis about their mathematical 

structure by defining some suitable auxiliary-variables for disaggregating model (if necessary) or by fit-

ting some linear or nonlinear functions. 

 

By using Definition 2, the STDS can be extended to: 

 

))()),(()),((()( rADrADXrADVHrV
rrrrrrrr

=             (Eq.2.4) 

 

This equation has been called DMDS. Note that in the particular case of the STDS, Eq.2.2, the vector 

function H
r

 is the addition of the state-variables vector for r
r

 (changing  n+1 for n in its first compo-

nent) plus the time rates and the space-time rates.  

The accessibility domain of the time variable, allows stating the next definitions: 

 

Definition 3.Memory of a System. 

Given the DMDS and for each Dxxtr r
m

rr ∈= ),...,,( 1

rrrr
, let 

}1)(,...,1,:}{{)( 1
)(

1 −=≤<= += rpjttttrtAD rr
j

r
j

rp
j

r
j

r rr rrrrrr

 be the accessibility domain for its first com-

ponent, the memory of the system is defined as the natural number }
1

{max
r
t

r
t

Dr

rr

r
−

∈

.  

 

Similarly, a kind of “memory” for the other change variables is defined as follows: 

 

Definition 4.Reach for each change variable. 

Given the DMDS, and for each Dxxtr r
m

rr ∈= ),...,,( 1

rrrr
 let )( rxAD r

i

rr

 be the accessibility domain for 

the component i of ).,,0( mir K
r

=  The reach for each change variable ix  is defined as the number
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 7

{ })(:max rxADxxxr r
iii

r
i

Dr
i

rrr

r
∈′′−=

∈
. It is evident that the reach for the time variable ( 0r ) is equiva-

lent to the memory of the system.  

 

3. Previous approaches to space-time dynamical systems 

 

In this section,two major previous approaches (historically speaking) for space-time dynamic descriptions 

of systems will be discussed as well as their relation with our DMDS approach.  

 

3.1. The reaction-diffusion approach 

 

A reaction-diffusion model for an open chemical system (Nicolis and Prigogine, 1977) tries to describe 

time evolution and space distribution of several chemical components reacting between them, constituting 

a system with constant volume that can exchange material of some of its components with its environ-

ment. It can be written as:  

)()( ρρ
∂
∂ρ rrrr

ii
i JF
t

⋅∇+= ;   i=1,2,...,h (Eq.3.1.1) 

where iρ  and )(ρr
r

iJ  (i=1,2,...,h)  are, respectively, partial densities of chemical components, and spa-

tial density rates. Functions Fi inform about time change of each component in each infinitesimal volume 

in the system, per unit of volume, given by the "Action Mass Law" for chemical reactions. Vector func-

tions iJ give the rate of cross-change perpendicularly taken to the surfaces of infinitesimal volume com-

ponents, per unit of surface and volume, in the three spatial directions. 

 

If in Eq.3.1.1 the hypothesis that  iii DJ ρρ ∇=
rrr

)(  is stated, equation that is known as the Fick Law, where 

iD  represent the diffusion coefficients and are constants, then: 

iii
i DF
t

ρρ
∂
∂ρ 2)( ∇⋅+=

r
;   i=1,2,...,h          (Eq.3.1.2.) 

Equation 3.1.2 can be converted in a system of equations with finite differences, by using the same nota-

tion than Eq. 2.1, such as: 
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 8

∑ ′→⋅−

−∑ ′←⋅+

+⋅+

+=+

≠′

+→

≠′

+→

+→

mm

Dttt
i

mm

Dttt
i

Dttt
i

ii

mmJ
Dl

Dt

mmJ
Dl

Dt

mnXmtVFDt

mnmDtt

)(

)(

),(),;((

);();(

rr

rr

rrr

rr
ρρ

(Eq.3.1.3.) 

 

where ),,( zyxm =r
;  { }),,(),,,(),,,( DzzyxzDyyxzyDxxm ±±±∈′

r
;   with Dl=Dx=Dy=Dz . If con-

tinuous values are replaced by integer ones, then: ),,( rqpm =r , ),,( rqpm ′′′=′r ,  

{ })1,,(),,1,(),,,1( ±±±=′ rqprqprqpm
r

, Dt=Dl=1, and Eq.3.1.3 is converted in Eq.3.1.4: 

 

∑ ′→⋅−

−∑ ′←⋅+

+⋅+

+=+

≠′

+→

≠′

+→

+→

mm

nn
i

mm

nn
i

nn
i

ii

mmJ
Dl

Dt

mmJ
Dl

Dt

mnXmnVFDt

mnmn

)(

)(

)),(),;((

);();1(

1

1

1

rr

rr

rrr

rr
ρρ

      (Eq. 3.1.4) 

 

Note that no space-rates are defined between no-neighbour cells. That is because the reach (Definition 4) 

for the three space change variables is one and, even between neighbour cells, Eq. 3.1.4 does not consider 

the relationships between cells with more than one different coordinate.    

 

The DMDS, or its particular case the STDS, has eliminated these last restrictions. There, all necessary 

space rates between cells are present. Formally, the reach for both change-space variables can be the 

maximum possible, so all cells of the system can be put into a relationship. Therefore, these proposed 

models can be considered as a generalisation of the reaction-diffusion models in their finite differences 

form. 

 

3.2. The cellular-automata approach. 

 

A cellular-automaton  (Wolfram, 1994) is given by a space-time distribution of a collection of automata 

or cells whose states can be described by a magnitude V. That is: 

{ });();1( mtHmtV ii
′=+

rr
                 (Eq.3.2.1) 
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 9

where ),,( rqpm =
r ( )QqPp ,,2,1;,,2,1 KK == ,  represents the position of a cell in space and { }m′

r
 is the 

set of adjacent cells that are near the cell occupying the given position. Generally, the procedure to work 

with this kind of models consists of formulating some general hypothesis about function Hand studying 

the quantitative and qualitative behaviour of the model that includes such hypothesis. Nevertheless, this 

strategy can be improved in order to model a complex system. Transforming Eq.3.2.1 in the following 

way: 

Firstly, extend the set { }m ′
r

 to all cells such that mm
rr

≠′  and, finally, separate the dependence on m
r

 cell 

from the dependence between different cells, similarly to Eq.2.1, that is: 

 

{ }

)),(),;(),;(),;((

);(),;((

);();1(

mtXmtXmtVmtVG

mtXmtVF

mtHmtV

i

i

ii

′′+

+=

=′=+

rrrrrrrr

rrr

rr

      (Eq.3.2.2) 

 

If time is considered asan integer, t = n, functions F and G are considered as rates between t = n and t = 

n+1 and, the number of state-variables increase in 1≥h , then: 

 

{ }

.,,2,1)),;(),;(),;(),;((

);(),;((

);();1(

1

1

himnXmnXmnVmnVG

mnXmnVF

mnHmnV

nn
i

nn
i

ii

K
rrrrrrrr

rrrr

rr

=′′+

+=

=′=+

+→

+→
          (Eq.3.2.3) 

 

Eq.3.2.3 should be the same than Eq.2.2if Eq.2.3 is taken into account. These equations are, basically, the 

same STDS. 

 

Observe that the reach for change-space variables depends on the particular model, but generally do not 

reach to all the set of cells. On the other hand, the number of state-variables is only one and, in most of 

the cases, more than one state-variable are needed for describing a complex system.  

 

4. Steps for building a DMDS  
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 10

The DMDSmodel is an adaptation of the steps suggested by Caselles (1994) with the purpose of con-

structing models of systems with multidimensional variation. Once the relevant variables are found, the 

functional relations between the variables can be obtained by following the next steps:  

 

Step 1: Determination of all state-variables that are going to describe formally the real system 

hVVV ,...,, 21 . These variables must describe the basic information about the goal stated for the model. 

 

Step 2: Statement of all change-variables that state-variables depend on, including the time-variable. If 

),...,,( 1 mxxtr =
r

is the change-vector that contains all of them, then the state-variables can be defined as 

the scalar fields )(),...,(),( 21 rVrVrV h

rrr
. 

 

Step 3: Setting up the hypothesis about the accessibility domain of each change-variable. Implicitly, it is 

assumed that a model type Eq.2.4is required. 

 

Step 4: Finding the functional relationships between the state-variables iV  at each vector-value r
r

 and 

the same and other variables at the vector-values r ′
r

 belonging to the accessibility domain of r
r

. 

 

That is, looking for the functions iH , components of ,H
r

ofEq.2.4. Such functions can include auxiliary 

and input-variables(for instance, they can include regression relationships obtained from databases). 

 

Step 5: Validation of the built model, maybe by comparing its results with the historical values of the 

state-variables, taking into account the initial conditions for the state-variables and the historical values of 

the input-variables. In order to perform the validation of a DMDS by this instance method, the following 

procedure is proposed.  

 

Let ),( mtU ji

r
, with ,,,2,1,,,2,1 sjhi KK ==  be the historical values for the state-variables at jt  time in-

stants and at vector-values: )()()( 21 mxRgxRgxRgm L
r

××∈ . On the other hand, let ),( mtV ji

r
 be the 

predicted values for the state-variables at the same time instants and vector-values. Thus, for each time 

instant jt , a degree of fitting between both sets of values can be defined as the determination coefficient: 

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



 11

( )( )

( )( )∑
∑

−

−

=

m

jiji

m

jiji

ji
mtUEmtU

mtUEmtV

tR

r

r

rr

rr

2

2

2

),(),(

),(),(

)(  

 where �(·) means the average value. 

 

Another possible validation method consists of performing a comparison with other models (Sargent, 

1999).  In this paper, such comparison is performed theoretically (see Section 3) with Reaction-Diffusion 

models and with Cellular-Automata models and practically (see Section 5) with Reaction-Diffusion mod-

els inside an application case.     

 

Step 6: Using the validated model to find, for the adequate simulations, the best values for input-variables 

in order to reach the goal of the model.  

 

 

5.  Application of a DMDS model to study the population dynamics of an urban 

system 

 

The following application case is presented in order to demonstrate how the DMDS could be used in a 

possible real life problem: to obtain a space-time model (the city model in the following) of the demo-

graphic evolution of an urban system.  

 

The role of the reaction-diffusion models and the cellular-automata models to model the space-time dy-

namics of urban systems have been very important. For instance, Zannette&Manrubia (1997) use areac-

tion-diffusion model to study the dynamics of a city formation, while Kolokonikov et al. (2012) study the 

evolution of urban crime by using also a reaction-diffusion model. On the other hand, White & Engelen 

(1993) use a cellular-automata model to study the evolution of the urban land-use patterns, while Cou-

clelis (1997) uses the geographic information systems to construct a cellular-automata model to study the 

urban and regional dynamics.  
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A first primitive space-time demographic model was presented by Micó and Caselles (1998), being its 

main objective to determine the evolution of the population of a city by districts and cohorts. On its fore-

casts the city could base its public health, schooling and policies about social services. The main features 

of this model are the following: (a) it has a single state variable, the corresponding to population per co-

horts and districts; (b) the migration rate between districts is computed, as a working hypothesis, as di-

rectly proportional to the population of the input district and inversely proportional to the population of 

the output district and to the distance between districts. The predictions of this model provide some un-

stable solutions that do not correspond with the real evolution of the system.  

 

In this paper, in order to improve such predictions, a new space-time demographic model is constructed, 

considering that the state-variable is population density - and not population - per cohorts and districts. 

On the other hand, the migration rate between districts is computed as a function of the product between 

the population of the input and the output districts and the difference between both populations (see Equa-

tion 5.2). The present model is better than its predecessor because it has been validated through the de-

termination coefficient corresponding to the year 2001. Let us present this model following the steps 

described in Section 4.  

 

5.1. Steps to build the DMDS corresponding to the city model 

Step 1. The list of variables found for this model is:   

� Input-variables: 

NUCO: number of cohorts. NUDX: number of longitude steps. NUDY: number of latitude steps. 

TNAC: birth rate (0/00). TDIF: migration rate between districts (cells). XACO(NUCO-1): number 

of years of each cohort except the last one. TDEF(NUCO): death rate (
0
/00). SMIG: migratory 

balance. DDDT: Time increment (years). DDXY: Area of each district (step2) . 

� State-variable:  

POBI(NUCO,NUDX,NUDY): initial population density per cohorts and dis-

tricts.POBL(NUCO,NUDX,NUDY): present population density per cohorts and districts. 

� Auxiliary variables: 
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CFMI(NUCO): composition of families per cohorts (values between 0 and 1). 

CREC(NUCO,NUDX,NUDY): births and growing rates per cohorts and districts. 

DEFU(NUCO,NUDX,NUDY): deaths per cohorts and  districts.  

POBT: total population at the beginning of each year. POBF(NUCO): total population per co-

horts. XMIG(NUCO,NUDX,NUDY): migratory balance per cohorts and districts. 

POBA(NUDX,NUDY): total population per districts. 

DIFE(NUCO,NUDX,NUDY,NUDX,NUDY): balance diffusion rate of population between dis-

tricts per cohorts. 

 

Note that variable’s names followed by other ones in brackets are arrays and represents the range of the 

change-variables except time, which is not included because the equations are written in visual BASIC, 

in such a way that the intelligent system SIGEM  (Caselles, 1994, 1996) can update the values of each 

output-variable at each time-step by using the memory-variables (POBI, for this model).  Therefore it 

is not necessary to include time there. 

 

Step 2. The change-variables are time (t), cohorts of the population (i), and latitude and longitude (respec-

tively, j and k). Thus, the change-vector is ),,,( kjitr =r
. To simplify the equations, vector 

),,( kjim =r
 is used inside some of them. For instance, ),( mtr

rr = . 

 

Their respective ranges are NtRg =)(  (natural numbers) for time-variable, },...,2,1{)( NUCOiRg =  for 

cohorts, },...,2,1{)( NUDXjRg =  for longitude, },...,2,1{)( NUDYkRg = for latitude. Therefore, the 

change-space is )()()( kRgjRgiRgND ×××= . In order to make possible to define cohorts of differ-

ent range, the variable XACO(NUCO-1) or a number of years of each cohort except the last one, is in-

troduced as an input-variable. 

 

Step 3. The hypothesis about accessibility domains of change variables are: 

 

�   For time-variable }{)( dttrtAD −=r Dr ∈∀ r ; thus, the memory of the system is one. 
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� )( riAD
r depends on the value of i, so, )()1( iRgrAD =r  because the first cohort incorporates the 

births, and the births depend on the entire population (the sum of all cohorts of population, POBA); 

}1{)( −= iriAD
r  if NUCOi <<1  and }2,1{)( −−= NUCONUCOrNUCOAD

r
 (see equations be-

low). 

� )()( jRgrjAD =r and )()( kRgrkAD =
r

Dr ∈∀
r

; thus, the reaches of space-change-variables are 

NUDX and NUDY, respectively. That means that every district of the city can be related with eve-

ry other one. 

 

Step 4. The functional relationships between the state-variables iV  at vector-values r
r

 and r ′
r

 such that 

DrrAD ⊆′= }{)(
rr

, are given by the following equations (some of them explained afterwards): 

 

1. POBL :

( )

( )


















=′′

++−+=

<′′+

++−+−+=

∑

∑

≠′′

≠′′

),(),(

),(),(

nucoiif),,(),,,(

),(),(),,,((),(),(

nucoiif;),,(),,,(

),(),(),,1,(),,,((),(
),(

kjkj

kjkj

kjikjidife

mtxmigmtdefukjitcrec
ddxy

dddt
mtpobimtpobl

kjikjidife

mtxmigmtdefukjitcreckjitcrec
ddxy

dddt
mtpobi

mtpobl

rrrr

rrr
r

 

2. POBI: ),(),( mtpoblmdddttpobi
rr =+  

3. CREC:  

If   i=1 (births):
1000

),,(),,1,(
tnac

kjtpobakjtcrec =  

                 If 1<i<nuco: 













−

−

+
+−

−
⋅









−

−
−=

ddxy
ixaco

kjitpobi

ddxy
ixacoixaco

ixaco

ixaco

kjitpobi

ixaco

kjitpobi
mtcrec

)1(

),,1,(

)()1(

)1(

)1(

),,1,(

)(

),,,(
),(

r

 













⋅
−

−

+
−+−

⋅−
⋅









−

−
−

−

−
=

=

ddxy
nucoxaco

kjnucotpobi

nucoxaconucoxaco

ddxynucoxaco

nucoxaco

kjnucotpobi

nucoxaco

kjnucotpobi
mtcrec

nucoiIf

)1(

),,1,(

)1()2(

)1(

)2(

),,2,(

)1(

),,1,(
),(

:

r

If 0),( <mtcrec
r

: 0),( =mtcrec
r

 

If xaco(i-1)<1.5: ddxykjitpobimtcrec ⋅−= )),,1,(),(
r
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4. DEFU: ddxy
itdef

mtpobimtdefu ⋅=
1000

)(
),(),(
rr

 

5. XMIG: 
)t(pobt

)k,j,t(poba
)i,t(cfmismig)m,t(xmig ⋅=r  

6. DIFE:   If )k,j,t(poba)k,j,t(poba =′′  or (j=j’ and k=k’): ( ) 0)k,j,i(),k,j,i(dife =′′  

else ( ) ( )
22

)()(

),,(),,(
),,(),,,(

kkjj

cfmikjtpobakjtpoba
tdifkjikjidife

′−+′−

⋅⋅′′
=′′  

7. POBA: ∑⋅=
i

mtpobiddxykjtpoba ),(),,(
r

 

If 0),,( ≤kjtpoba : 1),,( =kjtpoba  

8. POBT: ∑⋅=
m

mtpobiddxytpobt
r

r
),()(  

9. CFMI: 
)(

),(
),(

tpobt

itpobf
itcfmi =  

10. POBF: ∑⋅=
),(

),,,(),(
kj

kjitpobiddxyitpobf  

Step 5In order to validatethe DMDS given by the city model, its equations have been written in visual 

BASIC, as required by the intelligent system SIGEM (Caselles, 1994, 2008), and a simulator for the 

situation has been built. This validation has been performed using the historical data taken from Valen-

cia-city in Spain, during the period 1996-2001, choosing the initial conditions in 1996. For this con-

crete case and for this period, the values for input-variables have been obtained in the official statistical 

data-base of the city (http://www.ayto-valencia.es). Details are presented in Section 5.3 and results are 

shown in Figure 1. 

Step 6. Some instance simulations performed with the validated model are presented in Section 5.3.3. 

 

Remarks:  

� Observing its equations, it can be deduced that the memory of the model is one and the reach of 

the other change-variables is the maximum possible. Observe also that POBI is the memory-

variable, needed to define the state-variable POBL. 

� This last idea - the reaches of the change-variables are the maximum possible - provides the degree 

of interrelation between space parts inside the system and could be considered, hypothetically, as a 

common feature for social and socioeconomic systems.    
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� Observe that the time-rates are computed through the auxiliary-variables CREC, DEFU and 

XMIG, and the space-rate is computed through the auxiliary-variable DIFE; the state-variable is 

POBL; the input-variables are SMIG, TDIF, TDEF, TNAC, XACO, DDDT and DDXY, the auxil-

iary-variables are POBA, POBT, CFMI and POBF; and POBI is the memory variable.  

� The strategy to reach these equations was, firstly, to find a valid model of the city without consid-

ering space and, finally, to introduce space-rates by following the ideas given by Eq.2.1. 

� The equations leading to calculate CREC are based on the following assumptions: 

• The number (NUCO) and length (XACO) of the population-cohorts to be considered are in-

put-variables. That is, the model is able to be adapted to different situations. 

• The transition rates between adjacent cohorts (CREC) are calculated by smoothing linearly 

the corresponding step. 

� The initial values of population density (POBI) and the diffusion rates (DIFE) are estimated or cal-

culated as specified in Sections 5.1.1 and 5.1.2. 

 

5.1.1 Obtaining the initial values of population density (POBI) 

 

The values for POBI corresponding to years 1998, 1999 and 2001 do not exist in historical records. In 

order to estimate such values, an interpolating polynomial fitted to the data corresponding to years 1991, 

1996 and 2001 hasbeen used. 

 

The values of POBI in 1996, for 2370=⋅⋅ NUDYNUDXNUCO  points are unknown but, nevertheless, 

such values measured as inhabitants/hectare per districts, and the longitudes and latitudes corresponding 

to the centre of gravity of each district are known in 1996 and in 2001 (the values corresponding to this 

last year are used latter in order to validate the model by comparing them with the predicted ones). Longi-

tudes and latitudes are assigned, respectively, starting from the western and southern boundaries of the 

city (longitude one and latitude one, respectively) up to the eastern and northern ones (longitude seventy-

nine and latitude ten, respectively). In addition, each point represents an area of 4.594 hectares (the value 

of DDXY). The population density per cohorts for every pair longitude-latitude belonging to the specified 

range has been calculated as follows: 
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1. To perform a linear interpolation using the data of population density and the equation of the 

plane determined by the closest three points to each point for which the population density must 

be calculated. 

2. To multiply each calculated density by the corresponding global proportion of each cohort in Va-

lencia, in 1996. Due to three cohorts have been considered (NUCO = 3 in simulations), such pro-

portions are 0.141, 0.698 and 0.161, respectively.   

The determination coefficients (R
2
) corresponding to the three cohorts of population density (2001) (be-

tween 0 and 1) are 0.993374, 0.995262 and 0.947411 respectively.   

 

5.1.2 Calculating the diffusion rates (DIFE) 

Let )),(),(( kjkjid ′′←  be the input population diffusion to cell (j,k) coming from cell (j’,k’). The aim of 

this second step was to find the best dependence of this variable on poba(j,k), poba(j’,k’) and longitudes (j 

and j’) and latitudes (k and k’), by using the fitting functions finder REGINT (Caselles, 1998). After some 

preliminary tests, and using the data obtained as it has been described in Section 5.1.1, the best depend-

ence found was the following function of the populations of the input and output districts and of the dis-

tance between them:  

 

( ) ( )
),,(),,(

),,(),,(

)()(

),,(),,(
)),(),((

22 kjtpobakjtpoba

kjtpobakjtpoba
c

kkjj

kjtpobakjtpoba
bakjkjid

−′′
⋅′′

⋅+
′−+′−

⋅′′
⋅+=′′← (Eq. 5.1) 

 

Eq. 5.1 has been fitted to the data from the three years: 1998, 1999 and 2000 and a determination coeffi-

cient (R
2
 = 0.93) has been obtained.  This is a very acceptable value in order to use Eq. 5.1 inside the 

model. The average values for parameters a, b and c, computed from the three equations corresponding to 

the three mentioned years are: a=69.0532, b=3.45926·10-7/3 and c=-1.39211·10-6/3.  

 

Let )),(),(( kjkjod ′′→  be the output population diffusion from cell (j,k) to cell (j’,k’). Taking into ac-

count Eq. 2.2, )),(),((,)),(),(( kjkjidkjkjod ←′′=′′→ holds. Thus, the balance diffusion rate of popu-

lation between districts, ( )),(),,( kjkjdife ′′ (the dependence on cohorts is not considered here), is:    

( ) ( )
22 )()(

),,(),,(
2),(),,(

kkjj

kjtpobakjtpoba
ckjkjdife

′−+′−

⋅′′
⋅⋅=′′               (Eq. 5.2) 
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Consequently, tdif=2·c. Finally, in order to introduce the dependence on the i-th. cohort, Eq. 5.2 is multi-

plied by the variable CFMI (composition of families per cohorts). Therefore, the final result for the bal-

ance diffusion rate of the populationbetween districts per cohorts, DIFE, is:  

( ) ( )
22 )()(

),(),,(),,(
),,(),,,(

kkjj

itcfmikjtpobakjtpoba
tdifkjikjidife

′−+′−

⋅⋅′′
=′′

   

(Eq. 5.3) 

 

5.2 Steps to build the Reaction-Diffusion model corresponding to the city model 

 

In order to compare the DMDS with another model (for instance the Reaction-Diffusion model), not only 

theoretically (such comparison has been performed in Section 3.1) but also practically, the city modelwill 

usethis alternative approach. Thus, the following equation has to be solved: 

444444 3444444 21

rrrrr

r
),(

2
),(),(),(),(),(

mtf

mtxmigmtdefumtcrecmtpoblDmt
t

pobl
+−+∇=

∂

∂
 

The corresponding steps necessary to reach such target are the following: 

Step 1 

� Input-variables: 

NUCO: number of cohorts. NUDX: number of longitude steps. NUDY: number of latitude steps. 

TNAC: birth rate (0/00). D: Diffusion coefficient, representing the migration rate between districts 

(cells). XACO(NUCO-1): number of years of each cohort except the last one. TDEF(NUCO): 

death rate. SMIG: migratory balance. DDDT: Time increment. DDXY: Area of each district or cell. 

� State-variables:  

POBI(NUCO,NUDX+2,NUDY+2): initial population density per cohorts and dis-

tricts.POBL(NUCO,NUDX,NUDY): population density per cohorts and districts. 

PRXI(NUCO,NUDX+1, NUDY): Initial unitary variation of the population (initial value for 

P1RX). PRYI(NUCO, NUDX,NUDY+1): Initial unitary variation of the population (initial 

value for P1RY). P1RX(NUCO,NUDX+1,NUDY+1): Partial derivative of population respect 

to X. P1RY(NUCO,NUDX+1,NUDY+1): Partial derivative of population respect to Y. 

� Auxiliary variables: 

CFMI(NUCO): composition of families per cohorts. CREC(NUCO,NUDX,NUDY): births and 

growing rates per cohorts and districts. DEFU(NUCO,NUDX,NUDY): deaths per cohorts and  

districts.  

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

32
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



 19

POBT: total population at the beginning of each year. POBF(NUCO): total population per co-

horts. XMIG(NUCO,NUDX,NUDY): migratory balance per cohorts and districts. 

POBA(NUDX,NUDY): total population per districts. 

DIFE(NUCO,NUDX,NUDY,NUDX,NUDY): balance diffusion rate of population between dis-

tricts per cohorts. P2X2(NUCO,NUDX,NUDY): Second partial derivative of population re-

spect to X. P2Y2(NUCO,NUDX,NUDY): Second partial derivative of population respect to Y. 

Steps 2 and 3 

Similar to those of DMDS. 

Step 4 

The equations are the same than DMDS except for POBL, which in this case is: 

















=+⋅+

++−+=

<+⋅+

++−+−+=

   nucoiif))),,(22),,(22(

),(),(),,,((),(),(

nucoiif;))),,(22),,(22(

),(),(),,1,(),,,((),(),(

kjiypkjixpD

mtxmigmtdefukjitcrec
ddxy

dddt
mtpobimtpobl

kjiypkjixpD

mtxmigmtdefukjitcreckjitcrec
ddxy

dddt
mtpobimtpobl

rrrr

rrrr

 

ddxykjitpobikjitpobimtryp

ddxykjitpobikjitpobimtrxp

/)),,,()1,,,((),(1

/)),,,(),1,,((),(1

−+=

−+=
r

r

 

ddxykjitpryikjitpryimtyp

ddxykjitprxikjitprximtxp

/)),,,(),1,,((),(22

/)),,,(),1,,((),(22

−+=

−+=
r

r

 

dttifmtrypmtpryi

dttifmtrxpmtprxi

==

==

),(1),(

),(1),(
rr

rr

 

 

Steps 5 and 6 

Similar to those of DMDS. 

 

5.3 Simulation and validation 

 

5.3.1 Using the automatic programming tool SIGEM 

 

SIGEM generates programs written in Visual Basic starting from a list of names of variables and a list of 

equations/tables/rules. Each list is written in a respective text file (.txt). SIGEM and the book byCaselles 

(2008) are available at http://www.uv.es/caselles. 
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The city model simulatorgenerated by SIGEM has been run with a 425 Mhz. PENTIUM IV processor, 

with 198 Mb RAM. A simulation with DMDS lasted 4 seconds, and with RD lasted 6 seconds. 

 

5.3.2 Validation of both models DMDS and RD 

The common values for DMDS and RD corresponding to the initial conditions are the following: 

NUCO = 3. NUDX = 79. NUDY = 10. TNAC = 8.65241421 
0
/00 .XACO(1) = 14 years. 

XACO(2) = 50 years. TDEF(1) =  0.548370017 
0
/00. TDEF(2) = 2.934892979 

0
/00. TDEF(3) = 

46.62292294 
0
/00.  SMIG(1997) = -2665. SMIG(1998) = -4513. SMIG(1999) = -3466. 

SMIG(2000) = 9717. SMIG(2001) = 9717. DDDT = 1 year. DDXY = 4.594 hectares.  

In addition, we need to add variable TDIF = -2·1.39211·10-6/3 in the case of DMDS andvariable 

D = 10
-3

/3 in the case of RD. 

 

The results corresponding to both validation simulations are shown in Figure 1. The urban area consid-

ered has been normalised using Cartesian coordinates in the adequate range. Historical data (population 

densities: inhabitants/4.594 hectares) correspond to the background of each picture using a grey scale 

represented on the right bar close to each picture. Corresponding simulated data are represented by the 

“level curves”.  This is an intuitive or visual form of validation. A possible numerical form of validation 

is calculating the parameter R
2
 (see Section 5 step 5) that appears at the bottom of each figure. 

 

5.3.3 Some instance simulations performed with the city model 

 

Taking into account that the city model can be considered as a validated DMDS for demographic predic-

tions, and with the intention of running the sixth step provided in Section 5.1, as an instance, some simu-

lations have been performed. The population density evolution per districts and cohorts to year 2002 has 

been performed, using as initial values those corresponding to year 2001 in Valencia (see Figure 2). This 

simulation runsto perform the forecasts corresponding to three different scenarios determined by the in-

put-variable SMIG (the other input-variables conserve the same values than in the validation runs). These 

three scenarios and the corresponding results are shown as contour plots where longitudes are represented 

in abscises and latitudes in ordinates: 
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• Optimistic Scenario. Migration in the city is positive. An average of about 9717 persons per 

year (real migration of the 2001 year) enters the city, during the three years of simulation. 

• Neutral Scenario. Migration is 0 people per year as an average, during the three years of simu-

lation. 

• Pessimistic Scenario. Migration is negative. An average of about 9717 people leaves the city 

per year (the opposite value of the optimistic scenario), during the three years of simulation. 

 

Figure 2 do not show differences inthe population density between scenarios because only one year is 

forecast, but this is not an objective for this paper. However, these forecasts point out that the optimistic 

scenario drives the system to equilibrate the proportion of the younger population with respect to the 

older one, while the neutral and the pessimistic scenarios drive the system to increase this proportion. 

Take into account that, in these scenarios, the variation of the birth and death rates has not been consid-

ered. Thus, it is understood that considering more complex and realistic scenarios, and due to the city 

model can be considered as a validated model, forecasts about the evolution of the population density per 

cohorts could be considered as acceptable under the respective scenarios. Therefore, possible policies 

about school and health needs and other services, distributed per districts, could be based on the forecast 

evolution of the population density under such scenarios. 

 

6. Final remarks 

 

The main goal of this paper has been to suggest a formalism based on an equation, the DMDS, in order to 

embed existing dynamic models including space-time variation of systems, and to adapt the methodology 

proposed by Caselles (1994) to build models of DMDS type. The DMDS suggested in (Eq.2.4) has been 

derived by three different methods: 

 

1. By introducing space in classical models of systems with time dynamics, deriving an equation, called 

STMS (Micó and Caselles, 1998), which is a first approach to the DMDS.   

2. By ageneralisationof the reaction-diffusion model, once converted into a finite difference equation. 

3. By changing conveniently the way to write the equation of cellular automata models.  
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An aim of this paper has been to show how these three approaches are particular cases of the DMDS. 

 

Finally, the adaptation of the methodology suggested by Caselles (1994) to the DMDS approach has been 

used to forecast the evolution of the population density of an urban system by cohorts and districts. This 

application case is an example of how to adapt the DMDS formalism to a particular case, the city of Va-

lencia (Spain). 

 

A line for future research could be obtaining a validated DMDS of a general urban system where the 

present model is the corresponding to the demographic subsystem, in the context of the formalism of 

systems decomposition and coupling stated by Caselles (1993). Thus, this demographic model is the first 

step towards a general space-time model of an urban system. Other subsystems, such as the corresponding 

to economy, housing, pollution, structures etc., must be built and validated separately and, later, coupled 

to form a unique system. Obviously, these subsystems will have to include other state-variables - besides 

population - referred to space-time distribution of firms, structures, land-use, and so on. 
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